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PREFACE.

IN the present Volume I have attempted to present to the
English student a continuous and fairly complete analysis of
the Mathematical Theory of Elasticity, as it stands at present,
together with a brief account of the physical basis on which the
fheory rests, and of the considerations which limit its practical
‘ipplication to natural materials.

It would, of course, have been impossible to exhaust so wide
3 subject within the limits of an elementary text-book, and my
:ndeavour has rather been, after giving a very full and clear
iccount of the properties of Strain and Stress, considered separ-
aitely and in their relations to one another, to indicate to the
student as many as possible of the various modes of further
ulvance, in order that he may be able to read without difficulty
any of the more specialised meinoirs, both theoretical and practical,
that constitute the already enormous literature of Elasticity.

The labour involved in the collection and arrangement of the
materials for such a work can only be appreciated by those who
have fully studied the subject for themselves, and it would have
"een largely increased had I undertaken to acknowledge in foot-
aotes the sources from which each theorem or formula was
derived. My original intention was to complete the Volume by
a Bibliographical and Historical Chapter, but during the twenty-
one months that this book has been in the press the announce-
ment of the late Dr. Todhunter’s great work on the history of the
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vi PREFACE.

subject, and ultimately the appearance of its first volume under
the editorship of Prof. K. Pearson, have led me to abandon that
design, though very unwillingly. Such references as have been
inserted are intended chiefly as guides to further reading.

A portion of the projected scheme has however been retained
as Appendix IIL (pages 162-168), on the history of Hooke’s Law,
and this perhaps suffers from its isolation. It must be under-
stood that all the statements and remarks contained in it
refer exclusively to its subject, and not at all to the general
question of Green’s Theory and the minimum number of Elastic
Coefficients, on which I hold the orthodox opinion, though I
cannot regard the matter as finally closed to discussion.

I have adopted the notation of Thomson & Tait’s “ Natural
Philosophy ” for Strain and Stress, in spite of its obvious theo-
retical deficiencies, partly because it is the one most familiar to
English readers, and partly because it is so eminently readable
and speakable. I am inclined personally to prefer the double-
suffix notation on all other accounts, and I would suggest the
following system as the most generally useful (the symbols in
parentheses being those employed in the present work, and the
suffixes referring to the generalised codrdinate notation of
Chapter V.) —Strains, e;(e), €,,(f), :49), 8,4a), 8£(b), 8¢,(¢), €x(ey),
ex(ey), €5(eg); Rotations, 6,(6,), 0,(6y), 0(O,); Stresses Ny (P),
N (@ Neg(B), To(8), Tyl T)T (U, Ny, Ny, (O

I fail to see any adequate reason for modifying the established
nomenclature of the subject, except it be to amplify it. It must
be owned that it is largely Latin in origin, but that very fict has
its historical interest, recalling as it does the magnificent series of
memoirs produced in succession by the great French mathema-
ticians who were practically the creators of the theory.

It is with great pleasure that I record my obligations to
Professors Sir W. Thomson, P. G. Tait, and J. J. Thomson for the



PREFACE, vii

ready kindness with which they assisted me in the most difficult
portion of my task —the revision of Chapter 1.—as well as for
their expressions of sympathy and encouragement for my under-
taking as a whole. I am also much indebted to Professors Alex.
B. W. Kennedy and A. G. Greenhill for permission to make free
use of their original papers; to my friend, Mr. H. M. Elder, B.A,
late Assistant Master at Wellington College, and formerly Scholar
of Trinity, for his skill and eare in photographing Figures 87, 39,
40, 41, and for assistance in revising some of the proofs; and to
my Publishers, for kindly lending me the blocks of Figures 63,
64, 65.

It is almost inevitable that, in a work of this kind, many
errors must remain undetected, in spite of every care. I shall be
grateful for notice of any such that my readers may discover, as
well as for suggestions as to notation, arrangement, and other

matters of opinion.
W. J. IBBETSON.

Eastery House,
CAMBRIDGE, March Oth, 1857,
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CHAPTER I
PROPERTIES OF ELASTIC SOLIDS.

Sorip MATTER AS IT REALLY IS,

1] Molecular Structure of Matter. To superficial
observation matter presents innumerable gradations of “coarse-
ness” or “fineness ” of structure, from the obvious “ granularity ”
of sandstone and other rocks to the apparently perfect “con-
t nuity ” of erystals, jellies and liquids.

A little retlection, however, will show that these terms have
¢ purely relative application, depending upon the magnitude of
t be smallest constituent portions of matter which are perceptible
15 our senses as individually distinct. The paper upon which
{ hese words are printed appears to the eye perfectly smooth and
' niform ; but under a microscope of even moderate power it is
' 2en to be really a more or less compact mass of tangled linen

hreads. If a mass of sandstone as large as the earth could be
sduced to the size of a cricket-ball, each of its parts shrinking
1 the same proportion, it would possess no more real uniformity
han before, yet none of the optical means at our disposal would
nable us to detect any granularity of structure. Similarly, if
pint of water, or a globe of glass of equal volume, could be
agnified in the same way to the size of the earth, it is quite
ossible that it might appear to us vastly more coarse-grained
1 structure than a mass of sandstone or gravel as we see it in
{ature. That is to say, the smallest constituents which we
(suld then distinguish from one another mighe be larger than
he crystals in the sandstone, or even than the pebbles in the
s ravel (see § 36, below). .

2.] We have, in fact, strong reason to believe that all kinds
« { matter, however apparently continuous, are ultimately granular
i1 structure, being composed of very minute (but not infinitely
+ mall) material particles or molecules, which perform incessant
1iotions so long as the matter contains any heat ; their capacity
for relative motion, as well as their size, mass and closeness of
¢ ggregation, varying considerably in different kinds of matter.

A
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PROPERTIES OF ELASTIC SOLIDS. [3.

|2

3] Intermolecular Forces. These molecules exert upon
one another mutual forces, to which the cohesiveness of matter is
due. Of their nature little or nothing is known with certainty,
except that their intensity in the natural arrangement of the
molecules varies within very wide limits for different kinds of
matter, while, if the molecules be artificially separated by
appreciable distances, it is impossible to detect their existence
by the most delicate instruments.* It appears, therefore, that
we are justified in assuming their sphere of action to be exceed-
ingly limited.

4] Impressed Forces. The molecules are also liable to be
influenced by external “impressed” or “applied” forees, such as
Gravitation and other natural forces of attraction and repulsion.

5.] Natural State. When matter is entirely free from the
action of such external forces, it is said to be in its “natural
state.” This term does not imply that matter is ever found, or
can even be conceived to be in this state under natural con-
ditions; but that in this state, and in this only, it may be
supposed isolated from all co-existing matter, so that all the
phenomena it presents depend only on its individual nature.

6.] Solid Matter. In the kind of matter called solid each
molecule performs small vibrations about a mean position, which,
so long as the body is in its natural state and maintained at
constant temperature, may be regarded as fixed. Under the
same conditions the vibrations of each molecule may be assumed
strictly periodic, and the mean value of the amplitudes of the
vibrations of any considerable number of molecules may be
supposed constant.

7.] Homogeneity and uniform density. If, when the
matter is in its natural state, and at any uniform temperature,
the mean positions of the molecules are uniformly distributed,
and if their masses and the periods and mean amplitudes of their
vibrations are the same throughout, the matter is said to be
“naturally homogencous.”

It follows that a closed surface of given volume, but of any
form, whose least dimension is very large in comparison with
the greatest mean distance of two adjacent molecules, will, if
drawn anywhere within the substance of homogeneous matter,
always include the same number of molecules,—and therefore the
same total mass. The mass thus enclosed by a surface of unit
v;.)lume is called the Density of the matter, in any given system
of units. % &

* See, however, Note at end of volume,
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8] A-Homogeneous Solid Body is a continuous portion
of homogeneous solid matter, bounded by a surface consisting of
one or more completely closed sheets, each of which has at every
instant a definite form and volume. The form of the bounding
surface, and the volume enclosed by it (or between its sheets) in
the natural state of the body, at any given uniform tem-
perature, are called the natural form and volume of the body at
the given temperature. The relative arrangement of the mean
positions of the molecules under the same conditions will be
called the natural configuration of the molecules at the given
temperature.

9.] We have seen in § 3 that the only property which we
can ascribe with certainty to the intermolecular forces is that
they depend in some way on the molecular configuration; the
law of dependence varying for different kinds of matter. Since,
however, when the body is free from the action of external
forees, we can hardly conceive of their being affected by any
other consideration, we shall assume that, in the natural state,
th:y depend solely on the configuration of the molecules, and on
ths temperature.

It is obvious that the form and volume of the bounding
st rface, which is merely the envelope of the external layer of
wHlecules, must in all states of the body depend solely and
e tirely on the molecular configuration.

10.] Definition of Strain. Any departure from the natural
¢ nfiguration is ealled a Strain. Thus a Strain may be defined
a any change in the relative arrangement of the mean
p sitions of the molecules from that which is natural to the body
a the given temperature.

11.] Elastic Properties. It is found by experiment that
a | solid bodies possess, in a greater or less degree, the properties
i1 eluded under the title of Elasticity. These may be summed
u ), in general terms, as follows :—

(1.) The natural form and volume of the body (and therefore
a 40 the natural configuration of the molecules) are always the
st me when the body is at the same uniform temperature, through
W hatever cyeles of gradual changes of temperature (within
o win limits) the body may be brought, so }:mg as it is not
& hjected to external force.

(#i.) Hence it has a perfectly definite and characteristic
nitural or “unstrained” configuration at each temperature
v ithin these limits, which eannot be altered, while the tem-
p irature remains the same, except by the application of external
fi ree.
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Or, in other words, it always requires the application of
external force to produce strain.

(iii.) Given the type of the external forces applied, the
greater they are the greater will be the strain produced; and,
conversely, the greater the strain to be produced, the greater the
external forces which must be applied.

(iv.) 1f the applied forces and the consequent strain be con-
fined within certain limits, the body offers continuous resistance
to the strain, so that it requires the continued exertion of external
Jforce to maintain the body in a given state of strain; and when
this force is removed the body tends to retuin to its natural state
at its ultimate temperature.

12] Limits of Elasticity. All these elastic properties are
exhibited in very different degrees, and subject to many limita-
tions, by different classes of natural solids.

Short of the strain required to produce absolute rupture
(called the proof-strain of the material) there is always a limit to
the elasticity of every natural substance. So long as the applied
forces are such as to produce a strain well within this limit the
resistance increases steadily with the strain, while it always
requires sensibly the same force to maintain the same strain at
the same temperature ; and on the removal of this force the body
returns to a state sensibly identical with its natural state.

When, however, the strain exceeds the elastic limits of the
material the properties of the body undergo a marked change, -
and it passes into what is known as the ductile state. In this
condition the resistance still increases with the strain, but much
less rapidly than before the limit was passed, and the tendency
to return towards the natural state is much diminished, so that,
when the external force is removed, the body is found to have
acquired a “set” or permanent strain.

13.] Ductility and Brittleness. Those materials whose
elastic limit is separated by a considerable interval from the point
of rupture, and whose state of ductility therefore has a distinet
range, are called ductile, malleable, or plastic. To this class
bel(l)ng most of the natural metals, as well as steel gradually
cooled.

Thus under the enormous pressures applied in the Mint, the
density of gold is permanently altered from 19258 to 19:367, and
that of copper from 8535 to 8:916. )

At the bottom of this class are various soft solids (of which
putty or tallow may be taken as a familiar example) whose
elasticity is almost imperceptible, and which are for all practical
purposes wholly ductile.
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On the other hand, crystalline bodies, glass (when cold), jellies,
and steel suddenly chilled from a red heat have extremely little
duetility, so that, practically, breakage is the first intimation we
receive of having reached the elastic limits. Such materials
are called brittle.

The two classes, however, are not separated by any hard and
fast line, the various gradations of tempered steel, for example,
forming a series of connecting links.

14.] Elasticities of Shape and Bulk. The elastic resist-
ances of a solid may be roughly divided into resistances to
Distortion, Expansion, and Compression respectively.

The limits of these are often very different in the same solid,
the first having generally a very small range.

15.] Tempering. The reason for the limitation imposed
in § 11 (i.) on the changes of temperature to which the body may
be supposed subjected, is that, by sudden and violent changes of
temperature, many substances, and notably metals and glass, may
Le entirely altered in all their elastic properties.

The brittleness of glass (Prince Rupert’s drops) and of steel
(zlass-hard steel) when heated to redness and suddenly chilled in
water is proverbial. But glass may be “toughened” by gradual
cooling in hot oil, and steel by gradual and cautious reheating
may acquire a vast number of degrees of “temper” intermediate
between brittleness and ductility. All these ditferent qualities of
steel must be regarded as distinct materials, none of whose elastic
pmpcrties are absolutely identical.

I'he change produced in a metal by tempering is obviously
analogous to that produced by straining it beyond its elastic
limits ; and some very striking results have been obtained in the
way of tempering wires by giving them a permanent strain.
Mr. J. T. Bottomley has shown that the tensile strength of soft-
iron wire may be inereased more than 25 per cent. by prolonged
tension ; while Messrs. A. & T. Gray find that the power of copper
wire to resist twisting about its axis may be reduced to } of its
natural value by giving it a permanent twist.

16.] Viscosity and Fatigue. Besides the above well-
known restrictions, two remarkable irregularities have been dis-
covered by Sir William Thomson in the elasticity of metals,
trained within their elastic Iimits, which are probably common
to all natural solids.

In the first place the resistance to strain is found to vary with
the rate at which the strain is imposed.

This proves {he existence of a property of solid matter
analogous to the “viscosity ” of fluids, in virtue of which the
latter oppose to change of shape a resistance proportional to the

L'."I.C‘.’.'.","‘ d by Mii
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rapidity of the change. The law by which the increase of resist-
ance in the case of solids depends on the increase of the rate of
straining is certainly not so simple, but the analogy justifies the
application of the term solid viscosity to this property.

Secondly, it was found that wires which had been frequently
and recently strained, well within their elastic limits, exhibited
less marked tendency to elastic recovery, and much greater
viscosity than when they had been left at rest in the natural
state for some days before the experiment.

This result shows that the elastic properties of a natural solid
may suffer diminution or Faligue by frequent exercise, and that
these properties may be more or less fully restored by repose.

17.] All these limitations and imperfections in the Klasticity
of natural solids present insurmountable difficulties in the way of
an analytical theory ; and for the purposes of a first approxima-
tion they must be eliminated.

If we class the more or less “imperfectly elastic” substances,
which we find in nature, according to the range of their elasticity
and the degree of perfection in which they exhibit its character-
istic properties within these limits, they are seen to form an
ascending scale suggesting an ideal summit which is never actually
reached in nature, but only more or less closely approximated to
under favourable circumstances.

This ideal, which we shall adopt as the subject of our investi-
gations, we define as a Perfectly Elastic Solid.

REAL MATTER WITH IDEALLY PERFECT KLASTICITY.

18] A Perfectly Elastic Solid is characterized by the
following properties up to the point of breakage :—

(¢) In its natural state at any temperature the molecular
configuration, together with the form and volume of the bounding
surface, are perfectly definite, and characteristic of that tempera-
ture.

(7¢.) If the temperature (supposed always uniform through-
out the body) be changed, the solid passes continuously to the
natural state for the new temperature, through all the inter-
mediate states natural to the intermediate temperatures.

(741.) 1t requires the application of external force to produce
a strain at any temperature; and it requires the continued
application of the same force (or system of forees) to maintain
the strain.

(tv.) Tt always requires the same force (or system of forces)
to maintain the same strain at the same temperature, through
whatever intermediate states of temperature and strain it may
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have been brought to the given state, and at whatever rate these
intermediate changes may have been passed through.

() When all external forces are removed it returns to its
natural configuration for the temperature at which it is left.

19.] Approximation of natural solids to Perfect Elas-
ticity. Under very small strains which do not approach the
Elastic Limits of the material; produced so gradually and
maintained for so short a time as never to call Viscosity into
play, or to produce Elastic Fatigue; and subject to changes of
temperature too limited and gradual to impart a Temper: the
metals, erystals, glass, jellies, indiarubber, ete.,, may all be said to
have approximately perfect elasticity, as defined in the last article.

20.] Intrinsic Energy in the Natural State. Assuming,
as we shall do throughout, that the body is free from azfl
influences due to electritication, magnetisation, ete., it is obvious
that the energy possessed by it in its natural state, at any given
temperature, must consist of two parts:—

(i.) The intrinsic potential energy, due to the configuration
of the mean positions of the molecules under the intermolecular
forees ; and

(i) The kinetic energy due to the vibrations of the mole-
cules about these mean positions.

The intermolecular forees being supposed governed by fixed
laws which, in a given body in its natural state, depend$ solely
(§9) on the contiguration and temperature, it follows that the
potential energy in the natural state also depends only on the
configuration and temperature. But by § 18 (i.), the natural
configuration depends enly on the temperature. Hence we may
state, in mathematical language, that, in the natural state, the
potential energy is a function of the temperature only. Again,
according to the most modern theory of gases, the kinetic energy
due to the motion of their molecules is simply proportional
to the absolute temperature. The relation is probably not so
simple in the case of elastic solids, but we are justified in
assuming, as in the theory of Thermodynamics, that the kinetic
energy of the molecules is some function of the absolute tem-
perature, so that neither can be altered without altering the
other; the form of the relation being such that both increase

¥ diminish together.

21.] Stability of the Natural State. According to § 18
(#i., iv.) it requires the application of external force to disturb
the body from a given natural state, and to hold it in any given
state of strain, the temperature rvemaining unchanged : and
when the foree is removed, the body returns to the state
from which it was disturbed. Hence the natural configuration
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at each temperature is one of stable equilibriuwm for straining
disturbances without change of temperature. And since, by
the last Article, the kinetic energy of the molecules is the
same in every state at the same temperature, it follows by
a well-known theorem in Statics, that the natural configura-
tion at each temperature is such that the potential energy
has its least possible value for that temperature under the
given law of intermolecular force.

Hence it follows that if the body be strained in any manner,
while the temperature is kept constant, the potential energy will
be increased. And since in this case the kinetic energy remains
constant, the increase of potential energy is necessarily equal to
the work done own the body by the external forces in producing
the strain.

If now, the temperature still being maintained constant, the
body be-allowed to work against the external forces, it will, in
returning to its natural state, lose all the additional potential
energy which it acquired by the strain. This then must be the
exact measure of the work done by it against the external forces,
which is thus equal and opposite to the work done upon it by
them in producing the strain.

This result may obviously be extended to a body starting
from equilibritin in any given state of strain, and passing, «t
constant temperatwre, through any cycles of strain back again to
its initial state, the total sum of work done on or by the body
being identically zero.

Thus a perfectly elastic body maintained at constant tempera-
ture forms with any system of external straining forces a
perfectly conservative system, the excess of the body’s potential
energy over that natural to the temperature being a function
only of the strain and of the temperature, and wvanishing with
the strain.

22.] Temperature free to vary. In general, when the
temperature of the body is left free to vary, energy communi-
cated to the body, either in the form of heat or of mechanical
work done by external forces, will be distributed in both forms.

Thus, the primary effect of the addition of heat is to raise
the temperature of the body, and thus to increase the molecular
kinetic energy. But, since no external forces are applied, we
know by § 18 (¢4.) that the configuration of the molecules must
change to that natural to the new temperature.

Hence, if the law of intermolecular force be such that the
potential energy of the natural configuration increases with the
rise of temperature, some of the heat will be expended in produc-
ing this increase, so that the resultant rise of temperature will be
that due to an increase of kinetic energy less than the full



22] PROPERTIES OF ELASTIC SOLIDS. b,

energy-equivalent of the added heat. On the other hand, if
the natural potential energy diminishes with the rise of tempera-
ture, the eftect of adding heat will be to convert some of it into
kinetie, and the resultant rise of temperature will be in excess.

Again, if mechanical work be done on the body by external
forees, so as to produce a strain, the mode of the molecular
vibrations (which must depend upon the configuration) may be
altered, and consequently the kinetic energy and the temperature
may suffer change. Here again the increase of potential energy
due to the strain will not be the exact equivalent of the work
done in straining the body.

23.] Dissipation of Energy. The availability of heat for
conversion into mechanical work, or potential energy, depends
entirely on its distribution as to temperature. Every reversible
conversion of mechanical work into heat is accompanied by the
removal of a proportional quantity of heat from a body or
portions of a body at a lower temperature to a body or portions
of the same body at a higher temperature ; and if the distribu-
fion so produced could be maintained indefinitely, the process
would at any time be reversed without the addition or removal of
ieat from the body as a whole, the work done by the body in
tecovering its original thermal and mechanical state being pre-
sisely equal to that done on it by external forces in producing
the tirst change of state.

But, under natural conditions, it is impossible to maintain, for
any length of time, a non-uniform distribution of temperature
without constantly supplying heat to some portions of the surface,
and constantly removing it from others. If the body be supposed
guarded from loss or gain of heat by radiation, the process of
gradual conduction is constantly tending to equalize the tem-
perature throughout its mass, and thus to dissipate its intrinsic
energy for mechanieal purposes, by rendering its heat unavailable
for reconversion into potential energy or mechanical work.

Now, by § 22, Strain produces a change of temperature which
varies with the strain; hence a non-uniform straining of the
body will produce a non-uniform distribution of temperature,
and consequently the energy of a body so strained will be liable
to dissipation by means of conduction.

24] Conditions for a Conservative System. In order,
.nevefore, that a perfectly elastic solid may form with external
mechanical forces a perfectly conservative system, we must
assume one of two conditions: either

(i) That the body is perfectly guarded from loss or gain of
heat by radiation or surface-conduction, and that all the stages of
strain and recovery are passed through so rapidly as to prevent
all possibility of dissipation by conduetion in its interior ; or
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(#i.) That the straining is so gradually performed, that heat
may be constantly communicated to or taken from the different
parts of the body, by suitable means, in such a manner as to
maintain every portion uniformly at the initial temperature:

25.] The two cases are perhaps of equal practical importance,
and the former is certainly the more interesting theoretically, but
the relations between temperature, kinetic energy, and inter-
molecular force are at present so hopelessly obscure that but
little can be done towards its development.®

It may be observed that, even if conditions (i.) were exactly
tulfilled, a natural solid would still be found to dissipate energy
irrecoverably by reason of its viscosity ; (see the second condition
of § 19).

26.] Theory Adopted. To simplify our theory, and elim-
inate as many unknown physical relations as possible, we shall
assume that the conditions of § 24 (¢i.) are always satisfied. We
may observe that all the conditions of § 19 will be satisfied at
the same time, if the strain be small; so that results obtained
for small strains on this assumption will be very approximately
true for many natural solids.

The body is then to be supposed always maintained at one
constant temperature, uniform throughout, and thus the results
of § 21 may be accepted as rigorously true.

The kinetic energy of the molecules will be constant, and so
also will the natural potential energy, or that possessed by the
body when free from strain.

27.] Energy of the Strain. Since we are only concerned
with the Strain and its effects, we leave these constant terms in
the energy of the strained body altogether out of account; and
it is the excess of the potential energy of the strained body over
its potential energy in the natural state which we shall in future
refer to indifferently as the Potential Energy of or due to the
Strain or of the strained body, or, more briefly, as the Energy of
the Strain. ,

By § 21, the Energy of the Strain is in all cases equal to
the mechanical work done on the body by the external forces in
producing the strain.

-Now, by § 18 (iv.), the same system of external forces,
applied to the body in its natural state, invariably produces
the same strain. Hence, if the strain be given, the forces to
be applied, and also the displacements of their points of applica-
tion are fully specified.

Thus the Energy of a given Strain, being equal to the work
done in producing it, is completely determined when the strain

* See Sir W. Thomson’s Reprinted Papers, Volume 1., pages 293-313.
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is specified ; or, in mathematical language, is @ function solely of
the given strain, and absolutely independent of any intermediate
states of strain through which the body may have been brought.

28.] Stress defined. The effect of Strain, or change in th
relative positions of the molecules, is to call into play Stress, o‘j
change in the mutual forces between the molecules.

In the natural state, the molecules form a system of bodies
performing small oscillations about mean positions under purely
mutual forces. It follows, not only that the resultant of all these
mutual forces acting within the body is identically zero, but also
that if all the molecules were placed at rest in their mean
positions, the resultant of the intermolecular forces acting on
any one molecule would be identically zero.

The system of intermolecular forces in the natural state
must therefore be regarded, whether with reference to individual
molecules or to the body as a whole, as an equilibrating system.

20.] Similarly, when the body is held in equilibrium in a
given state of strain by suitable applied forces, the intermolecular
f¢ rces—altered from their natural values by the change of
¢mfiguration, but still purclf' mutual—together with all the
aplied forces on the several molecules must form an equili-
b ating system on the body as a whole. And the altered inter-
1 olecular forces on any individual molecule, together with the
¢ splied force on that molecule, likewise form an equilibrating
& 7stem.

Now the altered intermolecular forees, being still purely
1 iutual, must, as before, have by themselves a null or zero effect
«a the body as a whole. Hence it follows that any system of
i pplied forees capable of holding an elastic body in equilibrium

1 a given state of strain must be such that its component
ywees, acting at the points to which the strain has displaced
“heir original points of application, form by themselves an
+ quilibrating system.
30.] Defining then, in accordance with § 28, the stress betweer

wo molecules as the change in their mutual action due to the
vhange in their relative position, we see that the effects of
pplying any system of forces to an elastic solid are :—

. (1) To produce such a strain that the external forces acting
A the molecules in their new positions shall satisfy the ordinary

aditions of an equilibrating system, such as would hold the
wody in equilibrium if the molecules were to become rigidly
onnected in their new positions ; and

(1.) In so doing, to call into play stresses between the
nolecules, such that the resultant force on any one molecule
lue to stress is equal and opposite to the applied force. The
itresses, therefore, always resist further strain, and on any
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relaxation of the applied forces tend to restore the body to
its natural state, diminishing continuously as the potential
energy of the strain is expended in the process, and finally
vanishing together with the strain.

31.] Work done by Stress. Since the stress on each
molecule is always equal and opposite to the applied force, while
the displacement of their common point of application is neces-
sarily the same, it follows that all work done by the applied
forces may be reckoned as work done against the stresses, and
vice versd.

Thus, in passing from a state of strain in which the potential
energy (§ 27) is W, to a second state in which it is increased to
W4 6W, the work done on the body by the applied forces in
opposition to the stresses is ¢ W ; while, if the stresses be allowed
to restore the body to its original state, they will do work § W
against the applied forces.

32.] Strain-Coordinates. Let ussuppose that any changes
in the relative configuration of the molecules may be represented
by variations of a certain number of independent codrdinates 6,
¢ X > -, the word being used in its generalised Lagrangian sense.

Then, since the Potential Energy of the strain depends only
on these changes, it must be capable of being expressed as a
function of the strain-codrdinates.

Similarly, if V" be the mutual potential energy of any two
molecules, due to the stresses they exert upon one another, V'
must be a function of the differences between the actual values
of 0, ¢,..., defining their relative positions, and their initial
values in the natural state.

If then SV be the small increase of V due to a small increase
of strain, which changes 0, ¢,..., to 64+380, ¢p+3¢,...... , we must
have *

24 or or
==g" 80+,a-(7). 8¢+;a—5<-. X

Now, if W be the total potential energy of the whole body, it
is obvious that W=4Z3(V), the summation being taken twice
through all the molecules.

Hence

oV

SW=1S3(T)
L [oV oV
=13F 2" .8 e BT P i d
{5 VT }
But if ©, ®, X, ¥,... be the stresses respectively resisting
increase of the relative codrdinates 6, ¢, x, V... of any one pair

_*The symbol O is used throughout this work to denote partial differenti-
ation ; d being reserved exclusively for total differentiation. The usual flux-
notation is also frequently employed for partial differentiation as to time.

[ 7d
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of molecules, the work done against stress in producing a small
increase of strain in the relative positions of that pair is

{0.86+P.8p+X.8x+...... )
Hence the whole work done on the body against stress is
1S3(0. 80+ . 3¢+ X. 8x+......} =8I, by § 31.

Thus it follows that
O =0F/0; ®=3V[2p; ......

33.] Simple Strains. A strain which consists in the
variation of only one of the covrdinates, such as 6, is called a
Simple Strain of the type defined by 6. Similarly, © is called
the simple stress of the same type. In the case of a simple strain

]
V'r-/.()rl(l,
ﬂﬂ
0
W= %El-‘/ﬂaw,

)
6, being the value of 6 in the natural state for the pair of mole-
et les to which 7 belongs.
A complex strain, in which more than one of the covrdinates
s fler change, is said to be compounded of, or to have for its
¢ mponents, the simple strains

0-0y b= by......

Two complex strains are said to be of the same type when
t ieir simple components differ only by a constant factor. Thus,
i the first strain changes the codrdinates to 6,, ¢,, x,.-.., and the
¢ cond to 6, ¢y Xa-.., the conditions that they may be of the
¢ une type are

we have evidently

Bt =X, .
U=y Ps=Po Xa—Xo
34] Summary. We have now shown that if a perfectly
¢ lastic homogeneous solid body be strained by external forces,
) ‘hile always maintained at the same temperature—
(i.) The potential encrgy of the strain will always be equal to
I, the work done by the external forces in producing the strain.
(it.) The strain calls into play internal elastic forces or
i tetsses, which are of the nature of purely mutual reactions
I étween the molecules ; the stresses between any pair of mole-
(ules having for their potential the mutual potential energy of
'he pair, and eonsequently tending to resist further strain and to
restore the body to its natural state; while the resultant of all
he forees on any one molecule due to stress is always equal and
ripposite to the applied force.
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(i12.) The potential energy and the stresses are functions
solely of the actually existing state of strain, and absolutely
independent of all intermediate states through which the body
may have been brought.

(iv.) As the external forces are relaxed, the stresses experience
less and less opposition, so that they diminish continually as
they restore the body to its natural state, expending on that
process precisely the amount W of work which was done against
them in straining the body, and finally vanishing with the
strain.

(v.) It is obvious that when the molecules are in motion
under external forces the effective force to which the motion
of the mean position of any molecule in the direction opposed
to the stress is due, together with the resultant stress on that
molecule, is equal to the applied force.

Ipear ConTinvoUs MATTER WITH PERFECT ELASTICITY,

35.] Difficulty of further developing the Theory. We
have thus deduced, from what we believe to be the true proper-
ties of matter, the laws of equilibrium and motion of ‘the mole-
cules of a perfectly elastic solid. In order to develop our Theory
analytically, we must be able to follow the movements of each
molecule throughout the strain, and to discover all the mechanical
conditions to which it individually is subjected.

For this purpose we require to know the absolute mass and
dimensions of the molecules of the body under consideration ; the
law of distribution of their mean positions in the natural state;
the law of intermolecular force—the manner in which it depends
upon, and varies with, both the configuration and the tempera-
ture ; the limits of its sphere of action ; and, lastly, the connection
between mean configuration, period and amplitude of vibration
and the temperature.

a——"

36.] Unfortunately, on almost all these points, our ignorance
is at present absolute; and where we have any means of forming
an opinion, the conclusions arrived at are so vague as to be value-
less for our purpose.

For instance, as to the dimensions of the molecules the latest
conclusions of science are summarised as follows by Sir William
Thomson * :—

“The four lines of argument which I have now indicated lead
all to substantially the same estimate of the dimensions of mole-
cular structure. Jointly they establish, with what we cannot but
regard as a very high degree of probability, the conclusion that,
in any ordinary liquid, transparent solid, or seemingly opaque

* Lecture on the Size of Atoms, Royal Institution, February 3, 1883,
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solid, the mean distance between the centres of contiguous mole-|
cules is less than the five-millionth and greater than the thousand- |
millionth of a centimetre.

“To form some conception of the degree of coarse-grainedness
indicated by this conclusion, imagine a globe of water or glass, as
large as a football (or say a globe of sixteen centimetres diameter),
to be magnified up to the size of the earth, each constituent mole-
cule being magnified in the same proportion. The magnitied
structure would be more coarse-grained than a heap of small shot,
but probably less coarse-grained than a heap of foot-balls.”

37.] Boscovitch’'s Theory. As to the law of intermolec-
ular force, we are in still more complete ignorance.

The most natural assumption is that the action between any
two molecules is reducible to a single force acting between their
centres of mass, and varying only with the distance between
these points. This theory is always referred to as Boscoviteh’s,
after the Jesuit Father who first formally stated it. It was
acopted by all the earlier workers in Elasticity, who drew from
it deductions leading to a simple and consistent theory, which
however, was unable to bear the light of experiment, It was
fi st disproved by Stokes, and has come to be regarded as an
a surdity by all living physicists of any eminence (see § 208,
I :low).

Sir William Thomson has however quite recently shown *
t it the points in this theory which have Ihad to be rejected are
1 st legitimate deductions from Boscoviteh’s principle.

28.] As to the greatest distance at which the intermolecular
f weces are apprccinﬁle, Cauchy deduced from his Theory of the
] ispersion of Light that it must be comparable with the length
« ! a luminous wave—the mean value of which may be taken as
¢« yout one fifty-thonsandth of a centimetre; and, although his
t 1eory was based upon Boscovitch’s hypothesis, yet this result
< sems to hold good.

Here we practically reach the limits of our knowledge of solid
I \atter.

39.] Conventional Theory substituted. Our ignorance
f its intimate dynamical properties placing it out of our power
v deal analytically with matter as it really is, it becomes
1 “essary to substitute a hypothetical substance which will lend
i <elf to mathematical treatment : attributing to it such arbitrary
| roperties as will approximate the results of our analytical theory

* Lectures on Molecular Dynamics, John Hopkins University, Baltimore,
11.8.A., pages 124-132 of the papyrograph reprint.

t See however Quincke’s and Platean’s results, quoted in Tait’s “ Proper-
ties of Matter,” Article 203,
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to the deductions we have drawn from experiments on real
matter.

Our theory will then take its place as the last in the series
formed by the various branches of Dynamics, which must be
regarded as successive steps, each approaching nearer than the
preceding to the true state of things, but none of them actually
realised in nature.

40.] Dynamics of a Particle. The smallest “element of
volume ” which the refinement of analysis can reach must still,
for the purposes of that very analysis, be held to have three linear
dimensions, so that if it be occupied by an “element of mass”
subject to forces which vary from point to point throughout space,
this mass must in general be acted upon both by a force and by
a couple ; both of themn elementary, of course, but yet measurable
by analysis.

Hence we have recourse, for our first and simplest coneeption
of dynamics, to the purely abstract idea of a “Material
Particle,” which we define as a very minute but still finite
mass, so condensed that its linear dimensions are inappreciable
to our analysis, and therefore infinitely small, even when con-
pared with our smallest « element of volume.”

Such a particle cannot, of course, be subjected to couples, and
therefore Dynamics is reduced to its simplest form.

41.] Dynamics of a Rigid Body. We next advance to
the conception of a “Rigid Body,” which we regard as an aggre-
gation of such particles, so connected as to be entirely incapable
of relative motion.

The particles are supposed to be uniformly distributed, and,
in the case of a homogeneous body, to be all of equal mass.

;  Since the particles of the body remain in an invariable state
of relative equilibrium, the mutual forces exerted by them upon

lone another, must under all circumstances of equilibrium or

hnotion of the body as a whole, form by themselves an equili-
rating system (D’Alembert’s Principle).

They consequently cannot possibly do any work, and there-
sfore do not enter into the equations of energy. In fact, we only -
owe to them the Kinematical or Geometrical equations which
express in various analytical forms the fundamental fact that the
body always moves as a whole, without relative motion of its
particles. ;

Moreover the external action on each particle takes the form
of a single force, and these various forces can always be com-
pounded into a single Resultant Force and a single Resultant
Couple, which may be regarded as acting upon the body as a
whole.

Thus for all mechanical purposes the supposed structure of
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the body may be, and is, altogether left out of consideration, and
it may inditferently be regarded as a portion of perfectly con-
tinuous or structwreless matter.

42.] Continuous Elastic Matter. We now take our last
step in advance, and recognise the possibility of relative motion
between the constituent parts of a body.

Replacing the molecules of our perfectly elastic solid by the
abstract particles, of which an infinite number are contained in
the smallest element, we transform it into a portion of con-
tinuous elastic matter, capable of experiencing, and of offering a

. certain resistance to alterations of its form and volume.

43.] Homogeneity of Continuous Matter. In accord-
ance with this view we now define a Homogeneous Body as such
that any two equal and similar portions, similarly situated in
the body, are precisely identical in all physical and mechanical
properties, however small they may be taken within the limits of
aralytical refinement.

Thus we quite abandon the idea of granular or molecular
steucture, and, by diminishing the size of our particles in-
d ofinitely, extend that perfeet degree of homogeneity which in

n iture is common to many substances, taken in bulk (see § 1), «

t« the smallest volumes which we can conceive.

44.] Points, Lines, and Surfaces in the Body. Our body
b ing now composed of perfectly continuous and naturall]y homo-
g neous matter, we must, for GGeometrical purposes, replace the
n olecules by recognisable Yoints in the body” which are to be

" t ken as necessarily coineiding with material particles, or in-

fi iitely small portions of the continuous matter.

Similarly, we detine a “line in the body” as a cord of
¢ ntinuous matter, of any form and any length, and of infinitely
s 1all transverse dimensions ; while a “surface in the body” is to
I 1 regarded as a sheet of continuous matter of any form, and of
i finitely small thickness.

Points, lines, and surfaces in the body must, of course, when
a ice chosen, be supposed to maintain their identity throughout
a | ehanges of form and position.

45.] Heat-vibrations neglected. In this transformation
v : ¢ntirely ignore the heat-vibrations of the molecules, because

(2.) The molecules being replaced by particles infinitely close
t: gether, either their amplitudes will be reduced to the vanishing
p nt, or they will have the same phase, period, and amplitude for
a | points of the body, in which case they will not enter into the
s rain (see § 48):

(#i.) The temperature being constant, the kinetic energy is

B

mam—
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also constant, and may be left out of consideration together with
the constant part of the potential energy proper to the natural
state (see § 27).

Thus every point in the body is to be supposed at rest, except
in so far as its motion is due to change of strain.

46.] Course of our Analysis. Strain will now consist in
relative displacements of points in the body, and consequent
distortions of lines and surfaces, and changes in the form and
volume of portions of the body enclosed by the latter.

Our analysis of Strains will therefore have for its aim to dis-
cover a simple system of independent strain codrdinates, the
variation of any one of which will constitute a Simple Strain;
and to learn how to express any change of form or volume in
terms of these as standard types.

We shall next investigate the corresponding Simple Stresses,
(which will be of the nature of resistances offered by the body to
the respective Simple Strains), and the relations which must’exist
between them and the applied forces, in order that the body may
be held in equilibrium in any given state of strain by these two
opposed systems.

To complete our general theory we shall then only require to
know how to express stress in terms of the strain to which it is
due. We shall then be able to calculate the potential energy due
to any given strain, and the external forces required to produce
it; or, conversely, the strain produced by any given system of
applied forces; so that the solution of ‘any problem will be
reduced to a mere matter of analysis.

We shall, for the next five chapters, confine ourselves to the
consideration of bodies whose dimensions are at least finite in all
directions.



CHAPTER 1I1.
ANALYSIS OF STRAINS.

47.] We have defined Strain as any change in the relative
positions of points in the body, produced by external forces.

For purposes of analytical treatment it is of course necessary
to assume that the relative displacements of points in a body
undergoing strain follow some definite law depending on their
relative positions in the natural or unstrained state. In other
wirds, the displacement of any point @ in the body, relative to a
gi 'en point P, must be some function of the initial position of @
re ative to P; and it is further necessary to suppose, in order
th it the strain may produce no breach of continuity in the sub-
st nece of the body, that the relative displacement is a continuous
fv action of relative position, for by this limitation we secure that
tl » increase of the distance between any two points is, at the
1 ist, of the same order of magnitude as their initial distance.

48.] Secondly, it is to be observed that Strain, as defined,
d pends solely on such relative displacements. Any displacement
— whether linear or angular—which is the same for all points,
a1 d which therefore produces no alteration in their relative
a rangement in the body, amounts merely to a translation or
rc tation of the body as a whole, such as might be suffered by any
p rfectly rigid body ; and since such motions do not ecall into (})lay
a1y elastic forces, they are not included under the head of
S rains.

Although, however, a rotation of the body as a whole does
n t. by itself constitute a strain, and can add nothing to the
e1 :.2y of any true strain that may accompany it: yet, since in
di seussing strains which vary from point to point we only con-
si ler a small portion of the body at a time, and since a rotation
wich varies from one portion of the body to another does
cc nstitute a strain, we make a point of recording rotations, and
o1 ly ignore such displacements as are parallel, equal, and of like
si m for all points in the body.
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49.] Now, let us take an unstrained body, and refer the
positions of all points in it to a system of rectangular axes, fixed
in space, whose origin O coincides with any point M in the body.

If the body be now strained in any manner the point M will
in general suffer a displacement from its initial position at O, the
amount and direction of which will depend upon its situation in
the body. But it follows from the last Article that, without
modifying in any manner the effects of the Strain, we may
impress upon all points of the body displacements equal, parallel,
and opposite to that of M ; the effect of which will of course be
to move the body back, parallel to itself, until M once more
coincides with O. ‘

50.] Thus we may, whenever it will simplify our analysis,*
suppose that point of the body which coincides with our
arbitrarily chosen origin to be absolutely fixed in space, without
in the slightest degree restricting the perfectly general character
of the strain. '

Although, however, the origin may be regarded as fixed both
in space and in the body, the axes are only fixed in space. That
is to say, the straight lines in the unstrained body which coincide
with the axes will no longer do so after the strain; and, in fact,
they will in general be no longer straight lines, but continuous
curves intersecting more or less obliquely in the origin.

~ Assuming then that the point of the body chosen as origin is
fixed, the absolute displacement of any point in the body (and
therefore also its component displacements parallel to the fixed
axes) must be a continuous function of the absolute cosrdinates

of the point ; and these absolute displacements now constitute the
strain.

Theory of Small Strains.

51.] Equations of Displacement. Let P be any point
in the unstrained body, whose cotrdinates referred to the fixed
axes are (7, y, 2). Let the body be subjected to a very small
stra,ir)l, and let P in consequence be displaced to P’ (z+u, y+7,
z+w). 3

Then w, v, w are the component displacements of P, parallel
to the fixed axes, and we must have

u=¢ (z, y, )
v=x (%, ¥, 2)[,
w=1y (z, 9, 2)
where w, v, w are supposed very small, and ¢, x, Y are arbitrary

* See Appendix I., at the end of this Chapter, on the advantage of regarding
a point in the body as fixed.
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functions, continuous throughout the body. We shall assume
that all their partial derivatives as to , ¥, and 2 are also con-
tinuous, so that none of them can become infinite,

52.] Let another point of the body, initially at Q (x+4, y+ %,
s+1); very close to P’ so that A, k, I are small quantities of the
first order in comparison with «, ¥, 2; be displaced by the same
strain to Q' (x+h+, y+k+v, 2+14+ ).

Then, as before,

wW=¢ @+thy+k s+l)
v=x(x+h y+k 2+1)}.
w=y(x+h y+k z+1])

Since ¢, x, \ and their derivatives are supposed continuous, we
may expand by Taylor’s Theorem, and neglect squares and higher
powers of L, k, L.
Thus
3 2 )
W=+ I[%Z + l%;; + Isl;
v ,0v I'\lv

The cobrdinates of @, relative to P, have been changed from
(. kDto (h4+v' —u, k+v' —v, 4w —w); so that if Sh, ok, 8l be
t e increments of these relative codrdinates, due to the strain,

Ju ., Ou Ou

at-héfti"a’y-i-la‘:
ov . Ov Ov

Sk-hai.+k:5/+la: ................................. (1)
Qw ,Ow ow

&zha—w +L“:.y* +la?

53.] Elongation. If L be the length of any line in the
U astrained body, and if this length be altered to L’ by the strain,
t 1e ratio (L'~ L)/L, or the increase of length per unit of initial
1 ngt.h, is called the Elongation of the line.

f the line is diminished in length by the strain, it is said to
s iffer megative elongation, and the positive ratio (L -L')/L is
¢ therwise called its Contraction.

Let PQ=p, PQ=f+3p; then p is of the same order of
tiagnitude as h, k, [, and dp is of the same order, as &k, Jk;, dl.
4nd since p*=h*+k2+1°, we have to the order of approximation
a iopted, pop=héh+ Lkl +14l.

.
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But, if ¢ be the elongation produced by the strain in the
elementary straight line P(), e=3dp/p.

hosh kS 1Y @

€E=-, — e T sietetesesisesccarisevecesetron

P PP D
Now if A, u, v be the initial direction-cosines of PQ,

Y e = S 5 s R e ) i (3)
Hence, substituting from (1) and (3) in (2) we find

E_%% IAB‘/ Bz

v, w
+,u.(}\a +;L;a?/+v§z-

ow Ow  Ow
L Ah e = N s i RN 4
+V()tax+,uay+vaz (4)

or, re-arranging terms,

GOU | SOV | 0w Qw  Ov
)\ax+ ay+v +/L(ay az)

+ v)\(a—u + aw) +A ( ................... (5)

54] From the form (5) we see, by writing successively
NS = 0, =) SA=0 =1 1/—0) (A=0, u=0, v=1), that
au/am 8v/ay, ow/0z are the elongations of elementary straight
lines drawn from (7, y, 2) parallel to Oz, Oy, Oz, respectively.

Again from the form (4) it is easily seen that ¢ may be
written in the form

()\g %4 L )()\u+/w+vw) 4
if we assume A, u, v constant as to x, ¥, 2; that is, if we suppose
the elementary straight line to be drawn in the given direction
(A, u, v) from different points of the body.

Now if p be regarded as a current cobrdinate, giving the
initial distances from (x, ¥, 2) of points situated in the given
direction (A, u, v), and if U be the displacement of (z, ¥, 2),
resolved along this line in the positive direction of p, we have

U= M+ po +vw

o} o} ) CRE

s\ ;

B Py e
Thus

which gives the elongation of an elementary straight line drawn
in any direction from any given point of the body.
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55.] Change of Direction. Again, if (\, «, v') be the
direction-cosines of P'Q’,
A =(h+38k)/(p+ 8p)
N e
PP
therefore substituting from (1)

,\.=’\(1_(+a_:4)+#au+vau

ox oy o=
R, v v
;1.=z\ar+p(l-<+ay)+raé ...................... (7)
, 40w 0w Ow
V:/\a;-i-}la—y-rlf(l—i-f-a;)

Since A, u, v, as well as &, k, | and p, for any elementary
straight line in the body, are of the same order of magnitude
after as before the small strain, it follows that all lines and
surfaces in the body preserve not only their continuity, but also
the continwity of their curvature, throughout the strain.

56.) Permanence of Intersections of Lines and Sur-
‘aces. It is easy to show that the points of intersection of lines,
ind the curves of intersection of surfaces, in the unstrained body
jecome the points or curves of intersection of the same lines or
urfaces in their strained state.

That is to say, if two curves in the unstrained body intersect
n P, and if P be removed to P’ by the strain, the curves will be
trained into curves intersecting in F’. And similarly for the
mrves of intersection of surfaces.

For let the coordinates of P be (x, ¥, ) and those of P’
Z,y,%) so that ¥ =z +u, Yy =y+v,2’=2+w. Then if u, v, w
wre given as functions of z, y, 2, we can express o', 7/, 2’ explicitly as
functions of x, ¥, 2; and therefore (theoretically at least) u, v, w
s functions of «, ¥/, 2.

Now the two equations

Si(#, 4y 2) =0 } ............................... (A)
.,;("') ¥ 2)=0
taken separately represent two surfaces in the unstrained body,
and, if these surfaces intersect, the same equations, regarded as
“wultaneous, represent their curve of intersection.
The equations of the surfaces into which these are strained
are
BNy -89 -wjul } ........................ (B)
Sox -u, ¥y —v, 7 —w)=0
where u, v, w are supposed to be expressed explicitly in terms of

oy,
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But equations (B), regarded as simultaneous, may be taken
as representing either the curve of intersection of the surfaces
which they separately represent, or the curve which before the
strain was represented by the simultaneous equations (A).

Thus the curve of intersection of any two strained surfaces in
the body is the strained form of the curve of intersection of the
same surfaces before the strain; and by a precisely similar
method we can show that the point of intersection of any two
strained lines is the strained position of the point of intersection
of the same lines before the strain.

57. General Effect of Strain. We see from equations (5)
and (7) that the magnitude and direction of every elementary
straight line in the body are in general altered by the strain, and
that these changes are in general different for ditferent elements.
Hence the general effect of the strain is both to shift and to
distort all lines and surfaces in the body. We shall reserve the
exceptional cases for future discussion.

58] Limitations of Small Strain. From equation (5) it
appears that the elongation of an elementary straight line, drawn
in any direction from a given point, is of the same order of
magnitude as the first derivatives of the component displacements
of that point with regard to its initial coordinates. In future,
unless the contrary is explicitly stated, we shall confine ourselves
entirely to the consideration of “small strains,” implying thereby
that all these first derivatives, like the displacements themselves,
are small quantities of the first order, or else zero.

Homogeneous Strain.

59. Definition. We shall now suppose the character of the
strain restricted in such a manner that all the first derivatives,
Onvia 2. 2 Ow/0z, are independent of x, . 2.

This assumption involves a relation between the displacements
and initial codrdinates of the form

u=ex+ Ly + 7,7
V=G b U YsRs bt T MR S R (8)
w=ag+ By + ¥2
where the coefficients are all absolute constants, which for a finite
strain are finite or zero, and for a small strain are all small quan-
tities of the first order or else zero.’
A strain of the character defined by this assumption is said to

be a Homogeneous Strain. We shall now proceed to investi-
gate its principal properties. .
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60.] The results which we have already obtained for any
small strain take the following forms in the case of small homo-
geneous strain.

The component displacements of the point Q(x+h, y+k,2+1)
relative to the point P(r, y, 2) are, by (1),

Sh=eh+ Bk + vl
8k=agh+fk+72l}
8l = azh + Bsk + gl
The elongation of the line PQ (direction-cosines X\, u, ») is
given by
e=er? +/p?+ gt + (B + va)pv + (n + agvAd + (ag+ B)Ap..ni . (10)
whence it is obvious that ¢, f, g are the elongations of clementary
straight lines parallel to Ox, Oy, Oz respectively.
Lastly, the new direetion-cosines of P'Q’ are, by (7),

N=(l-e+e)d+Bp+ 7y
K=wh+(l-etf)p+yw
Ve=ald+Bp+(l-c+g)

61.] Parallel Straight Lines. It is obvious from equations
(10) and (11) that ¢ X', &, ¥ depend entirely on A, &, v; whence
ve deduce that, in any small homogeneous strain, all parallel
traight lines in the body, of elementary length, remain parallel
md are elongated in the same ratio.

But we may econsider any straight line, finite or infinite, in the
instrained body, as made up of consecutive elementary straight
ines, all of which are parallel to one another and meet consecutive
tlements. By equations (11) these will be strained into elemen-
ary straight lines all parallel to one another, and by § 56 each of
hese will meet the consecutive elements.

Hence they must all lie in a straight line ; 'so that « straight
iine in the body, of whatsoever length, will remain a straight line,
though in general its direction will be changed.

In the same way, since two parallel straight lines of any
length may be divided into elements, all of which are necessarily
parallel, it follows that all parallel straight lines in the body
remain parallel straight lines, though in general their dirvection
will be changed.

Also, since by (10) all their elements will be elongated in the
\me ratio, parallel straight lines of any length are elongated in
‘e same vatio; and, in particular, equal and parallel straight
lines are strained into equal and parallel straight lines, though
in general their length, direction, and distance apart are all altered
by the strain.

62.] Parallel Planes. Again, since (§ 56, 61) intersecting
straight lines remain intersecting straight lines, a plane must

DI;(][U?("L oy Microsoft ®
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remain o plane; and since any two parallel planes intercept
equal lengths on any system of parallel straight lines which meet
them both, and since these intercepts are strained into equal and
parallel (§ 61) straight lines, terminated (§ 56) by the strained
planes, it follows that all parallel planes are strained imto
parallel planes, though in general their direction and distance
apart are altered by the strain.

63.] Similar and similarly situated Geometrical
Figures. From the two last articles it follows directly that
every parallelogram is strained into a parallelogram, and every
parallelepiped imto a parallelepiped, though both are in general
distorted.

- Since similar and similarly situated plane figures (in the same
or parallel planes) have their homologous sides parallel, it follows
that all similar and similarly situated plane figures are strained’
into plame figures similar and similarly situated to one another,
though not necessarily to the former.

In fact, since all parallel chords are elongated in the same
ratio, it is obvious that the strained form of any plane figure is
an enlarged or diminished orthographic projection of its un-
strained form upon some plane.

Hence, in particular, an ellipse (including the circle) is always
strained into an ellipse or circle; and when a circle is strained

“into an ellipse every pair of orthogonal radit of the circle is
strained into a pair of conjugate radii of the ellipse.

Again, since in similar and similarly situated solid figures all
similarly situated sections are similar, it follows that all similar
and similarly situated solid figures are straimed imto solid
JSigwres similar and similarly situated to ome another, though
not in general to their unstrained forms.

64.] Strain Ellipsoid. Since all the sections of an ellipsoid
are ellipses (or circles), and since no other surface possesses this
property, it follows from the last article that every ellipsoid (or
sphere) is strained into an ellipsoid (or sphere); and when a
sphere is strained into an ellipsoid, every set of three orthogonal
radii of the sphere becomes a set of three conjugate radii of the
ellipsoid.

The ellipsoid into which a sphere of unit radius, described
about any point P of the unstrained body as centre, is altered by
the strain is called the Straim Ellipsoid at the point P. Of
course, in a homogeneous strain, the strain ellipsoids at all points
of the body will be equal, similar and similarly situated.

65.] Principal Axes of the Strain. Every set of or-
thogonal radii of the unit sphere becomes, by § 64, a set of con-
jugate radii of the Strain Ellipsoid ; and the ellipsoid has one—
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and only one—set of orthogonal conjugate radii, namely, its
principal axes.

Hence, in every homogeneous strain there is one—and only
one—set of three orthogonal straight lines passing through each
point of the body, which remain orthogonal after the strain,
although their directions are generally altered.

These principal diameters of the Strain Ellipsoid are called
the Principal Axes of the Strain at P.

66.] Pure Strain. When the strain is such that the Prin-
cipal Axes retain their initial directions it is said to be a Pure or
Irrotational Strain.

It is sufficiently obvious that the most general small homo-
geneous strain will consist of a small pure homogeneous strain,
sufficient to produce the required distortion, together with a
small rotation of the body as a whole, about a suitable axis,
sufficient to bring the Principal Axes at each point into their
new positions.

Analytical Investigation.

67.] We shall now" proceed to prove these properties of
Homogeneous Strain analytically.

Since, by equations (8), u, v, w are linear functions of , ¥, z,
their pa.rtizﬁ derivatives of the second and all higher orders will
vanish. Hence, equations (1) or (9) will be absolutely true,
mdependentliy of the magnitude of %, k, I, so that equations (10) -
and (11) will hold for straight lines of any length. From this
i 61 follows immediately.

68.] Initial and Final Coordinates. The equations
giving the final codrdinates (2, ¥/, ¢') of any point P in terms of
the initial cobrdinates (z, ¥, ¢) are, by equations (8),

F=xz+u=(l+e)x+Py+7y2
y=y+v=ax+(1+f)y+ m}
Y=z+w=ax+By+(l+g)
Hence, to the first order of small quantities,
z=(l -ep' - By - 9,7
y=—az' +(1-f)y - 7,:’!
3= —ag’ - By + (1 -g)¢
and, to the same approximation,
u=ex' + Ly + 5y
ve=ag' +fy + v }
w=a2 + By + g2
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Thus, in the equations of displacement for a small strain, the
final codrdinates (x, %, 2’) may be substituted for the initial
coordinates (x, y, 2) without introducing any error perceptible
to the order of approximation adopted. This is a very useful
principle in practice, and it is obviously not confined to homo-
geneous strain, since it depends solely on the smallness of the
coefficients involved.

69.] Linear Transformation of Equations. Itisa very
important consequence of the last Article that the equations of
surfaces in the unstrained body are only altered by a linear
transformation of the covrdinates, and, consequently, every such
surface remains of the same order as before the strain.

For example, the surface in the unstrained body given by the
equation ¢(x, ¥, 2) =0, becomes after the strain the surface given

by

d{[(1 =)' = By — 2T, [(L- /)y - 7% - a],
[(1-9)¥ - ag’ - Byy']} =0,

which equation, the coefficients being constants, is clearly of the
same order as the former.

Thus, planes are strained into planes, and quadries into
quadrics; and since a small (or even a finite) strain cannot
possibly convert a finite line into one of infinite length, it is -
clear that a closed surface must remain a closed surface. Thus,
an ellipsoid or a sphere is always strained into an ellipsoid or
sphere.

p The straight line being formed by the intersection of two
planes; and the ellipse or circle, being formed by the intersec-
tion of a plane with an ellipsoid or sphere, must obviously retain
their original characters.

Also, since equal and parallel straight lines are strained into
equal and parallel straight lines, it follows that a plane bisecting
a system of parallel straight lines is strained into a plane
bisecting a system of parallel straight lines, so that any system
of parallel chords of an ellipsoid, with their diametral plane,
become a system of parallel chords and corresponding diametral
plane of the strained ellipsoid.

Hence it follows at once that every set of three conjugate
diameters becomes a set of three conjugate diameters.

70.] Strain Ellipsoid. The ellipsoid

2

S +f;=1

Sk
3,
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becomes the cllipsoid

3 lfgex + -f g "-y Y. (B3+73) ./" Z ) O

A Gl AR &
(“-z :Bl) 2y =1;

and, in particular, the sphere

A

P +yi+ =
becomes
(1- "’e)x +(1 -2 )y + (1 = 29)2™ - 2(By + 7.)¥'% — 2(y, + a5)2'2’

which is the Strain Ellipsoid at the origin (§ 64), referred to the
fixed axes.

.71.] Change of Notation. It will be observed in equa-
tions (10) and (15) that the coefficients 8, and v,, v, and q,, a,
and 3, occur in pairs. This will frequently happen in future
ejuations, and we shall considerably simplify our analysis, and
niake it much easier to interpret, by changing our notation as
follows :—let us take

24 =B+ 7,

2=y, +ay

2= ay+ 3, \

201'3:‘

20,=v,-q, )

20, = a, - 3,/
./, g being retained.

72.] The equations of displacement for small homogeneous
train then take the formn

u=ex+ (8- 0)y+ (8, + 0)
v=(s+ O+ fy+ (8- 0
w= (8- 0)x 4+ (8,+0)y + g2

he elongation becomes

e=eA+ fut+ gv3i+ o v + 280N 4+ 28 Apcienniiininnns (18)
nd the final direction-cosines are
X=(=ct+e)d+ (25— O)pn+ (8,4 Op)v
W=+ 0N+ (1—e+fp+ (8 - O
V=(8,—O)A + (8, + 0)p + (1 — e+ g)v
while the equation of the Strain Ellipsoid, referred to the fixed
AXxes, is
(1=2e)2+ (1 -2f )y 2+ (1 — 29)2"2 - 48,5/ - 4o’z - 4o’y =1....... (20)
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73] The direction-cosines of the principal axes. of this
ellipsoid are given by the equations
(1-26)N = 2/ — 20/ _ = 28,\ + (1 = 2f)p' — 200/
Y w
_ = 28N =25 + (1 - 29)V
Y

which may also be written in the form
eA sy’ + 8V _ A i + 8V _ N + sy’ + g @1)
o = 5 A
These equations therefore give us the directions, after the
strain, of the Principal Axes of the Strain.

Graphic Properties of the Strain.

74.] The Elongation and Compression Quadrics. If
we describe about the origin a quadric surface of the form

ex? + fy? + g2 + 28,y% + 2s2% + 2wy =B2........ouunens (22)
(which we shall regard as fixed in space, like the axes of
reference), and if » be the radius vector intercepted by the
surface on a straight line in the body drawn from the origin in
the direction (A, u, v) we shall have

T2 A2+ ful + gV + 2sypv + 28,0\ + 28,Ap) = B2

Thus, by equation (18), if ¢ be the elongation of this radius
veetor, or of any straight line in the body parallel to it

; B T e i e
This surface is called the Elongation Quadric of the strain,

75.] It follows from equation (23), the right-hand side of
which is essentially positive, that every radius which meets this
surface suffers a positive elongation, and conversely that every
radius drawn in a direction of positive elongation will meet the
surface.

If therefore the strain be such that all lines in the body are
elongated, the Elongation Quadric must be an Ellipsoid.

If however the strain consists of elongations in some direc-
tions and contractions in others, e will be negative for some radii,
which therefore cannot meet (22).

In fact, in this case the Elongation Quadric is an hyperboloid
whose radii are the lines which suffer elongation, while those
lines which suffer contraction are the radii of the conjugate
hyperboloid represented by

ex? + fy? + 922 + 28,2 + 28,9 + Qsxy = — Bl................24)
which is called the Compression Quadsric.

\\\\\;

l
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76.] In the case in which all lines in the body undergo con-
traction, all radii from the origin must meet the Compression
Quadric (24), which is therefore an ellipsoid; and in this case
there is no Elongation Quadrie.

77.] Cone of no Elongation. In the case of § 75, the
hyperboloids of elongation and contraction are separated by their
asymptotic cone, whose equation is

e+ fy? + g3° + 28,y% + 2800 + 28y = O..ooniniinnnnnnn. (25)

It appears from (23) that for all the generators of this cone,
and of course for all parallel lines in the body, e=0. It is there-
fore called the Cone of no Elongation.

78] Cones of Constant Elongation. Lastly, the direc-
tion-cosines of all lines in the body suffering a given elongation e
(whether positive or negative) must satisfy (18), which may be
written

eA? 4+ [ + g2 + 2o,y + 2o + 28 dp = (AT + pi? +02).

All such lines must therefore be parallel to one or other of the

ge1 erators of the cone
(e=-)+(f- )y +(9— " + 28, y2 + 282 + sy =0......... (26)
We thus obtain a series of Cones of Constant Elongation.

79.] It is to be observed that all the quadrics described in the
la: ¢ five articles form a concentric and coaxial system.
If O, Oy, O¢ be their principal axes, their equations when
re erred to them will respectively become
e+ ff=1
A e R (1)
&+ ent+e*=0
(- O + (=7 + (¢ —€)2=0
W ere ¢, ¢, ¢, are the roots (in descending order of magnitude, let
us suppose) of the diseriminating cubic
[ 4)’ 83 83
£3 f"‘ (,’9 Hl
82 8 9- ¢’
th lirection-cosines of O, Oy, O, with reference to the original
ax 18, being given by the equations

= R IR (28)

eAtspt+ay sA+fp+sy mA+ap+gv 4
,__1__.x_= A T = SR ey (29)

wlere for ¢ is to be substituted e, e, or ¢, according as A, u, v are
th direction-cosines of O¢, Oy, or O¢.
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80.] Principal Axes of the Strain. Since the elongation ¢
of anyradius of the elongation quadric varies inverselyas the square
of the radius, and since the squares of the least and greatest radii
of the quadric are B?/e, and B¢, it is obvious that e always lies
between ¢, and ¢, and that the directions of maximum and mini-
mum elongation (or of minimum and maximum contraction) are
those of the least and greatest axes of the quadric.

But if we consider the deformation of the unit sphere into
the Strain Ellipsoid, it is clear that those radii of the sphere
which are drawn in the directions of maximum and minimum
elongation must become the greatest and least axes of the
Ellipsoid.

Thus the lines in the body which, before the strain, eoincided
with the principal axes of the elongation quadries, become the
principal axes of the Strain Ellipsoid.

Equations (29) therefore give the initial directions of the
Principal Axes of the Strain.

Pure Strain.

81.] Conditions for Pure Strain. The strain is said to
be pure (§ 66) when the Principal Axes retain their initial diree-
tions.

Now, comparing equations (29), which give the directions of
the Principal Axes before the strain, with equations (21) which
give the directions of the same lines affer the strain, we see
that they appear to be identical. We must not, however, infer
from this that the Principal Axes necessarily retain their initial
directions. From equations (19) it appears that the differences
between the initial and final values of the direction-cosines of any
line are of the same small order as the strain coefficients ; now in
equations (21) and (29) the direction-cosines all appear multiplied
by these same coefficients ; so that it is quite impossible, to the
order of approximation adopted, that any distinction should be
made in such formule between A and \', x and u«, v and v.

For instance,

‘i)-‘—’—’f%isz—” < feh kst 8y + e(N = A) + sy’ — pr)
1 A=A
+82(1/’—V)} e {1——)\— },

and substituting from equations (19), this expression is identical,
to the first order of small quantities, with

e + Sy + Spv

X 2
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82.] Non-rotated Straight Lines. The three straight
lines through the origin which (together with all lines in the
body parallel to them) really retain their initial directions in
space are to be found by putting A"=2, u'=pu, v'=v in (19).

Thus we get

eX 4 (5= O e+ (2.4 O)v (3 + Q)X+ fin + (5, - O,)v
A a3 "
G el A2 LR T At (30)
%
for the direction-cosines of the non-rotated straight lines.

The conditions for Pure Strain are therefore simply the con-
ditions that the equations (21), (29) and (30) may be identical ;
and these obviously are

6,=0, 0,=0, 6,=0.

83.] Equations of Displacement. Principal Elonga-
tions. The equations of displacement (17) thus become, in the
cese of Pure Strain,

w=ex + &5y + 82
L3 RN R T R S S (31)
w0=32+8Yy+y:}
I will be observed that they only involve sir independent strain
¢ efficients.

If now U, V, W be the displacements of any point P in the
b Wy, parallel to the Principal Axes O¢, Oy, O§; if (A, u, ),
(o iy vy), (N, iy vy be the direction-cosines of these axes referred
t the original arbitrary axes Or, Oy, Oz; and if (r, , 2) and
(., n, §) be the cobrdinates of P referred to the two systems; we
h wve

E=Ax+py+ r,:]
y= Ay v
(= A+ py + vy?
U= Aw+ pu+ r,:r]
P Ape + v+ var
W= A,ﬂ + v+ var
Thus, from (31) .
U= Moz + sy + 83) + (820 + Sy + 82) + v o2 + 8,y + g2)
= (A2 + sy + g)x + (Mg 4 g0/ + va )y + (Ads + 8, + vig)s
= Nz + pay + v,63, by (29).
Ultimately therefore we find
U=t
V=
W=ef J
&
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The point initially at (£ » {) is therefore displaced to

(L+ea)s (1+e)n (1+6)6
and obviously the effect of any Pure Strain is simply an elonga-
tion (or contraction) of the whole body parallel to each of the
Principal Axes.

The three Principal Elongations e, ¢, €, are the roots of the
discriminating cubic (28) of the Elongation Quadries.

By comparing equations (31) and (32) it is evident that
equation (18), giving the elongation e of any line in the body
may be written in the form A

e=ltemPdeniiiniiniii i, (18a)

where I, m, n are the direction-cosines of the line referred to
0&, Oy, O¢. -

By comparing equations (31) and (22), or (32) and (27), we
see that, in a pure strain, the resultant displacement of any point
P in the body is along the normal to the elongation quadric
which passes through P, and that its amount is B/p, where P is
the perpendicular from the centre (the origin) on the tangent
plane at P.

84.] Position-Ellipsoid: Deseribe about the origin the
fixed quadric
(1 +e)a?+ (1 +f)yt+ (1 +9)22 + 28,y2 + 222 + 285wy = C2....eoneinne (33)
This is obviously coaxial with the elongation quadrics, and when
referred to the Principal Axes takes the form
(1+6)8+ (1 + )2+ (1 + )%= C2
Since e, ¢, €; are small; it is necessarily an ellipsoid. .

Let r be the radius vector drawn in the direction (X, u, ») and
let (1, m, n), as in the last Article; denote the direction-cosines of
7 referred to Of, Oy, Of. Let p be the perpendicular from the
centre on the tangent plane at the extremity of »,and let (', m/, n")
be the direction-cosines of p referred to Of, Oy, O¢. Finally, let €
be the elongation suffered by .

By the ordinary formulee of Solid Geometry,

U=pri(l +¢)/C? }
m' =prn(l + ¢,)/C* T
' =pra(l + &)/ C*
Hence, squaring and adding,
PRl +2(el + e + en?)} =04
(1 +2€)=Ct
1+ =Cp.
Thus the strained length of the line in the body initially coinciding
with # varies inversely as .
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Again, since equations (19) refer to any arbitrary set of axes,
we may suppose them to refer to Of, Oy, Of; hence the new
direction-cosines, referred to these axes, of the line in the body
initially coinciding with = will be

(I-e+€), (1 -e+e)m, (1 -—ec+e)n.
But, by what we have just shown,
1+e=C*pr.
Thus, taking reciprocals,
1 —e=pr/C?
and therefore
(L+e)pr/C=(1+e}(l-€e)=1-c+e¢,.
Thus we see that
I=(l-e+¢)l
m'=(l-e+epnt,
w = (1 —(+¢3)uJ'
or the line in the body which initially coincided with the radius
ve stor 7 finally coincides with the perpendieular p, and its final
le igth varies inversely as p.

This ellipsoid is called the Position Ellipsoid, from the fact
th it it gives us a graphic construction for the position and length,
af er pure strain, of any line in the body whose position and
le \gth before the strain are known.

Rotational Strain.

85.] Returning to our arbitrary axes, let us suppose that the
be 1y, after undergoing the small Pure Strain represented by
e« 1ations (31), is further subjected to a smell rotation of the body
a: a whole, of amount 2, about any axis (A, g, ») through the fixed
or gin 0.

The coirdinates («, ¥, ¢) of a point P, initially at (z, y, 2), will
be after the Pure Strain

' =(1 +e)1:+n3y+n,:]
y=sx+(l+f)y+sz;,
¥=ax+ay+(l +g):J
anl the final codrdinates (27, ¥", 2”) of the same point after the
ro ation will be
2" =a + pQs — vy ]
Sy + v - A0

F =3+ AQy = pfda’
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the square and higher powers of the small quantity (2 being
neglected. ;

To the same approximation we shall have for u, v, w, the
resultant displacements,

u=ex + (s, - vy + (85 + p)z
v={(83+ vQ)x + fy + (s, - AQ)z .
w= (8, — p)a+ (s, + A)y + g2

86.] Comparing these equations with (17) we deduce that the
general Homogeneous Strain represented by (17) consists of the
Pure Strain represented by (31), together with a small rotation .
of the body as « whole, the components of which about the fixed
axes are 6, 6, 6,; so that the amount Q of this rotation, and
the direction-cosines of its axis, are given by

0, /A=0yfpu=0,/v=0= T+ 07+ 07
This is the result that was anticipated in § 66. -

Principle of Superposition.
87.] Writing equations (17) in the form

u ={ex + 83/ + 8,2 + [0z - O5y]

v=[sx+fy +s2]+ [0 - 0,2] }

w=[s2+ 8y + gz] + [0y — O.x]

it is evident that the displacements due to a small rotational
strain are simply the algebraic sums of the displacements due
severally to the pure strain and the accompanying rotation ; and
it is further evident, from § 83, that this result depends entirely
on the supposition that all the coefficients involved in the suc-
cessive displacements are small quantities whose squares and
higher powers may be neglected.

; Consequently the same principle ought to apply to all small
strains and rotations, whether they be homogeneous or not; and
it is easy to show that this is the case.

Suppose the body first subjected to a small strain whose
displacement coefficients are [¢, 1, g, s,, 5,, 8,, 0., 6,, 6,}-

The coordinates of any point P in the body, after this strain,
will be

@ =(1+e)x+ (85— O)y + (s:+ O,)z,
ete., ete.

Now let the body be subjected to a second small strain
[€, 1,98 88y 0, 0, 6} The final codrdinates of P will be
given by
a’ =1+ + (5= O3)y + (s'o + 0)7,
ete: yetie
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Thus the resultant displacements of P, due to the two suc-
cessive strains, will be
w=(1+€&){(1+e)x+ (55— O)y + (5. + 6,)2}
+ (3= 0N (8 + O)e+ (1 +f)y + (8, - 0))2}
(S + O) (2= Oz + (5 + Oy + (1 + g)z} -,
ete., ete.,
and, to the first order of small quantities,
u=[(e+€)x+ (s85+ &)y + (5 +8)2] + [(0: + 02) - (65 + 0)y),
ete., ete.

This result may be extended to any number of small strains,

s0 that tinally we have for the resultant displacements
w=[Z(e). x+ Z(s,) . y + 2(s.) . 2] + [2(6) . 2 - Z(6;) . v]
v=[2(8). 2+ Z(f) .y + =(s,) . 2] + [E(6:) . 2 - 2(6,) . 2] weene(34)
w=[s). x+3(x) . y + 2(9) . 5] + [X0) . y—3(6)) . a]

88.] Thus the resultant of any number of small strains is a
small strain in which the coeflicients of pure strain and rotation
are respectively the algebraic sums of the corresponding co-
eflicients in the component strains.

And, conversely, any small strain may be arbitrarily resolved
into any number of small component strains, subject only to the
condition that the algebraic sums of the several coeflicients must
be eﬁuul to the corresponding coeflicients in the original strain.

This result is called the Principle of Superposition of small
strains, and is a particular case of a theorem of very general
application in Mathematical Physics.

Components of Pure Strain.

89.] We are now in a position to analyse equations (31)
which represent the most general Pure Strain. By the last
Article it may be regarded as the resultant of the six component
pure strains represented respectively by

w=er w=0 w=0 1
v=0 i) e =Ly r(ii.) v=0 1(iii.)
w=0J w=0 we gz
u=0 u= a,:‘] " =u..,y]
v=az (iv.) v=0 (v.) v = (Vi)
w=a,yJ wus.,‘cJ w=0

Each of these components only involves one strain coeflicient,
and they are in consequence called Simple Strains (compare 33);
and since any one o? the coefficients may be altered without
affecting the others, these simple component strains are in-
dependent.
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90.] Simple Elongations. Let us consider first the strain
represented by (i.), assuming e to be positive. The diseriminating
cubic (28) becomes

b (e - ¢)=0,
Thus ¢, =¢, ¢,=0, ¢,=0; and (with the notation of § 83) equations
(29) give A\, =1, u, =0, »,=0.

The Elongation Quadric degenerates into the pair of parallel
planes ex?= B2, the Principal Axis O¢ coinciding with Oz, while
Oy, O¢ are indeterminate.

The cone of no elongation degenerates into the plane of yz,
and the cones of given elongation e are the cones of revolution

(6 — )z = e(y? + 22).

The strain evidently consists of a uniform elongation, of
amount e, of all lines in the body parallel to Oz, all lines in
perpendicular directions remaining unchanged in length, while
the elongation of any other line depends only on its inclin-
ation to the axis of the strain, being given by e=e\2 In fact,
the Position Ellipsoid (§ 84) becomes the prolate spheroid

Q+e)+n*+ E=0C2

It is obvious that this strain increases the volume of the

body, or of any portion of it, in the ratio (1 +e€).

These results can easily be adapted, mutatis mutandis, to the
case where ¢ is negative (uniform contraction).

91.] Similarly (ii.) and (iii.) represent simple elongations of
amounts f and g, respectively parallel to Oy and Oz. The elon-
gations produced by them in the line (A, u, v) are fu? and g»?
and they increase the volume of all portions of the body in the
ratios (1 +f) and (1 + g) respectively.

92.] Simple Shears. In the case represented by (iv.) the
diseriminating cubic is '

T Y
O: 'd” §1
0, & -9
which reduces to &
(¢’ —5%) =0.
Thus €=s,, ¢,=0, ¢,=—s, if s, be assumed positive. Substi-
tuting 1n equations (29) they give
e Al sl
)‘1—0, /‘1—72‘3 Vl_‘:/z
A‘2=17 #=0, v,=0,
1 1
A= o S e
3= 0, 1y \/’2, Ly, J2
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Thus Oy eoineides with Oz, while O¢ and O¢ lie in the plane of
ys, and bisect internally and externally the angle between the
positive directions of axes Oy, Oz; and the strain consists of a
uniform elongation, of amount &, parallel ta O¢, together with a
uniform contraction, of equal amount, parallel to O, all lines in
the body parallel to Oy or Ox retaining their initial lengths
unaltered.
The volume ¥V of any portion of the body thus becomes

V(1 +8)(1-8);

that is to say, it remains unchanged, and the strain produces
distortion only.

93.] The Elongation and Compression Quadries are eylinders,
whose generators are parallel to Uy or Ox, and whose transverse
sections are conjugate rectangular hyperbolas, their equations
being

2y = + B,
r W —0)= £ B
I . " - 3

The Cone of no Elongation degenerates into the pair of

: symptotic planes

yz=0,

¢~ (3= 0,
Hence every line lyin;,_,f in either of the planes ay and za
etains its length and its inclination to Oz unaltered, and so of
ourse does every line in the body parallel to either of these
lanes. [This may be shown directly by substitution in equa-

ions (18) and (19).]

Thus every geometrical figure described in any plane parallel
o xy or zx will retain its initial form and dimensions unnl;tcrcd.

94.] For this reason these two sets of parallel planes are
alled Planes of no Distortion.

Since each set of parallel planes remains a set of parallel
lanes, and their lines of intersection maintain their identity, the
train can only consist of a relative shifting of the two sets of

~ilanes of no distortion, after the manner of jointed wicker-work,
o as slightly to diminish the right angle between the positive
~ irections of Ox and Oy (whieh include between them the axis
i clongation O¢), and to increase the supplementary angle by
he same small amount.
: A strain of this nature is called a Simple Shear of the two
ystems of planes of no distortion; or simply a shear of the
~ ilanes of zy and z2.  Since the strain is really in two dimensions,
* ]l the effects produced in the plane of yz being exactly repro-
rlueed in all parallel planes, it is sometimes callefn. Simp{c Shear
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40 ANALYSIS OF STRAINS. [94.

in the plane of 2z (in which case the positions of the axes O¢, Oy
must be specified); and this or any parallel plane may be termed
the Plane of the Shear.

The Amount of the Shear is measured by the change in
the right angles between the planes of no distortion, as described
in the last Article,

Let Fig. 1 represent the section by the plane of yz of a
prismatic portion of the body, bounded by planes of no distortion
which cut the plane of the section in the square ABCD. Then

i
i

z Had
1]

:: b Pas .- -7 .‘ll
1), Q 5L ,'0 _____________ :
"""""""""""" i >
DK ':
! {
i ;
: ........................ e
Aq" ------------------------------- 'IJ[) y
il ™),
-------------- IS IliS;
]
Fik b

the axis of elongation O¢ will coincide with the diagonal A0C,
and the axis of contraction O¢ with the diagonal BOD.

The sole effect of the shear will be to change the square base
of the prism into the rhombus A’B'C'D’, where A'C'=(1+s)AC;
BD =(1-s)BD. ‘

If the sides of the square meet the axes of reference in
P, Q, R, S, and if PR, QS are strained into PR/, Q'S’, the amount
of the shear will be the sum of the angles Q0@ and PO, and
since these angles are equal the amount is fwice the angle POP".
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Now, by equations (19), we have for the strained position
PR of the line in the body PR, initially coinciding with Oy,
Y=y
Hence cos 1”0z = s, and to the first order of approximation
POP =5,
and 2z is the amount of the shear.

s ,-"s’
g /
£ N ] :
\ : &
X B’ g iQ AL .. a
- . :)‘..' "' 5
R} 74 j
\ i 7
/
Gie 1 {
(s ;8" S D
Fig. 2.

95.] Shearing Motion. There is another, slightly different,
woint of view from which we may regard the mode of operation
o a small shear.

Let ABCD in Fig. 2 represent the transverse section by the

of yz of the same square prism as in Fig. 1; and let
, Q. R, S be as before the middle points of the sides.

Suppose that, keeping fixed the plane of 2y, we give to every
parallel plane in the body a motion parallel to the fixed plane,
and proportional to its perpendicular distance from it, those

Digitized by Microsoft ®
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planes lying on the positive side of zy being shifted in the positive
direction of Oy, and those on the megative side in the negative
direction.

Since each point in O for (instance) moves perpendicularly
to OQ through a space. proportional to its distance from the fixed
end 0, it is obvious that OQ is strained into a straight line OQ’;
and the displacements of points in QS at equal distances on
opposite sides of O being equal and opposite, 'O and OS' will
remain in one and the same straight line.

It follows that all planes in the body parallel to zz are simply
turned through a constant angle of QU@ about the lines in which
they meet the plane of ay, while by hypothesis every plane in
the body parallel to the latter undergoes a bodily translation
in its own plane.

If the strain be of very small amount the lengths of the lines
@S, ete., will not be appreciably altered, so that the result will be
to strain the square ABCD into the rhombus 4'B'C'D" without
altering the lengths of its sides.

Thus it is obvious that the planes in the body parallel to xy
and zz respectively form two systems of Planes of no Distortion.

96.] A strain of this kind is called a Shearing Motion of the
planes parallel to xy in the positive direction of Oy.

Its amount is measured by the constant ratio between the
distance traversed by any one plane and its perpendicular distance
from the fixed plane: that is, by the tangent of the angle QOQ'.

The amount of a small shearing motion is therefore measured
by the diminution or increase of the supplementary right angles
between the planes of no distortion.

The change of direction AOA’ of the diagonal plane AC is

o (5g) -1 (1 551)

~tan(;220)

1
=35@0Q’ very nearly.

Similarly, the change of direction BOB" of the other diagonal
plane is also approximately %QOQ’.

97.] Comparing these results with § 93,94, it is obvious that
a small shearing motion of amount 2s, of planes perpendicular to
Oz in the positive direction of Oy, is equivalent to a small Shear
of amount 2s of planes perpendicular to Oy and Oz, together
with a small rotation of the body as a whole through the angle
s; about Oz in the negative direction (i.e., from Oz towards Oy).
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In like manner the student may satisfy himself, by drawing
a suitable figure, that a small shearing motion of amount 2s, of
planes perpendicular to Oy in the positive direction of Oz is
equivalent to the same small shear, together with a rotation of
amount 8 of the body as a whole about Ox in the positive
direction.

98.] A shearing motion is therefore a rotational strain, the
shear or pure strain being the same to whichever set of planes
we give the shearing motion, while the accompanying rotations
are in opposite directions in the two cases.

z vt
Y '
g N ;
N . ]l '+t W 44
i ] y i
.: .
'Pn ...... )__,
R AR it
o e TAT N ‘:[’ b/
y ' o ! :
': i
L Ealli ] N '
Cl e i O ettt LD
AR GRS 7
c':: :'
Fig.3.

This fact suggests a method of producing (as in Fig. 3) a non-

« fational shear of amount 2s, by means of two shearing motions

ach of amount s, applied successively (or simultaneously) to the
wo sets of planes.

In Fig 3, the first shearing motion takes place parallel to Oy,

10 as to (ﬁmnge the square AbCD into the rhombus A'B'C'D’, at

the same time producing the rotation £0¢. The second equal

- thearing motion, parallel to Oz, produces the equal and opposite
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rotation £0¢, thus bringing the principal axes back to their
initial positions, and at the same time shearing the rhombus
A’'B'C'D into the rhombus A”B"C"D", which will be seen to be
identical with the 4'B'C'D’ of Fig. 1.

99.] All these results can, of course, be shown analytically.
The equations of displacement for the shearing motion represented
in Fig. 2 are manifestly

u=0
UESTEAR
w=0
which may be written
w=0
v= (s + s}'zf}
A w= (s~ 8)y

Comparing these with equations (17), we see that they
represent a shear of amount 2s, accompanied by a rotation - s,
about Oz.

Similarly a shearing motion of amount 2s, parallel to Oz is
represented by

u=0

v= (s —8,)2

w= (s +8,)y
and is therefore equivalent to the same shear, together with a
rotation +s, about Oz.

Finally, the case of the last article is to be represented by
superposing the two shearing motions

u=10 u=0
V=832t v=0
w=0 w=sy

the resultant of which is obviously the simple irrotational shear
u=0

V=873 r
7.U=81y

. 100] Notation for Shears. Similarly, equations (v.) and
(vi) of § 89 represent small simple shears of amounts 2s, and
28, of planes perpendicular to 0z and Oz, and of planes pei‘pen-
dicular to Ox and Oy respectively.

We shall generally find it” more convenient to use new
symbols a, b, ¢ for the amounts of these small shears, reserving
8 8, 8, for their component elongations and contractions, y

Thus we shall have
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101.]) Finite Shear. The properties of small shear which
have been discussed in the preceding Articles are only the
limiting forms assumed by the properties of Shear in general,
when its amount is indefinitely diminished. Consequently,
although they may be accepted as rigorously true for the
purposes of our analysis of small strains (§ 58), it is impossible to
draw figures which shall answer with perfect accuracy to the
descriptions given.

The student will find in Appendix IL, at the end of this
Chapter, a short account of tEe corresponding properties of
Finite Shear, which however have for us only a kinematic
interest.

102] Cubical Dilatation. Of the six component strains
we have seen that (i), (ii.) and (iii.) increase the volume of the
body, or of any part of it in the ratios (1+e¢), (14+f), (149)
respectively, while (iv.), (v.) and (vi.) consist of pure distortions
without change of volume.

If the volume V of any portion of the body be increased by
the strain to V”, the ratio (V' - V)/V is called the Cubical Dila-
tation of the body. This may be either positive or negative: in
the latter case, the positive ratio (V - V')/V is sometimes called
the Cubical Compression.

We shall always use the symbol A to denote cubical dilatation.

103.] It appears from the last Article that

V/V=(1+e)(1+f)1+g)
=(l +e+/+g)
Henece
B B P o via s oannens e T L R (35)

Since rotation cannot affect the volume, this relation holds
equally for the general Homogeneous Strain.

It is obvious that the expression for the dilatation should be
independent of the directions of the arbitrary axes of reference,
and we see by expanding equation (28) that this is the case, — A
being the coefficient of ¢* in that equation.

Hence we may write

Bl IR PRV AL, B0 L i PE)

104] Uniform Dilatation. Dilatation is generally accom-
panied by distortion: for (putting shear aside as contributing
nothing to dilatation) if e, f, ¢ be different for any system of
axes, a sphere in the body will be strained into an ellipsoid,
and so on.

It is however possible to produce dilatation without dis-
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tortion; for suppose the strain such that the three principal
elongations are all equal, so that
ey =g
Any cubical portion of the body with its edges parallel to
the principal axes will then have each edge elongated in the
ratio (14-3A), and will remain a cube, the effect of the strain
being simply to increase its volume in the ratio (1+4).

105.] 1In this case it is obvious from equations (27) that the
Elongation Quadric becomes a sphere, and in order that (22) may
reduce to the proper form, we must have

]
G = =il

whatever be the axes of reference.

This strain is called a Uniform Cubical Dilatation of amount
A, and, as we have seen, is equivalent to three equal elongations,
each of amount 14, in any three orthogonal directions.

The equations of displacement are

u=4$Az
v=30Y L bt il (vii.)
w=3%Az

Thus Uniform Dilatation, being expressed by a single co-
efficient, is to be (§ 89) regarded as a Simple Strain.

Types of Reference.

106.] Summary of Results. We have now shown that
the simplest of strains—the Uniform Elongation—is the basis of
all the more complex strains: that, in fact, the most general Pure
Strain is the resultant of three orthogonal elongations parallel to
its principal axes.

Further, we have shown that equal elongations (of like or
unlike sign) may be so combined as to produce two more kinds
of simple strain: namely, a distortion without dilatation or a
dilatation without distortion.

107.] Again, it has been proved that the most general
equations (31) of Pure Strain may be regarded as expressing
it as the resultant of the following sixz independent simple pure
straing :—

(1) An elongation of amount ¢ parallel to Oz.

(I1.) An elongation of amount f parallel to Oy.
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(II1.) An elongation of amount g parallel to Oz.
(IV.) A shear of amount a, of planes perpendicular to Oy
and Oz.
(V.) A shear of amount b, of planes perpendicular to Oz
and Oz.
(VL) A shear of amount ¢, of planes perpendicular to O
and Oy.

The completeness with which these components express the
most general pure strain will be realised when it is remembered
that, since every set of parallel planes in the body must remain a
set of parallel planes, the strain will be completely specified when
we can express every possible relative motion of any set of
parallel planes.

Now, the axes of reference are perfectly arbitrary, and from
the preceding articles we can construct the following schedule :—

denotes Relative of Planes |
The Symbol Motion Parallel | Perpendicular
l to Axis of to Axis of |
‘ e ‘ x T
! c ‘ @ y
b ! x 2 I
A [ = @
\ S Yy Yy !
@ Y ] ‘
: s x v
« 2 Y
g ‘ z z

sc that any small pure strain can be represented by a proper
cc nbination of these six quantities.

108.] Thus the most general equations of Pure Strain really
re ‘er it to an arbitrarily chosen system of six orthogonal standard
ty 78 : namely, three elongations parallel to three arbitrary ortho-
g 1al axes of reference, and three simple shears of the planes
E: rpendicular to them, the axes of the shears bisecting the angles

tween the axes of elongation.

The most general equations of Rotational Strain (17) refer it
to the same six standard types of strain, with the addition of
th ree component rotations about the axes of reference.

Platé 1. represents the positions of the prineipal axes of the
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component strains ; Oz, Oy, Oz being the axes of elongation, Og,
and O¢, the axes of the shear «, and so on. -

109.] Referring to § 32 and 46, we see that these six
standard strains satisfy all the requirements of the system of
“strain-coordinates” which we set out to seek; they may be
chosen arbitrarily, they are perfectly independent, and any small
strain can be expressed in terms of them, while they possess the
great advantage—in point of simplicity—of vanishing in the
natural state of the body.

We therefore adopt them as our standard types of simple
strain, and, in order to completely specify any given small strain,
we have only to enumerate its six orthogonal components in
terms of the corresponding standard units.

110.] Type of Strain. When the six standard components
of any two strains are to one another, each to each, in the same
ratio, the strains are said to be of the same type, or of exactly
opposite types, according as this ratio is positive or negative.
(See § 33.)

The ratio of their components is called the Ratio of the
Strains, and when this ratio is +1, the Strains are said to be
equal.

3 Strains of the same and of opposite types are also called “con-
current” and “ contrary.”

Any number of small strains belonging to two opposite types
compound into a strain belonging to one of these types.

Two equal and contrary strains exactly annul one another.

Specification of Strains.

111.] By equation (34) any number of Pure or Rotational
small homogeneous strains can be compounded into ome, if we
are able to enumerate the standard components of each.

Now, every pure strain consists of a uniform cubical dilata-
tion, a uniform elongation in some given direction, a simple shear
with given axes; or is compounded of any or all of these (§ 89).

We shall therefore be able to form the equations of motion for
the most complex combination of pure strains, when we know
how to specify each of these simple strains in terms of its
standard components.

The more general combination of homogeneous rotational
strains may then be deduced by compounding the rotations
separately, as in equations (34).

We shall now therefore proceed to show how the specifica-
tions of the various simple strains may be separately obtained.

The simplest method is by consideration of the Invariants of
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the Elongation Quadric, which are the coefficients of the dis-
criminating cubic (28). Expanding that equation it becomes

P —PUe+f+g)+ P(fT7-82+ge— 82+ ef - 5?)

| g [ e e (37)
s [ &
8y 8, ¢
or D% — P + € + €;) + ek + 636 + &) — e =0........... (38)

Denoting these coeflicients by D, J, K respectively, we have
D=e+f+g=€+¢6+¢
J=fg-8%+ge—2a’+ef—8’=ce+ €€ + €6,
1\'=“ P N T RS R TR R TR - (39)
8, f, 8
8 8y 9
112]] Uniform Cubical Dilatation of amount A. This
case has been discussed in § 105. The Quadric is a sphere, and

the three roots of the cubic (37) are equal. The requisite
vonditions are

a
it e bk 1
f=8y =8y = OJ
nd the equations of displacement are
u=3Ax
T s e o AN ST DR (41)
w= 34z
Conversely, any strain or combination of strains whose com-

onents satisfy (40) amounts to a uniform cubical dilatation of
mount A

113] Simple Elongation of amount ¢ in direction
I, m,n). In this case the roots of the cubic are respectively
.0, 0. Hence it must reduce to ¢*(¢ —¢) = 0.

Thus,

The two last conditions in combination are easily shown
(Aldis’ Solid Geometry, § 91) to be equivalent to either of the
t et of three

Jo—-8'=0 €8, — 8,8,=0
gc—"”-o ﬁ:“;‘]"o ..................... (43)
ef —82=0 g8~ 8,8,=0

D
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while the first gives us

(e A R SRR WS - R e i (44)
Tk 21 ! €
S e e ol oo oot 4
3 312+322+332 81583 -

by virtue of (43).

Again, [, m, n are the direction-cosines of the only determinate
axis (§ 90) of the strain.

Hence, by equations (29),

eltsgm+sm_sl+fmtan_sl+smtgn_ (46)
{ m n

Eliminating e, f, g from these equations by means of (43) we

get
81_8-.»53(£+ T T =ls, = ms, = ns,.
e Ve gy mlis
Thus,
s, =emn
Saen e M  oag o (47)
8= €elm
whence, by (43),
e=el?
e €A, S b A (48)
g=en?

and the equations of displacement are

u = el’x + elmy + enlz
V=elmB+ emPY + €MNZ pooeneeviirrniiirieaens (49)
w = enle + emny + en’z

Conversely, if the components of a given strain satisfy (43)
it amounts to a simple elongation.
Its amount is then given by (44) or (45), and its direction by

Is,=msy=nsg=(e+ [+ g)lmn...c..cc..coneuunen...(50)

114] A Simple Shear of amount 2 whose axes of
elongation and contraction are in the directions (7, m, n))
(¢, my, ).

In this case (§ 92) we have ¢ =0, 6= 0, ¢, = —~ o, and the cubic
reduces to ¢(p2—o?)=0.
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Hence
D=0
B f e, (51)
and
D AR . Ty e (52)
Also, by equations (29)
ely + symy + &y 80 + fmy +amy &), +8my + g0,
& m, o n e
ely+agmy + 80, 8ly +fmg + 80y 80y + 8my + gny
A = my T na i
whence we find
mn, = 8'—-:33 - ;L___q(: - (r) y Mg = 3—————-"" = _::7(: -3 o')
nd, = “_ﬂ’—;jgl') . irfﬁ;ff—*i) .......... (53)
L‘n;l = '1‘;'::_‘:;(.’9:_1) i l,,n’ - 83_’?__1_:6(.1&02
Hence we easily deduce
e=c(l?-1}); 8, =o(mmn, — mm,)
S=o(m?-mp); ge=o(nd —-nl) . ... (54)
g=c(n—=nt); s, =o(lym, —lm,)

¢ 1d the equations of displacement are
u=o(l}—1Nx + o(lm = Lm)y +o(nl - nl):
veo(lm, —Im )z + o(m?-mly + o(mn —mm)s - ... (55)
w=o(nl, - nd)x + o(mmn, —mmn)y + o(n? - nt):

Equations (54) and (55) might of course have been deduced by
¢ 1perposition from equations (48) and (49).

Conversely, if the components of a given strain satisfy (51) it
¢ nounts to a simple shear whose amount 20 is given by (52),
1 hile the directions of its axes are given by (53). In these last
¢ (uations o must be taken as the positive root of (51).

115] Resultant of any number of simple strains. We
¢ 'n now form, with the greatest ease, the equations of displace-
1 it for the most complex combinations of small strains, either
jure or rotational. Retaining the notation of the last three
i rticles for pure components, and rémembering (§ 85, 86, 87)
t 1at any rotation ( of the body as a whole about an axis (A, u, v)
cin be resolved into component rotations QX, Qu, Qv about the
a«is of reference, and that these rotations are to be compounded
s iparately, the principle of superposition gives us at once for the

Digitized by Microsofi &
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standard components of strain and rotation in the single equiva-
lent strain
e=3(3A) + 3(eP) + 3(ol2 - ol,2)
F=3(38) + Z(em?) + S(om * — om,?)
9="234) + Z(en) + Z(ont - on)
s, = 2(emn) + Z(omn, — amyn,)
8y=Z(end) + Z(onl, — onyl,) >
8, =2(elm) + Z(alm, — alm,)
6, ==(Q))
6,=3(2p)
0,=2(Ww)

116.] Resolution into arbitrarily chosen simple com-
ponents. We stated in § 88, as the converse of the Principle of
Superposition, that a pure strain might be arbitrarily resolved
into any number of pure strains, subject only to the condition that
the algebraic sums of their components must be severally equal
to the corresponding components of the original strain.

It is an interesting problem to investigate the different ways,
beside the standard way, in which a pure strain may be resolved
into simple strains without in any way limiting its generality :—
that is, without imposing any restrictions upon its standard com-
ponents.

117.] Since the number of these standard components is siz,
the number of independent elements involved in any such equiva-
lent system of simple strains must also be exactly siz, in order
that the solution may be at once perfectly general and completely
determinate. These six independent elements will then be given
by equations (56), in which ¢, f, g, s, s, s, must be taken to
represent the standard components of the pure strain to be
resolved.

If the number m of independent elements involved in any
proposed system’ be greater than six, we must introduce m — 6
relations between them, which may be quite arbitrarily chosen
(with a few obvious restrictions to be presently pointed out). |,

If m be less than six we assume 6~-m identical relations
between the standard components, and thereby limit the general
character of the strain; or, geometrically speaking, determine to
a greater or less extent the type of the Elongation Quadric by
introducing relations between its invariants.

118.] Now a uniform cubical dilatation involves only one
element, its amount A.

A uniform elongation involves four elements (¢, I, m, n),
of which however only three are independent, in virtue of the
relation

F+mr+ni=1.

e .=
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A simple shear involves seven elements (o, 1,, m,, n,, 1, m,, n,)
of which only four are independent, in virtue of the relations

Bamient=1
L+ml+nl=1p
LL + mmg + 0y =0

119.] If then we wish to represent the most general pure
strain as the resultant of a dilatation, an elongation and a shear,
we may subject these to any fwo arbitrary conditions, and the
problem is then completely determinate.

For example, we may assign arbitrarily either—

(i.) The direction of the elongation.

(ii.) The plane of the shear.

(#ii.) The inclinations of the axis of elongation to the axes
of the shear: eg, we may take the elongation perpendicular to
the plane of the shear.

(7v.) The ratios of the amounts of the three simple strains.

120.] As examples of assumptions which restrict the type of
the strain, we may take the following : —

(i) If we assume the strain to be compounded of any
number of shears alone, we assume the volume of every portion
of the body to remain unaltered. This involves the relation

e+f+g=0,0r D=0,
and the Elongation and Compression Quadrics are either con-
Jugate hyperboloids, or cylinders whose transverse sections are
conjugate rectangular hyperbolas.

(iz.) If we assume the strain to consist of a dilatation and
a shear without independent elongation, it is evident from con-
siderations of symmetry that the axes of the shear will coincide
with the principal axes of the strain, and the Elongation
Quadrics, referred to these axes, will take the form

A A A
= £+ - =
(3+<r)., +311 +(3 u)(‘ 1,

the circular sections of which are
g£(=0. :
We thus constrain the Elongation Quadrics to have ortho-
gonal circular sections.
The identical relation involved between the invariants is
easily found, for

g=40+0, =33, =40 -0,
D=A
J=3A0—0? )
K =334 -0%)
D2D*~9J)+27TK=0.
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(#42.) 1f we assume the strain to consist of a uniform dilata-
tion and an elongation only, the Quadric becomes

(5+9)e+ 30+ 00=1,

which is a surface of revolution.

The relations assumed in this case between the standard
components (Frost. Solid Geometry, § 373) are known to be
_45

8,8. 8,8,
2°3 31
e—"=f—-"=

s, S 9=,

82

or, since the cubic has two equal roots (Todhunter. Theory of
Equations, § 173)

JYD? - 4J) — DK(4D* - 187) - 2TK*= 0,

Change of Awes of Reference.

121.] It is often convenient to change the directions of our
axes of reference, and it then becomes

necessary to obtain the specification of the ool Bl £
strain referred to the new axes in terms of g
its original specification. NE -
Let Ox', Oy’, Oz’ be the new system of L LA
axes, their direction-cosines referred to the g A | gy |
old system being given by the annexed ; 8
schedule, and let the two sets of equa- Z 2| pg | v
tions

u=ex+(s,— 0,)y + (s, +6,)z
v=(8+ 02+ /Y + (8, 0)2 fevrerreirannnnnn. (17)
w= (s, - 6)x + (s, + 0)y + gz

w=ew + (s - 0,))y + (s + 6,)7
V=(s + 0) + /Y +(8/ - 0) [ (57)
w = (s, — 6,) + (s + 6)y + g
represent the same strains referred to the two systems. We have
e=Ax' + Ay + A2

Y=p& Py R ()
z=vE + vy + vy

w'= A+ v + vw
V=AgB 4 gl VW - i, (D.)
w' = Agu + pgy + v
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In equations (D.) substitute for u, v, w their values in terms
of o, y, 2 from (17); then substitute for x, y, z their values in
terms of o, ¥, 2’ from (C). We thus obtain ', ¢/, ' in terms of
', ¥', ¢ and comparing these results with (57) we easily find

¢ =Afe+ mf+vig+2u s + v A, + 20 s,

S = A+ p i+ vy 4 2ppves + 2v A s + 2h s,

g = Afe+ pif + v g + 2pyren + 2v ks, + Ay s,

8 = AAL + popy [+ vyag + (v + pgvy)sy + (VA + v Ay)s,
+ (Agy + Ap )y

8y =AA e+ pop [+ v g+ (pgy, + pvs, + (VA + v A)s,
+ (Agn + A py)sg

a =M+ S+ vy + (e b pg)s + (nA + v e,
+ (A, + Age))sy

0 = (pyvs — }‘;V;)gl + ("g’\; = vAg)0, + (Agey— AJ":)OJ

0 = (g, = v 0, + (vgdy = A0, + (Age, = M) 6, J

Oy = (pyvy = v )0, + (v Ay = VA )0, + (A g = Agn)) 05

Heterogeneous Strain.

122.] From § 59 up to this point we have always assumed
the small strain under discussion to be Homogeneous, and its
components in consequence to be constant throughout the body.

‘e shall now realise the analytical advantages of our concep-
tion of continuous matter ; for it is obvious that, if the constitution
of a body be infinitely fine in comparison with the refinement of
our analytical machinery (§ 42), it is possible to conceive of a
Eortion of the body, ditfering in no p{))ysical quality from the

ody taken as a whole, and yet so minute that any algebraical
function of position, varying continuously, shall be sensibly
constant throughout it.

Thus it appears from § 51-38 that all the properties which we
have proved to belong, throughout the body, to a small homo-
zeneous strain will also hold good, throughout any infinitely small

*ment of the body, for the (sensibly homogeneous) strain of that
element due to a small Heterogeneous Strain.

123] Strain-Components. The standard components of
the strain will, of course, vary from point to point of the body.
We shall retain our former notation for them, and by comparing
equations (1), (9), (16), we see that we must make

Digitized by Microsofi
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o o v
9=a_xyf=ay: g=az
w o
a=25]=é‘y—+az
du ow
b=2s,~,=a+a
ov Ou
c=283=-a—x+@
Qw v
261:67_’6? ......................... (59)
g9, % _O®
“Y27 % " Oz
v u
203:395_@_3/
and, by § 103,

u Ov ow
Vot |

If we give these components their proper values at any point
P (z, y, 2), the strain of an element of the body described about
P will possess all the properties discussed in § 59-121, the
various surfaces involved being, of course, referred to axes drawn
through P parallel to the fixed axes of reference Oz, Oy, Oz.

The directions of the principal axes (§ 65) and the form and
dimensions of the Strain Ellipsoid will of course vary from point
to point of the body. The Strain Ellipsoid must now be defined
as the ellipsoid into which a sphere of unit radius and centre P
would be strained, if the strain-components had throughout the
sphere their actual values at P.

A:

Irrotational Strain.

124.] The conditions that the strain may be irrotational,
i.e., that every element may suffer pure strain without rotation
of its principal axes, are, as before, 6,=0, 0,=0, 6,=0, at every
point of the body.

Thus, by equations (59),

2 ge
oy o=
Qu  ow
Bp Sam [, (60)

ov Ou

Ox~ Oy
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These are the well-known conditions that
u.de+v.dy+w.ds

may be a perfect differential of some function of z, ¥, 2.
Denoting this function by ¢ we have

udx + vdy + wdz = d¢,
and therefore

% o o4

“=a, v=-a—'), w=a .

The function ¢ may be called by analogy the Displacement-
Potential of Irrotational Strain. It may be any continuous
single-valued function of the codrdinates, except that (since the
origin is supposed fixed) it must not contain any terms of the
first degree.

Equations (59) may now be written

LTI
d-ax”fnay,’y-:? '
= _P¢ P ar Yo L VSTE S (61)
1= Jyow %™ asaw %™ Sy
A=y'é

where, as usual, the symbol y* denotes the operator

(S22

The condition that the dilatation may everywhere vanish, or
that the strain may consist of distortions (shears) only, without
change in the volume of any element, is therefore

V"I’ PR, S R v Tl a9 45 ¢ 3ot ok S s (62)
125] Resultant Displacement. If we write

&) -G @)

=u®+ v* + w?,

then U is the resultant displacement of the point P (z, y,2). The
direction-cosines of this displacement are w/U, v/U, w/U.

But if we deseribe in the body the system of surfaces whose
equations are formed by equating ¢ to different constants, and
\\?hich are consequently called Equipotential Swrfaces, the direc-
tion-cosines of the normal at P to the equipotential surface passing
through P are also u/U, v/U, w/U.

Hence each point of the body is displaced along the normal to
the equipotential surface passing through the point.

Again, if through P we draw an elementary straight line dv
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normal to the equipotential surface through P, and if the cotrdi-
nates of its extremity be z+dzx, y+dy, z+dz, we have
w

u v
dv=v . dx+-0w . dy+U dz;
Udv = udx + vdy + wdz

=d¢.
Hence the amount of the resultant displacement at P is
dé
U= P AR TR IR NOR S ISIREE R % Sooc o ( 63)

126.] If ¢ is a homogeneous quadratic function of (z, y, 2) it
is obvious from equations (61) that the strain is homogeneous
throughout the body.

The equipotential surfaces for Homogeneous Strain are there-
fore concentric Quadrics.

By Euler’s theorem on homogeneous functions we have in this
case

0% 02 o2 0? o2 ?
2¢ = xza—zf + y%yi; + z2§§ g 2yz87% + 2m‘az—,g;c + Qxya—i%
= ex? + fy? + 922 + 2s,yz + 2s,2x + 2sxy.

Thus (§ 22) in pure homogeneous strain the equipotential
surfaces and elongation quadrics are identical.

It has already been pointed out (§ 84) that in this case the
resultant displacement is normal to the elongation quadric, and
this agrees with the result of the last Article.

127.] Lines of Displacement. Since in every irrotational
strain the displacement of each point is normal to the equi-
potential surface through the point, it follows that, if we draw a
system of equipotential surfaces throughout the body, the dis-
placements of all points in the body will take place along a
system of curves which cut these surfaces everywhere orthogon- -
ally. These curves are called the Lines of Displacement.

If ds be the element of arc (drawn in the positive direction of
the axes) of the displacement-curve through P, we evidently

have
1 dz 1 dy 1 dz

w' ds v ds w' ds

or
Gl e
¢ o o
& oy o=

The function ¢ must therefore always be such that it is
possible to draw a system of continuous curves cutting orthogon-
ally the system of continuous surfaces detined by ¢ = constant.






PLATE 11.

Equipotential Cylinders and Curves of Displacement in
: SIMPLE SHEAR.
(Page 59.)
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128.] As a simple example, take the case of a shear in the
plane of 2. This is a strain in two dimensions, and the equi-
potential surfaces are the rectangular-hyperbolic cylinders

yz = constant.

Thus the differential equation of the line of displacement
through P is

0 s vy
They are therefore the orthogonal rectangular hyperbolas
given by
x = constant
y* ~2?=constant | °

See Plate IL, in which the dotted lines represent the curves of
displacement, and the entire lines the sections of the equipotential
cylinders by the plane of the shear. :

The directions in which displacement’takes place along the
curves in the four quadrants are shown by the arrows.

Strain in two Dimensions.

129.] It will be useful to collect here the forms assumed by
wr various results when one, and one only, of the roots of the
liseriminating cubic (28) is zero.  One of the principal elongations
which we will suppose always e,) will then vanish, and the dis-
slacement of every point in the body (if the strain be homo-
geneous) or of every point in a given element of the body (if it be
reterogeneous) will be parallel to the plane containing €, and e,
The elongation quadrics become cylinders, having this pﬁane for
s normal section, and the strain may be said to be wholly in two
limensions.

We shall, as before, use the notation of Homogeneous Strain.

Taking Oz perpendicular to the plane of the strain, the
squations of displacement take the form

u-ex+(n—0}y} 17
v-(‘+0)x+fy ......................... ( l)
» , if the strain be pure,

w=ex + 8y | (31)

v=sz+fy

The elongation of the line OP lying in the plane of xy, and
making an angle  with O, is given by

e=ecos?y +f8in’Y + 2ssinYpcos Y oiiiinin, (18)
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and the angle v/, into which v is altered by the strain, by
cos Y = (1 —e+e)cos Y + (s—0) sin ¢ ’

siny'=(s+0)cosy+(1-e+f)sing j =" i
The circle 2?2+ y%=1 becomes the Strain Ellipse
(1-2e)2?+ (1 =2 )y?—4dsa’y’ =1.....cceeennnn. (20")

¢, and ¢, are the (greater and less) roots of the discriminating

quadratic

e—¢, s
8 f "¢

and the angles made with Oz by the corresponding Principal

Axes are given by

o s oL (28)

tan & € —€ = 8
{21 Gk ’
......................... (29))
tan gy =2"°= _°
¢2 6 - f
Y, ¥, being the roots of the equation
T SN L S (64)

The graphic properties of the strain depend upon the Elonga-
tion and Compression Conics and the Position Ellipse, which are
the normal sections by the plane of the strain of the cylinders
into which the respective quadrics degenerate.

If ¢, and ¢, be both positive, we have the elongation ellipse

ex? + fy? + 2sxy = B2 ol

2 bl e } ........................ (22)
If both negative, the compression ellipse

ex? + fy? + 2sxy = — B2 x

ey Cfh+ e -Bz} ..................... (24)

If of opposite signs, the conjugate elongation and compression
hyperbolas

or &+ ¢n?= *+ B?

In the latter case, we have two planes of no elongation
through Oz, cutting the plane of xy in the lines

ex? + fy? + 2swy =0
which are the asymptotes of the above hyperbolas.

ex® + fy? + Qswy = + B2 }
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The Position-Ellipse is

(1+e)?+(1 +f)y2+291~3/=03}
or (1 +)8%+ (1 +)p2=C?
If then » be any radius vector of an Elongation or Com-
pression Conic, and p the perpendicular from the centre on the
tangent at the extremity P of r, the elongation e of OP is given by
e e R (23")
and the resultant displacement of P will be along the normal at
P, and its amount will be B/p.
On the other hand, if P be on the position-ellipse, and » and p

have similar meanings, OP will be strained into the position of p,
and its new length will be C*/p.

In other words, the displacement of the extremity of any
radius of the elongation conie is perpendicular and proportional
to the conjugate radius; while any radius of the position-ellipse
is, after the strain, perpendicular and proportional to the con-
jugate radius.

Since there is no elongation parallel to Oz, the cubical
dilatation of the body is equal to the “areal dilatation” of any
plane area parallel to the plane of the strain. Thus,

P BT Bl M i by o e b (35")

The conditions that the strain may be an areal dilatation,
uniform in every direction, are

e -f= ﬁA }
§=0,0=0
The conditions that it may be a simple elongation are
4-9-0}
6=0
The conditions that it may be a simple shear are
e+f=0 } /
6=0
If the strain be heterogeneous
e= %; S= %—;
2l=%:+gl;/, 20=g§—%;
If the strain be everywhere irrotational
udz + vdy =d¢,
where ¢ is the displacement-potential.
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The equipotential curves are given by ¢=constant, and the
curves of displacement are the orthogonal system.
If there be no dilatation anywhere, ¢ satisfies
o' P

o R v el ISR e (617

EXAMPLES.

N.B.—The factor a s introduced to denote a small quantity
whose square and higher powers may be mneglected. The expres-
sion

{&/s 9, 81 85 83}
s used to denote the specification of a strain (§§ 111 et seqq.)

1. Refer to its principal axes the Elongation Quadric of the
strain
{3a, ~a, ~a, 0,0, 2a},
and hence show that it consists of a simple shear of amount 6a,
together with a uniform elongation of amount a perpendicular to
the plane of the shear.

2. Show that the strain {0, 0,0, a, a, a} consists of a uniform
cubical compression and a uniform linear elongation, each of
amount 3a.

3. Show that the strain {a, e, 0, a, a, a} consists of a shear

of amount 2aa/3, a linear contraction of amount a perpendicular
to its plane, and a uniform cubical dilatation of amount 3a.

4. Show that the strain {a, 0,0, a, a, «} is equivalent to a
uniform cubical dilatation of amount a, together with three shears
in orthogonal planes of amounts 2an/2, -I—ga, —ga; the shears
having O¢ and Oy, Oy and O¢, O and Of for their respective axes.

5. Prove_ that the strain {sc0s26, — ocos26, 0, 0, 5sin20} is a
simple shear in the plane of 2y, the axis of elongation making an
angle 0 with Oz. -

6. Hence show that the strain {e, f, g, s, s, s} may be
resolved into the following components:—a uniform cubical
dilatation of amount (e4f+g); a simple shear of amount
52+ 3(f—g)* in the plane of yz, the axis of elongation
making an angle tan™'[3s/(f—g)] with Oy ; a shear of amount

A/82+3(g — €2 in the plane of zz, the axis of elongation making
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an angle tan~'[3s,/(g—e)] with Oz; and a shear of amount

3,2+ 3(e—f)? in the plane of xy, the axis of elongation making
an angle tan~'[3s,/(e—f)] with Ox.

7. Defining the term “areal dilatation” in analogy with
linear elongation and cubical dilatation, show that in a homo-
geneous strain a system of quadrics can be described with the
origin as centre such that the areal dilatation of any section
varies inversely as the square of the perpendicular radius vector.

8. Prove that all planes in the body suffering a given areal
dilatation 8 have for their normals the generators of the cone

B=f-g)2+(B-g-e)yr+(8-e—f)F+ 282 + 2822 + ey = V.

9. Prove that in the case of § 119 (i7i.), the elongation being
perpendicular to the plane of the shear, and all three principal
elongations being supposed positive, the direction of the elongation
must coincide with the greatest axis of the Strain Ellipsoid if
¢,-+€,>2¢,; and show that in this case

A=3eg+e)
T=d(g-¢)
e=§(2¢) -, —¢;)

10. Show that a simple elongation e parallel to Oz may be
r placed by a cubical dilatation ¢ together with two shears, each

o amount e, having Ox and Oy, Or and Oz respectively for
t eir axes.

11. What is the nature of the strain represented by the
e uations of displacement

U= —wyz; v=wx; w=01

12. Find the volume and the moments and products of inertia
¢ a sphere of radius R, originally homogeneous, after under-
¢ )ing the strain represented by

% =ar+ a'z?

v=Py+ By

W=y +y's?

13. Prove by combining equations (29) and (61) that if one
¢ ' the principal axes at each point is normal to the equipotential
s face through the point, then either

¢=Flax + fx+yz +8)
bm P f ,
vhere *=u2+y+2% q B, v, and J are constants, and F is any

f inction which makes d¢/0x, 0¢/0y, 0¢/0z vanish at the origin.
V7hat strains do these forms of ¢ represent ?
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[The equations may be written
1 9UP_1 U_1 QU?

R R TR R
Thus U.dU=X\. d¢.
Assume A.dU=\. dw.
Then U. dw=Ad¢, where 4 is a constant.

) () (-0 ()
.. when gz =0 we also have

P _09_109 =
Syt 0. Thus ¢ = F(w).

o 0y
Now :g_: o %= g—f, ete.
Squaring and adding AN\ § (Da\? . (NP . (Dew)\? .
i o) ) s 02
2
-8y

The only real solutions of this are
w=aac+ﬁy+7z+6}
w=ar+é

whence, etc.].

14. Prove that in any strain which consists of a combina-
tion of any number of shears (homogeneous or not) in the plane
of zy the displacement curves are given by

% = constant
X = constant }

where ¢ and y are conjugate functions of « and y (§ 245).

15. Prove by equating the values of X, i/, v given by equa-
tions (19) to A, m, v that, in any homogeneous strain, there is
always one and may be three straight lines through every point
of the body which retain their initial directions.

Show that the elongations in these directions are the roots of
the cubic '
e=¢, 83— 05 85+ 0, [=0.
sg+ 0, f—o, 5,—0,
8=y 8+ 0, g-¢

Hence show that, when all the roots of this cubic are real,
these three directions are orthogonal, and 6,=0,=0,=0.

16. Show that the integral

/(udac +vdy + wdz)

taken round any closed curve in the body is zero if the strain be
irrotational, and is otherwise equal to

2/[f(A6, + pb, + v0,)dS,
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where dS is an element of any surface drawn within the body
and having for its edge the given closed curve; A, u, v being the
direction-cosines of the normal to the element.

17. Show from equations (59) of § 123 that the intezral

/f(kﬁ, + b, + v0,)dS,

taken over any closed surface drawn within the body, is
identically zero.

APPENDIX L
On the Geometry of Straims.

All physical quantities may be broadly classified into two
categories called respectively ar and Vector. A scalar
quantity involves no conception but that of magnitude, but the
characteristic property of all Vectors is that they involve the idea
of direction as well as that of magnitude.

This broad distinction includes under the head of Vectors
several classes of quantities which differ from one another in their
degree of definition, as we shall presently explain. They may all
be assigned to one of two divisions :—linear and angular veetors
—which we shall discuss separately.

Linear Vectors.
( Displacement, Velocity, Elongation, Force, &c.)

The most perfectly defined linear vector, which may be called
& motor, involves the specification of five characteristic elements.

(2.) Its magnitude, which it has in common with scalars, and
which is expressed by a sealar or numerical factor multiplying its
purely vector or directed factor, and denoting its ratio to an
arbitrarily chosen unit vector with which it is in all its other
properties identical. This factor is called its Tensor.

(#2.) Its direction, or that of a family of parallel straight
iines in s[iace, along any one of which it may be supposed to act.

(711.) Its way of acting along these lines, which is analytically
expressed by an arbitrary convention as to its algebraical sign,
so that, if a vector acting in one way is considered positive, a
vector acting in the directly opposite way is considered negative,
the two vectors being otherwise identical.

E
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(iv.) Its position in space, or the particular line of the family
along which it may be supposed to act. he g 4

(v.) Tts origin, or the particular point in this line from which
it is to be reckoned, or at which it is to be applied.

The following are good examples of motors:— .

(1) A given displacement of a given point in a given direc-
tion. .

(2) A force of given magnitude and in a given direction acting
at a given point of a body.

The component displacements, parallel to arbitrary rectangular
axes, of each point of a strained body are of course vector quanti-
ties, but if the body be left free in space they are highly imperfect
vectors ; the reason being that such a strain does not specify the
absolute displacements of points in the body, but only their
relative displacements in given directions.

Consequently we are only given (4.), (iv.), and (v.), while (2.)
and (7#4.) are quite indeterminate.

Vectors of this nature, which can be taken in either way so
as to satisfy the specified conditions, are called Dipolar.

If, however, we determine in any abritrary way the absolute
displacements of any one point in the body, it is obvious that we
thereby raise the component displacements of all points in the
body to the rank of perfect motors. The simplest condition to
impose is of course that one point in the body shall remain fixed,
and since this assumption cannot affect the strain, while the
analytical advantages of increased simplicity and definition are
so obvious, we shall always avail ourselves of it.

As an analytical example let us take the simple case of a
uniform elongation of all lines in the body in the direction Q.

’

If e be the amount of the elongation, and z,,z,, «,..., %/, @,, %, ...
the initial and final abscisse of any number of points in the body,
the only condition to be satisfied is that the projections (z,—a),
(2, —x,)... upon Oz of the distances between these points are to
be increased in the constant ratio (14e).

We thus obtain a group of equations of the form

@y — &y = (1 +€) (i, — y)
or Uy — Uy = (%, — ;).
The solution of this group is of course
% — ex = constant,
or U =exr— C,
where the constant € may be of either sign and of any magnitude
whatever.

Let o/, «” be the absciss® of those points of the body which

are nearest to and farthest from the plane of yz.

(¢.) If we take C'<ex’, w will be positive for every point in
the body.
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(ti.) If we take ex’ < < ex”, u will be negative for all points
of the body between the planes z=a' and x=C/e, and positive
for all points between the planes = (/¢ and 2=1",

(w0i.) If we take C'>ex”, w will be negative for every point
in the body.

All these solutions obviously satisfy the conditions of the
strain.

It is clear that (i4.) amounts to regarding a plane in the body
as fixed in space—namely, that for which x=Cle. If we take
this for the plane of yz, C=0, and the equation of displacement
becomes

w=ex,

and u is now a perfectly defined motor.

The simplicity of this solution points to the advantage (much
greater of course in more complex strains) of regarding one point
in the body as absolutely fixed, and taking that point as the
origin of our arbitrary axes of reference.

Angular Vectors.
(Rotation, Angular Velocity, Couple, &c.).

As an example of the most perfectly defined class of angular
vector, which may be called a Iggtor, we shall consider a simple
rotation about a given axis. Its specification includes

(i) Its magnitude.

(1) The direction of its axis, or the direction normal to the
system of parallel planes in which the displacements take place
which constitute the rotation.

(14i) The way of the rotation, which is expressed by an
arbitrary convention as to algebraical sign (see below).

(iv.) The position of the axis, or the particular line in the
body, drawn in the direction defined by (ii.) which remains at
rest.

(v.) Its origin, or the initial position of any plane in the
body through the axis of rotation, from which we measure the
angular displacement.

An ordinary Couple is a good example of an imperfect
Angular Vector, for it may be moved about in any manner in its

wn or a.n]y parallel plane without altering its effect. In fact
we can only specify its magnitude, the direction of its axis, and
its way.

The convention as to the way of angular vectors (eg.,
rotations) is as follows:—

Taking the cordinate axes always in their cyclical order—
xy, yz, sx—a rotation about any one of these axes in the direction
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from that axis which comes next fowards that which comes last
in the cyclical order is reckoned positive, a rotation in the reverse
direction being reckoned negative. A positive couple is one
which tends to produce a positive rotation, and so on.

In all branches of Physics but one the directions in which we
suppose the axes drawn, with reference to their cyclical order, is

quite indifferent ; but, in

order to secure uniformity of

notation, it is desirable to

~ adopt in all cases that already

employed in Electromagnet-

ism, in which the positive

direction of rotation about

either axis bears the same

relation to the positive direc-

tion of translation along it as

7 does the rotation to the trans-

lation in the case of an

ordinary ¢ right - handed ”

screw (Fig. 4). This is also

sometimes called a “counter-

clockwise ” rotation, from the

1 fact that if one of the co-

Fig. 4. ordinate axes be drawn out-

wards from the centre of the clock-face, the positive direction
of rotation is contrary to that of the hands.

Now if a body left free in space is subjected to a strain
accompanied by a rotation of given small amount £ and with its
axis in a given direction (A, w, v) it follows from the purely
relative character of the displacements specified in the strain that
those portions of them due to the rotation will be given (like
those previously discussed) by a group of equations of the form

Uy = uy = iz, —2y) ~ vy, — ;)
vy — vy = vQ(ay — 27) — AQ(2,—2,)
wy —wy = Ay, - y,) — pl(w, — 2;)

the general solution of which is

u=pQz—vQy + 4
v=vQx— A2+ B
w=Ay - uQa+ C

where 4, B, (' are purely arbitrary constants.
In other words, a small rotation of the body as a whole about
any axis may be reduced to a small rotation about any parallel

axis, by the superposition of a suitable linear displacement of the
body as a whole.
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Such a displacement does not affect the strain, and therefore,
so far as the conditions of the strain go, the position (iv.) of the
axis of the rotation is completely unspecitied, and with it the
amounts of the component displacements.

Hence, as before, in order to transform the strain-rotation
into a complete Rotor, we assume the point of the body coincid-
ing with the cotrdinate origin to remain at rest; an assumption
which clearly amounts to determining that all axes about which
the body can rotate must pass through the origin.

v APPENDIX IL
On Finite Shears.

A simple finite shear consists of a uniform elongation of all
lines in the body parallel to a given axis Of, accompanied by a
contraction in the reciprocal ratio of all lines in a perpendicular
direction Og, lines parallel to O¢ retaining their initial lengths
unaltered.

Thus lines of unit length parallel to O¢, Oy, O respectively
beecome lines of lengths «, 1, 1/a, where « is a finite quantity
greater than unity which is called the Ratio of the Shear.

The displacements parallel to the principal axes are given by

£+ U=af
n+ V=19
(+ W= c /3 J
Hence if the point (&, 5, {) be displaced to (¢, ', {)
§lag=n'n=af[{=1.
Thus the equation of the Strain Ellipsoid is
&
m+1}"+a3{"=l,
and its semi-axes are a, 1, a”'. Fig. 5 represents the principal
section in the plane of {£ of the ellipsoid, and of the unit sphere
from which it is derived; the mean axis (which retains its unit
length) being perpendicular to the plane of the paper.

Since the radius of the sphere and the mean semi-axis of the
ellipsoid are both of unit length, the common sections of the two
sur?z‘:ces are the Circular Sections of the ellipsoid.

These are the two planes through Oy, whose lines gf inter-
.‘}gcotilc)),n with the plane of the paper are the common radii 4'0C",



70 ANALYSIS OF STRAINS.

Since these sections remain great circles of the sphere—and
therefore retain their original form and dimensions—it follows
from the properties of Homogeneous Strain that the two systems

5
Q
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/;’l ’ “"
’ R:"\ 3 0 ﬁ
NN |
PR 7 e NN e /N i
,/f’ ...............
S D
Fig. 5.

of planes in the body parallel to the circular sections of the Strain
Ellipsoid are Planes of no Distortion.

The equations of these planes in their strained positions are
given by

g
it 2+ a2f'2=£2+ 92+ {2,
or by Exal'=0.
Consequently their positions in the unstrained body are
given by
af+{=0.
Let these cut the plane of the section in AOC, BOD. Then
A0f = DOE =tanla,
A'0¢ = D0 = tan"Y(1/a).
The effect of a simple finite shear is therefore to change that

angle between the two systems of undistorted planes which is
bisected by the plane of £ from 2tan™ a to 2tan™'(1/a).
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The angle 40A’ through which any one of these planes is

turned is obviously
tan4(a—a?).

It is clear that any rhomboidal prism, such as PQRS, bounded
by undistorted planes, is strained into an equal and reciprocally—
similar rhomboidal prism P'QR'S’, by a simple interchange of
the angles and diagonals of its transverse section.

To represent the effect of a finite shear by a Finite Shearing
Motion we must there-

fore take any such 'y
rhomboidal prism, and \ / g
—holding fixed one of R D AN 4 B

its mesial planes BOD ; s Lt
—cause all the undis- . { o 5
torted planes of the
same system to move
parallel to it, each
through a distance pro-
portional to its perpen-
dicular distance from ;
the fixed plane, until y -
each angle of the thom- .~ *
bus has been changed .-~ -

into the supplementary

angle.

Let PQRS, PQ RS’ (Fig. 6) be the initial and final forms of
the rhombus, and let AOQ, A'OC" be the initial and final positions
of its other mesial plane; ON being perpendicular to PQ.

We have

Fig. 6. %

angle A0B =2 tan~'(a™"),
- AON = A'ON = tan~1}(a - a™").

Now if 4 be the Amount of the shearing motion (or the
ratio of the displacement of any sheared plane to its perpen-
dicular distance from the fixed plane),

A=AA'|ON=3. AN/OF.

Thus A=a-a™

Again,

angle POFP =angle QOQ
= tan~}(a) - tan~Y(a"’)
=tan~}(a ~a™).

Thus, finally, we see that a simple irrotational shear of ratio
a may be replaced by a shearing motion of amount A =a—a™",
together with a backward rotation of the body as a whole through
an angle

tan-'(34) = tan"'}(a - a”’).
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To apply these results to the limiting case of an infinitely
small shear (§§ 95-98) we have only to write a=1+s,
so that a™'=(14s)'=1—s.

Thus, A =2s, and the rest follows.

The Analytical Equations of a finite shear in the plane of
@y whose axis of elongation O¢ makes an angle § with Oz may
be found as follows.

All lines parallel to O¢ are lengthened in the ratio «: 1, and
all lines parallel to O are contracted in the ratio 1:a. Hence
the initial and final codrdinates of any point are connected by
the relations

§=af; {={,
or ' sin 0 + &' cos 6 = a(y sin 6 + x cos §) }
y' cos @ —a'sin =a"(y cos 6 — xsin 6) §’
or, if ‘.’s:a—a‘l}
20=a+a™?

w’=m.(o-+sc0s20)+y.ssin20}
Y =x.s8in20+y.(c—scos26)

If we put s=s,, o=1, 0=%r, these reduce to equations (vi.)
of § 89. i

Composition of Finite Shears. It is a curious fact that
although a single shear of any magnitude does not cause any
rotation of the body as a whole, and although (§ 88) any number
of infinitely small irrotational shears produce as their resultant
an irrotational strain, yet if two or more shears of finite amount,
each of them irrotational, be applied in succession, their resultant
effect will in general be a rotational strain. :

To prove this we will consider two finite shears in the same
plane, whose axes do not coincide.

Retaining the notation just explained, let their elements be

(9, 8 0, 0), (B, &, o ¢').

The cotrdinates (2, y') after the first shear of the point
initially at (z, y) will be given by the above equations, and its
final covrdinates ", ") by

2" =x(c" + 5 cos 20') + y/'s’ sin 26 }
Y’ =a's'sin 20’ + o/ (¢’ — &' cos 2¢)

Hence, finally,

@ =afoo’ + 85’ cos 2(0' - 0) + (o5 cos 2¢' + o's cos 26)]
~y[ss'sin 2(¢" - 6) - (0%’ sin 26 + o’s sin 26)]

Yy =x[ss'sin 2(¢ - 0) + (o's' sin 26’ + o’s sin 26)]
+y[oo’ + 58’ cos 2(6' — 6) — (o8’ cos 26’ + o”'s cos 26)]
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To interpret these equations let us suppose the point brought
back to (z, ¥), and displaced to (2™, ¥””) by an irrotational shear
(S, =, ¢), and then if possible brought to (", ¥”) by a simple
rotation of the body through an angle é in the positive direction
about Oz.

‘We shall then have
2" =2(Z + S cos 2¢) + ySsin 2¢ }
y" =xSsin 2¢ + y(E - Scos 2¢4) J’
z"=x"" cos8—-y"sin § }
¥ =a"sind+y" cos 8

b

And, finally,

o =a{2cos 8 + S cos (24 + 8)] — y[Z sin & - Ssin (24 + §)] }
y" =a{Esin 8+ Ssin (2¢ + 8)] + y[Scos 8- Scos (24 +8)] |

In order that these two values for (2, ¥") may be identical
for all values of # and  we must have

Zco8 =00’ + 85 cos 2(¢ - 0)
Zsin 8 =ss'sin 2(¢ - 0)
S o8 (2¢ +8) =05 cos 20 + o'scos 20 |
S'sin (24 + 8) =4 sin 26 + o’ssin 20 J

Squaring and adding the first two of these equations

=gt + 8% + 200’8y’ cos 2(0 - 0).

Squaring and adding the last two
§?=0%? + "% + 200785 cos2(0 - 0).
Thus 3-82= (02— 4% (02 - &)
=1.

Hence these assumed identities give compatible values for
S and 2.

It follows that two finite shears in the same plane, whose
axes do not coincide, are together equivalent to a finite shear in
the same plane and a finite rotation about an axis perpendicular
to it.

The same property can easily be shown geometrically in the
vase where the two shears have one system of undistorted
planes in common.

Let AB, CD be any two planes of this system, and let 4B be
held fixed. Let OP,, OP, be the elongation-axes of the two
shears, and let ON be perpendicular to AB.

The first shear will bring P, to P/ where P P/=2s.0N,
and angle P,OP, = tan™'s.
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The second shear will bring P, to P, and P/ to P,", where
P,P/=P'P"=2s.0N, and angle P,OP, =tan™'s’,

The resultant of the two irrotational shears will therefore be
equivalent to a shearing motion of amount 2(s+s’) towards the

4
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right hand, together with a counter-clockwise rotation through
an angle tan~'s+tan's’.

’
18+8

=i
o 1 —ss

Now if OP, be the elongation-axis of a single shear which
will restore P," to P, the same shear will bring P, to P, where
P,P/=P P"=2(s+5). ON, and angle POP/=tan"'(s+¢). To
make this an irrotational shear we must therefore give the body
a clockwise rotation through an angle tan='(s4-).

Hence we see finally that the resultant of the two érrofational
shears of amounts 2s and 2s' is compounded of a single irrota-
tional shear of amount 2(s4-8') together with a counter-clockwise
rotation through an angle

P,OP/+P,0P) - P,OP;
=tan™'s + tan~'s' — tan~Y(s + s')

8= tan-! __ss_’(f_ts_’L_],
1+ss+s2+52



CHAPTER IIL
ANALYSIS OF STRESSES.

130.] We originally defined Stress (§ 28-30) as the elastic
force called into play between the molecules of the body to resist
the Strain or relative displacement of the molecules produced by
the application of external forces. We have now to substitute a
rew definition of Stress (§ 46) adapted to our conception of
continuous matter.
It has already been stated (§ 3) that there is reason to believe
1 hat the forces exerted upon one another by the molecules are
«nly sensible when the distances between them are exceedingly
iinute. A body strained by external forces must therefore be
apposed held in equilibrium by stresses between contiguous sets

- f molecules, the force being passed on, as it were, in the form of
tress, from each layer of molecules to the next following.

For example, an elastic bar of uniform section, stretched by
orees in the direction of its length, uniformly distributed over
s ends, may be regarded as made up of extremely thin layers of
10lecules in planes perpendicular to its length. The tension is
hen passed on in the 2:;'"1 of stress from layer to layer along
he bar, so that by this means the equal forces applied at the
wo ends are ultimately placed in opposition to one another.

131.] Definition of Stress. Thus, returning to our ideal
ontinuous matter, we are led to conceive of Stress as the mutual
tetion exerted across any surface dvawn in the body by the two
ayers of matter, of elementary thickness, immcdiatclg/ separated
This action is reckoned as positive when it is of the nature
f a tension, and negative when a thrust.

The intensity of the stress across any surface is measured,
vhen uniform, by the tension per unit area ‘exerted upon one
inother by the two portions of matter immediately in contact
vith it on either side.

If this action varies from point to point of the surface, the
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intensity of the stress at any point P is measured by the tension
which would be exerted across a unit area described about P in
the surface, if the stress had at every point of that area the same
value as at P. In other words, it is in all cases measured by the
ratio which the tension across any small area described in the
surface about P bears to that area, in the limit when the latter
is indefinitely diminished.

In accordance with the usage of Hydrostatics, we shall
reserve the term Stress for intensity of stress (force per unit
area), and employ Total Stress to denote the algebraical sum of
the tensions across all portions of a given area.

A positive stress (tension per unit area) is called a Traction :
a negative stress (thrust per unit area) is called a Pressure.

132] Normal and Tangential Components. The stress
across a surface may at each point be normal, tangential, or
oblique; and since in the latter case the stress (being merely
a force per unit area) can always be resolved into a normal and
two orthogonal tangential components, we need only econsider
the former two.

A positive normal stress across a surface is then a normal
traction between the portions of matter separated by it. The
function of such a stress is obviously to resist normal separation
of these portions, or, in other words, to resist elongation of the
neighbouring portion of the body in the direction of the normal.

Similarly, a negative normal stress or pressure tends to resist
contraction, or negative elongation, in its own direction.

These are also sometimes called longitudinal stresses.

A tangential stress, or the component in the tangent plane
of the stress across a surface at any point, clearly resists any
tendency of the matter on one side of the surface at that point to
slide relatively to the matter on the other side,in the direction of
the tangent plane. The function of the tangential stress is there-
fore to resist shearing motion, and for this reason it is very
often called Shearing Stress.

133.] Total Stress. Stress being a purely mutual reaction
between two portions of matter (compare § 28-30), it follows that
the stress exerted by any portion 4 of the body on a contiguous
portion B, across the surface which separates them, is precisely
equal and opposite to that exerted by B on A.

The sum of the two is therefore always identically zero, and
similarly, if we suppose the given portion A divided by any
number of surfaces drawn within it into smaller portions, the
mutual stresses between these must have an identically null
action upon 4 taken as a whole.

The Total Stress exerted on or by any given portion of the
body is therefore simply the total action exerted across its
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bounding surfuce, between its outer layer and the matter immedi-
ately in contact with it.

The same result of course holds for the entire body, so that
the Total Stress on the body is simply the total action exerted
across its bounding surface by matter in contact with that surface,
whether homogeneous with the body or not.

Stresses applied by external agents at the bounding surface
of a body are called Surface Tractions; they are measured, like
all other stresses, by the force applied per unit area, and may be
positive (tractions) or negative (pressures); and either normal,
tangential, or oblique at each point.

For instance, the stress on a solid body immersed in a

uiescent fluid at uniform hydrostatic pressure p is a uni-
?orm normal Surface Traction (—p) per unit area: and the
Total Stress on the body is (—pS) where S is the area of its
surface.

= 134] The two Aspects of Stress. We have hitherto
regarded Stress simply as offering resistance to Strain: it is
olivious however, from its reciprocal character, that it may also
b+ regarded from another point of view—namely, as producing
a'id maintaining strain.
This simply amounts to stating that the stress exerted by the
p irtion A of a body on the contiguous portion B may be con-
s dered with reference to its effect on A or to its effect on B. In
t @ former aspect it resists further strain of 4, and tends to
r store A to its natural state; while in the latter it tends to
i crease the strain of B and to prevent it from returning to its
1 wtural state. Similarly the equal and opposite stress exerted
¢ 14 by Btends to increase the strain of 4, and diminish that
'B.
This will become quite clear if we consider a simple example ;
f ¢ instance, the uniform bar longitudinally stretched of § 130.
( onsider three consecutive layers of matter, of elementary thick-
1 388, bounded by normal sections : call them 4, B, C. The stress-
¢ ttion across the plane surfaces separating B from 4 and C is a
1 utual tension, while the strain consists of an increase in the
r wural thickness of each layer, due to the uniform elongation of
t 1e bar. Now the tensions exerted by B on A and C clearly tend to
t ting them closer together, which can only be done by diminishing
t ~thickness of B; this action therefore tends to diminish the
s :ain of B itself. On the other hand, the tensions exerted on
I by 4 and C in the two opposite directions tend to increase its
t rickness, and consequently to increase the strain of B.

135.] Interpretation of this Distinction. These two
f inctions of Stress correspond to the two points of view from
v hich we may approach the subject.
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If our object be, as in Chapter I, to investigate theoretically
the physical effects of Strain, especially with reference to the
increase of energy of the strained body, our most obvious method
is to imagine a given state of strain produced, to calculate'the
stresses called into play to resist it, and hence the work r_equlred
to be done by external force in order to overcome these resistances
to any required extent. Our attention is fixed upon the fact that
stresses are only aroused by departure from the natural state, and
hence Strain and Stress always appear to us in the relation of
cause and effect. This is the physical point of view.

In practice, however, when we deal with actgal bodies, our
only method of producing Strain is by the application of external
forces, and principally of Surface Tractions or Pressures, which
(3 133) are simply boundary Stresses. Engineers in particular,
who are chiefly concerned with the capacity of materials for sup-
porting shocks or continuous burdens without permanent set or
rupture, necessarily obtain all their working data by this experi-
mental method, the weight of the load being continually increased
until the limit of resistance is reached.

The object of our theory being to afford a guide for practical
work, we naturally adopt the same point of view : we therefore
regard the applied forces and Surface Tractions (which are under
our control) as the subjects of observation, and we require to be
able to calculate the system of stresses which must exist through-
out the body to balance these opposing forces, and hence to
deduce the strain produced by them.

This may be described as looking at all the phenomena of
Strain from an outside point of view. Each body, or portion of
a body, is regarded, not as an agent opposing strain of its own
substance by the exertion of stress, but as passively yielding to
the stresses exerted on 4t from without. This is the mechanical
point of view.

We shall therefore make a distinction between the Stress
on the portion A, being the action exerted on it by the
surrounding matter which together with the applied forces on
4 produces and maintains the state of strain, and the equal and
opposite Resistance to Stress offered by A, which balances
the stress so long as equilibrium is maintained.

136.] Applied Forces. Besides Surface Tractions or Pres-
sures bodies may (§ 4) be strained by forces—such as gravity—
which act directly on every portion of the matter of which it is
composed.

These are variously known as Imgpressed Forces, Applied
Forces, or Bodily Forces, to distinguish them from Surface
Tractions. Their intensity at any point of the body is measured
by the force per wnit mass on an indefinitely small portion of



136.] ANALYSIS OF STRESSES. 79

the body having the given point for centre ; and, when not con-
stant or zero throughout the body, they are assumed, as in
nature, to vary continuwously from point to point, and to be
everywhere finite.

137.] Continuity of Stress. In a body under continuous
and finite (or zero) applied forces, the components of the stress
across a small plane area drawn in a given direction through
various points of the body must also vary continuously from
point to point (unless they are constant).

For if we consider a small plate of matter in the interior of a
body in equilibrium under applied forces of finite intensity,
bounded by parallel plane faces separated by an indefinitely
small distance &, the components of the applied force on the plate
will be ultimately of the same dimensions as 8, and so therefore
must the differences between the equilibrating stress components
across its opposite faces.

For an infinitely small change of position, therefore, of a
smell plane area drawn in a given direction, the components of
the stress across it must vary by infinitely small quantities of
the same dimensions—i.e., they must be continuous functions of
the position of the area. It also follows that the stresses across
tw 1 opposite parallel faces of an element of the body must both
be tractions or both pressures, unless the stress is zero across a
pa: allel plane within the element.

General Equations of Equilibrium.

138.] Equilibrium of an elementary rectangular
pa ‘allelepiped. Let P be any point in the substance of the
bo y, whose covrdinates referred to arbitrary rectangular axes
ar (x, y, 2). Through P draw Pz, Py, Pz pamllgl to these
ax s.

Describe the elementary parallel@piped EFGHJKLM, having
its centre at P, and its edges, of lengths dw, dy, dz, respectively,
pa allel to P, Py', Pz,

Let the planes of ¥z, 2'x, #'y’ cut the faces of the parallele-
pij ed 81)n the rectangles 4,B.C.D,, A,B,C,D, A BC,D, respectively

z. 8).

Since the volume of the parallelepiped and the areas of its
fac - are elementary, its density and tge intensity of the applied
fo1 ;e upon it (if any) may be supposed to have throughout its
vo ame their actual values at its centre P, and the components
of 'he applied force may be supposed to act at P’: similarly the
int :nsity of the stress across each face may be supposed uniform
all over it, and the total stress across each face may be replaced
by a single force acting at its centre.

1

D¢



80 ANALYSIS OF STRESSES. [139.

139.] Let us consider first the stress across the small plane
area A B,C, D, drawn through P perpendicular to the axis of z.
Let us assume that it is a traction—which we must in general
suppose oblique—of intensity R,, sensibly constant over the area.

The total stress exerted across the area between the two por-
tions into which it divides the parallelepiped may then be taken
to be R,.dy dz which may be regarded as a single force acting
at its centre P, and of the nature of a tension, so that the force
due to stress on that portion lying on the positive side of the
area acts in the negative direction of the axis, and vice versd.

Let the components of R, along Px', Py, Pz be X,, Y, Z,
respectively, and let us assume that they are all of the same sign
as . Then the component forces due to stress exerted by the
matter on the positive side of the area on that on the negative
side will be X, .dydz, Y, .dydz, Z .dydz all acting in the
positive directions of the axes; while the matter on the negative
side exerts upon that on the positive side exactly equal com-
ponent forces in the negative directions of the axes.

Now, by § 137, these stress-components X, ¥, Z vary con-
tinuously (if not constant) for different small plane areas drawn
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in the body parallel to A BC D —that is, they are continuous
functions of z, ¥, 2.

Hence, since the perpendicular distance of A B,C D, from
either of the parallel faces—EFGH and JKXLM—of the element
is 3dw, it follows that the total stress exerted on the element
across the face EFGH by the matter on the positive side of it
may be represented by a force acting at the middle point of the
face, whose components are

: X
(‘\ L+ 3dx . —a:.l)dyd: I

a >
( Y+ 3dz . a);l)dyd.:

o

Z
( Z, +3dx . "?—ml)dyd.: J

all acting in the positive directions of the axes (§ 137).

Similarly the components of the force which may be supposed
t) act on the element at the centre of the face JKLM, due to
siress exerted by matter on the negative side, are

. X,
(‘1, - 3dx. E)Jyd..

-

- 2}

() ) - ddx. —a—l)dyd: ‘
- 2z

(/l = é'l.l: & fa:)'ly(lz

¢ I acting in the negative directions of the axes (§ 137). The
« erowheads in Fig. 8 denote the directions of the component
{ irces at the centre of each face. -
These force-components on the two opposite faces perpen-
cicular to Px’ or Ox together amount to component forces

-
\

.
‘&.cl . dzedyd=
oY
'8—:-’ . dxdydz
oZ
':“}:l . dzdydz
¢ 1 the element in the posifive directions of the axes, and com-
1 onent couples

Z, . dadydz
i1 the negative direction about Py, and

Y, . dedyds

i1 the positive direction about Pz’
P
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140.] Similarly, if the components of the stress across the
small plane area 4,B,C,D, drawn through P perpendicular to
the axis of y, be X,, Y,, Z, the total stresses across the pair of
opposite faces EHJK and FGMIL together amount to com-
ponent forces

ox,
oy
@ik
%y
oz,
%
in the positive directions of the axes, and component couples
X, . dedydz
in the negative direction about P2/, and
Z, . dadydz
in the positive direction about Px’".

Lastly, if the components of the stress across the small plane
area A;B,C;D,, drawn through P perpendicular to Oz or P/, be
X, Y, Z, the total stresses across the pair of opposite faces
EKLF and HJMG together amount to the component forces

°X,

Oz

%};3 3 d.pdydz

o7,

oz
in the positive directions of the axes and the component
couples

. dedydz
. dedydz

. deedydz

. dxdydz

. dedydz

Y, . dedydz

in the negative direction about Pz, and
X, . daedydz

in the positive direction about Py'.

141.] Conditions for Equilibrium of the Element. It
is sufficiently obvious that when the body is in equilibrium in
any given state of strain, any portion of it may be supposed to
become rigid in that state [compare § 30 (i.)] without affecting
its own equilibrium, or that of any other portion of the body.

Thus the conditions for equilibrium of the element under
consideration must be precisely the same as if it were a rigid
body at rest under the actual stresses and applied forces.
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Now if p be the density of the body at P, and X, ¥, Z the
intensities at P of the component applied forces per unit mass, it
follows from § 138 that the components of the applied force
on the element may be taken to be

pX . dadydz
pY . dadydz
pZ . dxdydx
and that they may be supposed to act at its centre P.

Collecting the results of the last three Articles we see that the
element is subject to component forces

ox, % X, °X,
aal an - S+pX ]dxd ydz
oY, a ¥, © Y

ac a 2+ é—$+p)]d¢‘d_/d~
97, BZ 37

oyt ot pZ Jdzdyds

pa allel to the coordinate axes, and to component couples
[Z, - Y Jdzdyds
[X, - Z,)dadyds
[¥, - X,)dzdyd=

al Hut these axes, respectively.

The econditions of equilibrium of the element are therefore
e> oressed by the six equations

oX, o°X, 9X,
21,558 o
X ¥ ™ +50 34 pX=0
oY, a}’ aY,

dz: 3_/ % Lot fi A ST SRR S (1)
o2, ?/ 37
32: a., +P/==0
Zy,-Y;=0
= o UM 5 s v s e Ho iy wh (2)
Y, -X,=0

142.] Simplification of Notation. Equations (2) will be
sa isfied, and our analysis much simplified, if we adopt the new
nc tation formed by writing
X, =P, Y,=Q Z,=R,
Bt B X Bl YuX el
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The general equations (1) of equilibrium then become

oP oU of

—t—+=—+pX=0

3:v+8_7/+ az“’

oU 2@ , o8 3
ax-'i'@-'l‘——éz-l-f)y-:o ......................... ()
o7 o8 OR

Sou IR Z =0

ey Vi il

where X, ¥, Z are the components of the applied force per unit
mass at (z, ¥, 2), p is the density at the same point, and the other
symbols are best explained by the following schedule :—

denoteall across a small
Stres?sn(?}o?;por?ent Plane Area drawn
The Symbol - s through (z, ¥, 2)
% Parallel :O Axis Perpendicular to
i Axis of
P x x
Q Yy Yy
R B 2
s { y ¢ }
Z Yy
7 : a5 }
! @ z
|
i {5 /)
Y 2

143.] Equations of Motion. If the body, instead of being
in equilibrium in a given state of strain, be in process of strain-
ing—i.e., if any relative motion of its parts is taking place, the
component forces of § 141, instead of vanishing, must be equal to
the components of the “effective” force on the element, which,
if &, %, z be the component accelerations of P, are

p . dacdydz
py . dxdydz},
Pz . dadydz
Since the effective couples involve the Moments of Inertia in

place of the mass of the element, they are always indefinitely
small in comparison with the effective forces. :
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Hence equations (2) are still very approximately true, and
the equations of motion are

oP U  oT v

a',c+ay+a:+P(A_J’)‘0]
oU 2@ oS ey |
_+31;+'<3:+P() -y)=0

07 , 2S5 OR y
- —— Z-3)=
SOAE R Tdaslil Ak
In these equations, since w, v, w are the variable portions of
the covrdinates of any point, we may obviously write i, ¥, w
instead of &, ¥, 2, whenever the former will be preferable.

Fig.9.

i44.] Resolution and Composition of Stresses. The
si ¢ quantities, P, Q, R, S, 7T, U are the normal and tangential
¢ mponents of the stresses across the three small orthogonal plane
a eas drawn through any point P (z, y, z) of the body perpen-
d cular to Oz, Oy, Oz respectively. The fact that these six
q lantities are the only stresses involved in the equations of
e uilibrium and of motion suggests that we may be able to adopt
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them as our standard system of stress-components, and to express
in terms of them the stress across a small plane area drawn
through P in any direction whatever.

From P draw, as in § 188, Pz, Py’, PZ parallel to Ox, Oy, Oz,
and cut off from the body an elementary right-angled tetrahedron
PABC, having for its base any oblique plane which will cut
Px', Py, P7 in points 4, B, C, such that the edges P4, PB, PC
are all positive in direction.

Let A, u, v be the direction-cosines of the normal to the base, A
directed outwards, or away from P; then A, u, v are all positive
quantities.

Let A be the area of the base 4BC, and p its perpendicular
distance from P. Then 1pA is the volume of the tetrahedron,
and AA, ud, vA are the areas of the faces PBC, PCA, PAB.

Let F, G, H be the components of the stress across the base,
in the positive directions of the axes. Since the other three faces
are all turned towards the negative directions of the axes, the
components of the stress across them must also be taken in the
negative directions (§ 139) ; these components are respectively :—
on the face PBC, P, U, T'; on the face PCA, U, @), S; on the
face PAB, T, S, R.

If X, Y, Z, p denote the same quantities as in § 140, the com-
ponent forces on the tetrahedron will be

G . A+pYV . IpA-U.NM=-Q.pA-S.vA

F.A+pX . 3pA-P. M-U.pA-T.vA
H.A+pZ pA-T . M~8.pA=R.vA

and the conditions of equilibrium

G+5p.pY=Ur+Qp+Sv

Fiip.pX=P\+ Up+Tv
H+lp.pZ=T\+Su+ Ry

Similarly, if the body be in process of straining. (§ 143) the equa-
tions of motion are

F+1pp(X - &) =P+ Up+ Tv
G+3pp(Y-4)=Ur+ Qu+Sv 1.
H+3pp(Z-2)=TA+ Sp+ Rv

These equations must hold, however much the size of the
clement may be reduced, by causing the plane A BC to move up
parallel to itself towards P. Since then they hold up to the limit,
we may assume that they are also true at the limit, when p
vanishes, and the plane A BC passes through P.
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We have then, whether the point P be at rest or in motion,
the three relations
F=P\+Up+1Tv
O =BPEREE bl oL i (5)
H=TA+Sp+ Ry

between the components F, G, H of the traction exerted across a
small plane area drawn through (z, y, 2) in the direction (\, u, »)
~ and the six orthogonal components ﬁ, QR STU,

145.] Boundary Conditions. Similarly, if A, 4, v be taken
to denote the direction-cosines of the outward drawn normal at
any point (z, ¥, z) of the bounding surface of the body, we may
describe an elementary tetrahedron whose inner faces are parallel
to the coordinate planes, while its outer face ABC is formed by a
triangular eclement of the bounding surface about the point
(2, v, 2).

If F, G, H be now taken to be the components of the Surface
Trection at the point, the conditions of equilibrium of the tetra-
he¢iron must be the same as those just investigated, and (proceed-
ing to the limit in which the vertex of the tetrahedron moves u
to the surface) equations (5) will represent the relations whic{:
m st exist between the components of Surface Traction and the
or' hogonal Stress-components at each point of the surface.

The general problem in the Mathematical Theory of Elasticity
(s« § 135) is to find solutions of equations (3) or (4), for the
st1 ass-components throughout the body, which will also satisfy
eq 1ations (5) at every point of the bounding surface.

The solution will not be complete until we know the relations
be ween Strain and Stress, so that we can find the alteration of
fo m and volume of any element of the body. These relations
w [l be investigated in the next chapter.

146.] Equilibrium of the body as a whole. It may be
ol served that the solution of equations (3) and (5) converse to
th it just proposed—namely, given the distribution of Stress
tl toughout the body, to find the distribution of Applied Force
a1 d Surface Traction required to maintain it—is always obtain-
alle. For when P, Q, R, S, T, U, p are known as functions of
o, ¥, 2, these equations give explicitly the appropriate values of
XY ZFGH.

Now we have shown (see § 133, 134, and compare § 29) that
t! : applied Forces and Surface Tractions (considered together in
Chapter L, under the head of “External Forces”) are the only
fcrees which can be considered as acting upon the body as a
w hole, and it follows from the considerations of § 141 that, when
tl e body is in equilibrium in a given state of strain, these two
systems of forces must be so connected as to satisfy the ordinary
e« nditions of equilibrium of a rigid body.

>
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We ought then to be able to show that the values of these
forces given by (3) and (5) satisfy the analytical conditions

S fpXdadyds + [fFdS = 0]
oY dadyds+ [ GdS =0 feovviicuiiiniinnnnn, (6)
SpZdadydz + [f HdS = J ] -

SpyZ ==Y ydadydz + [ f (yH - 2G)dS =0
Sfp(X —aZ )dadydz + [f (:F —aH)dS =0 ¢ wooveeeneres @
Sfo@Y - yX)dedydz + [f (26 ~yF )dS=0

obtained by equating to zero the component forces and couples
acting on the body as a whole; the triple integrals being taken
throuO'hout the volume of the strained body, and the double
1ntegrals over the whole of its bounding surface.
Now we have by equations (3)
oP oU oT

PG o e

S pXdadydz= f[/ (ap aU a  Jdedydz;

or, integrating by parts,

= - Jf [Pldydz - [f [Uldwda - [ [T1dady,

where the square brackets [ ] denote that the enclosed term is to
be taken within proper limits.

Hence if A, u, v be the direction-cosines of the outward
normal to the element dS

S feXdzdydz = - [f(PA + Up + Tv)dS,

and therefore by equations (3),

JffpXdadyds + [f FdS=0.

In the same manner it may be shown that the second and
third of equations (G) are satisfied.
Again, by (3),

ffﬁ(v/Z 2Y)dwdydz
oU aQ oS o oS ,9oR
: [/ E (ax dy az) y(am oy )}d e
:ff[zU yT'|dydz +/f[zQ ySldzdx +/f[zS-— yR)dady
=f/{)&(zU-— yT) + p(2Q - y8S) + v(zS - yR)}dS
= [ (2T + 1@ + vS) = y(AT + S + vE)} S,
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Hence, by equations (5),

[l ¥ adyds + [ (vH - 2G)d =o.

Similarly we can prove the remaining two of equations (7).

Thus the values of the components of Applied Force and
Surface Traction given by equations (3) and (5) satisfy identically
the conditions of equilibrium of the body as a whole.

This result verities the statement of § 130 that force is passed
on through the body from layer to layer by appropriate stresses,
so that the external forces are ultimately brought into opposition
with one another as if the body were rigid.

147.] If the body, instead of being in equilibrium through-
out, be in process of straining, then taking the values of the
components given by (4) and (5) it is easy to show by a similar
method that the expressions on the left-hand side of equations
(6) and (7), instead of vanishing, are equal to the effective forces

and couples.
ﬂ f prdxdyd:

S fpidzdyds
S fpidadyds
_[/ f p(yz = zy)dxd, yd:‘l
Sfo(s% - a3)dudyds .
S ot - _v/.'i)d.l'dyd:ll

Types of Reference.

148.] The Three Normal Stress Components. Reason-
ir ¢ as in § 132, with the modification introduced in § 135, we see
tl ab

(i) The normal traction P, across the small plane area
d awn perpendicular to Or, tends to produce an elongation in
tl ¢ direction of Ox of the neighbouring portion of the body.
T s (§ 33) the function of the Simple Stress P is to produce
a A maintain the Simple Strain e.

Ji.) The normal traction @, across the small plane area
d awn perpendicular to Oy, tends to produce an elongation in
tl e direction of Oy. Thus the function of the Simple Stress @
is to produce and maintain the Simple Strain f.

(12i.) Similarly the function of the Simple Stress R is to
p oduce and maintain the Simple Strain g.

These statements must only be taken as pointing out the
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analogies between the components of Strain and Stress, and the
primary and most obvious functions of the latter. We are not
at present concerned with the exact relations of Stress to Strain,
and we must not take it for granted that any one stress-com-
ponent can produce the analogous component strain alone with-
out producing a simultaneous change in the other components.

149.] The Tangential Stress Components. The tan-
gential traction S, in the positive direction of Oy across the small
plane area drawn perpendicular to Oz, clearly tends to drag in
that direction the layer of matter immediately in contact with
the negative side of the area relatively to the layer in contact
with this one on its negative side. And if we consider that
this action takes place across every small plane area drawn
perpendicular to Oz in the neighbourhood of the point P it is
evident -that the tendency of this tangential traction is to
produce and maintain the Shearing Motion described in § 95 and
represented in Fig. 2—that is, a positive shearing motion parallel
to Oy of planes perpendicular to Oz

' This will be perhaps

o more obvious on consult-

i ing Figure 10, which re-

presents the action in
the plane of 32’ on the
elementary cube having
P for centre. For the
sake of distinctness only
_________ the  traction - couples
" about Px’ are inserted,
the normal components
and those portions of
the tangential tractions
which combine to form a
Jorce on the element (§§
139, 140) being omitted.

; The couple due to the
Fig.10. traction we have just

considered is marked S,.

Similarly, the equal tangential traction S in the positive
direction of Oz across small plane areas perpendicular to Oy, gives
rise to the equal and opposite traction-couple marked S,; the
tendency of which is to produce a positive shearing motion
parallel to Oz of planes perpendicular to Oy.

Now (§ 98) these shearing motions are rotational strains,
compounded of 4dentical shears and opposite rotations. The
tendency of the two traction-couples in combination is to produce
these two shearing motions simultaneously, and therefore (see
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98 and Fig. 3) to produce a simple irrotational shear of planes
perpendicular to Py’ and Pz, or to Oy and Oz.
. (iv) The two tangential stress-components S at the point P
“are therefore, when considered in combination, called a Shearing
Stress of amount S in the plane of 32"

(+.) In like manner, the two tangential tractions 7 combine
to form a Shearing Stress of amount 7' in the plane of z'z; and

(vi.) The two tangential tractions U combine to form a
‘Shearing Stress of amount U in the plane of x'y".

The primary function of these three component stresses is
‘then to produce and maintain the three component shears a,b, ¢
respectively. (See remarks at end of § 148),

150.] Resolution of Shearing Stress. Just as we proved
that all the simple strains—and therefore any strain whatever—
can be resolved into simple
elongations and contractions,
so we may show that every

‘stress may be regarded as

the resultant of normal or

- longitudinal tractions or
pre: sures.

This will follow from the
pre eding Articles if we can
pro "e it for a single shearing
St 38

Let us then suppose the

~ boc y held in a given state
of : train, such that all the
- sta dard stress-components
at 1 1e point P vanish, exeept
the shearing stress S in the Fig.Il.
& Ehla ie of 4'z". Equations (3)
- the 1 give us for the stress-components across a small plane area
drs ¥n through P in any direction (A, g, »)
' F=0
(I'HSV .
H=Sp
Now if the stress across any such area be wholly normal we
mu { bave F/AA=G/u=H|/v.

substituting, we see that fwo planes can be drawn through P,
suc 1 that the stress across them is wholly normal, their direction-
cos nes being respectively

(0, 1/8/2, 1/4/2) and (0, = 1/a/2, 1/a/2);
an« for both these planes
F=0, 6=S8u H=>8v
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Thus the shearing stress of amount S in the plane of ¥z’ is
equivalent to a mormal traction of amount S aeross the plane
bisecting the positive angle between those of «'y’ and 2’2, together
with a numerically equal mormal pressure across the plane
bisecting the negative angle between the same planes.

151.] The same result may be obtained by considering the
equilibrium of the prism ABD (Fig. 11) one of the halves into
which the cube of Figure 10 is divided by the diagonal plane
BD. 1t is obvious that we may regard this prism as isolated if
we suppose the existing stresses still to act across its faces.

Now, if a be the eleméntary length of either edge of the cube,
the areas of the faces AB and 4D are each «? while that of the
face BD is a?/2. Also the forces on the prism due to the tan-
gential tractions on the former faces are each S. «* in the positive
directions of Py’ and Pz

The force across the face BD must therefore have equal com-
ponents in the negative directions of the axes. That is to say, it
must be a normal traction of intensity :

S. a2, 2/a? /2

or S. Similarly by dividing the cube along the plane AC we can
show that the stress across this plane is a normal pressure of
intensity S (Fig. 12). :

‘ 152.] Discrepancy
in the measurement
of Shear and Shearing
Stress.  Although the
methods of resolution of
shear and shearing stress
are thus completely analo-
gous, there is adiscrepancy
between the measurement
of shear in terms of its
component elongation and
contraction, and that of
shearing stress in terms
of its component normal
traction and pressure
E which should be carefully

Fig.12. noted.

Thus the amount of a shearing stress compounded of a normal
traction and pressure S is taken to be S, while the amount of a
shear compounded of an elongation and contraction s, is taken to
be 2s; or a (see § 100).

The discrepancy exists solely in the nomenclature adopted
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d, though on some accounts to be regretted, is not a serious
efect.

The results of §§ 148, 149 are collected in the subjoined
‘schedule for comparison with that of § 106.

tends to produce of Planes
The Component | Relative Motion Perpendicular to

| : Parallel to Axis of Axis of
o x x
U ® y
V ‘ z 2
U y 2
Q y y
A y z
: n z @
S 3 y
! 3 H H

153.] Small Stresses. All the properties of stress hitherto
1 ed are equally true, whatever be the magnitude of the stress.
* Jur analysis is however to be applied to the theory of bodies
ff: ring infinitely small strains,and we shall therefore from this
i1 § restrict it to such stresses as are required to produce and
i itain these strains.
{ow we cannot suppose anything short of an absolutely rigid
bod - to offer infinite resistance to a finite strain; and since it is
a 1 itter of experimental observation that the straining of the
01 3 perfectly elastic natural solids increases eontinuously with
e stress applied, within the limits of their elasticity, we may
¢« y assume that, if we &doFt a finite unit of force per unit
, the numerical measures of the stress-components will always
« f the same order of dimensions as those of the components of
e strain which they serve to maintain.
for the purposes of our theory we may therefore always
t me the components of stress to be small quantities of tg)c
Hﬁrs order (§ 58) whose squares and higher powers, together with
the - products with each other or with the strain-components, may
be . ( Jlected in comparison with their first powers.
Now, strictly speaking, equations (3) of § 142, (4) of § 143, and
(5) »f § 144 express the relations between the forces across the
fac: s of an element of the body which, in the given state of strain,
i8 e ther a rectangular parallelepiped with its edges parallel to
the fixed cosrdinate axes, or a tetrahedron with three edges
par.dlel to the same axes. But, from what has just been said,

Digitized L
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it follows that if the strain be a “small strain,” and consequently
the stress a “small stress,” these relations will, to our order of

approximation, take precisely the same form if we suppose the

stress-components holding in equilibrium, in a given state of

strain, elements of the body which have these shapes im their

natural state.

154.] For instance the element of the body which, in the
natural state, is the rectangular parallelepiped of § 138, becomes
when strained an oblique parallelepiped, the areas of whose faces
are

(1 +f+9g)dydz, (1 +g + e)dzda, (1 + e+ f)dxdy,

while its volume is (1+ A)dadydz, and its density is (1—A)p.
Hence it is easily shown that the first of equations (3) § 142
would in this case become

oP oU or
@c—(l+f+g)+@(l+g+e)+gz(l+e+f)+pX=O

and by the last article this reduces to

Pl “olk
’a'w'+‘§2?+a+pX=0
as before.
Again, the element of the body which in the natural state is the
tetrahedron of § 144 becomes when strained an oblique-angled
tetrahedron, the areas of whose faces are

Al+e+f+g—¢)
AA(1 +f+g)
PA(L +g+e)
vA(l +e+f)

where A here denotes the unstrained area of the face ABC, and ¢
is the elongation in the initial direction (A, u, ») of the normal to
this face, given by equation 18 of § 72.

The first of equations (5) § 144 ought therefore, on this
assumption, strictly to be

FPlt+e+f+g—e)=PAMl+f+g)+ Ul +g+e)+ Tv(l +e+f),
which, to our order of approximation, is identical with
F=P\+ Up+Tv.

We may therefore, in all cases, take the system of standard
stress-components which we have adopted as acting normally and
tangentially across small plane areas through the point (z, ¥, 2)
which, in the natural state of the body, are perpendicular to the
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fixed rectangular axes of cobrdinates; and though they are
always taken parallel to the fixed axes, yet the strain they are
capable of producing is so small that they may be considered to
be normal or tangential throughout the process.

155.] Principle of Superposition. Since the stress-com-
ponents are simply the components, resolved in fixed directions, of
force per unit area, it is at once obvious that any number of
stresses, applied simultaneously, must have for their resultant a
single stress whose components are the algebraic sums of the
corresponding components of the constituent stresses.

Moreover, it follows from the last Article that the application
of any small stress will have the same effect, whether the body is
in its natural state or has already been strained by another small
stress.

This principle may be extended to any finite number of small
stresses, the strain produced being still small (§ 87), and finally we
see that the resultant of any number of small stresses, applied
simultaneously or successively, is a single small stress whose
colaponents are the algebraic sums of the co responding com-
poients.

And conversely (compare § 88) any small stress may be
arl itrarily resolved into any number of small stresses, subject
on y to the above condition as to the sums of their components.

This result is called the Principle of Superposition of Small
St esses.

156.] Type of Stress. When the six components of any
tw 1 stresses are to one another, each to each, in the same ratio,
th: stresses are said to be of the same type, or of exactly opposite
ty es, according as this ratio is positive or negative. (Compare
1 0).

The ratio of their components is called the Ratio of the
St ssses, and when this ratio is £1 the stresses are said to be
eq al.

! Stresses of the same and of opposite types are also called
“cc ncurrent ” and “ contrary.”

Any number of small stresses belonging to two opposite types

con pound into a stress belonging to one of these types.
'wo equal and contrary stresses annul one another.

7] Homogeneous Stress. When the components of
the stress have the same values at all points of the body, it is
saic to be homogeneous ; and the body is said to be homogeneously
stre ised.

t is obvious from equations (3) that a body cannot be in
{ %qu librium under homogeneous stress if there are any Applied
fOT es,
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Homogeneous stress must therefore be produced by Surface
Tractions only, the components of which must satisfy a certain
condition at every point of the body.

For if we write
PUT|
U, 8
T8 R
and denote by p, g, 1, 5, 1, n, the minors of the determinant

corresponding to P, Q, R, 8, T, U, we get from equations (5) the .
relations

%=

p=F+qG +sH)/E
v=>tF+ 56 +tH)[§

to be satisfied by the direction-cosines of the normal at each point
of the surface. Squaring and adding, we eliminate A, u, v, and
obtain

(pF + 06 + tHY + (nF+ G + sH)? + (tF + 56 + tH)? = §2.......(10)

Since in the case of homogeneous stress all the coefficients are
absolute constants, equation (10) represents a definite relation
existing between the components F, Cg, H of the Surface Traction
at each point of the bounding surface.

A=(pF+0G+ tH)/E,}

158.] Stress to be treated as Homogeneous. In the
following investigation into the graphic and other properties of
Stress, we shall for the sake of simplicity treat it as if it were
homogeneous ; because then, its character being identical through-
out the body, we can confine ourselves to the consideration of its
properties at the origin.

Of course it will be understood that, as in the case of Strain
(§ 122), the results obtained will be equally true for an elementary
portion of a body under heterogeneous stress, described about any
point P, if that point be taken as the origin of relative codrdinates,
and the stress-components be given their proper values at P.

These applications will be pointed out as occasion requires.

Graphic Properties of Stress.

159.] Change of Axes of Reference. Let P, Q, R, S, T, U
be the components at the origin of a given stress, referred to the
arbitrary system of rectangular axes Oz, Oy, Oz: required, in
terms of these, the corresponding components P, @', R, S, T", U’
of the same stress referred to any other arbitrary system of rect-
angular axes Ox', Oy, 07.
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Let the direction-cosines of the new axes
be given by the schedule:— ‘ G T Y

Then P, U’, T’ are the components
parallel to Ox', Oy, 07 of the stress across ! z A | A A
the small plane area drawn through the |
origin perpendicular to Ox". But by equa- |
tions (5) the components parallel to Oz, Oy, |
Oz of this stress are l

PAy+ Up,+ Tv,
(12T RN A VSRR S (1)
TA, + Sp, + Ry,
Thus
P = AP+ Upy + Tv)) + (UM + Qpy + Sv) +v(TA, + Sp, + Ryy)
U = Ay(PAy + Upy + Tv)) + po(UA + Qpy + Svy) + vo(TA; + Sy, + Byy)
ete., etc. x
Thus we finally obtain, by rearrangement of terms
P =PA2+ Qu+ Rv?+25u, v, + 2Tv A, + 2UA
Q' =PA2 + Qpa® + Rv® + 2Spgvy + 2Tv, X, + 2UA g
R =PA?+Qps+ Rvg® + 2Spyvs + 2Tv A + 2U Ay
§ = PAA + Quoprg + Rvgyg + S(pgvy + pyve)
+ T(vh, + vihg) + UlAgity + Agty) ?
T = PAA + Quypty + By, + S(pgvy + p1yvy)
+ T(vghy + v ) + U(Agpy + A py)
U'=PA A, + Qupy + By, + S(pyvy + pov))
+ Ty + v,A) + Uy + Agpsy) J

Adding together the first three of these equations, we get
P+Q@+RaoP+@+Riii.......oovnnniniiiin. (13)

an | since both systems of axes are completely arbitrary, this
pr ves the perfectly general theorem that

The sum of the normal components of stress across any three
s 1ll orthogonal plane areas (gr)‘((:um through a given point of the
bo 'y is absolutely constant for that point, however the planes be
tuw ned about it; and in the case of homogenecous stress, this
coi « ant has the same value at every point of the body.

160.] Resultant Stress. Let A, B, €' denote the resultant
str isses across the small plane areas drawn through the origin
pe pendicular to Oz, Oy, &; and A’, I, C' the resultant stresses
ac1pss those perpendicular to Ox', Oy, 07

The components of A, B, C parallel to Ox, Oy, Oz are of

G
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course P, U, T; U, Q, 8; T, S, R, respectively; while the com-
ponents of A’ parallel to the same axes are given by equations
(11), and those of B’ and ¢' by similar formulz.

Squaring and adding, we get

A2=P24+ U2+ 17
B=U2+@Q*+ 8% .oininn. §¥ e I S (14)

C?=T2+ 8%+ R?

A2=(NP+p U+ T+ (MU + 1@+ Sy + (M T+ py S+ le)?’}
B (0P + iU + vy TN+ (U4 @+ vyS) + (AT + S+ v, B)? . (15)
02 = (AP + U+ vyT)2 + (AU + pgQ 4 v S)2 4 (AT + g8 + vy R)?
Expanding (15) and adding them together, we get
AP+ B2+ O =P+ Q2+ B2+ 2(S2+ T2 + U2).
Hencg, by (14),
A% B Q=A% BYL CE. . oo i o (16)

from which we deduce that

The sum of the squares of the resultant stresses across any
three orthogonal plame areas drawn through o given point of the
body is constant, however they be turned about the point; and
when the stress is homogeneous, this constant has the same value
at every point of the body.

161.] Reciprocal relation between Stress-components.
Since (A, u,, »,) are the direction-cosines of Ox' referred to
Oz, Oy, bz, and since P, U, T are the components of 4 parallel
to these axes, it follows that the ¢omponent of 4 parallel to Oz’ is

PAy+ Opy + T,

But we have already seen (11) that this is the component of A’
parallel to Oz. Hence, since the directions of Ox, Ox' are quite
arbitrary, we deduce that ‘

If any two small plane areas be drawn through any given
point of the body, the component perpendicular to the first area
of the stress across the second s always equal to the component
perpendicular to the second of the stress across the first.

162.] First Stress Quadric. We now proceed to give
these theorems geometrical significance. Describe the quadrie

Po? + Qy? + B2? + 2Syz + 2Tem + 2Uxy = 1.......... ¢1,5(050)

Let » be the length of the radius vector in the direction
(A, u, v) and let p be the perpendicular from the centre on the

tangent plane at the extremity of =, (I, #i, ) being the direction
cosines of p.
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Then, if F, G, H be the components, parallel to the axes of
reference, of the stress across the central section perpendicular to
», F, G, H will be given by equations (5). But we have

Pr+Up+Tv Ur+Qu+Sv TA+Su+Rv 1
I T - = v (18)

Thus Fll=@m=Hn=1/pri. ... (19)

The resultant stress across the central section perpendicular
to = therefore acts in the direction of p; its amount is 1/pr; and
the amount of its normal component is 1/7%

163.] Principal Axes of the Stress. It is obvious from
the last Article that if the section coincide with any one of the
principal sections of the quadric, the stress across it will be wholly
normal.

It is thus always possible to draw through each point of the
bocly three orthogonal plane areas across which the stress is
wholly normal. These are called the Principal Planes of the
strss at the point, and their normals are called the Principal
A; es.

The normal tractions across the principal planes are called the
P incipal Normal Stresses. We shall denote them by N, N, N,

Let Of On, O be the Principal Axes of the stress at the
or zin ; then they are also the principal axes of the quadric (17).
It also appears from § 162 that the squared reciprocals of its
pr ncipal semi-diameters are N, N, N,

Henee the equation of the quadric referred to the principal
ax 8 is

NE+NpP+NLm)oiininnn, (20)

Of course N, N, N, are the roots (in descending order of
m: gnitude, let us say) of the discriminating eubic
|P-¢, U, T |
| U Q- 8 =0, 21)
r 8 B-¢
wl *the direction-cosines of O¢, Oy, O are given by the equations

PrasUp+Tv UA+Qp4Sv TA+Sp+ Riv
P A = I‘ - v - =

N (22)

where N id to receive successively the suffixes 1, 2, 3.
These equations (22) might of course have been deduced
dir sctly from equations (5).
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164.] Invariants of the Stress. Expanding the cubic (21),
and employing the notation of § 157, it becomes

PP+ Q+R)+P(p+g+1)—B=0.eiriininn (23)
If we write this
Bt Btd. F-B=0urrirrccrioionens (24)
then B, J, B are the Tnvariants of the quadric, and are given by
B~ P30+ BRalys N, + Ny s bioit o (25)
J=p+q+r=QR-S2+RP-T*+PQ- U?

= NNy + NNy + NiNpviniiiiiiniens (26)

PiGT
B=| U, @ §1=NgV,V, .S ARG @n

7 S B

[Compare these with equations (39) of § 111.]

It is now obvious that the theorem of § 159 simply states
that B is an invariant.

Again, we see that

B-2.J=P+QrRB+2S+ T+ V)= A7+ B+ C"......(28)

Thus the theorem of § 160 simply states that B%-2. 3 is an
invariant.

165.] Traction and Pressure. We saw in § 162 that the
normal component of the stress across the plane perpendicular to
the radius vector » was 1/7%. Hence if the stress be such as to
produce a traction across every small plane area drawn through
the origin, the quadric (17) is an ellipsoid, and N, N,,.NV, are all
positive, and so therefore is .

If the stress across every plane be a pressure, the quadric
represented by equations (17) and (20) will be imaginary ;
N, N, N, & will all be negative, and the pressures will be given
by the ellipsoid :

Pi* + Qy + B2+ 28yz + 2T + 2Uxy = = 1............. (29)
or N8 Non® + Vo= 21 v S (30)

166.] Normal Cone of Shearing Stress. If the stress at
the origin be a traction or a pressure according to the direction
of the plane across which it is measured, equations (17) and (29),
or (20) and (30), will represent two real conjugate hyperboloids,
radii which meet the first being normals to planes across which
there is a traction, while radii which meet the second are normals
to planes across which there is pressure.
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These two hyperboloids are separated by their asymptotic
cone
Pr+ Qut + B+ 28y2 + 2T + 2Uxy =0...............(31)
or NE+ NP+ NP0 (32)
Since any radius vector lying in this cone is of infinite length,
the normal component of the stress across the plane perpendicular
to it vanishes ; whence we see that all planes whose normals are
generators of this cone suffer only tangential stress. It is there-
fore called the Normal Cone of Shearing Stress.

167.] Second Stress Quadric (“Director Quadric”).
Let us now construct the reciprocal quadric, whose equation
referred to the principal axes is

£+L 1t 3

ot e (33)

If » be the radius vector drawn from the centre to the point

(¢ n, §) on the surface, and p the perpendicular from the centre

or the tangent plane at (¢, 5, ), the direction-cosines of p referred
to the principal axes are

PEIN,, pn/N gy PC/N

Nw equations (3) give for the components parallel to O¢, Oy, 0¢
o! the stress across a plane the direction-cosines of whose normals
rc ferred to the same axes are (A\y po vo)

Fy= N,

L T T PP E TR TTXR PRI (34)

Hy= Ny, ]

Hence the component stresses across the plane perpendicular

tc p (that is, the section conjugate to r) are given by

Fo=pf]
Go=p)
llo —p{

Hence the resultant stress across the section perpendicular

to p (or conjugate to r) acts in the direction of »; 1ts amount is
pi ; and the amount of its normal component is p*.

.68.] Tangent Cone of Shearing Stress. By considering
th : sign of the normal component, as in § 166, we see that if the
st ess at the origin be a traction in every direction (33) is an
el ipsoid ; if a pressure in every direction we have the alternative
el ipsoid
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while if it is a traction across some planes and a pressure across
others, we have the pair of real conjugate hyperboloids (33) and
(35).

* These are separated by their asymptotic cone

s prigrmlidomzdu D T

and it is easy to see that this cone envelopes all those planes
through the origin which suffer only tangential stress. It is
therefore called the Tangent Cone of Shearing Stress,

169.] Third Stress Quadric (“Stress Ellipsoid”). It
is obvious that equation (10) may be regarded as an equation to
be satisfied by the components, parallel to the arbitrary axes,
of the stress across any plane through the origin. Hence if we
construct the quadric

the radius vector r drawn to the point (z, ¥, 2) on the surface will
represent in magnitude and direction the stress across the central
section whose normal is in the direction given by writing z, ¥, 2
for F, G, H in equations (9). .
Transforming to the Principal Axes, we find that the radius

vector » of the quadric

G 0

N12+N22+Ns2 e e e S .(38)
represents in magnitude and direction the resultant stress across
the central section whose direction-cosines referred to 0 Oy, O

are given by
Ao=§IN,
Py L R e e (39)

vo=(/N,

where (&, #, {) is the extremity of . This quadrie is of course
always an ellipsoid.

If (&, n, G) (€p My G (€4 1, €) be the coordinates of the
extremities of three radii Ty T Ty Tepresenting in magnitude and
direction the resultant stresses across any three orthogonal central
sections of this quadric, it follows from (39) that they must satisfy
the relations :

$obs  moms , G
AR O il

%%J,%;l:; " %%FO .......................... (40)

&6y My 66
AP 5 s
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which are the well-known conditions that +, », », may be con-
Jjugate semi-diameters of the quadrie.

Hence we deduce that any three conjugate radii represent in
magnitude and direction the resultant stresses across three ortho-
gonal central sections. This also follows directly from equation
(39), the geometrical interpretation of which is that + represents
the stress across the section whose normal is the radius of the
“auxiliary sphere” corresponding to 7.

170.] Relation between the Second and Third Quad-
rics. If any radius vector from the common centre meet the
Third Quadrie in (£,, »,, (fl) and the Second in (¢, #,, {,) and if »,
be the length intercepted on it by the Third, we see by (39) that
r, represents in magnitude and direction the stress across the
pﬁane

m,
‘-Ef,:+ Ki+f\§:=o .............................. (41)

which is the same as

§6 Mg (G
N1+ Ny . 3“0'
th at is, the central section of the Second Quadric conjugate to #,.
Hence if 7, =, =, be the lengths intercepted by the Third
Q )adric on any three conjugate radii of the Second, each
r¢ presents in magnitude and direction the stress across the plane
¢ ntaining the other two. Thus the Third Quadric may be
re zarded as giving a graphical construction for the magnitudes
o stresses, and the Secom{ for the directions of the planes across
wich they act. We shall therefore distinguish them as the
S ress Ellipsoid and the Director Quadric.

171.] In the cases where the Principal Stresses are of differ-
e t signs, and there is eonsequently a real Tangent Cone of
S iearing Stress (36), each generator of this cone represents three
c incident conjugate radii, and the plane conjugate to any
g nerator is the tangent plane to the cone along that generator.
1 ws if » be the length intercepted by the Third Quadric on any
g nerator of the Tangent Cone of Shearing Stress, then » represents
ir magnitude and direction the shearing stress across the plane
w iich touches the cone along that generator.

172.] Fourth Stress Quadric. Finally, let us describe
tt at reciprocal of the Third Quadric whose equation is

(Po+ Uy + T2) + (Ux + Qy+ 82)* + (T + Sy + Ra)' = 1...... (42)
or T b Pl e e e 1 PTRRR R e (43)

Tliis is likewise always an ellipsoid.
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1t is obvious, by squaring and adding equations (5) or (34),
that if = be the radius vector of this quadric perpendicular to
any given central section, the amount of the resultant stress across
that section is 1/r, and its components parallel to the principal
axes are

Nog /vy Ngafty Wolitsssensss s anansencamrmbalis (44)

& »,  being the coordinates of the extremity of ».

Hence if (£, n,, €, (£, 1 €) (&5 7, §;) be the extremities of
three radii, perpendicular to three central sections the resultant
stresses across which act in three orthogonal directions, we have
from (44) the relations

NEabs + Ny'ngng + Ny'lyls =0
NP26ely + NoPngny + Nely =0
NP&&o + NPy + NG =0

which are the conditions that the three radii may be conjugate.

Hence the resultant stresses across any three central sections
whose normals are conjugate radii act along three orthogonal
radii.

173.] Relation between the First and Fourth Quadrics.
We see from (44) that if (£, 7, {,) be the extremity of the radius
vector 7, of the Fourth Quadric, then the resultant stress across
the central section perpendicular to =, acts along the normal
to the plane

Nyl N i G, ). . s i (46)

which is the section of the First Quadric conjugate to r,.

Hence if 7, r,, 7, be the intercepts by the Fourth Quadric on
any three conjugate radii of the First, the resultant stress across
the central section perpendicular to either acts in the direction
perpendicular to the plane containing the other two; while the
amounts of these resultant stresses are 1/r,, 1/r,, 1/, respectively.

Special Forms of Stress.

174] Hydrostatic Pressure. All the preceding theorems
apply to the most general form of the Stress, when N, N, NV,
are all unequal and of any sign, but none of them vanish.

The cases in which fwo of the principal stresses are equal are
not worth working out in detail, as the results already obtained
may be easily modified to suit them, if we remember that all the
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Stress Quadrics become surfaces of revolution. The necessary
and sufficient conditions are

P X o Gy O
S 7 U’ } ............ (47)
or F(D*- 43) - DBRHD* - 183) - 27K =0

[Compare § 120 (iii.).]

The case where all thiee of the principal stresses are equal is
however remarkable.

If N=N,=N,=~II, the discriminating cube (21) or (24)
must reduce to

(¢ + 1) =0.
Hence we must have
3= -3
§ -3 } ................................ (48)
B- -
The stress-quadrics become spheres, the Third in particular
bi coming
E++ =11
a d the Second E+p+?=1 }

Since any radius of a sphere coincides with the perpendicular
f: omn the centre on the tangent plane at its extremity, it follows
t at the stress across every central section is normal, and that it
h s the same value for each. Thus if IT is positive the stress at
t e origin consists of a normal pressure II across every plane
a ea which can be drawn through it. This is the nature of the
s ress which exists at every point of a fluid at rest under any
f rees, and it is therefore called Hydrostatic Pressure.
If II is negative, we have simply to replace the pressure by
a traction.
In order that the Stress Quadries may be spheres we must
o wiously have
P=Q=R=-11)
P e I T e

Thus it is evident from equations (5) and § 157 that a homo-
g neous hydrostatic pressure can only be maintained by a
u .torm normal pressure of like amount applied over the whole
b unding surface.

We may here notice another discrepancy in the numerical
rcckoning of Strain and Stress (see § 152). Three equal
o thogonal contractions ¢ compound (§ 104) into a uniform com-
p ession of amount 3¢, while three equal orthogonal normal
p ressures IT compound into a hydrostatic pressure of amount IT.

Digitized b
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Stress in Two Dimensions.

175.] Plane of the Stress, The remaining important
types of stress are characterised by the vanishing of the third
invariant #, and therefore also of one at least of the Principal
Normal Stresses.

For the present we shall confine ourselves to the case in which
only one of them, say NV, vanishes. There is then no stress
whatever across the small plane area drawn through O to
coincide with the plane of &.

The Stress Quadrics become cylinders with their generators
parallel to O¢; and since in the third of equations (39) y, cannot
be greater than unity, it follows that at the extremity of every
radius vector which represents the resultant stress across a real
plane through the origin we must have {=0.

Hence the directions of the resultant stresses across all plane
areas drawn through O lie in the normal section by the plane of
&n which contains N, and N, The stress is therefore said to be
entirely in two dimensions, and the plane of £ is called the Plane
of the Stress at 0.

176.] The Stress Conics. It is obvious that all the graphic
properties of the stress will depend upon curves in the plane of
the stress, and especially on the normal sections of the Stress
Cylinders by that plane. These curyes we shall call the Stress
Conics, i

177.] Case in which N, and X, have the same sign.
In this case J is positive, while & has the same sign as N, and IV,

Assuming this sign to be positive, the Second and Third Stress
Conies become the ellipses

g P 5
s e (et i L . 50
NN, (50)
2 2

7572"‘]:7722—1 ................................ (51)

The first of these is the Director Conic, replacing the Director
Quadric of § 167, 170.

If (£ ») be the extremity of the radius vector representing in
magnitude and direction the stress across the plane whose direction
cosines referred to the principal axes are (A, u, v) we have from
equations (39)

3
e
1:: 5 SRR e v (52)
b= 'J_\r;
& gt
and therefore e (e g2 ey (53)
1 2:

l
.
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Thus the resultant stresses across all planes through O whose
normals lie on a circular cone with axis O¢ and semi-vertical
angle q, are represented in magnitude and direction by the radii
of the ellipse

2 2
Jf:l_: + 1\7'1"2, o DAL (54)

To each such cone belongs one of these ellipses, the whole
stem being similar to and coaxial with the ellipse (51), which
is the largest of all. In the limit when «=0, the ellipse (54)
vanishes Into the origin, so that, as we already know, the stress
across the Principal Plane £y is zero. As a inereases, so does the
size of the ellipse, and therefore the magnitude of the stress, until
the limit is reached in which a =}, when the ellipse (54) coincides
with (51). The radii of (51) therefore represent the stresses across
planes whose normals lie in the plane of the stress :—that is, across
lanes drawn through Of. This system of Stress Lllipses replaces
e Stress Ellipsaid of § 169, 170.

178.] Again the trace of a given plane on the plane of the
stress (or the line in which the two planes interseet) is given by
AL + =0,
anc the projection of its normal on the plane of the stress by
pé -Ay=0,
He \ce if (€, ,) be the extremity of the radius vector representing

the stress across this plane, we get from equations (52)—
for the trace of the plane

6 .M =

%—} + :\7; PR oh o} Bttt 160 o% . o s0h e (55)
an for the projeetion of the normal
§n,

W= Wm0 e (56)

Th se equations atford us two geometrical eonstructions for deter-

mi ing the direction and magnitude of the stress across a given
la 1e.

1 First Method. 1f (§,7,) be the point on the stress-ellipse (54)

wh e radins vector represents the stress, and if (£, 5,) be the

poi it on the auxiliary cirele of that ellipse corresponding to

(£, 1)), then (assuming that N, > N,)

N,
fz -fh U E,l <
]

thi s (56) may be written
En=né=0.
Th 1s the projection of the mormal to the plane is that radius of
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the auxiliary circle which corresponds to the radius of the ellipse
representing the stress.
Conversely, if the plane be given, we can construct the stress-
ellipse (54) and its auxiliary circle
S =V 8IN® 0. L e e (57)

if we then project the normal to the given plane, and find the
point on the ellipse corresponding to the extremity of that
radius of the circle which coincides with the projection, the
radius vector of this point represents in magnitude and direc-
tion the stress across the given plane.
We have seen in § 165 that when &, and N, are both positive
this stress is always a traction.
It is well known that

'q if OP, OP, be two con-
JLihe R Jjugate radii of an ellipse,
% : ) the corresponding radii

0Q,, 0Q, of its auxiliary
circle (Fig 13)are at right
angles ; and conversely.

Thus OP, represents
the stress across a plane
whose trace is 0Q,, and
the projection of its
normal 0@, ; while 0P,
represents the stress
across a plane, making
the same angle with O,
whose trace is 0Q),, and

' the projection of its nor-
Fig.13. mal 09,

Thus, conversely, if through any two perpendicular radii
0Q,, 0Q, planes be drawn so that their normals may make the
same angle ¢ with O¢, the resultant stresses across them will be
represented by conjugate radii of the ellipse (54); and, in
particular, the stresses across any two orthogonal planes through
0¢ are represented by conjugate radii of the ellipse (51).

Second Method. If (£, n) be as before the point on the
ellipse (54) whose radius vector represents the stress across the
given plane (A, u, v), and if this radius (produced if necessary)
meet the director-ellipse (50) in the point (£, #,), we have

Gibiimin .
Hence equation (55) giving the trace of the plane may be written

§ L.
e

which represents the radius of (50) conjugate to the first.
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Conversely, if the radius of the director-ellipse (50) conjugate
the trace of any given plane be drawn, the intercept on this
y the stress-ellipse (54) represents in magnitude and direction
e resultant stress across the given plane.

Since two conjugate radii of an ellipse never lie in the same
uadrant, no plane through the origin is subject to simple
earing Stress.

179.] If 3 is positive and @ negative, N, and N, are both
negative. All the theorems proved in the last two Articles will
be equally true, the only change necessary being to substitute
for (50) the equation

The stress across every plane through the origin will be of the
nature of a pressure.

180.] Case in which N =N, If =0, and 3 =13? then
N,=N,=N (say); N having the same sign as 3. The results
of tie previous Articles may be modified to suit this case, by
writ ing everywhere “circle” for “ellipse,” and “ orthogonal ” for
“ ¢co 1jugate.”

" 'hus the stress across any plane whose normal is inclined at
an 1 ngle a to Of is represented in magnitude and direction by
the radius of the circle

S+ = N80 et (59)

wh th is perpendicular to the trace of the plane.

n other words the stress across every such plane is N sin q,
anc acts along the projection of its normal on the plane of the
stre S,

ivery plane through the axis O¢ suffers a normal stress N.

[he stress is obviously symmetrical about O¢, and the directions
of ( '¢ and Oy are indeterminate.

181.] Case in which N, and N, have opposite signs.
If ; =0, and J is negative, one of the principal normal stresses
wil be a traction and the other a pressure, the sign of the greater
of 1 e two being the same as that of 3 ; we shall suppose N, to
be ositive and N, negative.

_.atead of the ellipse (50) we now have the pair of conjugate
dir ctor hyperbolas

 ollE. 2
A + ) D e R e v 30 s+ o (60)
and
2 .,If
hoa & N= T A e R B e A (61)
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geparated by their asymptotes

s A

The system of stress-ellipses (54) will of course remain unaltered.

To modify the results obtained by the first method of § 178,

we must remember that, since IV, is now negative, the co'drdma,f:es

of the point on the auxiliary circle corresponding to the point
(€, n,) on the ellipse (54) are now

N,
&=6 1= "'N‘l-’h

if N, be numerically greater than IV,;

N
or 52""]\7?"51’ =M
if NV, be numerically less than N, The analogous eonstruction
for the present case is then as follows:—
To find the resultant stress across a plane whose normal makes
an angle a with O
project this normal on to
the plane of the stress:
let &)Q be the radius of
the muxiliary ecircle of
the ellipse (54) with
which this projection
coincides. Find P, the
point on the ellipse cor-
responding to @, and
draw the radius OP’ of
the ellipse, equally in-
clined to the major axis
on the opposite side.
Then OP’ will represent
in magnitude and direc-
tion the stress across the
given plane—whichmay
therefore be normal,
tangential, or oblique.
Again, modifying the results obtained by the second method
of § 178, we see that the intercept made by the ellipse (54) on any
radius which meets (60) represents in magnitude and direction
the resultant traction across the plane drawn through the con-
jugate radius of (61) so that its normal makes an angle « with O¢.
Similarly the intercept made by (54) on any radius which
meets (61) represents the resultant pressure across a plane
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~ drawn at the same inclination to O through the conjugate radius
of (60).

(Either asymptote of the hyperbolas represents a pair of
coincident conjugate radii; hence a plane drawn at any inclination
a through either of the asymptotes (62) suffers a shearing stress
represented in magnitude and direction by the intercept cut off on
that asymptote by the ellipse (54).

182] Case in which N,=~XN,. The last important case of
stress in two dimensions occurs when =0, B=0; J being
negative. We have then N.=—N,. Assuming that N is
positive, and denoting it by 1\}, the system of stress-ellipses 254‘)
reduces to the system of circles

as in § 180. Also the director hyperbolas (60) and (61) become
the rectangular hyperbolas

£ P W Lol b Al e (63)

o B Y L o D R e ¢ S (64)

'f OP be the radius of the circle (59) which coincides with
the projection of the normal to any one of the corresponding
sysf em of planes, and if OF be the radius making the same angle
as )P with O¢ on the
opj site side of it, OF n
rep esents in magnitude !
anc direction the result-
ant stress across the
pla tle. The amount of
thi stress is therefore
+. 'sin g, and it may be
no nal, tangential, or
obl que. s SRS

f'o determine its sign
we must remember that
eve ryradiuswhich meets
(62 represents a trac-
tic 1, and every radius
wh ch meets (64) a
pressure. Let OP, 0Q /
be ' nnjugate radii of (63) : i
anc  34),andlet OY, 07 Fig.15.
be) erpendiculartothem.

By the properties of the rectangular hlyperbola., the asymptotes
bis scfy the angles between the principal axes O¢, Oy, also OP
an . 0Q are equally inclined to tf\e asymptote which lies between
the m, and consequently OF and OZ are equally and oppositely
inclined to O¢, and 0Q and OY to Ox.




112 ANALYSIS OF STRESSES. [182. l

Now OP is the direction of the traction across any plane
drawn through 0@, and therefore having the projection of its
normal along 0Z; and, similarly, 0Q is the direction of the
pressure across any plane drawn through OP, and therefore
having the projection of its normal along OY.

In this case, therefore, the trace of a plane and the direction
of the stress across it make equal angles with an asymptote ;
while the angle between the stress and the projection of the
normal is bisected by Of (the axis of principal normal traction),
or by Oy (the axis of principal normal pressure), according as
the stress is a traction or a pressure.

Fig.16.

183.] Let us now follow the:changes in the stress across a
plane through O, as it moves round in such a manner that its
normal describes a cone of semi-vertical angle a about O

The numerical magnitude of the stress will of course always
be the same—namely, N.sina. Let OQ (Fig. 16) represent the
trace of the plane in any position, OZ the projection of the
normal, and OP the direction of the stress. Then the angle
PO¢ is always equal to either of the angles Q0y and ZOg.
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Let 0Q coincide first of all with Oy; then OZ and OP both
eoincide with Of The normal component of the stress is a
traction N sin’q, and the tangential component XN sin a cos a acts
long the line in which the pﬁane is cut by that of {¢.

As 0Q moves away from Oy towards the asymptote, the stress

becomes more and more oblique, the angle POZ constantly
increasing, until, when the plane actually passes through the
asymptote, the normal traction has vanished altogether, and
e have only a shearing stress of amount N sin a acting along
asymptote.
As 0(Q) passes the asymptote the normal component reappears
a pressure, OP having also passed the asymptote in the
opposite direction. This normal component continually increases
until, when OQ coincides with O¢, and OP and 0Z with Oy, the
resultant stress acts along Oy, and consists of a normal pressure
X sin’q, together with a tangential component N sin a cos « along
the line of intersection of the given plane with that of y{. This
eyele of changes is then repeated in the reverse order until the
trace of the plane once more coincides with O,

184.] Position of the Plane of the Stress. Since this
pla ie is perpendicular to the axis O of zero stress, its direction-
cos nes referred to the arbitrary axes Oz, Oy, Oz are to be
obi iined by writing ¥ =0 in equations (22).

We thus get the equations

P+ Up+Tv=0
R0 4 BramO} s osniversoivctanns e ovo (65)
TA+8p + 13v=0J

on y two of which are independent, in virtue of the condition

& 0.
Taking this into account we find that equations (65) are
eq ivalent to either of the pairs of equations

A= tp = nv] ............................ (66)
BN R AR

The equation of the Plane of the Stress in the case when
10, referred to the arbitrary axes, may therefore be written in
i her of the forms

,\/pﬂ,\/qu\/,,o] ........................ (68)
B s 17k o o503 001 69
r Ay 7 0 (69)

H
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Stress in One Dimenston.

185.] We now come finally to the case in which two roots of

YTy T

the discriminating cubic (21) vanish. If IV denote the remaining =

root we must have

%Zg} ..................................... (70)
and =V bt L SR (71)

Supposing N, and N, to be the vanishing Principal Stresses,
equations (39) show that at the extremity of every radius which
represents the stress across a real plane we must have

£=O7 7=0.

Thus the resultant stress across every plane that can be drawn
through O acts along 0. The stress is therefore said to be in
one dimension, and O¢ is called the Principal Axis of the Stress
at O, the other two being indeterminate.

The third of equations (39) shows that the resultant stress
across any plane (\, u, v) is represented in magnitude and direc-
tion by the length

measured along O(.

If then we describe a circular cone about O¢ with . semi-
vertical angle «, the resultant stress across every plane whose
normal lies in this cone is given by

Thus the stress is zero across every plane passing through O¢;
and it follows that in this case no plane through O can suffer
pure shearing stress.

If we describe about O a sphere of radius IV, the projection on
0¢ of the radius of the sphere coinciding with the normal to any
plane represents in magnitude and direction the resultant stress
across that plane.

N is obviously the maximum stress, and the stress across every
plane through O is of the same sign as &V or Z.

186.] Direction of the Axis. The direction-cosines of O¢,
referred to the arbitrary axes Oz, Oy, Oz, are given by equations
(22),

Now it is well known that the conditions (70), when satisfied
simultaneously, are equivalent to either of the sets of three

or 5=t=u=0 ............................. (75)
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- that is, by

QR-S*=RP-T"=PQ-U*=0,
or by the equivalent set
TU~-PS=US-QT=8T-RU=0.

Thus equations (22) may be written in either of the forms

SA: T[l.:—- UI’} ................................. (76)
= EET AL
or JPT IO \/].»J ............................... (77

Sex=Ty= (f:] .................................. (78)
S »
or JP JQ J’R ................................. (19)

187.] Heterogeneous Stress. In general the standard
con ponents of the stress will vary from point to point of the
boc y, all of them (§ 137) being continuous functions of the
coi rdinates (z,y,2) of the point at which they act. The Principal
N¢ 'mal Stresses, and the direction-cosines of the Principal Axes
at each point will therefore also be continuous functions of its
coi rdinates.

All these theorems that we have proved for the Stress at the
or rin will be equally true (§ 158) for the Stress at any point P,
if e refer the auadrics, etc., to the principal axes at P, or to a
sy tem of axes through P parallel to the arbitrary axes Ox, Oy, Oz.

EXAMPLES.

1. Discuss the properties of the following stresses :—

(&) {3a, —~a, —a, 2a, 0, 0};
(i) {0,0,0,a,a, a};
(#i.) {a, a, 0, a, «, a};
(iv.) {a,0,0 a,a,a};
(v.) {13a,10a, 5a, - 6a, —3a, ~2u};
(vi.) {3a, —a, - 2a, 3a, - a, - 2a}.

Digitized by Microsoft @
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Show that the principal normal stresses are respectively :—
(&) 3a, 3a, —a;
(it.) 2e, —a, —a;
(#3) (V3+1)a, ~(/3-1)a, 0;
() (N2+1)a, —(vV2-1)a, 0;
(v.) l4a, 140, 0;
(vi) WTa, - AT, 0.

2. Prove that if through any point of a strained body a
system of planes be drawn, such that the normal component of
the stress across each has a given value N, the normals to these
planes will generate a quadric cone.

3. If the stress be in two dimensions at the origin, and the
plane of xy be made to coincide with the plane of the stress, show
that

(i) The principal normal stresses N, IV, are the roots of the
quadratic

' (%~ P)$—Q) - U*=0. _

(i) The angles y,, -, which O¢ and Oy make with Oz are

the roots of
2U
P-q

(t42.) If PQ > U? four planes can be drawn through O at a
given inclination « to the plane of the stress, so that the stress
across each shall have a given normal component N (provided of
course that N is taken within proper limits); and the projections

on the plane of the shear of the normals to these four planes lie
in the lines :

(P-N cosec%n)a,;2 + (@ — N cosec®a)y® + 2Uxy = 0.

tan 2¢=

Hence deduce the limits of N for a given value of a.

(v.) What is the corresponding theorem when PQ < U??

(v.) Show that four planes can always be drawn at a given
inclination a to the plane of the stress, such that the stress
across each may have a given tangential component T (taken
within proper limits).

Show that the projections on the plane of the stress of the
normals to these planes are the lines

sinta( Pa? + 2Uy + Qi) + THa? + 1°)?
= sina(a? + 32)[(Pa + Uy)* + (Uz + Qy)?].

Hence deduce the limits of T for a given value of a.

-
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(vi.) Show that, for a given value of ¢, N is a maximum
when the projection of the normal coincides with Of and a
minimum when it coincides with Oy

(vii.) Show that, for a given value of @, T is a minimum
when the projection of the normal coincides with O¢ or Oy, and
a maximum when it bisects either of the angles between these
axes.

(viii.) Hence show that the two planes through O suffering

eatest tangential stress are those which bisect the angles
E:;tween the principal planes £z and 52.

4. Prove that, when two of the principal normal stresses are

~ equal, the normals to those planes which suffer maximum tan-

gential stress are all inclined at an angle of 45° to the direction

~ of the third principal stress.

5. Show that, in general, the normals to planes through the
origin, the stress across which has a given tangential component
T, lie on the cone whose equation, referred to the principal axes, is

(@ + 9+ () (N2 = THE + (N2 - TP + (N2 - T2
— (N + N+ N2 =0,

6. Show that if + be any radius vector of the surface
(N = N + (N = NPCE + (K, - N’ =1,

an T the tangential component of the stress at the origin across

the section drawn through it perpendicular to », then
Tri=1.

Sh w that the sections of this surface by the principal planes are
cor jugate rectangular hyperbolas, having the principaF axes for
the r asymptotes. Hence, or otherwise, prove that the maximum
tar zential stress is suffered b{' the two l)lanes (1/a/2, 0, £1/4/2),
an that this maximum is }(.V, - N,); ¥, N, N, being in descend-
ing order of magnitude.



CHAPTER 1IV.
POTENTIAL ENERGY OF STRAIN.

188.] Introductory. We saw in Chapter I (§§ 21, 26, 27)
that the Potential Energy of a perfectly elastic body, due to
Strain produced at constant temperature, must always be equal
to the work expended by external forces (including Applied
Forces and Surface Tractions) in producing the strain ; that this
work (§ 31) is done against the Resistance (§ 135) offered by the
body to stress, and is therefore equal to the work done by the
Stresses (§ 135) during the Strain; and finally (§§ 27, 29, 34) that
the Potential Energy and the Stress in any given state of the
body are functions only of the actually existing Strain.

It is obvious that, since our new definition of Stress (§ 131,
135) retains its essential characteristic (§ 29) of a purely mutual
action between the component parts of the body, these theorems
are as true for the perfectly elastic continuous mass with which
we are now dealing as for the perfectly elastic molecular structure
which we considered in Section ¢i. of Chapter 1.

The course now to be taken by our investigation will there-
fore be as follows:—Regarding the six component stresses as
functions only of the six analogous components of the strain
which they suffice to maintain, under the given system of external
forces, we shall first find an expression for the work done by them
during an elementary increase in each of these components. This
expression will involve the stresses and the increments of the
strains, and we shall show that, in virtue of equations (3)
and (5) of Chapter IIL, it is identically equal to the work that
must be done by the Applied Forces and Surface Tractions, to
produce the small increments in the displacements of their points
of application which constitute the increment of Strain. We shall
next employ the principle of superposition of small strains (§ 87)
and stresses (§ 155) to express the six standard components of a
small stress in terms of the six components of the corresponding
small strain; and then, by eliminating the stresses from the
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‘ agmssion Just found, we shall obtain the differential of the Poten-

tial Energy of strain, expressed as the differential of a function
of the six component strains. Finally, integrating this from the
natural state of the body {0, 0, 0, 0, 0, 0} to the given state of
strain {e, f, g, a, b, ¢}, we shall obtain the Potential Energy in the
latter state as a function of ¢, £, g, a, b, c.

Work done by Stress during a small arbitrary variation
of the Strain.

189.] Work done in increasing a simple elongation.
Let us first suppose the body to be in equilibrium in the state of
homogeneous strain {e, f, g, a, b, ¢}. Since the components
{P,Q,R,S,T, U} of the stress required to maintain this condition
are functions -only of the strain-components, it follows that the
stress also is homogeneous.

Let us investigate the work done by stress in producing a
smell arbitrary increment de of the component e, all the other
stre in-components remaining as before.

Consider a finite rectangular parallelepiped of the body, the
coi rdinates of whose centre in the ori inar state of strain are
(x, y,2),and whose edges of lengths &, k, é; are respectively parallel
to he fixed arbitrary axes Oz, Oy, Oz. The stresses throughout
its interior can do no work (§ 133) upon it as a whole, so that all
the work done by stress is due to that which acts across its
bo nding surface.

Again, every point (z+4a') of the parallelepiped is displaced

a allel to Ox, the amount of the displacement being (z+a')ée
% 38 and § 89, (1))

¢ 1ce only those com-
po ents of the stress
ac »ss its surface can
do work which act
pa allel to Oux.

Now if we take a
slii e of elementary
th. skness, bounded by
th parallel planes
an « 4+ dx, every
po at in its perimeter
su fers the same dis-
plé cement ; and, the
str iss-components at
each point of this

pe imeter being as represented in Figure 17, the forces

Fig.17.

Digitized by Microsofi ®



120 POTENTIAL ENERGY OF STRAIN. [189.

acting parallel to Oz on the four edges of the slice are
respectively

T . kdx'
U.ldx
- T . kdx'
-U.ld

It is therefore obvious that these forces together can do no work
in such a displacement: and, this being true for every such slice,
it follows that the only forces which can do any work on the
parallelepiped, in increasing the elongation e, are the normal
conbponents of the tensions acting across the ends perpendicular
to Oz.

Since P is a function of the strain-components, it will be
altered to

ol
P+ = .
+ae e

by the small increase of e.
Hence the work done by the tension acting across the positive

end lies between
h
1&% Icl(ac + 72)83

or e
and (.P +2L. ae) * (a, + Q)Se J
Similarly, the work done against the tension which acts across
the negative end lies between

P. kl(ac —’2‘) 8

and (I’ + %{; 88) kl (w - g) de :
Hence, on the whole, the work done by stress lies between
Pde. bkl
and (1’ e ae) Se. hAl[
Qe

Thus, neglecting the square of Je, the whole work done by
Stress in producing the small increment Je of the single com-
ponent e is

Pée. hkl.

190.] Strain and Stress Heterogeneous. In precisely
the same manner we may show that, if the strain be not homo-
geneous, the work done by stress on the elementary rectangular
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parallelepiped dadyds having its centre at (, y, 2), in producing
a small increment ée of the elongation of this element parallel to
Oz, is simply
D I s Lo B e o (1)

where P, ¢, ée are continuous functions of z, ¥, 2.

The work done on the whole body by stress in producing
any continuously distributed (but otherwise perfectly arbitrary)
small variation de in the elongation e throughout it is therefore

and we see that, in varying a simple elongation, only the corre-
sponding longitudinal traction (§ 148) can do any work.

Hence P, Q, R are the Simple Stresses (§ 33) corresponding to
the Simple Strains e, f, g.

191.] Work done in increasing a Simple Shear. Let
us next suppose the component shear a to suffer a small incre-
ment éa, the other com})onents retaining their initial values.

If O¢ and O be the internal and external bisectors of the
ar gle y0Uz we know (§§ 92, 100) that the shear a or 2s, in the plane
of yz is equivalent to an elongation s in the direction of O¢,
t gether with a contraction s, or an elongation (-s), in the
d rection of O{. The small increment da of the shear may there-
fire be resolved into the small increment és, of the elongation
p rallel to Of together with the small increment ds, of the
¢ ntraction, or increment ( - és,) of the elongation parallel to O¢.

Again, a shearing stress of amount S in the plane of yz (or
a iy parallel plane) ma{' be resolved (§ 150-152) into a longi-
t dinal traction S parallel to Of, together with a longitudinal
p essure S, or traction (—S) parallel to O¢.

Hence, by superposition, we deduce from the last Article that
t e work done by stress on the element dudyds, with its centre
a the point (z, y, 2) of the body, in producing the small incre-
n ent da of the shear of the element in the plane of yz, is

Sa, . dadyds + ( - S)( - 88, )dadyds ;

t at is 258s, . dedydz,

G | T R RN i AN (3)
v here S, a, éa are continuous functions of x, y, z; da being
o | arwise arbitrary.

The work done on the whole body by Stress in producing
s ich a change throughout it is therefore

a1d it follows that, in varying a simple shear, only the correspond-
i11ig shearing stress (§ 149) can do any work.
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Hence S, 7, U are the Simple Stresses (§ 33) corresponding to
the Simple Strains «, b, c.

192.] Work done by Stress in any small arbitrary
variation of the Strain. Superposing (2) and (4), and the
analogous formule for f, g, b, ¢, we see finally that the work
done by Stress in producing small arbitrary and independent
variations of all the strain-components throughout the body, such
that the strain at any point (z, ¥, 2) is altered from

{e,/. 9, a4, b, ¢}
to {e+8e, f+ 8, g+ 89, a+8a, b+8h, c+dc}

is given by
8W= [/ Pde + Q3f + Rég + Sda + T8 + Uscldudyds......... (5)
where {P, Q, R, S, T, U} is the specification of the stress required

to maintain the body in equilibrium in its original state of strain,

under the given external forces.

Work done by the Applied Forces and Surface Tractions in
producing a small variation of the Strain.

193] Expression for this Work. As in the last Chapter,
let X, Y, Z represent the components of the Applied Force per
unit mass at the point (z, ¥, 2) in the interior of the body, p the
density at the same point, and F, G, I the components of the
Surface Traction per unit area applied to the element dS of the
bounding surface: these systems of forces and tractions consti-
tuting the system of “external forces” which, with the
distribution of stress {P, @, R, S, T, U}, holds the body in
equilibrium in the original state of strain {e, f, g, @, b, c}.

Let the effect of the small arbitrary variation of the strain,
considered in the last Article, be to change the component dis-
placements w, v, w of any point (x, ¥, 2), in the interior of the
body or on its surface, to w+ du, v+ §v, w+ sw.

Then, by the principle of virtual velocities, the work that must
be done by the external forces to produce this change is

S/p(Xéu + Yév + Zdw)dadydz + [f(Fou+Gdo+ How)dsS ....... (6)

where the triple integral is taken throughout the volume of the
body, and the double integral over the whole of its bounding
surface.

By reasoning as in § 153, 154, we may show that it is
indifferent, to the degree of approximation which we adopt for
small strains, whether the integrals in expressions (5) and (6) be
taken throughout the volume and over the surface of the body in

!
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its natural or in its strained state; indeed the triple integral in
(6) being integrated as to the element of mass, is absolutely
identical in the two cases (§ 154).

We shall always suppose, for the sake of simplicity, that in
these and similar cases triple integrals are integrated throughout
f)};il volume and double integrals over the surface of the unstrained

y.

194.] Identity of the two expressions for Work done
in varying Strain. Substituting for e, f, g, @, b, ¢ in (5) from
~ equations (59) of § 123, we get

ou O
86:861‘-__&8“’ ete.

20 v 2. 5 [ (7)
da = 8(31/ + :\:) = Ebw + 5-:81', ete, ,

and thus (5) becomes

8”"':/% Y 4 a%ﬁu +Q. B%/Sv +R. -ag_&n
)
+.(§I8‘c+&80)+](§:8u+§:8w)

+ U(é&v + %Su) } dxdydz

=(Z7 {p. .c%&t+(/.a?,:8v+ 7. .C%su-

2
+U_§y.su+(‘),,§/8v+b'.a~,8w
¥ T'aa_z&‘-hs' aa;&r-q. [;’.;810}(1.1'({1/(1:.

Integrating by parts, as in § 146,
8W = [f(Péu + U + Tow)MdS
P 7, of
‘ﬂ/‘(%;&t + %I;SU + gw&o)dxdytlz
+ _[ﬂ Udu + Qb + Séw)pdS
20. © 28
: = !27 (%g'du+-£8v+%;8w wdyd=

+ ff (T + 8o + Réw)vdS

L y [
‘v -/]/“ (%ZS:L + %2—811 + %;{Sw)dwdyd:
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Rearranging the order of the terms,

SW = [f{(P\+ Up+ Tv)ou + (UN+ @+ Sv)v
+ (TA + Sp+ Rv)dw}dS

(2P ?U 3T\, (3U 2Q oS\,
“_[_/ﬂ mt oyt ) ety %)

T o8 OR }d,dd
+(a‘c+-a_y+_é-z)8w LAYAZ e v evvneiaiinneeneiianns (8)

Hence, in virtue of equations (3) and (5) of Chapter IIL, we
have finally

W = [f(Fou + Gov + How)dS + [ fp(Xou + Y80 + Zow)dwdyds.... (9)

Thus the work done by Stress during an infinitely small
change of Strain is always equal to the work done on the body
by external forces in producing the change; and either is of
course equal to the corresponding infinitely small increase of the
Potential Energy of the Strain.

195.] Case in which motion is taking place. If relative
motion of parts of the body is taking place, so that the initial
and final states of strain are only states through which the body
passes ; as, for instance, when the body is vibrating about a stable
state of strained equilibrium, maintained by suitable forces; we
may show by employing equations (4) of Chapter IIL, that the
expression (6) for the work done on the body by the external
forces is equal to the increase 6 W of the potential energy, together
with the accompanying increase of the kinetic energy <@.

This latter is of course

ST = t?[//%p(d:‘z + 7% + %) dwdydz,

or, since u, v, w are the variable portions of the codrdinates of
any point,

=8/ 3p(4? + v* + 1) dadydz
=f/ﬁ>(uu + v + wib)dt . dwdydz,

where &t is the small interval of time occupied by the change.
This again is equal to ;

S fp(idu + 88v + ibdw)dadyds..................... (10)

Thus the expression (6) for the work done by the external
foreces—which must now of course be equal to the total change
of energy, both potential and kinetic—diminished by the expres-
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sion (10) for the corresponding increase of kinetic energy alone,
- becomes

SfPAX —idu+ (¥ - 5)3v + (Z - ib)w}dxdyds
= _[ﬂrsu + G0+ H8w)dS.....ccovvveneeeennenne. (11)

By equations (4) and (5) of Chapter IIL, (11) is identical with
(8), and therefore with (5).

Potential Energy of Strain.

196.] Energy per Unit Volume. Let W be the total
potential energy of the body when held in equilibrium in the
state of strain {e, f, ¢, a, b, ¢} by the distribution of stress
{P,QR,S,T, U}

Also let V denote the measure of this potential energy per
unit volume of the unstrained body, so that

W LTI v s, (12)

We have shewn that the infinitesimal increment of V, due to
a1 bitrary and independent infinitesimal increments of the strain-
¢« mponents, is given by

3V = Pde + Q3f + Rdg + 88a+ T8 + Ube............... (13)

Now the potential energy and the components of the stress in
a y given state of strain are functions only of the components of
t' at strain. Hence when the increments of the strain-components
i1 (13) are sufliciently reduced, each side must become the perfect
d fferential of some function ¥V of the six independent variables
e f,9.a0bc
Thus we may write
dV = Pde + Qdf + Rdg + Sda + Tdb + Ude.............. (14)
a ud also
_®F, oF,. ¥, ¥, oV  oF
dV = a—c—dc % -3;4{/ + -aydg +.a~‘da 4 —a—b-«lb + 5 Q00 o g o (15)
w hence we deduce that
, oF 14 dF]
I Ha'e‘ Q-‘E/., 1{- a;;
A 4 P4 CRTITE I
2 T U=

(tompare § 32, 33, See Errata for those Articles.)

S=
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197.] Stress in terms of Strain. “Hooke's Law.”
Since stress is a function only of the strain ultimately produced
by it, it follows that if a single small stress {P, @, R, S, T, U}
produce the small strain {e, f, 9, @, b, ¢}, then two small stresses,
each equal to { P, @, etc.}, applied successively to the body, will pro-
duce two successive small strains, each equal to {e, f, etc.}. But,
by the principle of superposition, the two successive small stresses
are equivalent to a single small stress {2P, 2Q, 2R, 28, 27T, 2U},
and the two successive small strains to a single small strain
{2e, 2f, 2¢, 2a, 2b, 2¢}.

Thus the single stress {2P, 2@, ete.} will produece and main-
tain the strain {Z2e, 2f, etc.}.

This result may obviously be extended so long as the strain
and stress remain{small, so that ultimately we see that, if n be
any finite multiplier, the stress,

{nP, nQ, nR, nS, nT, nU}
will suffice to maintain the strain ;
{ne, nf, ng, na, nb, nc}.

Hence we deduce, solely from the principle of superposition
of small strains and stresses, that if a perfectly elastic solid be in
equilibrium in a given state of small strain, under a given small
stress, and if the strain be increased in any finite ratio, the stress
required to maintain it will be increased in the same ratio.

In other words, the siz components of stress are linear func-
tions of the six components of the corresponding strain.

This law was discovered experimentally by Robert Hooke,
and first made public by him in 1678. (For the various ways in
which it has been arrived at theoretically, see Appendix IIL,
below.)

198.] Coefficients of Elasticity. From equations (16)
we see that the partial derivatives of 7 as to each of the strain-
components must in general be linear functions of all the six
components.

And, finally, it appears that the potential energy per unit
volume of a perfectly elastic solid under small strain is a
homogeneous quadratic function of the six component strains.

We may then assume

2V =k 6% + Koo 2+ Kggg% + K, 0% + Ky B2 + Kgac?
+ 2Ky0 [ + 2iq,9€ + 21 06f
+ 2uggbe + 2kgye0 + 26,0
+ 2ky.0a + 2xy00b + 2k g0

+ 2Ky fo + 2695 fb + 2K06 f
+ 2K5,90 + 2K4,9b + 2xcg59¢

!
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where the 21 “ Elastic Coeflicients” are, for a homogeneous body,
absolute constants, depending only on the elastic properties of
the body, the constant temperature at which it is maintained,
and the directions of the arbitrarily chosen axes of reference.

If the body be not homogeneous, the coeflicients will be func-
tions also of the position of the point in the neighbourhood of
which V is given by (17). We shall, however, always suppose
that we are dealing with naturally homogeneous bodies (§ 48,
but see § 220, below).

In general, the coefficients must be supposed all independent
of one another; and in fact we cannot with certainty attribute
to them any property whatever, except that they are finite, and
that for every possible form of small strain they must make V'
positive (§ 21).

Differentiating (17), and substituting in (16), we get

Q =Ky € + Koo [+ Koo + Koy + Kggh + Koge
B=kge + ko f+ ke + Kyy@ + Ky + Kgq0 |
S=rge+ xS+ kg + K+, + "m"J

Po=xye + ko f + K150 + Ky a + kb + “mc]

Tmrye+ kg f + Ky + K + Koo b + K00

U=kge + Koy [+ Kgglf + Ko @ + Kggb + xyye
w here x,=x,, ete., the.double notation being employed solely for
t e sake of symmetry.

199.] Average Stress during change of Strain. Hence
v e find, by comparing (18) with (17), as we might have deduced
d rectly from (16) by Euler’s theorem on homogeneous funetions,

Ve=d(Pet+Qf+ Rg+Sa+Tb+ Uc).................. (19)
v hence by (12)

W=3 [ff(Pe+Qf+ Ry + Sa+ Tb+ Uc)dadyds.. ....... (20)
From (14) we have, by integration,

{ernase}
v i/(-’ ‘de + Qdf + Rdg + Sda + Tdb + Udc).

{e0.00,00}

I ence the interpretation of (19) is that the average value of the
s+ s, while the body is being brought from its natural state to
t e state of strain {¢, f, g, a, b, ¢} is {}P, 1Q, 4R, 18, 17, 3U};
t at is, one-half of the stress required to maintain it in the
s iecified state of strain.

This might also have been deduced directly from the principle
o' superposition. For in each of the intermediate states of strain
t'ie stress (being always a function only of the actually existing

Digitized b
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strain) must be such as would keep the body in equilibrium in
that state ; but, by the principle of superposition, if we have any
number of states of strain, and the corresponding stresses given,
the average of all these stresses will suffice to maintain equilib-
rium in the state of strain which is the average of all the given
states. Now, the path by which a perfectly elastic solid is
brought to a given state of strain being without effect on the
stress required to maintain it in its final state, the average value
of the strain may be taken to be simply {4e, 3f, 19, 4a, 1), ic},
and the stress corresponding to this is, by § 197,
1P, 10, 1B, 18, 11,307},

This latter expression therefore represents the average value of
the stress during the change.

200.] Strain in terms of Stress. By elimination between
equations (18) we can obtain the six component strains as linear
functions of the six component stresses

e=K P+ K,Q + KR+ K,,S + Ky T + Ky iU
ete., ete.
a/=]{41P+K'2Q+ K@R'I'A[X’HS{']{HT'PK“U ............
ete., ete.
where K, =K, ete.

Substituting in (19) we obtain 7" as a homogeneous quadratic
function of the stress-components.
OV = Ky P2+ KpQ? + KyR? + K, 0S? + Ky T2 + K, U2

+ 2K ,QR + 2K, RP + 2K ,,PQ
+ 2K, TU + 2K, US + 0K ST
+ 2K, PS + 9K PT + 2K,,PU
+ 28,08 + 2K QT + 2K QU
+ 0K RS + K RT 4 KR, .....o.voveveronns (22)

whence, by differentiation and comparison with (21),

W . W
*=op /o= ok
N R 5 OV
=TI CTRT

201.] Asymmetrical Elasticity. We have defined a
homogeneous body (§ 43),in the most general terms, as being such
that any two equal and similar portions, similarly situated in the
body, possess identical elastic properties. In the most general
case of homogeneity we may therefore suppose the elastic proper-
ties of the body to vary in different directions; that is to say,
the specification of the stress required to maintain a given strain
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will depend not only on the specification of the strain but also on
the directions of the axes of reference. The equations of the last
three Articles are applicable to this most general case of Asym-
metrical Homogeneity; the 21 elastic coeflicients, and also the
2] reciprocal coefficients K, ...K, (which are functions of the
former), being taken to be all independent of one another and of
the position of the origin, but varying with the directions of the
axes of reference.

Crystalline Symmetry.

202.] Planes and Axes of Rectangular Symmetry.
Many natural solids are found to possess different degrees of
symmetry in their elastic properties. Such solids are in general
called crystalline, and their elastic symmetry is found to be in
invariable relation to certain lines and planes connected with
their constant external form of crystallisation. We now proceed
to investigate the analytical conditions for various degrees of
elastic symmetry, confining ourselves to the cases in which the
lin s and planes of symmetry are rectangular.

203.] Onmne Plane of Symmetry. Let us suppose the
els stic properties of the body symmetrical about the plane of ay,
or any parallel plane (see § 201): so that, for example, the specifi-
ca ion referred to Ox, Oy, Oz of the stress required to maintain a
¢i' en uniform elongation in the direction (A, u, v) will be the same
the specification referred to Oz, Oy, and Oz reversed, of the
st) s required to maintain an equal elongation in the direction
#, —v). This latter becomes (X, u, ») when Oz is reversed ;
[ since we know by § 113 that the specification of the elonga-
i 1 depends only on (A, g, v), it follows that the condition that
, may be a plane of elastic symmetry is that the reversal of Oz
1 ¢es unaltered the specification of stress in terms of the specifi-
ea jon of strain.
Consequently the expression (17) for the potential energy in
te: ms of the strain-components must also remain unchanged when
0: is reversed.
Now the effect of reversing Oz is to change the signs of z and

w hence by § 123 the signs of a and b are reversed, the other

0 iponents remaining as before. Thus if :vv{,is a plane of sym-
me v all those terms in the expression for V which contain odd
po cers of a and b, except their product ab, must vanish.

' Ko =0, xg=0)
k1= 0, "'ls=0|

Ky =0, xy=0 i

i Ky =0, Kpy=0
I
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And, finally,
2V = k€ + Kon [+ Ken® + Ky@® + KegD® + Keel®
+ 2k g + kg€ + k106f ) + 2k,50b
+ 2 #16€ TR CAHRIO) ot oo SRR S (24)
Thus the number of elastic coefficients is reduced to 13.

204.] Three Planes of Symmetry. By three successive
applications of the results of the last Article, we may show that,
if all three of the coordinate planes are planes of elastic symmetry,
all the terms in V involving odd powers of a, b, or ¢ must dis-
appear. In addition therefore to the above conditions we must

now have
k=0 } -
Kyg= Kog = Kgg =0

2V = kyy€® + Koo f 2 + Kegg® + Ky + Kysh® + KeeC
+ (ko3 fg + Kng + K1olf Yeuevrreereriiiininniinians (25) -

and the number of the elastic coeflicients is reduced to 9.

This may be called complete rectangular symmetry; it belongs
to the “ tessaral ” class of erystals whose form of crystallisation is
a rectangular parallelepiped, the planes of elastic symmetry being
parallel to the pairs of opposite faces.

Equations (18) become

Thus we may write

P=kye+ Ky f + k139
Q = ke + Koo [ + Kasg
R=rkge+ kg f+ Ky
S=rua
T = kysd
U:K%c

by which we see that the relations between the elongations and
normal tractions perpendicular to the “principal planes” (or
planes of symmetry) of the crystal, and between the shear in each
of these planes and the corresponding shearing stress form four
independent systems.

205.] One Axis of Symmetry. Let us next suppose that
there is one direction in the crystal about which its elastic
properties have a certain degree of symmetry. Any line Oz
drawn in this direction may be called the Axis of the erystal, and
its elastic properties will be arranged with more or less symmetry
in the plane of xy, or any other plane perpendicular to the axis.
There are two principal degrees of such symmetry, which we will
consider separately.
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(i) Uniaxial Crystalline Symmetry. In this case, which is
common to Iceland Spar, and other crystals, called in Optics
“uniaxial,” there are two orthogonal planes through the crystal-
line axis, such that the elastic properties of the body are not only
symmetrical about each (or about any planes parallel to either),
but they also bear exactly the same relations to one as to the
other. Thus these two planes (which we shall take for the planes
of yz and zx) may be interchanged without affecting the form of
the Potential Energy, or the relations of Stress and Strain.

It is thus obvious that V" must involve e and f symmetrically,
and also @ and b. Thus we may write

2V =k, (€ + f?) + kuf® + Ky (a® + 0%) + ke€® + 2x5( [ + g€) + 2x5¢f...(27)

Thus the number of eclastic coeflicients is reduced to 6, and
equations (18) become

Pa=xpe+ s f+ Kkpg
Q=K + Ky f+ Ky
Re=rxyle+f)+ xyy
S=x,a
T=x,b
U= ree

St :h erystals may be said to have square symmetry about their
a s

(i.) Complete Circular Symmetry about an Axis. In this
ca e, which does not occur in any natural erystal, but which is
ar ificially brought about in wires drawn from masses of metal
ne jurally possessing the highest degree of symmetry (see § 207,
be ow), the elastic properties of the body are absolutel{ gymmet-
rit 31 in all directions perpendicular to the axis; so that, if this
be Oz as before, it is absolutely indifferent in what directions we
ta e Oz and Oy.

It is obvious that in this case the expression (27) for V must
“re ain the same form when Oz and Oy are turned through any
ar rle o in their own plane. Let us take w so small that its
sq 1are and higher powers may be neglected : the effect of rotat-
in ; the axes will then be to change «, ¥, u, v into z+ wy, ¥ — o,
w -@v, v—ew; ¢ and w remaining unaltered. The effect on the
st 1 a-components will be to change ¢, f, g, a, b, ¢ into e+ we,

f- we, g, a-wb, b+wa, c—2we+ Qw,/,g resi)ectively.
' Hence, neglecting the square of w, the expression (27) for 2V
is rransformed into

2V + 20(ky, — 2x45 — Ky2)(eC — fC).

Tte term involving o must vanish for all values of w, and there-

Digitized BDy.Microsofi



132 POTENTIAL ENERGY OF STRAIN. [205.

fore, since the strain-components must be assumed independent,
we must have _
Kyg = Kyy — 2Kege
Thus
2V = k(€ +.f2) + kasg® + kyy(@® + 1) + KeeC® + 265( fg + ge)
(K11 - RGg)Ef o seuhes ssinne sneleollis S R (28)
and the number of the elastic coefficients is reduced to 5.

206.] Three interchangeable Planes of Symmetry.

Let us now start afresh from the case of § 204, and suppose that

the elastic properties of the body are not only symmetrical about

the three codrdinate planes, but that they also bear precisely the

same relations to each of these planes. It is then evident that the

" cobrdinate axes may be interchanged in any manner without

affecting the form of V—that is to say, the expression (25) must

be so modified that it may involve ¢, f, g symmetrieally, and also
a, b, ¢. Thus we must have

K i="Kegie=ikas
Kgq = K5 = Kgg 1o
Koz == K33 == Kjg

And, finally,

2V =ku(e* + 17 + 9°) + ka(0® + 8 + €°) + 2u5(f7 + ge + ef ) ... (29)
Thus the number of elastic coeflicients is reduced to 3.

This may be called complete cubical symmetry. It occurs in
Rock Salt. It is obvious that if any cubical portion of the body
could be removed and replaced with any pair of its faces occupy-
ing the positions originally belonging to any other pair, and then
made once more continuous with the rest of the body, the elastic
properties of the whole would be absolutely unaffected.

Equations (18) become in this case

P =rkpe+ ky(f+9g)
Q= knf+ k(g + )
B=xyg+ Kzs(e ‘*‘f)
S=kya i
L=kl

U=xye

Tsotropy.

207.] Definition. Let us finally suppose that the body not
only satisfies the conditions of homogeneity (§ 48), but is such
that any two equal and similar portions, Lhowever they be situated
in the body, possess identical elastic properties.
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These properties are then quite independent of direction, and
the body may be said to possess complete spherical symmetry ;
so that, if any spherical portion were rotated through any angle
about any axis, and again made continuous with the rest, the
body would remain elastically unchanged.

All such bodies are said to be elastically isotropiec.

All other bodies, whether ecrystalline or asymmetrical, are
called in contradistinetion wolotropic.

Jellies, indiarubber, glass slowly cooled, and metals in their
ordinary state may be considered as homogeneous isotropic
bodies. The great traction which is applied in manufacturing
metal wires, by pulling them through small holes in a perforated
plate produces a permanent set (§ 12) which, when the wires are
cooled and freed from tension, results in the crystalline state
deseribed in § 205 (¢4.).

A somewhat similar effect is produced, in a less marked
degree, by the various processes of rolling and hammering to
which bars and plates of wrought iron and steel are subjected,
in the course of manufacture. (See Appendix IV., Section B,
“Ductile Metals.”)

208.] Energy and Stress. It is obvious that, for an
is tropic solid, all axes are axes of complete circular symmetry,
a1 d all planes are interchangeable planes of symmetry. Thus
t} 2 conditions of § 205 (i2.) and of § 206 must be satisfied simul-
te 1eously, and by comparing (28) and (29) we see that
Ky =Kg
K™= Xy ’
Ky = Ky — 2Kgy

a1 d, finally, for an isotropie solid,

AV = xp(e® +/° + §F) + k(@ + 67 + %) + 2(xyy = 2x,)(fg + ge + ¢f )...(30)
T s the number of the elastic coeflicients is reduced to 2.

Equations (18) now become

P=xye+ (k- 26)(f +9)
Q=xy [+ (xy = 26,)(g + )
i it o T st £ (SRR (31)
N =K,a
T =x,b ]

U=,

As we have now arrived at the most perfect conceivable
~ degree of symmetry, it is evident that we are not justified in
as uming any general relation between the two remaining
co ‘fficients, and they must therefore be supposed independent.

¢
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The insurmountable objection to all the old molecular theories,
founded on Boscoviteh’s assumption (§ 37), is that they give an
invariable ratio x;: x,=3 between these coefficients for all
isotropic solids—thus leaving in effect only one independent
constant.

It was first pointed out by Stokes, in 1845, that natural solids
afford a series of values for this ratio, varying within wide
extremes, and not even showing a tendency to approximate to
an ideal limit. (See Chapter XIL.)

209.] The Potential Energy as an Invariant of the
Strain. Since in an isotropic body the directions of the axes of
reference cannot affect the form of the Potential Energy, which
now depends solely on the specification of the Strain, it follows
that 7V must be an Invariant of the Strain, and therefore a func-
tion of the invariants D, J, K (§ 111) of the various Strain
Quadrics.

Now, by § 198, ¥ must be a homogeneous quadratic function
of the strain-components, and the forms of the invariants, which
are homogeneous functions of the first, second, and third degrees
respectively, show us at once that the only relation that can be
assumed between them and V is

2V =aD?+ BJ

where a and (3 are absolute constants. Substituting for D and J
the values given by equations (39) of § 111, we get

2V =ale+f+9)+B(fy—8"+ge-8+¢f—8)
—ae 4/ 4 ) B+ 1 )

+2(e+ 5)(fy +g0+ ),
which becomes identical with (30) on assuming

o= Kyqy ﬁ = - 4K44.

The Elastic Moduli of an Isotropic Solid.

210.] Modulus of Rigidity. We see at once from equa-
tions (31) that a shear in either of the cotrdinate planes requires
only the corresponding shearing stress (§ 149) to produce and
maintain it, and that this stress bears to the shear the constant
ratio «,, ¢ 1.

Since the directions of the axes of reference are perfectly
indifferent, it follows that x,, represents the shearing stress that

!
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must be applied in any plane to produce and maintain the unit
of shear in that plane; analogically speaking, that is to say. A
shearing stress which would produce such an enormous distortion
of the body as the unit shear (see Appendix IL) would certainly
not obey the proportional law, except perhaps in one or two sub-
stances of exceptionally perfect elasticity. The units of strain
(and all finite strains) really lie altogether outside our theory,
and it is only by direct experiment.that we can determine the
degree of approximation to which it represents their laws. Such
statements as the above must always be understood to be made
under this reserve. (See Appendix IV., below.)

This quantity is usually called the Modulus of Rigidity, or
simply the Rigidity of the body; it is also known as its
Elasticity of Figure.

We shall in future denote it by the symbol n.

211.] Modulus of Compression. Let us now suppose
that the strain throughout the body is a homogeneous cubical
compression, uniform in all directions of amount A. Then (§112)
wit shall have everywhere

a=b=¢c=0 g

a d by equations (31)

P=Q=R= "("’ll'ﬁ"u)'ﬁ}
S=T=U=0 '

E 7§ 174 we see that the stress at every point of the body will be
a homogeneous hydrostatic pressure, ot amount

1= (xu - {xu)A;

a «d to maintain this strain and stress we must apply a uniform
n rmal pressure II over the whole bounding surface of the body.

Thus the quantity (x,, —4«,,) represents the uniform normal
p essure whicf\ must be applied over the surface to produce the
u 1it of cubical compression throughout the body.

This quantity is usually called the Modulus of Compression,
t & Bulk-modulus of Elasticity, or the Elasticity of Volume.

We shall in future denote it by k.

Of course a uniform normal ¢raction over the bounding surface,
o amount kA, will in like manner produce a uniform cubical
d latation A throughout the body.

The reciprocal modulus 1/k is often called the Compressibility
o 'the body, denoting as it does the cubical compression produced
b 7 a uniform surface pressure of unit magnitude.
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212.] The New Notation. Writing then
Ky=mn, K11=k+%n7
in equations (30) and (31), they become

P=(k+4n)e+ (k- 5n)(f+9g)
Q=(k+4n)f+ (k—3n)(g +e¢)
B=(k+in)g+ (k- Zn)(e+f)
S =na
T=nb
U =nc

3 = (k+ §n)(e2 +.f2 + g) + 2(k = In)(fy + ge + of)
a2 -F ) L L O R R (33)

and

The latter may also be written
WV =(k-2n)A%+ 20(e? + f2+ g?) + n(a* + b2 + ¢%)..uennnn., (34)

where A denotes, as it wnvariably will in future, the cubical
dilatation (not necessarily uniform in all directions) at the point
(z, y, 2) ; so that (§§ 102, 103)

the fraction in being thus eliminated. For instance, the first
three of equations (32) become

P=(m+n)e+ (m-n)(f+g)
@=(m+n)f+(m—n)(g +e)
R=(m+n)g + (m ~n)(e+f)

213] Young’s Modulus. This is the theoretical valuel
(§ 210) of the longitudinal traction in any direction which will|
by itself produce unit elongation in the same direction. '
Its value in terms of % and n can be deduced from equations
(32) by putting
e=1, Q=R=8=T=U=0;

the value of P obtained by eliminating f and g from the remain-
ing equations being the required modulus.

It will however be more instructive to determine it by the
following analytical method :—
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Consider a unit cube of the body, with its edges parallel to
the axes, subjected to a homogeneous longitudinal traction P
parallel to Ox. Each of the faces perpendicular to Ox will suffer
a normal traction P per unit area, while the other faces will
suffer no stress at all. Divide the traction P> on each of the
z-faces into three equal tractions, -
each } P, and apply to each of the ;
four remaining faces a normal trac- o ASP
8. . ig.18.
tion } P per unit arca, and an equal
normal pressure. By the principle
of superposition this system of
stresses will be equivalent to the
first, and we are at liberty to re-
compound them in any way we
like. (Figure 18 represents all the :
stresses but those on the z-faces.) % 1%y

First collect the normal trac- 7 0
tions P over all the six faces:
by § 211 these will produce a
cubical dilatation, uniform in all
i 'ections, of amount P/3k, and yir
th s by § 105 may be resolved into
a uniform elongation of amount
P 9% parallel to each of the axes.

Next combine the second of
tt ) three normal tractions on the
z- ‘aces with the equal normal pressures on the y- faccs By §150
th :se are equivalent to a shearing stress of amount P in the
p e of zy, which by § 210 must produce a shear of amount P/3n,
a1 d of the same type—that is, having its axes of elongation and
cc 1traction Yamllcl to Ox and Oy. By § 100 (see also § 152) this
1z .y be resolved into an elong atum I’ 6n parallel to Ox and a
cc wraction P/6n parallel to

Similarly the YZst of the three normal tractions {P on the
x- aces, combined with the normal pressures 3P on the 2-faces,
w [l produce an elongation P/6n parallel to Oz and a contraction
P 6n parallel to Oz.

On the whole, then, a longitudinal traction of amount P
ps callel to Oz produces the Llongatlons—

AP

DY

ALp

tale
te!
,;

bip

iLp
vl

|

! %tont

- ) parallel to 0:]

1,('9_};"5]7—1) parallel to Oy ’

1 1
I‘(Q/;_ - 611) parallel to Oz
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Denoting these by ¢, f, g, we have

9%kn
=3%+n"®
3k —2n
S=9= 55k rn)°

Thus if ¢ denotes Young’s Modulus

s 9kn _ik_"?
=G ™ g et (38)

In all known solids k>2n, so that there is always a lateral
contraction in the directions perpendicular to that of the applied
tension.

If we employ the symbol o to denote the ratio (—f/e) of
lateral contraction to longitudinal elongation in this case, we
shall have

214.] Strain in terms of Stress. If we solve equations
(32) for the strain-components, we find

3k+n 3k -2n
¢="0hm ‘L~ 18k (¢+B)

ete., ete.,

or, substituting from (38) and (39),

1 T
e=a : P—g(Q+R)

1 o
f=§.Q——q(R+P)

1 o
g=g-R=(P+Q)

Thus, by (19),
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b
i 215] Principal Axes of Strain and Stress. If the
principal axes of the Strain at any point of the body are parallel
to the axes of reference, we have at that point, by equations (32)
of § 83,
e=¢, f=¢, g=¢3; a=b=c=0.
Thus, at the same point,
P=(m+n)eg+ (m-n)(e+e¢)
Q=(m+n)g+ (m—n)eg+¢)
RB=(m+n)g+(m-n)e+e) ]|
§=0
T=0
U=0
Thus the stresses across small plane areas drawn through the
- point, perpendicular to the axes of reference, are wholly normal,
and by § 163 the axes of reference are also parallel to the
prineipal axes of the Stress at the point.

Conversel?', it may be shown that, if the axes of reference are
tal.en parallel to the principal axes of the stress at any point of
thi: body, they must necessarily be parallel to the principal axes
of the strain at the same point.

Hence we deduce that, at every goint of an sotropic body, the
P incipal Axzes of the Strain and of the Stress are coincident,
ar 1 that the Erincipa.l elongations e,, e, ¢, and the principal normal
st esses N,, N, N, are connected by the equations

Ny=(m +n)e + (m - n)(e; + ¢)
Ny=(m + n)e, + (m - n)(e + c,)}
Ny=(m+n)e+ (m—n)q +¢)

1 [ S ¥
or by == S+ V)

Lt 5 o
€= ;I“"' {1(‘\;"' ‘\1) ........................ (42(‘!)

B il = o0, L _
G= 'q-.’\,— 6(2\', + ;)

T! e corresponding formulw for V are

2V =(m+n)(6 + & + ') + 2(m—n)eq + 64 + 66) )
=(m-n)A%+ 2n(* + &' + &%)

or o = _‘;(N, + N+ N+ an(x I3 N2+ NP oo, (43a)
These results might of course have been deduced directly

from § 209, coupled with the corresponding theorem that V must
al: 0 be an invariant of the stress.
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They evidently apply also to the crystalline forms of §§ 204—
206 (since in them also the shearing stress and the shear vanish
together independently of the elongations and normal stresses),
but not to any lower degree of symmetry.

216.] Lines and Tubes of Stress. Tie Lines and
Strut Lines. Principal Surfaces of the Strain. The com-
ponents of strain and stress being supposed continuous functions
of the codrdinates throughout the body, so also will be the
direction-cosines of the Principal Axes at each point, given by
equations (29) of § 79, or by equations (22) of § 163. Hence if
we draw the principal axis P£ at any point P, corresponding to
the continuous elongation ¢, and the continuous normal stress IV,
and if an elementary length PP’ be taken along P£ and the
corresponding principal axis P'¢’ be drawn at P, the change in
direction from P¢ to P'¢’ will be a small quantity of the same
order of dimensions as the elementary length PP". If this process
be continued we get a broken line PP P'P"......... , composed
of elements PP, P'P'......... , each of which coincides with the
principal axis for ¢, and N, at one of its extremities.

Proceeding to the limit, in which the lengths of these elements
are indefinitely reduced, we have a curve such that the tangent
to it at any point P is the principal axis P¢ for ¢, and N, at that
point. It is thus possible to draw a system of continuous curves
wm the body enveloping the principal axis P£ at every point
through which they pass.

The differential equations of this system are

eda + sydy + 8,dz sydx + fly + 8,dz s,dx + s,dy + gdz B

dx dy dz “
or veennn(44)
Ldu+ Udy + Tdz  Udz+ Qdy + Sdz  Tdx + Sdy + Rdz .
da & dy > dz i

where of course for ¢ and N, are to be substituted the proper
functions of z, ¥, 2.

Sinee ¢, is a root of equation (28) § 79, and WV, of equation (21)
§ 163, only two equations of each set are independent.

We get a second system of curves enveloping all the principal
axes Py, corresponding to e, and IV, at the points through which
they pass, and a third system everywhere enveloping P¢.

It is obvious that these three systems of curves cut everywhere
orthogonally; and that the strain at each point consists of an
elongation of each of the three curves which pass through it (with
or without rotation), while the stress consists of a normal traction
across each of the three elementary plane areas which can be drawn
through the point to touch two of the curves.

These curves are called Lines of Stress.
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Let us take two consecutive {-lines, and also two consecutive
y-lines which intersect the former ; these four curves will enclose
an clementary figure which is ultimately a plane rectangle. If
now we draw the &-curves through every point of the pemneter
of this area, we qhall form a tube of
elementary section, called a Tube of
Stress (Figure 19.)

The normal section of the tube at
any point is an approximately plane
rectangle bounded by con%ecutiv
Stress lines of the n and ¢ systems,
while each of its sides may be looked
uFon as composed of approximately
~ plane rectangles bounded by the edges

of the tube and by two consecutive
curves of the 5 system or of the ¢
system.

The stress across every section of
the elementary fibre of the body
bornded by the tube is wholly in
the direction of its length; and the
str 2ss across any element of its surface
(th & tube of stress) is wholly normal
to the element.

It is thus obvious that the body
mi y be supposed divided in three
di erent ways into systems of curvi-
lir :ar fibres, which transmit stress
th ough the body in the direction of
th ir length, while the action between
ad acent fibres is, at every point, wholly
n¢ mal to their common surface.

We shall adopt the terms used to denote the functions of
be ms in engineering structures, and call these fibres T'ies when
th y transmit a tension, and Struts when they transmit a
th ust in the direction of their length.

The Stress lines which form the walls of the tubes will
ac ordingly be called Tie-lines or Strut-lines.

Thus equations (44) are the differential equations of a
sy tem of tie-lines or strut-lines according as X, is positive or
ne i.ive.

If N, =0 we have a system of lines of zero stress.

If we draw several adjacent Tubes of Stress (of the g-system,
let us say) as in Figure 20, it is obvious that any set of conter-
mi 10us normal sections of these tubes will form adjacent elements
of a continuous surface. Each such surface will contain a
coniplete system of the y-curves, and also a complete system of

Fig.19.
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the {-curves, and will everywhere be cut normally by the
£-curves.

Thus we can construct three orthogonal systems of surfaces
throughout the body, such that .

(i) The curves of intersection of the three surfaces which
pass through any point P are the Lines of Stress at P, and there-
fore have for their tangents the principal axes of the strain
P¢, Py, P¢.

(#4.) The tangent planes to the three surfaces at P are the
principal planes of the strain. ' ,
(¢ii.) Each of the elements of volume (ultimately rectangular
parallelepipeds) into which the body is divided by consecutive

surfaces of the three systems, is subjected only to elongations in
the directions of its edges (with or without rotation) and suffers
no shear whatever (consequently remaining rectangular).

These surfaces may be called the Principal Surfaces of the
Strain or of the Stress. We shall return to them in the next
Chapter.

If ome of the principal stresses vanishes, each of the
system of principal surfaces which is cut orthogonally by
the lines of zero stress envelopes the Plane of the Stress (§
175) at every point through which it passes. The differential

1
3
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equation of this system is therefore, by equations (66) and
(67) of § 184, ) 3
Jp.de+ Jg.dy+ Nr.dz=0
S T O (45)
&
and those of the lines of zero stress are
WL AN 1
Jpo \/q_ BRIt b i < TR (45a)
or sdx =tdy = ndz

or

When fwo of the principal stresses vanish (§ 185, 186) only
one principal axis at each point is determinate. Thus we have
only one determinate system of lines of stress, given by equations
(76) and (77) of § 186, namely,

e
VR R E r SU (46)
or Sdat = Tdy = Udz

anc only one determinate system of principal surfaces, given by

JPdz+ JQdy + JRdz=0

L d_: + (_{Iy' + d(}_ N —— (46a)
In this case any two systems whatever of surfaces which cut
th se and each other orthogonally may be taken as the other two
sy tems of principal surfaces, and their curves of intersection
wi h the determinate system will give two systems of lines of
ze) ) stress.

In homogeneous stress and strain, the Lines of Stress are
sti vight lines, and the Principal surfaces are orthogonal systems
of rarallel planes.

Equations of Equilibrium and Motion.

217.] In terms of the Component Strains. Substituting
for the component stresses in equations (3) of § 142 their values
(321 in terms of the component strains, we get for the equations
of quilibrium

0 f 9 2 g 4
(m+ ")2): + (m - n)(a'i + 5{) + "(3—; + gﬁ) +pX =0
G} d9 O %a Oc
(m + n)a{;+(m—n)(a%+.£)+n(a£+,&:)+p)’___0 ...... (47)

a_l] (ac a (Bb Ba)
4 43 A . 0
(m+n)a~ +(m n) az-f-a: +n 2 +a1 +pZ =
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The equations of motion (4) of § 143 similarly become

Oe of ° Q¢ ©0b 50
(m+n)a +(m—n)(%+5‘—z-)+n(a+:a;)+p(X—u)=O

(m+n)f+(m n)(ay+gJ)+n(gz+gx>+p(Y Y)r=0"p .. (46

e 9 ob O
(m-{-n)a + (m - (a a£)+1z(a B;) +p(Z —ib)=0
Lastly, the boundary conditions (5) of § 144 take the form

M(m +n)e + (in — n)(f + g)] + pnc + vnb = F
Anc+ pl(m+n)f+ (m—n)(y +e)]+vna =0 i........... (49)
Anb + pna + v[(m + n)g + (m —n)(e+f)] =1

where F, G, H are the components of surface traction, and (\, g, v)
the direction-cosines of the outward normal.

218] In terms of the Displacements. Substituting for
the component strains in these equations their values From
equations (59) of § 123, we get for the equations of equilibrium

% QW ofov Ou
(m“‘")axz*(m i ooy 1Bon) o es T oy

Su ow -
4 "az<az * o ) Ra=
ete., ete.
Rearranging the order of the terms, these equations become
ou v ow
am(am *out az> +nyiu + pX=0

u v w
a,/(ax'"ay a)+nvv+pY 071 b5 Lo s O (50)

Ofou Ov Ow X
ms- 670+5._1/+8z_ +ny?w+ pZ=0

ou Ov w .
Bw+’a_/ A ETLLTIT T PR PRTPPPPRISS (35)

or, since
1BA Y 3
M=+ ngiu+ pX =0
oA % 3
7n5§+nv a0 - B S (51)

ma‘A+nv2w+;;Z=O
Oz
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i these we may at onee deduce the equations of motion

oA
mas ngfu + p(X -u)=0

OA id .

may+nv‘-’v+p() =) SRR (52)
aA ” .

mo +nghw +p(Z - i) =0

It s equally easy, by a slightly different transformation, to
w these equations into Lamé’s form

("'+")5-_“"(aai a9)+p(.\ -)=0
0, 00,
(m.+n)a - "'"(gzl 5 )+p(Y ) =0r.00ienen(52a)

20,
(m+n)a ’“(01: Zw)+p([ ) =0

+ 6, 0, 6, are the component rotations. It we substitute

them their values from equations (39) of § 123, this form is
e seen to be identical with (52).

T e boundary conditions are

w Ov Ou
Al (me + ")DJ + (m - n) B_y 3:)] +pnl o+ a—.’-/)

3u Ow P
+ ¥n az aL

+V"(a§+g)=0 :

Ju Ow w v
Mt ®:) ot %

3 ',[(m pe ,,)%(_)+ im - n)(‘(;" ay)] H

tions of Motwn and tqudtbnum obtawined from the
Potential Energy.

1t §  We obtained equations (47-53) by substitution in the

atic ns of Stress given in Chapter ITI. “These relations how-
hve not been “elsewhere assumed in the present Chapter,
t in & 194, 195, to prove the equality of the small total
st of energy and the corresponding small amount of work
d3d on the body by the ext-ernal forces.
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We now propose to show, by an application of the principle
of Virtual Velocities which is strictly the converse of that of .
§§ 194, 195, that, assuming the expression (34) for the Potential
Energy per unit volume, the equations of motion and equilibrium
(47, 48, 49) can be immediately deduced.

Introducing the symbol m into (34) we have

2V =(m—n)A2 + 2n(e + f2 + %) + n(a® + 12 + ¢2).
Thus if W be the total Potential Energy of the Strain
2W = ff/{(m - m)A2 + 20(? /% + g?) + w(a? + B2 + ¢*)} dedydlz.. (5

by equation (12), § 196.

We shall consider the most general case, in which motion
taking place, for the case of statical equilibrium can always
deduced from it by making all the velocities and acceleratio
Z€ro0.

The kinetic energy of the motion is then

T= [/ 3p(? + & + i) dudyd-.

Let us now suppose that the Applied Forces and Surfa
Tractions are allowed to do work on the body by producing
very small variation of the strain.

Let du, v, dw be the consequent small increments of the d
placements of any point (z, ¥, ), in the body or on its surfa
from its natural position. These may be supposed quite arbitra
and independent (but each must be a continuous function of &
coordinates).

Let de, df, dg, da, b, éc, SW and 6T be the correspondir
small increments in the strain-components, and in the potent:
and kinetic energies. From the principle of Conservation
Energy we know that the work done on the body must be eq
to the increment ¢ W + T of its total energy.

Now 3T = [ foliidu + E8v + ivdw)dudyd.................. (

as in § 195.
And the work done by external forces is, as before,

S oK+ Yoo + Zow)dadyds + ff (Fou+ G + How)dS.....(30
Since this is equal to ST+ W, we get from (55) and (56)

SW=[f/p{(X — @)8u + (¥ = )80 + (4 — iv)ow} ddydz \

+ [/ (Fou + G0+ HOW)AS......cveoveaerinn, (5{)

But, from (54),

8 = [f/{(m — n)ASA + 2n(ebe +£8f + gdg)
+ n{ada + b8b + cde)} dadydz,
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where, as in equations (7) of § 104,

N O
oe = 0?£= arbu, ete
Lo T o N R B
8 = a—.bi)u + .3;/61 + a:()w,
2 6]
da = 2 dw + o;‘”‘ ete.

Thus
2 3
sV f/ f m — ) (i 8u+ m +$8w)
G} z D
+ 2"('8Lb" + f m +95. Sw) i "“(';, ow + a:&;)

2, 2 o
+n b(.,‘,ﬁu t3 ﬁw) + nc( LR TSu) }d.'cd_l/(l:

f [(m - n)A + ’nv]\ Sut + nes 8v+ nb 4)14’

+ Ilc—-\‘/()il + [(m -n)A+ "n/] 81' + naa Su:

: 2
AT Ey gl oo | dadyds.

+ nba":ﬁu + na

Inte rrating by parts as in § 146 and 194,
s ﬂ{[(m - n)A + Ineldu + ne. dv+ nb. dw}AdS

. 3 2
- /[/-{ Ti[(lu -n)A t 2ne]. du + Aane) - v + aE(nb) . dw } dadyds
/]{ ne. 8w+ [(m - n)A + 2nf)dv + na . SwipdS

[ 2 e
: /] { ay(_m') . O+ f‘y[(m - n)A + 2nf1ov + 3”(14(4) . 8w } dadydz
/f{ nh. 8w+ na . 8o + [(m - n)A + 2ngldw}vdS

(2 . L B A
-//]-l 5 (nd) . Su+ a'(uu) Lo 4 ;.,:[(m - n)A + 2nyJéw § dadydz.

Rea ranging the order of the terms,

W /]{ A[(m - n)A + 2ne] + pne + yubjdu . dS
+ f{/\uc i p[(m - n)A + 2nf] + yrajde. dS
+ /’Anb + pna + v|(m - n)A + ‘7er] }ow . dS

[/ l D [(n - n)A + 2ne] + 5 (uc & nb) )' Su . dadydz

t.//‘ i aC(nc) % '5?/[('“ -n)A + 2af] + 8:("“) § dv . dudydz

'[[/ | Be (nl.) + ‘i.)'/("”) + ,;:[(m —2)A + 2ng] } dw . dadydz...(58)
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Equating this to (57) we get
S I = 0)A + 2ne] + pme + vnb — F}ou . dS

+[/{/\7LC + p[(m = n)A + 2nf] + vra — G}8v . S
+ﬂ{)mb + pna + v[(m —n)A + 2ng] - Hidw . dS

9 2. () A
t/./_/.{ a;;[(m - n)A + 2ne] + ay(’”c) 15 67:(“”) +p(X-u) } Su . daedydz
—.[//:{ %(nc) + aa!*/[(m— n)A + 2nf] + agz(na) +p(Y =7%) } Sv. dedydz

:/./ { %Olb) + ,ga!/(na) + ;;[(m - n)A + 2ng]+ p(Z - ib)}Sw. dadydz
=108

This then is the condition to be satistied in any small arbitrary
variation of the strain. Since Ju, dv, dw are independent as well
as arbitrary, each of the double and triple integrals must vanish
separately for all values that they may assume. We must there-
fore have identically

A (m — n)A + 2ne] + pnc + vub - I'=
Anc+ pl(m—m)A +2nfl+vne—-G=01........... (59)
Anb + pna + v{(m - n)A + 2ng] - H=0

at all points of the surface, and
[(m —n)A + 2ne] + 5 4 nc) - a~(nb) +p(X —u)=0
a(nc) + —gy[(m - n)A + 2nf] + 5;(11(1) +p(Y=2)=0 recrcens (60)
2 2 ? Sehl
5,(n0) + a—y(nu) + a;[(m - n)A + 29+ p(Z -w)=0
throughout the interior of the body.

For the case of equilibrium we have only to put 4t =¢=w=0,
whence

’(j 8 o a N\

L= + 2] ) + 5 (1) X =0

&} (G) ?

a‘-)l—;(nc) + 'Oj[(m - n)A + 2nf] + a-z(na) +pV=0 roviiinnnne (61)

2 &
3%0Lb) + > (na) + ,a:[(m —n)A+ 2ng] + pZ=0

If m and n be treated as constants, equations (59) (60) (61)
are obviously identical with (49) (48) (47) above ; and by substi-
tution from (32) or (40) they are easily reduced to (5) (4) (3) of
the last Chapter.
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22(.] Heterogeneous Isotropy. The extremely general
method by which the equations of the last Article were obtained
by the assumption only that the Potential Energy per unif:
volume of an 1sotropie solid was of the form (34) with only two
independent coeflicients, enables us, however, to interpret them in
a more general light. It is easy to imagine a heterogencous solid,
such that every elementary portion of it is strictly isotropic—and
consequently possesses only two independent elastic moduli—
while the values of these moduli—(say the Rigidity and the
Bulk-modulus) vary continuously from one element to another
(gee § 198).

The quantities n and k, with their derivatives m, ¢, o, will
then be functions of the position in the body of the element
considered, though not of the strain to which it is subjected.

Equations (59) (60) (61) will then represent the conditions of
motions or equilibrium, not only for a homogeneously isotropie
body (m, n, p absolute eonstants), but also for any heterogeneously
isotropie body, in which m, n, p are any continuous funetions of

(@, ¥, %)
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