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VI PREFACE.

subject, and ultimately the appearance of its first volume under

the editorship of Prof. K. Pearson, have led me to abandon that

design, though very unwillingly. Such references as have been

inserted are intended chiefly as guides to further reading.

A portion of the projected scheme has however been retained

as Appendix III. (pages 162-168), on the history of Hooke's Law,

and this perhaps suffers from its isolation. It must be under-

stood that all the statements and remarks contained in it

refer exclusively to its subject, and not at all to the general

question of Green's Theory and the minimum number of Elastic

Coefficients, on which I hold the orthodox opinion, though I

cannot regard the matter as finally closed to discussion.

I have adopted the notation of Thomson & Tait's
" Natural

Philosophy
"

for Strain and Stress, in spite of its obvious theo-

retical deficiencies, partly because it is the one most familiar to

English readers, and partly because it is so eminently readable

and speakable. I am inclined personally to prefer the double-

suffix notation on all other accounts, and I would suggest the

following system as the most generally useful (the symbols in

parentheses being those employed in the present work, and the

suffixes referring to the generalised coordinate notation of

Chapter V.) : Strains, e^(e\ e^f), e^g), s^(a), s^(6), s^(c), efal

2(*2)> %(%) ; Rotations,
f(Gi), ^(92), f(G8) ;

Stresses N^(P),

I fail to see any adequate reason for modifying the established

nomenclature of the subject, except it be to amplify it. It must

be owned that it is largely Latin in origin, but that very fact has

its historical interest, recalling as it does the magnificent series of

memoirs produced in succession by the great French mathema-

ticians who were practically the creators of the theory.

It is with great pleasure that I record my obligations to

Professors Sir W. Thomson, P. G. Tait, and J. J. Thomson for the
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2 PROPERTIES OF ELASTIC SOLIDS. [3.

3.] Intermolecular Forces. These molecules .exert upon
one another mutual forces, to which the cohesiveness of matter is

due. Of their nature little or nothing is known with certainty,

except that their intensity in the natural arrangement ^of
the

molecules varies within very wide limits for different kinds of

matter, while, if the molecules be artificially separated by

appreciable distances, it is impossible to detect their existence

by the most delicate instruments.* It appears, therefore, that

we are justified in assuming their sphere of action to be exceed-

ingly limited.

4] Impressed Forces. The molecules are also liable to be

influenced by external "impressed" or "applied" forces, such as

Gravitation and other natural forces of attraction and repulsion.

5.] Natural State. When matter is entirely free from the

action of such external forces, it is said to be in its
" natural

state." This term does not imply that matter is ever found, or

can even be conceived to be in this state under natural con-

ditions
;
but that in this state, and in this only, it may be

supposed isolated from all co-existing matter, so that all the

phenomena it presents depend only on its individual nature.

6.] Solid Matter. In the kind of matter called solid each

molecule performs small vibrations about a mean position, which,
so long as the body is in its natural state and maintained at

constant temperature, may be regarded as fixed. Under the

same conditions the vibrations of each molecule may be assumed

strictly periodic, and the mean value of the amplitudes of the

vibrations of any considerable number of molecules may be

supposed constant.

7.] Homogeneity and uniform density. If, when the

matter is in its natural state, and at any uniform temperature,
the mean positions of the molecules are uniformly distributed,
and if their masses and the periods and mean amplitudes of their

vibrations are the same throughout, the matter is said to be
"
naturally homogeneous."

It follows that a closed surface of given volume, but of any
form, whose least dimension is very large in comparison with
the greatest mean distance of two adjacent molecules, will, if

drawn anywhere within the substance of homogeneous matter,

always include the same number of molecules, and therefore the
same total mass. The mass thus enclosed by a surface of unit
volume is called the Density of the matter, in any given system
of units.

*
See, however, Note at end of volume.
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4 PROPERTIES OF ELASTIC SOLIDS. |11.

Or, in other words, it always requires the, application of
external force to produce strain.

(Hi.) Given the type of the external forces applied, the

greater they are the greater will be the strain produced; and,

conversely, the greater the strain to be produced, the greater the

external forces which must be applied.

(iv.) If the applied forces and the consequent strain be con-

fined within certain limits, the body offers continuous resistance

to the strain, so that it requires the continued exertion of external

force to maintain the body in a given state of strain; and when
this force is removed the body tends to return to its natural state

at its ultimate temperature.

1 2.] Limits of Elasticity. All these elastic properties are

exhibited in very different degrees, and subject to many limita-

tions, by different classes of natural solids.

Short of the strain required to produce absolute rupture

(called the proof-strain of the material) there is always a limit to

the elasticity of every natural substance. So long as the applied
forces are such as to produce a strain well within this limit the

resistance increases steadily with the strain, while it always
requires sensibly the same force to maintain the same strain at

the same temperature ;
and on the removal of this force the body

returns to a state sensibly identical with its natural state.

When, however, the strain exceeds the elastic limits of the

material the properties of the body undergo a marked change,
and it passes into what is known as the ductile state. In this

condition the resistance still increases with the strain, but much
less rapidly than before the limit was passed, and the tendency
to return towards the natural state is much diminished, so that,

when the external force is removed, the body is found to have

acquired a "set" or permanent strain.

13.] Ductility and Brittleness. Those materials whose
elastic limit is separated by a considerable interval from the point
of rupture, and whose state of ductility therefore has a distinct

range, are called ductile, malleable, or plastic. To this class

belong most of the natural metals, as well as steel gradually
cooled.

Thus under the enormous pressures applied in the Mint, the

density of gold is permanently altered from 19'258 to 19'367, and
that of copper from 8'535 to 8'916.

At the bottom of this class are various soft solids (of which

putty or tallow may be taken as a familiar example) whose

elasticity is almost imperceptible, and which are for all practical

purposes wholly ductile.
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rapidity of the change. The law by which the increase of resist-

ance in the case of solids depends on the increase of the rate of

straining is certainly not so simple, but the analogy justifies the

application of the term solid viscosity to this property.

Secondly, it was found that wires which had been frequently
and recently strained, well within their elastic limits, exhibited

less marked tendency to elastic recovery, and much greater

viscosity than when they had been left at rest in the natural

state for some days before the experiment.
This result shows that the elastic properties of a natural solid

may suffer diminution or Fatigue by frequent exercise, and that

these properties may be more or less fully restored by repose.

17.] All these limitations and imperfections in the Elasticity
of natural solids present insurmountable difficulties in the way of

an analytical theory ;
and for the purposes of a first approxima-

tion they must be eliminated.

If we class the more or less "imperfectly elastic" substances,
which we find in nature, according to the range of their elasticity
and the degree of perfection in which they exhibit its character-

istic properties within these limits, they are seen to form an

ascending scale suggesting an ideal summit which is never actually
reached in nature, but only more or less closely approximated to

under favourable circumstances.

This ideal, which we shall adopt as the subject of our investi-

gations, we define as a Perfectly Elastic Solid.

MATTER WITH IDEALLY PERFECT ELASTICITY.

18.] A Perfectly Elastic Solid is characterized by the

following properties up to the point of breakage :

(i.) In its natural state at any temperature the molecular

configuration, together with the form and volume of the bounding
surface, are perfectly definite, and characteristic of that tempera-
ture.

(ii.) If the temperature (supposed always uniform through-
out the body) be changed, the solid passes continuously to the
natural state for the new temperature, through all the inter-

mediate states natural to the intermediate temperatures.
(iii.) It requires the application of external force to produce

a strain at any temperature ;
and it requires the continued

application of the same force (or system of forces) to maintain
the strain.

(iv.) It always requires the same force (or system of forces)
to maintain the same strain at the same temperature, through
whatever intermediate states of temperature and strain it may
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at each temperature is one of stable equilibrium for straining
disturbances without -change of temperature. And since, by
the last Article, the kinetic energy of the molecules is the

same in every state at the same temperature, it follows by
a well-known theorem in Statics, that the natural configura-
tion at each temperature is such that the potential energy
has its least possible value for that temperature under the

given law of intermolecular force.

Hence it follows that if the body be strained in any manner,
while the temperature is kept constant, the potential energy will

be increased. And since in this case the kinetic energy remains

constant, the increase of potential energy is necessarily equal to

the work done on the body by the external forces in producing
the strain.

If now, the temperature still being maintained constant, the

body be allowed to work against the external forces, it will, in

returning to its natural state, lose all the additional potential

energy which it acquired by the strain. This then must be the

exact measure of the work done by it against the external forces,

which is thus equal and opposite to the work done upon it by
them in producing the strain.

This result may obviously be extended to a body starting
from equilibrium in any given state of strain, and passing, at

constant temperature, through any cycles of strain back again to

its initial state, the total sum of work done on or by the body
being identically zero.

Thus a perfectly elastic body maintained at constant tempera-
ture forms with any system of external straining forces a

perfectly conservative system, the excess of the body's potential

energy over that natural to the temperature being a function

only of the strain and of the temperature, and vanishing with
the strain.

22.] Temperature free to vary. In general, when the

temperature of the body is left free to vary, energy communi-
cated to the body, either in the form of heat or of mechanical
work done by external forces, will be distributed in both forms.

Thus, the primary effect of the addition of heat is to raise

the temperature of the body, and thus to increase the molecular
kinetic energy. But, since no external forces are applied, we
know by 18 (ii.) that the configuration of the molecules must

change to that natural to the new temperature.
Hence, if the law of intermolecular force be such that the

potential energy of the natural configuration increases with the
rise of temperature, some of the heat will be expended in produc-
ing this increase, so that the resultant rise of temperature will be
that due to an increase of kinetic energy less than the full
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(ii.) That the straining is so gradually performed, that heat

may be constantly communicated to or taken from the different

parts of the body, by suitable means, in such a manner as to

maintain every portion uniformly at the initial temperature.

25.] The two cases are perhaps of equal practical importance,
and the former is certainly the more interesting theoretically, but

the relations between temperature, kinetic energy, and inter-

molecular force are at present so hopelessly obscure that but
little can be done towards its development.*

It may be observed that, even if conditions (i.) were exactly
fulfilled, a natural solid would still be found to dissipate energy
irrecoverably by reason of its viscosity ; (see the second condition

of 19).

26.] Theory Adopted. To simplify our theory, and elim-

inate as many unknown physical relations as possible, we shall

assume that the conditions of 24 (ii.) are always satisfied. We
may observe that all the conditions of 19 will be satisfied at

the same time, if the strain be small
;
so that results obtained

for small strains on this assumption will be very approximately
true for many natural solids.

The body is then to be supposed always maintained at one
constant temperature, uniform throughout, and thus the results

of 21 may be accepted as rigorously true.

The kinetic energy of the molecules will be constant, and so

also will the natural potential energy, or that possessed by the

body when free from strain.

27.] Energy of the Strain. Since we are only concerned
with the Strain and its effects, we leave these constant terms in

the energy of the strained body altogether out of account
;
and

it is the excess of the potential energy of the strained body over
its potential energy in the natural state which we shall in future
refer to indifferently as the Potential Energy of or due to the
Strain or of the strained body, or, more briefly, as the Energy of

the Strain.

By 21, the Energy of the Strain is in all cases equal to

the mechanical work done on the body by the external forces in

producing the strain.

Now, by 18 (iv.) t
the same system of external forces,

applied to the body in its natural state, invariably produces
the same strain. Hence, if the strain be given, the forces to

be applied, and also the displacements of their points of applica-
tion are fully specified.

Thus the Energy of a given Strain, being equal to the work
done in producing it, is completely determined when the strain

* See Sir W. Thomson's Reprinted Papers, Volume I., pages 293-313.
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relaxation of the applied forces tend to restore the body to

its natural state, diminishing continuously as the potential

energy of the strain is expended in the process, and finally

vanishing together with the strain.

31.] Work done by Stress. Since the stress on each

molecule is always equal and opposite to the applied force, while

the displacement of their common point of application is neces-

sarily the same, it follows that all work done by the applied
forces may be reckoned as work done against the stresses, and
vice versa.

Thus, in passing from a state of strain in which the potential

energy ( 27) is W, to a second state in which it is increased to

TF-f<5TT, the work done on the body by the applied forces in

opposition to the stresses is SW
; while, if the stresses be allowed

to restore the body to its original state, they will do work SW
against the applied forces.

32.] Strain-Coordinates. Let us suppose that any changes
in the relative configuration of the molecules may be represented

by variations of a certain number of independent coordinates 0,

</>, x, \^5
. ., the word being used in its generalised Lagrangian sense.

Then, since the Potential Energy of the strain depends only
on these changes, it must be capable of being expressed as a

function of the strain-coordinates.

Similarly, if V be the mutual potential energy of any two

molecules, due to the stresses they exert upon one another, V
must be a function of the differences between the actual values

of $, 0,..., denning their relative positions, and their initial

values in the natural state.

If then <5F be the small increase of V due to a small increase

of strain, which changes 0, 0,..., to -{-SO, + ^0, ......
,
we must

have *

Now, if W be the total potential energy of the whole body, it

is obvious that TF= JS2(F), the summation being taken twice

through all the molecules.

Hence

But if 9, <, X, "SP,... be the stresses respectively resisting
increase of the relative coordinates $, 0, x> V'V-- of any one pair

* The symbol d is used throughout this work to denote partial differenti-

ation
;
d being reserved exclusively for total differentiation. The usual fiux-

notation is also frequently employed for partial differentiation as to time.
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(Hi.) The potential energy and the stresses are functions

solely of the actually existing state of strain, and absolutely

independent of all intermediate states through which the body
may have been brought.

(iv.) As the external forces are relaxed, the stresses experience
less and less opposition, so that they diminish continually as

they restore the body to its natural state, expending on that

process precisely the amount W of work which was done against
them in straining the body, and finally vanishing with the

strain.

(v.) It is obvious that when the molecules are in motion
under external forces the effective force to which the motion
of the mean position of any molecule in the direction opposed
to the stress is due, together with the resultant stress on that

molecule, is equal to the applied force.

IDEAL CONTINUOUS MATTER WITH PERFECT ELASTICITY.

35.] Difficulty of further developing the Theory. We
have thus deduced, from what we believe to be the true proper-
ties of matter, the laws of equilibrium and motion of -the mole-

cules of a perfectly elastic solid. In order to develop our Theory
analytically, we must be able to follow the movements of each

molecule throughout the strain, and to discover all the mechanical
conditions to which it individually is subjected.

For this purpose we require to know the absolute mass and
1 dimensions of the molecules of the body under consideration

;
the

jlaw
of distribution of their mean positions in the natural state

;

'the law of intermodular force the manner in which it depends

iupon,

and varies with, both the configuration and the tempera-
ture

;
the limits of its sphere of action

; and, lastly, the connection

between mean configuration, period and amplitude of vibration

and the temperature.

36.] Unfortunately, on almost all these points, our ignorance
is at present absolute

;
and where we have any means of forming

an opinion, the conclusions arrived at are so vague as to be value-

less for our purpose.
For instance, as to the dimensions of the molecules the latest

conclusions of science are summarised as follows by Sir William
Thomson *

:

" The four lines of argument which I have now indicated lead

all to substantially the same estimate of the dimensions of mole-
cular structure. Jointly they establish, with what we cannot but

regard as a very high degree of probability, the conclusion that,
in any ordinary liquid, transparent solid, or seemingly opaque

* Lecture on the Size of Atoms, Royal Institution, February 3, 1883,
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to the deductions we have drawn from experiments on real

matter.

Our theory will then take its place as the last in the series

formed by the various branches of Dynamics, which must be

regarded as successive steps, each approaching nearer than the

preceding to the true state of things, but none of them actually
realised in nature.

40.] Dynamics of a Particle. The smallest " element of

volume
" which the refinement of analysis can reach must still,

for the purposes of that very analysis, be held to have three linear

dimensions, so that if it be occupied by an " element of mass
''

subject to forces which vary from point to point throughout space,
this mass must in general be acted upon both by a force and by
a couple ;

both of them elementary, of course, but yet measurable

by analysis.
Hence we have recourse, for our first and simplest conception

of dynamics, to the purely abstract idea of a "Material
Particle," which we define as a very minute but still Jin ifc

mass, so condensed that its linear dimensions are inappreciable
to our analysis, and therefore infinitely small, even when com-

pared with OUT smallest "element of volume."

Such a particle cannot, of course, be subjected to couples, and
therefore Dynamics is reduced to its simplest form.

41.] Dynamics of a Rigid Body. We next advance to

the conception of a "
Rigid Body," which we regard as an aggre-

gation of such particles, so connected as to be entirely incapable
of relative motion.

The particles are supposed to be uniformly distributed, and,
in the case of a homogeneous body, to be all of equal mass.

,
Since the particles of the body remain in an invariable state

of relative equilibrium, the mutual forces exerted by them upon
one another, must under all circumstances of equilibrium or

motion of the body as a whole, form by themselves an equili-

brating system (D'Alembert's Principle).

They consequently cannot possibly do any work, and there-

ore do not enter into the equations of energy. In fact, we only
owe to them the Kinematical or Geometrical equations which

express in various analytical forms the fundamental fact that the

body always moves as a whole, without relative motion of its

particles.
Moreover the external action on each particle takes the form

of a single force, and these various forces can always be com-

pounded into a single Resultant Force and a single Resultant

Couple, which may be regarded as acting upon the body as a

whole.

Thus for all mechanical purposes the supposed structure of
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also constant, and may be left out of consideration together with
the constant part of the potential energy proper to the natural

state (see 27).
Thus every point in the body is to be supposed at rest, except

in so far as its motion is due to change of strain.

46.] Course of our Analysis. Strain will now consist in

relative displacements of points in the body, and consequent
distortions of lines and surfaces, and changes in the form and
volume of portions of the body enclosed by the latter.

Our analysis of Strains will therefore have for its aim to dis-

cover a simple system of independent strain coordinates, the

variation of any one of which will constitute a Simple Strain
;

and to learn how to express any change of form or volume in

terms of these as standard types.
We shall next investigate the corresponding Simple Stresses,

(which will be of the nature of resistances offered by the body to

the respective Simple Strains), and the relations which must"exist

between them and the applied forces, in order that the body may
be held in equilibrium in any given state of strain by these two

opposed systems.
To complete our general theory we shall then only require to

know how to express stress in terms of the strain to which it is

due. We shall then be able to calculate the potential energy due
to any given strain, and the external forces required to produce
it; or, conversely, the strain produced by any given system of

applied forces; so that the solution of any problem will be
reduced to a mere matter of analysis.

We shall, for the next five chapters, confine ourselves to the

consideration of bodies whose dimensions are at least finite in all

directions.
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49.] Now, let us take an unstrained body, and refer the

positions of all points in it to a system of rectangular axes, fixed

in space, whose origin coincides with any point M in the body.
If the body be now strained in any manner the point M will

in general suffer a displacement from its initial position at 0, the

amount and direction of which will depend upon its situation in

the body. But it follows from the last Article that, without

modifying in any manner the effects of the Strain, we may
impress upon all points of the body displacements equal, parallel,
and opposite to that of M

;
the effect of which will of course be

to move the body back, parallel to itself, until M once more
coincides with 0.

50.] Thus we may, whenever it will simplify our analysis,*

suppose that point of the body which coincides with our

arbitrarily chosen origin to be absolutely fixed in space, without
in the slightest degree restricting the perfectly general character

of the strain.

Although, however, the origin may be regarded as fixed both
in space and in the body, the axes are only fixed in space. That
is to say, the straight lines in the unstrained body which coincide

with the axes will no longer do so after the strain
; and, in fact,

they will in general be no longer straight lines, but continuous
curves intersecting more or less obliquely in the origin.

Assuming then that the point of the body chosen as origin is

fixed, the absolute displacement of any point in the body (and
therefore also its component displacements parallel to the fixed

axes) must be a continuous function of the absolute coordinates
of the point ;

and these absolute displacements now constitute the
strain.

Theory of Small Strains.

51.] Equations of Displacement. Let P be any point
in the unstrained body, whose coordinates referred to the fixed
axes are (x, y, z). Let the body be subjected to a very small

strain, and let P in consequence be displaced to P' (x+u, y+ v,

z+w).
Then u, v, w are the component displacements of P, parallel

to the fixed axes, and we must have

where u, v, w are supposed very small, and 0, %, \fs
are arbitrary

* See Appendix I., at the end of this Chapter, on the advantage of regarding
a point in the body as fixed.
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functions, continuous throughout the body. We shall assume
that all their partial derivatives as to x, y. and : are also con-

tinuous, so that none of them can become infinite.

]
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c-f-/); very close t 1' 90 that Jt, k, I are small quantities of the
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;
be displaced by the same
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But, if e be the elongation produced by the strain in the

elementary straight line PQ, e=Sp/p.

h Sh k 8k I 81= -. + -. + -
.
-

P P P P P P

Now if X, //, v be the initial direction-cosines of PQ,

Hence, substituting from (1) and (3) in (2) we find

-v/ )J!t9w 'da c)w\
e = AIV* + a + v- I

\Tfdx 'dy oz /

+
l^x +^

V
+ V
?)

/xBw 9w? 9w;

or, re-arranging terms,

w- x / K \

+__J + A/*(_. + ) ................... (o)^ Sic 7 V9o; Sy
7

54.] From the form (5) we see, by writing successively

(\=1, M z=0, =<)), (X=0, M=l, i/
=

0), (X=0, /x
= 0, i/=l), that

du/dx, dv/dy, dw/dz are the elongations of elementary straight
lines drawn from (x, y, z) parallel to Ox, Oy, Oz, respectively.

Again from the form (4) it is easily seen that e may be

written in the form

e = ( A + w, + v )(X.u + fjiv + vw\v ^x ^(/ 3^ /v

if we assume X, ju, v constant as to x
s y,z\ that is, if we suppose

the elementary straight line to be drawn in the given direction

(X, /UL, v) from different points of the body.
Now if p be regarded as a current coordinatej giving the

initial distances from (x, y, z) of points situated in the given
direction (X, /m, v), and if U be the displacement of (x, y, z),

resolved along this line in the positive direction of p, we have

-- -

op ox oy oz

Thus

(6)

which gives the elongation of an elementary straight line drawn
in any direction from any given point of the body.
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1 Change of Direction. Again, if (V, M ', v') be the
direction-cosines of P'Q',

= -f . ', etc.,
P P P P

therefore substituting i'ru:

/-('-

'du x

* 30\ 'do

*z
^W7\

1

1

Since X, /z, v, as well as h, k, I and p, for any elementary
in the

body,
are of th- ^amr m-.l.-r of magnitude

after as before the small strain, it follows that all lines and
surface in the body preserve not only their o-ntinuity, but also

the co i hroughout the strain.

56.] Permanence of Intersections of Lanes and Sur-
aces. It i- easy to show that the point- ..f in a of lines,
ml i: ion of surfaces, in th- i in-trained body

ints ..r rurvi", ..f intersection of the same lii.

urfaces in i.-d state.

to say, if fewoonnrw in th.- unstraiin-d lio.ly int-i

n 1'. and if /'I.,- 1 to P by the strain, th- ' ill bo

rsecting in /'. An-1 -imilarly for the

For nates of P be (.' those of /'

liat x'ssx + u, y'-y -f- Th.-n if .

ire gi
< an express ;/

j

>1 icitly as

is f'

. the two e<i

"[... (A))-OJ

separately represent two surfaces in th- un-tiain ,1 body,
se surfaces i the same o. regarded as

'tan

equations of the surfaces into which th< -. ar. strained

(B)
/,<>' -w)- 1

/(* ')
sm(

-upposed to be ex; ''Xj^licitly in t-nn- <.f

^-
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But equations (B), regarded as simultaneous, may be taken
as representing either the curve of intersection of the surfaces

which they separately represent, or the curve which before the

strain was represented by the simultaneous equations (A).
Thus the curve of intersection of any two strained surfaces in

the body is the strained form of the curve of intersection of the

same surfaces before the strain; and by a precisely similar

method we can show that the point of intersection of any two
strained lines is the strained position of the point of intersection

of the same lines before the strain.

57. General Effect of Strain. We see from equations (5)

and (7) that the magnitude and direction of every elementary
straight line in the body are in general altered by the strain, and
that these changes are in general different for different elements.

Hence the general effect of the strain is both to shift and to

distort all lines and surfaces in the body. We shall reserve the

exceptional cases for future discussion^

58.] Limitations of Small Strain. From equation (5) it

appears that the elongation of an elementary straight line, drawn
in any direction from a given point, is of the same order of

magnitude as the first derivatives of the component displacements
of that point with regard to its initial coordinates. In future,
unless the contrary is explicitly stated, we shall confine ourselves

entirely to the consideration of
" small strains," implying thereby

that all these first derivatives, like the displacements themselves,
are small quantities of the first order, or else zero.

Homogeneous Strain.

59. Definition. We shall now suppose the character of the

strain restricted in such a manner that all the first derivatives,

du/dx, .........dw/dz, are independent of x9 y* z.

This assumption involves a relation between the displacements
and initial coordinates of the form

(8)

3 ^

where the coefficients are all absolute constants, which for a finite

strain are finite or zero, and for a small strain are all small quan-
tities of the first order or else zero.

A strain of the character defined by this assumption is said to

be a Homogeneous Strain. We shall now proceed to investi-

gate its principal properties.
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60.] The ivsuh.s which wo have already obtained for any
J] strain take the following forms in the case of small homo-

geneous strain.

The component displacement^ of the point Q(^+ /*, y+ k, z+ l)

ive to the point i hv (1),

(9)

The elongation of the line PQ (lin-etin-L'.>ine^ ,\, /m, v) is

i by
= e\*+ff + gS + (P, + yJnv + (yl + aJV\ + (a, + Pl)^ .......... (10)

that '
, /. .'/

an- tin- elongations of elementary
rallrl t<>

<

ly.

hy (7),

Parallel Straight Lines. It is obvion- fn.m equations
10) ai !y on X, /*, v ;

whence
ii any small honio^*-. all parallel

traight lines in the h main parallel
jid are elongated in the >a:

aiirht lii 01 intinit.-. in tin-

mad. np of consecutive elementary .straight

ntive
iiese will he Mrain-.l into ,-1, -men-

all parallel to one another, and hy ~>*\ each of

l

II

utive el

lit- in a straight lin>
'

; a >/////'/////

oever length, will rem< < < i>
/It t line,

In
'

lit line- M|' any
1 nf wh; -arily

the hmiif

i()i all t! will he elonifatr.l in the

elongated vn

(ffid i"i ,-::ii -i >//v/;
;////

are t */,///'///,/ hough
1 distance apart are all altered

in.

j
Parallel Planes. A^ain, -in* ;!) intersectiiig
inea n-main int- '

/,/tme
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remain a plane; and since any two parallel planes intercept
equal lengths on any system of parallel straight lines which meet
them both, and since these intercepts are strained into equal and

parallel ( 61) straight lines, terminated ( 56) by the strained

planes, it follows that all parallel planes are strained into

parallel planes, though in general their direction and distance

apart are altered by the strain.

63.] Similar and similarly situated Geometrical
Figures. From the two last articles it follows directly that

every parallelogram is strained into a parallelogram, and every

parallelepiped into a parallelepiped, though both are in general
distorted.

Since similar and similarly situated plane figures (in the same
or parallel planes) have their homologous sides parallel, it follows

that all similar and similarly situated plane figures are strained
into plane figures similar and similarly situated to one another,

though not necessarily to the former.

In fact, since all parallel chords are elongated in the same
ratio, it is obvious that the strained form of any plane figure is

an enlarged or diminished orthographic projection of its un-
strained form upon some plane.

Hence, in particular, an ellipse (including the circle) is always
strained into an ellipse or circle ; and when a circle is strained
into an ellipse every pair of orthogonal radii of the circle is

strained into a pair of conjugate radii of the ellipse.

Again, since in similar and similarly situated solid figures all

similarly situated sections are similar, it follows that all similar
and similarly situated solid figures are strained into solid

figures similar and similarly situated to one another, though
not in general to their unstrained forms.

64.] Strain Ellipsoid. Since all the sections of an ellipsoid
are ellipses (or circles), and since no other surface possesses this

property, it follows from the last article that every ellipsoid (or

sphere) is strained into an ellipsoid (or sphere) ;
and when a

sphere is strained into an ellipsoid, every set of three orthogonal
radii of the sphere becomes a set of three conjugate radii of the

ellipsoid.
The ellipsoid into which a sphere of unit radius, described

about any point P of the unstrained body as centre, is altered by
the strain is called the Strain Ellipsoid at the point P. Of
course, in a homogeneous strain, the strain ellipsoids at all points
of the body will be equal, similar and similarly situated.

65.] Principal Axes of the Strain. Every set of or-

thogonal radii of the unit sphere becomes, by 64, a set of con-

jugate radii of the Strain Ellipsoid ;
and the ellipsoid has one
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and only one set of orthogonal conjugate radii, namely, its

principal axes.

Hence, in every homogeneous strain there is one and only
one set of three orthogonal straight lines passing through each

of the body, which remain orthogonal after the strain,

although tlk-ir dir are generally alters 1.

se principal diameters of the Strain Ellipsoid are called

the P. '.3 of the Strain at P.

}
Pure Strain. \Vh.-n the -train i> Mich that the Prin-

cipal . tin their initial directions it is said to be a Pure or

in.

It i-^ sufficiently ubvimis that the most general >mall homo-
f rain wuJ consist of a small pure homogeneous strain,

to prod r with a
small '.< a whole, about a suitable axis,

-uiiicimt t<> brills the Principal Axes at each point into their

n-w portions.

Analytical >n*

hall no\v proceed to prove these properties of

\tically.
tions (8). are linen / functions .

second and all higher or. In

mations (1) or (9) will be absolutely tun

mdep- the magnitude oi so that equationfl (10)
II) will hoi. .il^it lines of any length. From tlin

<liately.

Initial and Final Coordinates. Tlie equations
/' in fcerma of

v . ^nations (8),

-

=
(l +c)x + fly

4

order of small ,

--. -yX
= -^-^'^(l-r/^'

nd, to tin- -am'- appi

*0

w = a^xf + fa

.(13)

.(14)
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Thus, in the equations of displacement for a small strain, the

final coordinates (x,
f

y', z'} may be substituted for the initial

coordinates (x, y, z) without introducing any error perceptible
to the order of approximation adopted. This is a very useful

principle in practice, and it is obviously not confined to homo-

geneous strain, since it depends solely on the smallness of the

coefficients involved.

69.] Linear Transformation of Equations. It is a very
important consequence of the last Article that the equations of

surfaces in the unstrained body are only altered by a linear

transformation of the coordinates, and, consequently, every such

surface remains of the same order as before the strain.

For example, the surface in the unstrained body given by the

equation <f>(x, y, z) = 0, becomes after the strain the surface given

-
e)x'

- pj -
7l*], [(1

-
f)y'

-

which equation, the coefficients being constants, is clearly of the

same order as the former.

Thus, planes are strained into -planes, and quadrics into

quadrics; and since a small (or even a finite) strain cannot

possibly convert a finite line into one of infinite length, it is

clear that a closed surface must remain a closed surface. Thus,
an ellipsoid or a sphere is always strained into an ellipsoid or

sphere.
The straight line being formed by the intersection of two

planes ;
and the ellipse or circle, being formed by the intersec-

tion of a plane with an ellipsoid or sphere, must obviously retain

their original characters.

Also, since equal and parallel straight lines are strained into

equal and parallel straight lines, it follows that a plane bisecting
a system of parallel straight lines is strained into a plane
bisecting a system of parallel straight lines, so that any system
of parallel chords of an ellipsoid, with their diametral plane,
become a system of parallel chords and corresponding diametral

plane of the strained ellipsoid.
Hence it follows at once that every set of three conjugate

diameters becomes a set of three conjugate diameters.

70.] Strain Ellipsoid. The ellipsoid

*
+ + *_-l

A* IP C*



ANALYSIS <>F MHAIN.s. 29

becomes the ellipsoid

' -

and, in particular, the sphere

-
2(7l

becoi

(1
- 2^ * i

................ (15)

which is the Strain Ellip-oid at the CM 1), referred to the

I axes.

71.] Change of Notation. It will }. observed in equa-
tions (10) and (1") t :ts #, and

y.,, y, an.i

aad /8,
occur in pair- Tlii- \vi! \tly happen in future

e (nations, ami we >hall coii-idrraMy dmpliry nur analy>i<. and
it much et , by chan-mur "iv notation as

ft + 7t\

,

--r.
i-n-s
-,-/^'

./ 9 being retained.

]

The displace; iall homogenemi-

he elongation becomes

L

(17)

(18)

the final

A
( 1 _ e + ) A, + (x3

c%

the equation of the Strain Ellipsoid, referred to the fixed

is

-2e). '/ =1 (20)
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73.] The direction-cosines of the principal axes, of this

ellipsoid are given by the equations

(1
-

2g)X'
-

A'

_
- 2s2A' -

which may also be written in the form

tvM = s3il//*J tv.e (21)

These equations therefore give us the directions, after the

strain, of the Principal Axes of the Strain.

Graphic Properties of the Strain.

74.] The Elongation and Compression Quadrics. If

we describe about the origin a quadric surface of the form

(which we shall regard as fixed in space, like the axes of

reference), and if r be the radius vector intercepted by the

surface on a straight line in the body drawn from the origin in

the direction (A, /m, v) we shall have

Thus, by equation (18), if e be the elongation of this radius

vector, or of any straight line in the body parallel to it

= &/r
2

,(28)

This surface is called the Elongation Quadric of the strain.

75.] It follows from equation (23), the right-hand side of

which is essentially positive, that every radius which meets this

surface suffers a positive elongation, and conversely that every
radius drawn in a direction of positive elongation will meet the

surface.

If therefore the strain be such that all lines in the body are

elongated, the Elongation Quadric must be an Ellipsoid.
If however the strain consists of elongations in some direc-

tions and contractions in others, e will be negative for some radii,

which therefore cannot meet (22).
In fact, in this case the Elongation Quadric is an hyperboloid

whose radii are the lines which suffer elongation, while those

lines which suffer contraction are the radii of the conjugate
hyperboloid represented by

which is called the Compression Quadric.
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76.] In the ca>e in which all lines in the body undergo con-

traction, all radii from the origin must meet the Compression
Quadric (24), which is therefore an ellipsoid; and in this case
there is no Elongation Quadric.

77.] Cone of no Elongation. In the case of 75, the

hyperboloids of elongation mid contraction are separated by their

asymptotic con\ wlm^- equation i-

2^ + 2*^ = .................. (25)

It appears from cJ:>) that for all the generators of this cone,
and <>f r<>ur-e for all parallel lines in the body, e=0. It is there-

fore called the ('./<<
oj

j

Cones of Constant Elongation. Lastly, the direc-

tion-cosines of all liii' 1-i.dy sutierini: a <>ngation

(whether positive or negative) must satisfy (18), which may be
written

c(X
x + M + .

All such Hi i efore be parallel to >ne or other of the

gei .erators of i

(e-)i* + (f-W + (</-)z* + 2*
l!/z

+ 2*jgx + 28py = ......... (26)

\\v tlmi obtain a leri - <>f Cones of (

79.] It is to be observed that all the iju; --d in the

!&' t :

ll <>i,
'

'

axi-s, their equations when
re srred to them will resj become

(27)

w ere ev e2 , e
t
are the roots (in descending onl- : nitude, let

us suppos

(28)

L-< . Of, witli rei'er-nce to tli.' original

^"V l

= ,

/9QX
X /z

v "** '

wl er i to be substi- '-ding as X, //, v are

U i j di (

f, Oi/, or
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80.] Principal Axes of the Strain. Since the elongation e

of anyradius of the elongation quadric varies inverselyas the square
of the radius, and since the squares of the least and greatest radii

of the quadric are B 2

/e1 and B 2

/e3 ,
it is obvious that e always lies

between e
1
and e

3 ,
and that the directions of maximum and mini-

mum elongation (or ,of minimum and maximum contraction) are

those of the least and greatest axes of the quadric.
But if we consider the deformation of the unit sphere into

the Strain Ellipsoid, it is clear that those radii of the sphere
which are drawn in the directions of maximum and minimum
elongation must become the greatest and least axes of the

Ellipsoid.
Thus the lines in the body which, before the strain, coincided

with the principal axes of the elongation quadrics, become the

principal axes of the Strain Ellipsoid.

Equations (29) therefore give the initial directions of the

Principal Axes of the Strain.

Pure Strain.

81.] Conditions for Pure Strain. The strain is said to

be pure ( 66) when the Principal Axes retain their initial direc-

tions.

Now, comparing equations (29), which give the directions of

the Principal Axes before the strain, with equations (21) which

give the directions of the same lines after the strain, we see

that they appear to be identical. We must not, however, infer

from this that the Principal Axes necessarily retain their initial

directions. From equations (19) it appears that the differences
between the initial and final values of the direction-cosines of any
line are of the same small order as the strain coefficients

;
now in

equations (21) and (29) the direction-cosines all appear multiplied

by these same coefficients
;
so that it is quite impossible, to the

order of approximation adopted, that any distinction should be
made in such formula between X and X', ju.

and p', v and v.

For instance,

and substituting from equations (19), this expression is identical,
to the first order of small quantities, with

eX + s3/x + s2v
.
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Non-rotated Straight Lines. The three straight
through the origin whicli (toother with all lines in the

parallel to them) ivally retain their initial directions in

space are to be found ly putting \' = X, //= /*, v=v in (10).

we

(*,
- 0,V

A
-

.'in-rotated straight lin-<.

The o<mditi"ii \'r I aiv therefore simply tlie con-

ditiuns that tli- e<iuat: an-1 (oD) may l.e

aii-1 th-f .il.vi.inxl

Equations of Displacement. Principal Elonga-
tions. Tin- f|uat: nt IT) tlnis iM-cnmr, in the

iin.

I
*-*a*+/y- ,..(31)

will .di'p.-ndrnt strain

It' nv, I'. I", II' IH- thf displar.-iu.-nt- !' any p.-int /'in the

parallel Of, <> 1 < \ , //.

Ferreo

I /, :; and
; t. th.- .in-; we

f.A

f.A
/" ^ </ +/*,r+ i

I" M .

ir i

Thr
;

(A,x2 + /V

I
lind

'

i' i
:!.')

IF
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The point initially at ( tj, f) is therefore displaced to

(l + i)fe (l + ^i(l+0
and obviously the effect of any Pure Strain is simply an elonga-
tion (or contraction) of the whole body parallel to each of the

Principal Axes.

The three Principal Elongations e
x, e

2 ,
e
3
are the roots of the

discriminating cubic (28) of the Elongation Quadrics.

By comparing equations (31) and (32) it is evident that

equation (18), giving the elongation e of any line in the body
may be written in the form

= Cj? + 2W2 + 3n2 ........................... (18a)

where I, m, n are the direction-cosines of the line referred to

Of, On, OS.

By comparing equations (31) and (22), or (32) and (27), we
see that, in a pure strain, the resultant displacement of any point
P in the body is along the normal to the elongation quadric
which passes through P, and that its amount is B/p, where -P is k

the perpendicular from the centre (the origin) on the tangent
plane at P.

84.] Position-Ellipsoid. Describe about the origin the

fixed quadric

(1 + e)x
2 + (l+/)2/

2 + (l+g)z
z + 28&Z + 2s.xx + 2s3xy~C2

............. (33)

This is obviously coaxial with the elongation quadrics, and when
referred to the Principal Axes takes the form

(1 + l)2 + (l + e2 ) 7/

2 +(l+e8)f2=^.
Since e

t ,
e
s , e

3
are small, it is necessarily an ellipsoid.

Let r be the radius vector drawn in the direction (X, /m, v) and
let (I, m, n), as in the last Article, denote the direction-cosines of

r referred to Or}, Of. Let p be the perpendicular from the
centre on the tangent plane at the extremity of r, and let (V, m', n')
be the direction-cosines of p referred to 0>/, Of Finally, let e

be the elongation suffered by r.

By the ordinary formulae of Solid Geometry,

m' =prm(l

n'=pm(l

Hence, squaring and adding,

Thus the strained length of the line in the body initially coinciding
with r varies inversely as p.

2e)
- <7

4
;
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equations (19) i :my arbitrary sot of

to Of, Ot], (>; hence the new
dh of the line in the body
initially coinciding with / will l>e

(1-c +
e,)/, (l-e + >i, (1-c

But, 1 ju-t >lio\vn,

1 + c = C2

/pr.

.

1-,

and then-:

rC^l -) = !- +
,.

r=(i-c^ ()M

:

. .
I

in.- in t' :di-d with the radius

finally
< with the i>rrprndicular /, and it> final

iu
rth \

id i-- call.-d th- Po>ition Kllij^oid. from the fact

a graphic CJO1 and Icn-ih,

.dy who-.- |H,vitinn and
; \nown.

' thr

undergoing the 8H; Tain ivpn--.-ntrd \>\

lations (31), i

. uf aiimi ;!ir lix.-.l

Sn '

itiully at will

:

xTr + (l

* -
1
x--*

1y + (l 4 '

1 tin- tinal th.

x"- /,

z" -
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the square and higher powers of the small quantity 2 being

neglected.
To the same approximation we shall have for u, v, w, the

resultant displacements,

]

+fy + (sl
-
\Q)z k

j

u = ex + s -

86.] Comparing these equations with (17) we deduce that the

general Homogeneous Strain represented by (17) consists of the

Pure Strain represented by (31), together with a small rotation

of the body as a whole, the components of which about the fixed

axes are 9
lt 2 , 3 ;

so that the amount Q of this rotation, and
the direction-cosines of its axis, are given by

ojx.
=

This is the result that was anticipated in 66.

Principle of Superposition.

87.] Writing equations (17) in the form

u = [ex + ssy + s<,z\

v =

w =

it is evident that the displacements due to a small rotational

strain are simply the algebraic sums of the displacements due

severally to the pure strain and the accompanyiDg rotation
;
and

it is further evident, from 85, that this result depends entirely
on the supposition that all the coefficients involved in the suc-

cessive displacements are small quantities whose squares and

higher powers may be neglected.

Consequently the same principle ought to apply to all small

strains and rotations, whether they be homogeneous or not
;
and

it is easy to show that this is the case.

Suppose the body first subjected to a small strain whose

displacement coefficients are [e, f, g, sv s
2 , s

8 , Olt 2 , 0J.
The coordinates of any point P in the body, after this strain,

will be
x' = (1 + e)x + (ss

- O
z)y + (&, + 0.2)zt

etc., etc.

Now let the body be subjected to a second small strain

[', /, tf, s\> s'y *>' 0'p 0'
2, 0'

3].
The final coordinates of P will be

given by
x" = (l+ e')x' + (8

'

t
- O'M +

(s'z + 0'
2K,

etc., etc.
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Thus the resultant displacements of P, duo to the two suc-

i-ains. will be

-(l+<){(l )+(*-. 4tar+<
+ (*'*-<?>){(**+ 0*)* + (*+/)!/ +(*!->
+ (*', Wy+(i+fW-*

. etc..

and. t<> the ii ; of small tjuantir

i =
[( + e> -f (*3 + *,)y +

(x,.
-f /,);] + [(^ I 9,4 y

:! )//l,

This result may ! i-\tt-iil.-.l t<> any uuml-er of x/ /M ///

SO that finally we have for th- resultant

,< = [!. ^.*]+[S(

i]
+[2.-.

* =
[?(*,). X + ?M. : ; ).y-^,)..r]J

Thu> the resultant of any nuiul'-r of small ^trains i> a

small strain in whieh tin- OOeffl train ainl rotation

algebraic -urns d' the correspon.liug co-

in the compoii'-nT
Al\ any small strain may !

arl-itrarily resolved

into any number of 'inj^n.'ii- only to the

condition that the algebraic sums of the several o>efHrient> must

iTesponding coeftieirnt- in the
original

Attain.
'

is ealled the Principle "f
EtapOtpOtttlOll f small

id is a narti .use of a neral

ication in M

kent* of J

.]
We ai in a position to analyse r.juatin>

the last

Arti( regarded as the resultant --f mponenl
pun vely by

ex\

J

\

iv.)

\ u

'

Ea<- ie components only . efficient ,

Jleliee Called Simple E

v one or the coftlic;. I \\itlmut

e simple component rtraim are in-
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90.] Simple Elongations. Let us consider first the strain

represented by (i.), assuming e to be positive. The discriminating
cubic (28) becomes

t^-r^-Q,
Thus

6j
=

e, e = 0, e
3
=

;
and (with the notation of 83) equations

(29)giveX 1
= l, Ml

= 0,^ = 0.

The Elongation Quadric degenerates into the pair of parallel

planes ex2 = B2
,
the Principal Axis Og coinciding with Ox, while

Orj, Og are indeterminate.

The cone of no elongation degenerates into the plane of yz,
and the cones of given elongation e are the cones of revolution

(-)** =
6(3,2 + 2).

The strain evidently consists of a uniform elongation, of

amount e, of all lines in the body parallel to Ox, all lines in

perpendicular directions remaining unchanged in length, while
the elongation of any other line depends only on its inclin-

ation to the axis of the strain, being given by e= eX2
. In fact,

the Position Ellipsoid ( 84) becomes the prolate spheroid

(l+e)? + if + ? = C2
.

It is obvious that this strain increases the volume of the

body, or of any portion of it, in the ratio (1 + e).

These results can easily be adapted, mutatis mutandis, to the
case where e is negative (uniform contraction).

91.] Similarly (ii.) and (iii.) represent simple elongations of
amounts / and g, respectively parallel to Oy and Oz. The elon-

gations produced by them in the line (X, /*, v) are f/m
2 and gv

2
,

and they increase the volume of all portions of the body in the
ratios (1 +/) and (1 +</) respectively.

92.] Simple Shears. In the case represented by (iv.) the

discriminating cubic is

-A 0,

0, -</>, s,

0, *!, -<

which reduces to

Thus
^

=
8^ 6

2
=

0, e
8
= s

1?
if s

l
be assumed positive. Substi-

tuting in equations (29) they give

1 1
A, = 0, ft-_,-_
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Thus (hi c-.ii. . hile Ug and (><; lie in the plane of

ily and externally the angle U-tween. the

jivetion- ,,t' ax^ o//. <>: ; and tlu- strain consists of a
: in elongation, of amount

,, parallel to (> together with a

uniform entraeti parallel !1 lines in

the body parallel to'o,y
or '

':iing their initial lengths
imalt-ivd.

The volume I' of any portion oi' y thus 1

that is to say, it r.-mains in. and the >train produces

.ati-.n and ( 'mnjirf^i.-n (^ua.; vlinder-.

are parallel to Utj or o./-, and who- trails, TX,.

] c-"iij _rular hyperbolas, their njuatinnN

t no Elongation i pair ..!'

-iVMlpt'tic pi,':

0,

f "**"

II-

!l 1 SO Of
lin.- in tin- h<,.

:

,

by substitution in r.jua-

ioas(18) uid (18
>crilM-d in any p!;in.- parall.-l

in and dimeoaonfl cmAltered

K<.r this reason these two sets of parall. 1 pi

all-d .

Sin all-l

1 th.-ir Ir ii.-ir identity, tin-

train can on', t of a relative -hiftiiiLr "f thr two sets of
r tin- iiiaim> f--d wicker- \\ ork,

.iinini^h th- ri-jlit angl--
\ hirh ii'.cludr 1 hem th.

t olongati and to inm-a-- tin-
suj.j.l.-i: f^lgle hy

int.

A f t! fir,,

-imply a -h.-ar of thr

MMML: exactly PeprO-
';

panill.-: -alh-d a Siinj,].- Shenr
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in the plane of yz (in which case the positions of the axes Of, Or]

must be specified) ;
and this or any parallel plane may be termed

the Plane of the Shear.

The Amount of the Shear is measured by the change in

the right angles between the planes of no distortion, as described

in the last Article.

Let Fig. 1 represent the section by the plane of yz of a

prismatic portion of the body, bounded by planes of no distortion

which cut the plane of the section in the square ABCD. Then

Fig. I .

the axis of elongation Og will coincide with the diagonal AOC,
and the axis of contraction Of with the diagonal BOD.

The sole effect of the shear will be to change the square base
of the rism into the rhombus A'B'C'D, where AC' =

(1 +

If the sides of the square meet the axes of reference in

P, Q, R, 8, and if PR, QS are strained into PR, Q'S', the amount
of the shear will be the sum of the angles QOQ' and POP', and
since these angles are equal the amount is twice the angle POP'.
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iuatitiiN l!
,
\\v ha\v for the .xtruinel position

of the line in tlie l-i-ly I'll, initially coinciding with Oy,

r =
*',.

11 -n.-.' OQfl I' anl t> the first order f a}>pruxiniatioii

POP
'1* i- tlie aiimiint of the >liear.

Fig. 2 .

Shearing Motion. ^li_rhtly lit
:

\\ hich

ABCD in Y\'^. '1 r.-j.n-Ni-nt ti verse section l.y tin-

ie -

1' th- Bai D a^ in l-'iir. 1 : ami l-t

tin- niiMlc ]M.int> ol i,s.

Su]
irallrl : v ;i nintion parallel to tin- ;

i-l
I-- i-p.-n-licular li-' m it. t

;
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planes lying on the positive side of xy being shifted in the positive
direction of Oy, and those on the negative side in the negative
direction.

Since each point in OQ for (instance) moves perpendicularly
to OQ through a space, proportional to its distance from the fixed

end 0, it is obvious that OQ is strained into a straight line OQ';
and the displacements of points in QS at equal distances on

opposite sides of being equal and opposite, QO and OS' will

remain in one and the same straight line.

It follows that all planes in the body parallel to zx are simply
turned through a constant angle of QOQ' about the lines in which

they meet the plane of xy, while by hypothesis every plane in

the body parallel to the latter undergoes a bodily translation

in its own plane.
If the strain be of very small amount the lengths of the lines

QS, etc., will not be appreciably altered, so that the result will be

to strain the square ABCD into the rhombus A'B'C'D' without

altering the lengths of its sides.

Thus it is obvious that the planes in the body parallel to xy
and zx respectively form two systems of Planes of no Distortion.

96.] A strain of this kind is called a Shearing Motion of the

planes parallel to xy in the positive direction of Oy.
Its amount is measured by the constant ratio between the

distance traversed by any one plane and its perpendicular distance

from the fixed plane : that is, by the tangent of the angle QOQ'.
The amount of a small shearing motion is therefore measured

by the diminution or increase of the supplementary right angles
between the planes of no distortion.

The change of direction AOA' of the diagonal plane AC is

'

very nearly.

Similarly, the change of direction BOB' of the other diagonal

plane is also approximately ~QOQ'.
2i

97.] Comparing these results with 93, 94, it is obvious that
a small shearing motion of amount 2s

l
of planes perpendicular to

Oz in the positive direction of Oy, is equivalent to a small Shear
of amount %s

l
of planes perpendicular to Oy and Oz, together

with a small rotation of the body as a whole through the angle
8^ about Ox in the negative direction (i.e., from Oz towards Oy).
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In like inaniirv the >tmlent may -ati-i'y liim>eli', l.y

a Miitahl.- .all shearing motion of amount 2^ of

i-licnlar to (>>/ in the r ilivetion of <>: is

C([iiivak
4nt to tin: same si, ber with a rotation of

anmunt ^,
of the body as a whole about "./ in th-

/

lion.

98.] A Mn-aring motion is thoivfoiv a 7
>train, the

shear or
/

wlnclu-v.-r Bel of plaiu-s

'n-ariiiLr motion, wlii: foinpanyin-- rotations

Fig. 3.

thod of
]

2 fa-* in i

'inir mutiuiis

applied Miccrsvj\ imultai: bo tin-

In i

/'into tin- rlioinl.ii-, A li'V'D', at

bhe rotation OA f

i" ii'l
<-'|'ial

irii. ::}it\ up].
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rotation 0', thus bringing the principal axes back to their

initial positions, and at the same time shearing the rhombus
A'B'C'D' into the rhombus A"B"C"D", which will be seen to be
identical with the A'B'C'D' of Fig.' 1.

99.] All these results can, of course, be shown analytically.
The equations of displacement for the shearing motion represented
in Fig. 2 are manifestly

which may be written

v --=

(s1
+

sj

Comparing these with equations (17), we see that they
represent a shear of amount 2s

1 accompanied by a rotation - s

about Ox.

Similarly a shearing motion of amount 2^ parallel to Oz is

represented by

and is therefore equivalent to the same shear, together with a
rotation +81

about Ox.

Finally, the case of the last article is to be represented by
superposing the two shearing motions

u = N

w =

the resultant of which is obviously the simple irrotational shear

<
' ĉ

tation for ShearS- Similarly, equations (v.) and
(vi.) of 89 represent small simple shears of amounts 2s and
2s

3 ,
of planes perpendicular to Oz and Ox, and of planes perpen-dicular to Ox and Oy respectively.We shall generally find it more convenient to use new

symbol^ a, b, c for the amounts of these small shears reserving
sv 8 s

3
tor their component elongations and contractioAs.

Ihus we shall have
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101.] Finite Shear. The properties of small shear which
U-eii discussed in the preceding Articles are only the

umed 1'V the properties of Shear in general,
its am<>unt is indetinitely diminished. Consequently,

although they may Ve accepted as rigorously true for the

purposes of our analysis of small strains u Ys
, it is impossible to

draw tii:iir-s which ^hall answer with p ---unicy to the

riptions -.riven.

The -tud'-nt will tin<l in Appendix II., at the end of tlii-

I'hapter, a short account of the coi-iv-pondim: properti-
which however have for u> only a kinematic

inter

Cubical Dilatation mponent strains

w- li; ad iii. U 'lie volume of the

t'ody, or of any part f it in the ratios (1+e), (!+/),
!y, whil'

) and (\ :^t of pur.-
without change of

If th- \oliim.- l

r

of any po. -he body be incrra>ed 1>\

iin to r, the ratio (I' Billed the OuftiooJ /

if th- 1'ody. Thi- may 1-- i-ith.-r po-itive or negative : in

latt.-r OM6, th-
pOttl

1' I' I' . .died

Compression.
\ always use tin- syinll A to d.-n^t.- cul.ical dilatation.

1 O.S.I It app.-ar- from th-

volume, tl 11 h(ld-

1 Io|||M L',-l.

It i> obvioua that the expression for th.- dilatation sliould l.e

indep- axes of reference,

fd

we see by that this i\ the ease,

"tliei'-l!' .11.

-

1 Uniform Dilatation. Dilatation i-> ^-n. -rally n

_: to dil. i of

l.ody will l.e strain. 'd into an ellii

on.

bion ^.vit
1
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tortion; for suppose the strain such that the three principal

elongations are all equal, so that

ei
= e2

= e3
=

ijA.

Any cubical portion of the body with its edges parallel to

the principal axes will then have each edge elongated in the

ratio (1 + JA), and will remain a cube, the effect of the strain

being simply to increase its volume in the ratio (1+A).

105.] In this case it is obvious from equations (27) that the

Elongation Quadric becomes a sphere, and in order that (22) may
reduce to the proper form, we must have

whatever be the axes of reference.

This strain is called a Uniform Cubical Dilatation of amount

A, and, as we have seen, is equivalent to three equal elongations,
each of amount JA, in any three orthogonal directions.

The equations of displacement are

(vii.)

Thus Uniform Dilatation, being expressed by a single co-

efficient, is to be ( 89) regarded as a Simple Strain.

Types of Reference.

106.] Summary of Results. We have now shown that

the simplest of strains the Uniform Elongation is the basis of

all the more complex strains : that, in fact, the most general Pure
Strain is the resultant of three orthogonal elongations parallel to

its principal axes.

Further, we have shown that equal elongations (of like or

unlike sign) may be so combined as to produce two more kinds

of simple strain: namely, a distortion without dilatation or a

dilatation without distortion.

107.] Again, it has been proved that the most general

equations (31) of Pure Strain may be regarded as expressing
it as the resultant of the following six independent simple pure
strains :

(I.) An elongation of amount e parallel to Ox.

(II.) An elongation of amount / parallel to Oy.





PLATE I.

Distribution of the

STANDARD COMPONENT STRAINS.

(Page 47.)
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(III.) An elongation of amount </ parallel to

IV.) A >hear of amount a, of planes perpendicular to Oy
and

:uount f>, of pianos perpendicular to <>:

and

VI. A ah amount c, of planes perpendicular t<

an.l '

The completeness with which t .pun-ntN express tlie

most general ]
in will lie reali^-.l wlu-n it is ivim-n

. .-illol planes in the lnly must n-iiuiin a

parallel j.lanes, tlie -train will ) c.niplrtcly -pfc-itied when
we can <-xpr.-> every possih nv Be! d'

!!! plan

ry, ami i'n.in

the pi following adiedble :

The Symbol
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component strains ; Ox, Oy, Oz being the axes of elongation,
and () the axes of the shear a, and so on.

109.] Referring to 32 and 46, we see that these six

standard strains satisfy all the requirements of the system of
"
strain-coordinates

" which we set out to seek
; they may be

chosen arbitrarily, they are perfectly independent, and any small

strain can be expressed in terms of them, while they possess the

great advantage in point of simplicity of vanishing in the

natural state of the body.
We therefore adopt them as our standard types of simple

strain, and, in order to completely specify any given small strain,

we have only to enumerate its six orthogonal components in

terms of the corresponding standard units.

110.] Type of Strain. When the six standard components
of any two strains are to one another, each to each, in the same

ratio, the strains are said to be of the same type, or of exactly

opposite types, according as this ratio is positive or negative.

(See 33.)
The ratio of their components is called the Ratio of the

Strains, and when this ratio is 1, the Strains are said to be

equal.
Strains of the same and of opposite types are also called

"
con-

current
"
and "

contrary."

Any number of small strains belonging to two opposite types
compound into a strain belonging to one of these types.

Two equal and contrary strains exactly annul one another.

Specification of Strains.

111.] By equation (34) any number of Pure or Rotational
small homogeneous strains can be compounded into one, if we
are able to enumerate the standard components of each.

Now, every pure strain consists of a uniform cubical dilata-

tion, a uniform elongation in some given direction, a simple shear
with given axes

;
or is compounded of any or all of these ( 89).

We shall therefore be able to form the equations of motion for
the most complex combination of pure strains, when we know
how to specify each of these simple strains in terms of its

standard components.
The more general combination of homogeneous rotational

strains may then be deduced by compounding the rotations

separately, as in equations (34).
We shall now therefore proceed to show how the specifica-

tions of the various simple strains may be separately obtained.
The simplest method is by consideration of the Invariants of
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the Elongation Quadric, which are the coefficients of the dis-

criminating cubi* Kxpanding that equation it becomes

=
(37)

(38)

Denoting these coefficients by 7>. ./ A" reBpeetively, \v-

/.

8+* + /* ,
2 =

!=]< .(39)

112.] Uniform Cubical Dilatation of amount A. This

'issed in ,'lrir i> a >phere, ami
roots of the cubic (37) a; 1 The iv.|uUit,-

r-nnditions are

.-/-,

ions of displacement are

'

.

'

Conversely, any strain or com! -i nation ,,t' ^train- \vliost-

t>nn cubical dilatation of

mount A.

.-..] Simple Elongation of amount c in direction

I, m, ?< . In this t-a^r the roots of t' are resju-ctivrlv
, 0, I! IK it oratt reduce to ^

2
(0-e)-0.

Thus,

-
= ...

-oj
The two In DUB in cnmbinati- wn

Geometry, 91) to be e(|ui\al.-nt t eithi-r -.1' the
; ets of three

/<7-*,'-0]
^-*A =0]

^e-V-OV A-Vi-0]-,
^-V-oJ

D
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while the first gives us

................................. (44)

1+W-L .................. . .......... (45)- * * >

by virtue of (43).

Again, I, m, n are the direction-cosines of the only determinate

axis ( 90) of the strain.

Hence, by equations (29),

el + s3m + szn _ s
:i
l +fm + sx

n _ s2l + s^m + gn _ , . ~>

I m n

Eliminating e, f, g from these equations by means of (43) we

get

s,s.,So (I m n\
-L. 3

(_ + _+_
)

\1 S2 SJ

Thus,

=
us,,.

Sl = emn

* = *

\
W

S3
- dm

J

whence, by (43),

e = d? }

(48)

and the equations of displacement are

u = d?x + dmy + enlz

v = dmx + em2

y + emnz

w - enlx + emny + n

Conversely, if the components of a given strain satisfy (43)
it amounts to a simple elongation.

Its amount is then given by (44) or (45), and its direction by

1$!
= ms2

= nss
=

(e +/+ g)lmn ....................... (50)

114.] A Simple Shear of amount 2cr whose axes of
elongation and contraction are in the directions (lr mv n^
(12>
m

a ,
7?,

2).

In this case ( 92) we have e
1
=

or, e
2
=

0, e
3
= -or, and the cubic

reduces to 2 -
o-* = 0.
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D-OJ
A' = .1

'

and
T O

by equations (29)

*S^l
"*" /"*! "*" ^l

1
*! *S^l

+
*1

7;
*1
+ Ph

in
i HI

.(51)

.(52)

//<, it,

whence we thul

V-i(- <r
) ^-j( + *) ,

>, ri O
"A

==
.(53)

wo easily di-.luci.-

^ **
^*\^| 1 / > ^""^('"."i ~

^t^l) I

y=<r(lH|
-

IWj )
'

} 9^ <^(W|'j tt^*j) !

^ "" ^("i
~~

**s ' ' *3
"" ^( l"*l

~~
l
w
'j)

il tlie ofjuations of displacement are

^

- n/Jz + or( r

as (54) and it of course have been dedun-.l l.y

MS (48) ai

Conversely, if the components of a
.ir t'y (51) it

fco Ti -imple shear whose amount 2<r is giv.-n l.y (52),

s of its axes are given by (53Y In tl

Dilations T niu-t I-- tak.-n a.-^ tho positive root of i'51).

! l

"

]
Resultant of any number of simple strains. \\v

( n n, with the greatest ease, the equations of displace-
i i at i most con; ins, -itli-r

1 lictaining the notation of t tin*.

membering
about an axis (\, M , v )

I into cunij -tatioas '. .J.oiit tin-

are to be nmi|Humdr.l
. tin- prim-iple <-t' suj.'-rj.n^iti

al once 1W tin-



52 ANALYSIS OF STRAINS. [115.

standard components of strain and rotation in the single equiva-
lent strain

e =

/-
9 =

\ (56)

116.] Resolution into arbitrarily chosen simple com-
ponents. We stated in 88, as the converse of the Principle of

Superposition, that a pure strain might be arbitrarily resolved

into any number of pure strains, subject only to the condition that

the algebraic sums of their components must be severally equal
to the corresponding components of the original strain.

It is an interesting problem to investigate the different ways,
beside the standard way, in which a pure strain may be resolved

into simple strains without in any way limiting its generality :

that is, without imposing any restrictions upon its standard com-

ponents.

117.] Since the number of these standard components is six,

the number of independent elements involved in any such equiva-
lent system of simple strains must also be exactly six, in order
that the solution may be at once perfectly general and completely
determinate. These six independent elements will then be given
by equations (56), in which e, /, g, s

3 ,
s
2,

sy must be taken to

represent the standard components of the pure strain to be
resolved.

If the number m of independent elements involved in any
proposed system be greater than six, we must introduce m - 6

relations between them, which may be quite arbitrarily chosen

(with a few obvious restrictions to be presently pointed out). 4

If m be less than six we assume 6 -m identical relations

between the standard components, and thereby limit the general
character of the strain

; or, geometrically speaking, determine to

a greater or less extent the type of the Elongation Quadric by
introducing relations between its invariants.

118.] Now a uniform cubical dilatation involves only one
element, its amount A.

A uniform elongation involves four elements (e, I, m, n),
of which however only three are independent, in virtue of the
relation

P + mr + n" = 1 .
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A simple shear involve seven elements (or, 1
,
mv 71^ 1.2 , m.,, /?.,)

of which only four are independent, in virtue 01 the relations

119.] If then we wish to represent the most general pure
-train as the. resultant of a dilatation, an elongation and a shear,

we may subject these to any too arbitrary conditions, and the

proMem is then completely determinate.

For example, we may assign arbitrarily ( ////>/

(i.) The direction of the elongation.
!ane of the shear.

.) The inclination- >f the axi- of elongation to the azflfl

the shear: e.</., we may take tin- elongation perpendicular to

the plane of th-

amount- of tlie three -imple strains.

120.] As examples of assumptions which n -trict the type of

the strain, we may take the following :

It' we assuin.' tin- -train to be compounded of any
nuinlx r nf shears alone, we assume the volume of every portion
of the body to remain unaltered. Tlii- in\.l\ ( - thr relation

e +/+ g ^ 0, or D = 0,

anl tli'- Klnngation and Compression Quadrics are either con-

jugate hyperboloids, or cylinders whose transverse sections are

conjugate rectangular hyperbolas.
(it.) If we assume th.- strain t<> c"ii-i-t >t' a <lilatati<>n ami

a she;; it iiiilrp.-n-l'-nt elongation.it i-.'\il.-nt I'n.m con-

ttions of symmetry that the axes of the shear will coincide

with the principal axes of tin. and the Elongation
Qua<l i rred to these axes, will take the t,,ini

H j
ihe circular -

t which

thu.s c. to have ortho-

.al circular Bed
Th. Boo inv..lved between the invariants is

easily found,

S^-
J7A'
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(iii.) If we assume the strain to consist of a uniform dilata-

tion and an elongation only, the Quadric becomes

f
A
+ ew^ + i

I Q + e
j

+ <*w + C )
=

A?
x* /

which is a surface of revolution.

The relations assumed in this case between the standard

components (Frost. Solid Geometry, 373) are known to be

or, since the cubic has two equal roots (Todhunter. Theory of

Equations, 173)

_
47)

_ DK(D* - 1 8/)
- 27K 2 = 0.

Change of Axes of Reference.

121.] It is often convenient to change the directions of our
axes of reference, and it then becomes

necessary to obtain the specification of the

strain referred to the new axes in terms of

its original specification.
Let Ox', Oy', Ozf

be the new system of

axes, their direction-cosines referred to the

old system being given by the annexed

schedule, and let the two sets of equa-
tions

Ps

.(17)

..(57)

represent the same strains referred to the two systems. We have

x = X^' + X
2y' + X

3
z'}

y = fax' + pjy
1

+ pf! \
(C.)

i \U =
A^U + fl]V + V^W

v =
X.^u + p^v + v.2w V

M)
(D.)
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In equations (D.) substitute for -heir values in terms
: from (17); tlu-n substitute for 8, //, : their values in

t'.-rms of from (C). We thus obtain u'
t v', w' in terms of

/
,
2 and comparing th-,. r.-ults with '~O we easily find

' = V' +
- VyA

(58)

H'terogeneous

p to this point Y always
uii'l.-r di :i to be H'-iiiM^-nrMU-. and its

to be constant t

iicep-
f ("iitiiiiioii^ if tin- o.ii>tit

>f a bo<ly l'-
intiniti-ly tin- ^n with tin- irtin.-in.-iit of

J.ovsihlr to of a

;i of tin* h. Duality fr>m tlir

,-t M niiniitr that any al

-hall be
coastant tin it.

Thus it apj. 1 the pr< hich wr
have proved to 1- ' //// l><></>/, to a small homo-
Tenecr will also hold go> yliout a>

*nn thr is,
omogeneous)

strain of that

nt lur to a small Heterogeneous Strain.

] Strain-Components. The stai -nponents of

;ain will, of coin to point of tin- body.
'ii f..r thrin. aii'l hy comparing

'(nations (1), (9^, mu>t make
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and, by 103,

"du 'dv 'dw \

'dw 'dv

'du 'dw

'dv 'du
C == aSn ^T" ~J~ O3 ox dy

1
~~

'dy

~
'dz

/}

^** ^w

'dv 'du

'du 'dv 'dw
' + +

(59)

If we give these components their proper values at any point
P (x, y, z), the strain of an element of the body described about
P will possess all the properties discussed in 59-121, the

various surfaces involved being, of course, referred to axes drawn

through P parallel to the fixed axes of reference Ox, Oy, Oz.

The directions of the principal axes ( 65) and the form and
dimensions of the Strain Ellipsoid will of course vary from point
to point of the body. The Strain Ellipsoid must now be defined

as the ellipsoid into which a sphere of unit radius and centre P
would be strained, if the strain-components had throughout the

sphere their actual values at P.

Irrotational Strain.

124] The conditions that the strain may be irrotational,

i.e., that every element may suffer pure strain without rotation

of its principal axes, are, as before, ^=0, 9.2=0, 6
3 Q, at every

point of the body.
Thus, by equations (59),

'dw 'dv

'du 'dw

'dv 'du

'dx~'dy

.(60)
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The>e are the well-known conditions that

u . dx -r i' . ill/ +W,

may be a perfect Inferential of some function of a-, y, z.

Denoting this function by we have

udx + vdy + wdz = ci<f>,

and therefore

u =

The function may be called by analogy the Diaplacement-
of Irrotational Strain. It may be any continuous

angle-valued function of the c-nnnlinates. except that (siiu-i- tlie

i- -upposed fixfl; it must not contain any terms of the

fin!

Equations (59) may now be written

(61)

re, as usual, the symbol y* denotes the operator

comlition t -at inn may every- ani.sh, or

that t ay consist of distortions (shears) only, without

of any element, leti

|

Resultant Displacement. If we writ.

.lisj.lae- The
t inn-cosines of thi> <li-{>lae.-ii!riit ',v/U,w/U.

yrtem "f -urfaces w!

ions are formed by equating to 1 ill', rent constants, and
whirl: '">', tli'- <lirer-

tion-cosines of ejuipot-ntial surface passing
also u/U, v/(7, w/U.

1 1
-

i M t ach point of the body J<uced along Hie normal to

./// the point.

^ain, if through P we lraw an elcim-ntary straight line dv
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normal to the equipotential surface through P, and if the coordi-

nates of its extremity be x+ dx, y+ dy, z+dz, we have

w
. dz-,

Udv = udx + vdy + wdz

= ^.
Hence the amount of the resultant displacement at P is

126.] If is a homogeneous quadratic function of (x, y, z) it

is obvious from equations (61) that the strain is homogeneous
throughout the body.

The equipotential surfaces for Homogeneous Strain are there-

fore concentric Quadrics.

By Euler's theorem on homogeneous functions we have in this

case

= ex2 +fy
2 + gz

2 +

Thus ( 22) in pure homogeneous strain the equipotential
surfaces and elongation quadrics are identical.

It has already been pointed out ( 84) that in this case the

resultant displacement is normal to the elongation quadric, and
this agrees with the result of the last Article.

127.] Lines of Displacement. Since in every irrotational

strain the displacement of each point is normal to the equi-

potential surface through the point, it follows that, if we draw a

system of equipotential surfaces throughout the body, the dis-

placements of all points in the body will take place along a

system of curves which cut these surfaces everywhere orthogon-
ally. These curves are called the Lines of Displacement.

If ds be the element of arc (drawn in the positive direction of

the axes) of the displacement-curve through P, we evidently
have

1 dx_\ dy_l dz

u ds~ v
'

ds~ w '

ds*

or
dx dy dz

3< c)< ?)<f)

"dx 'dy *dz

The function must therefore always be such that it is

possible to draw a system of continuous curves cutting orthogon-
ally the system of continuous surfaces defined by <p

= constant.





PLATE II.

\

Equipotential Cylinders and Curves of Displacement in

SIMPLE SHEAR.

(Page 59.}
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A> a >imple example, take the ease of a shear in the

plane of >/- This i^ a strain in two dimensions, and the equi-

potentiaf surfaces are the rectangular-hyperbolic cylinders

yz = constant.

Th itl.-ivntial .-^nation of the line of displacement
through J' i>

dx di/

IF" *y'

They are therefore the orthogonal rectangular hyperbolas
ir i ven by

x = constant I

y*
~& constant

J

'

See Plate 11., in which the dotted lines ivpre>riit the curves of

displa re lin--> t ;ip.tential

cyli:
The din-ctins in which li.splac-ui.-nt takes place nlnuv/ the

curves in the four quadrants are shown by the arrows.

'

\

It will he useful tocollec- nils a>siii M rd hy
.in van. .11- results when one, and one <>n t tlif

.timi.s

whir! i suppu- <-.,;
will i tin- dis-

lody (it

it IM-

all.-l to thr plane containing',
t

and ...

longation .iuadrie> }..

'ii. and i ty be said to be wholly in two
limensioiiA,

I before, use the nota' tan.

10 plane of the strain, th.-

nn

-*(.-%i
-(.ttf)X4.

. if ti IK; pure,

J

elongation of th-- li
-

in th- plan-- uf ./ y, and

naking an ai>. hy
< = e cos2f +/8in

2
^ + 2s sin ^ cos ^ . (1 8')
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and the angle \f/, into which
\fs

is altered by the strain, by

cos
\j/'
=

(1
- c + e) cos ^ + (s 0) sin ^ "j

,..
,.

sin ^'
=

(s + 0) cos ^ + (1
- +/) sin ^ j

"

The circle a;
2
+2/

2=l becomes the Strain Ellipse

l .................. (20')

e,
and e

2
are the (greater and less) roots of the discriminating

quadratic

and the angles made with Ox by the corresponding Principal
Axes are given by

.(29')

j, \[s2 being the roots of the equation

tan W =
f .................................... (64)

The graphic properties of the strain depend upon the Elonga-
tion and Compression Conies and the Position Ellipse, which are
the normal sections by the plane of the strain of the cylinders
into which the respective quadrics degenerate.

If e
l
and e

s
be both positive, we have the elongation ellipse

or

If both negative, the compression ellipse

or

If of opposite signs, the conjugate elongation and compression
hyperbolas

or

In the latter case, we have two planes of no elongation
through Oz, cutting the plane of xy in the lines

ex2 +/2/2 + Zsxy = |
or c

-
.......................... (25')

which are the asymptotes of the above hyperbolas.
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The Position-Ellipse

or .(33')

If then r be any radius vector of an Elongation or Com-

pression Conic, and p the perpendicular from the centre on the

tangent at the extremity P of r, the elongation e of OP is given by
< =^>2

(23')

and the resultant displacement of P will be along the normal at

P, and its amount will be B/p.
On the other hand, if P be on the position-ellipse, and /-andp

have similar meaning-. ''-/' will !< -trained into the portion of p,
and its new length will l>e C*/p.

In other words, tin- displacement of th extremity of any
radius of the elongation cunie i- perpendicular and proportional
to the conjugate radius; while any radius of the position-el lipse

is, after the strain, perpendicular and proportional to the con-

jugate radius.

no elongation parallel to Oz, the eul.iral

dilatation of the body is equal to the "areal <lt/<tt>it'nm of any
plane area parallel to the plane ol in. Thus,

A-+/= !
+ ,,. (35')

condition- that tin- -train may be an areal dilatation.

uniform Kfl i, are

(40')

The conditions that it may be a simple elongation are

,/-a-0)

i it ions that it may be a simple shear are

If the strain be heterogeneous

3* 3u

If tli.- -train be everyv.li' P iirotational

udx + vdy =
d<f>,

^placement-potential.
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The equipotential curves are given by </>= constant, and the

curves of displacement are the orthogonal system.
If there be no dilatation anywhere, satisfies

(61')

EXAMPLES.

N.B. The factor a is introduced to denote a small quantity
whose square and higher powers may be neglected. The expres-
sion

[
e>fi g, s

i
s
2 >

SB\

is used to denote the specification of a strain ( 111 et seqq.)

1. Refer to its principal axes the Elongation Quadric of the

strain

{3a, -a, -a, 0, 0, 2a},

and hence show that it consists of a simple shear of amount 6a,

together with a uniform elongation of amount a perpendicular to

the plane of the shear.

2. Show that the strain {0, 0, 0, a, a, a} consists of a uniform
cubical compression and a uniform linear elongation, each of

amount 3a.

3. Show that the strain {a, a, 0, a, a, a} consists of a shear

of amount 2x/3, a linear contraction of amount a perpendicular
to its plane, and a uniform cubical dilatation of amount 3a.

4. Show that the strain {a, 0, 0, a, a, a} is equivalent to a
uniform cubical dilatation of amount a, together with three shears

4 4
in orthogonal planes of amounts 2a/v/2, + a, -~a', the shears

o o

having and Orj, Or] and Of, Of and for their respective axes.

5. Prove that the strain {<rcos2#, -o-cos20, 0, 0, o-sin2^}
is a

simple shear in the plane of xy, the axis of elongation making an

angle with Ox.

6. Hence show that the strain {e, /, g, s
l}

6-
2 , sj may be

resolved into the following components : a uniform cubical

dilatation of amount (e+f+g)', a simple shear of amount

*/s
'i

2+K/ #)
2

in tne plane of yz, the axis of elongation
making an angle tan~ 1

[3s1/(/- g)] with Oy ;
a shear of amount

?(g
-

*0
2 in the plane of zx, the axis of elongation making
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an angle tan -1
[&?, (g e]] with Oz

;
and a shear of amount

+/sj+\ef)* in the plane of xy, the axis of elongation making
an angle t*a- l

[38J(e -/)] with Ox.

7. Defining the term " areal dilatation
"

in analogy with
linear elongation and cubical dilatation, show that in a homo-

geneo D a system of qiiadrics can be described with the

origin a^ centre such that the areal dilatation of any section

I inversely as the square of the perpendicular radius vector.

8. Prove that all planes in the 1-ody Millerin^ a i^iven areal

dilatation o have for their normals the generators of the cone

(8 -/-</)* + (5
-

</
-

e)y
2

-f (3-' / = u.

hat in the case of 119 (///.', the elongation 1 .in-

perpendicular to the plain >t' tin- shear, and all three principal

-uppo>.- . :i of tin- -lon-a tion

h tin: L >irain Kllipsoid ii'

,
+ e,>2e2 ;

and show that in tlii> case

10. Show that a simple elongation e parallel to Ox may be
r< p!

^ together with two shears, each

o amount , having
' and Oz resj f

for

t ei

11. What t* the strain represent 1 l.v tln>

lurllt

n = cuyz ;
r wax to = t

1'J .'1 tip- moments nn.l pmdurN nf im-rt ia

:ially homo^- ^I't.-r in.

>ing the strain represent* .;

by conihinim: - - (29) an<l -'ill that if one

the prh .es at each i>int i^ nnnal to tin- n|iii].Mt-

iac-
!

i tin- point. icr

here r1 ^ md o are 1 / i- any
vanish at the origin.
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[The equations may be written

1 ^ = 1 ^! =A W
2u' tx 2v' ty 2w' tz

Thus U.dU=\.d(f).
Ass\ime -A. . dU=\ . dta.

Then U . d(a = Ad(f>, where A is a constant

.'. when
* = we also have

jf-g.-ff-*
Thu. *-*(>.

Squaring and adding

The only real solutions of this are

whence, etc.].

14. Prove that in any strain which consists of a combina-

tion of any number of shears (homogeneous or not) in the plane
of xy the displacement curves are given by

z = constant
"(

X = constant )

where and x are conjugate functions of x and y ( 245).

15. Prove by equating the values of X', //, v given by equa-
tions (19) to \, /UL,

v that, in any homogeneous strain, there is

always one and may be three straight lines through every point
of the body which retain their initial directions.

Show that the elongations in these directions are the roots of

the cubic

Hence show that, when all the roots of this cubic are real,

these three directions are orthogonal, and
X
=

2
=

8
= 0.

16. Show that the integral

J"(udx
+ vdy + wdz)

taken round any closed curve in the body is zero if the strain be

irrotational, and is otherwise equal to
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wher- an element of /<// surface drawn within the body
and having for its ed^e the given closed curve; X, /z, y being the

lies of the normal to the element.

17. Show from equations (59) of 123 that the integral

taken over any close<! surface drawn within the body, is

identically zero.

A1TKMUX I.

On the Geometry of Strains.

All physical juantiti- may he broadly clarified into two

sategories called resp Scalar and Vector. A scalar

quantity involves no conception lut that of magnitude, but the

chara< ,f all \'-ctor> i> that th.-y involve tlir idea

:t of magiiitulf.
Tliis broad dUtin<-ti.n inclu-l.^ iind.-r tin- lu-ad i' 7ectOT8

al classes t' i

juai!
1 m one an<>tlirr in their

degree of definition. a> \v.- -hall
j.r.

'ir in. They may all

be assigned to one : linear an / vectors

which wu .shall -liscuas separately.

,.

Linfur

jjlacement, Velocity, Elongation, Force,

:m-d lin.-ar vector, which may be called

::
otor, invoivi-. tli.- sp& characteristic elements.

magnitude, which nmonwii >, and
: -.sed by a scalar or numerical factor inultiplyin

pureK ,,r din-ct.-d factor, and d-n..tii. bio to an
arbitr, .-t<.r with which it U in all its other

nroj> al. This factor i^ called its Tensor.

direction, 01 I parall.-l .straight-

alonir any on.- uf which it may be supposed to act.

.ay of acting along these lin-s. which is analytically

expressed byi ion as to its ^///r///v//-/// >/';///,

iir_r in ive, a
in tht- du osiderea negative,

the two v.-ct- ntical.
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(iv.) Its position in space, or the particular line of the family

along which it may be supposed to act.

(v.) Its origin, or the particular point in this line from which

it is to be reckoned, or at which it is to be applied.
The following are good examples of motors :

(1) A given displacement of a given point in a given direc-

tion.

(2) A force of given magnitude and in a given direction acting
at a given point of a body.

The component displacements, parallel to arbitrary rectangular

axes, of each point of a strained body are of course vector quanti-

ties, but if the body be left free in space they are highly imperfect
vectors

;
the reason being that such a strain does not specify the

absolute displacements of points in the body, but only their

relative displacements in given directions.

Consequently we are only given (ii.) } (m), and (v.),
while (i.)

and (Hi.) are quite indeterminate.

Vectors of this nature, which can be taken in either way so

as to satisfy the specified conditions, are called Dipolar.
If, however, we determine in any abritrary way the absolute

displacements of any one point in the body, it is obvious that we

thereby raise the component displacements of all points in the

body to the rank of perfect motors. The simplest condition to

impose is of course that one point in the body shall remain fixed,

and since this assumption cannot affect the strain, while the

analytical advantages of increased simplicity and definition are

so obvious, we shall always avail ourselves of it.

As an analytical example let us take the simple case of a

uniform elongation of all lines in the body in the direction Ox.

If e be the amount of the elongation, and x
lt
X

3,x9 ..., #/, a;
2', x^. . .

the initial and final abscissae of any number of points in the body,
the only condition to be satisfied is that the projections (o;a o^),

(o5s ojg)... upon Ox of the distances between these points are to

be increased in the constant ratio (1 + e).

We thus obtain a group of equations of the form
a5
2

'

-o?
1

/ =
(l + e)(x2 -xl )

or u
2
-u

1
=

e(x2
-
xj.

The solution of this group is of course

u - ex constant,

or u = ex-C,
where the constant C may be of either sign and of any magnitude
whatever.

Let x', x" be the abscissae of those points of the body which
are nearest to and farthest from the plane of yz.

(i.) If we take C< ex', u will be positive for every point in

the body.
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If we take * ,'' < (' < <-./
,
u will be negative for all points

of the body between tin- plane^ j- = x' and x C/e, and positive
for all points between tin- planes x = C/e and x= x".

) It' we take C will be negative for every point
in the body.

All these solutions obviously ^atisfy the conditions of the
in.

It is clear that (ii.} aim units to regarding a plane in the body
as fixed in space namely, that for which x = C/e. If we take
this for the plane of yz, C=0, and the equation of displacement

mes

and '/ is now a perfectly defined motor.
The simplicity of this solution point* to the advantage (much

greater of 'n more com)*' ding one point
in the body as absolutely fixed, and taking that point as tin

arbitrary axes of -ice.

Angular Vectors.

(Rotation, Angular Velocity, Couple, <t-c.).

' >st perfectly d -lined otoo of angular
Kotor, we shall c..n*idT a >imple

rotation about a give i {XMiificat ion includes
its magnitude.
[lie direction of it* axis <r th.- din-cti>n normal to the

'

planes in which th- displac-ments take place

Way of 1

l.y an

arbitrary cm: as to algebraical sign (see below).

position '-ular line in tin-

\vn in t .It-lined l.y (//.) which r

It> origin, or the initial position of any plane in tin-

body the axis of rot, ft ire mea>nre the

An ordinary Couple is a gOO'i pN- of an imperfect
Vector, f< . 1-.- mnvi-il about in any manner in its

r any jarallel plain- witho In fact

we can only its magnitude, the direction of it> axis, and
its way.

i as to the way of angular vectors

;us t'ollov,

Taki; iinate axes a eyclical order

-a rotation about an\ the direction
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from that axis which comes next towards that which comes last

in the cyclical order is reckoned positive, a rotation in the reverse

direction being reckoned negative. A positive couple is one

which tends to produce a positive rotation, and so on.

In all branches of Physics but one the directions in which we

suppose the axes drawn, with reference to their cyclical order, is

quite indifferent
; but, in

order to secure uniformity of

notation, it is desirable to

adopt in all cases that already

employed in Electromagnet-
ism, in which the positive
direction of rotation about

either axis bears the same
relation to the positive direc-

tion of translation along it as

does the rotation to the trans-

lation in the case of an

ordinary
"
right

- handed
"

screw (Fig. 4). This is also

sometimes called a " counter-

clockwise
"
rotation, from the

fact that if one of the co-

ordinate axes be drawn out-

wards from the centre of the clock-face, the positive direction

of rotation is contrary to that of the hands.
Now if a body left free in space is subjected to a strain

accompanied by a rotation of given small amount & and with its

axis in a given direction (X, /z, v) it follows from the purely
relative character of the displacements specified in the strain that
those portions of them due to the rotation will be given (like
those previously discussed) by a group of equations of the form

i0
2 -**>!

=

the general solution of which is
'

u =
[jlz

- v&y + A I

v = vtix - Xttz + B I

w = \ly /ji^lx + C I

y

where A, B, C are purely arbitrary constants.
In other words, a small rotation of the body as a whole about

any axis may be reduced to a small rotation about any parallel
axis, by the superposition of a suitable linear displacement of the

body as a whole.
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Such a displacement doe- QO< atfect the strain, and therefore,
so far as the conditions of the strain go, the position (iv.) of the

tation i s completely unspecified, and with it the
of the component displacements.

II' -i ic. . as before, in order to transform the strain-rotation

into a re Rotor, we assume the point of the body coincid-

iiiiat.- origin to remain at rest; an assumption
which clt-arly amounts to determining that all axes about which

rotat.- muxt pass through the origin.

AITKND1X 11.

implf tiniti- :i-isUof a uniform elongation of all

in the bodv parallel to a ace<>mpanied by a
CMHtraction ii. of all lines in a

perpendicular
lines parallel to inin^ their initial lengths

mate
Thus lines of unit length parallel to Of, Otj, Of respectively

become lines of lengths a, 1, 1 a, wh-re a is a finite quantity

greir unity ^ 1 th.- Ratio of the Shear.
i its parallel to th.- principal axes are given by

it' tli.- p..int <i. >;, O I..-
di-j. laced to (f, q,

f/of = Wi-! { L

Thus thr r.|uati..n
, ,f tl,,- Strain Ellipsoid La

ts --mi -axes are o, 1. a Fig. 5 represents the princij.,il

.:iid .f the unit sphere
which it i> derived; th- mean axi- (\\hieh retaina its unit

plane of th- pa:

the radiu- .f th.- -].h.-r,-
and th- mean semi-axis of the

re b.,th ..f unit l.-nirth, tin- CMIIIIIIMII BectlODfl of the two
Circular Sections of th- .-llipx.id.

Tl, be fcwo : irhoee lin<-s of inter-

D with th- plane of the paper are the common radii A'OC',
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Since these sections remain great circles of the sphere and

therefore retain their original form and dimensions it follows

from the properties of Homogeneous Strain that the two systems

Fg.5.

of planes in the body parallel to the circular sections of the Strain

Ellipsoid are Planes of no Distortion.

The equations of these planes in their strained positions are

given by

or by f'af' = 0.

Consequently their positions in the unstrained body are

given by

Let these cut the plane of the section in AOC, BOD. Then

The effect of a simple finite shear is therefore to change that

angle between the two systems of undistorted planes which is

bisected by the plane of 7 from 2tan~* a to
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The angle AOA' through which any one of these planes is

turned is obviously

It i^ clear that any rhomboidal prism, such as PQRS, bounded

by undistorted ph. -trained into an etjual and reciprocally-
similar rhomboidal prism PQ'R'S', by a simple interchange of

the aiyleN and dia^'iuiU ,.f it> tran>\vr>r M-etion.

To represent the effect of a finite shear by a Finite Shearing
Motion we mu.Nt th :

fore take any such

rhomboidal prism, and

holding fixed one of

it> mrsial planes BOD
cause all the undiN-

torted planes of the

Name system to m<>\v

parallel to it, each

through a distance ]!-
: mal to its

perpen-
diciL from

until

: lioTll-

has been changed
int ;>lementary

F g. 6-

jRS, PQRS' (Fig. 6) be th- initial an.l final forms of

-10(7, A'OC
1 be thr initial and final ]>ositions

ir>ial j.lane; ON being perpen< lie ular to

\\'. liave

tan-*l(a-u

Now if A IM th- Amount of the shearing motion (or tin-

rati. !' th- -li-phu.m, iit of any sheared plane to its perpen-
dicular 1: lixed plane),

A-AA',<>.\' - -i-\

Thua

Again.

Thu>, finally. w- Ma that a simple irrotational >h.-ar of ratio

v b-
r.-j.hiccd by a >li'-arinur nmt i- n of amount A = <L a~

l

,

.'. ith a back wan 1 rotation of th- 1- K liol<- through
an angle

t;n a- 1

).
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To apply these results to the limiting case of an infinitely
small shear ( 95-98) we have only to write a = l + s,

so that a
- i = (l+s)-

l = l-s.

Thus, A =
2s, and the rest follows.

The Analytical Equations of a finite shear in the plane of

xy whose axis of elongation Og makes an angle with Ox may
be found as follows.

All lines parallel to Og are lengthened in the ratio a : 1, and
all lines parallel to Of are contracted in the ratio 1 : a. Hence
the initial and final coordinates of any point are connected by
the relations

or y sin + x' cos = a(y sin + x cos 0) )

y' cos - &' sin = a" 1^ cos - a; sin 0) )

'

or, if 2s = a - a" 1
)

as' = x .
(a- -f s cos 20) + ^/ . s sin 20 )

y'
= x.s sin 20 + ?/ .

(<r
- s cos 20) J

'

If we put s = &,, cr=l, = j7r, these reduce to equations (vi.)

of 89.

Composition of Finite Shears. It is a curious fact that

although a single shear of any magnitude does not cause any
rotation of the body as a whole, and although ( 88) any number
of infinitely small irrotational shears produce as their resultant
an irrotational strain, yet if two or more shears offinite amount,
each of them irrotational, be applied in succession, their resultant
effect will in general be a rotational strain.

To prove this we will consider two finite shears in the same

plane, whose axes do not coincide.

Eetaining the notation just explained, let their elements be

(a, 8
, a-, 0), (ft s', a-', 0').

The coordinates (x', y') after the first shear of the point
initially at (x, y) will be given by the above equations, and its

final coordinates x", y") by
x" =

x'(<r' + s cos 20') + y's' sin 20' )

y" = x's sin 20' + y'(a-'
- s' cos 20') I

Hence, finally,

x" =
x[a-<r' + 88' COS 2(0'

-
0) + (a-s' cos 20' + a-'s COS 20)]'

-
y\88' sin 2(0'

-
0)
-

(a*' sin 20' + a-'s sin 20)]

y" = x[ss' sin 2(0'
-

0) + (a-s' sin 20' + a-'s sin 20)]

+ 2/|W + as' cos 2(0'
-

0)
-

(a-s' cos 20' + a-'s cos 20)]



ANALYSIS OF STRAINS. 73

To interpret these equations let us suppose the point brought
Kick to (./,

t
v\ and displaced to './'", </'") by an irrotational shear

s 1\ 0), and then
'

brought t ) by a simple
>n of the body through an angle S in the positive direction

about
W.- shall then have

x'" = x(2 + S cos 2<) + yS sin 2< )

y" = xS sin 2</> + >/(^
- S cos 2<) J

'

8 )
.

And, tinally.

y" = x{^sin8 + ^8in(2<f> + 8)] + y[^cG88-Scos(2^ + 8)]

In nrd.-r that these two values for (of, y") maybe il> ntiocd

or all values of x and y we mu-t 1

5-

-i- 6) -<r*' coe 2^ + <rcos 20

6' sin (2c/> + 8) = <r' sin 20" + <r^ sin 16

Squaring and adding tli- l! of these

>i Having and adding the la

$-
Thus ^-^(a

1.

1(. <1 identittti give onupatihle values I'm-

and 2.

It i'<>ll> finite shear> in tin- >ame jilane, \vli)--

'"ineidr, are tog*-'
nt to a finite shear in

finite rotation about an a\i> pi-riM-ndicidar

Th property can easily be shown geometrically in the

toe two" shears have one system of undistorted

Don.

. ton, and let AB be
held ti\.-d. I "/'. I..- the elongation-axes <!' the two

. ) jM-rprndicular to AB.
Tin- fir will l.ring J\ to I\' where I\1\'

= 28.0N,
and ;
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The second shear will bring P to P
2

'

and P/ to P/', where
P

2
P

2

' = P/P/' = 2s' . JV, and angle P2
OP

2

' = tanks'.

The resultant of the two irrotational shears will therefore be

equivalent to a shearing motion of amount 2(s+ s') towards the

O

Fig. 7.

B

right hand, together with a counter-clockwise rotation through
an angle tan-1

s+ tan~V .

! S + S'" 1--
,.

1 -ss
= tan

Now if OP
3
be the elongation-axis of a single shear which

will restore P/' to P
1?
the same shear will bring P3 to P

3

'

where
P

3
P

3

' = P^/' == 2( + s') . 0^, and angle P3
OP

3

' = tan" 1

^+ s'). To
make this an irrotational shear we must therefore give the body
a clockwise rotation through an angle tan~ 1

(s+ s').

Hence we see finally that the resultant of the two irrotational
shears of amounts 2s and 2s' is compounded of a single irrota-

tional shear of amount 2(s+s') together with a counter-clockwise
rotation through an angle

= tairt + tan"V - tan~ J

(s + s')

a_ tan-f
Ll +ss



CHAPTER 111

ANALYSIS OF sS.

>.]
We original!;. 1 BtflMB (8 28-30) as the clastic

1 into play between the molecules of the body to iv-i-t

:i-placei: Bulea produced ly

application of , forces. We ha\v now to Mil^titute a

c\\ di -tinitioj; ,-.ss ( 46) adapted to our conception of

itinu.iu> mar
It has already been stated ( 3) that there i- reason to l..-li.-\ .

at the forces exerted upon one another by the molecule-

distances between them are exceedingly
ni it.'. A l

.y external forces mu-t therefor.-

pposed 1. lilil.rium by stresses between ;oiis sets
'

passed on, as it were, in t!:-- form of

el led l.y

rces in t: its length, uniformly dMrilmted ,

iy be regarded as made up of extremely thin layers of

in planes perpendicular
to its length. The tension i-

n pa ed ..n in
' from layer to layer along

! mean- the equal forces applied at the

ultimately placed in opposition to on- another.

;.] Definition of Stress. Tim .ing to our ideal

ntin' breM a- /// mutual
I urface drawn in th<

yer* itientary thickness, immediately sepa,

Th la- positive \\ ; of the nature
>f a t> nd negative when a tin

intensity of th. Mn-ss across any surface is measured,
vh-n nniform, l.\ Q per unit area 'e\.-rt.-d upon one

r imni'-diatcly in contact

ide.

]oint to jxjint of tin- -urfac-. th-
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intensity of the stress at any point P is measured by the tension

which would be exerted across a unit area described about P in

the surface, if the stress had at every point of that area the same
value as at P. In other words, it is in all cases measured by the

ratio which the tension across any small area described in the

surface about P bears to that area, in the limit when the latter

is indefinitely diminished.

In accordance with the usage of Hydrostatics, we shall

reserve the term Stress for intensity of stress (force per unit

area), and employ Total Stress to denote the algebraical sum of

the tensions across all portions of a given area.

A positive stress (tension per unit area) is called a Traction :

a negative stress (thrust per unit area) is called a Pressure.

132.] Normal and Tangential Components. The stress

across a surface may at each point be normal, tangential, or

oblique ;
and since in the latter case the stress (being merely

a force per unit area) can always be resolved into a normal and
two orthogonal tangential components, we need only consider

the former two.

A positive normal stress across a surface is then a normal
traction between the portions of matter separated by it. The
function of such a stress is obviously to resist normal separation
of these portions, or, in other words, to resist elongation of the

neighbouring portion of the body in the direction of the normal.

Similarly, a negative normal stress or pressure tends to resist

contraction, or negative elongation, in its own direction.

These are also sometimes called longitudinal stresses.

A tangential stress, or the component in the tangent plane
of the stress across a surface at any point, clearly resists any
tendency of the matter on one side of the surface at that point to
slide relatively to the matter on the other side, in the direction of
the tangent plane. The function of the tangential stress is there-
fore to resist shearing motion, and for this reason it is very
often called Shearing Stress.

133.] Total Stress. Stress being a purely mutual reaction
between two portions of matter (compare 28-30), it follows that
the stress exerted by any portion A of the body on a contiguous
portion B, across the surface which separates them, is precisely
equal and opposite to that exerted by B on A.

The sum of the two is therefore always identically zero, and
similarly, if we suppose the given portion A divided by any
number of surfaces drawn within it into smaller portions, the
mutual stresses between these must have an identically null
action upon A taken as a whole.

The Total Stress exerted on or by any given portion of the

body is therefore simply the total action exerted across its
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i its outer layer and the matter immedi-
. in contact with it.

Til'- suit of course holds for the entire body, so that

tal Stress >n the body is -imply the total action exerted

its bounding Miiiace by matter in contact with that surface,

whether homogeneous with the body or not.

esses applied by external agents at the bounding surface

of a body are called Surface Tractions
; they are measured, like

all oti applied per unit area, and may be

>) or negative (pranif**); and either normal,

ial, or oblique at each point.
KMT in-tan tr.-ss on a solid body immersed in a

.nt iluid at uniform hydrustatic ; p is a uni-

form normal Surface Traction ( p) per unit area: and the

Total Sta n the body is ( pS) where S is the area of its

The two Aspects of Stress. We have hitherto

Stn-ss -imply as offering resistance to Strain: it is

however, from its reciprocal character, that it may aU>

regarded fr^m another point "f view namely, as pro. Im-in -

ataining

imply
amounts to stir ess exerted by the

! of a body on the contiguous portion B may be con-

to its effect on A or to its effect on B. In

resists furt: in ..f J, and tends to

to it-- natural state: whilr in tin- lati

i of J? and to prevent it i'mm r.-turnin^ to its

equal and opposite stress e.\

;ise the strain of A, and dim ini-h that

ill lecome quit.- cl.-ar if we coii>id.-r a simpl.- example;
:iiif>rm bar longitudinally stretc'

atter, of i'i-m-ntary tliirk-

nal sections : call them A,B,C. T
faces separating /*' fr-m A and '

i, whil- th.- strain eonsists of an ioeTOMe in the

-.SB of each lay.-r, dm- to i

on A and Celt ai 1 y f>-nd to

h can only be done by diminishing
% thickness re tends to diminish th.

s rain < ..ih.-r hand exerted

I

by A and t
'

in th. two opposit.- din-- .d to in
I:.

I::"..] Interpretation of this Distinction. These
met: ,

pi.int.s
nf \ i.-\s

V hich wi- may appmarh th- >ul;'
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If our object be, as in Chapter I, to investigate theoretically
the physical effects of Strain, especially with reference to the

increase of energy of the strained body, our most obvious method
is to imagine a given state of strain produced, to calculate the

stresses called into play to resist it, and hence the work required
to be done by external force in order to overcome these resistances

to any required extent. Our attention is fixed upon the fact that

stresses are only aroused by departure from the natural state, and

hence Strain and Stress always appear to us in the relation of

cause and effect. This is the physical point of view.

In practice, however, when we deal with actual bodies, our

only method of producing Strain is by the application of external

forces, and principally of Surface Tractions or Pressures, which

( 133) are simply boundary Stresses. Engineers in particular,
who are chiefly concerned with the capacity of materials for sup-

porting shocks or continuous burdens without permanent set or

rupture, necessarily obtain all their working data by this experi-
mental method, the weight of the load being continually increased

until the limit of resistance is reached.

The object of our theory being to afford a guide for practical
work, we naturally adopt the same point of view : we therefore

regard the applied forces and Surface Tractions (which are under
our control) as the subjects of

eobservation, and we require to be
able to calculate the system of stresses which must exist through-
out the body to balance these opposing forces, and hence to

deduce the strain produced by them.
This may be described as looking at all the phenomena of

Strain from an outside point of view. Each body, or portion of
a body, is regarded, not as an agent opposing strain of its own
substance by the exertion of stress, but as passively yielding to
the stresses exerted on it from without. This is the mechanical
point of view.

We shall therefore make a distinction between the Stress
on the portion A, being the action exerted on it by the

surrounding matter which together with the applied forces on
A produces and maintains the state of strain, and the equal and
opposite Resistance to Stress offered by A, which balances
the stress so long as equilibrium is maintained.

136.] Applied Forces. Besides Surface Tractions or Pres-
sures bodies may ( 4) be strained by forces such as gravity
which act directly on every portion of the matter of which it is

composed.
These are variously known as Impressed Forces, Applied

Forces, or Bodily Forces, to distinguish them from Surface
Tractions. Their intensity at any point of the body is measured
by the force per unit mass on an

indefinitely small portion of
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the bo.lv havi- :\vn point for centre; and, when not con-
stant or zero throughout the body, they are assumed, as in

mini i / i'rom point to point, and to be

ev.-rywh-

137.] Continuity of Stress. In a body under continuous
and finite (or zero) applied forces, the components of the stress

1 a small plane an-a drawn in a given direction through
various points of the body must also vary continuously from

point to poiir
v are constant).

For ii v -mall plate of matter in the interior of a

bdy in equilibrium under applied forces of finite intensity.
led by parallel plane faces separated by an indefinitely

small distanc. >nents of the applied force on the plate
will be ultimately of the same dimensions as 8, and so then-fore

tli.- diti'.-r.-nces between the equilibrating stress components

i infinitely small change of position, therefore, of a
sim. 11 n in a given din-cti-.n. the component^ !'

the stress acro-> it ii \ by intinit.lv small quantities of

the sam- diin- ? mu-t !> continuous functions of

th.
i

a. It also foll.\v- that tin- stones across

tw .

npj,.
.-s of an el. -in. -lit of the body must both

be tracti.ii> .r 1 th pressures, unless the stress is zero aero-- a

pa- ill within th-

General >ns of Equilibrium.

138.] Equilibrium of an elementary rectangular
pa allelepiped. I.- 1 /' be . in tin- substance <>!' tin-

bo y, whose Co<".nlinat.-> ; to arliii 'an^ulai- azefi

ar (./ Tl.p.u. parallel to these

ax s.

Describ,- th.- .-I.
'<3pine<l KFdll.l 1\ I.M . bavin--

its centre at J\ and its -di:^. of l.-n-jt
1

pectively,

pa all.-l T

Let th. plan.- ,t the faces of the parallelr-

pil ed < I> Aff}J)9 A^BfJ)^ resp. cti\ . 1 v

8).

Since the volum.- oi arallelepiped and th areas oi

fat ' \ and tin- ii 'f tin- applied
foi * H{on it (if any may be Supposed to ha\.- thrmi^hout its

v ID nd tli.- c(ni])nnent,s
of ^he applied t'..rc.- may be supposed to act at J': .similarly the;

int nsity ..f th.- ^ tress across eacn face may be su]])o>.-d uniform

all ov< ] it and tl ress across each face may be replaced

by a >in'_'le i'
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139.] Let us consider first the stress across the small plane
area AJBfiJD^ drawn through P perpendicular to the axis of x.

Let us assume that it is a traction which we must in general

suppose oblique of intensity Rv sensibly constant over the area.

The total stress exerted across the area between the two por-
tions into which it divides the parallelepiped may then be taken
to be R

l
. dy dz which may be regarded as a single force acting

at its centre P, and of the nature of a tension, so that the force

due to stress on that portion lying on the positive side of the

area acts in the negative direction of the axis, and vice versa.

Fig. 8.

Let the components of R
3 along Px, Py', Pz' be X

lt
Yv Z^

respectively, and let us assume that they are all of the same sign
as ^r Then the component forces due to stress exerted by the
matter on the positive side of the area on that on the negative
side will be X

l
. dydz, F

a
. dydz, Z

l
. dydz all acting in the

positive directions of the axes
;
while the matter on the negative

side exerts upon that on the positive side exactly equal com-

ponent forces in the negative directioDS of the axes.

Now, by 137, these stress-components Xv Yv Z1 vary con-

tinuously (if not constant) for different small plane areas drawn
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in the body parallel to A
iBfl

D
1

that is. they are continuous

function

Hence, since the perpendicolai distance of AJBftJ)^ from
cither of the parallel faces EFGH and JKLMof the element

, it f<>llo\vs that the total stress exerted on the element

3 the face KFCill by the matter on the positive side of it

may be represented by a force art in.: at the middle point of the

ate an-

I

**i*.S>
all acting in th.-

/
tionfl f the ,

Similarly tin- c-.)injMn.-iitN f the force which may he

toactun ' :'-nt at tli- C i' the fae- ,/ /\ /.M, due tt

i hy matt.-r .-n t: ide, an-

- ^ )

!

)

I

in the negative dir.-cti^n- i.f i' 1

:>7). The
; :-ru\vli-ad> in Fi^. S d. :

<

'inponent
J )fC' !' raeh f.v

These force-compoii' leefl ierpen-
icul int to component forces

ar.

^
meni in

I ,nd com-
couples

Z
{

Hid
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140.] Similarly, if the components of the stress across the

small plane area A
2
B

2
C

2
D

2 ,
drawn through P perpendicular to

the axis of y, be X2 ,
Y

2 ,
Z

2,
the total stresses across the pair of

opposite faces EHJK and FGML together amount to com-

ponent forces

9X2

-^~ . dxdydz

2

3jf
- dxdydz

in the positive directions of the axes, and component couples

JT
2

. dxdydz

in the negative direction about Pz', and

Z^ . dxdydz

in the positive direction about Px'.

Lastly, if the components of the stress across the small plane
area A

3
B

3
C
3
D

3 ,
drawn through P perpendicular to Oz or Px', be

X
3 ,
F

3,
Z

B, the total stresses across the pair of opposite faces

EKLF and HJMG together amount to the component forces

^ . dxdydz

"7\V
~o'~" dxdydz

-^- . dxdydz

in the positive directions of the axes and the component
couples

.F
3

. dxdydz

in the negative direction about Px, and

X
B

. dxdydz

in the positive direction about Py'.

141.] Conditions for Equilibrium of the Element. It
is sufficiently obvious that when the body is in equilibrium in

any given state of strain, any portion of it may be supposed to
become rigid in that state [compare 30 (i.)] without affecting
its own equilibrium, or that of any other portion of the body.Thus the conditions for equilibrium of the element under
consideration must be precisely the same as if it were a rigid
body at rest under the actual stresses and applied forces.
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A- it' P be the density of the body at P, and A, V, Z the
intensities at P of the component applied forces per unit mass, it

follows from 138 that the components "of the applied force
on the element may be taken to be

/>A~ .

p&,

and that th.-y may be Mipposed to act at its centre P.

Collecting the iv>u/ last three Articles we see that the

'leiii'-nt i-

'

P

-i

-I

1 to t linate axes, and to component couples

at >ut these axes, reap
Th- conditions of equilibrium of tlu- element are therefore

Dressed by the -ix e<|uati

(1)

. 8

,
*

;< ,;

:

) -0

r,-*i-o
y

{

I ^.] Simplification of Notation. K|iiations r2i will b-

nd our analysis much simplified, if wi- adopt tlie new
n- tation f..rnn-d by writing

/'. )' ft /. /:.

,. .. . ,- y ... .. .. . .

*tm '
.

-\
*\

' '
i

-\
.
= u>



ANALYSIS OF STRESSES. [142.

The general equations (1) of equilibrium then become

,(3)

75- -^
" "

ox oy oz

where X, Y, Z are the components of the applied force per unit

mass at (x, y,z), p is the density at the same point, and the other

symbols are best explained by the following schedule :

The Symbol
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Hence equations ('2) are still very approximately true, and
the equations of motion are

X-,..

r

;

VR
4

In thfM- equations sin.-. an- tlie variable portion
the cn"'r<linat-< !' any jiuint. we may <l>viously write ", i\ w
in-t.-a-l r tin- f.-nn. r will be preferable,

144.] Resolution and Composition of Stresses. The

piantiti--. 7'. ( ra thi- nnrmal and tangential
c injH.: tli'- three small orthogonal plane
a eas drawn thmu^li any jiuint J

}

(./', //, c) of the hody perpen-
d cular to Tin-, fact that these six

fj
lantit tonal invulv-d iii tin- equation
lilibrium 'iiat w0 nut be ftoi6 to ftdoi
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them as our standard system of stress-components, and to express
in terms of them the stress across a small plane area drawn

through P in any direction whatever.
From P draw, as in 138, Px', Py', Pz' parallel to Ox, Oy, Oz,

and cut off from the body an elementary right-angled tetrahedron

PABC, having for its base any oblique plane which will cut

Px', Py', Pz' in points A, B, C, such that the edges PA, PB, PC
are all positive in direction.

Let X, /UL, v be the direction-cosines of the normal to the base, -ft

directed outwards, or away from P
;
then X, /UL,

v are all positive

quantities.
Let A be the area of the base ABC, and p its perpendicular

distance from P. Then pA is the volume of the tetrahedron,
and XA, MA, vb are the areas of the faces PEC, PGA, PAB.

Let F, G, H be the components of the stress across the base,
in the positive directions of the axes. Since the other three faces

are all turned towards the negative directions of the axes, the

components of the stress across them must also be taken in the

negative directions ( 139) ;
these components are respectively :

on the face PBC, P, U,T>, on the face PGA, U,Q,S: on the

face PAB, T, S, R.
If X, Y, Z, p denote the same quantities as in 140, the com-

ponent forces on the tetrahedron will be

G. A + PY. ip&-U.*A-Q.p&-S. vA

pb-T. AA-tf./xA-tf. v

and the conditions of equilibrium

F +

Similarly, if the body be in process of straining ( 143) the equa-
tions of motion are

These equations must hold, however much the size of the
element may be reduced, by causing the plane ABG to move up
parallel to itself towards P. Since then they hold up to the limit,
we may assume that they are also true at the limit, when p
vanishes, and the plane ABC passes through P.
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\Ve have then, whether the'point P be at iv>t or in motion,
three relation-

n tip- component- F, G, H of tin. 1 traction exerted acn> a

small plane area drawn through './, y. c) in the direction (X, yu, i/),

and <rtho^onal components P, Q, Tfc, ,
^* ^

1
4">.] Boundary Conditions. Similarly, it' X, yu, v he taken

to d> ' of tin- outward drawn normal at

any jM.inr
, ,t' the hounding >uri'ace of the body, we may

be an elementary t'-trahnlnm wh^- inner focefl are parallel
coordinate planes, while its outer face Alt* i- fanned by a

,-ular element of the bonndiip.: Mirface about the point

',*).

It' F. tr. H I..- n..w taken t iiip.nii-ntN of the Snrfare

tion at the point, the condition^ ,f e.niilihrium of the tetra-

M iiiu-t ! tli-- same a- thi>- ju^t investigated, and
r

]ir-

ing to the limit in wli: ti-trahedron ino\r-> up
to th ;---si-nt tin- relations which
im xt .-\ist between the componeiits ..f Surface Traction and the

or' lingual Sti-r-CMinj,Mi ill.- vurt'

Tli.- Lf.-n.-ral pr>l'l-m in f ieal Th- i.lasticity

!.'(ft
: lattOQi '' T (4), for the

l"dy. which will also satisfy

C(|
i.'f v point .f the hounding >urf.-i'

Th- >'.hiti'.n will n- |
now the relations

h. w.-.-n Strain and - tind th- altrrati

f in and vnlunie of ;i: . ,f thr l.ody. Thexr relations

W 11 I-- inv.--tii:ated in ti

146.] Equilibrium of the body as a whole. It may be

ol served that th-

tl it ju->t j.roposed 1 ; ii^trihution ,,f Str668

tl rou^hoiit tl. di^tril'iitiou ,,f Aj.j.lird Force
ai d >

; raeti"ii n-juir-d to maintAin it i- aluay^ ul.tain-

al le. For w!
i knOWl) a- funrti'

s.
'j, :, th.-,.

...jiia' ..ppropriatr valu

X Y,/,r i, //.

that

.iid Surface Trac 1

together in

r I., UK i

. | Ext i Dftl : I the only
f< rces which can 1... OOHBldered MN acting upon the l.o.ly as a

v, -loll-, and it follo\v> fmni the 1 I that, when
tl e }>< nilil.rium in a

|
in, tliese two

SAsten tj -t'\ the ordinary
r n-litioj 'lil.rium of a rii'

;
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We ought then to be able to show that the values of these

forces given by (3) and (5) satisfy the analytical conditions

fffpXdxdydz +ffFdS
=

fffpZdxdydz +ffHdS
-

J

fffP(yZ
-
zY)dxdydz +ff(yH-zG}dS

=
j

fffp(zX-xZ)dxdydz+ff(zF -xH)dS=Q*

- yX)dxdydz +ff(xG
- yF )dS= OJ

obtained by equating to zero the component forces and couples

acting on the body as a whole
;
the triple integrals being taken

throughout the volume of the strained body, and the double

integrals over the whole of its bounding surface.

Now we have by equations (3)

or, integrating by parts,

-//[PYX** -ff[U]dzdx -//[T]dxdy,

where the square brackets [ ] denote that the enclosed term is to

be taken within proper limits.

Hence if X, /A, v be the direction-cosines of the outward
normal to the element dS

and therefore by equations (5),

fffpXdxdydz +ffFdS= 0.

In the same manner it may be shown that the second and
third of equations (G) are satisfied.

Again, by (3),

fffp(yZ
- zY)dxdydz

rm Jm 4.
w

u.^\ PT^^R\\,
JJJ \ \& +

3y
+
&)

"% +^ +
W)} dxdydz

=ff[*U- yT]dydz +ff[zQ
-
yS\dzdx +ff[zS

-
yll]dxdy

=ff{\(*U- yT) + ^zQ -
yS) + v(zS-yR)}dS

+ vS)
- y(XT+fiS+ vR)}dS.
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Eenee, bj equations <:>),

t-- Sf-0.

nilarly we can prove- the remaining two of equations (7).

Thus the values of tlie components of Applied Force and
Surface Traction ud\vn by equation* ( -S> and (

."> i >atisfy identically
the cnnditioi lilibrium of the body as a whole.

This re>ult vi-ri: :n.-nt of i l:>0 that force is paed
on through the body from lav-r to layer by appropriate stresses,

so that tli.- external f ultimately brought into opposition
with on- another as if the body wen

147.] If the body, instead of beinir in equilibrium through-
out, b- in j.roc.-^ of -training. th-n takinir the valut^ of the

to ^how by a similar

ii)'tho.l that the "ii th- l-ft-hand side of equations
.I i 7 i. instead of vanUhinir. an- r.jual to thr i-tlirtive forces

pies,

.///'
'

-

.///

//ft*'.*
~

'-:

/// r

fff

/.

1 ts
]

The Three Normal Stress Components. R.-a-m-

ii r a- *h tin- modification intmducrd in L2

tl at

mall plan.- area

d i\vn perpendicular U> C to produce an elmi-ation in

tie direetinn 'lie neighbouring pnrti..n ,!' the l.ndy.
T ITLS .ncti'.n .,f the Simp - prnduee
a* l maintain the Simpl.-

-

v'ii.) The imniial I the -mall plan.-
.

d awn p.-rp.'iidicular to '- inc.- an el..ji-at inn in

tl e direction Thux the funet i-.n ,,f the Simpl.- >j

i- to prnduc,- and maintain the Simple Strain/.

Similarly the fand -im])le Stress R is to

p oduce and maintaii: n ;/.

'ken a> iHiintin" 1 <ut tho
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analogies between the components of Strain and Stress, and the

primary and most obvious functions of the latter. We are not

at present concerned with the exact relations of Stress to Strain,

and we must not take it for granted that any one stress-com-

ponent can produce the analogous component strain alone with-

out producing a simultaneous change in the other components.

149.] The Tangential Stress Components. The tan-

gential traction S, in the positive direction of Oy across the small

plane area drawn perpendicular to Oz, clearly tends to drag in

that direction the layer of matter immediately in contact with

the negative side of the area relatively to the layer in contact

with this one on its negative side. And if we consider that

this action takes place across every small plane area drawn

perpendicular to Oz in the neighbourhood of the point P it is

evident that the tendency of this tangential traction is to

produce and maintain the Shearing Motion described in 95 and

represented in Fig. 2 that is, a positive shearing motion parallel
to Oy of planes perpendicular to Oz.

This will be perhaps
s'l more obvious on consult-

ing Figure 10, which re-

presents the action in

the plane of y'z on the

elementary cube having
P for centre. For the
sake of distinctness only
the traction -

couples
"y

1

about Px' are inserted,
the normal components
and those portions of

the tangential tractions

which combine to form a

force on the element (

139, 140) being omitted.

The couple due to the

Fig. 10. traction we have just
considered is marked Sr

Similarly, the equal tangential traction S in the positive
direction of Oz across small plane areas perpendicular to Oy, gives
rise to the equal and opposite traction-couple marked $; the

tendency of which is to produce a positive shearing motion

parallel to Oz of planes perpendicular to Oy.
Now ( 98) these shearing motions are rotational strains,

compounded of identical shears and opposite rotations. The
tendenc}' of the two traction-couples in combination is to produce
these two shearing motions simultaneously, and therefore (see
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98 and 1 produce a Dimple irmtational shear of planes
'idicular t<> J\'/ ami 7V, or to <>// and

two tangential >tivss-componenN N at the point /'

: .iv. when considered in combination, called a Shearing
Stress of amount S in the plan.

('/.)
In like manner, the t\v. tangential tractions T combine

arinur Stress of amount T in the plane of ;'./'; and
two tan-vntial tractions U combine to form a

in-_T Stress of amount T in the plain- >f

The primary function >f th.--- thr.'.- enmpmienT siresaefl i^

bo produrr ami maintain th- tlm-.- component slicars
"^ ^ <

(See ?'

'.]
Resolution of Shearing Stress. Juat as we proved

-and therefore aDJ -ti-ain whatever

>implf
Md contrs
: io\v that -very

stre l>e regarded as

the r.-iiltaiit i.f normal or

lon L itmlinal tractions or

pre.
1 si ;

This will follow i'p in

!
:

pr< -e it for a sin:: ing
str< >s.

Let u> thru sup]
bo< y held ii.

of train, >urh tliat all
'

nt>

ie p

A

n

th
Fig. II.

lor th,- stre oentfl aa ^ll plane area

vn throu'_di 1* in any dir.-ctioii (\, p, v)

tht

dr;

Now if th.- -tress across any sud) area be wholly normal we
mu t have F/\=^t> u ll'v.

5iil '

plam-s can be drawn throiiidi J\

sin- i

'

wholly normal, tln-ir direction-

cos n

(0, N , lw4(0, -1 v7 -' 1 N
an for i,,,tli these plai

//
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Thus the shearing stress of amount S in the plane of y'z' i

equivalent to a normal traction of amount S across the plan

bisecting the positive angle between those of xy' and z'x', togethe
with a numerically equal normal pressure across the plan

bisecting the negative angle between the same planes.

151.] The same result may be obtained by considering the

equilibrium of the prism ABD (Fig. 11) one of the halves into

which the cube of Figure 10 is divided by the diagonal plane
BD. It is obvious that we may regard this prism as isolated if

we suppose the existing stresses still to act across its faces.

Now, if a be the elementary length of either edge of the cube,
the areas of the faces AB and AD are each a2

,
while that of the

face BD is c?+/2. Also the forces on the prism due to the tan-

gential tractions on the former faces are each S . a2 in the positive
directions of Py' and Pz'.

The force across the face BD must therefore have equal com-

ponents in the negative directions of the axes. That is to say, it

must be a normal traction of intensity

S . a* J2

or S. Similarly by dividing the cube along the plane A C we can
show that the stress across this plane is a normal pressure of

intensity 8 (Fig. 12).

152.] Discrepancy
/? ! ^ A in the measurement

of Shear and Shearing
Stress. Although the
methods of resolution of

shear and shearing stress

are thus completely analo-

gous,there is a discrepancy
between the measurement
of shear in terms of its

component elongation and
contraction, and that of

shearing stress in terms
of its component normal
traction and pressure
which should be carefully

Fig. 12. noted.

Thus the amount of a shearing stress compounded of a normal
traction and pressure S is taken to be S, while the amount of a
shear compounded of an elongation and contraction s

l
is taken to

be 2s
l
or a (see 100).

The discrepancy exists solely in the nomenclature adopted
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aii'l, though on some accounts to be regretted, is not a serious

defect.

The results of 148, 149 are collected in the subjoined
schedule for comparison with that of 10G.
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it follows that if the strain be a " small strain," and consequently
the stress a " small stress," these relations will, to our order of

approximation, take precisely the same form if we suppose the

stress-components holding in equilibrium, in a given state of

strain, elements of the body which have these shapes in their

natural state.

154.] For instance the element of the body which, in the

natural state, is the rectangular parallelepiped of 138, becomes
when strained an oblique parallelepiped, the areas of whose faces

are

(1 +/+ g)dydz, (1 + g + e)dzdx, (1+6 +f)dxdy,

while its volume is (l+ A)dxdydz, and its density is (1 A)/).

Hence it is easily shown that the first of equations (3) 142

would in this case become

(1 + g -f .) + (1 + e +/) + PX =

and by the last
Article

this reduces to

aP 3Z7 -dT
-~- + ~- + -~- + pX =
?)x tyj ^z

as before.

Again, the element of the body which in the natural state is the

tetrahedron of 144 becomes when strained an oblique-angled
tetrahedron, the areas of whose faces are

AA(1

where A here denotes the unstrained area of the face ABC, and e

is the elongation in the initial direction (X, JUL, v) of the normal to

this face, given by equation 18 of 72.

The first of equations (5) 144 ought therefore, on this

assumption, strictly to be

^(1 + e +f+ g - e)
= P\(l +f+g) + U^(l + g + e) + Tv(l -f e +/),

which, to our order of approximation, is identical with

We may therefore, in all cases, take the system of standard

stress-components which we have adopted as acting normally and

tangentially across small plane areas through the point (x t y, z)

which, in the natural state of the body, are perpendicular to the
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rixed rectangular axes of coordinates: and though they are

alwa\ parallel to the fixed t the strain they are

capable of producing is x,, -mall that they may be considered to
"

or tangential throughout the pro.-

Principle of Superposition. Since the stress-com-

poneir :il l'Lv tnt '

components, resolved in tixed directions, of

unit ar.-a. it is at <>nee obvious that any number of

/, mu-t have for their resultant a

omponent- an- the algebraic sums of the

:iding component- of the constituent stres^--.

M... it IOUOWB from tb Lrtiele that the application
of any s'ni<dl ati-CM will hav- the >aiii.- eti'.-et, whether tlie body is

in it> natural state or has already b,-m -trained by another \

Tliis principle may ! -xt-nd.-d to any tinite number of >mall

0feresse>. th.- -train i-mdim-d b.-in-j still small (^ S?).and finally we
see that the iv-ultant of any number of small -tres>c>, applie.l

simultaneously ( .r >uccrs>ivrlyj
is a

single
small

^trefifl
whose

comjH'iiei.- -he algebraic u co Tesponding c-om-

po:ienta
And e >mpare 88) any -mall stress may be

arl itrarily resolved into any number of small -tresses, subjeci
on y to tbe ab lition as to tin- ^um- of their n.mpMii.

Tliis re-ult i-call-'; M-ij-h-
-f Supt-rp^itiiin of Small

l ";.] Type of Stress. \Vh.-ntli. uponents of any
tw > stresses ar. i ' on. : ,.arh to .-ach. in the -ame mti"

th> stresses are sail t b- of tin- -am.- typ.-. >r
j ..ppi.sit.-

ty es, acconling a (Compare
1 0).

Th --allrd the Ratio of t ln-

Bt i Mses, ami whrn tin- ratio -tresses are said to be

eqi al.

Stresses of tbe same and of opposite types ar< ,-,!-.. called

["c< n<

Any numb.-r ..f -mall stresses belonging to twoopposit.- typ-
con pound into a stress belonging to one of the

Two -<jual and emit - annul on-- anot)

7.] Homogeneous Stress. \Vh.-n the componenl
treM have tin- K at all

j-
the body, it ifl

sai tobe bomogei; id to be homogeneotLaly

t i- obvious from .-.juations X) that a body cannot be in

f(ju librium und-r homu-j. i!' then- are any Applied



96 ANALYSIS OF STRESSES. [157.

Homogeneous stress must therefore be produced by Surface

Tractions only, the components of which must satisfy a certain

condition at every point of the body.
For if we write

P, V, T

(8)

, S, R

and denote by p, q, r, 0, t, w, the minors of the determinant Ji

corresponding to P, Q, R, S, T, U, we get from equations (5) the

relations

\

.......................... (9)

to be satisfied by the direction-cosines of the normal at each point
of the surface. Squaring and adding, we eliminate A, /x, v, and

obtain

(vF+nG + tHy + frF+fiG + zHy + QF+zG + xH)*^ ...... (10)

Since in the case of homogeneous stress all the coefficients are

absolute constants, equation (10) represents a definite relation

existing between the components F, G, H of the Surface Traction

at each point of the bounding surface.

158.] Stress to be treated as Homogeneous. In the

following investigation into the graphic and other properties of

Stress, we shall for the sake of simplicity treat it as if it were

homogeneous ;
because then, its character being identical through-

out the body, we can confine ourselves to the consideration of its

properties at the origin.
Of course it will be understood that, as in the case of Strain

( 122), the results obtained will be equally true for an elementary

portion of a body under heterogeneous stress, described about any
point P, if that point be taken as the origin of relative coordinates,

and the stress-components be given their proper values at P.

These applications will be pointed out as occasion requires.

Graphic Properties of Stress.

159.] Change of Axes of Reference. Let P, Q, R, S, T, U
be the components at the origin of a given stress, referred to the

arbitrary system of rectangular axes Ox, Oy, Oz: required, in

terms of these, the corresponding components P', Q', R', 8', T, V
of the same stress referred to any other arbitrary system of rect-

angular axes Ox, Oy', Oz'.



ANALYSIS OK STRESSES.

Let the direction-cosines ut' the new
'.veil l.y the .schedule:

Then P, U', T are the components

parallel to Ox, Oy', Oz' of the stress across

the small plane area drawn through the

a perpendicular t Hut by equa-
the components parallel t

:' this -tress are

+
7'.-,

.(TA, + Qu + .SY.) 4- i',(T\, +,
I \ I * ' 1 1 I \ I

+ /*2(rA, + CV, + .^ ) + .',( 7'A I

+ ,

Thus we finally obtain, by r.-arranur''iu-nt of terms

/?F
1

8 + 25/i1
r

;

r
'\l'\

t

2 + Qh? * ^V3* * 2'Ws -

^3^

..(11)

r
(x^ 1

+ A

Adding toget'
1 tin- \v.- '

an I si ing of axes are ly arbitrary, this

pr ve8 the perfectly ^
7"^? sum of the normal component* of sti^etts across a ,, </ (h ,-

vn ill <>rf}/ii/ plane areas '

'././////* /
///'/>// y**/;/// <>/'///*

y i absolutely constant /<>/
// "

/ //" /-/"
/ //,. >/^ ccwe oy .

/ '" ^ wry /XXMI^
*^ //" /-

.]
Resultant Stress. Let J /;. t7 denote the refultanl

rnNS the >mall plane areas drawn thrnuirli the origin
;: pen<lieular t 1 A ./.',' th- n^ultant

08B those perp'-ndirnlar to Qaft

' >

OOmpOl .1 H parall.-l t Ox, <>;/.
<>
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course P,U,T; U,Q,S\ T, 8, R, respectively; while the com-

ponents of A' parallel to the same axes are given by equations

(11), and those of B' and G' by similar formulae.

Squaring and adding, we get

(14)

C'* = (A3P

Expanding (15) and adding them together, we get

A'* -f B'z + C"2 = P2 + Q2 +& + 2(2 + T* + C/
2
).

Hence, by (14),

^'2 + .g'
2 +C"2 = ^ 2 + J5

2 + C2
....................... (16)

from which we deduce that

The sum of the squares of the resultant stresses across any
three orthogonal plane areas drawn through a given point of the

body is constant, however they be turned about the point ; and
when the stress is homogeneous, this constant has the same value

at every point of the body.

161.] Reciprocal relation between Stress-components.
Since (\, /j.lt i/j)

are the direction-cosines of Ox' referred to

Ox, Oy, Oz, and since P, U, T are the components of A parallel
to these axes, it follows that the component of A parallel to Ox' is

PX
l
+ U^ + Tvv

But we have already seen (11) that this is the component of A'

parallel to Ox. Hence, since the directions of Ox, Ox' are quite

arbitrary, we deduce that

If any two small plane areas be drawn through any given

point of the body, the component perpendicular to the first area

of the stress across the second is always equal to the component
perpendicular to the second of the stress across the first.

162.] First Stress Quadric. We now proceed to give
these theorems geometrical significance. Describe the quadric

Px<2 + Qy* + z* + 2Syz+2Tzx+2Uxy = l ............... (17)

Let r be the length of the radius vector in the direction

(X, /x, v) and let p be the perpendicular from the centre on the

tangent plane at the extremity of r, (I, m} n) being the direction

cosines of p.
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Then, it /'. i'. II be the components, parallel to the axes of

I' the stress across the central section perpendicular to

r, /'. (.r, II will be iriv.-n by equations (5). But we have

I 111 n pr

Thu. ///n-l/pr. (19)

The resultant stress across the central section perpendicular
to / therefore acts in the direction of y>; its amount is l/j*r; and
the amount of it> normal compon.-nt i- 1 /-

163.] Principal Axes of the Stress. It is obvious from
f the M-ction coincide with anyone of the

principal >f the <|iiadric, the -tress across it will be wholly
normal.

It is thu> alwa\
'

to draw throiiLrh each point of the

three orthogonal plain? nreafl across which tin- >treM is

wh>ll\ H.-d the Principal Planes of the

str -ss at the point, and their normals are called the /V///r//W
A. es.

Th.- norm;!: is across th.- principal plane- aiv called the

P in > \\'o shall denote thn,. \
,
.V

Let Principal Axes of t

or ^in ; t: 1 aX6fl "f tb.- .piadric (17).

It abo appear- from iprocals of it-

pr Q

Hen .pia'dric principal

Of course Nv N^ Nt
n: MttdlAg ord.-r of

m; LfnitU'i .'bir

P ., U,

Ut Q-h 8

S, K-*

ir)
^ t tion-cM-.; D by th- equai

;

i. -i, :\.

'I'},. !;::'." D6W deduced

dii -etly from eqi
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164.] Invariants of the Stress. Expanding the cubic (21),

and employing the notation of 157, it becomes

<j>*-4>*(P+Q + )
+ <!>(

+ q + x)-'ii
= Q ................. (23)

If we write this

^-^*.i + *. J- = .............. . ......... (24)

then J), Jf, Ji are the Invariants of the quadric, and are given by

TB = P+Q + E = tf
l
+N

2
+ l\

T
3
........................ (25)

$=

(26)

P, U, T

U, ft 8 =AWV3 (27)

T Q P
J. , o, Ii

[Compare these with equations (39) o/ 111.]
It is now obvious that the theorem of 159 simply states

that |P is an invariant.

Again, we see that

...... (28)

Thus the theorem of 160 simply states that g2 - 2 . J is an

invariant.

165.] Traction and Pressure. We saw in 162 that the

normal component of the stress across the plane perpendicular to

the radius vector T was 1/r
2

. Hence if the stress be such as to

produce a traction across every small plane area drawn through
the origin, the quadric (17) is an ellipsoid, and Nif

JV
2 ,
N

3
are all

positive, and so therefore is Jl
If the stress across every plane be a pressure, the quadric

represented by equations (17) and (20) will be imaginary ;

N
lt N# Nv jl will all be negative, and the pressures will be given

by the ellipsoid

-I ............. (29)

or N^ + Ngf + N
B? = -I ......................... (30)

166.] Normal Cone of Shearing Stress. If the stress at

the origin be a traction or a pressure according to the direction

of the plane across which it is measured, equations (17) and (29),
or (20) and (30), will represent two real conjugate hyperboloids,
radii which meet the first being normals to planes across which
there is a traction, while radii which meet the second are normals
to planes across which there is pressure.
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The*e two hyperboloids are >eparated by their asymptotic
COlle

* Qtf + L. 2Uxy = Q (31)

or ^f =
(32)

ice any radius vector lying in this cone is of infinite length,
the normal component of tl; Across the plane perpendicular
to it vanishes ; wL that all planes whose normals are

i-Tators of this cone sutler only tangential > tress. It is there-

called t ial Cone of Shearing Stress.

107.] Second Stress Quadric ("Director Quadric").
Let us now construct the reciprocal o^iadric, whose etjuation

rred to the principal axes is

If / be the radiu- vector drawn from the centiv to the point
( /;, j on the Mir! i

i>
the perpendicular from the centre

01 the tan-.-nt pla-
' referred

to the principal axes are v

*r

ft JW einiatiun.-. (." gi\ .nt. parallel to Oy, O
;/) Of

o: the stress across a plan* u-cosmes of whose normals

r< ferred to the same axes art 1 )

i r \ \
'

..(34)

H- 'ii. -nt -tresses across the
plan*- perpendicular

tc p (tha agate to r) are giv.-n i-y

^

BbaM ili" rei -ress across t: o perpendkolar
to p (or n.njugate to r) act- in th. it- amount i>

; and the amount of it- normal com; J?.

.68.] Tangent Cone of Shearing Stress. By considering
th : sign of the normal nimpoii.-nt

'.hat if the

teas at r in be a -ion (33) is an

el.ipsuid; if a prussun- in .-v.-rv din-ction w.- hav.- the alternative

el. ipsoid

- 1 (35)



102 ANALYSIS OF STRESSES . [168.

while if it is a traction across some planes and a pressure across

others, we have the pair of real conjugate hyperboloids (33) and

(35).
These are separated by their asymptotic cone

<36)

and it is easy to see that this cone envelopes all those planes

through the origin which suffer only tangential stress. It is

therefore called the Tangent Cone of Shearing Stress.

169.] Third Stress Quadric ("Stress Ellipsoid")- It

is obvious that equation (10) may be regarded as an equation to

be satisfied by the components, parallel to the arbitrary axes,
of the stress across any plane through the origin. Hence if we
construct the quadric

(Vx + Ky + lzY + (w +W + *zY+(ix + zy + xzY =y............ (37)

the radius vector r drawn to the point (x, y, z) on the surface will

represent in magnitude and direction the stress across the central

section whose normal is in the direction given by writing x, y, z

for F, G, H in equations (9).

Transforming to the Principal Axes, we find that the radius

vector r of the quadric

represents in magnitude and direction the resultant stress across

the central section whose direction-cosines referred to Or), Of
are given by

(39)

where ( rj, f) is the extremity of r. This quadric is of course

always an ellipsoid.
If ( *)i> Si)> (& %..&) (&> n Q be the coordinates of the

extremities of three radii r
lt
r

2,
r
3, representing in magnitude and

direction the resultant stresses across any three orthogonal central

sections of this quadric, it follows from (39) that they must satisfy
the relations

5r*+j9*+

,

(40)



ANAIAMS OF STRESSES. 103

which are the well-known conditions that r
lf /.., /-

3 may be con-
nii-iliaineters of the (juadrie.

II- QQfl we .1.-. luce that any three conjugate radii represent in

1 direction the resultant stresses across three ortho-

gonal central >-cti"ns. This also follows directly from equation
trical interpretation of which is that r represents

the ^tress across the >ecti>n whose normal is the radius of the

"auxiliary sphere" corresponding to /.

170.] Relation between the Second and Third Quad-
rics. It' any radiu^ v.-ct'-r from the common centre meet the

Third Quadric in (,, i/
. ' and the Second in (,, tjH , f3 )

and if
i\

length int. 'ii it by the Third, we see by (''.)) that

nt- in magnitude and direction the stress across the

plane

(41)

i is the same as

tl at i Mtral -rrti..ii of the Second Quadric conjugate to
r,.

Ib-ner
, r

,
be the lengths intercept- M Third

Q ladric < three conjugate radii of the Second, each

r< presents in magnitude and direct ross the plane
c ntainini: the other two Tl.u- the Third (Quadric may b-

r< Carded as giving a graphical construction for tin- magnitudes
o stresses, and the Second for the dii the plimes across

v. lich they act. We shall t fin;_nii^h them as the

8 ress Ellipsoid and the Director Quw<

171.] In the cases where the Pr Stresses are of differ

ei t signs, and there Is const a real Tangent Gone of

H tearing Stress (30), each generator of this c..!ir r- thw
c< incident conjugate radii, and the plane e.-n jugate to any
g nerator is the tangci
T ills if i- be the length iir Tliird <,uadrie on any
g< aerator of the Tangent Cone of Shearing Stress, then/ r.pi
ii magnitude and direction the si, raring stress across the plane
vi lich touches th

17-2.] Fourth Stress Quadric. Finally, let u

tl it reciprocal <>f the Third (
t
>uadric wl .ati-.n is

(Ux+Qy + 8*)'*
<

describe

I

()
likewise always an el lip
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It is obvious, by squaring and adding equations (5) or (34),

that if r be the radius vector of this quadric perpendicular to

any given central section, the amount of the resultant stress across

that section is 1/r, and its components parallel to the principal
axes are

Nlr> Ntflr, NJ/r .............................. (44)

(> YI> f being the coordinates of the extremity of r.

Hence if (, ^ f,), (&, ^ 2) ( ^ f3)
be the extremities of

three radii, perpendicular to three central sections the resultant

stresses across which act in three orthogonal directions, we have

from (44) the relations

which are the conditions that the three radii may be conjugate.
Hence the resultant stresses across any three central sections

whose normals are conjugate radii act along three orthogonal
radii.

173.] Relation between the First and Fourth Quadrics.
We see from (44) that if (, r

llt ) be the extremity of the radius

vector r
t
of the Fourth Quadric, then the resultant stress across

the central section perpendicular to r, acts along the normal
to the plane

Q ........................ (46)

which is the section of the First Quadric conjugate to rr
Hence if r

y
r
a,
r

3
be the intercepts by the Fourth Quadric on

any three conjugate radii of the First, the resultant stress across

the central section perpendicular to either acts in the direction

perpendicular to the plane containing the other two
;
while the

amounts of these resultant stresses are 1/r,, l/r2 , 1/r, respectively.

Special Forms of Stress.

174.] Hydrostatic Pressure. All the preceding theorems

apply to the most general form of the Stress, when Nv Ny N3

are all unequal and of any sign, but none of them vanish.

The cases in which two of the principal stresses are equal are

not worth working out in detail, as the results already obtained

may be easily modified to suit them, if we remember that all the
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Quadric.s b< >f revolution. The necessary
ail' I sufficient conditions are

I
I

(47 )

or -(-'
-
4J)

- i(4g*- 18J)
- iiy-p

. L
;/.).]

The ca.se where aU thru- of the principal stresses are etjual i>

remarkahle.

It' y -.V .V --II, the discriminating cuhe (21) or (2
mu-t reduce to

Hence we iniiNt have

3

The - .ii'lrics become spheres, the Third in particular

beaming
+V+P-1
+ + -11a- id the Second

I with the perpendicular
1' .in tn on the tangent plane at it- .-xtivinity, it t'ullnw.x

t at the stress across every central section i> normal , and that it

li u> tli.- -am.- valu.- t'.-r each. Thu> ii' II i- positivi- thr >tress at

t e origin consists of a normal pressure li acros> j.lan.

a ea which can be drawn through it Thi- i- tin- natun- .f thr

8 rees which -\i->t> at .-vn-y point of a fluid at re-t und.-r any
f roes, and it calN-d Hydr.-tatie I'tv^uiv.

li :
.. ha\.- -imply to ivplac-e tin- pmBON 1-y

a traction.

In ordi-r thai ; - <
vhiadi we mu>t

o >vioasly ha
^ n

:S-T-U-Q )

t'rom .|iiati
1 "7 that a hoiuo-

; g neous 1: raMOfe can only 1..- maintained hy a

u .iorm normal pressure of like amount applied OVei th- who!.-

I- .undine surface.

\\". M anotl. !n the numerical

reckoning ol Strain and Stress (tte< Three ecjual

o thogonal contractions e comjiound ] I o l- into uniform cnm-

p -ession of amount *u, whil thn r.jual orthogonal normal

pv ;r Q .iid into a hydro, tatic
pi-'

.-ure of amount U.
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Stress in Two Dimensions.

175.] Plane of the Stress, The remaining important
types of stress are characterised by the vanishing of the third

invariant jl, and therefore also of one at least of the Principal
Normal Stresses.

For the present we shall confine ourselves to the case in which

only one of them, say JV
8 ,

vanishes. There is then no stress

whatever across the small plane area drawn through to

coincide with the plane of
rj.

The Stress Quadrics become cylinders with their generators

parallel to Of; and since in the third of equations (39) i/ cannot
be greater than unity, it follows that at the extremity of every
radius vector which represents the resultant stress across a real

plane through the origin we must have f=0.
Hence the directions of the resultant stresses across all plane

areas drawn through lie in the normal section by the plane of

grj
which contains ^ and Nf The stress is therefore said to be

entirely in two dimensions, and the plane of 7 is called the Plane
of the Stress at 0.

176.] The Stress Conies. It is obvious that all the graphic

properties of the stress will depend upon curves in the plane of

the stress, and especially on the normal sections of the Stress

Cylinders by that plane. These curves we shall call the Stress

Conies.

177.] Case ID which ^ and N
2
have the same sign.

In this case Jf is positive, while Jl nas the same sign as JV
X
and JV

2
.

Assuming this sign to be positive, the Second and Third Stress

Conies become the ellipses

= 1

(50)

(51)

The first of these is the Director Conic, replacing the Director

Quadric of 167, 170.

If ( 77) be the extremity of the' radius vector representing in

magnitude and direction the stress across the plane whose direction

cosines referred to the principal axes are (X, jm, v) we have from

equations (39)

and therefore

(52)
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Thus the resultant |1 - all planes through U whose
normals lie on a circular cone with axis ()g and semi-vortical

angle a, are represented in magnitude and direction by the radii

of the ellipse

Tr a
= 8in-u (54)

"J ""I

To each such cone one of t

UjLpses,
the whole

-imilar to and coaxial with the ellipse (.">]), which
of all. In the limit when u -0, the ellipse (.~>4

vanish.-- into th.- origin. BO that. a> we already know, the stress

Principal Plan.- ; >. \^ , t increases, BO dors the
:' th'- .-Hip-.-, and tlu-r id.- of th.- stress, until

the limit i 1 in which a = .ITT, wlu-n the elHpee (54) coinddefi
with '."!). The radii "f i "-I tl.' pr.-.-nt the stresses acrosfl

n-irmal- plane of

plaii'-s drawn thr-> , Thi> >vstem of .
v 'laces

I7n.

17^] Aj;:in t .f a given plane on tlie j.lane of the

stress (or the line in which the two plan.- intoned n l.y

an the projection of al "ii the plane of the stiv^ l.y

Ht ice if (gv >] mity ..f th,- radius v
th' M
for tl.

an for th.- projection nf th.-

i ca 1 cgnatruct i . . n -
t'. i

mi .inir tl -n and ma-j-r .-ss across a

phi
FirstMethod. I k on the tteait-tllipM (54)

wl )se radius vector represent hTOM, and if the

MII th.- auxiliar;. I ellips,- (-(jrrespond:'

\d ')> *nen (Msui'iini: that iV, >

may be writ;

Th 16 T rmal to f ladiu- of
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the auxiliary circle which corresponds to the radius of the ellipse

representing the stress.

Conversely, if the plane be given, we can construct the stress-

ellipse (54) and its auxiliary circle

f
2 + 7/

2 = AT

f sin- a
; (57)

if we then project the normal to the given plane, and find the

point on the ellipse corresponding to the extremity of that

radius of the circle which coincides with the projection, the

radius vector of this point represents in magnitude and direc-

tion the stress across the given plane.
We have seen in 165 that when N

l
and N

i2
are both positive

this stress is always a traction.
It is well known that

if OPV OP2
be two con-

jugate radii of an ellipse,
the corresponding radii

OQV OQi of its auxiliary
circle (Fig 13)are at right

angles ;
and conversely.

Thus OP
1 represents

the stress across a plane
whose trace is OQ2, and
the projection of its

normal OQ1 ;
while OP

a

represents the stress
across a plane, making
the same angle with Of,
whose trace is OQV and
the projection of its nor-

FiS-'3. mal OQ2
.

Thus, conversely, if through any two perpendicular radii

OQV OQ2 planes be drawn so that their normals may make the

same angle a with Of, the resultant stresses across them will be

represented by conjugate radii of the ellipse (54) ; and, in

particular, the stresses across any two orthogonal planes through
Of are represented by conjugate radii of the ellipse (51).

Second Method. If (, >/,)
be as before the point on the

ellipse (54) whose radius vector represents the stress across the

given plane (X, JUL, j/),
and if this radius (produced if necessary)

meet the director-ellipse (50) in the point (,, rj^),
we have

& & f* f* . V*

Hence equation (55) giving the trace of the plane may be written

? + = <)

#i N,

which represents the radius of (50) conjugate to the first.



i;s \NAI.YMS <>F STOE88 100

Conversely, if the radius of tin* director-ellipse (~>0) conjugate
of any iri veil plane be drawn, the intercept on this

by the stres --nts in magnitude and direction

the resultant stress across the ^ivt-n plane.
Sin onjugate radii of an ellipse never lie in the same

quadrant, no plane through the origin is subject to Dimple
i-inir Stress.

179.] If 3 is positive nn-i and .V, are both

negative. All the theorems proved in the last two Articles will

Jly true, the only chan -ary being to substitute

~>0) the equation

<58>

The stress across every plane through t in will be of the

nature of a pressure.
*

180.] Case in which If $ = 0, and Jl = JH-. then

-.Y
3 =.Y(sAy ; A having the sai i as J. The rasoltfl

loos Arii ' v be 11 1... liti' .

, by
writinur

everywl ud "orthogonal" for
" co ijugate."

'

'hus the stress across any plain- whose i. j| inclined at

an ? ngle a t represented in magnitude and direction by
the -ad:

wh 'h is perpendicular t Be.

n other words the stress across every such ].lane is ,Vsin, lt

an< acts along the pr..j.-ction of its normal on the plane of the

v plane through the axis Of suffers a normal stn-

Fhe stress is ;il about 'V and the directions

of ' 'and Orj are in-l

181.] Case in which .V, and .V.. have opposite signs.
If '. i

= 0, and J is
negative,

one of the principal normal stresses

wil b other a pressure, the ^n of the greater
of 1 ae ame as t : we -hall suppose Nt

to

he ositive and N
t negative.

..^tead of the ellipse (.">0) we now have the pair of conjugate
dirt ctor hyp

(CO)

--1 ...(01)
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separated by their asymptotes

.(62

The system of stress-ellipses (54) will of course remain unaltered

To modify the results obtained by the first method of 178

we must remember that, since N
?
is now negative, the coordinate

of the point on the auxiliary circle corresponding to the poin

(fi> */i)
OIi ^ne ellipse (54) are now

if ^ be numerically greater than N
2 ;

or &=-

if JV
t
be numerically less than N

z
. The analogous construction

for the present case is then as follows :

To find the resultant stress across a plane whose normal make
an angle a with Of
project this normal on to

the plane of the stress :

let OQ be the radius of

the auxiliary circle of

the ellipse (54) with
which this projection
coincides. Find P, the

point on the ellipse cor-

responding to Q, and
draw the radius OP' of

the ellipse, equally in-

clined to the major axis

on the opposite side.

Then OP' will represent
in magnitude and direc-

tion the stress across the

given plane whichmay
therefore be normal,

tangential, or oblique.

Again, modifying the results obtained by the second method
of 178, we see that the intercept made by the ellipse (54) on any
radius which meets (60) represents in magnitude and direction

the resultant traction across the plane drawn through the con-

jugate radius of (61) so that its normal makes an angle a with Of.

Similarly the intercept made by (54) on any radius which
meets (61) represents the resultant pressure across a plane

Fig. 14.
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drawn at the same inclination to 0$ through the conjugate radius

60).

Either asymptote of the hypetbolafi represents a pair of

lent conjugate radii
;
hence a plane drawn at any inclination

a 'through either of the asymp' shearing stress
'1 in magnitude and direction l>y the intercept cut oft* on

that asymptote by the ellipse (54).

in

live.

Case in which S.,= -Xr The last important ca^. of

wo dimi-ii-inns occurs when 5= 0> S 0; J being
L>-. We have then JV_=

.ZV^. A>^uming that iV,
is

nd d -n .ting it by Jv, the system of stiv-^-rllipM-x (:>4)

f circle-;

* + */*
= N* sin

la . . ...(59)

a> in i 1M). Al>o th- director hyperbolas (T.Oj and M'l; beoome

hyperboi

^-ly'^JV'l . ...(G3)

if-*= JV3. ..(64)

i 9P 1.. the radius of le (59) which coincides with
the projection "f -mal t> of the (rr.--]M.nding

em of
]

b.- thr radius maki n -_r the ^uiie an^le
>r With OC. nil I

of it, or

ant

pi;:

thi

(6:

tic

wl,

pr<

an<

th-

in.

eaents in

din-ctiun tin- n-xult-

stress across the

le. Thr t of

stress i fore

-in n. and it maybe
nal, taiiLji-ntial, or

ma
To determin*- it-, sign
mil-- .lerthat

.-yradiiiN which meets

lepreaenti a trac-

1, and .-v.-ry radiu-

ch meets (64) a
ssure. OQ
mjugafc

01
ndiculari

By t

1 axes O; <>/'

-jiially inclim-'l \\liicli lii-> bt-tv.

' '/' an eijuallv and oppnvitdv
in.-d to nf, and (Xyfittd ;

Fig. 15
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Now OP is the direction of the traction across any plan<
drawn through OQ, and therefore having the projection of ii

normal along OZ; and, similarly, OQ is the direction of th<

pressure across any plane drawn through OP, and therefoi

having the projection of its normal along OY.
In this case, therefore, the trace of a plane and the directioi

of the stress across it make equal angles with an asymptote
while the angle between the stress and the projection of th<

normal is bisected by (the axis of principal normal traction),
or by Orj (the axis of principal normal pressure), according as

the stress is a traction or a pressure.

Fig. 16.

183.] Let us now follow the changes in the stress across a

plane through 0, as it moves round in such a manner that its

normal describes a cone of semi-vertical angle a about Of
The numerical magnitude of the stress will of course always

be the same namely, N. sin a. Let OQ (Fig. 16) represent the
trace of the plane in any position, OZ the projection of the

normal, and OP the direction of the stress. Then the angle
P0 is always equal to either of the angles QOtj and
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L-'t OQ coincide first of all with OTJ; then OZ and OP both
coincide with Of The normal component of the stress is a

ingential component N sin a cos a acts

aloiiir the line in which the plane is cut by that of ff
As OQ moves away from f

h] towards the asymptote, the stress

uore and more oblique, the angle POZ constantly
until, when the plane actually passes through the

asymptote, the normal traction has vanished altogether, and
we have only a i / atrat of amount ATsin a acting along
the asymptote.

As OQ passes the asymptote the normal component reappears
as a . OP having also passed the asymptote in the

-ion. This normal component continually
inn

until, when OQ coincides with i "/' and <>Z with '>//, the
'

>r,. and consists of a normal pn
r with a tan^.-ntial o>mp>in-nt .Vsin >i CM <i alnir

MO of intersection of the gi\vn plan*' with that of
i;^.

This

peated in t!. ordei until tin-

trace of the plane one- idea with Otj.

1^4.] Position of the Plane of the Stress. Since this

pla ie is perpendicular t<> th- axi> 0{ PO stress, it> din-.

cos nes rel't-rr.-d to the arbitrary ax- re t" U-

obt lined by MS (22).

We thus get the equati<

,.

1V-0]

which an nd.-nt. in virtu- .-, ,ndit i<>n

ing this into account we find that

ith.-r <>f the pairs of equations

A = t/i
- uv V

Jq =;'vi

i'lane of the Stress in th<- cn>c wh-n
ben in

Illls

. .. I

,;

"
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Stress in One Dimension.

185.] We now come finally to the case in which two roots of

the discriminating cubic (21) vanish. If N denote the remaining
root we must have

and ^=N................................. ....... (71)

Supposing Ni and N
2

to be the vanishing Principal Stresses,

equations (39) show that at the extremity of every radius which

represents the stress across a real plane we must have

=
0, ^ = 0.

Thus the resultant stress across every plane that can be drawn

through acts along Of. The stress is therefore said to be in

one dimension, and Of is called the Principal Axis of the Stress

at 0, the other two being indeterminate.

The third of equations (39) shows that the resultant stress

across any plane (X, /UL, v) is represented in magnitude and direc-

tion by the length

t=vN ...................................... (72)

measured along Of.
If then we describe a circular cone about Of with semi-

vertical angle a, the resultant stress across every plane whose
normal lies in this cone is given by

=N cos a .................................... (73)

Thus the stress is zero across every plane passing through Of;
and it follows that in this case no plane through can suffer

pure shearing stress.

If we describe about a sphere of radius N, the projection on

Of of the radius of the sphere coinciding with the normal to any
plane represents in magnitude and direction the resultant stress

across that plane.N is obviously the maximum stress, and the stress across every
plane through is of the same sign as N or J).

186.] Direction of the Axis. The direction-cosines of Of,
referred to the arbitrary axes Ox, Oy, Oz, are given by equations

(22).
Now it is well known that the conditions (70), when satisfied

simultaneously, are equivalent to either of the sets of three

p = <r
= r = 0) .............................. (74)

or = t = tt = 0/ ............................. (75)
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that is, by

or by the equivalent set

TU-PS=US-QT ST

Thus r.piati' I DMJ be wrim-n in cither of th- fonnfl

S\ = Tp=U> ... ........ (70)

jM_
,/' x

I

^ 77 '

ami th- .-'illations of t

...(78)

187.] Heterogeneous Stress, i ral th. -tan.lanl

OOi: ..t' til-' -tr.-vs will \ 'ii j.nint \
|..,int

oi' tin-

bcx y, all of tl:- i :;7 bi-imr c'iitinum- fanebonfl of the

co<' rdinates < i' th.-
|..,int at which

th.-;. be Principal
N niai : th.- .lin-ct ion-cosines of tin- Principal A
at :it will thi-rcfore also be continuous I'm icti.ns oi it-

CO' rdinates.

All th.->.- th.-iir.-in> T e proved for the Stress at tin-

or (in will be equal 1 ress at n: /'

if A 1 axes at to a

sy tern of a.\

VMPLK8.

M .if th- followillg >tr.--.>es:

(

J};

'

.

,
: ',

-
Ga,
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Show that the principal normal stresses are respectively :

(i.) 3a, 3a,
- a

;

(ii.) 2a, -a, -a;

(Hi.) (>/3+l)o, -<N/3-l)a,0;

(iv.) (V2 + l)a, -(v/2-l)a, 0;

(i>.) Ha, Ha, ;

(vi.) J?a, -
N/7a, 0.

2. Prove that if through any point of a strained body a

system of planes be drawn, such that the normal component of

the stress across each has a given value N, the normals to these

planes will generate a quadric cone.

3. If the stress be in two dimensions at the origin, and the

plane of xy be made to coincide with the plane of the stress, show
that

(i.) The principal normal stresses N
lt
N

2
are the roots of the

quadratic

(ii.) The angles \fsiy ^2
which Of and Otj' make with Ox are

the roots of

(Hi.) If PQ > U2
, four planes can be drawn through at a

given inclination a to the plane of the stress, so that the stress

across each shall have a given normal component N (provided of

course that N is taken within proper limits) ;
and the projections

on the plane of the shear of the normals to these four planes lie

in the lines

(P
- N cosec'a);*

2 + (Q
- N cosec2

a)y
2 + 2 Uxy = 0.

Hence deduce the limits of N for a given value of a.

(iv.) What is the corresponding theorem when PQ < U2
?

(v.)
Show that four planes can always be drawn at a given

inclination a to the plane of the stress, such that the stress

across each may have a given tangential component T (taken
within proper limits).

Show that the projections on the plane of the stress of the
normals to these planes are the lines

- sinXx-
2 + y*)[(Px + Uyf +(Ux+ Qy)*]

Hence deduce the limits of T for a given value of a.



ANALYSIS i IF B] 117

>how that, for a given value of a. N is a maximum
when the projection of the normal coincides with 0, and a

minimum when it coincides with Oij.

(vii.) Show that, for a given value of a, T is a minimum
when the projection of the normal coincides with Og or Orj, and
a maximum when it bisects either of the angles U-tween these

(rii''.> H.-iu'.- -how that the two {.lanes through suffering

greatest tan^-ntial stress are those which bisect the angles
A een the principal planes (z and >

4. Prove that, when two of the principal normal Btoemfl are

equal, the normals to those planes which sutler maximum tan-

1 stress are all inclined at an angle of 45 to the direction

of the third principal stress.

Show that, in general, tin- normals to planes through the

origin, tin- -tress across which has a given tan^'iitial component
T, ii- on th'- com- whose equation, r.-t'.-rn-d to the principal ;s

*

7.

(A"

i"

1 *

that if / be any radius vector of the surface

an T the tangential r.unp.| M -i m at the origin across

tli- s.-rtion drawn through it perpendicular to /, th.-n

1.

Sh w that th- N,-ction> ,,f thi- -urface by the principal planes are

COl jugate ilar hyp.-il'.la-, haviinr the prinrip;i '.

the r asymptotes. Hence, or otherwise !iat the maximuiM

tax jential Btrea i- -utr.-r.-d l.y the two
planes

1 N '

. l/%/2),
an that this maximuni is K/r, JTJ; 2v

t
,^ ng in ilescend

in. order of magnitude.



CHAPTEE IV.

POTENTIAL ENERGY OF STRAIN.

188.] Introductory. We saw in Chapter I. ( 21, 26, 27)
that the Potential Energy of a perfectly elastic body, due to

Strain produced at constant temperature, must always be equal
to the work expended by external forces (including Applied
Forces and Surface Tractions) in producing the strain

;
that this

work ( 31) is done against the Resistance ( 135) offered by the

body to stress, and is therefore equal to the work done by the

Stresses ( 135) during the Strain; and finally ( 27, 29, 34) that

the Potential Energy and the Stress in any given state of the

body are functions only of the actually existing Strain.

It is obvious that, since our new definition of Stress ( 131,

135) retains its essential characteristic ( 29) of a purely mutual
action between the component parts of the body, these theorems
are as true for the perfectly elastic continuous mass with which
we are now dealing as for the perfectly elastic molecular structure

which we considered in Section ii. of Chapter I.

The course now to be taken by our investigation will there-

fore be as follows: Regarding the six component stresses as

functions only of the six analogous components of the strain

which they suffice to maintain, under the given system of external

forces, we shall first find an expression for the work done by them

during an elementary increase in each of these components. This

expression will involve the stresses and the increments of the

strains, and we shall show that, in virtue of equations (3)

and (5) of Chapter III., it is identically equal to the work that

must be done by the Applied Forces and Surface Tractions, to

produce the small increments in the displacements of their points
of application which constitute the increment of Strain. We shall

next employ the principle of superposition of small strains ( 87)
and stresses ( 155) to express the six standard components of a
small stress in terms of the six components of the corresponding
small strain; and then, by eliminating the stresses from the
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expressionjust found, wo >hall ol.tain the </ijj>
/< ntiid of the Poten-

tial Energy of strain, expressed as th- f !<it of a function
of the six component -train-. Finally, integrating tliis from the
natural state of the 1 0,0, 0,*0, 0| to the given >tate of
strain ',all ol>tain the Potential Energy in the

r state as a function of c. . c.

I!"-

of

189.] Work done in increasing a simple elongation.
Let us tir-t -upp>.- the l-xly t lie in r|uililriuin in tlie state of

the coiiipoiu-nts

^7} of the str- :r.-,l t> maintain this cmulition

nly '!' th.- -train-e..i 1 i{M,n.-nt-, it follows that the

i> homogen.
Let us investigate the work .l.n,. l.y -tie-- in produci;

snir 11 arbitrary ii. all tin- other

tn in-componente r.-maining as before.

Consider a finite rectangular parall "f tin l.n.jy.the
ooc

'

rdinatos "f whov, n the original state of strain are

(x, y,c),an-l whose edgesof , Tare respectively parallel
to he fixed arhitrary a\- The stresses throughout
its in t- no \\..rk Q it is a whole, so tl

th< work done by stress is due to that whi<

1". n face.

Ag:: y ]H.int :p.-.|
i-

-li-p!

in. 'lit 1

an.l : s!>. (i.)].

nly those corn-

do v. iich act

pa all'

of clem* !,

th :kness,bouno!e<l l.y

th- parallel plan
an

1

in it-
p.-rii.

,\\^-

! tents at

each point of thi>

pc* imeter being as r re 17. th i
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acting parallel to Ox on the four edges of the slice are

respectively
T.kdaf

U.Ida!

-T.kdx'

-U.Mx'

It is therefore obvious that these forces together can do no work
in such a displacement : and, this being true for every such slice,

it follows that the only forces which can do any work on the

parallelepiped, in increasing the elongation e, are the normal

components of the tensions acting across the ends perpendicular
to Ox.

Since P is a function of the strain-components, it will be

altered to

P+
Ve'

8e

by the small increase of e.

Hence the work done by the tension acting across the positive
end lies between

and

Similarly, the work done against the tension which acts across

the negative end lies between

and

Hence, on the whole, the work done by stress lies between

PSe.hJcl

and IP +
\ de

Thus, neglecting the square of Se, the whole work done by
Stress in producing the small increment Se of the single com-

ponent e is

PSe.hkl.

190.] Strain and Stress Heterogeneous. In precisely
the same manner we may show that, if the strain be not homo-

geneous, the work done by stress on the elementary rectangular
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parallelepiped
/ t /- /_>/,/: havhu: its centre at (.r, y, z), in producing

a small increment 6e of the elongation of this element parallel to

iply
PSe (1)

where P, e, oe are continuous functions of

The work done on the whole hody liy strew in producing
any continuously distrihut.-d (hut otherwise perfectly arbitrary;
small variation <> in the elongation . throughout it is therefore

///J'&e.,l..:!.r. (2)

ami we see that, iii varying a simpl.- elongation, only the corre-

ponding longitadinal traction can do any work.

Benoe P, V /' MM the Simple S- : con-espondii
th.- Simp!.- Straii.

!!!.] Work done in increasing a Simple Shear. Let

mj'onent shear " to sutler a small incre-

m-nt ('>. thf oth'-r r.mpn.-nts n-tainini: their initial valu-

li' <>i
: an- 1 i>{ be t!i-' internal anl external hi^-dors n f the

argle iro Wrifi,
in the plan.-

of yz i> e.piival.-nt I Qgatkn
* in the din-etioii of (if,

i gether with a C ni:ation :u thf

d rection The small incr. m. nt ^ln-ar may there-

f re be resolved int<> ot' the elongation

p ral! kbfll with tin- -mall incn-mi-nt r'> ,,!' the

< ntr elongation parallel to
(>(.

: amount N in th- plain- ot' >/z (or
a iy j.arallel : -iav be resoh 1"'^) into a lon^j.
t dinal traction 8 1 to <)fi

t together with a longitudinal

p -essi, irallel t<

11. ].o>iti.. n .
w.- d.-dtice from the la-t Artie!.- that

t .e work don B0B -n th.- .-l.-m.-nt d w ith its centre

B tin-
j)..'

:ie body, in producing the small inore-

11 ent fa of the shear '-m. nt in the plane ot //:, i-

.

dxdydz.

:
, ,/ h,-in ur

1 r

The work done <>n the whole h.,dy hy Stress in producing
s ich a change throughout it i- therefore

a id it fallows that, in nvspond-
i , Lr n do any work.
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Hence S, T, U are the Simple Stresses ( 33) corresponding to

the Simple Strains a, b, c.

192.] Work done by Stress in any small arbitrary
variation of the Strain. Superposing (2) and (4), and the

analogous formulae for /, gt b, c, we see finally that the work
done by Stress in producing small arbitrary and independent
variations of all the strain-components throughout the body, such

that the strain at any point (x, y, z) is altered from

{<?,/,, a, b, c]

to {e + 8e,f+ 8f, g + 8g,a + 8a, b + 8b, c + 8c}

is given by

e + Q8f+mg + S8a + T8b + U8c]dxdydz ......... (5)

where {Pt Q, R, S, T, U} is the specification of the stress required
to maintain the body in equilibrium in its original state of strain,

under the given external forces.

Work done by the Applied Forces and Surface Tractions in

producing a small variation of the Strain.

193.] Expression for this Work. As in the last Chapter,
let X, Y, Z represent the components of the Applied Force per
unit mass at the point (x, y, z) in the interior of the body, p the

density at the same point, and F, G, H the components of the

Surface Traction per unit area applied to the element dS of the

bounding surface : these systems of forces and tractions consti-

tuting the system of
" external forces

"
which, with the

distribution of stress {P, Q, R, 8, T, U}, holds the body in

equilibrium in the original state of strain {e,f, g, a,b, c}.

Let the effect of the small arbitrary variation of the strain,

considered in the last Article, be to change the component dis-

placements u, v, w of any point (x, y, z), in the interior of the

body or on its surface, to u+Su, v+Sv, w+Sw.
Then, by the principle of virtual velocities, the work that must

be done by the external forces to produce this change is

fffp(Xu + Y8v + Z&w)dxdydz +ff(F8u+ Gfo + H8w)dS (6)

where the triple integral is taken throughout the volume of the

body, and the double integral over the whole of its bounding
surface.

By reasoning as in 153, 154, we may show that it is

indifferent, to the degree of approximation which we adopt for
small strains, whether the integrals in expressions (5) and (6) be
taken throughout the volume and over the surface of the body in
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its natural or in its strain. M! state ; inWd the triple integral in

(6) being integrate* I as to the element of TIKISS, is absolutely
"ical in the two cases (.^ l.">4).

\V,- shall always >upposo. for the >ake of .simplicity, that in

thi.-M.- anl >imil;i: /<//<///,/ /// rcV'/hoitt
ice of the unstrained

1!>4-.J Identity of the two expressions for Work done
in varying Strain. 9 -ituting for

0, f, <j, ", h, c in (5) from

equations (59) of 123, we get

dw 'dv\ d . 3 _

v
- +=v I

o/ '

: /

anl thus (.")) becomes

Air
- 1

4>-

(/it

&

J;
8"

)

i T&u + S&v + JR&w)>

fffpT, VSf

~JJJ\ &*

(7)
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Rearranging the order of the terms,

8 W=ff{(P\ + Up + Tv)8u

Hence, in virtue of equations (3) and (5) of Chapter III., we
have finally

8W=(FZu + G8v + H8w)dS+p(X&u + Y8v + Z8w)dxdydz. ... (9)

Thus the work done by Stress during an infinitely small

change of Strain is always equal to the work done on the body
by external forces in producing the change ;

and either is of

course equal to the corresponding infinitely small increase of the

Potential Energy of the Strain.

195.] Case in which motion is taking place. If relative

motion of parts of the body is taking place, so that the initial

and final states of strain are only states through which the body
passes ; as, for instance, when the body is vibrating about a stable

state of strained equilibrium, maintained by suitable forces
;
we

may show by employing equations (4) of Chapter III., that the

expression (6) for the work done on the body by the external

forces is equal to the increase <STFof the potential energy, together
with the accompanying increase of the kinetic energy %.

This latter is of course

or, since u, v, w are the variable portions of the coordinates of

any point,

+ vv + iow)8t . dxdydz,

where St is the small interval of time occupied by the change.
This again is equal to

fffp(uu + vSv + ibSw)dxdydz ..................... (10)

Thus the expression (6) for the work done by the external
forces which must now of course be equal to the total change
of energy, both potential and kinetic diminished by the expres-
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sion (10) for the corresponding increase of kinetic energy alone,
becoi;

(V- v)8v + (Z-

(11)

By equations (4) and (5) of Chapter III., (11) is identical with
and therefore with (5).

P<
'

v
' il.

19C.] Energy per Unit Volume. Let W !. the total

jiot'-ntial nirrgy of the hody when held in r.jiiilil.riuiu in the

state of strain {e, /, . c] by the dUtrihution of stress

/'. U}.
AU<> 1ft V d.-not^ tin- iin':i-uiv uf this potentia] energy per

unit volume .f tli.- iinstrain.'J body, so that

W=f/J' (11)

\V.- li;i\.- -ht-wn that the intinitt-Minal iiu-n-nn-nt !' V. din- U)

arbitrary and ind.-j..-nd.-nt intinit'-imal inerrmmts !' tlie strain-

c- iii]>'.ii.-nt-.
i>

gi

A the potential energy and the components of the

a y giv.-n >tat- t' ^train ar.- funeti..ns mdy >t' tli- r.unjx -nents of

t' at strain li-nc- wh-n th- im-r.-iiM-ntsnt' tip- ltndn-COmpOHdntfl
ii (l:> rrduced.each sid- inut I'.'.-Miii.- tin- p.-rtVct

d fferential <t' >>m- t'uin-ti.in Tot' tin- ^i\ ind.'jH-nd.-nt varialles

f. .'/

Sd ,.14

,r

-*y<9'&~*b -

d.-dner that
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197.] Stress in terms of Strain. "Hooke's Law."
Since stress is a function only of the strain ultimately produced
by it, it follows that if a single small stress {P, Q, R, S, T, U}
produce the small strain {e } f, g, a, b, c}, then two small stresses,
each equal to {P, Q, etc.}, applied successively to the body, will pro-
duce two successive small strains, each equal to {e, /, etc.}. But,

by the principle of superposition, the two successive small stresses

are equivalent to a single small stress {2P, 2Q, 2R, 2S, 2T, 2U},
and the two successive small strains to a single small strain

{2e, 2/, 2g, 2a,2b, 2c}.

Thus the single stress {2P, 2Q, etc.} will produce and main-
tain the strain {2e, 2/, etc.}.

This result may obviously be extended so long as the strain

and stress remainjsmall, so that ultimately we see that, if n be

any finite multiplier, the stress,

{nP, nQ, nR, nS, nT, nU}

will suffice to maintain the strain

{ne, nf, ng, na, nb, nc}.

Hence we deduce, solely from the principle of superposition
of small strains and stresses, that if a perfectly elastic solid be in

equilibrium in a given state of small strain, under a given small

stress, and if the strain be increased in any finite ratio, the stress

required to maintain it will be increased in the same ratio.

In other words, the six components of stress are linear func-
f ions of the six components of the corresponding strain.

This law was discovered experimentally by Robert Hooke,
and first made public by him in 1678. (For the various ways in

which it has been arrived at theoretically, see Appendix III.,

below.)

198.] Coefficients of Elasticity. From equations (16)
we see that the partial derivatives of V as to each of the strain-

components must in general be linear functions of all the six

components.
And, finally, it appears that the potential energy per unit

volume of a perfectly elastic solid under small strain is a

homogeneous quadratic function of the six component strains.

We may then assume

2V= Kue2 + *
22/2 + K

33#
2 + *

44
2 + K

55
52 + Km

2i<
lQ
ec

2/c
26/c
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where the -1
"
Elastic Coefficients" are, for a homogeneous body,

ite constants, depending only on the elastic properties of

the body, the constant temperature at which it is maintained.
and the dirt- the arbitrarily chosen axes of reference.

If the body be not hom the coefficients will be func-

tions also of the position of the point in the
neighbourhood of

which V is given by (17). We shall, however, always suppose
that we are dealing with naturally homogeneous bodies (^ 4,*).

In -.-n.-ral. the coefficients mu-t be supposed all independent
of one another ; and in fact we cannot with certainty attribute

to them any property what-\vr. except that they are finite, and
that for every possible form of small strain they must make V

itiatinir <17>. and substituting in (li , we get

Q = Kfle

*- *si + / **0 +

*

V here J.-nblf 1 brill'_r rlllpln\rd ^oli-lv i'ol'

t e sak- o}' -y in in

] Average Stress during change of Strain. Hence
V e lii ' with I I , j-lit ha\r d.-diK-.-d

<1 rectly fn-m n homogeneous i'unctinns.

V Tb+Uc)

v hei

W Ity + Sa+Tb^

14) we! integral i

I

. 0. fli 0. .

}

th. int ion of (19) is that the average value of tin-

whilr th- b.,dv i- b,-in ur brought from it> n;itiiral Btftte to

r
ml
J .

state .1 0,6,0} is UP, iQ,
I the stress required to maintain it iii

e been deduced din-ctiy from the principle
ch of the in- rain

t i- only of the actually
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strain) must be such as would keep the body in equilibrium in

that state
; but, by the principle of superposition, if we have any

number of states of strain, and the corresponding stresses given,
the average of all these stresses will suffice to maintain equilib-
rium in the state of strain which is the average of all the given
states. Now, the path by which a perfectly elastic solid is

brought to a given state of strain being without effect on the

stress required to maintain it in its final state, the average value

of the strain may be taken to be simply {%e, \f, \g, Ja, J6, Jc},

and the stress corresponding to this is, by 197,

This latter expression therefore represents the average value of

the stress during the change.

200.] Strain in terms of Stress. By elimination between

equations (18) we can obtain the six component strains as linear

functions of the six component stresses

e =KnP + K12Q + KViR + KUS + K15T -f K^U \

etc., etc.

a = J{
4lP+Kil2Q + K43R + A

T

uS + Ii^T+K^U I
............^

etc., etc.

where K^ = K^, etc.

Substituting in (19) we obtain Fas a homogeneous quadratic
function of the stress-components.

27 = KUF> + K^Q* + KK& +^2 + MT* + KJO*

whence, by differentiation and comparison with (21),

..(23)ar ar 3P

201.] Asymmetrical Elasticity. We have defined a

homogeneous body ( 43), in the most general terms, as being such
that any two equal and similar portions, similarly situated in the

body, possess identical elastic properties. In the most general
case of homogeneity we may therefore suppose the elastic proper-
ties of the body to vary in different directions

;
that is to say,

the specification of the stress required to maintain a given strain
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will depend not only on the specification of the strain but also on
the d: of the axes of r< : The equations of the last

le to this most general case of Asym-
-1 elastic coetlicients, and also the

'iprocal coefficients liich are functions of the

former*, heiinr taken to le all independent of one another and of

m of the origin, hut varying with the iliirctions of the

'///.

_.] Planes and Axes of Rectangular Symmetry.
natural snlids are found to pc^esx different de-T-

symmetry in their -. Such aolidfl are in yvneral
call'-d ir elastic .symmetry is found to he in

invariahlf relation to certain lines and planes c.-nnected with
form i We now proceed

to inv.-ti_rat'- the at. . conditions f,.r various d.- UT>

elastic syi to the cases in which the

lin and planes of symine-

203.] One Plane of Symmetry. Let us suppose the

elmtic ]! |

'
:

ie body symmetrical about the plane
or in\ r examj.l.-. the Emedii-

ca ion ": of the stn-ss i to maintain a

gi en uni; . will he th.- same
a- the

.j /, and O: n rwtJ, of the

longation in the dir.

i.(X n, ~0- 'I'l'is \vli.-n Oi reed;
ai. I -inee w- .n <,f the elonga-

< i dependg only <m 11. .\\- that the condition that

x, may be a
]

'.It.-I'.'d the v; 1,1-, ,,)' (],,. ^jH'eili-

:n.

Consequently the explt'- . pot.-ntial ener^v in

te msof t iponents must aUo n-main unchan-.-d when

Now tl; t" chanife the |j and
tt; h li'.Sthe signs of " and l> i the other

co ipoiien
1

plane of

nu V all those terms in t [ I' \\hieh contain odd

po ,-ers of a and their pn.duet <>/>. n h.

140,

K.,-0, * =

I
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And, finally,

27=

...(24)

Thus the number of elastic coefficients is reduced to 13.

204.] Three Planes of Symmetry. By three successive

applications of the results of the last Article, we may show that,

if all three of the coordinate planes are planes of elastic symmetry,
all the terms in V involving odd powers of a, 6, or c must dis-

appear. In addition therefore to the above conditions we must
now have

*16
=

*26
=

*36
=

Thus we may write

27 = Kne
2 + *22/

2 + Ktff + x^a
2 + K556

2 + K^c
2

+ 2(K23/# + K
3lge + Kl2ef) .......................... (25)

and the number of the elastic coefficients is reduced to 9.

This may be called complete rectangular symmetry; it belongs
to the "

tessaral
"
class of crystals whose form of crystallisation is

a rectangular parallelepiped, the planes of elastic symmetry being

parallel to the pairs of opposite faces.

Equations (18) become

P=Kne

R = Ke
(26)

by which we see that the relations between the elongations and
normal tractions perpendicular to the "principal planes" (or

planes of symmetry) of the crystal, and between the shear in each
of these planes and the corresponding shearing stress form four

independent systems.

205.] One Axis of Symmetry. Let us next suppose that

there is one direction in the crystal about which its elastic

properties have a certain degree of symmetry. Any line Oz
drawn in this direction may be called the Axis of the crystal, and
its elastic properties will be arranged with more or less symmetry
in the plane of xy, or any other plane perpendicular to the axis.

There are two principal degrees of such symmetry, which we will

consider separately.
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'

't\'/*t't!!ine Symmetry. In this case, which is

common to Iceland Spar, and other crystals, called in Optics
"uniaxial." th.-n- are two orthogonal planes through the crystal-
line axis, >uch that the ela>tic properties of the body are not only
symmetrical about r about any planes parallel to either),
but they also bear exactly the same relations to one as to the

Thus these two p hall take for the planes
int. rchan-vd without affecting the form of

'

't.-ntia! n th.- relations of Stress and Strain.

It is thu- obvious that r must involve f and / symmetrically,
and also a and t. Thus we may write

Thu- th.- number of .-la-tic co.-tlici.-nts is reduced to 0, and

equations (18)

P Kne + KU/+ K^ff \

T~

V-** }

[Si ih f be said to have square symmetry about th. ir

a> s.

(ii.) Complete Circular Symmetry about am, A.''>*. In this

ca e, which does not occur in any natural crystal, but which is

ar ificially brought about in wires drawn from masses of i

nr ;urally possessing th. highest degree of symmetry (v
be <ni istic

properties
of the body are absolutely symmet-

iri il f ions perp. -n to the axis; so that, ii this

be Oz as befor
J

inditl'.-r.-nt in what din-ctiiis we
ta :e ^./- and '

It ; t in this case the expression (27) for V mu^t

rt- ain the sai: \\hen Ox and i> in. d through any
ai. :! t, in th.-ir <wn plan.-. Let us ^< >mall that its

8<j an- and hiirh. -r powers may be neglected: the effect of rotat-

in
;
the axes will th. u be to change x, y, u, v into x + wy, y-wx,

u *v, vunt; : and ning unaltered. The effect on the

st: i ,i--. .iMp,,n.-nt> will be* to change ' c into e + wc,

f- u>c, y, a- a>b, b + wa, c 2we + Zwf, respi
Hei ug the sijiiar.-

.f <,\ ti >sion (27) for 2V
rm-d int<>

>(KU -2K-K J ,.,

Tie term invoh in- , ,, M1 ,t \anidi t'-r all values of w, and there-
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fore, since the strain-components must be assumed independent,
we must have

Thus
2 V= Kn(e

2 +/2

)
+ /c335

r

2 + KU(OT + V) + K^c
2 + 2/c23(/,? + ge)

4- 9/V _ 9K \ pf /9\
-j- *j\Kn -iKQfijej \* )

and the number of the elastic coefficients is reduced to 5.

206.] Three interchangeable Planes of Symmetry.
Let us now start afresh from the case of 204, and suppose that

the elastic properties of the body are not only symmetrical about
the three coordinate planes, but that they also bear precisely the

same relations to each of these planes. It is then evident that the

coordinate axes may be interchanged in any manner without

affecting the form of V that is to say, the expression (25) must
be so modified that it may involve e, f, g symmetrically, and also

a, b, c. Thus we must have

K= K K

And, finally,

W=Kn(r+f + <f) + *44(a
2 + &

2 + c
2

)
+ '2^(fg + ge + ef) ...... (29)

Thus the number of elastic coefficients is reduced to 3.

This may be called complete cubical symmetry. It occurs in

Rock Salt. It is obvious that if any cubical portion of the body
could be removed and replaced with any pair of its faces occupy-
ing the positions originally belonging to any other pair, and then
made once more continuous with the rest of the body, the elastic

properties of the whole would be absolutely unaffected.

Equations (18) become in this case

R = Kug -f /c23(e +/)

Isotropy.

207.] Definition. Let us finally suppose that the body not

only satisfies the conditions of homogeneity ( 43), but is such
that any two equal and similar portions, however they be situated
in the body, possess identical elastic properties.
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Th> then iniite independent of direction, and
the l-ody may !" -ai<l to

] >mplete flfflfarteoJ *>/mmetry ;

so that, it' any spherical portion were rotated through any angle
about any axis, ami a-'ain made continuous with the rest, the

would remain elastically unchanged.
All such hod: ti.l to ! n

ij
iftoti''

All other hodies, whether crystalliiu- or asyininctrieal, arc

calk1
* I in contradistinction

168, imliarul'l'i r.
^IftSfl -lowly co*lc<l. and metals in their

ordinary state may be t-oii^idi-n-d a- hoin.>-vnM.us isotropic
5, Tli.- ur rt-at traction which i> applied in manufacturing

metal wirc^, )y pullinir th-m throu-_rh <nm\\ lioh-s in a ju-rt'orati'd

plat.- produc.-> a p.Tinan.-nt uA (J
l-i wliicli. when the wires aiv

i and i'r t-n^ion. n--ultx in the crystalline state

ril..-d in

A -"iii. -what similar rtl'.Tt i- prodim-d. in a les.s marked

l.y tip- various proc. nd hammering to

wliich bars and plat-> >!' wruur ht iron and st.-.-l are Mihjected,
in th of manufac' -^ee Appendix I\ -n 1'..

-] Energy and Stress. It b
obvipufi

that, for an

IK tropic solid, all axes are axes of complete circu la r symnietry,
ai d all plane> are int- n hangeable planes of synnnrtry. Tims
tl 3 condi; be s.-uistir.l simul-

ii ICOUsly, and ly comj.ai: that

ai d, finally for a: -lid.

IF
ir, / + $) +

(< + P + e)

T .us the numher of the elastic coetlic: eduoed t

ion bee

r+(v / + )

n-*4M+/)

i ^m ir*^

i
-,\ arri-.

'

oonoeivable

.
5^,'

that we an- not justified in

a> uiniii,'- an\ i relation ; the two reniainin-

C<J ;ffi' t theref.M-e be suppn^ed independent.

.(31)
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The insurmountable objection to all the old molecular theories,

founded on Boscovitch's assumption ( 37), is that they give an
invariable ratio KU : K44

= 3 between these coefficients for all

isotropic solids thus leaving in effect only one independent
constant.

It was first pointed out by Stokes, in 1845, that natural solids

afford a series of values for this ratio, varying within wide

extremes, and not even showing a tendency to approximate to

an ideal limit. (See Chapter XII.)

209.] The Potential Energy as an Invariant of the
Strain. Since in an isotropic body the directions of the axes of

reference cannot affect the form of the Potential Energy, which
now depends solely on the specification of the Strain, it follows

that V must be an Invariant of the Strain, and therefore a func-

tion of the invariants D, J, K ( 111) of the various Strain

Quadrics.

Now, by 198, V must be a homogeneous quadratic function

of the strain-components, and the forms of the invariants, which
are homogeneous functions of the first, second, and third degrees

respectively, show us at once that the only relation that can be

assumed between them and V is

where a and ft are absolute constants. Substituting for D and J
the values given by equations (39) of 111, we get

2 V= a(e +f+ g)
z + /3(fg

-
S]

2 + ge
-

s,
2 + ef- s3

2

)

i

which becomes identical with (30) on assuming

,,
- K a _ \ K' K

ll> P ~ *K
44'

The Elastic Moduli of an Isotropic Solid.

210.] Modulus of Rigidity. We see at once from equa-
tions (31) that a shear in either of the coordinate planes requires

only the corresponding shearing stress ( 149) to produce and
maintain it, and that this stress bears to the shear the constant
ratio /c44

: 1.

Since the directions of the axes of reference are perfectly
indifferent, it follows that K44 represents the shearing stress that
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must U- applied in any plane to produce and maintain the unit
of shear in that plane ; analogically speaking, that is to say. A

9 which would produce such an enormous distortion

of the body as the unit shear (see Appendix II.) would certainly
not obey the proportional law, except perhaps in one or two sub-

stanf -eptionally perfect elasticity. The units of strain

(and all finite strains really lie altogether outside our //<

and it is only by direct < an determine the

Be of approximation to which it ivpivM-nts their laws. Such
statement^ as the alve must always be understood to be made
imd-r thi~ . (See Appendix I V .

/

low.)
This ijuantity is usually called the Modulus of AV</ >'</>'/_//,

or

simply tin- L >f tin- body: it is also known as its

\V, .hall in future denote it l.y the symbol ,,.

I'll.] Modulus of Compression. L. t us n..\\ .suppose
train throughout the body is a homogeneous ,-nl,ic<iI

mitWm in all dir i' amount A. Then(; Ill'

W'i shall 1. ry where

a equations (31)

(.|-

B ^ 174 we see th -tress at
every point of the l.ody will

a homogeneous hydrostatic pressure, of amount

a id to maintain this uu-t apply a uniform

ji .rmal pressure II ovet th- whole bounding surface of the l.ody.

Thus tli-- .jiiantity (A:,, V) represents tli- unii'orm normal

essure which mu ;rface to produce the

dt of cubical c.tmpr.-ssion thrnii^hnut the body.
This .jiiant;-

!! tin- M</nltt /tression,

f Volume.
\V. diall in futui

Of course a n.rmal traction 01 -r th.- l'ounliii'j stirfaoe,

o amount /.'A will in lik- manner produn- a uniform cuhical

d'latat>"i A throu-jhnut tin- lody.
,odulus l /,- : all.-d the CompressibilHn

o the body, l- as it do* ical compreadon produced
braunif<rm -urfar. . !' unit
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212.] The New Notation. Writing then

*44
= w, Ku = k + $n,

in equations (30) and (31), they become

.(32)S-na
T=nb
U=nc

and
2F= (k + frc)(e

2 +/2 + #
2
)
+ 2(*

-
f

+ w(rt
a + 62 + ca

) ....................................... (33)

The latter may also be written

2 + ^
2
)4-n(a'

J + 6^ + c2
) ............ (34)

where A denotes, as it invariably will in future, the cubical

dilatation (not necessarily uniform in all directions) at the point

'(x,y,z)\ so that ( 102, 103)

(35)

Many formulae are simplified by the use of the symbol m, where

m = k + n ....................................... (36)

the fraction %n being thus eliminated. For instance, the first

three of equations (32) become

P= (in + n)e + (in
-
n)(f+ g)}

Q = (m + n)f+(m-n)(g + e)[ ...................... (37)

R = (m + n)g + (m -
n)(e +f)j

213.] Young's Modulus. This is the theoretical value'

(210) of the longitudinal traction in any direction which will!

by itself produce unit elongation in the same direction.

Its value in terms of k and n can be deduced from equations
(32) by putting

e=l, Q = Jt = S=;T=U=0',

the value of P obtained by eliminating / and g from the remain-

ing equations being the required modulus.
It will however be more instructive to determine it by the

following analytical method :
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Fig. 18.

Consider a unit cube of the body, with its ed-vs parallel to

the axes, .subjected to a homogeneous longitudinal traction P
paraK Each of tl perpendicular to O.r will suffer

a normal traction P per unit area, while the other faces will

sutler no stress at all. Divide the traction P on each of the

8 into three e|ual /.
x

each .IP, and apply to eaeh of the

four remainin. normal /

;nit area, and an equal
normal

j IJy the principle
this system "f

\es will be equivalent to the

liberty i

compound th.-m in any way we
lik.-. FLur- 1

^
represents all the

it those on the :

First collect th.' normal
9 JP over all tl faces:

'21 1 these will pro, luce a

<li -ections, of anioin

ths by If, .,;.-, -. into

a uniform
'

|
of amount

parallel to eaeh of the axes.

Ne ser.'nd

tl tl

x 'aces with tin- <-,|ual normal i*rt88urc* on the //-faces. By I SO
lit to a she" '/-ew of amount

.' :

/''in the

pi me hieh
bj|210mufltpmupeaa4aarof amounl P/8n,

ai d of- rinff its axes of elongation and
( itraetion

j..-
: 1 :>'!) this

m .y be resolved into an eUmaation P
t
Gn parallel to (.// and a

allel to '

Similarly tin- 1. normal traction* \1* <>n the

x- aces, eombin.-d wit! >
'

/' on tl

w 11 produce an rl<>n</<' rall,-l to Ox and a 00ntraclOfl
allel to '

On th.- who],-, th.-n a longitudinal traction of amount P
rallel to O ns

)
,:,!!,] tO 0.

-

'
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Denoting these by e, f, g, we have

l

-2n f

^'

[213.

3k + n

3k-

Thus if q denotes Young's Modulus

3kn
,(38)

In all known solids k>%n, so that there is always a lateral

contraction in the directions perpendicular to that of the applied
tension.

If we employ the symbol or to denote the ratio (f/e) of

lateral contraction to longitudinal elongation in this case, we
shall have

3k 2n m-n
(r =

2(3k + n)
==
~2^T <39 )

214.] Strain in terms of Stress. If we solve equations
(32) for the strain-components, we find

3k + n 3k -

etc., etc.,

or, substituting from (38) and (39),

1

n
' '

,!.*n

.(40)

Thus, by (19),
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2 !.".] Principal Axes of Strain and Stress. If the

principal axes of the &//<//// at any point of the body are parallel
to tht- : reference, we have at tl<it j>oint, by equations (32)
of $ 83,

= n/= <*> 9 = s y
a = b = c = Q.

Thus, at the same point.

Q= (m + n), + (m - n

/2 = (TO + n), + (m -
n)( 1

+ e,) I

5=0 l'

r=o
r=o J

tin- ^tresses across small plane areas drawn through the

point, p.-rpt-n.lienlar to the axes OI rei'' re wholly normal.

and 1 s of reference are also parallel to the

principal axes of point.

Conv.-r-.-ly. it may be shown that, it' the axes of i are

tal -n Murallel to th- I'rinripal axes of -s at any point of

th< 1). i.st necessarily be parallel to th< principal axes

of t i at the same point.
I! !.' we 1. .Inc. that, at every point of an isotropic body ,

the

P mcipal Axes of the Strain ana of the Stress are coincident,

ai 1 that ipal elongations cv e., f, anl tin- principal normal

st eeses Nv Nv N9
are connected by tne equations

-^(m-
.(42)

^(m-nX^K,)^
+ (TO-n)(f,+ .

, >(i +
,)J

Tl e corresponding formulae for V are

-
n)(,

2 + ,' + C,
5
) + -

/a-H)A--f-2n(c,
3 + cJ

f + ,)

"

<r I

J /' ( A', + JV, + JV,)' 4-
2^(^i

s
* W + W) ( 43a)

/

Tl iltfl might of ha\v U^n <l<-.luc<-.l directly
fr .in irresponding theorem thi I' must

al o be an invariant of tl;
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They evidently apply also to the crystalline forms of 204-
206 (since in them also the shearing stress and the shear vanish

together independently of the elongations and normal stresses),
but not to any lower degree of symmetry.

216.] Lines and Tubes of Stress. Tie Lines and
Strut Lines. Principal Surfaces of the Strain. The com-

ponents of strain and stress being supposed continuous functions

of the coordinates throughout the body, so also will be the

direction-cosines of the Principal Axes at each point, given by
equations (29) of 79, or by equations (22) of 163. Hence if

we draw the principal axis P at any point P, corresponding to

the continuous elongation e
}
and the continuous normal stress -A

7

P
and if an elementary length PP' be taken along P and the

corresponding principal axis P'g' be drawn at P', the change in

direction from Pg to P'g will be a small quantity of the same
order of dimensions as the elementary length PP'. If this process
be continued we get a broken line PP'P'P'" .........

t composed
of elements PP', PP' .........

,
each of which coincides with the

principal axis for
6j
and N^ at one of its extremities.

Proceeding to the limit, in which the lengths of these elements
are indefinitely reduced, we have a curve such that the tangent
to it at any point P is the principal axis P for e

1
and JV, at that

point. It is thus possible to draw a system of continuous curves

in the body enveloping the principal axis P at every point
through which they pass.

The differential equations of this system are

edx + s
3dy + s^dz s.^dx +fdy + s^dz s

2
dx + s^dy + gdz

dx dii dz
~

l

or

Pdx + Udy + Tdz Udx + Qdy -f Sdz Tdx + Sdy + Edz
dx dy dz

~
l

(44)

where of course for e
l
and A^ are to be substituted the proper

functions of x, y, z.

Since ^ is a root of equation (28) 79, and N^ of equation (21)
163, only two equations of each set are independent.
We get a second system of curves enveloping all the principal

axes P;?, corresponding to e
2
and JV

a ,
at the points through which

they pass, and a third system everywhere enveloping Pf.
It is obvious that these three systems of curves cut everywhere

orthogonally ;
and that the strain at each point consists of an

elongation of each of the three curves which pass through it (with
or without rotation), while the stress consists of a normal traction

across each of the three elementary plane areas which can be drawn
through the point to touch two of the curves.

These curves are called Lines of Stress.
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Let us take two consecutive f-lines, and also two consecutive

>;-lines which intersect the former ; these four curves will enclose

an elementary figure which is ultimately a plane rectangle. If

now we draw the ^-curves through every point of the perimeter
of this ar-:i. we shall form a tube of

li.-.l a Tube of
p. |9

Stress (Figure 19.)

normal section of the tube at

any p. int is an approximately plane
I'ound.-d l>y cons.-cutivr

the >j
and

jf sy-t'-in-.
wliih- .-aeh "f it- ridefl may be !(>'

\ approximately
plai. .d-d l.y tin- 6

ibe and 1-y tw.i 001

curves of th- in or of t:

m.

ss across every section of

the !. in. lit f the body
bound, -d wholly in

tli-

>-> any rl.-n: -urface

(tl
'

-s) i- wholly normal

to tl iit.

It i> thu- ol,\ [oofl t body
in; y be supposed divided i

di er y-t.-m-
r til.r.-x. which transmit stress

th ough t n of

th ir length, whil- tin- a<-- \veen

ad ac-: wholly
n< mal to thi-ir comi, .ice.

\\'.- -hall ad-pt th- 1^,-d to the fuiirti"ii

be .ins in engineering fibres Ti'- win n

th y transmit a ili-'V transmit a

th ust in tip- dir. i-^th.

Th ii form tin- walls of the tllles will

c< ordingly be called / Dea.

Thi; rial r,,uati..ns of a
-\ in ..f ti.--liii. :iTopliiiLr a- .V, i-

pOflitive
or

If \
l
-0 we have a syt -m of lines of zero stress.

It' re draw -A.-ral adjac- lit Tul..^ ,,f Stress (of th- Bystem,
let us say) as in I ohvioiis that any wi ot conter-

mi 101; e tubes will form adjaceni 'l-mi-nt>

of a , l-lach >uc: 06 will contain a

coi ipl-
in of tl nd also ;i eompl m "f
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the f-curves, and will everywhere be cut normally by the

(-curves.
Thus we can construct three orthogonal systems of surfaces

throughout the body, such that

(i.)
The curves of intersection of the three surfaces which

pass through any point P are the Lines of Stress at P, and there-

fore have for their tangents the principal axes of the strain

P Pri, Pf
(ii.) The tangent planes to the three surfaces at P are the

principal planes of the strain.

(Hi.) Each of the elements of volume (ultimately rectangular

parallelepipeds) into which the body is divided by consecutive

Fig. 20.

surfaces of the three systems, is subjected only to elongations in

the directions of its edges (with or without rotation) and suffers

no shear whatever (consequently remaining rectangular).
These surfaces may be called the Principal Surfaces of the

Strain or of the Stress. We shall return to them in the next

Chapter.
If one of the principal stresses vanishes, each of the

system of principal surfaces which is cut orthogonally by
the lines of zero stress envelopes the Plane of the Stress (

175) at every point through which it passes. The differential
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equation of this system is therefore, by equations (66)

lsk

v/p . dx + \/q . d\j + \/r . cfe = Cf

and

or
dx dy </:

T*l
.(45)

and those of the lines of zero stress are

dx dy </: i

&dx = t</y
= r

\Vhen the principal ifaresse^ \ani-h (g 185, 186)
one principal axi^ at each point i> determinate. Thus we

only
have

only niiinat- 1' lines of ^tress, given
; 77. i 186 namely,

dy

S /'

=
"V5"~N

Sdm-Td,

an. only on- inate system of principal surfae.-:

or
dz

(46)

l.y

(46a)

v two systems whatever of surfaces which cut

and each other orthogonally may be taken as the other two

sy tems of principal Mirfac->. and the] t' int-rMM-tinn

wi h the determinate system will give two systems of lines of

zei ) stress.

In luiiiogeneous stress and th- Lines of Stress are

sti ',ight lines, and tli- Principal surfaces an- Mitlm-mial -\

of mallei planes.

Equations or >brvwm and Mut

2\7.\ In terms of the Component Strains. Sul-tituting
the COinpon. juati.n- 14-J th.-ir valu->

in trrms of we get foi' th- 'juat inn^

luilihrium

,

.

+ ("-
3 /da 3c

( -.,-

(47)
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The equations of motion (4) of 143 similarly become

/

(m + n) + (m _
H) + _ ...(48)

vy/ \^ <~AV

(w +
rc)g

+ (m-n)(g

Lastly, the boundary conditions (5) of 144 take the form

X[(m + n)e + (m -
n)(^f+ g)~\

+ /me + vnb =

(49)Xnc + fj,[(m + n)f+ (m - n)(g + e)] + vna = G
Xnb + fjina + v[(m + n)g + (m -

n)(e +f)] = H]

where F, (7, H are the components of surface traction, and (X, yu, v)

the direction-cosines of the outward normal.

218.] In terms of the Displacements. Substituting for

the component strains in these equations their values from

equations (59) of 123, we get for the equations of equilibrium

dy\dx ?)>/)

etc., etc.

Rearranging the order of the terms, these equations become

=

m | ^7 +
^:

-dv
m.

<50)

or, since .(35)

.(51)
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wo may at .>ne. the equation- of motion

A
0, .(52)

A
-u>- =0

It i> equally easy, 1-y a slightly <litfi-ivnt transformation, to

throw t
:

:ti"ii^ int> I.;im. : -

(.,,) ;

( ^-
,
/30, ,

( )
.: -

wli'-i
9,

an- tin- C"in]>on,-i, ul-tituto

for tl I _.". tlii-> form i>

. I-- Mnitical \v
: -

T'IC iMnui'lar rii'litiii-

"

l

r x^1*

L
/du d^\

i -7

i
\

r
1 ) L

(\i

fdw "dv\

i )

r ^ / \~i

L 1 '*
+wJ '

\~i

te
+
tv)J

u

- I itimi in tin

; n (

'li;i].t.-r
I II. Tin r. lati.-n- ln\v-

;iiM'.| in tin <

'liaj.t.
i ,

in 1
I uality f tlir -mall

mall aniMiint <.!'

1<1 '! nil tin- 1'M.ly l.y
'
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We now propose to show, by an application of the principle
of Virtual Velocities which is strictly the converse of that of

.

194, 195, that, assuming the expression (34) for the Potential

Energy per unit volume, the equations of motion and equilibrium

(47, 48, 49) can be immediately deduced.

Introducing the symbol m into (34) we have

2 V=(m -
n)tf + 2n(e

2 +/2 + g
2
)
+ n(c<? + V> + c2

).

Thus if W be the total Potential Energy of the Strain

2 W=fff{(m
- n)& + 2n(e* +/2 + c/) + n(ci? + 62 + <?)}dxdydz. . .(54)

by equation (12), 196.

We shall consider the most general case, in which motion is'

taking place, for the case of statical equilibrium can always be

deduced from it by making all the velocities and accelerations

zero.

The kinetic energy of the motion is then

Let us now suppose that the Applied Forces and Surface

Tractions are allowed to do work on the body by producing a

very small variation of the strain.

Let Su, Sv, Sw be the consequent small increments of the dis-

placements of any point (xt y, z), in the body or on its surface,

from its natural position. These may be supposed quite arbitrary
and independent (but each must be a continuous function of

coordinates).
Let Se, <$/, Sg, Sa, Sb, Sc, SW and S^ be the correspond!)

small increments in the strain-components, and in the potential
and kinetic energies. From the principle of Conservation of

Energy we know that the work done on the body must be eqi
to the increment SW + S^L of its total energy.r?t/

Now S-& =JJJp(uu -\-
:v8v + w$w)dx(lydz. .

as in 195.

And the work done by external forces is, as before,

jJJp(Xu + Y8v + Z8w)dxdydz +Jj(Fu + G8v + II8iv)dS (

Since this is equal to S'QL+ SW, we get from (55) and (56)

8 W=fffp{(X
- u)Su +

(
Y -

v)8v + (Z-w)8w}dxdydz

+ /Y(F8u + G8v + H8w)dS (57)

But, from (54),

?z)A8A + 2n(e8e +f&j

n(a8a + b8b +
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iii equations 7 "f .5 1:14.

. .-to.

&*-

147

; -( )

.(-^

-k x-v i

i !
, +

.-^&) I

./.,./,

O ^v

IJJ
+nC3^

+
IIC^li

\ M.I r.'k

]&< -I- nr

ROM

rtir

'

.

J/MJ] . u +
^.(nc)

. or i

B
l ///') . too !

-/>

///
|

'"") <:; "'
i

. /.s'

^y
O

// .'As

\ r \to.dS

*i
' /v

-.
i

r]5w
^

dxdyd

< .

'

/// , , ,, i i>i ... (58)
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Equating this to (57) we get

2ne] + fj.no + vnb - F}Su

w)A + 2nf] + vna -

v[(m
- n)A + 2m/]

-

v . dS

-III \

/**/*(

jJJ \

/*f*/*(

jJJ {

^". 2ne] +
^ (nc) + ~r(nb) + p(X -

u) ! SM . dxdydz

^

'^
f
8" ' dxdlJdz

= 0.

This then is the condition to be satisfied in any small arbitrary
variation of the strain. Since Su, 3v, Sw are independent as well

as arbitrary, each of the double and triple integrals must vanish

separately for all values that they may assume. We must there-

fore have identically

Xnc

knb

at all points of the surface, and

- n)A + 2ne] + pnc + vnb - F 0}

+ *m - n)& + 2nf] + vna - G

v[(m
- n)A + 2ng]

- H= OJ

2ne] + ^ p(X - u) =

(60)

throughout the interior of the body.
For the case of equilibrium we have only to put u = v = ib = 0,

whence

2ne +

p Y= (61)

If m and 71 be treated as constants, equations (59) (GO) (61)
are obviously identical with (49) (48) (47) above

;
and by substi-

tution from (32) or (40) they are easily reduced to (5) (4) (3) of

the last Chapter.
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'.] Heterogeneous Isotropy. The extremely general
method ly which the equations of tin- last Article were obtained,

hy tin- assumption only that the Potential Energy per unit
volume of an isotropic >>lid was of the form (34-) with only two

independent coetlicieiits, enaMes n>, however, to interpret them in
a moiv --.-n.-ral liifht. It i- ea-y to imagine a heterogeneous solid,
such that every l.-int-ntary portion of it is strictly isotropic and

ntly p"- iily two independent elastic moduli
while th.- values of the>e moduli -ay the Rigidity and the
Bulk-modulus varv continuously from one dement to another

(set

The .|uanti" th their derivatives ///, <i, <T, will

!. function^ of ition in tin- l.ody of the element

i.-ivd, though not of th<- -train to which it is >uhj'ct-d.

K'jiiati
will thru r.'pr.^,. nt the conditions of

motio: jiilil.rium. not only for a homogeneously isotropic
-hx.iluti' constant- . l.ut aUo for any heterogeneous ly

isotropir hodv, in \\lii' -v (-..ntiuuoiis functions of

2-21.] Absolute Moduli, Weight Moduli, Length Moduli.
Tie moduli /.', n, </.

l--in rse, like all other

at esses, measured 1-v tl. applied p-r unit area. The
ni m-i 1 it- ]>liysical dimensions

th refniv d'-p.-nd l..,th on tlie unit of l.-n-tli and the unit of force

w lich v

(i.) tie most coin-

n, ,nl\ !. ' >u tin'- system a m..duhi^ represents the UH '/;!/>(

tl it inn-' mit area U) produce unit -train of tlie

C< Tespondiiiir typ". 'I'liu- th.- moduli may he --iveii in jM.unds

Oi ton-
]

ral'lv iu _irramm'- per -<|iiare

C itiiiM
'

(ii>
- what we call the weight of a gramme is -imply

tl j f, earth on a given MOM known Bfl a

r, tun 'rat'ion i of force, and therefore a'

m
) In ,m p..int to point of the ,-arth'> -urface,

w iich the resi
'

th- l"dy i nr-e doe.s n,,t. In

,, r |,.,- nrementfl a\;iila1>le in all coiin-

t, -s, the foicesooghl to be n-duc.-d t
'' //"">"/>. wliicli

(s ice thq ab- 'U'-'l i> th(1 1^'iti-h -y-t-m the

tli;.t force which

p, .a,,. n in the unit matt) i- don,- by

, dtiplyi;
W 1-y the numerical value of

tl,j a< biOD pr..due.-d ly -ravity at the spot where the

nvasurem.-nt- are made.

Each modulus will then represent
the Dumber of absolute

Ui its of force to he aj. plied t< the unit of an-;i : av the numhcr
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of poundals per square inch, or of dynes per square centimetre.

It should be mentioned, however, that the discrepancies in our

experimental data due to variation of material, etc. far more
than cover the small variations of gravity. Rules for reducing
stresses and moduli from one system to another will be given
with the tables at the end of Appendix IV., below.

(iii.) A very convenient method of measuring the moduli is

to express them in terms of the length of a bar of the material, of

unit section, whose weight is equal to the force per unit area that

is to be applied. This, like (i.), is a local measure.
When the moduli are expressed in this system they are called

Length-moduli, and their numerical measures are called the

lengths of the moduli.

Thus if Jc, k denote the weight-modulus and length-modulus
of a given material, expressed in the C.G.S. system of units, a
force equal to the weight of k grammes, or to the weight of a bar
of the material one square centimetre in section and k centimetres

long, distributed uniformly over each square centimetre of the

surface of any body of the same substance, will produce in it the

unit of cubical compression. And similarly for the other moduli.
Thus k = pk, etc., where p is the density of the body in

grammes per cubic centimetre.

222.] Resilience. Strength. Tenacity. Modulus of

Rupture. When a given elastic body is brought to a given state

of strain, and then set free, the work which it is able to do in

virtue of its elasticity, in returning to its natural state, is called

the Resilience of the given body for the given strain.

This we know ( 31) to be equal to the work done on the

body in straining it, or to its potential energy in the given state

of strain.

When we speak simply of the Resilience of a material for a

given type of strain, we mean its potential energy per unit
volume when strained to its elastic limit ( 12-14) for that

particular type.
For a brittle substance ( 13) with comparatively narrow^ limits

of elasticity, within which the proportional law of 197 may be
taken as very approximately true (see Appendix IV., below), the
resilience will be given at once by substituting in any of the

expressions obtained for V in this Chapter the limiting values of

the strain-components, any increase of which would produce
rupture or marked permanent set.

For example if E, A represents the limits of elongation and
shear for a brittle isotropic solid, its resilience for elongation is

|(w + ri)fi
2
,

and its resilience for shear is
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The limits of -afety t'..r linear elongation and contraction, as
well as i -;il dilatation and compression are generally
different

Thus 'the ai shear hein^ & purely geometrical conven-
tion, d.-void i.f
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/>
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111 -tl

The Length-modulus of rupture is th.- tenacity express.-,!

as a lenirth. <>\\ tin- ;,po>itioii thi- would he t|A' centi-

ii: -t Appt-ndix I
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Possible Discontinuity of Strain and Stress.

223.] Limitations. We have hitherto confined ourselves to

the consideration of those cases of strain in which not only the

displacements but also the strain-components themselves ( 52)
are perfectly continuous functions of position throughout the

whole body. And in accordance with this limitation the Applied
Forces and Surface Tractions ( 136) and consequently also the

Stress ( 137) have also invariably been taken as continuous,
and therefore ( 197) suitable to maintain such a strain.

Discontinuity in the Applied Forces never occurs in actual

structures to any important extent, but the consideration of

discontinuous Surface Tractions and Pressures is of the utmost

practical importance, since, for obvious reasons, the component
parts of a complicated structure must necessarily bear upon one

another by definite and circumscribed portions of their bounding
surfaces.

Let us now therefore consider how far our theory, as at

present developed, can take account of such discontinuity. We
must first investigate the nature and extent of the discontinuity

(if any) permissible in the displacements and the components of

strain and stress, and hence deduce the characteristics of the

discontinuous systems of external forces with which we are able

to deal.

224.] The component displacements. To begin with,
we may observe that, even though in passing from one region of

the body to another the displacements may become discontinuous

in form, they cannot in any case present discontinuity of magni-
tude. For if it were otherwise, two points immediately in

contact with the separating surface (and practically coincident

with one another in the natural state) would suffer displacements

differing by quantities of a higher order of magnitude than their

initial distance, and rupture of the body would take place over

portions or the whole of the surface of discontinuity.
If then with the notation of 51 we suppose the component

displacements in any one region of the body given by

w
l
=

and in any contiguous region by

2 =<W^ y> )1

V
2
= X 2 (

a!
2/ z

)

w. =
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Comparing these with 52-54, we see that the elongation of

any elementary straight line which crosses the surface of discon-

tinuity is simply to be taken as the sum of the elongations of the

two portions into which it is divided by the surface
;
and if the

component displacements satisfy the conditions of 52, each in its

own region and up to its bounding surface, that is to say : if

0i Xi> V^i' an(^ a^ their derivatives be finite, infinitely small, or

zero for all points whose displacements they represent, and also

0-2> X'" V's the strain- components at every point of the body,
including those which lie on the surfaces of discontinuity, will,

as before, depend entirely on the first derivatives of these

functions, and the form of our theory of small strains will not be
altered.

It must be particularly observed that the conditions of 52

are only imposed on each strain-component-function within and

up to the boundaries of its own region, and (so far as the con-

ditions of strain are concerned) no relations need be assumed
between the values which any two distinct forms take at the

dividing surface.

In other words : while the displacements may be discontinuous

in form from one region of the body to another, but must be

continuous in value throughout the whole body; the strain-

components admit of discontinuity both of form and value from
one region to another, provided always that the discontinuities of

value only occur coincidently with the discontinuities of form.

226.] The Stress-Components. Since the stress across

any element of a surface of strain-discontinuity must, like that

across any other surface in the body, be a purely mutual action

between the two portions of matter immediately in contact with
it on either side, it is obvious that even if the stress becomes
discontinuous as to its form in crossing the surface, it must be to

a certain extent continuous in value. For if we take an element
dS of the surface (practically coinciding with an element of the

tangent plane at its centre) and form two discs of elementary
thickness, bounded by two elementary plane areas parallel to dS
on either side, the theorem of 137 must apply rigorously to each

of these discs, so that the components of the stresses across their

further faces can only differ by quantities of the same order of

magnitude as the thickness of the two discs combined.
That is, if we draw a small plane area very close to a surface

of discontinuity, and parallel to the tangent plane at its nearest

point, the components of the stress across this area will preserve

continuity of value while the area moves parallel to itself across

the surface of discontinuity.
The analytical conditions can easily be deduced from 144.

Let ABC in Figure 9 represent an element of the surface of dis-
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227.] The External Forces. Our next object is to discover

the systems of discontinuous Applied Forces and Surface Trac-

tions which are capable of producing strains which satisfy these

conditions. For this purpose we shall employ the method of

219.

We shall suppose for simplicity that there is only one surface

of discontinuity in the body, and to make this assumption as

general as possible we shall suppose that it cuts the bounding
surface of the body.

Let us call the two portions into which the volume of the

body may thus be supposed divided regions (I.) and (II.), and
let the suffixes 1 and 2 be used to distinguish all quantities

belonging to them.

Let 2j, 2., be the portions of the external surface of the body
belonging to the two regions, and 2

13
the surface of discon-

tinuity. We shall write the direction-cosines of the normal to

the latter at any point (X 12 , /x 12, i/
12)

when drawn towards (II.)

and (X0] , /x.M , i/
21 )

when drawn towards (I.), so that we have

identically

A12 + A21
=

/x]:!
+

fj..2l
= vlz + v.2l

= .................... (66)

If the body be isotropic and homogeneous, its total potential

energy is W, where

)
+ n(i +V + 'i

2

2w(e2
2 +/2

2 + <7,
2
) + w( 2

2 +V +

and its kinetic energy (if in motion) is ^ where

2^ =ffft>W +V + ib^dx^dz,

Let us now suppose, as in 219, that small arbitrary
variations &u, Sv, Sw of the displacements are produced through-
out the body. Then the work done by the external forces will

be

+

Kt
is hardly necessary to remark that no work can be done

e body as a whole by stress across 2
]2.]
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Treating each line in the same way, the integral to be taken
over 2, 3

is found to be

- n)\ + 2n/y + v.2l
na,

2 }8v.2

and in virtue of equations (64), (65), (66) this vanishes identically
We have then, finally,

=ff |_
{^i[(m " n)^i + 2

- n)\ + 2w/i] + v
l
na

l }8vl

v.2na.2 }8v.2

j 3 3 9
i I H

I 3^
2

2

9;y2
3s

2

2
j

2

J

Equating this to (67), we get, since Su
y Sv, Siv are arbitrary

and independent, throughout region (I.),

-[7m )A +27iel+ i

_9_ _9_ ^ , r ..
^

9



I:M:IH;Y <K STRAIN. 159
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equations deduced by making A
r = Y=Z=0 in equations (51) or

(52) can be obtained which will give u, v, w as continuous func-

tions of the coordinates, within regions separated by surfaces

which meet the bounding surface of the body in the curves of

traction-discontinuity, and will satisfy equations (65) and (64)
at every point of each such surface, and equations (53) at all

points of the bounding surface of the body.

Theoretically the latter problem always admits of solution.

229.] Example of given discontinuous strain. These results

will be made much more intelligible by a simple illustration of

the converse problem : given a distribution of strain, discon-

tinuous in form but satisfying the conditions (65) and (64) at

every point of the surfaces of discontinuity, to find the distribu-

tion of discontinuous Force and Surface Traction which will

maintain the strain. This problem is always determinate ( 146).
Let us then consider the equilibrium of a beam of isotropic

material, subjected to the strain proposed in the example at the

end of 224.

We will suppose the beam of rectangular form, and of length
2/3, the origin being taken at the centre of one of its ends, and
the axis of x in the direction of its length.

Region (I.) will extend from the plane of yz (the nearer end)
to the plane x = /3 (in the middle of the beam); region (II.) com-

prising the further half.

The component displacements in the two regions are

which satisfy equations (65) at all points of the surface of dis-

continuity of form, x = /3.

The component strains are

which satisfy equations (64).

The body being in equilibrium, the distribution of Applied
Force in the two regions is, from equations (47).

nc

Sj
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The force is therefore discontinuous in value as well as in
\vrywhere in region (I.) and constant in magni-

;ind direction -\vrywhere in region (II.).

If the I
i and : be taken perpendicular to the sides of

the 1 'in e-piutioiis (4-9):
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/> o, fft-OJ
J
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v r1 // n I

'

/
<,_ //_.

= OJ
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0, G\ =- -
tic, Hl

=

-, , , , =
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whhh tl- .:^-t.ntinuu- -, this discon-

tim ity occurs onl] lines in which the sides are cut by the
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to anotli.-i-. Thi use(juence of tip- di>continuity of the
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01 ratlu-i
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straining of the beam, which is everywhere in two dimensions, ii

planes parallel to xy.
The system of planes in the body initially parallel to zx ai

strained into cylindrical surfaces with generators parallel to Oz,
each consisting of two portions

(i.)
A plane in region (I.) meeting the nearer end of the beai

(plane of yz) in the same straight line as before the strain.

(ii.) A parabolic cylinder in region (II.), touching (i) alon^
the generator in which it is cut by the plane of discontinuity x= t

~

and having the plane of yz for its axial plane.
The dotted lines represent the state of things before th<

strain.

APPENDIX III.

Hooke's Law.

In 1676 Robert Hooke* published his Description of

Helioscopes, &c.
y
on page 31 of which appeared the following-

paragraph :

"3. The true Theory of Elasticity or Springiness, and a

particular Explication thereof in several Subjects in which it

is to be found: And the way of computing the velocity of
Bodies moved by them,, ceiiinosssttuu."

In a second treatise, published in 1 678, (Lectures de Potentia

Restitutiva, or of Spring, p. [1]), the anagram was explained as

follows :

" About two years since I printed this Theory in an Anagram
at the end of my Book of the Descriptions of Helioscopes, viz.,

ceiiinosssttuu, id est, Ut tensio sic vis; That is, The Power of

any Spring is in the same proportion with the tension thereof :

That is, if one power stretch or bend it one space, two will bend
it two, and three will bend it three, and so forward. Now as

the Theory is very short, so the way of trying it is very easie."

His proof of his theory is purely experimental, and is based

upon the following examples : a spiral spring drawn out, a

watch spring made to coil or uncoil, a long wire suspended verti-

cally and stretched, and a wooden beam fixed (at one end) in a

horizontal position, and loaded.

It is obvious that by Tensio Hooke meant extension or

distortion (i.e. Strain) and by Vis the external force or couple

producing the strain.

* For these quotations from Hooke I am indebted to Professor Tail's

Properties of Matter, Gh. XL, Art. 221.
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It was imt till nearly a century and a half after Hooke's time
came to be clearly defined in

in which we now employ it, although in 1807 Young
foreshadowed the modern and

.nil interpretation of Hooke's results by a series of

in\.--
r

nil tin- valut' of the modulus known by his name
_

3),
which In- detined, for a given material, as the ratio of

>iv employ, -d to elongate or compress a rod of unit section

mil elongation or contraction produced by it.

In all r addue.-d by Hooke, however, (as we shall

VII. .1 -imply proportional* (for small

strains to tin- external force or couple, and consequently his

im may justly ! in' a- the first enunciation of the

grandly simple ],-

Stress is proportional to Strain,

which lias always !>. iated with hi- n;n

A including Noting, Coulomb, Wert-
hhott'. HodirkinsMii. Knptl'.-r. Treeca, etc., have repeated

an- varied Hook.-- f\p.-rim.-nts duriiii: two centuries, With the

res lit KW ha- been firmly established as an e.r/r/-
ment' I moduli a-r.-rtained for a great
mi MI Appendix 1 V '-

/ow).
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' duced I'-r -mall -trains to linear
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Durinir th- '
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iat hvp.
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In the next year he showed how the stress per unit area

( 131) across any surface in the body might be deduced from the

intermolecular stresses ( 28) between the two systems of mole-

cules separated by it. Applying this method to the results of

his molecular theory he obtained for P, Q, R, S, T, U in the

case of a homogeneous crystal with three orthogonal planes of

symmetry formulae identical in form with those of 204, but

without any necessary relation between the pairs of coefficients

/c
12
and jf

21 ,
etc.

Substituting these values in the equations of equilibrium of

( 142), he showed that they became identical in form with those

deduced directly from the molecular theory.
Hooke's law was thus established, for crystalline and isotropic

solids, as a necessary consequence of the molecular hypothesis,
and it only remained to discover an independent proof that

would be applicable to a purely mathematical method of treating
the subject, independently of all hypotheses as to the inter-

molecular reactions.

Cauchy himself, followed by Lame and (for many years)
Barre de St. Venant, being convinced that every mathematical

theory of elasticity must ultimately rest upon his development
of Boscovitch's hypothesis, made no attempt at such independent
proof, but felt himself justified (with the support of the experi-
mental law) in assuming, for the most general case possible,

equations of the form of (18) 198 (leaving however the pairs
of coefficients /c

12 , ic
81 , etc., independent).

In 1837 George Green applied his grand conception of the

potential to the theory of elasticity, which he treated from a

purely mathematical point of view. He showed that the poten-
tial energy of the strain, as well as the stress components, must
be functions simply of the components of the actually existing
strain.

He then assumed that V
( 196) could be developed in a

complete series of homogeneous functions of the strain com-

ponents, viz.,

F=F + F
1
+ F

2
+F

3

It was then easy to show that F and V
1
must be zero

(energy and stress being measured from the natural state), and
that in consequence, when strain was indefinitely reduced,

V V*
2 >

whence the linearity of the stress components follows at once.

It must be observed that Green advanced no theoretical

grounds for assuming the presence of the term V9 in the ex-

pansion of V.

In 1845 however Stokes wrote as follows :

" The capability which solids possess of being put into a state
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chronous vibration" [e.g., the fact that a tuning fork main-
tain- its pitch unaltered during the whole time that its note is

audible]
" shews that the pressures" [stresses] "called into action

by -mall displacements" [_/.'-..
relative displacements of the parts

. ..r .-train-] "depend on homogeneous functions of those

displacement* of one dimension.
il Mipp.-r moreover, according to the general principle

of the ,-uperpoMtion of small quantities, that the pressures due
nt displacements B imposed, and consequently that

the pressures are linear functions of the displacements. Since

squares of a, ft and y" [our "] "are neglected, these

may be rel a unit of surface in the natural
:t'-r

li-| indifferently, and a pressure which is

1 to ai . ;ieiit may be regarded as

normal to the original position of that -ui i

'l'h- tiist paragraph .tension of the experimental proof
"f 11 sses, to which it had been hitherto

which exist at each in-tant in a body which

iy vary in-- states of small strain.

The >,-e..nd paragraph -urn- up the principle of superposition
in connection \\it: a-tieiiy. a- developed in $$ S7,

8fc and 1 :iid app r. (

7. Thia is the first indica-

ti< n of a purely mat h. -ma- t' of Ilooke's law, capable of

Hi ivei .on independently f any hypothesis as to the

ii ii:

It 1 Ban later that the import-
aioe<>:

properly appreciated
Most .British

a d ' .irchhotl', Tlei-k Maxwell and
I- ink and l-s.'.li), Kirchlioir

( S58), Neumann ch 1862), etc continued to rely
o, tl. and Stok.-x. and oiidrcen's

t cit assumption that the -train components
v ere necessarily present in th< ion '!' the potential energy,
ii id their :uthoseoftl "inponents. Ivaiikiue

1 >wever inclin. -d strongly towards a molecular theory of his own,
\ liich he re-^arde \avier and I'oisson's hypo-
t iesi> l^-''_ -till lollowe<l Navier,
1 it in 1 de Bt N'enant, a
- aunch folio-. .-ontents himself in his celebrated

) emoir on the t- :th the following:"... prouve jiie
I'tti'urf />/ proportionnel

( >j& efets, tant que <
t non a des

juissa. <jiie
la premiere ; ce iquoi il n'y

; urai- ibilit^ matht'i C''rst meme

(ncela|ii 1( -u\ prin< ip--
"t tens'io sic vis, avanc^

jar llooke ct emplo\ '.1 ariotte. il y a bientot deux siecles.

kdm< tout le monde .pie les pressions [stresses]
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sont fonctions lineaires des dilatations [elongoMons] et des

glissements [shears] tant qu'ils sont tres-petits, . . .

"
:

supported by a summary of Cauchy's proof.
In 1867, however, appeared the first edition of Thomson and

Tait's Natural Philosophy, in which Green's energy method and
Stokes' application of the principle of superposition were em-

ployed in combination exactly as we have adopted them in the

present treatise ( 196-198).
This method of demonstration is now universally recognised

by British and German mathematicians.

Barre de St. Yenant however, among whose great services to

the theory of elasticity his unceasing protest* against the assump-
tion of Green and his followers will certainly not be reckoned

the least, has never recognised it, and still declines to admit that

Hooke's law can be based upon any purely mathematical proof,

independently of a theory of intermolecular reactions.

It appears to me that the fact on which St. Venant so

strongly insists, in showing that any theory based upon the

assumption of intermolecular forces which are functions only of

the distance must necessarily lead to Hooke's law of the

essentially differential nature of strains and stresses affords us

a proof quite independent of any such theory.
We have chosen, with the object of simplifying our analysis

( 109), as our system of Strain Coordinates ( 32) the six

orthogonal components of small strain, which by definition

vanish in one particular state of the body. This system,

admirably adapted as it is for expressing small deviations

from the natural state of the body, should be looked upon
as exhibiting the process by which the change of state is pro-

duced, rather than as defining absolutely any particular state.

For our present purpose it will be advantageous to refer the

configuration of the body to a more general system of Strain

Coordinates. Let us take the following :

These do not vanish for any strain writhin the limits of our

theory, but are always positive ;
and in the natural state

* See his annotated edition of Navier's Lemons sur Mecanique Appliquee,

App. V. (1864) ;
his history of Hooke's law in Moigno's Lemons

de Mecanique

Analytique, Le9on XXII. (1868); and his annotated edition of Clebsch's

Theorie de VElasticity des Corps Solides, note on 11 (1883).
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while the components of Strain are in von by the differences

- C , /- f - f , </
=

9
-

g , ,

a = a -a, & = b -b, c = r -c. J

Similarly with the components of Stress. P, Q, R, S, T, U,
tin.- tractions .In.- t- -train, must be regarded as the

motions existing in the strained state

of the body an 1 those piv^m in tin- natural state. According
jithorit; .attt-r aiv identically zero throughout
Inn it i in make the most general assumption,

and our . will not be ati-rt-d.

dl ivpivx.-nt the components of the
total - at any p.,int of tin- hdy in the strained state

e, f, Q, a. b. f. and let 5o <8o So <s*o ^o* &u 1>c tnril> values in

ttural state; so that

/>=P-o, --*, ---, I

s-^^^-^^-eo r
\Vhat-v.-r

hy]M,th.-i>
we adopt a> t. th.- natuiv and origin of

the in Contiguous portions of the body, it

is c b\ ire being constant and uniform) we
mi i aunn- that 1 solely on the configuration of the

bo< y, an i \\ a d-linitr and perfectly continuous

me in- 1 (ntinu-.u- rhan^-x ,,f -tate, within the

,ill wi- knw to the

CO) tr; lentfl may be capable of a.ssum-

Bl; eitli'-r sign,
it i- pn^iM,. that they may pa-s through the

va ui ihf Ntrain-on'irdinates. But it

is lot I oooditioDS of continuity, that

th T" y traction cnnipon.-nt with any strain

Co rdinatt- which it ; ign, or vanish, for any
Tfi ue it any traction com-

pf lent J be cnnti inm a>-,l. within tin- limits of perfect
el stir iV stage ol' th any M rain coordinate

>e found to increase wit cannot >uppose that in any
ier stage lufl of ,i can decrease or

11. '.t |J. We may assume a rda-
' .rm

9 =
</>(e, f, g, a, b.

11 of the indrpi-ndrnt strain

irdinat : such bhat, if th- tir-t derivative of ^ as to any ony.
co.'.r.li! uahei i'"r any \alut- of the coordinate, it

ani-h for all to say, J) must be altogether
rdinate.



168 NATURAL MATERIALS:

In the natural state

and by Taylor's theorem,

Thus, substituting for the differences,

By what has just been said, if the coefficient of the first

power of any difference vanishes, that difference does not occur

at all in the expansion of J3. Hence it follows that if the co-

efficient of the first power of any strain component vanishes,

that strain component does not appear at all in the expansion
of P.

In other words, the expansion of any stress component
contains the first powers of all those strain components of which
it is a function.

Ultimately therefore, when the strain is very small, each

stress component must be a linear function of all those strain

components upon which it depends.
Thus Hooke's law is demonstrated, independently of any

hypothesis as to the origin of stress.

APPENDIX IV.

Elastic Properties of Natural Material*.

We have already indicated ( 12 and 13) a rough subdivision

of solid materials into the brittle, whose range of elasticity is

practically coextensive with their power of resisting rupture, and
the malleable, plastic, or ductile, capable of enduring stress which

very greatly exceeds their elastic limits, and distinguished by
their ability to acquire a permanent set under such stresses.

We now proceed to a more detailed account of the behaviour
of natural materials under stresses varying from zero to the point
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of rupture, and we shall tiiul it convenient to subdivide the
able bodies int<> two elates, namely

A T . which acquires a sot whenever subjected to

Stress rtain definite limit, characteristic of the
material ; but whoM- mechanical pmlitios are in no way modified

by. This class, which includes the so-called "soft solids"

(such a> clay and wax) as well as lead amongst the metals, has
for us an almo>t purely theoretical interest. We shall find that
it meivt-x in-'-nsibly into the class of Fhiids, and we shall

naturally be '.

- under this head a fuller account of that

which, although it is manifested to a small
ext.-nt ( H') by all sdids under small elastic strains, is in its

fuller development confined to fluids and to malleable solids

ud tin- limit^ "f tlu-ir elasticity.
1;. D -.the limits ,,f W},OM- elasticity are extended

which produces a set, and wli<e Im ,-<iness or
t defends in consequence upon the greatest

to which th.'V may have already been subjected, as well as

intrinsic |ualiti.- t.f tin- mat. -rial. This class is by far

the niO8<
Interesting

and important from a pi'actical point of

view, including a arly all tlios,- metals that are most

frequently employ. -d in >tru.-t

\1\ _ -n- i.il antlii-i MIII. nt. (1 faction wlii.-h tin- following
.

i

li:iptrr XVIII.,
rencea to tin- -riL.'iiial iiu-iimii-.. ,.(,. , \\jll 1,- found. Ki^ui-es

MI t he aame sou i<-i-. Tin- arn.unt nf tlu- behaviour
Of . bar <'f lll-til.' lin-t.il, \\lr u-l\ rlili'_fatnl t<> the point of

ni turr, \* in MU \vith l-'iuMiri > L' 1. ^l A, 25 A,
an 2^.' l-tt.-i> i Ceimedr. published in iVolure,

SfCi X.\ i vi.l. \\\ lao dntwn fr.-rly from tlu-

v. y : I !
.

'

.

I a|.-r
"( n tin- A.lo]>tioii of

St ml I'.ars an.l I i in the J'roceed-

t)< 9 or I \.\vi.. |.|> 7H-158. Figures 24

an 2>', . frmii that report, and are

\ ennedy.

A.- OUB Fi.rihs.

A n nidi an abstraction

igid

'

>lid is defined

b_
thf follo\\ inj pr

(i.) It
possesses ] ;--ity

"f bulk
( 14) under

i >ly Hy.h 171-1 \\lirtlier ]>ositive or

^ati\ tiifnrm cubical dilatations or compressions
tacc 1 by distort ii.n

(J
'2 1 1 . Thi- bulk-elasticity is

li nited in tin- dii- dilatation only by the tenacity ( 222)
Oi tin- in;:- .d on the .side of compression is theoretically
w thoiit limit.

,f form i 14) is perfect for all distortions
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within a certain perfectly defined and usually very narrow limit,

which is characteristic of the material.

Plasticity. The utmost resistance S which a perfectly plastic
material can offer to distorting stress coincides with the limit

of its elasticity of form, and it follows from 1 35 that it is im-

possible to maintain in the interior of such a body a shearing
stress exceeding S by however little. The excess is, in fact,

entirely unbalanced by any resistance on the part of the body,
which in consequence relieves itself by continuous change of

shape without change of volume, until if the circumstances

permit the maximum shearing stress is reduced to the limit S.

A perfectly plastic solid may therefore be distorted to any
extent, however great, by the continuous application of a shearing
stress exceeding S by any amount however small.

Moreover, since S is the limit of elastic resistance to distortion,

the resilience ( 222) of the body is precisely the same as if it

were only strained to its elastic limits, and consequently the

large distortion produced by the excess of shearing stress is not

recoverable, but remains as a permanent set ( 12) when the

stress is removed.
Flow. This continuous and permanent change of shape,

without change in the volume or density of any part, is called

Flow
;
and the tendency to flow, without modification of any

mechanical property, under continuously applied and constant

distorting stress, however little in excess of a definite elastic

limit S, is called Plasticity.

Fluidity. Those substances for which S is absolutely zero,

but which nevertheless possess perfect elasticity of volume, are

called Perfect Fluids. A perfect fluid is therefore totally devoid
of rigidity ( 210), and offers no resistance whatever to shearing
stress : and a purely hydrostatic pressure is the only form of

stress that can be maintained within it, even for an instant.

The characteristic property of perfect fluids is therefore their

tendency to flow freely under any distorting stress however
small : and this property is called Fluidity.

Solidity. Since the quantity S which we may call the

measure of solidity may be indefinitely small, it is obvious
that no strict line of demarcation can be drawn between fluids

and plastic solids, but that a series of the latter arranged in

descending order of solidity may be supposed to pass insensibly
into the former group. Even if the fluids and plastic solids

with which we have to deal in nature were free from viscosity

(see below), as we have hitherto supposed, the universal and
unavoidable presence of the shearing stress due to gravity would
render it difficult practically to distinguish a perfectly plastic
solid of quite conceivably small solidity from a perfect fluid of

the same density and compressibility.
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It should I- d that the solidity S is a limit, and not a
Thus it is quite possible for a plastic body of very

small solidity t<> possess \vry lar^v moduli of compression and

by. In Mich -lit- Limiting shear S/tt which the body
.rt'er without flow, is of course very small.

Th< natmv of Flow will be better understood by
it a simple example.

a riirht circular cylinder of perfectly plastic material, the

solidity of which is S. ! placed with its base upon a perfectly
th and ri-j-id horizontal plate, and let another smooth and

laid "ii th- top of the cylinder and loaded until the

total weight applied is W. Let // he the initial height of the

cylinder, and . -itial ar-a of it-

\\
'

will assume for >imjilicity that its ends can slip freely
the plates, and that the action of gravity
i.-d.

Tin- Lad W will th.-n hr uniformly distributed over the
; th.- xtn-ss throughout tlie cylinder will be a

homo_ longitudinal j.p-^^ure W .1,,. There will be no

longitudinal 11 any horizontal direction, and therefore

the principal n..n .-s will l>e at every point

-w .v,
= o.

dene'- it t'"llo\\x f ,-,,!,, K\aiii].lf '. "ii Chapter 111. that at

point : itresfl "f amount W/2.4 ,

t and incrra-.- the diameter of the

Ixx y.

[f W -A \& less than S. tin- whol- rtreaa will he within the

ela tic limit of th- 'rain (wholly elastic) will

:th th- notat

,
-

3
= + o-w A

, //.

If now W nd t.. _.l S. tin- cylinder will

to th- limit oi v of form, and we

i- --S'/- s
=

8
= +2rSy.

h re>ili- unit vuluim- i^ thru hy e(|iiation (43) of ^ 215,

/.-=J{(m-/.

l nee on r<-ducti"n

IM v -s -.,.

. nted hy the axial section

J>(
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Now let W be increased. Since the limit of solidity

already been reached there will be at each point a shearing str(

of amount
W/24-S

in excess of the resistance offered, and to relieve itself from this

stress the body will begin to flow.

A

C' C
Fig.22

D D'

From the symmetry of the conditions the centre of the

will remain at rest, and if
e/, e

2',
e
3

'

be at any moment the addition;

elongations due to flow, we must have

= e =Thus

and by 126 the equipotential surfaces will be the hyperboloi<
of revolution

being vertical.

The lines of displacement ( 127) which in this case preserve
their form during the whole time that flow is taking place, and
are called Lines of Flow are therefore the system of curves

satisfying the differential equations

The solution is to be symmetrical as to

the equations of the Lines of Flow are

(772 + 2)
= constant

|
rj/

= constant j

and and therefore



1'I.ASTI. AND FLUIDS. 173

Every point of the body will describe that line of flow which
3 through its initial position (see Figure 22), and this process

ill continue until the maximum shearing stress at each point has
:i reduced to the limiting value S by the expansion of

er which the constant load W is applied.
If k'

t
A be the final height anl sectional area, we have

W---1-S.-1'

A'k'-AA

and ther.-f"r-

f'-WA a
w

n
J

i?s

w
e cvlind.-r is now in the condition represented by

A'B(
Since UP- principal stresses are once more

th- r iation (43a) of '2 1 ~>

i

i,

-,'

wl1 c same as before flow began.
[ft 1 the clastic recovery of the

cyl nder will
. . w i,j r i, ri , 1T,..spnnds to this elastic

str ss. Thai ifi there will b.- jation '2S/g and a

coi traction i^S / itlJ din-ctioii. Thus if (h", A")
Tin in which the body i^ left >n removal of the load

II

-?*j^."'i
i UH3

J
1
-

- US'/)
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so that the cubical compression is entirely recovered, as of coui

it ought to be. The body is simply permanently deformec
without alteration of its volume, density, or solidity.

For an example of the continued flow of a plastic body und(

shearing stress exceeding S we have only to suppose the tigui

reversed, and the load applied so as to transmit a tension aloi

the cylinder. IfW = 2y4 S the elastic yielding of the inateri;

under the longitudinal traction 2S will diminish the area ovt
which the load is applied to A (l 4fcrS/q), and simultaneous!7

increase the maximum shearing stress to S(l + 4crS/5).
Flow will therefore begin in the reverse direction to thj

followed under the former circumstances, and every point in th(

body will retrace approximately its former course. The effect ol

this flow will of course be to diminish continually the area ov<

which the load is applied, and therefore to increase continually
the shearing stress. If W be continually diminished thi

Fig. 23

shearing stress may be kept as little as we please in excess

of S, and the cylinder may be indefinitely attenuated and

elongated.
This of course assumes that the tenacity ( 222) of the

material is more than twice as great as its solidity. If this is

not the case the cylinder would be ruptured instead of flowing
under the assumed circumstances.

But it follows from Example 6 on Chapter III. that flow

may be produced without risk of rupture by introducing a

lateral pressure in addition to the longitudinal traction. If II

be this pressure, the conditions to be satisfied are

JV
1
< tenacity (

Figure 23 represents an experiment of Tresca's on the flow

of lead. A series of flat circular plates of lead were placed in a

rigid cylinder, having a small orifice in the centre of its base, and



visrusiTY. 175

Tin- lead issues as a jet from the orifice,

an<l the lines of Mow indicated ly the distorted boundaries of the

plat striking resemblance to the corresponding lines in

iinir from an oritice in a horizontal plate.
: ,iin.l lead to be very fairly plastic, and ascertained its

:ty to be about

S = 200.000 grammes per square centimetre

la j.t-r square inch.

The iuality of manufactured lead is however more variable

than that of any other metal.

Viscosity. Tin* prop.-rtie- which we have ascribed to

ly plastic" N.ili.U and "
perfect iluids" are modified in

rial- bv tin- universal presence of more or less viscosity

iiii'_r to tin- tln-ory <>f fluid viscosity advanced by
and lobaeqnuiiuj extended and verified by him-

rk Maxwrll, Pni-M -nill. -,
( ). K. Meyer, Helmholtz and

n.Nv-ki. and nth.-r-. thi- i.r>|"-rty consists in a kind of sliding
inn IM-I\VI-.-M lay.-r- ..f moleCOleB, only called into play when
tive in-

'

the lay.-i^ i^ taking place in a direction tan-

:al to their common -urface.

Vise i-inir Motioi mvaA therefore be

iid. since Mow i- merely continuous

sh< ir. it follows that Mow U alway- opp,^,-d l,y vivc..sity.

On the other hand, a uniform cuhical dilatation or compression
'>- in 4. 10 - th.-r hoino Ur,. n ,.uU s or not- is specially

1 l.y the absence of shear, and this form <>f strain

M-.ju.-ntly iMxsseesea th.- uni<|u.- ] by Ol l-ini: absolutely

y th.- existence of 718000J

(ii.)
ThV amount of viscon- i i\en solid or

flu d, at a L 11 t-mp. nds only upon, and

Mtinuoii^ly \\ ith the , / taie8plaC6,B&d
in ariahly vanish \ Of, in oth.-r words, infinitely

by to infinitely alow Mowing.
Th.

: u a 'material does not therefore

ati ct th.- condition^ ,f . ondet BtreAB, but only resists

i,,,,dili.
'

-uin simple dilatation or compres-
i hv which a ho.lv

;

m one state of -train to another;

a , .] ;i tion i pntoude <>f
f/"' xii-r*s

V- 1 the fane occupied by the

iige.
Alth..u-h a fluid may. in virtue of it- vi-e.Mty. otl'er immense

\p%d distortion-,, yei any shearing stress,

11, will -ufhi dooe ;niy re.juired amount of

///,// /7 /// applied <;,,itinuou8ly for
me.



176 NATURAL MATERIALS:

The same statement applies to viscous plastic solids, under

continuously applied shearing stress exceeding by however little

their limit of solidity S.

This introduction of the element of time or velocity into the

relations between shear and shearing stress is usually described

in the case of fluids, as constituting an imperfection in their

fluidity ;
and it is obvious that a viscous plastic solid is imper-

fectly plastic in precisely the same sense that a viscous fluid is

imperfectly fluid.

Apparently all fluids possess absolutely perfect elasticity of

volume, and it is probable that plastic solids approach very nearly
to this condition, at any rate up to a very high degree of pressure.
We may say then that, while a perfect fluid or a perfectly plastic
solid does not exist in nature, yet when in equilibrium or while

undergoing changes of volume without distortion all fluids and

plastic solids behave as if their fluidity or plasticity were perfect.

(Hi.) The resistance offered to shear by viscosity is not

an elastic nature. The work done in overcoming it is not stored

up as potential energy, but is entirely dissipated in the form of

molecular kinetic energy or heat ( '2, 20).

Thus a viscous fluid has no resilience under distortion any
more than a perfect fluid : and a viscous plastic solid has only so

much distortional resilience as corresponds to the limit S of its

solidity.
To make this distinction plain let us compare the behaviour

of a perfectly elastic solid and of a viscous fluid under a simple
distortion. The resistance of the solid is quite independent oi

the rate at which distortion takes place, and is simply a function

of the amount of the distortion, continually increasing with that

amount. None of the work done in overcoming this resistance

is lost (the temperature being maintained constant and uniform)
but it is all stored up as potential energy, ready at any instant

to supply just as much work as will suffice to restore the body to

its natural state from any condition of distortion in which it

may be left. The fluid, on the other hand, offers a resistance

which is quite independent of the amount of distortion existing
at any moment, and depends only on the rate at which it is being

produced. The work done in overcoming this resistance is trans-

formed into heat, and if the fluid be maintained at a constant

and uniform temperature this heat must be continually with-

drawn [ 24, (ii.), 26], and the work is consequently lost both to

the fluid and to the agent producing the strain. When the

straining forces are removed, there is no tendency or power on
the part of the fluid to reverse the strain, because no energy
has been retained to be reconverted into mechanical work.

(iv.) It is sufficiently obvious that the principle of super-

position of small strains ( 87, 88) must be equally applicable to
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/, which are simply the differential
11 -^trains as to the time.

Also since the viaeoufl rrs^tances to finite rates of shearing
nit.-, tin- .shearing stresses called into play by viscosity to
small rates of shraring must l>e small stresses

( 153), and
thnvt'oiv subjrct to the law of superposition ( 155), equally with
the

Thus I Law d 1!>7) is applicable to the viscous
i by all bodies t> distortion, when the rates of

tion art- small quantities in the sense of 58 that is to

>ly proportional to

The coefficient or ?/< . for a given isotropic
ial at a givm uniform trmprrature, is defined (see 210) as

the to produce the unit of shear per
unit in any plan.-. Km- instance, if v be given in the

nd any two parallel planes be taken in

f thr 1- (ntiinetre apart, it will require a

tangential sti centimetre on each of

tip- planes, in MS, to produce a small relative

velccity l/o> of a centimetn I,
in any direction parallel

to themselves.

Sir William Thou. imentfl in 1MI."> on the

:rion> n M!,V,I \in-_r the rate of diminution
1 vibrations of round wires 0& . HI). The theory

of.1 ich \; will In' fnsidTi'd in Chapter X. The formula 1

BJT eed at ar> and it \\ouM require a con-

ies of exprrimi-nts to evaluate the modulus of

The law l.y which tin? viscous redstanoe of solids depends

Up i tli. whni that rat- is considerable, is

i. as also is tli.- law with strain for

fin; e vain

[n the case >f fluids howi-v.-r as was first demonstrated on

u'i-.iinds by St. and sul.sc(|uently
ver fii-d in \ari.u- waji 1-y

i rimmtal authorities named
'

b< -e tl ;al la'w holds for ;dl rat-s of distortion (the

IC8I -i- j.ply to thr flow of fluids, which,
IMN ever great all their mechanical properties
unr ten

'lie valur of j -rratly for ditl'rivnt fluids, and also

d-j .. i- : Fluids may be arranged in

foil E tin- mairnitudrs of their

mo< uli of r..uipr.- il ility and
j

and thr law of variation

of t le latt.-r with tip- t.-mpt-raturr.
I i

'
.

highly compressible fluids of sniall

ndency t.. indrfinitr expansion
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and rarefaction which can only be restrained by the continued

exercise of external pressure, or of impressed forces such as

gravity : the hydrostatic pressure at every point in the interior

of a gas or vapour is therefore essentially positive.
Another distinguishing property is that the viscosity increases

as the temperature rises.

According to Clerk Maxwell the modulus of viscosity for

atmospheric air at t Cent, is

i/= -0001878(1 + -003660
in dynes per square centimetre.*

The value of v for oxygen is rather greater, and for carbonic

acid gas rather less, while for hydrogen it is less than half that

of air.

All the remaining groups of fluids have a compressibility

comparable with that of solids (see Table B 'below] and are

characterised by the possession of a definite density and volume

per unit mass at each temperature, when free from external

pressure.
Their viscosity invariably diminishes as the temperature rises.

(2.) The Mobile Liquids (ether, alcohol, water, turpentine,

mercury, etc.) : viscosity much greater than that of gases but

still very moderate. These liquids are therefore capable of

flowing freely and rapidly under small shearing stresses, such

as that of gravity ;
while a falling stream readily breaks up

into separate drops.
Poiseuille found for water

At Cent., y = '018 dynes per sq. cent.

10 -013

20 -010

A

.

Helmholtz and Piotrowski found by another method that a

24-5 Cent.

v= '014061 dynes per sq. cent.,

while 0. E. Meyer's results were about one sixth greater th

Poiseuille's.

(3.) The Viscid Liquids (treacle, glycerine, Canada balsam,

tar, etc.): largely increased viscosity at low and moderate

temperatures, the flow under gravity being sluggish and very
characteristic. A falling stream becomes excessively reduced
in area before breaking up into drops. The viscosity diminishes

with great rapidity as the temperature rises.

Schottner found for glycerine

At 3 Cent., v = 42 dynes per sq. cent.

20 8

* See reduction tables at end of this Appendix.
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This enormous reduction of the viscidity* of glycerine may
be easily demonstrated on a cold day. A bottle of pure glycerine
which has been exposed to the air may be turned completely
o\vr before the liquid begins to rim; but after being warmed

ii minutes before a fire the glycerine will become almost as
mobile as turpeii:

(4.) 77" Ultra b (pitch, resin, cobbler's wax,
sealing wax, etc.) : possess enormous viscosity at ordinary temper-

iiich however diminishes with quite startling rapidity
as the temperature rises to the melting point" after which they
are merely more or ! \ i-ei<l.

Flow under gravity is in some cases imperceptible even in the
n. The resinous seals, etc., in the Egyptian tombs

i found t have flowed down to such an extent
as to be reduced to mere shapeless masses.

A
rtjck

-tlin^ wax supported on two pegs near its

ill bend till it drops between them, in two or three
unless the weather he \

toy
mid.

\V. Thom-M.n tixed a cake of Canada pitch in the middle
of a 1 -! of water, to av..id rapid variations of tempera-
ture, and placed some bullets above it and some corks below.
At the end of Borne month- all were found to have forced their

Wfl y through, merely by the effect of gravity, although it would
ha -e r.'iuir. pressure to drive them through at a
vi ;

Th- H fluids at low tempt-ratiin's is in general
so prr

:n. 1\ brittle, and easily broken by very
rate forces suddenly app

Tin- stu.l.-nt will Jiowevi-r find that with very cautious

ha idl
r wi-t a stick of good sealing wax to

all iOst T. He will observe that the more it is man-

ipi lated />/// tin- -a>i.-r inani]ulation becomes. The
ex danation of this is that th- a].pr<-ciabl<- amount of heat

ge ,erat-d by vN- '

tiiin- t<> radiate, and the wax in

co M-.ju.-nc,- l>ecomes v \i-cous. A good deal of

WJ rmth is also communicated by tin- hands. If the stick be laid

A8i le i rim,- it frill be found to have recovered its

01 i ;inal vi>co\is pr,ijH-i

It will also very probably b- noticrd that the stick when
foe t possesses a small amount of resilience, and straightens

i.tlv wh- ed This is due to the fact that the

ace t" tl-.w. even at such small rates of bending as

cai be imp..s,.d without dan-j'-r of breaking the stick, is greater
th; n the re-i stance to < in.

Vitality i,, tii.,-,1 M the visible resistance of viscosity to

gra
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Consequently in bending the stick the portion on the inner

side of the curve is compressed longitudinally and the portion on
the outer side elongated. If the stick were forced to remain in

its bent form it would relieve itself gradually from this state of

strain by lateral expansion of the concave side and lateral com-

pression of the convex side, thus reducing the resultant strain to

a mere distortion, and restoring the density at every point to its

initial value.

As it is, when the stick is released immediately after having
been bent, the resilience of volume of the wax expends itself in

the only way which is unopposed by viscosity, namely in uniform
cubical dilatation or compression of the parts that have been
contracted or elongated. It is easy to see that the effect of this

partial reversal of the strain is to reduce the curvature by an
amount bearing a finite ratio to the whole.

The Plastic Solids (clay, wax, tallow, lead, etc.) display con-

siderable viscosity, which increases much more rapidly with the

rate of flow than does that of fluids, but which is probably less

at very small velocities than that of any of the ultra-viscous

fluids.

Thus, when a plastic body whose solidity is small compared
with its rigidity is executing vibrations within the limits of its

elasticity, the amplitude of the distortion is necessarily so minute

that, even if the period be a very small fraction of a second, the

rate of distortion is still very small, and the effects of viscosity
are only observable by means of the gradual diminution of

amplitude. But when the body is forced to flow at a finite rate

the viscous resistance is enormously increased, and its heating
effect may become very conspicuous.

The materials mentioned above possess very different degrees
of solidity, from that of lead which, as we have already men-

tioned, was found by Tresca to be about 200,000 grammes or 19 J
millions of dynes per square centimetre, to that of clay the

existence of which only rests upon a delicate experiment of

Coulomb's.
A tallow candle laid on two pegs will not go on bending

indefinitely until released from the stress caused by gravity, like

a bar of sealing wax under the same circumstances, but will

gradually (owing to its viscosity) assume a certain definite curve

(see Chapter VII.) in which the elastic stresses called into play by
flexure will maintain it in equilibrium. Under a distorting stress

exceeding the limit of its solidity it can however be made in time

to flow indefinitely.
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B. DUCTILE METALS.

Thi> laru'e and important cla>s includes wrought iron, the
: <jualitie> of steel, xinc, tin, copper, brass, gun metal, gold

and -ilver. and in fact almost all those metals cast iron and
hard ing the only important exceptions which are most

,u. --t for purposes of construction, whether on a large or

Ductility. A p.-rt'.-rtly ductile" material possesses perfect
ela>ticity f hulk under all comprexx i..n^ and under all dilatations

short of the limit of tenacity. It aUo possesses perfect elasticity
nn under distorting stresses -hurt of a certain limit S,
.d which How be_ -. ith pla>tic Bodies, The conditions
(til.- flow diil'.-r however from those of plastic flow in the

two following important particulars:
'I'll'- n S of tin- hody to flow is not an absolutely

quantity depending only on tin- nature of the material, but

iiially increa>ex with th- amount of flow. Thus to j)ru<lnrr
con'.ii utc^ continuously to

increase t ress; and if tin- maximum distorting
stress appli.-d to the \tody be greater than S hut well within the

str< ngtli of the mat. -rial, the system will reach a state of

041 ilibrium aftrr tin- 'I'tiu'it. amount of flow which is required
to '|iiali

-f th.- hu.ly with the applied stress S'.

if the body be now released from stress, the elastic

poi Jon of tl luding all cubical dilatation or com-

pr aioii) will IK- ivcovered, and the body will resume its original
vol line and

l.-n.-ity.
tin- i-tl.-et of tin- tlow remaining as a per-

ina UM

If / gradually r.-'ij. plied, it is

foi id that, \\ ifhii: unit-, tin- strain produced foUows
th same law as befor.'. Th; that the elastic moduli, as

in )/' an- unatlected by the

set. [This' point will he further con-id-Ted presently, under
he,- 1 (in.).]

Th. however found to have been

ext -nd. d Mow no longer l..-in- at tin- original limit S, but is

i until the di-t..rtiir. -he.s the value S' i.e.,

th- ,

'

/ -ln], flu lnnh) has
If tin- stress lie carried

it her How will take place, and on release of the

and r.-applicatioii .,f tl the limit of elasticity of

for ii will nd to have b.-.-n Mill further extended. This

inu.-d until we reach the limits of the

//A ..f t ! ial.

Hardness ! i -1. \iou- that the elastic limit of a ductile

bo<ly only on the intrinsic <|iialities of
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the material, but also on its previous elastic history is distinct

from the solidity of a plastic solid which, as we have seen, is

unaltered by any straining process.
We shall therefore distinguish the resistance to flow of ductile

solids by the usual term Harness. The characteristic property
of such solids is then that their hardness is increased by every
process which produces a permanent set: their volume and

density when free from stress, as well as their elastic moduli,

remaining unchanged.
The remark already made with reference to solidity may here

be repeated with regard to hardness and stivngth. All these

terms denote limiting stresses, and have no connection whatever
with rigidity and compressibility, which are modular quant:

the first a stress, and the second the reciprocal of a stress.

The minimum value of the hardness of a given piece of ductile

metal is that which it possesses when delivered by the manufac-

turer; the maximum value is equal to the ultimate strength

( 222) of the material under shearing stress. When it has been
hardened to this point, the material has lost all malleability and
has become perfectly brittle, since its elastic limit now coincides

with the point of rupture. It has, in fact, acquired the highest

possible degree of temper ( 15), solely through excessive strain-

ing.

(tii) Every form of set affects the elastic symmetry of a
ductile (though not of a plastic) material. For instance, as has

already been remarked in 207, an isotropic body drawn out

or caused to flow by longitudinal stress in one given direction,

with or without lateral stress symmetrical as to that direction,

assumes to a greater or less extent the aeolotropic condition of

205 (ti).
Metallic bodies also fall short of perfect ductility in the

respect that set produces a condition of imperfect elasticity
or constraint, which is apparently due to a residual interaction

between the parts of the body, caused by the permanent
deformation of the mean molecular configuration ( 8). It is

manifested within the new elastic limits in two ways
First, by the incomplete recovery of the strain when the stress

is removed :

Secondly, by the inexact reversal of the strain when the stress

is reversed.

We shall see, however, when we come to consider the behaviour
of ductile metals under tension that this state of constraint is

only temporary, and is easily removed by a few successive rever-

sals of the stress.

Viscosity. This property is displayed in very different degrees

by ductile metals. In most of them it has very little effect (for
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leason -.plained *) .ii small vibrations within the elastic

limit, hnt if a bar or iron be hammered, rolled or drawn
a- to flow visibly its temprrutuiv ri-t^ very rapidly.

Zinc and n- <>r two uth-r nn-tals are however exceptional in

Mount <>i' their vist-.ity, \vhicli produces marked results even
within tl limit-.

In tli.- euri'.n> >tate known I fatu (g 16), the

viscosity of m-taU i> increased while their elastic properties

\\".- now proc,--d t exemplify the ]'
- of ductile metals

by a brief account of their behaviour, up t<> the point of crushing
id.T

(1) Cubical ( 'mpn.-^i.ui.

(2) Longitudinal Kxtonsimi.

(3) Longitudinal Compn ->sion.

(1.) Cubical Compression.

.ils possess perfect elasticity of lulk up to a

pressure. The range of this elasticity seems to !>

iociated with hardn.--, tli-.u-li tin-re is no necessary reason

hould be so.

*Thu^ it i- iinprobabh- that any practicable amount of pressun
-

.uld 6 "f d.-iiMty in ir.n or >teel.

On tl,,- e iiiall.-abl.- m.-taU >uch as irold,

iid copper an- known t-> und-iv >uch
permanent

altera-

ii in nibli- but -till ca>ilv attainable jircssures

utal determinations are still wanting of

lii e cases, and of th.- point to which

ideii^ati"ii mav y the means at our disposal.
in ..f >impl- dUatmon is en-

rod by such great practical difficulties that our direct

towledge of this subject i- almost
d. -t. -rmine Youngs

Mlul.i- 1 . dinal .-xtcn-inn. and tin- rigidity by twistingf
to d. di; of compression by formula

^of
-

l (as we shall see in Chapter VII.) the bending

page 190.

DMtal l:u-s hrymul th- limits of their

Appendix V., fco follow Chapter VIL



NATURAL MATERIALS :

as well as the stretching of beams depends upon Young's
modulus, the researches of experimental engineers have been

chiefly directed to an accurate determination of q. Experiments
on rigidity have been comparatively neglected, and consequently
n and k are only known for a few materials.

It may however be taken for granted that k is sufficiently

great in all solids to ensure that Hooke's law holds for com-

pressions and dilatations within the elastic limit.

Experimental results show that when a ductile body is

strained to any extent, in any manner which freely admits of

change of form as for instance in the cases of longitudinal

elongation and compression to be presently considered the

cubical dilatation or compression of every portion may be

assumed to be very small, and also to be almost entirely elastic

or recoverable. Thus, in an experiment of Sir W. Thomson's,
a permanent elongation of extreme amount '1067, produced in a

copper wire by gradual increase of tension, was accompanied by
a permanent cubical dilatation of amount '0085, or less than 8

per cent.

(2.) Longitudinal Extension.

We now proceed to describe the phenomena exhibited by a

bar of ductile metal, when very cautiously drawn out to the

point of rupture : taking as examples the latest published

experiments of Prof. A. B. W. Kennedy on bars of wrought iron

and steel.

To begin with, the bar as obtained from the manufacturer

has acquired considerable permanent set ( 207) in the course of

the different processes of rolling, hammering, drawing, etc., to

which it has been submitted. It is in fact in the state of
constraint described above under head (Hi.), and consequently
does not behave at first like a perfectly elastic body.

On the first application of any load W within the elastic

limit (to be defined presently) a total elongation is produced
which is indeed proportional to W*; but on the removal of the

load the bar does not return to its original length, but retains

in the form of set a portion of the total elongation also pro-

portional to W. Thus the elastic elongation, or that portion
of the whole which is immediately recoverable, is likewise pro-

portional to the load*.

If however the same loadW be applied and removed several

times in succession, it is found that the small residual set

* See note at foot of page 163.



riLH -METAl.s. 185

irradually Disappears, ami ultimately the bar arrives at a condition
which has been well termed by Prof. K. Pearson its state of
ease for this particular load. In this state the bar behaves as a

tly elastic >.)lid lU loads which Jo not exceed W;
jation being precisely proportional to the load, and the

bar always returning to pivci>rly the same length when released.

By repeating this process with urn\dually increasing loads, the
of ease may be extended up to a certain point, beyond

which it cannot be produced. In this ultimate or limiting
state of ease the bar ivally .satisfies the definition of a perfectly
elastic solid, so far at least a- strains of this type are concerned.
The win.],- of tin- initial constraint due to the processes of manu-
facture may be considered to have been removed, and the state
to which tlir bar invariably returns on removal of the load may

itfi true natural state (;? 5\
f

l'h- longitudinal stress produced by the maximum load con -

th this state of ease is the mathematical limit of

perfect elasticity, or what we have called in .* -2'2-2 the elastic

Strength <>t' the mat. rial for longitudinal extension.

The maximum shearing stress which is half the above is

wmt we have called the natural hardness of the material.

.slightly diagrammatic representation of the

st -aining of a bar of anneal* te 1 of the softest quality,
tl e natural dim.-nsionx of which \\

Lengtil . =10 inches.

= L'508

!eknes> = 0*376

ional area . .
= 0'5G7 of a square inch.

T ie vertical scale r elongai :id the horizontal

8< ile the
e..n-e-pon'ling

loads per unit of in tti'if *>(;, ul (poun<ls

p r square inelu whi<-h. up to this point at least, represent very
a proximate] y the aetual longitudinal stresses.

The ultimate ^tate of ease is represented by the portion a of

tl 18 curve, the point .1 represent ii. tural Mate of the bar,

a .1 t /; its cuiidition wh- -n -trained to the limit of its

th.

Ho- nil to hold throughout the whole of this

st ice, so that .1 1> line.

The 001, and the stress is 30,500 pounds,
V inch, llenee we deduce the following

*<*&' '

13-616 tons per sq. inch.
tudmal extension \

,ral hardn--- .
= 6*808 ,,

modulu- .
= 13,61'J
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8000 16000 24000 32000 40006 48000 56000

0-25

Stress in pounds per square inch of
initial section.

0-20

0-15

Fig. 24.

BAR OF BASIC STEKL
(annealed)

Length = 10 inch.

Section = 0-567 sq. inch.

5

o-/o

0.05

0-00

8000 16000 24000 32000 40000 48000 56000
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If the stress be increased beyond the limit B, more or less

rlow is produced, and a state of ease is no longer attainable. In
MOOnd >tage (marked 6 in Figure 24) the major portion of

the strain is still an </<>//<: dongatwn proportional to the stress,
and following the same modulus as before; but the set, being
du to How. no longer shows any tendency to disappear. It is

still small, but its rate of increase (and therefore also that of the
total elongation) increases with the stress applied. The stress-

n curve is therefore no longer a straight line.

Prof. Kennedy observes that "
occasionally this stage does not

occur at all, and both it> higher and lower limits seem more
than any other point- in . .f the material to be suscep-
tibl.- of

change depending on manipulation. Accidental shock
will shorten the stage considerably, very gradual loading extends

Proi. Kennedy thei poeee thatSis should
be called the stage of unstable elastic equilibrium.

are now in fact approaching a very critical point. If the

load be increased with caution until a certain limit

ted by
C in ifl reached, the resistance of the

ba- appears all at once to town, and the elongation may
be suddenly increased by many tim.-- it- amount without any
co respoii' rease of load. Indr.-d. when once the " break-

in
j
down point" C has been passed, the bar may be held in

e; lilibrium nnd- -i rably greater rl.m -at ions by loads less

tfi in that i to bring it to the critical point. This fact is

in lic;i id curvature of the portion CCl
of

tl carve in Ki-uiv *1\, which however i- much more marked in

F nn-.- i^\. reproduced with no alteration hut that of scale from

a ur\ i aut- -mat ically during an actual experiment. This

JK
int is now being suhmitt.-d t< i'urth.-r inv.->ti Cation by Prof.

K nn
"(' a tlic limit of elasticity,

b< *an markedly visible without special

a] parat
In the <;-. r-

]

urc -J4 the elongation at C is

. *0 8, and tin- >tr. ud-, or 1 ."!.") tons per square inch,

w iicl ..rineer's or practical limit of elastic

>t BD

At Option i- inciva-.-d to -Oi*.") without any corre-

sj mdingincrease in th. l.-ad, .r (for practical purposes) in the

8t i/This i> howi-v.-r not a v.-ry markt-d case. Prof . Kennedy
m utions exampl.^ in which th- elongation suddenly increases

fr ,., C
t
.

It is ol.vio. n actual the hardness is not quite

ujh a d.-tinitr .piantity as we consider it to be theoretically.

]) irii d)le stage l> th- rli-torting stress and the hard-

nc . struggling together, and the small amount
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of flow which takes place is, as it were, tentative. At G the

stress gains a conclusive advantage, and a sudden and rapid flow

takes place, the body yielding.during this short stage CCl
as if it

were plastic. I have therefore proposed (Nature, vol. xxxii.,

p. 76) to call the point C the elastic crisis. It is remarkable
that during this stage the extension of the bar appears to be

occurring at different parts of its length successively, and not

simultaneously, as during the stages a and c.

25

.20

H.I5

a

10

05-

12 16 20 24

Fig. 24 A.

MILD STEEL BAR.
INITIAL LENGTH = 10 IN.

j

4 8 |2 lb 20 24

After once more attaining stable equilibrium at C
lt
the bar

passes into the stage c of regular ductile flow. Further increase

of the stress produces increased elongation, a small portion of

which is elastic, or recoverable on release: this elastic portion

apparently still follows very closely the law of Young's modulus.
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train however now oooristfl almost entirely of a large and
continually in< flow, which ivinains as permanent set. In
fact tin- bar n\v lengthens visil.ly and "thins down" uniformly

_:huut its length. This condition of the bar, from C
l
to D,

is called the stage of uniform flow. The regular increase of
hardn own by tin- continuous curvature of the line CD,
which for a perfectly pla>tic solid would be straight.

Figuiv iH.v exhibits very clearly the practical constancy of

Young's modulus. In this CUM- the load was gradually removed
: tin- uniform tlow.and then gradually reapplied

\ ident that th- curve- described l.y the bar in recovering
:nall rla-tie portion of tin- strain arc practically straight

lin. -
{parallel with that originally described in the stage a of

ty. 'I'll.-.- lin.-N continually increase in length, the

isae of their extremities .1. -noting a t rach stage twice the

continuously iiHT'-a-im: hardne-s ,f the bar, while the ordinates

of tin- ]">int- where they m.-.-t th- axis of elongation (or of zero

note tin- incivaMng permanent elongations, due to flow,
nil stages. The slight protuberances of the curve at

th<; extremities of the lin<-> which repn-.-nt the re-loading of

th bar an- a \-i\ interesting example of da-tic fatigue (S l(i;.

AJter having bet'ii iV'in -tress the elastic

pr)p<-: the har ar.- -di-bUy ii
. and for a time it is

a) le to bear a greater load \\ ith.-ut ii. 'ion.

At J> v i In- point of maximum load, which is also

tl i limit of uniform flow. If this load be continued, the bar

r;i .idly t: at -ine point of its length,
u: til the CTOM -M-tion is so r.-duced that t! across it

rt iche- the limit of tenacity, and the bar breaks at that point.
In the ca.-.- repre-ented iii 1 ; the elongation at D was

-2 iO, and (

pounds per s.piare inch. Thus the

el stic p-.rtion ..f the elongation was about

57,600_ 57.600 , gg
q 30,500,000

ai i the remainder, or more than '228, wa ]M-rmanrnt set. These

fij urea are i le toe ar-a has now been

He isibly reduced by tlow, and the load per unit of initial area no

lo igti
actual stress. \\'e >hall return to this

p< int pr.
-
ntly.

U is found pOMlble,Qndei favourable circumstances, to prolong

stage of local tlo\\ somewhat, by beginning to diminish the

1 imm.-diately the tir-t BgUfl A its approach are observe.!.

Tie el..ni:ation then continue^ t.. incr.-a.-e almost entirely by
1" al tbinnin^ under dimini-liiiiL: ///*. until at last the bar

gi ;es iiaximum extension < A' in Figure 24),

terminal load con.-iderably less than the maximum.



190 NATURAL MATERIALS :-

Owing however to the rapid reduction of area at the weakest

point of the bar, the actual stress experienced by the constricted

portion increases more rapidly during the stage d of local flow

than during any other, and the point E of terminal load is also

the point of maximum strength.
In the case of Figure 24 the ultimate extension at E was

'255, and the terminal load per square inch of initial area 49,000

pounds. Since, however, the reduction of area, the constricted

portion was '548, this gives an actual terminal stress of

49,000 x
1--548

108,290 pounds
48-34 tons

I per square inch.

By gradual

Fig.25

removal and re-application of the load, as in

Figure 24A, Professor Kennedy has shown that

even in this final stage the elastic part of the

elongation follows the original value of Young's
modulus (Nature, vol. xxxii., p. 270, Fig. 3).

Figure 25 represents the final stage of an
actual experiment by Mr. Kirkcaldy on a bar

of iron 1 inch in diameter. The ultimate

elongation was '300, and the ultimate con-

striction of sectional area was "610. The
terminal load was about 45,553 pounds,amount-

ing to only 58,000 pounds per square inch of

original section, but to as much as 146,000

pounds per square inch of the reduced section.

The dotted lines in the Figure represent
the initial state of the bar, and the student

will observe

(1.) The general reduction of diameter,due
to uniform flow.

(2.) The excessive constriction of a limited

portion, due to local flow.

(3.) The varying elongation, as shown by
marks on the bar, originally at uniform dis-

tances apart, corresponding to this varying
reduction of transverse dimensions.

Figure 25A consists of three curves obtained

by consecutive measurements (not automati-

cally), and exhibiting
I. The load per unit of original sectional

area.

II. The load per unit of area of the non-

constricted portion of the bar.

III. The load per unit of area of the section

where the constriction is a maximum, and
where fracture ultimately occurs.
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All three curves coincide till the stage of uniform flow is

,\ hen I. 'which is the curve represented in Figures 24
and 24A) separate -radually from the others. When the point
of maximum load is pas>ed, and local now begins, curve III.

turns off more abruptly.
It is evident that while the termination of III. gives us the

pproach to the ultimate strength or tenacity of the
material, we cannot accept it as giving us any reliable informa-
tion as to tin- relations between the strain and either the load or

ithin this limit.

For all practical purposes, I. may be taken as the load-strain

curve, and II. as tin- >tr -----train curve.

It is a curioii^ fact that. for bars of the same material and the
.same section, the form and dimensions of the conical constriction

'.most invariable at the point of rupture. Consequently the

apparent ultimate elongation, obtained by comparing the whole

Fig. 26 A

LANDORE STEEL BAR.
IIMOTM (O

ngth of tched bar (mofadiog the constricted portion)
ith its original length. depeii<l- v. TV much on the latter, and is

ver\ jiiality of the bar. This is shown

ry clearly in I-': in which the onlinates represent the

PI iltimate elongations of bars of three different

ateriaU. th- lengths of which are given by the horizontal

\\e. The eurv.- A A i> for common wrought iron plate (tenacity
to 21 tons pei .eh); BB for superior wrought iron

iiacitv -1 i -oft basic steel, the history

onesampl'- of which i- -iv-n in Figure 24 (tenacity between

and 27 toi

The inilu. : the l-nur tli of the bar on the apparent
timate elnii-jation in t: 'inite startling, as it

mini-h t- from -47 O M a ^-inch to -2~* on a 10-inch bar. Two
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methods have been suggested for obtaining a uniform experi-
mental standard of ultimate extension : first, that all materials

should be tested by means of bars of standard dimensions :

secondly, that the length of the constricted portion should be
subtracted from the total length in estimating the ultimate

extension.

The stage from I) to E, like that from B to C, requires special

apparatus and excessive delicacy of manipulation to render its

properties accurately measurable, and in consequence practical

10

10 765
Length of bar in Inches

Fig.26

men generally accept the elongation at E as the ultimate elonga-
tion, and the load at D (or maximum load) as the terminal or

breaking load. There is no practical danger in this, so long as

the error is avoided of taking the load at D divided by the con-

stricted area at E as the breaking stress. This gives an entirely
fallacious result, as will be seen by referring to the case of Figure
24 in which it would give

57,600 x
1

1 - -548

= 127,296 pounds")
i Per square inch.= 56-82 tons )
r

or 1*18 of its true value.

Taking into account that, as determined under any but the

most favourable conditions, the limit of elasticity may be assigned
to any point between B and C, or even Cr and the maximum and

breaking loads and stresses to any point between D and E: and
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:i.nii.'ii^ diiieiviuvs in the quality of various specimens
of tlif same metal (strictly speaking, totally different materials),

. tli.- piv-ence of impurities and the different processes of
manufacture : the student will not be surprised to learn that the

ninations of elastic constants published by different ex-
\hil.it the most glaring discrepancies. The values

given in the tab. , can therefore only be considered as

approximate ;

< Mi the nther hand, the values of the moduli, at any rate
when th- material can be definitely specified, are probably verv

ocui

/session.

It i> impos>ible to perform experiments on the compression of

idinal thnixt with the same minute accuracy
a.s those on its e'

i under tension, as the following con-
siderations sufficiently pr

In >e, we suppose that the load is always
distributed uniformly over tin- -nd of the bar, whether as

re sure or as tract i"ii. and that at the same time the ends are as

re< to contract or expand
in area as any other portion of the

bar The longitudinal and lateral strains are then homogeneous
or miform throughout the I. d the -stress across every
tra -

mif'.rmly distributed over it, and has the

sai e POT each.

STo te load mu-t either be fastened to one or

mo i poi: :ial section in which case the latter is

fre to alter in area, but the stress is not uniformly distributed ;

or igidly attached t< by soldering) when
1 be uniform, but the area of the face will be

M free QJ or, lastly, attached by clamps to

the end of the bar rendering it impossible for either supposed
eon lition to be fulfil

n experim- '-tension we may employ bars of consider-

bl< length.and s> of these terminal irregularities
on i ie behaviour of the bar as a whole within the limit of small

lilibrium of a bar under con-

longitudinal pressure i^ in the hi<_die^t decree unstable,

and f the I I the bar be even a few multiples of its

.er, the slightest accid.-ntal sli-.ck will cause it to bend
lat. ally.

either then the bar must bt^ enel.^, <1 in a trough to prevent
whieb renders minute accuracy of observation impossible:

or t IKS performed on very short blocks of

mat rial. In from the difficulty
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of attaching the load. If it he applied to portions only of the

ends, the stress has (as it were) no room to equalise itself approxi-
mately over the intermediate sections; while if the block he

placed on a rigid surface, and a rigid weight applied to its upper
face, friction prevents its ends from expanding freely, and in

consequence it bulges out considerably in the middle (Figure 27).
We must therefore look for considerable discrepancies in the

results of experiments on longitudinal compression, even when
made by the same observer on different blocks of the same

material, and none of them can be accepted as more than approxi-
mate.

So far as we can judge, the value of Young's modulus and the

limit of perfect elasticity seem to be about the same in ductile

materials for compression as for extension. This is obviously
what our theory would lead us to expect.

We may therefore suppose the straight line BA in Figure 24

produced for an equal distance AB' to represent the state of

perfect elasticity under longitudinal compression (ultimate state

of ease being, of course, presupposed).
The critical stage corresponding to 6 has not been observed,

but at a point indistinguishable from the

elastic limit ductile flow begins, with increas-

ing hardness. From this point outwards,
marked permanent set is visible in the

form of longitudinal comparison and lateral

bulging: fracture ultimately taking place

by means of longitudinal cracks, due obvi-

Fig.27 ously to lateral extension.

Figure 27 represents the mode of fracture of a short block of

steel, and the amount of its ultimate compression. The dotted

lines show its initial dimensions.
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folloNvin-- tal.lt ie results of an experiment by Sir
\V. Kuirhairn uii a Muck of soft Bessemer steel, length '997 of an

diametrr . an inch.

Kid in t Height uf Mock.

o-o
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C. BRITTLE SOLIDS.

This class may be divided into two groups, with reference to

the relative magnitude of the rigidity and the strength under

shearing stress (i.e., of the modulus and the limit).

Group I., having a rigidity which is very large in comparison
with its strength, includes cast iron and the harder varieties of

steel and glass (the other qualities of which are ductile), as well

as natural crystals of all kinds.

Group II., having a rigidity which is very small in compari-
son with its strength, includes the homogeneous jellies and india-

rubber, etc.

A "
perfectly brittle

"
solid is defined as being perfectly elastic

up to the full limits of its ultimate strength, and consequently

incapable of acquiring a set of any kind. The "
elastic strength

"

and " ultimate strength
"
of such a solid are therefore identical

under strain of any type.
It is probable that this definition is realised in perfection by

crystals and jellies, and very approximately by those metals (such
as soft steel) which are originally most malleable, after being

tempered to the utmost degree of hardness by straining beyond
their original elastic limits.

Cast iron and indiarubber are capable of a certain amount of

set, which is however a small fraction of the total strain.

Under extension the behaviour of the two groups differs only
in the amount of deformation which can be produced before the

limit of tenacity is reached.

In Group I. this is very small, and Hooke's law applies for all

practical purposes up to the point of rupture.
In Group II. however a very considerable amount of elastic

strain may be produced without rupturing the material in the

case of indiarubber an enormous amount, which the roughest

experiments will show to be prolonged far beyond the limits of

Hooke's law.

Cast iron is a very variable and irregular material, the elas-

ticity of which is never perfect. It is impossible to bring it to a

state of ease, so that a trifling set (very likely due to internal

constraint) is visible from the very beginning of the straining.
From .this point the percentage of set in the total elongation
increases up to the point of rupture, but the maximum total

elongation is itself so small (about the same as the maximum
perfectly elastic elongation of soft steel at B in Figure 24) that

the set is not perceptible unless a very long bar be tested with
delicate apparatus.
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The following table gives the results of an experiment of
vinson's on the stretching of a cast iron bar, length 600

3, diameter n.V.) iiu-lu-<. which broke under a stress of
") pounds to the square inch:



198 NATURAL MATERIALS :

are ultimately ruptured by tangential fracture or cleavage in

one of the planes in which the shearing stress is a maximum:
that is (see Example 4, page 117) in some plane inclined at

an angle of 45, or thereabouts, to the direction

of pressure. This method of fracture is well

shown in Figure 28, which represents the crush-

ing of a cast iron bar.

The strength of these rigid materials under

pressure therefore depends on their power of

resisting shearing-cleavage, while their strength
under tension depends, like that of all other

materials, on their tenacity. These two strengths
are thus quite independent, and it is character-

istic of all this rigid group that the strength
under compression is many times greater than
that under tension : in cast iron it is six

times as great for ultimate strength, and three

times for elastic strength. See Tables (C bis) and (D) below.

Fig.28

D. TIMBER.

All kinds of wood are markedly heterogeneous and seolotropic
in structure. But on the principle (

1 and 43) of regarding only
the relative magnitude of a body and its distinguishable com-

ponents, we may look upon a long plank or bar. or a block of fair

size, as being as a whole fairly homogeneous. We may also con-

sider it to have three planes of ?eolotropic symmetry, depending
upon the average direction of the "

grain."

Many woods have very considerable tenacity in the direction

corresponding to the length of the tree trunk but most have

very little indeed in the two perpendicular directions. Beams
intended to resist compression, extension, and bending, or to dis-

play elasticity under such strains, are therefore always cut " with
the grain," and the values of Young's modulus and the tenacities

in the following tables must be taken to apply to that direction

only.
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NUMERICAL TAIILKS OF ELASTIC CONSTANTS, &c.

TAIiLK

N FACTORS.

j
><>ii n< Is tn grammes, -

grammes to pounds,
-

pom. .minis, -

poundals to pou

1yn.'S /" :r:uinn-s,

81 /" ilH'lu'S,

inches to square centimetre

oMitiinetrei

593

000!

003100

981*4

0-001010

(

.t37

6*4616

0-155

> grammes per sq. cent, 70-31

uri mines per q. ceu' Mils per sq. in.. O'Olli'-'
1

.

jKir sq. <XM 1 "7-494

^t. //> tons per sq. in , 0<

per MJ. in. I,. .1\ n.--,
|..-r HJ.

. , . ji j:; L-i

dynes per square cent, to poundals per sq. in.,
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TABLE (B).

COMPRESSIBILITY OF LIQUIDS.

Liquid.
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TABLE (C).

Kl \-Il < 'NSTANTS OF SOLIDS.

UI.U.. p
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Example. For drawn copper :

Density = 8'893 grammes per cubic cent.

Young's modulus - = 1,245,000,000 gr. per sq. cent.

Rigidity 456,000,000

Mod. of compression 1,717,000,000

Elongation at "
breaking-down point

"
.

= '0033

Resilience under tension = 66,130,000 grarnme-centi-
metres per cubic cent.

Tenacity = 4,100,000 grammes per square cent.

The absolute measures of the moduli, etc., can be deduced by
reducing grammes to dynes, or multiplying the above values by
981-4.

The length-moduli and resilience in centimetres can also be

deduced by dividing by 8'893, the density. (See 221, 222.)

TABLE (C bis).

Practical Table in English Measure.
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TABLE (D).

Strength
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TABLE (E).

Effect on Young's modulus of change of temperature.



CHAPTER V.

(TKYIUNKAK OOORDINATEa

]
Definitions and Notation. L t any three

nal systems >f surfaces in tin- l>ody be <l<-tin<-<l ly
,hi'-s f> til-- puraiiK'ttTs 4% >i,

in the

>ns

-.-I (1)

...(2)

Pere
x\> X* Xs ar 'ions of tin- ivctun^ular

'

f any in which these MM !

I in eneci will th.-u h- fully letcnninel l,y th- values of the

j..-

- be called the Curvilinear Cobrdin-
ai 38 of /'. \\V Bhali also speak f .sin!

; d< i; ^ coordinate surfaces.

Let v,, fjiv v
t),

be th.- .lin

r- rr< t> tin- thn-- ro.inlinatc

sii faces which ni'-.-t in P drawn in th<- -lii n which tin-

\ ues of >

j

MM Tli.-n

.1.. ! / v\' PXiV^/^A .
'.

it . '.
\

'. I . . \l\ ~^\~ I "T I "^^ I 4- I
"

I '

oe oy cz M\ox/ \vyj V /

v. .! tin-
]

fcO '" sul'-titiitfl fur Y, al'tcr

di

\\V ^hall c..iis.-.|U.-ntly always writ.- t

I aii 1 so f-.r
/;
aiM c. an-1 w.- shall also assume that a-, //

an<! : have
jininatc.l fr..in tln-iii 1-y means of (1), (2) ;m-l i:>i, so that

th -y Dressed a> fu:
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If now we write

230.

(4)

we shall have

1 df 1 <

~

1 3r/ 1 'dvj 1 cty

taking for hv h
z ,
h

3
the positive roots of (4). The conditions for

orthogonalism are by (5)

+= o
'dy 'dy "dz 'dz

_ +
"dx 'dx *d 'd 'dz 'dz

(6)

If these conditions be satisfied (as we shall always suppose
the case), equations (5) will also give the direction-cosines of the

tangents at P to the three curves of intersection of the pairs of

coordinate surfaces defined by r\
and f and (-,

and
>;.

We know by Dupin's theorem (Frost's Solid Geometry, 603)
that the curve of intersection of any such pair of surfaces is a
Line of Curvature on each.

Let dsv dSy ds
3
be the elements of these curves, measured

from P in the directions of increase of
, tj,

Then in proceed-

ing from P along s
a
we remain always on the same surface of

system (2), and also on the same surface of system (3), describing
a line of curvature on each

;
that is to say, ^ alone varies along

sr Similarly r\
alone varies along s

a ,
and alone varies along s

3

The elementary (ultimately straight) lines dsv ds
2,
ds

3
are in

fact the three edges meeting in P of the element of volume

(ultimately a rectangular parallelepiped) bounded by the surfaces

whose parameters are

f, , y + drj,
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The Cartesian coordinates >f tlie further extremity of il^ are

\.

whence, by Tavl<T- Theorem,

Thu> \v.- tin.l

nf tin- rl.-Illelit ,)f Volumefor tin- I'-liLfths >t' tho.r

which inri-t in !'(.
>,

ritimatrly. ben this .-l.-iiiriit approximates in furin

to a rectangular i-aralL-l.-pij..-.!, it> vi.lnn..

, .^

iree faces which meet in P are

'

_'

'

n I
"' course really

dravn f.r tin:- .

q s

'

in ..i-.l.-r t'. .-xhihit tin- curva-
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[231.

tures of the edges. The small figure at the corner
( q, f) repre-

sents more approximately the rectangular parallelepiped into

which it degenerates, when dg, drj, dg are truly elementary.

231
.]

Formulae of Differentiation. Since da
1
is an elemen-

tary line drawn in the direction (\, /z^ j/J, we have of course

34> . 34> 3< 3<

where <& is any function of x, y, z, and therefore also of
, 77,

. ., , 3< 34> 34> 34>

Similarly -^ = A
x^ + A

2^- + X^- ,
etc.

Now by (7)

Thus

.

3$ \

3* 3$

3* 3$ 3* 3$
+ * +

3//

"Vi
Bf

+Vi^ + Va
3$

(10)

Writing x, y, z successively for $ in the first three of these

equations we find

A
2
=

3*

..(11)

Thus the conditions (6) for orthogonalism may also be written

O O / "T" o "-^\ c. i ^ '"\~ft
^ v

3^; 'dz
=

(6a)
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We also deduce from (11)

It frequently happens that, while equations (1), (2), (3)
H complex functions of x, y, z,

- for the latter coordinates as

explicit functions of
tj t f.

In such cases the fonnnhe (11),

may be used in
, (6), and (4). Equa-

the further advantage that they
admit uf the elimination ,,f from the expressions for

Lastly tV nd (11 we have

5f ite

V-5/ (**)

3{ Ify *t
**

V' 4
!

1
. wh.-i-,- inuoua func-

:

.'ins to cur\ :

i l mo^t ea-ily
et jcted by an applicat i biob \\.-kimw

jff**
-

./f
'

the triph- integral i^ taken throughout any volume ]', and
whtl- of it- ^urface S, dn bein^- the

nient of outward \

Mt of volume s
). The 1,-ft-hand

then hee ,ply

w
t

'J'l riirht-hand -id- will h.- th- >um |.pli-d hy
"ill gi The tin terms, due t> the

fa>es win-

__^
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or, by (7)

CURVILINEAR COORDINATES.
[232.

Consequently the terms due to the opposite faces, which are
elements of the surfaces +dg, q+ dy, {+d, must be

D

"

Ao 3^> ,. 3 / Ao 33>\n 7* 7

.AA'W
f
'wte-9f)J^'?

-'

Thus the right-hand side of Green's equation becomes

Equating the two expressions thus found, we have finally

Hence, in particular,

(14)

whence it follows that, if

equation

must be independent of

independent of f.

are solutions of Laplace's

a independent of
tj,
and

232.] Principal Curvatures of the Coordinate Surfaces.

It has been remarked in 230 that, by Dupin's theorem, each

curve of the s
l system is a line of curvature on each of the

surfaces (belonging respectively to the
rj
and f systems) which

intersect along it
;
and so for the other systems.

The lines of curvature, at any point P, on the surface pass-
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inuf through it are therefore the curves uf the
/
and \T systems

which int.-rsrc-t in l\ We shall adopt the notation

D

for the curvatures of the normal morions of the surface at P
through the tangents to the ^ and ^V curves, with a symmetrical
notation f<r the other siirfa<

Thus
~

ft* ft
curvatuivs of the coordinate surfaceswill denot- t

1

];\- 1
<;u<; of i-', / Geometry we :

//
,

. ^ =.- A.,
2^ +

/ij
2

^^ , + v-ftt

.(15)

v take the last of I difforentiaie partially as

: tl

dx

feitdi he same equation as to y : thus

ally, dill-" pastes,
<*,3*

kli ti]ily the first of these r

ji the* third hy dqfdz, and add

Thus finally

L
f 3<

^3yBJ*

a ?-. j
;

i,y

-

.

"** J

"
~fa\^faW*ty'dxdy

+
'dz'dzdx

>
'dz Be - J

?ir ?5 j?j?no-. -.
,

I
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By (5) this may be written

f 32 32 32 32

- A + + K ,_J 2/ _ + 2v

_a ag _a
3 a

* A
"*" " " + +

Thus by (15)

_=+ls--

According to the ordinary convention as to sign, we consider

the curvature positive when the centre of curvature is situated

in what we agree to reckon the positive direction of the normal.

This we have taken ( 230) to be the direction in which f in-

creases
;
so that the curvatures must be reckoned positive when

the surface turns its concavity in the direction in which
increases.

The easiest way to get rid of the ambiguity of sign in the

above formula for the curvature, is by the following geometrical

investigation, due to Lame. It affords an independent proof of

the formula, and has the advantage of absolutely determining
the sign.

Let PSV PS2 ,
PS

3
in Figure 30 be the curves of intersection

of the three coordinate surfaces at P, drawn as usual in the

directions in which f, */, f increase
;
and let PQl} PQ2

be the

elementary arcs efe,,
ds

2
. Let PC and Q2

C be consecutive normals
to the f surface : then the plane CPQ2

is that of the principal
section of the surface through the tangent at P to the curve
P$

2
. Thus is the centre of curvature of this principal section,

and we have

1 1

the upper or lower sign being taken according as the curvature
is positive or negative, or according as C lies in the positive [A]
or negative [B] direction of PSr Also PC is the tangent at P
to the curve PSV and the elementary arc PQ^ or ds

1
coincides

in direction with PC or with CP produced.
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With cvntiv (' and radius CQ }
describe an elementary circular

'/', cuttii. j>rodiuvd it' necessary) at right angles in

T : and from P draw PU parallel to CT to meet this arc in U.

Then Q^T is the element of the $ curve drawn through Qv

a d Q,T i- tli.- l.-in.'Mt <t' tli.-
i,

cnrvr drawn thnm^li
.f tli.- sarn U as PQ3 ,

a d only hom it in tha't tli.- point from which it is <lrawn

h s for coordinates (+ d(, >/, f ) instead of (^, tj, f ), we must have

si;ic<
|
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Also, since PQ2
TU is approximately a rectangle, we must have

Now in the case [A] in which the surface is concave in the

direction in which increases, Ql
lies on the same side of P as C.

Thus Ql
lies between U and T, and

But in the case [B] in which the surface is convex in the

direction in which increases, U lies between Q1
and T, and

By construction, the triangles PUQV CQ2
P are similar, so that

CP : PQl ::PQ2 : Qt
U

<JP
=
4^2'

In the case [A] this gives us

and in the case [B]

We have then definitely

and similarly

the curvatures being considered positive when the surface is

concave in the direction of increase of f.
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Writ in- down by symmetry the formulas for the other two
irfaces, wo have for the six principal curvatures at

tf. v

V
-

r *

(16)

Finally, it' sr
if

CT
s>

cr
$
be the absolute curvatures of the tlmv

>.. in tlirir ululating planes at P, \\ o

'.si

o,
f

-P,
8

-

~

233.] Surfaces in General. l. t any >urt'aec whatever be

represented 1

t)~wn*tunt.

:. and if we

ti <li

n ?

erred t- will 1..-

, /3*\ /3*V I
, 17 v

\a*/ V W +
\ i

to the surface at any point,

Tim-, it X. u. i IKJ the cosines of the angles which this nowial
ri ike*

;

>v eleme, <lsv ds# drawn from the

6( 71*

+ ,
1

B?

!

(18)
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from which we deduce that

[233.

(19)

If dS be the element of the surface about the point ( tj, f), its

projections upon the coordinate surfaces through the point are

easily seen to be

.(20)

234.] Strain Components. Now let us suppose the body
to suffer a small strain, and let its effect on any point P in the

body be to change its curvilinear coordinates from ( tj, f) to

(+> >7+A f+y); a, /3, y being small quantities of the first

order.

Let e, f, g denote the small elongations of the elementary
lines ds

ly
ds

2 ,
ds

s ,
and a, b, c the small shears ( 94) of the right

angles between ds
2
and

ds^
ds

3
and dsv ds

l
and ds

2 , respectively.
In general hv h

2 ,
h
3
are functions of all three of the coordinates,

and by Taylor's theorem we see that the effect upon them of a

small strain will be represented, (to our order of approximation),

by changing them into /^+ Shv h
2+ Sh2 ,

h
3+ Shs ,

where

.(21)

now by (7)

and therefore

i
'

h
i

and so for / and g.
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Thus finally

B^-V
*i

- -

'-'

< 22>

-titutin^ from (10)
form

1
-h y ^

I

may be put in the

/-*$> I )'-

(;>
Again, as in ^ !'k tin- -mall ^ln-ar <> i- -imply the cosine of the

aiigle betwo.-n tin- alt.-rr-l direetionfl <>f ,!.<
:

:lnl dsy Thus

+ ^s)

'((

-
L :

a ids- Thu> l.y (">) and (6)

B M finally, l.y (10),

5?

'

(24)
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Lastly, if A be the cubical dilatation at (, t], f) we of course

have & = e+f+g; and by (22) this is easily put into the form

(25)

235.] The Component Displacements. Let u, v, w be
the components of the displacement of any point P ( rj, f),

resolved along the elementary lines ds
lt

ds
2 , ds

s
: or, more

exactly, along the normals to the three coordinate surfaces which
meet in the point.

We proceed to find expressions for the six small component
strains in terms of u, v, w. These expressions will not be so

simple as in the case of Cartesian coordinates, because now,
instead of resolving the displacement of each point in three

fixed orthogonal directions, we resolve it along the tangents to

three orthogonal curves whose directions vary continuously from

point to point. We must therefore expect any expressions which
involve the variations of the component displacements along
these curves to involve also the curvatures of the coordinate

surfaces
;
and this we shall find to be the case.

In Figure 31, PQ represents the edge ds
l
of the element of

volume (8), represented complete in Figure 29
;

its size being-

supposed so reduced that its edges are practically straight lines.

QR is the consecutive element of the s
l
curve.

PC and PC' are drawn in the directions of the elements ds,,

and dsy and QC and QC' in the directions of the corresponding
elements at Q. Thus PQ, PC, PC' are mutually perpendicular,
and so are QR, QC, QC'.

Since PQ and QR are consecutive elements of a line of

curvature on both the rj and f surfaces through P, C will be the

centre of curvature of the principal section of the
rj surface

through that curve, and C" will be the corresponding centre for

the f surface. [The changes of direction of the elementary lines,

in passing from P to Q, are of course enormously exaggerated,
in order to bring C and C' within the compass of the Figure.]

Again, if PQ be produced onwards towards T, the plane
TQR is the osculating plane of the s

l
curve at P

;
and if we

denote the absolute curvature of that curve by cr^ and adopt the

notation of 232 for the principal curvatures of the coordinate

surfaces, we shall have

angle RQT =v>
l

. PQ

angle
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Fig.a:
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If u', v', w' be the component displacements of Q, on the

system above described, the component of its displacement in the

direction QT will obviously be

u' . cos RQT-v' . cos PQC - w' . cos PQC'

= u' . cos RQT-v' . sin PCQ - w 1

. sin PC'Q ;

and, to the first power of the element PQ or ds
l
this is

Now

u = u + ^i~

v' = v + ds-.

OS-i

'dw
w' = w + ds

Hence, to the first power of dsv the displacement of Q resolved

along QT is

The displacement of P in the same direction is simply u ;
so

that the increase of length gained by ds
1
is

*^~^
This gain of length is of course equal to e . ds . Equating these

two values, and applying the same process to ds
2
and dsy we have

finally

,(26)

Substituting from (7) and (16), we can easily show that
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i in the displacement of Q parallel to PC' is very approxi-
mat-

KM QC /' + 'si

or w + I ~- + u .

<^l

Tli- diNplaceineiit >f P in tin- ^ime direction being simply w, it

u that the relative displacement of P and Q parallel to

r< will diminish the riijht an-lo QPC* by the small amount

(
.

wliich, to our order of approximation, i>

die
+*'

imil: Miity .f the arc
/>_,.

the relative

isplacement of P and /.' parallel to PQ will diminish the same

ig it angle by the small amount

Th $ sum of these two, or the total decrement of the original right

ED; le l..-tweeii ds* and '/.> l;i-t Article ei|iial to the small

001 i'

Th. 1 c may be calculated with e.jual ease or

de< uced by symmetry, and tinally we 1.

(28)

Substituting i'mm i Mi. these may be put in the form

:
> +

J;

A. o
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If we compare equations (26) with (23), (29) with (24), and

(27) with (25) we see at once that

.(30)

which we might have inferred from (7), all the six quantities
u, v, w, a, /3, y being very small.

Lastly, we have seen that the edge PR rotates about dk,

towards PQ through the angle

'du

and that PQ rotates about ds
2
towards PR through the angle

Exactly as in equations (59) of 123, half the difference of these

quantities measures the rotation (as distinguished from strain) of

the element of volume as a whole about cZs
2

.

If then 6
X , 2 , G3

be taken to represent the three component
rotations of the element about the normals to the three coordinate

surfaces through its centre, we have

'du 'bio

Writing down the symmetrical formulae for
3
and 0j, and

eliminating the curvatures by (16), we have finally

(31)

These equations may also be deduced directly by trans-

forming the corresponding Cartesian equations of 123. Thus,
with the notation of the present Chapter

-~\

_
(v^

etc., etc.,

etc., etc.
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;.]
Irrotational Strain. If the strain be pure or

.7 there will of course be a displacement
potential <f>.

In this ca>- ,< 124) the component displacements
parallel to GJ : are

fy ?ty

Tim-. with our pivs.-nt notation,

>

aii-l C Mtlv

Hei ce, by eqnati

'

(32)

(33)

,

, Prom [82) in (27), and com-

ng th. we see that

A ...(34)

whi ih agrees wii
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The conditions that a given strain may be irrotational are

seen from (32) to be

.(35)

which indeed, by (31), are simply equivalent to 1==92
=:0

8
= 0.

237.] Stress and Applied Force. We shall employ the

same notation for stress as hitherto, writing now

for the components parallel to da
lt
ds

z ,
ds

s
of the stresses across

the elementary areas described about
( rj, )

in each of the

three coordinate surfaces through that point.
The components, in the same directions, of the Applied Force

per unit mass on the elementary mass of which P is the centre

will be denoted by H, H, Z
;
and the density by p as before.

Just as in 1*38-143, we obtain the equations of equilibrium
and of motion by considering an element surrounding the point

( n> f) and bounded by the six coordinate surfaces

This element is cut up by the surfaces >/, f into eight such

elements as that of Figure 29, having P for a common corner
;

the lengths of the edges which meet in P being

ldsv J</*2 , J<fo3,

respectively.

Figure 32 represents this divided element (the curvatures

being much exaggerated, as before), and corresponds to Figure 8

in every respect ;
the three faces turned towards the eye being

the concave or positive faces ( 232).
The areas of the sections A^GJ)^ A

2
B

2
C

2
D

2 ,
A

3
B

3
C

A
D

3
are

ultimately given by (9), and the volume of the element by (8).

Let us now resolve the total stress across each face parallel to

the tangent at P to the 8
1
curve. This component of the total

stress, together with the applied force
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inu>t he etjual to the effective force

225

..(37)

in the same direction.

Take tir-t the 5 faces, tlie co<">r<linates of whose centres are

P'g.32

(g \ 6 r..i,ij,
I ,M,.nts a]..n._r tin- tanur'-nts to the

>,,

'1 -tress across -4,5, (\l>. toe nltimatelv

hj.

lei; mponentfl of the txt tin-

(in e A7V///, re/ V /<> /'.V, A
r
^J

3 , JVJ.., are

i

i

! I

I I

6 parallel tn the t;m-ent at /
J

(o the
,
curve,

"Iv.'.l til.- displacementfi in ~2'-\~>. \v- h;i\e for
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the required component of the total stress across the positive

face,

The corresponding component of the total stress across the

negative f face JKLM, reckoned in the positive direction, is of

course

Substituting from (7), and neglecting squares of small quanti-

ties, these two faces together give a component total stress

Again, the component due to the positive v\ face EHJK if

approximately

and that due to the negative >; face FGML is

These two faces therefore contribute

to the required component.
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Finally, the piuvr and negative f faces, EFLK, GHJM
contribute

"& **}****'

'^(^
r.-'luction,

I

/':/'A-i
(40)

j^ tht- sum of (86), W), and (40) to (37), we
tlu- first "f the three fruitions >!' nmtion

-- t.-rni-. \vhicli inv..]\.- T and tT.aiul \\ritinLrdown
nti. . lulu, try, u<' hav- finally

/' W, ^/ r \ AA ^/ T \

) ( ) ( )

' l=

t
'''

\ I: I
8

\ (
''

\ .%)
8a,WV <*W<

+4

(41)
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By means of (16) we can put equations (41) into Lame's

form

.

in which their analogy with equations (4) of 143 is sufficiently
obvious.

238.] Stress and Surface Traction. Precisely as in

144, 145, we may show that the components of the traction

across the element dS of any surface ( 233) passing through the

point ( rj, f) must be

PX+Up+Tv]

where X, JUL,
v are given by (18) and (19).

Hence if the bounding surface of the body be represented by

4?(, -Q,

- constant (44)

and if H' H', Z' be the components of the surface traction at the

point ( rj, f) of the surface, we must have at every such point
the relations

where h is given by

It is often advisable to choose the system of coordinates so

that the surface of the body shall be a coordinate surface-

belonging, we will suppose, to the system. In this case (44)
can be put in the form g= constant, and we may take < =
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Thus by i ID) h = /i
lf
and by (18) X = l, ^ = ^ = 0; as of course

it should be.

The boundary conditions (45) then reduce to

r=HJ (45a)

r=Z'j

orresponding conditions, when the surface belongs to either
of the other systems, may he written down l.y inspection.

'. Strain and Stress. Equations of Motion in
terms of Strain. If the body he

isotropic, the relations
in and Stress will of course be, as in the last

Cha]

/' =
(m + n)e + (m -

n)(f+ gY

Q = , (m - n)(y + e)

ft=(m + n}(j + (w -
n)

U-nc

(46)

The potential '-n-rgy F, per unit of unstrained volume, is

ab Ljivn by formulas (33) or (34) of Chapter IV.; and the

tot il potential t-nergy IT of the strain by

.r=/77if/'f..h
jAj/i,

(47)

To obtain the equations of motion in terms of u, v, wt or of

7 . l.y direct >uUtituti..n fr-.n, ,

'l'l) t (24), (25), or from (26),

(27 ,(28) in i4;,,and thence in (41 i .r (48^ is in the general
cas of curvilinears an exo-^ively telinus ojieration, and it is

;usy to put them into a symmetrical tWin.

Lanio has shown, by di rmation of the Cartesian
that t l.t- written

H) - 'In

n) '*-.
<S

J

;

\ 1,I /i.t

11- /i(H-r)=0

n(Z - w) =

(48)

wli- A 1 e
if Oj, 8? by (31).

.FI thU t'..rm t nt a striking analogy to equations

(52o) of
.

21 i which tliey were derived by Lame, as

stat -I al.
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Special Application of Curvilinears.

240.] Equipotential Surfaces. If the strain is pure
( 236), the resultant displacement is at each point normal to one
of a system of continuous equipotential surfaces, defined by
giving constant values to the displacement potential, and the

Lines of Displacement ( 127) are a system of continuous curves,

cutting these surfaces everywhere orthogonally.
There is obviously no reason why we should not take the (

surfaces for the equipotentials, when we can thus simplify our

formulae. In this case the
s^

curves will be the Lines of Dis-

placement ;
will be a function of ( only, and we shall have at

every point

v = w = I

Also, by (31) and (32),

A
I n(l(b

1

(49)

(50)

Equations (23), (24), (25) now become

(51)

from which we can substitute in (46) and thence in (41) or (43)
and (42).

Since the conditions (35) are in this case necessarily fulfilled,

equations (48) reduce to

...(52)
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The >-o>nd ami third of these equations are reduced from
t'nns symmetrical with the first, by the consideration that is

independent of
//
and

L>41.] Principal Surfaces of the Strain. Let us next

MI}. post- that ^nations (1), (2), (3) represent the three systems of

Principal Sur: -1'J). The curves of intersection, s
lt

s
2 ,

#
3 ,

will thru U- the Lin.- of Sn-

In thi- iay ! c-alk-d the Principal Counl 'unite*

<>f tl applied to the coordinate surfaces under
:itiun> tin- t.-rni />-f;>-/.

If
e,, e.,, e,

denote the principal elongations, and Nv 3",, 3
r

3
the

principal normal -tn must liave

P=NV Q =N9 J. ^T=U=0.
Tin- conditions that ^, *,

1'c tin.- principal coordinates

re ti

..(53)

...(54)

j
= (m -f n

/ <
>

i,-f-(m-70"
'

K|uatiin> < 41 ) r-durc to

'.'

//
y/ Ji -v) =

y*- Ft

(56)
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while (4.3) give us Lame's standard form

[241.

?p + P(Z-w) =
(A'3-N1 ).

a*

.(57)

Finally, the boundary conditions (45) become simply

(58)

If the surface of the body be one of the Principal Surfaces

belonging, let us say, to the system these conditions reduce

further, by (45a) to

= f
,(58a)

the Surface Traction being in this case necessarily normal.

242.] Case in which all the Principal Surfaces remain
such. There is one interesting case of the last article in which
the strain is such that each of the principal surfaces is altered

into another very slightly different member of the same

family.
The requisite conditions obviously are : a independent of

Y\
and /3 independent of f and and y independent of and

Y\.

It should be noted that, although these conditions always
satisfy (53), they do not in general satisfy (35), so that a strain

of this character is a rotational strain except for certain

particular systems of coordinates. In fact, by eliminating
a, /?, y between (34), we obtain the condition

l _ "d/t 3

or, by (16),

CT > . js^ . 33 = ju . "&>. . -

* f r* F* r* * I I

which is not satisfied by all coordinate systems.



J4-2.]
(TKY11.1NEAK ( 'OORDINATHS. 233

Systems of CurriUnears.

We now proceed to express our general formulae in terms of
.f the most important systems of orthogonal curvilinears.

preliminary , the student will do well to convince
himself that, on making

they reduce immediately to the Cartesian formulae obtained in

.ast three Chapter-.

J4.S.J Spherical Polars. In this system we write

.(GO)

f = to = tan -1
[y/x]

a; r sin COB <*A

y = rain sin > .............................. (01)

z=r<x0
J

Tin- surfaces for which / is constant an- -pin-res with for

Jit circular cones
' -ith ":. and x-iui-vertical an^le ^; and the o>

t irfac ,-uifs through O: makinir an^K- w with r./
1

.

'-titntin- tVnm nil in M iV T tin-1

......... <
G2

>

itly bx

d, dr, d*,
=

rc/6^, </*,
= r sin ^(/a>

;

\ hile th is nf vuhiiiir i S)

Th,- eo a, v of th<- anirl'-^ mad.- l>y tin- normal to the

rface $> *tto*i with th.- normals to the coordinate

are by (
i

v_lc>*
h

^f

h/->:

.(63)
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where, by (19),

Formula (13) becomes

Substituting from (62) in (16)

r

cot 6

while by (30)

sin26

,(64)

....(65)

(66)

.(67)

It is evident from (66) that the s
}
curves on this system become

straight lines, and from (67) that a is linear and identical with

u. We shall therefore retain the latter symbol only.

Equations (22), (24), (25), (26), (27), (28) give us

,.= 1 3v * = ,

J~rW r 30 r

1 3tw *6 v

r sin 3w r r

u

/ . m
^a(v sin 0)x

sin 9 'd

\sin (9

1 3w
,

3 /w\ _ 1

r sin 6 3o> 3r\r / r sii
.

r sin ^ ow

3 A>

rlr
xi ^ _

r'SJ

3/3 _,_
1 3w

^_ -L. _
3r r W

3o>

3r

.(68)
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while l,y (31)

r am

r am

ti<>Iix ct' llinti..ll I -H

- 5 --,

-p(td - Z) = p(r urn 0y - Z)

P, Q. /; 8 r, IT are given l,y -Hi) and (68).
:iti>n (4-8) we ha

-<

(69)

.(70)

.(71)

It ^ be the bounding surface of the body, the boundary
. .nliti.-n> *

t">, tak.- tli- 1'

- +
r

U ^ = hH'
3r r c '> 9<u

5
o<u

.(72)
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The conditions (35) that the strain may be pure follow at

once from (69), on making

and in this case, by (32) and (33), if be the displacement

potential,

.(73)

/] 1 9$ Iw = ry sin =
:

r sin a owl

If r, $, a> be the principal coordinates of the strain, we must

have, by (53),

(&)*-
trnflV^-0

_

r\rl

.(74)

or the equivalent conditions

or -(75,

If these conditions be fulfilled, e, /, ^, as given by (68), are the

principal elongations e
lt

c
a ,

e
3 ;

and the principal normal stresses

Nv JV
a ,
Ar

3
are then given by (55).

Lame's equations (57) then take the form

(76)
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while the surface conditions (58) become

237

.(77)

J44-
] Cylindrical Polars. In this system

(78)

w 1 1 enee '' cos 0, y = r sin 0.

The r surfaces ar ircular cylimU-rs with Oz for axis, and
r for radiu^ : th B surfaces are planes through Oz.

\\>

-, by (7)

cfcj
=

t/r, d, = rrf^, dst

nt of vnlnine (8) becoming

rdrdOdz.

(X, /z, i/)
of th<- :in-_rl^ iii.'i'l'- 1'V tlic normal to any

s rfac- -I- / 0, :)
= cun*tnnt with th- imnnals to the three

c ordiiiiitc surfaces at the same point are, by (
1 s

,

A
h r

_1 B*|^

v

mla (13) now takes the form

(80)

(81)

(82)
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Substituting from (79) in (16), we get for the curvatures of

the coordinate surfaces

(83)

and by (30)

(84)

Obviously on this system the s
1
and s

s
curves become straight

lines, and a and y are linear, and identical with u and w. We
shall therefore retain the latter symbols only.

By equations (22), (24), (25), (26), (27), (28) we have

while by (31)

'dw

_ 1 'dw 'dv_ 1 'dw~"~ "~~

T _*du 'dw

dz 'dr

c =^^ + i
dr\r) r

.(85)

'du 'dw

(86)
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The (.'([nations of motion (41) reduce to

239

(87)

+rW +^ -ri#-Z)

whore P, Q, R, S. T, T an- -ix -,.n by (46) and (85).
?a transformation 1 48) becomes

_ 2

=
/>< -)

= P(V-H) .(88)

If <!> }>< the bounding ^irface of the body, we have for the
liti

(89)

tin may be pun' an- t course

e^o, e
a =o, 63=0;

; il in this ca nt potential,

ti

13 (90)

lit be tli.-
principa] coordinates of

t c strain are, 1 >y
i >.- ^-

= 0"
1 3t0 cte

^- + -=-

r (\T
^\r)

+
r^e-

(91)
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If these be satisfied, e, f, g, as given by (85) are the principal

elongations e
lt

e
2 , e

3 ;
and the principal normal stresses N

lt
xV

2,
N

3

are then given by (55).

Lame"s equations (57) reduce to

flfis =p(w-Z)

while the boundary conditions (58) become

*-**

..(92;

.(93)

245.] Conjugate Cylindrics. In this system

(94)

where t denotes x/ 1
;

.P being any function whatever. This

relation constitutes and ^ conjugate functions of x and /. Some
of the most important properties of these functions will be found

collected in the examples at the end of this chapter. The student

will find no difficulty in proving them for himself.

Differentiating the first of equations (94), we find

Hence, eliminating F'

and, on equating real and imaginary parts,

.(95)
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Similarly. hy differentiating (04) as to and
/, we find

d'/

d,

'dx_ '

i (05) we d.-.hicv l.y 'li

(95)

ft
o (96)

and in fact
Conju^at*'

FuiK-ti^ii- are -"int'times defined as solu-

uli'irh aU- Bfttiaf

It furtluT follows from (95) that the conrdinate surfaces satisfy
-
(6) of orthogonal is in. The and

/ surfaces are in

fact t >LT"nal Bystemfl -f cyiindfr^ with their generators

parallel t

Again,

/v-
/*,-/*

/*, ;

= ^,

(97)

elera

Torn -s to

/ '!m
*(sp

\wl,
1.- -md (19) giv<> Hi

.(98)

(99)

(100)
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Substituting from (97) in (16), we find for the curvatures

37*

and by (30)

= 0,

,

u = a/h
v = plh\...
w = y

(101)

(102)

On this system the s
s curves become straight lines (parallel to

Oz\ and y is linear, and identical with w.

The strain components are now given by

b =_ + #_
3 c)

and the component rotations by

29,

+ ~ / .(103)

104)
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Tin* equations of motion (41) become

243

o ;-*-
''

...... -

.(105)

wht-iv / .v given an.l (103).

By Lan nation (48)

- s
>

-,<S-H)(m + n,
;

']
(106)

It' I> 1.. -til.- -urface of the body, the boundary conditions (45)
be OHM-

(107)

!

-HZ'

wl ru h i

Tli.- r..M.liti..i^ that tli.- -train may !> purr fnllnw at OHCC
fro n (101- 1. ..ii making

aii' in tin- case

pot utial,

e^o, e,-o, es -0;

!

.lisj.lacrinrnt

.(108)
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If
(f, rj,

z be the principal coordinates of the strain, we have

by (103)

orj oz

.(109)

The e, /, # of equations (1 03) will then be equal respectively
to <?, e

2 ,
e
3 ;

and JS\, N# 3̂
will be given by (55).

Lamp's equations (57) will take the form

.(110)

o =

and the boundary conditions (58) reduce to

.(111)

246.] As an example of conjugate cylinders, let f and
rj

be

given by the equation

x + iy
- C cosb(f + irj).

Then it is easily shown that

x C cosh f . cos
77

y = C sinh . sin
rj

Thus

G'
2siuh2

= 1

snr?
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The cylinders have for their transverse sections a system of

ellipses, and the
;/ cylinders a system of confocal hyper-

: the coiinnon foci of the two systems being situated on the

at equal distances C on either side of the origin. These
confocal e iited in Figure oo, 2-50.

From (12) ITC deduce,' i

C v/cosh- - cos2
?;

C v/sinh
2
^ + B

and from (101)

sin t; . cos ;~ ~

sinh f . cosh

-.om.-trieal int.-rpn-tation of these is as follo\\>. It'

^verse and ronjugate semi a \.- ..i' the

rilipx,. and hyj.erl.nla int.-r-.-.-t in- at any {...int 1\ (g, tj) or (x, y),

ellipse and hyperbola respectively are

.!/; .i/;

.t'*)*

A'Jf A-/i'

' ;

~(4-4')*

,

1
Surfaces of Revolution. All th.- mon- important

hogonal cylindrical >uii. hiding conjn
lind- through ft:, and many of

m 1 mutually p.-rp.-ndicnlar It i- cl.-;r

at if tin- plai, le a plane of -ymmetry for the g and
//

lind' vmm.-try f their normal Bectiona

plai . which w.- may call tli-- i
: ;n\<\

-ictly

th.-n \\.- >uppo- tin- plane of ./ >/ to rotate al.oiit Ox
t

tin-

^ oortlp raced upon it will describe two
:, n. havin i their

.-. mi. these '

baefl tin

tl -ax !i -^ (
-

J. < <M
i"i w "i-tli.

Let

l
/i-

C,

e :

If
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be the original cylindrical system. Then the transformed

system will obviously be

Now the only quantities involved in the equations of this

Chapter which depend in the least on x, y, z are hr h
2> \ : and

these are supposed to be expressed, before insertion in the

equations, as explicit functions of r\, f ( 230).
But the symmetrical form of (4) or (12) shows that x, y, z

may be interchanged in any way without in the least affecting
the forms of hv h

2,
hy when expressed as functions of

rj, f
We may therefore take the axis of revolution for the axis of

z in our new system, and take for Ox and Oy any axes whatever,

perpendicular to Oz and to one another.

This amounts to transforming the cylindrical system

into the system

f=tan-
1

(y/)

(113)

OcCj being the axis of symmetry of the old system, and Oz the

axis of revolution of the new system.
Similarly, if Oy1

be an axis of symmetry, we may construct a
second system of surfaces of revolution, defined by the functions

(114)

Suppose that equations (112) can be solved so as to give x
l} y1

explicitly in terms of
, ^ : let the solution be
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.utin of < ll-> will obviously be

y-l

-J&
and tin- solution of (114) will be

, 7)

J

l'.\ l'..rnml;- i \'2) w- 1 ; 111',

1

1

I

'

-i

I' ir tli-- lir-l lr;iiit'riiii'i|

1

/ \ I

\( )
<

I

\

'

1

second tranM m (114)

1 / /'
v

\ ( ( )
,

)

i!.;

h,

\

I

...(117)

08 n.-itln-r trai
l^ and /<

2 as

u ctions of and
rj. But, on tin- nth-r hanl, they both n.ak*

M ^aiiil /;. Consi-lt-ratic: mii-try alone are
I..-

ind.-p.-n-lrnt of
f.

.it ;ill thn.-f

As a >iui]N- <-xani])l- t' tin- ivsults nf tlii^ Article, let

lib iran>t''i-in from tli.- rylin-lriral :

' iM t- to tin- .spherical

pol 11
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The original system is

/!
= nyiSi r.

&-*
whence

and therefore

This system is perfectly symmetrical about any axis perpen-
dicular to Oz

lt
and consequently the two transformed systems

are identical. They are given by

whence
a; = f . sin

7;
. cos

^j

v/^--^. sin?;, sin fl,

= ^ . cos
r;

and

Comparing these results with the general formulae, it will be seen

that they correspond in every respect.

249.] Conjugate Surfaces of Revolution. Let the original

system of cylindrical surfaces be given, as in 245, by

Then the transformed systems of surfaces of revolution will be

given by

(118)

and

g+iri = l\ ljx*+y* + iz) ........................ (119)

respectively, according as the axis of revolution Oz coincides with
Ox

l
or Oyr
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If the solutions of these equations be given as before by
ire lui\v by substitution in

/'

.

wht : 1 Hi and U 17

i 43) i

Tliu> if we \\rit<-

41
....(120)

\\v have in rith.-i of tin- tran

/
'' v r'-'\

\( ) ( )

(121)

oth k and h' being functions of ( and independent of
f.

Vrinii_: < at has the same meaning as in ^ _ 1 f. \\v

i'nr tli- principal cur\ at ures, instead of tli.- vahifs -i\ -,-n

,r| ^r
61," .

t ,-^
'*-->

A
I

'] hus it. M in _-- D ab>,ilutr cur\ at ui .- ,f the
,
or

res, wiriii\,

v-;: [i i

l.v.li'l,y
'\ ii> i> ..l.viui, krieAlly, forthese etun rcl'-> in planes
p;

railed to ./// and having tb '.. 'iir axis ,,f ivvdlu-



250 CURVILINEAR COORDINATES. [249.

The elementary arcs are

_d = dq ds ^dO
1 h'

2 h' 3 hf)

and the element of volume is

,,

The formula (13) becomes

and equations (18) and (19) reduce to

A-* 3*
~fc.aj

"-E
h"&

~h 9^

and

'"

also, by (30),
u = a/k

v=p/h ..................... ............ (126)

w =
y/h'

The strain components are

du -dk

<5
dv_ !5h

'^
- ut " - JLW h' 3 A'

fa O J T/\ T/__
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ami the component rotations

f>51

Lai M

f-
s " A

'

:.- . (' 129)

[ ..(' , ]
,(- Z

)J

Tlu- eomlitiuii> that the -train may be pi.

e
l -o,ej =o,e,=o ;

end tht- c..n.liti.ni> that (,
/ . ! tin- [.rinci|.al c.Mir.lin;it,.>

< P tl

= 0,6-0, c

I i the latter case, CM
|

uati-n- 56) ind iiu-- to

a

.....

..(130)

.

hir

J^.hx
-

Tl e will timl in. .htliciilt y in ala].tin_ i 1 ) nn-

n-l. in the case of pure statin, <:i-2> u
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It should be carefully borne in mind that and
Y\ are conjugate

functions of r and z, where r=\/x2+ y
2

,
as in 244, and that

they only satisfy the equation corresponding in form to the

equation

of 245. That is, they satisfy

and consequently by (82)

They are not therefore solutions of Laplace's equation, \7
2< = 0,

as are the conjugate cylindrics of 245.

250.] As an example of Conjugate Surfaces of revolution, let

us transform the cylindrical system of 246 by the method of

247. We see from Figure 33 that this system is symmetrical
about both Ox

l
and Oyv We therefore have the two transformed

systems _
z + i x/o;

2 + y
2 = C cosh

( + IT;)

and Vie* + y
2 + LZ=C cosh

( + irj).

(i.) The first system gives us

the surfaces being confocal prolate spheroids, and the
tj
surfaces

confocal hyperboloids of revolution of two sheets. These surfaces

will be described by the rotation of Figure 33 about the trans-

verse axis.

We have
X2 + y

1 - C%inh2 .

and thus by (121)
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The second system <ri\vs us

j

^
+
C^TiiPf

" l

]

253

Here the surfaces an- ! ollate sphennMs, and the
>/

surfaces confocal hyperbdoidfl of revolution of one sluvt. These

Fig.33.

Sli facos will )(> 1- fco n-tati' alinut its

cr> ijugate ax
\ in t lii> r
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whence by (121)

C cosh cos
77

ft -L
C N/sinh

2 + sin 5

251.] Spheroidals. The system of the last Article might
be employed in dealing with bodies whose bounding surface is a

spheroid of revolution : but, as a matter of fact, the formula?

may be much simplified by a further transformation.

Let the bounding surface of the body be

_ 1
, 139 v

BZ
~ ................................

\
l

then any confocal quadric must be of the form

Let and
r\
be the lesser and greater roots of (133), considered

as a quadratic in p.

(i.) When the bounding surface (132) is a prolate spheroid,
B*>rj>A*> g> -00.

The
(
surfaces are the prolate spheroids

1
'
........................... (I34)

confocal with the bounding surface (132), which is represented by
= .................................... (135)

For positive values of these spheroids lie within (135), and for

negative values of
(
without it.

The
tj
surfaces are the hyperboloids of two sheets

(136)

which are also confocal with (132) or (135).

Taking, as before,

~0 = tan-'(y/4

it is easily shewn that

y~ = .(137)
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=̂
Vor:

.(138)

-><'/--;

Distinguishing tin* j-mlntf N\--t'in of the last Article by
tfix 1, we h:r.

,= .l-'-f

^-
y>- -

^*-

the bounding surface is obi"

The f suri'ac Mote iphevoi
. anl tin-

ar- th 1 liyperboloids of ],,

.

. 139)
Af-

(140)

J

, ,-/;-)

**~

I I **-**
\ .I'-fX^-^

(MI)
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If we distinguish the oblate system of 250 by the suffix 2,

we find for the relations connecting it with our present system,

C 2sinh2
2
= B* -

In both the systems of the present Article, the bounding sur-

face is given by 0; hence h /^, X= l, /x 0, i/=0, at every

point of the surface
;
and the boundary conditions reduce to

U=W[ (142)

T - Z'
)

when =0.

252.] Ellipsoidals. Similarly, in dealing with a body
whose bounding surface is an ellipsoid

,r
2 y2 z 2

Z2 + /^ + O7
= 1

(
t43

)

it is convenient to take
/, f as the roots of the cubic in p

I^" +^r*-^" = 1 (144>

Assuming that A, B, C, and also f, >;, (p
are in descending

order of magnitude, we may shew that

The g surfaces are the confocal ellipsoids

the
*)
surfaces the confocal hyperboloids of one sheet

/V2 nfl ~2

and the f surfaces the confocal hyperboloids of two sheets

a2 ^ s2 m l
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H'-i dr. luce that

(^-' -<>')(#> -6'-')

_.-> /('i*
-)</

'~-\ ~oF
I(A* -*?)(

V <f-

257

.(148)

(149)

x ffijfftf

- c)
^

: tin- la-- . the bound, u.-nsare

- 1 1

7. I

.(150)

icn =

KXAMIM.KS.

1. Sh.,w tli at if : ; f tjt \
be any number of pairs of

of x ana y, ( and
//

will aU,, ! n.njn--at-

L.-iiirr anv a! <' whatever,

?. Shuw that it' f and 'ijn-j-atr fnm-:
'

and //,

ate t'liiK-tiuns of ^anl ;/.

5.
:\

and
/

ire
onjugate

1' re, <>r <!' any pair
JOln ,ind'

i- and ; 'II l.V eaCt "}' tin- i'nlln-.'

and // : and find

|

/ and fl d 'ii'it.- tin- cylindrical

wlai^^i JH-.|



258 CURVILINEAR COORDINATES. [252.

J
# = (C1

cos jo?; + (7
2
- sin ^77) cosh ^>,

I y = ((?!
sin ^77

- <?
2 cos/*?;) sinh /> ;

xA>
J (a:

+ A coth
)
2 + y

2 = A 2 cosech2
,

( x2 + (y
- A cot TfY

= A 2 cosec2
17.

5. Transform the cylindrical surfaces of the last Example
into surfaces of revolution by the method of 249, and trace

them geometrically.

7. If P be on one of the common generators of the conjugate

cylinders and tj,
and if PS

1}
PS

2
be normals drawn in the direc-

tions in which and
rj increase, show that their relative position

is always such that to make P^ coincide with P$
2
we should

have to turn it through a right angle in the positive direction of

rotation about Oz.

7. If any system of orthogonal surfaces be inverted as to

any centre of inversion, show that the new system thus obtained

is also orthogonal.

8. Show that the pure strain defined by

< =
FI(T) + rF2(B) + r sin 6F

3 (<a)

has the spherical polars r, 0, o> for its principal coordinates.

9. Show that the pure strain defined by

has the cylindrical polars r, 0, z for its principal coordinates.

10. Show that the pure strain defined by

* Here e denotes as elsewhere in this work the base of the Napierian
logarithms.
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will have the con] r its principal coordin-

if /', ^uNties the diti'erential equation

11. Show that in the corresponding case for the conjugate
surfaces of revolution

the same ditf. r. ntial equation as in the last

.pie.

12. Show that in the corresponding case for the spheroidals
25]

-ri).

or

irfaces are oblate or prolate: Fl

1.. iu ur ;my
root

3. Pi : are satisfied l.y

foil \vinur t'"nn> ..f irn -far i-mal >traiu

k)
' -rical polars

lindricnl polars

tgate rylindi

*-/itf,*)4

Slffl

SMSH
.)

I' faces of r'vuliifi..n

^*
= F(<

i tin- la^t cxan])li-.
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14. If the
(
and

v\
surfaces are conjugate surfaces of revolu-

tion, as in 249, show that

15. Show from equations (16) that the
rj

surfaces of 251

(ii.) and of 252, are of anticlastic curvature.

16. In the case of 251 (i.) t
what locus is represented by

l = r)
= A^

17. In the case of 251 (ii.\ what locus is represented by

f--*i
18. In the case of 252, what loci are represented by

f-1-01
,

and -n
= i=&,

respectively ?

19. Deduce from equations (57) the conditions that a Line

of Stress may transmit a constant traction or pressure in the

direction of its length, under no Applied Forces.
'

20. Deduce from equations (56) the conditions that a Tube
of Stress may transmit a constant tension or thrust in the

direction of its length, under no Applied Forces.

21. Show from equations (57) that an isotropic medium may
be held in equilibrium, under no Applied Forces, by the system
of stresses

where K is a constant, and 'SE
r a function of only, satisfying

Laplace's equation

[According to the theory of Faraday and Clerk Maxwell, this represents
the condition of a dielectric medium in the neighbourhood of charged con-

ductors. K is the specific inductive capacity of the medium, and ^ is the
electrostatic potential, so that the surfaces are the equipotentials.]

22. Assuming equations (47), (46), (22), (24), (25), (42),

deduce (41) and (45) by the method of 219.

23. Lams' obtains, in his Coordonnees Curvilignes, many
groups of equations involving hv h.2 ,

h
3
and the curvatures of the

coordinate surfaces. The following examples may all be deduced
from the formulse of 230-232

;
each is, of course, the type of a

group of similar equations which can easily be deduced from it

by the principle of symmetry.
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CHAPTER VI.

GENERAL SOLUTIONS AND EXAMPLES.

THE GENERAL PROBLEM: PRELIMINARY THEOREMS.

253.] Recapitulation of the General Problem. Let a

homogeneous body of natural density p be subjected to a small

strain
;
and let u, v, w be the component displacements, parallel

to rectangular axes fixed in space, of that point of the body
which in the natural state occupies the position (x, y, z). Then,
if e, /, g be the component elongations of the element described

about that point, a, b, c the component shears, A the cubical

dilatation, and Ov ft,, 3
the component rotations, we have

by 123

_ du /. dv _
*

oT~5 J ~
ri ) 9 --

a= 'dw 'dv~- + ~,
oy oz

dw dv

'du 'dw~ +
,

oz dx

'dv
,
'du-- + --

ox oy

* _ 'du 'dv 'dw

dx dy 'dz

du

(i)

Also, if P, Q, jR; >S^, T, U be the normal and tangential com-

ponents of the stress at the point, we have by 212 for an

isotropic body
P = (m + n)e + (m

-
n)(f + ffY

Q = (m + n]f+ (m -
n)(g + e)

(m -
n)(e +/)

T=nb
U=nc

(2)
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and by >214

q-<T(R+P} q

263

(3)

6-:

c=/ J

the various constant- mpl.>\v.l of which two are independent
_L3) by tin- relations

The potential t-nri-Lfy F per unit of un-tramr.! voluino (.^ -2\
m

2)

, . 11 by
_ r . ..........

(
.">

)

anl tlii- ezpreorion i-an ) tlir..\vn int. i various other forms 1,\-

It' A'. K, J^ be tbe oomponents of tin- Apj.lir.i F. unit

i iass on the i-l.-m.-nt dfl l"ut th- p..int i . tli.-

jiiati.'i,- ..t

1

in..riMii .

t tropic IH..IV I"- \\ rittrn in

( there! .18,

*?*?-*

"<"

Am^ +
j

l;-^V-3bc \dy oz /

( j
41-
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The equations of equilibrium are at once derived from these

by making
u = v = w

',

while,
1

if the body be free from Applied Force, we have only
to make

X = Y = 2 = Q.

If F, G, H be the components of the Surface Traction per unit

area on the element of the bounding surface of the body described

about the point (x, y, z], and if X, /x, v be the direction-cosines of

the outward normal to the surface at that point, the conditions

to be satisfied at every point of the surface are by 144, 145,

(9)

which can be expressed in terms of the strain components or of

the displacements, for an isotropic body, by means of (1) and (2).

If the component displacements of any point (x, y, z) on the

bounding surface be u
,
v

,
w

,
then u, v, w must be such functions

of (x, y, z) as will satisfy the equations

(10)

at every point of the surface.

The General Problem for an isotropic body is to determine
values of u, v, w as functions of x, y, z which will satisfy (6), (7),

and (8) or the corresponding equations for the case of equili-
brium under a given system of applied forces, at every point in

the interior of the body, and which will at the same time satisfy
the boundary conditions (9) or (10) according as the Surface

Tractions or surface displacements are given at every point of

the bounding surface.

Of this problem no universal solution can be obtained that

is to say, no solution for u, v, w as functions of X, Y, Z, F, G, H,
without reference to the forms of these quantities themselves as

functions of x, y, z but several very general solutions have been
worked out, each applicable to a large class of cases.

Before proceeding to the consideration of these solutions, we
shall state and prove five general theorems concerning small
strains which will very much simplify our task. The only
general principle which these theorems involve is that of the

superposition of small strains and stresses, which has already
been sufficiently established (87, 88, 153-155), and which finds
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thematical expression in the perfectly linear form of all

the fundamental dirTeivntial e.piations of our theory. For the
-ake of the greater simplicity of the formuhe involved, they are

proved for an i>utropic body, hut the method of proof is perfectly
al, and they are equally true of nil

f rj\cthj
-
-/M/S,

o (.I'tniit of the aj[>pli-
le of superp<

r
1
THEOREM I. No di* of -/>t-

' nued exertion either of Aj>
>, or of Surface / <*, or of systems i

Consequei ii of Displacemei be so

(is can be suffered by <i ,

'pounde

It will be obflen I thi> Th.-oivn, i> -impl\ aeni

)f one of the fundamental properties ; ic Solids

Is ;, ,

|
on v. hich \\

I .d theory (( 'hapt-r
i owing proof e m.-r.-ly a return to first

rim-ipl.-. and i>. so far as it goes, a test of the accuracy of our

led'

It it be possible, let the body be maintain' d in tin-

trail <\, O
t, 9 ]

in the absence of any Applied
^orc actions.

K the total poteir rgy IT of im-d hody i>

|ual to k d.-ii.- hy the systei 1

in, in l.rin^in.Lr it from
1 state to its give: And nnee tli- \

a nui-t n.-c.-vxarily IKJ zero, it follows

hat in th* ^upposed state of -

//"-O.

otential n.-rgy per unit \olum.-,

ir
fffv.i.,

nd t

' an eOBentia] positive

by. Il'-nee the inti-ri-al \\ um of a nunder of
. .

ntiallv jMitive ijuaiit:'
urn cannot DOSSlDly

ii\i*>]\ unless each of its t ni-hes sepai ! lm> for

/ery lem-nt of th- \>ody we must ha\

r=o.

1 ut hy (5)
J' i -Min of a number of essentially po>iti\.'
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quantities, and if V is zero we must have, everywhere throughout
the body,

that is to say, the component elongations and shears vanish at

every point, and the supposed strain, if it exists at all, must
consist simply of varying rotations ( 48).

Now, by (1) we have

'du _ 'dv _ 'dw _ Q
'dx 'dy 'dz

'dw 'dv _ 'du 'dw __ 'dv 'du _ Q
'dv 'dz 'dz 'dx 'dx 'dy

.(ii)

and therefore
'dx2 'dxdy 'dz'dx

'dy
2

'dy'dz'dxdy

-dy
2 -dz2 'dz'dx

=

fiz 2 **..**_ > ^_ '*-*-

=-d
2v

'dx2 'dz'dx
'

'dy
2

'dy'dz

Thus all the second derivatives of u, v, w vanish, except

'dx'dy
'

and u, v, w must be of the form

\

v = A
2
+ B

2
z + C2

x + D
2
zx V

v = A
3
+ B

B
X + C

3y + D%xy]

..(12)

where the coefficients are absolute constants.

Substituting from (12) in (11) we get the three relations

which, since B, C, D are constants, are really equivalent to the six
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D^D^V^O,
and

(13)

-C^+C
The only distribution of displacement which can lo maintained

without Applied Forces or Suri'ac.- Traction-* N tlu-ivfoiv 00m-

poundrd <,f the !>.>/''/;/ translation

u = A
l
\

w=A I

and tli.- /"^/;/7/rotati : 86)

^-<
whicli i> -imply -uch as can be suti'.-ivd l.y any peifeetij riiri

body ( 48), and does not constitute a strain at ail.

5
]

THEOREM II . <nn t/n'uti<//t-

;'.<( I
; i

deteri n>< ui

.r<;
{>('/,

>n

' ' I
I'U

X Y, '/. be tin- components of the giw: DO >f

A ]]!; ystera of Suri'ac.-

. c} be a di-tril'iiti-.n of strait,

with tin- _::
' must va

ti-t'y tin- r.juati.

(in -r ii <

( )
-

> "

(14)

A[(w + n)e + (m - n)(/+ y)] + \anc +

Xnc + p[(m -l- n\f+ (m -
n)(g -f e)] +

An6 + /xno + \[(m /)] = //]

vna ,;:i. .(11
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at the bounding surface. Similarly, if {&',/', g', a,', b', c'} by any
other distribution of strain consistent with the given conditions,
we must have

e ,

(m + n) + (m -
'^x

N 3/"
(
m + n)%- + (m-'

3/' 3/\ fdc
f W\ r J

^- + ^-\ + n[
- + - + pX =

dx da;/ \dy

dz ox

'dz 'dz J \dx

and A[(w + n)e + (m- n)(f +
g'}~\

+ /me' + vnb' = F
Xnc' + /x[(ra + n]f' + (m -

n)(g' + e')] + vna' = 6r
]..

Xnb' + /ma' + v[(m + n)g' -f (m n)(e'

T L ' " > -C i JV/ '

Let e =e+ e
, / =/+/ , g =
b
t

g9, a =
Then b subtraction of the two sstems of linear

equations we find that

(m+W)|: +(m -)(^_+ ^) + (- +^

(m + n)-

x<7 / xe
(
m + n) ^- + (m -

ri)[
-

' + n/96
[

-

\dx

A

(16)

throughout the body, and that

X[(m + n)e" + (m - n}(f" + g")] + /me" + vnb" = CT

Xnc" + fi[(m + n)f" + (m -
n)(g" + e")] f vna" = 01

(17).

Xnb" + /ma" + v[(m -j- ^)^" + (m -
ri)(e" +/")]

--
OJ

at the boundary surface.

Comparing (16) and (17) with the standard forms of the

equations [(47) and (49) of 217], we see at once that {e",f", g",

a"
} b", c"} is the specification of a strain such as could be main-

tained unaltered without Applied Forces or Surface Tractions.

Thus, by Theorem I,

e" -f" = y" = a" = b" ~ c" ~
;

and consequently

e' = e,f =/, g'
=

ff,
a' = a, b' = b, c' = c.

Thus only one distribution of Strain can satisfy the given
conditions, and the solution is completely determinate as to the

strain.

Consequently, the distribution of displacement is also deter-

minate, in so far as it constitutes a strain : that is to say, with
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the s<^ t i'ii of an arbitrary translation and rotation of the
a* a whole. Of o> we expressly excluded such

displacements from consideration -annul expect
our filiations to i:iv.- ns any information on the subject.

It should be observed that when the surface displacements (10)
listribationofdisplacement taa&aofotfofydeterminate.

]
THEOREM III. Tin* / distribute

!l, free frvni Apt >r<l
Forct- *ist8 of "

harmoi* / ?//< lunl,/ <i/.out tin ir

The equations of motion (7) become, wlu-n the Ajpli .1 Forces

are /

(18)

-

equations m y t he most
lutions : mrtions of fl nd t, may be con-

; d-ivd as built up by adding togt t \alues of V.

hich will simultaneously >ati>i'y (1^ Uiy function

may be expand. -d in a >.-ri.-s of terms, each of which is of
< ne of the three following

luct of a <> a, function of (x, y, z).

\ subitiim whirh ur iv.-s . >\ ,r
t

<, r any uf tln-m in tin-

t mi
(l

Mt- a tr.

t in of tin- b..d\- as a who!.-. A ;ti..n which

1, v, v in leni f /

s luti

BI
perpoee

-i' tin- b.,d\ \\hol.-

Both these sob- \clud.-.l.nnd we
.

. assume 'Imioii r

M I
i

//jTj
+ 11

-

t7=r,T,' + V.r
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where u
iy
v

i}
w

i
are functions of x, y, z only, and ri} T-, r" of t

only: and

V= Vfo

W = WX,

are simultaneous simple solutions of equations (18).

Substituting in these equations, we get

m
?)zdx

and two similar equations.
Now it is obviously impossible, in general, that these equa-

tions can be satisfied by values of u^ v
t,
w

i
which are independent

of t, unless all functions of t can be cleared from the left-hand

side. The necessary and sufficient conditions for this are

T, =

for all values of i.

Making this assumption, the equations may now be written

m 'o ( 'bu
i dVi dw

{
) n

2 _ p c?
2
r/

u
t

dx \ das ?)y *dz j u
t

TV dt?

in 3
^
'ou

i
*dv

t 'owi \
n

2 _ p d^

v
i *dy \ *&& 'dy 'o'z ' v

t
T

4
- d\

:-! ^
* + ^

* + -75* [
+ V2w;

i
= ~ T

to, oz ( oaj oy 02; J w
t

r
t

d\

Here we have three expressions which are known to be inde-

pendent of t equated to an expression which is known to be

independent of x, y, z. In order that this may be possible, each
of the four expressions must be equal to an absolute constant.

Let this constant be denoted by i
;
then we shall have

.(20)

and

"fej ^+5p+^j
!

\
+*>V*Vi +pwt =0

m^j^ +^ +^l

.(21)
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and the general solution will be of the form

u = -(i^U
v=^
W - ' ~ '

The solution of (20) depends upon the form of i. If i be

real and positive

T,
= A BUI \/i . t + E cos s/i . / :

it' i IK) real and negat:

e dviioti-s th- base of Napier's logarithms: and lastly,
if t b. partly n-nl and jKirtly in .utioii is of a

We now proceed to value of i which
- 1 ) consistent > iidary co/uli-

\iont

<>. // 0,

V
te .f tb.- strain corresponding to the partial

U^

1 ) the components of the corresponding stress.

*!

aid
...
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Thus (21) may be written

(24)

while the conditions to be satisfied at the bounding surface are

............ (25)

.(26)

Let any other particular solution of equations (18) be

v =

w =

and let a similar notation be adopted with regard to j and the

functions depending upon it.

Consider the integral

taken throughout the entire volume of the body. Substituting
for K

{ ,
v

{ ,
w

i
from (24)

Integrating by parts, as in 146, 194, 219, we have

- rrr^ p ? + o + R ^wj
/// \

l

^dx
lr

dy *"dz+/*/*/ v y



JKNK1IAL SOLUTIONS AND KXAM1 '27 X

II v '-"> the surface integral vanishes, and thus

iplu =///{
' *t +W + CjUt }dxilydz.

Now, looking back to the original form of I
tf,

it is obvious
tliat it is symmetrical with regard to / and j. That is

and. interchanur
in'_r /' and j and i and j in the formula just

obtained,

fff ~gi
R

i + a$i + l>iTi + c
i
U

i\lM*h.

But the stre>> components ar- linear functions of the strain

components, and ly direct >ul-tituti'U in tlu-f two integrals we
obtain

// -)(o+.'.

^ + //)

Tl,

; nd if land - ,uantiti-s wliich admit of

r.-nt with th- Boundary conditions

the integral

I = /// >n
tWj)dxd><

Now we are en d with n-al displaerments, and
i lert-t l.ave only to deal il values of u,v,w. Thus,
1 y a well-known

j
u the series re occurs any

i nag;

:
XI

icre HIM
I

-nn

usaine

1
a-

s- that t: .lac-'iiirnt^ are of the fnrm<

u-h

"-'
Wt
- w + pw'J-l) W) = w -

fiv' v/
- 1
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Thus

\u=fff{\\* + v2 + w2 + /3
2
(u'

2 + v'2 + v'*)}dxdydz,

which is the sum of six essentially positive quantities ;
and since

lu is identically zero, each of these six quantities must vanish

separately. Thus at every point of the body

u. = v = \v =
]

/5u'
=

/^v'
= /?w' = ]"'

and the solution is therefore null.

Thus it is conclusively shown that any value of i which admits

of solutions of (21) or (24), consistent with the boundary condi-

tions (25), must be real.

Again, consider the second integral

I. =fff(u? + v? + wfldxdydz.

Since i is necessarily real, I, is necessarily positive : but by (24)

Integrating by parts, as before,

ipl t =fff{*fi +AQ

^fffV.dxdydz
= 2W

t

by (19) and (20) of 199
; Vfn being the potential energy per

unit volume, and TF/rf
the total potential energy of the body,

due to the partial solution (23) above. Or, which amounts to

the same thing, Wt
is the potential energy due to the strain

K/ft fft, "i, ?> c,}.

Thus it is essentially positive, as well as I<; and consequently
i is also essentially positive.

Finally then we see that every value of i which admits of a
solution of (21) consistent with the boundary conditions (25) is

essentially real and positive.
Thus we may obviously write
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throughout the body, and

etc.,

at every point of its surface.

But if u', v', w
f

be the displacements which the same point

would experience, if the body were in equilibrium under the

same system of Applied Forces and Surface Tractions, then

etc.,

throughout the body, and

'du' , \/<3w' 'dw'\~~\ /*dv'
i + (m n)[ + I I + i*>n\
**-! '\dx oy/_\ \dx

du' *dw\ ri+ 1 = /
1

etc.,

over the surface.

Thus, if we assume

u = u' + u", v = v' + v", w = w' + w",

the displacements u", v", w" satisfy

V - pu"^

throughout the body, and

etc.,

over the bounding surface.

The distribution of motion represented by u", f", w" is there-

fore such as might take place if the body were in motion under
no Applied Forces or Surface Tractions, and by the last Theorem
we know that this consists of a series of small superposed har-

monic vibrations about the positions given by
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or by

and this system of vibrations is of course absolutely independent
of the external foi

The assumption in the enunciation of this Theorem that the

Applied Forces and Surface Tractions are such as are capable of
<(, state of equili

1

ly excludes all such

fane, Tlu-M' hittrr atl.-ct the mode of

vibrati"ii. l.ut n-.t tin- in-an configuration: the most important
t in which all the external forces are harmonic func-

>f the sa ..1 throughout. The problem
that of Forced Vibrations, to be consi.K n 1 in the

n- xt Theorem.

258.] THEOREM V. A system of . and
I as any

fit same period as themselves, about the W'

i>ost general form of sir >>n possible u i/> r

s ich a system consists of this (peri
>

) mode
i brut y) modes offree vibration
8 'perposed o>

\pplii-d Forces and Surface Tractions be given by
A"

Xsint^
/**=FM

} Y (7-Gsinin,

lit)
II H :

ion will be

X- < 35- +2
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In the first place it is obvious that if (u, v, w) represent any
distribution ivhatever of displacement, satisfying the general

equations (18) of free vibration, and the corresponding boundary
conditions, viz., F=G = H=0, the distribution of displacement
(it+u, t/'+ v, iv-\-w) formed by superposing this system on the

particular solution of (29) and (30) which depend upon X, F, Z,

F, G, H, will also satisfy (29) and (30). That is to say, the most

general solution of (29) and (30) consists of the particular solu-

tion, with any arbitrary modes of free vibration superposed

upon it.

From the form of (29) and (30) it is obvious that the parti-
cular solution must be of the form

u = u sin it~\

v- vsin^' ...(31)
. |w -W sin
it)

where u, V, w are determined by the general equations
O ( OTJ. t3V (^XX/ ) %

m .) ! + + '
-f ny-u + p^U + X) =

-Y) =

c) f Bu. c)vm
-> \ ~r- + -*- ' ~~roz ox ou oz

and the boundary conditions

etc.,

It therefore consists of a system of simple harmonic vibrations

about the natural configuration, having the same period as the

external forces, while the mode of vibration or distribution of

amplitudes as functions of x, y, z depends on the form of these

forces.

259.] Subdivision of the General Problem. Availing
ourselves of these Theorems, we may now greatly simplify the
General Problem by subdividing it into the five following :

(i.) The problem of Free Vibrations, under no Applied
Forces or Surface Tractions.

(ii.) The problem of Forced Vibrations under any given
periodic system of Surface Tractions only.

(Hi.) *The problem of Forced Vibrations under any given
periodic system of Applied Forces and Surface Tractions.
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Tli.- prol. KMII of Equilibrium under no Applied Forces,

with; li^tril'iition uf cquili >nri'ao- Tnu-tions, or

ntv

Tli./ pi-Ml.lrin nf Equilibrium und.-r any ^iv^n

Lp| ii.-.l F"ixv- aii-1 Surt'ju-.- Tract ion-,.

'/'///; /
J
/:o /;/./;. i/ Qj VlBRATIQ

'.]
General Statement of the Problem. Tlu-

to !" >ati-ti.-l tlir.'U-li(.ut th-

"

; n-l ,'laiy cuii lit ions are

Af

'"

*k^
<:

U - if + U,' 008*1)1

it + w[ C0>

i\ i-n 1-y

-

3te

ai .d the sires > - by

/'

etc.
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where

[260.

Pt = (m -f n)et + (m- n)(ft + )'

etC"
(38)

S^na, I

etc.

Similarly, if the motion be irrotational, the displacement

potential must be of the form

where

*' =
?

*'-%f
Vi=

^y\
(*<>)

3& , 36/
Wi = -^

Selecting the partial solution of order i from (34) and sub-

stituting in (32) and (33), we see that each of the systems of

displacement (i4 v
i}
wt) and (u'i, v'it iv'i) satisfies the general

equations

3A,m *

3A;

dy
3A-m * + n^wt + pi

2
Wi

oz

and the boundary conditions

lUi + vT^Q}
(42)

261.] How does i enter into the solutions for u
iy
v

iy wt ?

Writing in (41) and (42)

they become

=
0, etc.

etc.
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and it i> obviou> that ^nations retain precisely the same
form when any other suth'x is suKstituted for /.

Thus we niu>t h;

</,-
m

9t

'

where the forms of the function^ !'. I 1' are independent

j.] Distribution of Kinetic and Potential Energy
among the partial components. The potential energy due
to any li>tril'Utioii i-f -train may [.^

199 (20)] be put into the

ftTln

1C
\fff\i Tb+Uc\

Substituting from (1) for < \ parts,

+v(M7+nQ + vS)+w(W~ W.s.

( -1

:i a stat on
| putt in-- A'= }'=Z=0 in

/' G II in
'.',.]

w

rgy,

<fc- + r- +
1*-']*/*,/

if 11 and vT be the p-.t.-ntial and kinetic en, r

tial cm up-

*
itfff\_"[-

+ V? + v>'t *]dx

1 11 it co itfff v\w{\dxdydz ......... (45)

*H*fff[*?+*?+?\
+
*\\i-itfff

+w'
l *]dzi/:

: i it COB itfff [i

'

+ ww'^dxdydz} ......... (46)
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and the whole of the energy due ,to the partial component is

given by

<, _ Wt +% =
^.fff\u?

+ v? + w? + u'
t

* + v? + w^yixciydz. ... (47)

which is independent of the time, as of course it ought to be

no work being done on the body.
Now, substituting from (34) in (43), we obtain for the resul-

tant potential energy

u cos * u
j
s

+ 2i'2
(
v

t
sin it + v- cos it) . 2( Vj smjt + Vj cosjt)

+m2
(w t

sin i^ + w( cos i^) . 2(wy smjt -f w/ cosjt)}djcdydz ;

where both i and ^ are to receive in succession all the values

included in the series (34).

This again may be written

W= {Si
2
sill

2

itfff]u'f + ^ + w?]<Ladyd:.

cos-

22i2 sin it cos &fff[ww/ + i?^/ + wfjo'i\

^^i2 sin ^ smjt/Yy*[u,Uj + v^ + io
twJ\Jxdydz

j + vp'j + wtwj]dxdydz} ;

where the single summations are to be taken for all the values of

-i included in the series (34), and the double summations for all

different values of i and j.

But it is obvious that each term included in either of the

double summations is of the same form as the integral 1^ of 256,
and is therefore identically zero.

Thus we finally have

+ wf\dxdydz

+ 2 sin it cos itf/7'[u i
u

i

'

+ vp{ + wiwi']d&dydz} ,

and, comparing this with (45), we see that

^=2(1^) ................................. (48)

In a precisely similar manner we may show that

(49)
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263.] Future investigation may be confined to one
partial solution. It is sufficiently obvious from the last three

Articles that, when the properties of the partial solution of order

i are completely known, those of the most general solution can
be at once deduced by simple summation as to i.

We shall therefore confine ourselves to the discussion of

Equations (41) and (42). In the former, we may conveniently

drop the suffix, of which the presence of i2 will be a sufficient

reminder, and write

m_-
ox

v + =

=

.(53)

or

.(54)

The boundary conditions, however, it will be better to retain

in the form (42).

TEE PROBLEM OF FORGED VIBRATIONS, UNDER PERIODIC
SURFACE TRACTIONS ONLY.

264.] General Equations. Let the body be free from all

Applied Forces, as before, but subject to any distribution of

Surface Tractions that is strictly periodic as to the time. The
traction components will then be of the general form

F= ^(Fp sinpt + F cospt)

H=
(55)

Equations (32) will still represent the conditions to be satisfied

throughout the body, and these may be decomposed, as before

into systems of the form (41) for all values of i.

The boundary conditions (9) may be written

vT
t)
sin

it] !} cos it] sinpt]

and so on.
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Thus to every value of i in th- which coincides

with a value of p occurring in the Aeries (55), correspond^ a

solution of (41) sati-fyini: the boundary conditions

while the solutions corns] to all values of / which are

absent from the m > -atMy the boundary conditions (42),
as before.

In other w. general solution consists of a -y>tem of

forced vibrations of tin- same periods as, and depending upon the

form of tl. LOQ8, with any arbitrarily dhosen -y-tein
11 and (42), superposed upon it.

It is thus convenient to con- two problems together.

taking (o3) or (54) for the general equations of vibration, and

'+M + I-T r
|

Wi+fQi+vSimQ
5 // I

boundary cond it i. i 11 being each
>t wbni /' r. -presents one of 1

/
in tin* series

> PROBLEMS COMBINED.

Method of Solution.

2G5.] Resolution of the Strain. By the ]>rinri]>lr of

B\ perposition and its converse ( 88), any system of -mall dis-

p'
Icements, or ^tem of s produced by it, may

b resolv.-d in an ;
. any nnmb.-r of Sjrtems,

si >ject only to th.- r..nditi.. n that the
algebraic

sniDfl "f th.-

c- nponents of the latter shall be idt-ntirally r.pial to the

& TesjH.nding components of the original syst.
Since the tl. i>]lacements at each point of the

b< ly HUM in general be supposed ind.
-j..

-nd. -nt functions of

d in any
re olution of the strain must be esctl>/ t /,,-<, in th most general
ca e.

Now the most general I in mnsi-N "f <lilatation,

tation
;
and <f vibrations

uri ler n<> apj.li.d fore.- that t

'

nni-t in, 'Ir.r dilata-

ti- a [Thifl is at once obvious from

eq lat i below.] Thw -train th.-n may be resolve<l into

t^'>, of which tin- tirst may !< supposed t.. Lrivo rise t
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dilatation, but to be irrotational, and therefore to involve only
one independent function of position its displacement potential.

Thus, if we suppose the second (rotational) strain to be indepen-
dent of the first, its component displacements must be connected
with one another by some one arbitrary relation: such, for

instance, as that they shall contribute nothing to the cubical

dilatation at any point of the body.
We shall then have resolved the most general form of small

strain into two independent small strains, one of which con-

tributes dilatation and distortion without rotation, and the other

distortion and rotation without dilatation.

266. Decomposition of the General Equations. If we
write in equations (54)

W = (m + n)/p : W2 =
n/p (57)

they become

oy

oy

oz ux

-
ox oy

(58)

(i.) Let us suppose the mode of vibration to be irrotational,

with a displacement potential <. We have then

,(59)

or by (59) of 123

.(GO)

Also, by differentiating (59) as to x, y, z respectively, and adding
the results

(61)
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(62)

Bv the theory ,f th- onlinary potential, we know that the
of

A '

li.- value of A at ./'. ml

r=J(x-x) :)*;

th- integral b< n thruii^liont all th.^,. ]i..rtins ,.f space
wh-r- A -I

H.

"
I- fff^

wl;.-r.- tli.- -syiiilH.! v 'I'-not.-- the operat

32 32

\_fjj
Bit

^+tV-o...
Thi> i> tli- ir-n. ii to be snti-ti.-.i l,y

,
,. Anvsolu-

t;<)i and
ii'l >ucli that

I th-

1 1' ii. \
.

\\
; in this ca^i-, the

i re i fl)]

3v
+
9w

d^; dy d*

\

dz

i

V . /
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or

(65)

Equations (65) and (64) are therefore the general equations
to be satisfied by u, v, w in this case. In virtue of (64) only two
of these quantities are independent.

(Hi.) If we write in equations (58)

,(66)

they become

*-(flV* + ^) + U' 2V2" + ^2 + 2^( ^. +^ + ^j

=

3v

These equations are obviously satisfied identically, if we take
in (66), for any solution of (63), and for u, v, w any solutions

of (65) which satisfy (64). Thus, so far as the general equations

go, u, v, w may be supposed perfectly independent of 0, and the

system of displacements represented by (63), (64), (65) and (66)
will fulfil the conditions of 265, and at the same time satisfy
the general equations (58).

The boundary conditions (56) will of course impose restric-

tions upon the generality of this solution, which can easily be

deduced by substituting from (66), and supplying the suffix [see

(67) and (86) below].

The irrotational or
</>

solution.

267.] General Equations. If the mode of vibration be

wholly irrotational, the potential satisfies the equation

flV* + *2* = .............................. (63)

throughout the body ;
and by substituting the formulas (61) of
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f< re of tin- H-rioil of viliration : or, in other words, the \'</o<-i(f/
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of Sound in an isotropic elastic solid is the same for notes of

every pitch, and depends solely on the elastic constitution of the

material, being given by
ft= *J(m + n)/p

=
*J(k + n)/p ..................... (57)

In calculating the values of 2 numerically, by means of Table

(C), page 201, we must remember that the moduli enter into the

equations of motion as absolute accelerating forces per unit area,
and must consequently be expressed in absolute not in gravi-
tational units.

Thus if k, n be the gravitational measures of the moduli in

grammes weight per square centimetre, and p the density in

grammes per cubic centimetre, as given in Table (C), equation
(57) may be written

12 =

where g denotes the acceleration due to gravity, in centimetres

per second per second
; giving 2 in centimetres per second.

Now by 221, 222

k=/>k, n = pn,

where k and n are the lengths in centimetres of the moduli of

compression and rigidity. Hence

fl= N/g(kT|S), .............................. (70)

which is equal to the velocity that would be acquired by the

body in falling under gravity through a height (Jk + fn).

Taking the value of g at 981*4, we obtain the following
values of 2 :

Velocity of Sound in Metres per Second.

Steel,
- 191,550

Wrought Iron,
- 176,790

Flint Glass,

Cast Iron, -

Copper,

157.840

148,750

138,170

Water at 8 C.,
- 1,435

Air at 10 C., 337

The velocities in water at 8 C., and in air at 10 C., determined by experi-

ment, are added for the sake of comparison. We have seen in Appendix IV.,
Section A, that a "perfect liquid

"
may be regarded as analogous to a perfectly



ii. INS \N I- i:\ \MIM.KS. 29]

J'lity. Thus liy an;ih>Lr\ the velocitj of aouod
in a portVi-t liquid ^h"ul i l>v

ft= s

( is the modulus <>f .mjin-ssion in ////<
<
jx-r sijuan

1 ci-ntiin.'t 1 1-.

Table (B), page 200, the vahu-s of / for wator are

20,300 at 4 'I Cent, an-1 i'l.l(X) at Wt- ('. : tlu- ...nvsjM.n.liiii,' valiu-s ,.f

:!!> an. 1 '1)99668. Thus tlu- vi-h-rity ..f s.mn.l in \\ati-r, mi tlu-

suji|Hi.>iti'.n that ir t tlui.l. sh.-nM 1-

at 4
?

'l,
- in.-tn- !') >.M-,,nl.

an.l at M 4
lation al-.iit 1 . 4.~' iii--tre j)er Htvml at \() (\-iit. Thus

.il results
agr- ire hav,-

any n. 'akt-n into a.->-..unt.

]
Sinuinini: (69 lia\.- t'..r tin- -.-nrral r,|iiation

<>t' the propagation of plain- s.minl \\a\.-. in a nic.liuni of

iri'lrtinitf .-xtent

#-! -/>')....

which inclii-les waves of all periods anl wj :1^.

In tin- case of a tin;' tiinl hy ^nl^titutinu- in 67
;hat tli- mail:- tate of vibration r-|uin-x th,.

.ii...lic sint'ar,- kractiona

/' A)

j

m v ^f
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we shall only have to deal with the surface conditions over these

two faces, the direction-cosines at every point of which are

\= 1, /*
= 0. v = 0.

Thus if the faces are given by
x = d, x -d',

the only boundary conditions to be satisfied are

2;2[c.sin^ -at- ft) + c/sinl(rf + at -
ft')]

= <n

(* + 12< + ft) + C-sm^(d' -tot +
ft')]

=
I

li '

for all values of t
;
thus the coefficients of sin it and cos it in these

series must vanish for all values of i. These conditions, however,
are much more easily interpreted if we retain the original form

(68) for
<j>.

We then have

id -r, id
t
sin + jJ; cos

id

Ti

id
1

id' r.
- -0

.(73)

At* v\ju T) / tec/ f\A
t
sin _ - B, cos_ = OJ

This system of equations admits of three solutions.

(i.) Let I = d + d' be the thickness of the plate. Then equa-
tions (73) are satisfied by

where i is any integer. This gives for the general solution

-
x) sin (74)

where the summation includes all positive integral values of i,

and 2C, and a are arbitrary constants.

(ii.) Again, if the ratio d : d' be reduced to its lowest terms,

and then take the form r : s, so that r and 8 are integers of which
one at least must be odd, a second solution of (73) is
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Thi- M.-ral >.lutin

sin' -l'-W

t<> lr ^iinmifo! for ;ill poMti\v intf^ral valiio of i. a>

!

3
thinl Nnltitimi nt' 7^) i^ --ivm l.y

'2*\^ tli- lii

for the g-inTul ^"

...(75)

1

.1 .1 o r

JH.W.T .!' i in tin- }!> lui-t /x Tlii>
privefl

001 -yi
-

BOm of the thre< , an-l (<', r prf-.'Ht> all

li-
j.laii.- WftVOe "f n-.nnal \ ihratimi that ran maintain tln-m

iiirliaii^-il in Niu-h a jlat-. \\ itlmut tli.- application of jM-rilii-

.]
A- a -implf example, I-t tin- plai

8 thirkin-.vN of the pL i hat

/
-. will tln-11

-j'lit up into t \\ .. wliirh will
n-xj,,-ct i\ ! y

iiclu<! ,

i

ition in this case

;

ii> is a case of i '\ apply tin- formula-

iiin.- tli-
|

DOS- - arli prismatic

parallel to 005, and its

Writing tir-t of all

'

J '
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we get, for the first part of the potential energy,
i

s 92iMt - B
t ) f22 t'

Treating the second series in the same way, we find for the

total potential energy of the prism

IF
And similarly we may deduce from (46) for the kinetic

energy of the prism

I
6

I

+
^2(-2i

+ 1)W coe'^ll!

Thus the total energy of the prism will be

.

.............. (78)

and in order that this series may be convergent, it is necessary that

S3i
2 should vary inversely as some power of i higher* than the

oth
;
and similarly for G>

2
. Let us take, for example,

BP Cl*

where B, C, U are constants independent of i. Then

The two infinite series within the brackets are convergent, and
their sums-f are known to be ?r

2
/6 and ?r

2
/8 respectively. Thus

and if 5 and (7 be so related that

* Todhunter's Algebra, Art. 562.

t Todhunter's PZcme Trigonometry, Ch. xxiii., Ex. 1, 3.
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where J,+i denotes Bessel's function of the first kind, and of order

Thus finally we have a solution of the form

(82)"CM!
where Hs, Hs

'

represent two surface harmonics of order s.

This solution is adapted to a solid of spherical form, having
the origin at its centre. Stokes' solution, suitable for infinite

space outside the sphere, will be found in Lord Rayleigh's Theory
of Sound, 323.

The choice of harmonics is not unrestricted, because the pre-
servation of the continuity of the body demands that

^L = 0, when sin =
;

ou

(see 287, below). Hence all the harmonics included in the

solution must satisfy the condition

-*- - 0, when sin = 0.

At the surface of the sphere we have, by (72) of 243,

&' = P
t H'=U,.Z'=T-,

and on substitution from (73) in (68) of that Article, and thence

in (46) of 239, we find, after availing ourselves of (63) above,

(\
3<A

V- w)

sin

Thus, if r be the radius of the surface, the conditions that (82)

may represent a form of free vibration are

.(83)
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273.] Spherical Sound Waves. In one particular case-

namely, that in which the only harmonics present in the solution

are of order zero the two latter of the conditions (83) are

satisfied identically, H being a constant, and the admissible

values of i are given by m

where i is a root of J
4 '(i)

=
I <r

~
7^2 I^

or the equivalent* equation

The solution (82) now takes the form

or, as it may also be written,*

</>
= J^C~ sin

{- sin !?(
-

y,).

The corresponding value for the radial displacement u may
be written in either* of the forms

~l .

s

J
or u= A- cos - --sm- sm -%.

r ir rJ r

This solution evidently represents a series of free spherical

waves of radial vibration, propagated inwards and outwards

with the same radial velocity Q.

274.] Sound Waves in general. Possible Forms. In order

that the family of surfaces represented by the general equation

xte y *)
= &

where (
is a variable parameter, may represent a possible form

of sound waves, sustainable without the aid of Applied Forces,

the parameter ^ must satisfy two conditions. For let
<p

be the

potential, which is a function of and let
rj
and f be the para-

meters of the two families
(
of surfaces orthogonal to the above

and to one another.

* Todhunter's Functions of Laplace, Lame and Bessel, end of Article 378.

t Two such families must always exist ; for, from the character of the

motion, a continuous series of curves can be drawn to cut all the surfaces

orthogonally. The two systems of these curves, drawn through the two

lines of curvature which intersect at any point of a surface, will define a

surface of the 17 system, and one of the f system, respectively.
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276.] Plane Waves of Transverse, Tangential, or Dis-

tortional Vibrations. Let us suppose that v is a function of

x only, while u and w are both zero : (64) is then satisfied identi-

cally, while (65) gives

Thus v, = A i
sin

*
+ Bi

cos

and the full solution is of the form

v = 2(7, sin *(x
- Q't -

fit) + 2CV sin *(x

This represents a series of plane waves, of vibrations which
are transverse to the direction of propagation, or in the wave
fronts, propagated with the same velocity IT independent of

their periods, in the positive and negative directions of Ox.

These vibrations are of the same character as those by which

light is propagated through the luminiferous ether. Thus if the

ether were composed of homogeneous and isotropic "continuous"

matter, the velocity of light would be the same whatever its

colour. Moreover, it is easy to shew that the same result would
hold for light of all colours, propagated in any given direction,
if the ether were crystalline, but still

" continuous." Now the

dispersion of white light into its coloured constituents, by
ordinary refraction at the bounding surface of any two trans-

parent media of different densities, is proved to be due to the

different velocities with which light of various colours is propa-

gated in either medium. This familiar phenomenon is con-

sequently sufficient in itself to prove that the luminiferous ether

at least, as it exists in the interior of solid and liquid bodies

cannot possess the properties of
" continuous

"
matter.

The fascinating problem of the structure and properties of the ether is

too wide and too difficult to be more than alluded to in this place. The
student who wishes to follow up the subject should consult Sir William
Thomson's Lectures on Molecular Dynamics, delivered at the John Hopkins
University, Baltimore, U.S.A., in 1884. These lectures contain a most

interesting summary of the various hypotheses which have been framed to

account for the phsenomena of dispersion, polarisation, double refraction,

etc., with the grounds on which each has failed, together with a fuller

development of Sir William Thomson's own remarkable conception.

277.] The General Solution. The problem, as stated in

275, appears rather complicated, but it is easy to present it in

a form which is of the utmost admissible generality, and yet
satisfies all the conditions identically.
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Poissons Integrals.

278.] Having given any one partial solution of (63) or
(88), to express the complete solution as the sum of two
definite integrals. Equation (63), which should properly be
written

fi2y2
<

f
+ fiffri

=
0, (89)

is only the equation satisfied by the partial component of < of

order i, and results [compare the general equations (32) and (41)
of 260] from the decomposition of the perfectly general
equation

* =
(90)

satisfied by the resultant potential, as a whole.

Writing this latter in the form

and remembering that the operator v> being independent of t,

behaves as a constant in combination with functions of t or the

operator 3/3, we obtain the symbolical solution

where i =+l, and <, <' are perfectly arbitrary functions of

x, y, z.

Expanding the operators,

iW Qtfl -,
|- ft2 2

TTV ^TV J
+1 ^TV

thus, when t = 0,

^ = *', =4

Now, with the notation of (39), 260,

=. 2(0j sin ^ + </ cos i<) 1

<j>
= 2i(0 cos i< - </ sin i^) J

and consequently, when t = 0,

Thus, we must make

* = 2(t0,), *'

and the symbolical solution becomes

(fll)
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represents the mean value of the function ^, taken over a sphere
of radius Qt with its centre at (x, y, z}. Consequently we may
write

y> z =

y + tit sin sin w, z + tit cos #)sin

where 0, a are the spherical angles of 243. Differentiating both
sides as to t,

y, z)
= --t I /x(x + tit sin cos w

>

4?r d^/ J .

o o

sin 6 sin w, + tit cos #)sin OdOdto.

Substituting these integrals in (91) we have for the full

solution of (90)

.7T X-.27T

2 )

^ / /^(^ + t S^n ^ cos w
> y + &t sin ^ sin w,

a + tit cos 0)sin OdQdw

/"
7r

/"
2?r

t I l$l(x + tit sin cos w, y + tit sin sin w,

o

tit cos 0)sin ^(9(fw 1 ................................ (92)

+ .

o o

Thus having obtained from (63) any partial solution, of the

form

(#> y> z
)

- sin if + &(x> y> z
)

cos i*>

we can at once deduce the complete solution, as the sum of two
definite integrals.

These integrals may also be regarded as giving the value of

at any time t in terms of the values of 0[ = Z(</)] and

As a simple example, the potential for plane sound waves

(
2 68), travelling parallel to Ox, may be written

-.

/^
7r /^- 7r

<=-,- X i "^ / /s*n nfa + ^^ S^n ^ cos w ~ a )sin Gd^d
VK*-* J J

+
A-^ /" /sin

^(a
+ fi^ sin 6 cos w -

/?,)sin 6(76>(7
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iriviiiLT, when t = 0,

#-2a,n*(-An

^.l.-.ll,', --

The solution for
\!s I <>f pivei^-ly the same form, the

sole distinction being the substitution of Q' for fi.

THE 1'nnr.LEM .';>/;/> ViiiR.\ y/o.v> UND&R Pi:niODW
&URTACM TJ:

AHl.E

'.]
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v W y W W
J _

,
)
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; nr; :nat.-. aiv. with tin- n.'tati.-n of Chapter V..

ar.*
l

W H =*
f

W
i Z-*,W.. (94)

If the Applied Forces b be {...t.-ntial must
1 6 Of tin- thrill

^.sin^ + ^/coe^) (95)

id "ii itinn in the
general i-.juati.ns ..!' mction (^! ami
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i ,
3* / 3^A n11

_ _ w> ~e By 3z/ \ d/P3 /^ 4 3r* ^u>A / 3^A rv

+ '
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)

dy\OB Oy Oz / \ /// |"

"'1^''+^ ) ( -. +^-0
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\\ kere x '

is to be supposed iero, unl->- the value of i coincides
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(5 i)

.

U
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280.] The forced vibrations constitute a pure strain.

Omitting the suffix from equations (96), and writing them in the

form

we may eliminate their first terms by cross-differentiation, and
we thus obtain

Now these are precisely the same equations that would be
obtained by cross-differentiation of (65) in 266 (ii.). Hence we
conclude that the rotational part of the vibrations is of the same
form as if there were no Applied Forces.

Or, in other words, the forced vibrations due to a system of

Applied Forces having a potential are such as to produce dilatation

and shear, and any distribution of rotations which may exist is

due to superposed free vibrations independent of ^.

281.] Dilatation and Shear. Expressing the strain com-

ponents in terms of the displacement potential <, equations (96)
become

whence we deduce*

.(97)

* Since we have to deal only with the derivatives of our potentials (dis-

placements, forces, etc.), they are always indeterminate to the extent of an
additive constant.
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We need only concern ourselves with the Particular Integral,
as the Complementary Function gives free vibrations. Thus

the symbolical solution of which gives

r . r^f , . r= cos ^ " r cos

Hence corresponding to the force potential

* = 2(^s
sin st + */ cos st)

we have the displacement potential of forced vibrations

</>
= 2- cos rmxLC t

sin s + ^F/ cos <)rfr

cos s/r008-^ sin si + .'

283.] General Solution. Equation (97), satisfied by the

partial component ft results from the decomposition of the more

general equation

(100),

which represents the relation existing at each point of the body
between the resultant displacement potential and the resultant

force potential at the point. The most general solution of this

equation, consistent with the assumed form (95) of ^ may be

found as follows :

The function Mf is finite and continuous in value
( 223-228)

throughout the body, though not necessarily continuous in form.

Let (#', y', z'} represent the coordinates of any point within the

body, and let

\(x'-x, y'-y, z'-z, t)

represent any continuous function which never becomes infinite,

except when

x' - x = y - y = z - z = 0.

Then if we assume
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the integral being taken throughout the volume of the body, we
apply Bou^in^'i's Tli-M-ivm (sec ?i ol(), below) to the differ-

ent iat inn of $, and \vrit-

~

r r
,

.J J \\(~ J* ~ T> V cos w, 7,
sin o>, t)

-
\( NK2 -

17*, i;
cos (u, 7;

sin to,

rhere tli- dotil.lr inti-irral i^ ultimately to receive the limiting
ie whii-h it JISSUHH-N \vh.-n v = 0.

NM\V a--um.- that \ i^ f tin- form

-// 1

int-i;ral then becomes
"T ^

fJ
|

Coi 'iy

:

^/'
'

'

, .

Applying the san.- th.-orera to th- >-c,,n ( l diti'.-ivntiation of

,. ,v.- 1

,

;

+*

- 1-2 v

^'
Tli liuiKli- int.-t.'ral i- in tliis case

;[,
I .. ; ]/ 7 -

!
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Thus, if we also differentiate
</>

twice as to y, and as to z, and
add the symmetrical results, we have ultimately

Now let

so that

Then, by formula (65) of 243,

Also

and

Thus, proceeding to the limit in which K = 0, we have finally

i2 rrr\\n > > -\ /, rx^w^ i .Tf ,

v * = "
^wJJJ (x ' y '

z )smY
"
B/T"

"
^ (

*
J y>

But
i
2 rrr^ti < * /\ -A r\dafdu'dz-*M/ (x ' y '

z )sinT
"
fl)~^'

and therefore

</>
+ *-(;, ?/, 0)sin i< = 0.

Similarly, if we assume

we find

+ ^'(^ 2/> -) cos ^ = -
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The complete solution of (100), corresponding to the force
:tial

Y.o<M

i> therefore

*/! - ''- "'''
^ .........

ami tin- ]iurti:tl o..]np<>iic-]it- of
<f>,

of unli-r /. arc liomv
t" '

/// -+*/(*,..
;

-si "
;;' !

' ; 'T /:
' ,..(102)

Tin- triplr integrals are in t-v.-rycase to be tak.-u witliin the

1 init> it' th-

-^t-.) Return to the Preceding Problem. When the

>int li.-s alt' ide the limiN ,,t i ntfu ration :

i- \;iiii>h, and OODSe-

ut-ntly \ ran DOV0T bsOOOM infinite: I

'

tii-sin.'s,
|'
N formula

tO

Iff' '&'
H racily .l.-duc,- that if tin- triple intr-Tals in

.n.iul;.- i H)| i ai n thrOUghoul any rogiODfl
-f

x
l' M' being, M before, finite

nd eoiitiimoii^ funrti"ii^ of position, th. - formula- will r-pr--
-nt , 1 Nolutioii of tin- I irrotatioiial

j fee vihratioii.

ill find no ditlirulty in jirovin-j-. ly direct

iitiati-.n, that th.- intr-raU (101J and dOi' do Satisfy
ties. tifl
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THE PROBLEM OF EQUILIBRIUM UNDER SURFACE
TRACTIONS ONLY.

285.] General Equations. When the body is in equi-
librium in a state of strain maintained by surface tractions only,

equations (6), (7), (8) take the simple forms

'dx 'dy 'dz

??+^ +^=
'dx 'dy 'dz

'dT 'dS 3^ =
'dx 'dy 'dz

ra

m- + nrj^w =

(103)

(104)

(105)

The conditions to be satisfied over the bounding surface will

take the form

(106)

or the form

..(107)

according as the values of the surface displacements or of the

surface tractions are given.

286.] The Solution Determinate. We know from 255
that the problem of finding a solution of (103), (104), or (105),
which will satisfy (107) over the whole surface, is quite deter-

minate as regards the strain, and therefore also as regards the
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: while tlif solution in terms of the displacements is only
indeterminate t<> the extent of an arbitrary translation and
rotation of the body as a wh

The solution of (!<>:> ,(104), Of (105), which satisfies (106) at

all points of tin- surface or, inleel. which assigns given dis-

ments to nny three points in the body, or on its surface.

which are n<>' iht line is consequently abso-

lutely unique.
Thus, in seeking the solution of any u'iven problem, we may

avail ourselves with perfect confidence of considerations of

symmetry, and all other devices which may simplify the forms
of the equations. knowing that from a which satisfies

all the conditions of the problem all other possible solutions can
be deduced even in tin- mo-t general and unrestricted case by
superposition of an arbit ^placement of the body as a

7.] Preservation of Continuity. Finally, we may
observe that the necessity of preserving the continuity of the

"f ihe body imposes certain restrictions upon our choice

of a solution even when continuous* in !' which it may

6 radial displacement
" muM \anish

^ ith /, if the
origin

be contained within the substance of the

1 >dy : while the displaces lat vanUh with *\urt +

t id the displacement u of 244 with /. if any portion of <)z lies

\ ithin th ^ubstance of the body.
It i-

obvipoi
that these

precautions
are necessary to guard

r gainst spherical, conical, an 1

respectively,

/

]
Circular Cylindrical Tube under uniform in-

t ^rnal and external normal pressures. A shell hounded
1

intinit.-ly long coax !ar cylinders, of ra<lii A (int.ma 1

a id B (external), is subjected to a uniform normal pr<->ure II

'er the whle of i t * iiiii.-r ^urfac.-, and a uniform normal pi.

1
'

ov hole of its outer surface. Required the distribution
>t!

6 conditions lead-> us to expect that tli-

d {bi' Mt iii the xl,,.ll will be wholly radial :

tl it i- line drawn from the point

p rpendicular to the a- aUo that the ma^nitmle and sign

*8ee 9 - tpOMd \\\>n ilisr,,ntiim.Ms solutii.ii>.

!-!.
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of this displacement will be the same for all points situated on

any circular cylindrical surface coaxial with the bounding surfaces

of the tube.

Taking the axis of the tube for the axis of z, and choosing

arbitrarily the origin and axes of x and y, we will then assume,
with the notation of 244, that v~.w=0, and that u is inde-

pendent of and z.

On this assumption we have

and, on substitution in equations (88) of 244,

d\~l df
,\

-
-r(

dr\__r dr"

Integrating this equation twice,

where C, G' are arbitrary constants. In this case both terms are

admissible
( 287), because Oz is not within the substance of the

body.
At the inner surface we have

and at the outer surface

'

dr
=

'
^

Hence by equations (89) of 244,

P= -
II, when r =

P= -
IT, when r =

But

and therefore
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Thus the houndary conditions Income

-2*0= I
A-

w
and con--.|U-ntly

A-\\

--/-)

SnUtitntinL: t'"r '
'

and <"
. we hav.- finally

'Wi-ii
2,,<

'"
If 11-11' jin.l J 11 --/; II

' site signs : that 1

; -ii ir>i:

will !> /! \vlu-n

' =
.

i (109)

ii>h at any points "/'////// ///r

inipnx,. tin- t'urtln-1- n->tricti>n tliat

all Ije between A an-l />'. Tin- n.-r.-^nry an<l

>ntli'

/'/*' II

+n)P U

ind if th.-M- hr fultilli-d, th- cylindrical >nrfan- .lr>crili'd in tin-

with the above i in and dim. -unions

tip- inii.-r and oiit.-r -h.-lU into which it divid-

id,,- i -d upon it from .-itht-r ^i.l,-.

II

inn.-r -in : tin- tui r iimi dimensions,
i if

11

hr I
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289.] Principal Stresses. Lines of Stress. It is obvious

that equations (91) of 244 are satisfied identically ;
so that

r, 0, z are the principal coordinates of the strain. The principal
stresses are by (55) of 241

^ - r2
)

- - -
II')

*

_ _

m(B*-A*)

(110)

The corresponding Lines of Stress ( 216) are respectively

(1) those portions of the radii drawn perpendicular to the

axis which are intercepted within the substance of the tube
;

(2) circles in planes perpendicular to the axis, and having
their centres in the axis

;

(3) straight lines parallel to the axis.

These three systems we shall refer to as the radial, circular,
and longitudinal systems respectively.

Since B>r>A, it is evident that N-^ is always negative, and

consequently all the radial stress lines are Struts ( 216)

throughout their length. The pressure transmitted by these

lines increases or decreases continuously from the limit II at

the inner surface to the limit II' at the outer surface.

The stress Ny transmitted along the longitudinal stress lines,

is constant, and its sign depends only on that of J3
2IT A 2H.

Thus these lines are Struts or Ties according as

n <:#
IT >A*

In the limiting case, in which

_
If !*'

these are lines of zero stress, and the stress, as well as the strain,

is in two dimensions.

Since dNJdr is negative, the third principal stress regarded
as a pressure increases continuously with r. Thus, if N

2
is a

pressure at the inner surface, it will be a pressure everywhere ;

while, if it is a traction at the outer surface, it will be a traction

everywhere.
Hence we deduce that, if
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3 are Xtratr* throughout, transmitting a
ire which inc. -. ith their radius. But, if

n A-

n"
lin.-s are 7VVx throughout the boly, transmitting a traction

which dimini- their radius inciv,

Kinally, if the : ratio falls within these limits: that

11

L'.l- 'II
^

breflfl tran-mittfl al.n-_r the circular lines of stress will be a

n at the inn.-r surface, and a piv un- at the outer surface,

vanishing and chan^inLT si^n when

II '.

l,\\ A II
(HI)

that all -ilarstrt's \\ith thi> ra-lius will be/
-&.

It may be obsrrv.-.l that th- limit- t'r tin- existence of
.1 within the limits ( 1(),S , for

she >ler of z> ; the two

ylinl-rs .lo not hwe\ as will appear on

^heirra-i I by 1 11 ) and < 109).

i.] Strength of the Tube. It would b.- interestin

ILsciixx th- varioii> way- in wliicb tin- jierfi-ct -la-t ieity of tin-

,ul by approach of one or other of the

>rii it is greatest, to the ela>tie

01 e..mpn- ion. We must
on re however to a slnglr \ample.

1111 B*/A*. Then the / [tfl inaxi-

QUiu value II when r= 2l, tl.

'

> ha> it- maximum
alue

&-A*

-hen / = *!, ami tl.- OH ha- the uniform value

MA ii /; M ;MA ii

Th.- -(.. u.l of tln--- i- the greatest, so that if the -la-iie

th . .f th- mat- -rial be about the Sam* f,,r tension and eom-

I
ression (Tab;. p, 202], the fini yielding of the tube

\ ill tak- ? i of trai him:. >r in f its

, iai. food it- power of ,.-la-tic recovery.
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If T be the elastic strength of the material under tension, the

condition for elastic safety is

T

so that we have, as guides for the proper dimensions of the tube,
when the pressures to which it is to be subjected are known,

n IP n + T
r' ~TT> O~TT /

i A* 2i-n + T'

291.] Application to cylindrical boilers. The case which
we have just considered when the ratio II/IT is considerable,

especially in comparison with B*/A
2

may be taken fairly to

represent the strain suffered by a long cylindrical boiler (except
in the neighbourhood of its ends). Thus, if T represents the

ivorking strength of the material [Table (D), p. 203] which allows

for a large
"
factor of safety," the proper thickness t for a boiler

of internal radius A, to be worked at steam pressure II under

atmospheric pressure IF will, with due regard to economy of

material, be given by

(t + A}^ n + T
A* 2ir + T-lT

Example. It is required to determine the proper thickness

for a cylindrical wrought iron boiler, 4 feet in diameter, to be

worked at a maximum pressure of 120 pounds to the square
inch in the open air.

The working strength of wrought iron is given in Table (D)
at 4 1

5 tons to the square inch, and the atmospheric pressure may
be taken at about 15 pounds per square inch. Thus, reducing
lengths to inches, and stresses to pounds per square inch, we
have

.1 24

H = 120

IT= 15

T =10080,

and consequently the thickness in inches is given by

120 + 1008

30+10080-120

or

t = \
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Tin- employment of "
half-inch plate

"
for the construction of

>ueh a h<>iler will therefore allow an ample factor of safety, to

iruard au'ain-t tin- danger of accidental rise of
pressure. In fact,

:ier so constructed would not beyin to /</ until the steam
iiv lial ri-fii t over 500 pounds per square inch: alwavs

>iipp.ini: that the portion. n-ar the ends were able to sustain as

great a stress a- the middle

//.

] Circular Cylindrical Shear. A
l.o.ly, hounde.l hy

axial circular cylin.ltT- ..f iutinite length, has its inner

surfac.- (raliu> .1; ri-_ri.ll\ I t> an innii.veahle cyliiiiler

of thf sauir raliiiN: while i

1

:ial >urface iralius 11) is

i.-.l to a unitW; P rywhere ]u-r-

Ke.juired the nature of

D pp.. liu ,!.

In this -\ampl.% as in th la-t. the CMinlititniN
j.r.-N

( -jit COm-
b<ntt tli-

-iiij.li-tf uniformity in the

el rect: natural to a^umr that

tlie resultant .li-pla--m-nt -f each point i>> in the plain-, per-

p -n.lieula' whieh ! the p.. int. ami that the

a MOII: ifl .li-j.laci-iiM-nt -l.-p.-n-ls only on the distance of

t e
p.iint flMlil t!

'I'hiiN. with tin- DO( - H-. we ^hall assume that

= 0, and that M and V and r also /8) are in. 1. -pendent

'

e, = o

.

ai d, nn >ul-tituti..n .

In < we get

./A

.-+!

'J'h- boundary OOnditiOBfl are partly D|' the one
an lp 1<)7

|
: for when r A we

ar t have a-- /;, /' = (), U=F.
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The first two conditions give

CA+ = 0,DA+ = 0;A A

and on substitution from (85) of 244 in (46) of 239, the latter

conditions become

Tims C=C' =

AW = -D' =

and, finally, u = and

2n\A*

Each cylindrical surface in the body coaxial with the

bounding surfaces is therefore simply rotated about the axis

through an angle

where r is its radius, without any change in its form or dimen-
sions. The amount of rotation increases from within outwards,
and the strain amounts to a circular shearing motion (in planes

perpendicular to the axis) of cylindrical layers of the body,
without any changes of density.

Each line in the body parallel to the axis is shifted as a

whole, parallel to itself, while each radial line is distorted into a

hyperbolic form. For instance, the radius of the shell which

initially coincides with the axis of x assumes the curve

which is a hyperbola, having for its asymptotes the lines

Since the strain is supposed small, F will be very small com-

pared with n, and the hyperbolas will be nearly rectangular, as

well as of very small curvature in the portion intercepted by the

shell.

In Figure 34, the dotted lines represent the above hyperbola
and its asymptotes, the portion distinguished by an unbroken
line being the strained form of the radius of the shell initially

coinciding with Ox. This figure is drawn for an exaggerated
case, in which p = '00523 n.
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;

Lines of Stress. Since

and U=nr
.

JFF*

all linos in th- hody parallel t<> the axis an- Lines of MTO
and the two principal stn-sx-s in any plain- perpendicular to the

rhf ivinainiiiL: roots of the discriminating cul>ic (I'M

which here ivduo-s to

Thus

-0.

B F .

In tli.- sy>t-in <f < >ordinaiea which we are now employing
the

dii ctionsof the " axes of reference
"
of I

' ,it each point of the

lx> \
,

. B of the elementary li thus, if ds be

an iiemenl and A. u, i th- cM-ines of the angles
wli rh it makfs with T iinatf fl-jn-nt-, w- have

Ad> '/



322 GENERAL SOLUTIONS AND EXAMPLES. [293.

and the differential equations of the Line of Stress corresponding
to the principal stress N (see note on 241, at end of the volume)
are

Urd9 Udr v , n-. = , = N' dz= 0.
dr rdB

The differential equation of the Tie Lines, transmitting the trac-

tion U
t
is therefore

and that of the Strut Lines transmitting the pressure U is

dr= -rdO.

Thus the Ties are the equiangular spirals

and the Struts the similar spirals

each system cutting all radii at the constant angle 7r/4, while the

traction or pressure transmitted along each diminishes, as the

inverse square of the distance from the pole, from B2
F/A

2 at the

inner surface to P at the outer surface of the shell.

In Figure 35, the whole lines represent the Ties, and the

dotted lines the Struts
;

if these are studied in connection with
the direction of the Surface Tractions (indicated by the arrows),
the simultaneous dragging and squeezing effects of the latter will

readily be understood.

The traction exerted on the inner surface by the fixed cylin-
drical core is equal to the value of U when r =A

;
it is therefore

r-Jr.
This is otherwise obvious

; for, in order that equilibrium may
be possible, the external couples on the body must balance one

another, precisely as if it were rigid ( 146). Thus, considering a

unit length of the shell, we must have

P' . A . 2irA = P . B . 27rB,

or F.^ 2 =P.M

Example III.

294.]
normal

Eocample III.

Spherical Shell under internal and external

pressures whose intensities vary directly as the
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distance of the point of application from a given dia-
metral plane. A spherical shell sutlers a normal pressure

A over its inner surface radius A >, and a normal pressure
^ n\vr its outer surface (radius 7)): being the angle

which the radius vector of any point makes with the given
diameter O.?,and IT, II' l>ein_r constants. Required the conditions

.iiililrium. and the nature of the strain produced.

Adopting the notation of >' :M:>. it N evident that the condi-
aiv -yinin.-trical ahout Oz,QQ that the displacement of every

pt'int will take place in the plane which contains (): and the

point, and the strain will be altogether independent of w.

Fiff.35

'/he conditions of
.-(juilil.j

ium ip'.i are th- same as for a

fij, id body: that is to say, tli- : \\ tin- >h-ll due to the two

gy t*i n mu-t Lalaiie.- mie another. From

8}' ninetry tin- n-ultant foTOC due to tli-- pi D each BUrfaoe

of the >h-ll i> parall.-l t> ^:. and l.y r---. -Iving in that direction
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the force on each element of surface we find the condition of

equilibrium to be

= /ITcos .

"IT

n cos e . cos . 2^ 2sin BdB = I ITcos 6> . cos . 27r^2sin 6dO

or iLi 2 = irj52
(112)

Assuming that this necessary condition is satisfied, we have

by (68) and (69) of 243

(113)

while the general equations of equilibrium (71) become

The boundary conditions (72) reduce to

P= -Ilcostf, 27 = 0, when r

and on substitution from (68) these become

(m - n)A + 2n^ + H cos (9 =
(115)

when

m -
w)A + 2n + H' cos B -

3r ................... (H6)
when r = B

and

(117)
when r = ^l or

Finally, by 287, we must have

v = 0, when sin 6> = (118)
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Now equations (114) may be written

(m + n)rWn i~ -
2^(63

/- sin 0)
- 0^

(m + w)sin 0;^
+ 2,iJ^(e3

r bin 0)
=

and on elimination of G
3
we 1

or

: ( \-J

Comparing this equation with (65) of 243 we see that

O* (119)

It aKo a]>}H,n> t'p'in the boundary conditions (115) and (116)
it at either surface A must be equal to cos#, multiplied by a

ccastant factor. But cos# is a surface harmonic of order 1, and
tl us the solution of (119) must be the >um of two solid har-

u >nies iif nr-l.-r- -r 1 and -

Let us assume

* (120)

tl en, on substitution i ire have

/ "/A 'v

(' Jsin0co80|

ai I tin- .solution <
i i- obviously

26 -w
( ')
\ r*J

4 ain, substituting from (120) and (1^1) in ( 1

18),

lre>^('
\( \- 1 ^u

==
" /

>>(<'_&
r 3d \ - /

-

_ equation is s.r A in all .-asi-s in which t lii-re are no ap|>liVl

as may be deduced lii--.:ly ir.,i,, equation! K>i. al.uve. See Article
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and the form of these equations, in connection with the boundary
conditions (115), (116), (117) suggests that we should assume for

the form of u and v

u = u cos 0, v -- v sin 0,

where u and v are functions of r only. The general equations to

be satisfied by u and v then become

r2 ar r

d,, u

These are easily put into the form

2vr = CV3 + D - ---(ur
2
)

dr

(2vr) = 1 6V2
. I 2u

dr n \ r J

and on elimination of 2vr, we have

r n n r

the complete integral of which is

u =
^n ~ m

Cr* - m + n
^_ + c r -

Wn n r r3
'

where G' and D' are arbitrary constants. The first of equations
(122) then gives at once

_ 2m + nr 2
m + '2n D r , D'~ ( ~ ~'

Thus, finally, the radial and transverse displacements are

r~'2n-m ri m + n ^, nu= vn Cr 1 - - -- + C - cos
L 10n 7i r ^J

The four arbitrary constants are to be evaluated by means of

the four boundary conditions (115), (116), (117); it being obvious
that (118) is satisfied identically.
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Taking tir-t i 117 we have. when / = .!, ami when r = B,

-^ 3
;f = -

10n r3 r5

Therei

3A-.l :'C'- U)/<(.-l-/>-3/>')
=

!()(#-' -3ZX) =

Next iron, (115)

D

an-1 similarly I'n.m < I

D :50n^ + 5^rr =
0,

when- l.y
i 1 IL' i

J II /;-! r.

Tm |J11

All

,+nX^-.i

It will be otaervfl that (7 does not apprar in tin- honinlary
e uations, anl i- <->n--<|ii. nti . minat.-. The reason is that

t) displacement \vh<>^- CMMIJ

w = CTcoe^r -C'sin ^

ai ioi. to a bolily trai bhe ^h'll tln-(ULrh a

d itance (7 in th- jxiti\- ilin-. This t.-rin con

q ently ontriln:- ain, an-1 \\v may
Sul^titutin- fr..m i I :. b*V6 finally

J
"

'

-'

_ .1 ..I'A'II "1 .

"

J
_

J) 6n(/t + n)r

"

.

To in\''>ti^at.- tin: l.-l'..rmati<.n >nfr-n-(l hy the body: \v-

ha /e

t4 = UOOH

wl -i Qctioae tdtt order n/ft, so that u* and vs
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are negligible in comparison with xz
,
etc. If (x

f

, y', z') be the

strained position of the point initially at (x t y, z]

*Jx"* + y"~
= *Ja? + y'

2 + u sin + v cos

=
>Jx

z + y
2 + (u + v) sin cos

z' = z + u cos 9 v sin

= z + u cos2 v sin
2

= z + n - (u + v) sin
2
0.

Now to a first approximation (see 68) we may regard the

coefficients of u and v as functions of the initial or final coordinates,

indifferently. Thus we may write

^'v/.^ + 2/
2

r-

and any spherical surface

in the unstrained body, concentric with the bounding surfaces, is

strained into the surface

or (approximately) into the sphere

Every such sphere is therefore shifted, without change ofform,

through a distance u in the positive direction of 00. This dis-

tance depends upon the radius of the sphere, being given by

>2 J_ (13-^3)^2
-1

A* 3nr 9m +

It is easily shewn that u will or will not vanish for some value

of r between A and B, according as the equation,

has or has not a real root between AjE and B/A. If there be an
odd number of such roots, the bounding surfaces will be displaced
in the same direction

;
if an even number in opposite directions.

Although, however, these spherical surfaces retain their form

unaltered, yet their surfaces suffer areal dilatation or contraction

(page 61), which varies from point to point so that the cones
= constant in the unstrained body become surfaces of revolution

of the sixth degree.
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b rms

]
The Cubical Dilatation. The general equations are

oy

+ n^'-to
=

dz

(104)

Ditierentiatin- theseasto.' >H-ti\ely and adding, we obtain

V-A 0;, (126)

an -.jujiti'ii which is >atNtied in all cases of equilibrium under
Surface Tractions only. Thu> A i^ in this ca>e always capable of

,_,' expanded in a >.-ri ^ of Solid Spherical Harmnnii^.

:.] Application to Spherical Shell. L.-t us suppose
: A t> IM- Lriv.-ii at every |..int of tin- concentric

surfaces of a >jh-rical >ln-ll. ^i which tin- intrrnal and external

n dii an- -1 and />'. Th->- \ -aliifs nm>t then be capablt- uf .-xjiunsion
ir seri >nics, so -hall lia\c, in general-.

, A=V H
|

when r 11, A S(H, ).
|

I 3re H< and H,' denote any sin-fan- hammine- <f ..nli-r l\ and,

A being alwa\ -mall, th.-.- t\\> series an n.-c.-arily
c Qvergent

At any ]><int within tin- sulistance of tin- sln-11, at a distance

r Tom th- centre, th- \alu- .f A will be given by

.IH m
L

F r ti I "b\i,n>ly ^ati-ti-> ( \'1(\, throoghout the shell, and

al o s; 1-7 ..' '-. It is also oonveiffent for

al values Ffeen .1 and It, i'>r it may l)e written in tliu form

VH</ , H

ja!
i

Fil I IM- lll.-tli-,,l lirri-
;il<>|.t<-.|

736-737,
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and since A < r < B, the terms of these series corresponding to

very great values of i are ultimately of the same order as

Thus, the series (127) being convergent, the series in question
are more rapidly convergent than the geometric series

GHF'i)4:1 +

respectively.

By a well-known extension of Green's Theorem [Thomson and

Tait, Natural Philosophy, Appendix A. (e)] the solution of (126)

throughout any given space, which satisfies given arbitrary con-

ditions all over the bounding surface or surfaces, is absolutely

unique ;
and consequently the value (128) for A is perfectly deter-

minate.

297.] The Component Displacements. Supposing, for

the present, that the value of A is known for every point of the

body, we obtain by substituting from (128) in (104)

_m 3 ^(^Hj
n tx ^ -

with symmetrical formulae for v and w.

Now, if we write

Ui and U_i_i are solid harmonics of orders i and (i + 1) respec-

tively ;
and the functions

involved in the above expression for y2
u, are solid harmonics of

the orders (i 1) and (i+2).
But, if U. be any solid harmonic of order s, we deduce from

formula (65) of 243 that
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Thus

V-(''-'U.)
= [^ - i 5)

consequently

CJ-J

u_,_,)- -a .

The solution of (129), anl t: -ponding equations for u

and it*, are consequently

3
^(JB**

1Hi- ^' fl
H/)r* + (yl/)')

. .1 H, - /PH/)*-'-
1

a^t (2*+i)(

x H H : H /;H.
-^

-A***)

^ \
H H '

(AS) .1 H
I'n ? -.

-- ' _
^**>;

wh.-r,- th.- coinpl. -military function, u, \ . w. an- solution- ,,f tin-

v -. 0,

v liirli iini-t be so adju-t.-.i that khe ezpreasknifl i:nif,,r ". >\ w
i) a\ ion

1+ .

-

niogeneoii- fum tionof (x,y,z)of degr

( ) l(^-'V* + !(4" )By\ 3^/ Ss\ S/ \ d 3y /

1 / Eul. i .l.-al \\-ith

t fo homog* -legrees i and << } 1 Loth of

N hie! ^0, we t-a-ily deOOOe from ( !:>() that

du B ^*o da dv dw^ +^

o t .in

x 'Hi-^'H; i H. - ^H/)r-
f-

+ ixj**-
1-^ 1^ 1

)

thi- anl th- valu.- .f A from (128) in (l:il

'fu dr
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and consequently, if we expand u, v, w in series of solid harmonics

we must have

n(2t+l)

oy a

^=. + -^
* +w(i + 1) + (2t +

Substituting in (130), we finally obtain, for the general har-

monic solution of (104)

l --~
mr 'dz ~dx 3?/ 'dz

I C" O\\- UVi UW- OU i OV i ^)w C"
1 *

_j_ _|_
* I I I l S.

_|_

I I

^ 1 , mr2 9 I 'dx. 3// 'dz ^dx *dy ~dz

^ ^ , mr2 3 I c). *dy 13z 'dx 3y 'dz

where u, w'.^j may be any solid spherical harmonics of their

respective orders which satisfy the conditions of 287, viz.:

ux + vy~ = 0, when x = y =

vy -f wz*
2
= 0, when 2/

= ^ = 0;

wz + ux

(132

This complete solution is of course only adapted to a solid of

finite extent which does not include the origin such as the

spherical shell with which we started.

For a solid sphere with its centre at the origin we must retain

only the harmonics of positive orders, and for an infinitely ex-

tended body with such a sphere hollowed out in its substance

only the harmonics of negative orders.
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Finally, we may a. Id to the -olution (132) for comple-
mentary terms of the form

9</> 3< 3</>
'

!y, where
</>

is any solution whatever of the equation

that - the condition- of J i>7 : for ol.viously any such

function will .li-app.-ar on substitution in equations 104).

The most general an 1 complete forms of the solution, for a

sph.-rical >hell with either th.- >urfa or the surface

D over l.oth its surfaces, will 1 f..unl in Thomson
an.l Tail // PktilM '-7. \V- shall confine

3 h.-re t> the simpler case of the >(liil -ph.

-
J Complete Solution for a Solid Sphere with

surface displacements given. L.-t A be the ra.liu- of the

sphere, and let tin- oin| in -nt ili-placi-niej.-
h ]uint of it-

ace be giv.-n 1-y

u = l'(H B
Jr- m th.- - '

be p'-iti\- harmonic

term. plementary functions, we havi-

ti =

'-- "

t

]f
m .

2(>(t-l) + n(2i-l)]l

U-l % I

da: Oy Cz

-0.
'I .US W( H.

an.l \ e >hall th. :
= A)

.-'l...

n
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Thus all the conditions of the problem are satisfied by making

and consequently

and on substituting these values in the general formulae we finally

obtain the complete solution

.-,]().

(rV

/

A)
'

2[m(
-

1) + n(2i
-

i - 1) + w(2i
-

(135)

299.] Complete solution for a Solid Sphere with surface
tractions given. The components F, G, H, parallel to the

coordinate axes, of the stress across any concentric spherical
surface of radius r are by (107)

Thus

r r r

+yox

/ \ A / 'du 'du 'bu\ I
*

= (m- n)x& +
n(

x + y + z
)
+
n(

x
\ ^x 3y ^)zj \

= (m - n)a'& + n\ [x + y- + z - 1 \u + (xu + yv + zw)
L\ dx ay *dz / ~dx J

where
f zw.



\\ n EXAM]

Thu-. if /', <i\ H K> i-xpiin.l.'.l
in solid harmonk-s, we shall

i I
"

.!/ ,-1-r

^(m-

(136)

...(137)

xu
t
+ yr, t

.lilting tin- .-..nipl.-m.-ntarv t'uncti.-n
./,

t'r-in the general

;:5),

A +
3w'-JfPfr 3M+ ( \

3^^'-^1^ "S*^i *-BT
" "

L 4 "^ )
( rM K /J

= [l-2(i-l)J/^4 .,,

f, an-!
\//. ,

are given by (134).

w*~**yr
.(139)

e th-t tin-.-.- t. -nii^ may be reduced to harmonics as f

L< i 0! be any solid haniiMiiir !' or 1 S, tlu-

su fao- liann-'iiic. 'I'ln-n

ti--

an I tin- twin ><>li.l hai

^-,-r

a

..- ;~

>' '-^
.
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and consequently

Applying this result to (139), and bearing in mind (134),

where

</>.+1
=^ { _9 fJ!L\ + 1/J^ + ? ( (141)

\ -dx\r^) 'dy\r>^) 3z\j
* '

Differentiating, and again making use of (140),

i - 1

Substituting from (138) and (142) in 136, and once more

availing ourselves of (140) we obtain

(m-n)[l-2(t'-l)lfjr
2t-i L

n[l-({-l)(2J4-l)^]r
2i - 1

and finally

-(143;

where

y._
^

m(t + 2)-n(2i-l)
(R4)

Now let the radius of the sphere be A, and let the components
of the surface traction be given at every point of the surface by

...(145)
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The expressions in (143) consist of solid harmonies depending on
surface harmonics of the and / - '2 respectively. Thus,

picking out the terms which involve Miri'aee harmonics of order i

only, we must have

-.*-** --
wlirii / = A.

Thus

,; _
| M ,

_ L.; |/ V+JV^' '\ - ] ?^*1 = l5?i
cieyr' / 1 oU; n4'~'

>;i/ i

x
'H -'

( |

/ ,\ _ 1 <*+M
\ ) L'l+1 3

H

I)ii e as to respectively, and adding

^ Uo suh-titntinir t'-r n

bf (14

^-(r'H

H
J

(117)

i I M tli.-ir \ alur

m +-r /HA /HV /H.n
fiy<- L l ' ( ) ( /J

T ma we obtain ^ fmm (147), and thm v i'r..m (148), and
1; ,tly u, \ : and \\ nly to Bubfititate tin-

v lues so ;.in

' -I
I

I

]'
.

or
(149)
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the final form of the solution is

i

X^A \ }

r*-y j

"

with symmetrical expressions for i> and iv.

300.] Conditions of Equilibrium. The components (145)
of the surface traction must of course satisfy the conditions for

equilibrium of the body as a whole [ 146, equations (6) and (7)].

Thus we must have

idS = 0; ............ (151)

and

=
0, //(z'E.i

- xHS)dS=0,

yU i)dS = ................................ (152)

identically, for all values of i.

Equations (151) are satisfied identically by all surface har-

monics of orders other than zero
;
so that we have only to make

Also, since x/A, y/A, z/A are surface harmonics of the first

order, equations (152) are satisfied identically by all surface har-

monics of orders other than 1. Thus the only further conditions

required for equilibrium are

But AH^ AH^, AH" are linear functions of x, y, z\ so that, if

we assume

AH/ = L"x + M"y + N"

and remember that, since yz, zx, xy are harmonics,

ffyzdS=ffxdS =ffxydS = 0,
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SJ,
L
'Jj

ami. BD

ff -#.jj jj jj

1 it' nnly

7/ = 3/;

that i< if

rr 1 U., ^ - 1 U , TT 1 U ,H
"
=

r /' Hl "r v"'
H

wl: vnliil harm-
I

General So/

..
1.] Application of Sir William Thomson's Method

* > express the component displacements in the form of
potentials. in all cases of

t e present proMi-in. tin- cul.ical dilatation sati^li- - tin- r|u:

;M (186)

/ ;nin, by successive i\i'

f\a ./i

^il6S*8*8)
bi t it follows at on 53 that

3
+

"fax 3?/ w

V^i-V?^-V^8-0
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If now we resolve the strain, after the method of 265, 266,

275, 277, into its dilatational and rotational elements, writing

u = o~~ + ~^~^ o~
2

ox oy dz

v = - + -=-3

-^-
3
I (154)

oy oz ox

and assuming that
i/rlf \/s2 , \{SB satisfy the condition

we have, on differentiation,

(156)

Hence it follows from (126) and (126 a) that

Equations (156) are satisfied by the assumptions

> (158)

where the notation is similar to that of 266
;
and since by

equation (216) of 311, below

it follows from (153) that (155) is also satisfied.

Thus if A, 0j, 2 , 3
are any solutions of (126) and (126 a)

which satisfy (105) and (153), equations (154) and (158) will

represent a general solution of the problem of equilibrium under
.surface tractions only.
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2
]

Sir G. B. Airy's solution for the components of
Strain and Stress. It will be seen at once on substitution
that the general eijuat

(103)

a*

are satisfied identically by the assumptions

....(',

'tis \v Xv X* may ^ continuous or li.sn.iitiiiu>us

Bfl niu-t \- tin-

mdii :;jof2'J' 11 as (12
This Hi [fl particularly u- t'ul in cases of stress

i one plai, I", as everything is tin -n made to de]> n-1

pon a single arbitrary I, t k i 1 1

-
t he

plane
of xy so as to

! with th.- plane oi' th.- sferen, th- lohitido i- in this case

R=S=T~

-B ....(ICO)

t^.-
3tr

flhiMrati..ns will be found i' below, Th'- nirth<i.l

originally lu. to Sir O. B. Airy,* who arrived at it in a much
is direct way, by an application of the Calculus of Variati

*
/feport oft/if Britith AMU* . 1862 : p. 82.
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THE PROBLEM OF EQUILIBRIUM UNDER A CONSERVATIVE
SYSTEM OF APPLIED FORCES, WITH OR WITHOUT SURFACE
TRACTIONS.

303.] General Equations. For reasons stated in 279,
we shall confine ourselves to the consideration of bodies influ-

enced by such systems of Applied Forces as are derivable by
differentiation from a Potential.

Let ^ denote the Force Potential, as in 279, so that the

component forces per unit mass on any element of the body are

given as before by equations (93) and (94).

The equations (6), (7), (8) of equilibrium then take the forms

(161)

(162)

(163)

and from the latter set we easily deduce

V2
[(m + w)A + p] =

(164)

Similarly, the general equations (48) of 239 become

-...(165)
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The boundary conditions will IK- given, a.s before, by (10G) or

H>7) : and the i->nsiderat: . '2^7 apply equally to this

problem.
The >imple>t method of }>r> i.) solve tliis problem is,

ueral, to obtain the particular integrals of the above equa-
'l.-j'.-ii'iiiii: upfii tlir form ui' M'. ami then to add comple-

mentary funci ini: the conditions of the last problem,
and s. chn>.-n that the com] -h-te >ulutin> may satisfy the

boundary conditions (106) or (107).

be expressed in a eerie* of Soli </
s

\

}
Solution of the General Equations. J.et the

ial be expanded in the series uf x.li.l

,..(166)

then v2^ = 0, and we at once deduce from (1(14) that
y'

JA = 0.

Tliu> A mu.st also be capable of expansion in a series of solid

1 an this series be represen

,.(167)

'

hese series may be supposed in general to indud* all \alu. of
- positive and n

Sub>titutiiu ;n ML' tl>\- become

- -

",r/
= - '

r*,* 1
it u - .._

v

;

we did I 7, we

t>: m w -



344 GENERAL SOLUTIONS AND EXAMPLES.

where u, v, w are solutions of

[31.4.

In order that (131) may be satisfied we must have

3u 3v c)vv l v i /A \[r \ v/ \ \

'dx ^dy 'dz n 2i + 1

and on picking out all the terms corresponding to the harmonics

of order i in the solution (169)

>+ n(2t-l)

Substituting in (169) and adopting the abridged notation of

(134) 298, we have finally

(170)

10 -

The complementary functions in (170) are of course the

complete solutions (133)* of the problem of 297. The par-
ticular integrals given by this method of solution are

,(171)

m '

'dx

oy

We may however adopt another mode of solution,-)- and obtain

particular integrals of a different form, as follow :

Assuming that

*The arbitrary complements of (133) appear as the complementary
solutions of the equations obtained below for

</>, by the second method.

t.See Thomson and Tait's Natural Philosophy, Articles 733, 834.



.
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and suKstitutinij in the ;_:eiieral equation- h'.s), we obtain

>-[(< Vi

and tin- particular integral of tli--r -.|uatk>n- i-

* ^

ing for tl [.articular i:/ of (1G8)

-'^*-^!
\ +\)\

--lear that nlar
integrals, M71)

; nd (172), are partial; an<l in tin- particular
i itegrals to b- -i-m

pi -*u

>-*

. etc.

we obtain the single reluti p

1 tw ',
so tha i these constant > i> altogether

ji 1'itrary BO long as we are concerned only with the general
r uat '.

The fbimer solution (171) aBfcfofl i-y making

,, ,ai.d the solution (172) a 171) l>y makin-

C^O, ( ,-H).
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305.] Complete Solution for a Solid Sphere with
surface displacements given. The complete harmonic solu-

tion in its most general form is

-...(175)

where the constants 0, G" (one of which is arbitrary) are con-

nected by the relation (174), and M, \Js are given by (134) :

u, v, w, <f> being any solid harmonics which allow u, v, iv to satisfy
the conditions of 287 (see 297, page 332). This form of the

solution corresponds to (133) of 298. In applying it to the

case of a solid sphere we must of course assume that the series

(175) include only positive values of i.

Let A be the radius of the sphere, and let the components of

the surface displacements be given by

Then we must have, when r = A,

flf^)
- Cr**^) = H, etc.

;

ox

or, differentiating the term involving (7', and making use of (140)

above,

i-i - (2*- l)fi + (2* +
'

OB OiC ZZ - 1 OX

The solution is obviously (compare that of 298) determined by

(176)

In order to simplify the reduction of this result we will first

of all eliminate (7 from (176) by means of (174). We have

M
t 2(2i

m m



30.-,.]
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.UTlOlffl AND EXAMPLES, 34-7

(2*-l)C<
+ (2t+ 1 :.'(2t

- 1 m
"

2i - 1

;h>titutiii'_r in tin- tir>t of fanatic!

v.C/jv,

But i

2-l

aningas in 1 <niriitly

^jftWXXi-iM' + P
1
*

aii'l ic re independent uf C'/.

>t it ut ing these values of 0aml am
last terms of tho^,

Ipression-- y.i ( '. H; + <x - o.i/^- r HI-... .(IT?)

tin- arl.it rary constant C" disappears t'n.ni tin- complete
* ut: irordtf, it i> iii'liti'.Triit

v icther we t grals of our
giii.-ral

e Jati : 7 o.i, il, inati>n

oi these which satisfies the con Tiii> i- an < xo Hi nt

il istration i' the statenu-nt ma<! that tin-

s' ution is absolut . minatr \vln-n the surface displaoementa
ai gi

300.] Complete Solution for a Solid Sphere with
8L rface tractions given. Let A Ltaaol th. >],h. n ,

Ell I 1- fflU !' th- >nrt'ao- trartimi j.arallfl t. the

co >rdinate axes '

_:i\.n by

/' : H '. 2(H . //

i

'

-, ,

Let dda tin- >tn-.ss ilur to the particular int.-

(!',:{). \V.- kn..v, . that any t\\. .liMril.utions of

di.-pla'
' general equations of (jiiilil.riuni

thioughout the body, and ata i-onditions all over its
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surface, can only differ by terms amounting to a displacement of

the body as a whole. Thus, if the arbitrary element of (173)

appears at all in the solution of the present problem, it must be in

such a way as to contribute nothing to the strain, and it will

therefore be unessential.

Eliminating it then, and taking the simpler form (171), we
have for the particular integrals

'dx

v.= _
.(178)

Let F', G f

,
H' denote the components of the stress, due to

these displacements, across a concentric spherical surface of

radius r. Then, by (136) and (137) of 299

\ /^U: 'tiV; ?)W\
(m

-
n)x(

' + ~~4 +_' 1

etc., etc.

Substituting from (178), and making use of (140) when necessary,
we deduce

Thus, on picking out the terms which involve surface har-

monics of order i, we find that the system of displacements

m \
*

Vx

etc., etc.

gives rise to the surface tractions

^+*rm + (2i + 3)n~\.

(179)

- (180)

2i-i

etc., etc.

Again, the solution corresponding to the complementary
functions



BRAl SOLUTIONS AND KXAMIM.IS. 349

of (170) has been worked out in .^ 2W. It appears that, if

S,, S,', S," be surface harmonics of urd-r /. and if

"dx *dy *dz

3/S\ /S \. /S"^- <
181

>

-l4
-y ^V 7

""^ 1

/ ^

-y-tm of displacements

1?
1

I .o 1 3*

1)^-M 2i(2t+l) dr

A*-r*) \ [(*H-2)m>(2f-l)n]^'

l)m-(2i-l)n] dv (2t + l)[(2i
:i

+l)m-(2t-l)n] 3x^

etc., etc.,

wliich represents a particular form of the .solution (1.")()), jjfi

to th- li-tril>ution of surface tract in

* S
( ").

Thus the system of di^plao-m.-nt^ compounded of (179) and

(ls:>) will satisfy the general equations (as particular integrals
ai <1 complementary functions, respectively), and will Ljive to the

Cf mponents of the surface traction the form

., -

('" );

et-

s< that to complete our -luti..n we lia\ only to

8.-a+yy-r ] |L J r1
3ai

1 \A I/' 7H / '

. i<-l_<l /
' \ ft ^->\

2-l M/
Wi h Nymm.-triral . -\pr.-M..n> i'..r S, and S. ,

Sub.titutin-. D 181)

X

'l"li

V ,,,

wl, -iv <i> and X are given by < 149).
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Compounding (179) and (182), and substituting from (183)
and (184), we have finally for the complete solution*

TT .
1 3*14-1

1)

S 2

2(2i

^ 1 f (i + 1 )ra
- w j 2

t(2t+l)m
2

(185

METHOD.

307.] Airy's Solution for the components of Strain
and Stress. It has been shown in 302 that the general

equations (103) admit of a very simple and general solution (159)
for the stress components. On comparing (161) with (103) it is

at once evident that the same form of solution is applicable, the

only changes required being the substitution of P + pfy, Q + p^P",

E+ p^forP, Q, R.

Thus, corresponding to the solution (159) we have the more

general form

.(186)

oxoy

The principal application of this method is, as already stated in

302, to cases of Plane Stress. For example, take the case of

a body in the form of a rectangular parallelepiped of any pro-

portions, placed with its three pairs of opposite faces parallel

* For the conditions of equilibrium in this problem, see Example 20, at

the end of this Chapter.
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respectively to tin- three coordinate planes. Let this body be
MI surfa* ns ovei tin- pair of faces perpendicular to

and let it 1 ip<>n by impressed forces and by surface

TGI tlir remaining two pair^ ct' fa ywhere per-

pendr'cular : id in magnitude independent of 9. Then the
--

-components /'. S, T will be independent of :, and zero

of the body: and consequently they must be
zero tl ,r<>ii'_fhout. The force-potential M' will also be independent
of z, and so tli.-r-for.- will tin- rfinaininir Btreefi

tlie every poini of the bodj is wholly in the

pendicular to 0: ( 17-'-l s 4>. and the solution

to the >imple form

P

wh -re x

r

I'.t.a f u net! nd y, to be so chosen as to

an< / boundinur >urfaces.

I'wn of the examples considered b 1',. Airy in his

ori: inal
paper*

will tigated in the following article^:

the n-' will be found anion-j-r the Examples at the .-nd of

thi Chap

108.] Case of a heavy rectangular beam, with one
en< clamped to a vertical wall and the other end free

;

the faces of the beam being horizontal and vertical.
Let L be the 1,. ; 'lori/nntah, // it-, breadth

(ho izontal), and /> it> depi Take the origin at the

cen re of t iion of the length (a

the b- downwards. Then 1' g
me

/

-

">L>.

= -r$-8W

1862
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If we make

<A
= X-JgP2/

3
(' ^

these equations take the more manageable form

o=^L

u= -

u

Fig.36.

Since the end .T= is the only portion of the surface in

contact with solid matter, the surface tractions must vanish over

all the other faces. Thus

and

P =
0, U= 0, when x = L ;

=
0, 7=0, when7/= \D.

Also, since the whole weight of the beam is supported by the

integral tangential stress over the fixed end,

/*\to

B I Udy = gpBDL, when x = 0.

Substituting for P, Q and U their values in terms of
\/s,

the

surface conditions become

for all values of y
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-

ill value-

........ (198)

From l!n it appears tliat both
\.V

and (tyftx vanish when
3- = L, and from (1!>1) tliat is independent of ./ and

with //, while o.V /"// vanishes when //
= A /'.

il.-nc.' ire int'rr that \'s only iiiv>l\vs X in tlic form of the

that it contains only.. .1.1 pOW6T8 of //, and tliat

a factor of d\?s <
: :n tin-si- data \vr

without diiliculty that ^ is necessarily of the form

r
L 4.1

-^' i
4.5 J

1..- d.'trrniinrd hy the

ivmainini: r)iilition>. Tl. ud th tir-t cndition
I

|,
and it will ! found -n -ul-t itntimi that h.th ^iv

to tin- -am.- .-.|iiati"n : namely

l ,

Sine.- only on.- ..f tin- arl-itr d.'t.'nuinatf. we
ill adopt the

siiiij.li--
.->is anl

\V- diall then ha

i i

|

<

i i
\

rion in

.(193)

ai d it will :

-Ki> /''

,!"( , )

'

ill he found on trial that th-->.-val fvall the

in p<
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Figure 37 is reproduced from Airy's sketch of the Lines oi'

Stress. Their equations are not integrable in finite terms, but
this approximation was arrived at by determining the directions

[by means of 129 (64)] of the lines of stress passing through
each of a great number of points, and joining up the elementary

Fig.37.

arcs so obtained. The obliquity of many of the intersections

proves that the Lines of Stress are not very accurately represented,
but a good idea is doubtless given of their general tendency.

The same remarks apply to Figures 39, 40 and 41, which
illustrate examples 29, 30 and 31 at the end of the Chapter.

In all cases the whole curves represent the Ties and the

dotted curves the Struts.

309.] A rectangular beam (placed as in the last ex-

ample) is supported at both ends, but not clamped so
that no couple acts upon it at either end : while a given
load is uniformly distributed over a certain portion of
its length. Take the axes of reference as in the last example ;

Fig.38.

let the total load be W, and let it be distributed uniformly over

the upper face of the beam from x = A to x = C.

It is obvious that the normal component Q of surface traction

over the upper face of the beam will be a discontinuous function

of x, and that the discontinuities of value will occur at the lines

=0too;=^; Q=-W/B(0-A)
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.1 to j- = C; Q = from s= C to j: = L]. The principles
t'oiv lead us to asMiim' that

\fr
will be a discontinuous

function of x, the discontinuity-- of form and value occurring at

the planes j- = A and ./ = C, subject to the conditions of stress

continuity f63 -

L'-t u- tlu-n a--umr that

\l =
i/,,

from x = to x = A
;

^ = \jtv from x = A to x = C
;

if*
= ^3, from x = C to x = /,.

1 1' /'
. V: ^" r

2 ; -^3. % ^s be tin- stress component- in

which w- thu- divide th- l.ram.a- .K'diR\-d

from .-tiv.-ly by i i' equation- 1M), the
condition ntinuity iv.jimv that

P
9 -Pl ^U^-f

r

l
= O

t when a:- .1 ;
/

/>
s- 2̂

-.r
s
= 0, when x=C. /

ndition- that there may be no couples on tin- -nd- of tlu^

beam

> th-iv i> no tangeir
-rtion of tin-

ice except it- enos,

^,.^',= ^ = 0, wWn
i- i, J -tr.--> on th- -id-s of tlif b.'.-un within

;uid third n-iri"!

dmilarlv for tlir 1>\' faC6 <>f tin- loa.1,-,1

!
(/ '-

''he integral normal pn H i tin- ]oa.l.-l

: course c<jual to tin- w.-i-jht of thr load, and -inc.- thi-

is in iforml di-trii'iit-d

Fin 'v. th.- int--i:i-al taii^-ntial d upwanU, .v-r

th.- ; -
-iij.j.ort between tli-m th.- total w.-i^ht of tin- h-;mi

and f tin- load : M) that

r
,/ l/

\.
l^()}

-
B/0 </</; i. o-/./'/>A + W.
*s
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Substituting for the stress components their values in terms

of fa, fa, fa, these various conditions become

(195)

(196)

']

(197)

|^[.T

= L, y = ID] +
^[a

= Z, y = - |D]
|
-

f,[*
= Z, y =

fZ>]

_32
^2 _^3 = 0, wheny=|l> (199)

3.ro/y

(200)

(201)

(202)
'*)

x ^)x

? -(203)

From (199) it appears that 9^-1/3?/, d\[s2/dy, and d^/dy must
all contain the factor (JZ)

2
7/

2
), and from (200) that fa and ^3

cannot involve even powers of y. From (200), (201) and (202)
we deduce that d2fa/dx

2
,
d2fa/dx

2
, b^fa/dx

2 must all be independent
of*.

We shall satisfy (qualitatively) all these conditions, and at the

same time (197) and (198), if we assume

where a, /3, y, 5, X, JUL
are constants, to be determined from the

remaining conditions.
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If we write for hivvity

357

J) ............................ (204)

we must, in order t 1) and (202) quantitatively, make

j*=l-12A l>-^ \'1\ 1> LV

H'-ncv we tin- 1

A= -Ol> 18,

anl

- ^ ^ ) ]
........ (205)

Suh>tit.uti<>n in (203) gi\e> UN

8-a = /

while (195) and (19G)W
.

)((

The latter group i> snlvi-d \\itlmut ditficulty, and gives

tt= -L-0(C-A)(2L-C-A

S-tffC
1 -^

aid it will he i'niind nn trial that the>e values .satM'y
i i-ntirally.*

All th-

-.

ar.- l-t-niiin-d. and tin- (iin|ilrt-

^^m H a
j

( '

, e_ A*(x-L)-(L-cyi
+ L

)

w icre i> d.-tin.-d hy rjoh.
Thr >tudent -Imuld ca 1 eu la I the valu-s .,!' the Btreea Com

p< aent.s in tin- ti ions, hy inean> <!' e.juati"ii- 1 Ml), and
C<

'

-ine.- him-.-lt' that all tin- 1" unwary OOnditiODfl WT6 satisfied-

es ciallv lition of eontinuity of P and [7 throughout the

|H
passes on tlu-presses t\\v f;i-t that tin-



358 GENERAL SOLUTIONS AND EXAMPLES. [307 bis.

307 bis.] Important Addition and Correction. The solutions of

the problems suggested in. the last two Articles were given as has already been
stated on the authority of a paper by the late Astronomer Royal, published
in a Keport of the British Association. I now observe, however when the

printing of the Articles and engraving of the Figures is already completed
that they cannot be accepted as true solutions, inasmuch as they do not

satisfy the general equation (164) of 303. It is perhaps as well that they
should be preserved as a warning to the student against the insidious and

comparatively rare error of choosing a solution which satisfies completely all

the boundary conditions, without satisfying the fundamental conditions of

strain, and which is therefore of course not a solution at all. The indeter-

minateness of the C constants in Article 308 should have served as a timely
warning, by its inconsistency with the general Theorem of Article 255. As for

the diagrams of the Lines of Stress, they are only given as approximations,
and a little consideration will convince the student- especially when he has
mastered Chapter VII. that they do represent the general character of the
distribution of Tension and Thrust.

The remainder of this Article is to be considered as a continuation of

307.

The functions Xi> X? Xs> ^n terms of which we have expressed
the six components of strain, are not wholly arbitrary, nor in

general wholly independent. The six strain components being
obtained by differentiation from three independent displacements,
certain relations must exist between their derivatives in order to

ensure the possibility of re-integration. From equations (1) of

253, combined with (153) of 301, we easily deduce

_
~o
--- o~

ox, oy
75
--

~j

oy ay
_ .

s
-- ^r o~~ )

oz oy oz

with similar formulae for the derivatives of 9.2 and 3
: these may

be verified by substitution, and are identities. On eliminating
6V 0.2, 3 by cross differentiation, in all possible ways, between
these nine differential equations of the first order, we obtain the
followin six of the second order

i _
d;y

2 'dz2

cic2

2

^

'dxdy

da db *dc
+ ;

J
\
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ivlati.n> iiiii^t K- >ati>ti-.l Identically l.y every system
of values that can legitimately

! assumed for the >ix component
>trains. ainl -v-ry -y-tfin of functions v.-Jtir/< miftxrii-s tln'*e uml

fquM
'

'!) will , -ly ih'.l-i aii'l all other equations
lible frnin llll) l.y ditten-ntiatinii.

SuLstitiitiiii:- t'r.uii '

1
s "'^ in 1 1'. . \\ .- ha\ < t'.T tin- -i\ t'lnidaincntal

ivlati"ii- I'.-tw.-.-ii Airy'- funrt :

!.-,!,-, -
. i.-il,,r V

-'

Vj j
=

+ >-<

(^

Xlh

1
=

|

* '
( ^ -(1 - >B '

In all case.- pwiiy, -uch a- tin.

S W.^
:nipli.-.-i

. noe the Moood derivativM
ol IIP- all xi-rn nii'l Xa or X 's indcpcii'li'iit

.if :, i-i|ii:itidiis (C)
rv luce to

,
v\

)
.

_

" 1"*'-'

wl jre ri, /^, y are arbitrary C<M ntly

X - J[a(, -J^y + y") 4 3y(^ +r )]
4- fe . . .

wli i military function ^ is any solution of

4r > ~



360 GENERAL SOLUTIONS AND EXAMPLES. [310.

BoU88iNS8(f8 POTENTIAL SOLUTION*

310.] Boussinesq's Theorem on the Differentiation of
Potential Functions. The ordinary "gravitation potential"
of any distribution M of matter, at a given point P (x, y, z) is

rdM

where r is the distance from P of the element dM of the

Potentiating Matter.* The same nomenclature may be con-

veniently extended to the purely analytical function

rrrMx'. <//, ,o , , ,

///
~

v

'-dx ay dz
,

JJJ '

where r = JJ$T^~+(? - yf + (at
- zf

and the integration is extended throughout any (continuous or

discontinuous) regions of space ;
the function

\fs being finite for

all values of x'
t y', z' within these regions. For this integral can

always be converted into a true potential, simply by multiplying
it by a constant factor of appropriate physical dimensions, and
the regions of space throughout which it is integrated then

correspond to those occupied by the potentiating masses.

We shall include the above function, and three others inti-

mately connected with it, under the general title of Potential

Functions, with the notation

~*Kx'i 2/> z')dxdy'Jz'

D=fjfrt(x',y',z}dx'dy'dz'

Lj =
ijj log (z z' +

r")\f/(x', y', z'^dx'Jy'dz

L2
=
fff[(z

-
-')

Iog(^
- K' + r)-r]\^(x, y', z')dx'dy'dz

...(209)

distinguishing them (with Boussinesq) as the Inverse, Direct, and
First and Second Logarithmic Potential Functions. For analyti-
cal purposes we shall assume that the function

\js is, for all values
of x', y't z, either finite or zero

;
and that, in approaching the

surface which divides any region within which
i/'

is finite from

any region within which it is zero, the value of
*//-

decreases

continuously (however rapidly) till it vanishes at the actual

surface. We thus make
i/r

continuous in value throughout

* Beltrami's masse potenzianti, Boussinesq''s masses potentiantes. It would
save many tediou.s periphrases if this most convenient term were universally
adopted.
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ithoiit in any way limiting its discontinuity ofform. and

eoiiN,-,|Uently the tir>t partial derivatives of
>// may be strictly

rued a> finite throughout >p;t

\V.- shnll regard all
5]

divided into /> \vliere \.V

'' by poti-ntitttiinj in'iffi r win-re
\fs

differs from /ero. It is ol.vious that all the integral- (209] nniv

irded a- extending throughout all -pace, or

throughout those regions only whicli are occupied ly matter.

The evaluation of thr-.- integrals and their derivative- pre-
-nt- no difficulty when 1' is Mtuat-d in free ->pace [i.e.. when

: =()]; l.ut when /' is within the potentiating matt.-r

r .'' .',

: ; t vanish, and in this ca>e the function?, to le

integrated may include infinite ter

prul.l.-m to be solved, before the Potential Functions can

be made available fr analytical purposes, is ther.-fre to obtain

f<>rmul;e of diti'-r'-ntiatioii as to y. the function

*=///+(*>'> ( - 10 )

nt.-^rat.-d tluTOOghOdl -| AGO, for all valu.
,
: :

(i.) in tl caee if] (.'iitinu. u> \ (an only
)ecome infinite at i in >pace, namely, wl..

x'-ar, y'~y, z' --

> in the case \v' continuous function x

ihnite for all those point

,'hai thi- vahif ol

First Case iapjlicable to I, D and th.-ir .1- i-i\,-it i\ i I

.- nesn's investiga' ..n the f.. II.. \vini: princi;
'ices of the in >nd of <t s will be

naltei' >

suppose
the limits of ii< nil

>re except that enclosed by a small sphere < ,,//<<// /'

elementary radius K; the value of K being reduced tot

't, .

If we accept thi- priii--
i rem.-ml.er that

3*.
ôx

.1 aotes -imply the incr,-a.>.- in the value of $, produced ly the

ti inflation ,,f tin-
p..

int /' through an eli-mrntary distance </./ in

tl e positive direction of <>r. it that '/' I.ein^ supposed
al ways to c;: M it its little enveloping sphere thi- increase

\v 11
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First, the gain due to the displacement of the sphere, which
has left behind it, on the negative side of P, a small volume now
to be included within the limits of integration, and has taken

from these limits an equal volume on the positive side of P.

(See Fig. 42.)

Secondly, the increase, due to the displacement of P, in the

value of that portion of the integral which is taken throughout
all space not included 'within the sphere in either of its positions.

Fig.42.

Figure 42 represents the translation of the sphere, and shows

clearly the loss and gain of equal volumes by outside space. To
lind the net gain of the integral <, let a cylinder of elementary
section dcr be drawn with its sides parallel to Ox, and cutting all

four hemispheres. This cylinder will cut off an element of volume
dxdtr from the space gained and from the space lost. If we take

(x, y', z') for the coordinates of the centre of dcr the element of

-dx

due to this cylinder will be very nearly

K2
-(/-2/)

2
-(*'-*)

2
, 2/', Z']

. X [

-
y)

- * - *, y -y,*

K2
-(2/'-2/)2-(z'-z)2, y'-y, z' -

The whole gain due to the shifting of the sphere is found by
integrating this expression as to cr, over the whole area of the

circle in which the two spherical surfaces intersect. If we write

y = y +
rj
COS to I

dn o> j

then

z' = z + rj
sin

I ld<r = / I
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and the n<-t _ain due to -diiftin-- of the sphere N

303

" V' j
: + V -SU1 w

] A[
~ N/K

" ~
'/"> V cos (t>

> '/
sm w

]

-
>/-, >/

c^s (.-, >/
.sn-

^{./ s -/-, ij + >/
cos w, : +

>/
hiii

cu]
. x[ +

ami sine.- r>^ -<>. and v i^ ultiinat.-ly t> In- m;il.' /..TO, this may
I..- written

r~* /

/ J \\ v >iiiw]

\
(
".

'/
CO.-} I'},

If
Nlll

I

\

;n, tin- u
r<iin in that

]
i' tin-

integral
wliii-li i- takni

thioii-hnut all -Iinlcd 1'V tin- >i>hT- in 1-otli

01 I11 ,

tl limit- "f int. -ration .\eiudiiiLr loth

Adding together th' tnd'prooeediiig to the limit,

v 1..

///

/*
fr

/*
+ V< / / "<u]

o

-. /COH(u, lyhiliw]}',

* ere th. tripl.- integral
is tak >ughout all space, and the

<1. il.le integral is to Te given tin- limiting vain.- it assumes \vh.-n

K 0.

If 1' ifl in fi iidf

5*S
The i'..rmul:i' for di:

;

a.s to y and ; mav !. d.-duc.-d

by ym! and (21J
be observed, as a u i nil*-, that if \

Aeneous fnn- (il<>ul>l>

is < f tne dimcii>io!i> *'
"

~, and i-> tl.- tltiiD&tely negligible if
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Second Case (applicable to Lp L2 , and their derivatives).
When the function x becomes infinite if x-x, y'

=
y, for all

values of z', we must replace the sphere by a circular cylinder of

infinite length and radius K (ultimately zero, as before), with the

line x=x, y
'

y for axis

Taking y - y -
?/

and remembering that a shifting of the cylinder parallel to Oz
does not affect the limits of integration, we find as before

' y'> z' x̂
dx'dy'dz

'

+J t( x>y> zy {*[- v/K"-V2
> ^-'--

with a symmetrical formula for d^/dy ;
while

(215)

whatever be the position of P.

If -v/^a/, 2/', z') is zero for all values of 0', when a;'= x, y'
=

y,

the formula (214) becomes symmetrical with (215), as the residual

integral then vanishes identically.

311.] Alternative Formulae. If we shift the origin a

distance dx in the negative direction of Ox, we change x, x' into

x+ dx, x'+ dx, without altering y, y', z, z', or the infinite limits of

integration.

Thus, since (x'+ dx) (x+ dx) = x' x,

1

, z')x(x>
-

, 2/'
~

2A z' -z)dx'dy'dz
f

,

and therefore *

3* fffd^ , ,, , 1 \- = III ^-t -\'dx dy'Jz'^x JJJ ^ \ .................... (216)

etc., etc.

This formula is independent of the position of P and of the form
of the function x-

312.] Application of the formulae of differentiation

to the Potential Functions. It is left as an exercise for the

student to show, by successive applications of the formulae (212),

(214) and (215) to the Potential Functions (209), that

Quoted in Articles 266 (i) and 301.
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and that

: D, V

t(xy //.

T ;

:d:;.] Boussinesqs Applications of the Potential
Functions to the solution of problems in Elasticity. One
of tin- ni'.xt remarkable appHcationfl .f th.'M- function* is to tin-

inv.-Nti^ation ..f tin- -train pr-'duo-d in an U, .tropic st.lid- hounded

by one plane face, but otln-r\vi^- nnlimited in .-\t-nt by an

arbitrary ili-.triluti..n >f -url'act- traction over tlir whole or

ribed portions of the plane face.

\\ . ihal] fa in- ourselves to the cas<> in wh'u-h no
i !i])rcssed forces act upon the body, and in \\hirh tlio surface

t action i-s wholly nonnal, of t; i.i^nitudc, and apilir(l only
t tinit- areas of the surface.

face of :'or the plane of xy, with th.-

cis of z ext 8 sorfaee conditions are

|
=

// // .
'

; \fs being an ar LisoontinuouB function of 2 and

y having finite and continuous vahn-.x o\-r en tain

a eas of tin- plane of xy> and being elsc\\ h. i .- zero.

Sinn- tin- integral

ff\

bole plane face is finite, the t't,-d
I

i:n

a< fOSS any h.
-ini-j.il.

-rical jM.rti.ii .,f th,- 1,. din;: upon it^

pi me . l.r tinit.-. Thu> l'..r ^r-;it \ aliirx

N CMIIIJ musi I-- at tin-

gi -atest of d us r"f
, and c.nx,..|ii.-nt!y th- di-ji!a<-.-iii-nt>

t' dini-n~'

Kinally, tli.- ^.-n.-nil equ '"1 \\\\\^\ ! -ati-ti-d at <-Y.TV

].
nt i if the body.
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314.] First general type of solution. If
</>

be any
function whatever that satisfies Laplace's equation y 2 = 0,

we have

(221)

identically, and consequently

If therefore we assume

we shall have

and on substitution in (104), we find, as the necessary and
sufficient condition that the general equations of equilibrium

may be satisfied,

2(m + n] ,nr \ L'\

Let us then assume for our general solution

"dx

oz

.(222)

where
<f>

is some root of Laplace's equation which at a great
distance r from the origin is of dimensions r" 1

,
at the most.

From (222) we obtain without difficulty, by the help of (221),

m ..(223)

,(224)
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Second general type of solution. It' again wo
me

-*-
0' beini: any r>t >t' Laplarv's equation which for great values >1'

r is of zero or negative <limenM<>ns in /-.the general equations
ami the conditions required at infinite .li^tam-ex will Loth U-

Bed
We -l.-hice froi

r i

:'!<;.] Special forms of the Potential functions, when
reduced to Surface Integrals. Tin- imaginary .lUtHKution
O 4

potentiating matter, to which tin- t'lnieti :; 1 n may
1'

^njijH'-'-'l .In,-, may :im-.l to a Mirt'acv la\

*' rf> ]M-r unit area, ne ..r

t? a
I-'.

In tlii- eae the QtegnJfl re.lm-e to

W.tfzs.
I

D =^

,log(* + ,

I

r= v

ai I, sine.- in tlii- case \[f o tl it the interior of the body,
t'r.m t

; :;rj

r L ' !) f J ...(230)

A;
'

-inite 01 ill jH.int^ ,,t' tin- rarface, I is

Of V- .lim.-ii .uin-.l i: au.l L
i

-.f th.-s,. r,-.|uinMl

in

ill oks-|\.- ! il-, to
, ULn_r,.,f,.,| j,,;, .

I,,. .,,|iiti,,n ,,t tin- I'rolil, in ,.t
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317. Special form of the first type of solution. Putting
= I in equations (222), (223), (224), they become

^

(231)

.(232)

9 /Y~ ^dx'dy
;zz .- it

oxJJ r

\l/dx'dy'v= -

^ dy in -\ 2n ff \fsdx dt/'

JJ r

R =^r^ n i rr *dx
'

d!j
'-^ rrw***r\^

L &*M ?' ^JJ * J'

Performing the differentiations as to z, by means of formula

(213) of 310, we obtain

m + 2nw = z// -'-- " +rCz^dxdy=Z
JJ

._ -

dxm r3 J
x'dy + rrz^r'<ly'~\

JJ "< J

The integral

rr
JJ

and its derivatives as to 05 and
37

are certainly finite for all values

of z, and. in order to determine fully the surface conditions, it

only remains to evaluate the integrals

dy'ffzjdx'dy'
JJ ^
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To do this, transform the independent variables by the substi-

tuti-

ng co

/sino

so that

Since \^
= 0, except over certain finite areas of the surface, we

may extend th- limit* f int-Lrratin so as to include the entire

/ : thus the limits of 17 are Oand a, and those of rn nr>

and :

tran-ft.rmt-d iiit.-^raU I

IT f fM H
~ J J ,.

/7"
-

/' /'
.// J J i

.

Kut //> ///' M n, and
- in-1.

p.
11 i

,,
and o> and may be writt. :

i i tl i, Th.- twrfaa value* vn th.-n-t'.

/'
2

rr

Sui Me Milu.-- in c::;i . ..n.l

ii, we obtain for the surface values of A /' 8, /,'

IT

.

)
=

w -)||S 1 /7""^ JJ
G~ n

ijj r

L'A
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318.] Special Form of the second type of solution.

Writing Lx
for $' in the equations of 31 5, they give us

(236)

w =

(237)

and we deduce, with the assistance of formulae (234) of 317, that

at the surface of the body

II

2-

x'dy'

_
*

(239)

(240)

y)

.(241)

319.] Solution compounded of the two simple types,
and adapted to the case in which the arbitrarily dis-

tributed Surface Traction is wholly normal. Multiplying
the values of 317 by -1/4-Trn, and those of 318 by +l/47rm,
and compounding (231) with 236, (232) with (237), (233) with

(238), and (235) with (239241), we have the system of displace-
ments
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z B

_5_ 1
4irn 'dz

rr ^

liJJ r 4-//J.

k'cfy' _ m + n /7~

~>C/ r

i a /y>//TV*JJ r

(242)

...(243)

and

7' 2^^~

IT
'i JJ r'i

r

V'/..-Vv

-- rr
r JJ r

throughout the body: while at the surface

(244)

\

..(247)

r

e ha fore obtained a complete and perfectly general
liiti'n f the problem propOKrd in :;i:;

] Regarding the earth as an infinite isotropic
lid, with one plane face, to determine the strain
-oduced by a very small but heavy mass lying on the
irface. iface of < iall, tin- int.-irraU

!' each redu< . \\lii< h \v will suppose to be
th ; '' 0, y=0, and

- -W,
w icro W !nrunil.-nt w.-i^lit. SuUtituting in -(jiiations

(i t2 245), and performing the indicated dill'. -r. ntiatinns on /

ai. 1 log(r+*)i we obt;ai. 1 log(r
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bD

L

U?.wr_L__
r 4:Tr [_nr

2
m(

y.wr* i -i

r 47r j_nr
2

m(r + )J|

r
'

4?r [_nr
2 mnz _J

throughout the body ;
and

Wx

r 4?rmr

v -_y. w
r 47rmr

_ (TTI + n

over the surface.W must of course be supposed

very small in comparison with the

weight moduli of the ground ;
it

must also be remembered that,

while W/r represents fairly at dis-

tant points the potential of the last

Article, yet these formulae cannot

be considered to hold right up to

the origin. The above values of

U
Q ,
v

,
w represent the strained sur-

face as formed by the revolution

about Oz of the hyperbola

but the central depression will in fact be rounded instead of

conical (see Figure 43), in accordance with the statement of 55

that discontinuous curvature cannot be produced by small

strain.
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:>il.] A right circular cylinder, formed of homo-
geneous and perfectly rigid material, stands on end
upon the ground; required the deformation produced
by its weight. L-t W IK- the weight of the cylinder, and
A the radius of its base: let the centre of its base be placed at

the origin. Sine-- the cylinder is rigid. it> base will remain plane.
and consequently we mu^t have ",, constant all over the area of

eontaet. ANo the contlitions will be symmetrical about the axis

nd thrivf'-r.- IT6 mav write ^s(>]} for ^ and

r** r rr
I I 'i''/'/'/"^ '" r

//

where
OH w, y =

Thus tin- problem It to the following: Required
a fuii' ;/;, such that

f I
~ W<

<

U

i all values of x and y that wake x* + y*< A*.

y of elc<
'

that a fa*

charge K will distribute itself over a circular conduct::

adius J i n - u ( 1 1 a m anner that the surfac / side

f th- A l-]rA\/A* tft while the poU-ntial dm- to th-

/''2A at all points uriMm the di-c-. and at all

,al point

7?

IB the greater root of the quadratic

Thu- i!' |

tedareeaailv-l- .m tlm>.- ..f tl,,- ,-llip

l. i /; A 9 C
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from
tj
= to

ri
= A

, (248) will be satisfied identically, while the

value of the integral (249) will be -rrW/2A all over the area of

contact, and for all the rest of space

rr
J I

_

x -
77
cos

o>)
2 + (y rj

sin
o>)

2 + z
...(252)

being given by (250).

Finally we may note that

3 /~2?r s*A

~r I I log[

f

(x
-

77
cos w)

2 + (y 77
sin w)

2 + z2
'

o o

and since the latter function vanishes when z = oo
,
we may write

/-27T /*A

I I log (
x ~

"n
cos w

)

/~ C^ C^_^(r))r)d7)d<*)dz

J J J *J(x
-

rj
cos

to)
2 + (y-v] sin

o>)
2 + ^;

z

Substituting in the equations of 319, we have at the surface

of the body

Tff r>27T s>A
(
x _ ^ cos (0)77^77^(0

J J [(# ??
cos w)

2 + (y
-

77
sin w)

2
]

W -V sn

if a;

-ri COS
o>)

2 + (y
-

r)
sin cu)

2
] v22

8mnA

and throughout its substance

W
4:TrmA

W
t itan" 1

W fmz 3

~^Vz~

i^ j "I
7=dz

N/f J

^tan- 1-^- _ f
X
tan- l

^Ldz"~\n J%J N/l J

:>-^

(254)
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We deduce without difficulty that over the area of contact

fem^+yi L >

y H A - +
."-'11'

T^L "V 1

TT.
uver th-- rface

w//

Thus th' lioii/.ontal component of the surface displact nn nt i>

diivct and its magnitude i>

W
.

w
4rm

j ccording 88 the displaced point is on the free surface or within
i he area of contact.

>tud'-iit must be referred to Boussinesq's original memoir
"/ VninJ lent tun dea PotentieU a VAu.de de I'tquilibrc et du
wuvement des S /(te(Gautlii i \'illar>. Pa;

r iiiort- e.\ tended applicationn of t 'j--ther witli .some

i iteresting exam]

lAAMI'LI

[Unless the contrary is
expressly

stated <> be assumed
J

>. e body under considera t / om Applied Forces.]

Vibrations.

I. Th.- following t' all
, and

c -naecju. ntly r present possible forms of iree irrotati<>nal

v bration :

"
[ i ]

(Note. exp[^] is equivalent to
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2. The following is the general solution for symmetrical
waves of longitudinal displacement, radiating from or converging
to a sino-le centre :o

=!:

Special cases are considered in 273, and in the following Example.

3. A spherical shell whose internal and external radii are A
and B, vibrates radially, the motion being symmetrical about the

centre. Prove that the admissible values of i are given by
i iQ, where

On making ^1=0, #= r, this reduces to the formula (84)
of 273. (NJ3. The i of the present Example corresponds to

i/r in the former case.)

4. A circular cylinder of radius A and infinite length, per-
forms symmetrical radial vibrations. Prove that (with the

notation of 244)

the admissible values of i being given by i = iQ/A, where i is any
root of

5. The following is the general solution for waves of trans-

verse vibrations ( 275-277) in a given plane radiating sym-
metrically from a single centre :

Investigate the form assumed by this solution when r is very
great in comparison with the wave length

6. A solution for waves of transverse vibrations may be

constructed by making



Ifl AM !.\ AMIM.1X .S77

\]r having th' nn a- in the last Example, or hein^ any
.slutin of equation (,s,s_ of ^ 277.

In\ tin* form of the motion when v is very i^ivat in

comparison with the wave length.

7 1 \v that the e.jnation> . t five
p, riodic vil>ration>. ju-r-

f'.rni-l >yinnietrically in |)lain-> through (>:. may he written, wit li

the notation in the form

wh.-rr 0, an-1 \'
i

r
i

an- iii'l.'p-n-leMt i'liiu-tioiiN ..f f anl .satisfying
the e<|iiati"ii-

r_i_ u*W,_ ((
i

pmt> I V*~

v Equat; put into the f,,rm

.

-

JA 12- AM- -
^ ;

t1 dx t1 3y t8 9^

lar intvgraltf of tln-s- .-(jua'
- l..-in(r of course HolutiMiis ,,t' < v2 --i2/17'

J
i'' 0,eto. I."i-.l

has obtained a -"iuti.)n sp.-rial!;.
- tlie case

-'free vil.rat: -.a^at*--! parallel t tin-
j.lan.- -nrface of an

i tinitr soli. 1, which th.- stn.l.-nt \\ill lia\.- no .litlicnlty in OOB
s met iip_: f..r hims.-lf. iiiace,

a UiniiiLr that A. ",, .-tc., vary a> th.- U in-- !' / X./-}-^//),

a -1 li-tTiiiininir tli.- r..mjili -m. -ntary functions so as to satisfy i LSI):
a .. th.-n adjusting the arbitrary constants so tha' nl T
n ay vanish wli.-n i0l th.- -nlution finally redueefl to tin- frm

i. \\ it .. p. 4.
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where

</>
= &2

2/ cos i[pr cos(6
-

a,) + 1 - ft] {exp(
- iz Jp*~l

)
exP(

- ** NP2
-l/fl'

2
}

cos*r COS(^ " ai) + ' " ft] ' exp(
~ iz

being a root of the bicubic

1612'G(I2
2 -

and A, a, ft being arbitrary constants. The corresponding cubical

dilatation is

A = - 24
4
cos t[>r cos(0

-
a<) + --

ft] . exp(
- is Jp*

The symbols r, here denote the cylindrical polars of 244
;

the student will find it a good exercise to prove by actual substi-

tution that the displacements

30 1 30 30M*S v= -
-St ^=^+ w

or r 0(7 oz

satisfy equations (88) and (89) of that Article, when

^ = H = Z = ^' = H' = Z' = 0, and 3> = z.

9. Plane sound waves travelling through an isotropic elastic

medium (m1?
nv pv Q1) impinge obliquely on the plane surface

separating this from a second medium (m2 ,
n

2 , p2 ,
Q2). Prove

that the disturbance is partly
"
reflected

"
into the first medium,

and partly
" refracted

"
into the second

;
and that if the directions

of displacement in the incident, reflected and refracted waves
make angles \[s, -*//, \fr", respectively with the normal to the

dividing surface, then

Investigate also the distribution of energy between the reflected

and refracted waves.

The surface conditions in this problem reduce to those necessary for per-
manent contact between the two media

;
and these are that the normal com-

ponents of displacement and of stress in the two media be equal at every

point of the surface.

Take the dividing surface for plane of xy, Oz being directed into the

second medium, and assume

X
= A sm~(xcos\p+ysm^ + tij) + sin--

fii
2
i

2
= G sin (x cos ^"+ y sin ty"+ &.2t).

"2

The potential X will then represent the propagation of the incident and
reflected waves through the first medium, and 2 that f the refracted waves

through the second.
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Equilibrium.

10. Lame observes, in li>c-u^>inur the results of 290, that it'

it will be impossible,
'

<>f nuiterinl, to make
the tube strong enough to resist the stress produced. Expos,
the inconsistency of this reasoning.

11. Assuming that th imfl of a boiler are its

weakest
part*, OOmpare the strength* of tw cylindrical boilers

1) which are alike in all re>pei t that in one
ams are parallel and perpendicular to the axis, while in

th- other they are e\ ra inclined to it at angles of 4

1-. A solid sphere i> subj.Tted to a normal pressure Ot
.vhole surface: re.jui -train produced. A very
Jition has been ol \>>T this problem, but it is unfor-

tunately disqualified by an inherent impossibility. What is this '

I.'; A ; :

;
re is subjected to a normal surface traction

C COsO over the hemi>pheiv from ^ = to 0- JTT, and to a normal
traction Ccos9 over the other hemisphere. Trove that e<jui-
li -rium will be maintained, an-1 -i the strained form of

tl e sph. i ien C is posit when C is negative.

II-. A iphericaJ ^h.-ll internal and external radii .1 and B)
* subject. ! to uniform normal pressures II, II' over its surfaces:

l ow that the radial displacement is -

M

Adopt the notation of Article 243, and assum* th- ^train to

b symmetrical abou

If II <> in the case of Kxample. determine the

; of II at which the limit of stable elaM fence will be

I re icl

16. A . at. -rial ( /'. ., an imaginary
su stance for which th n \^ infinitely peat) is subjected

'

to a surface traction wh^.- coinpon-'iits an- tlie harm.
H , //=Hr; prove radial displacement is

bl-
1)

wl ere A is the radius of the sphere, and X, $ are solid harmonics,

H,'+H,V.
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17. An isotropic cylinder of elliptic section is slightly
deformed in such a way that the section of its bounding surface

(which remains cylindrical) becomes a confocal ellipse. Deter-

mine the displacement throughout the solid.

Use the elliptic cylindrics of Article 246, or a system analogous to the

spheroidals of Article 251. The surface condition is that a shall be inde-

pendent of
t]

all over the surface.

18. A solid sphere is subjected to tangential surface traction,

everywhere parallel to the plane of xy and of magnitude
2CiP</ sin 0, where has the same meaning as in 243, and Pt is

Legendre's coefficient of order i. Show that the system is in

equilibrium, and that the point (r, 0) will be displaced parallel to

the plane of xy through an arc

where A is the radius of the sphere, and

If the surface traction be C(P
2
P

4)/sin 6, discuss its distri-

bution over the surface, and draw the curve into which any
superficial meridian is deformed.

[P2
= 1(3 cos'2 6 - 1,) P4

= |(35 cos4 (9 - 30 cos2 + 3)].

19. Investigate the system of forces and tractions required
to produce in a solid sphere the distribution of displacement

u = x + yy -
/3z + \(x

2 - y
2 - z2

)
-f 2{jucy + 2vz

v = y + az-yx + 2kxy + p(y
2 - z2 - x2

)
+ 2vy

w = tz + /3x
- ay + 2\zx f 2pyz + v(z

2 -x2 -
y'
1
}

where all the coefficients are constants.

20. If any body bounded only by a sphere, or by two con-

centric spheres, be submitted to any conservative system of

impressed forces, the action on the body as a whole reduces to a

single resultant force.

21. In the case of 306, the conditions of equilibrium are

l , ,

r ox r dy/ r

U 2 being any solid harmonic of degree 2.
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A vertical cylinlric<il hole of circular section is cut in a

body, uii'l an elastic cylinder of density p, which, if freed

the action of gravity. would exactly tit the hole, is placed
in it and stands upon the hottoin. Prove that the sides of the

-utter the same hydrostatic pressure as if it were filled \vith

a liquid of density p(m n) (m + \

A glacier tills a valley which is perfectly syniinetrical
about a vertical plane, and which narrows as it descends.

A-Mimim: that ice at temperature below the I'lvr/im: point, and
under moderate stresse.s heli;- an is.>tropic elastic solid,

:_rate the general character of the strain produced in the

:icial lamina of i the weight of the glacier tend in--

down the valley. (it'.} the lateral compression as the valley

narrows, friction against th Sh.\v that there

will be a tendency to form "crevasses" or

B glacier, .symmetrical about tli mildle line and
fl' . /'/ concavi a ifte valley. [W.Hopkins.]

the -train ; \ in a sulid sphere by the

in itual gravitation of its parts. Show that if K represent
the

itual attra< masses concentrato<l at points

parated by th- unit distance, a uniform normal surface tract i>n

-micp*A ienre the voluim of the sphere
red : the cuhical dilatation at the surface bein,u

r i' thi

and the < compression at the centre

nd thence in (1),

1 making use of equat in all .-

plane stress under gra i those of ^ 308 and

J L J

' ")?.n + ir" + o + -)^i - -
2< i + *)(p* + -y>

^+5^ = 0.
(te SLB "bz 'by

Menc- 'hat the component displacement en by

' + (0-g/ T .1
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26. Verify from the above values of u
t v, w that

7"= - fix-ay -
"dxdy

and hence deduce that there is a system of lines of zero stress

parallel to Oz, and that the principal normal stresses in any plane

perpendicular to Oz are

The differential equations of the Lines of Stress along which
these act are

27. Apply the above solution to the example considered in

308 (Figures 36, 37).

28. Solve the case considered in 309 (Figure 38).

29. A beam without load is supported by vertical forces,

without couples, at its ends (Figure 39, Plate III).

30. A beam without load is supported by vertical forces,

together with couples of given magnitude, at its ends (Figure 40,

Plate III).

31. A beam without load is supported by vertical forces at

its ends, and a couple of known magnitude is applied at one end

only (Figure 41, Plate III.).

32. Integrating twice the first three of equations (C), 307

bis, we obtain

where
<j>
and

\fs denote arbitrary functions.
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Hence show, by substituting in (A) the values of the strain

components, anl integrating, t

90, + (1
- =

?|

B6 from the last example, by substitution in the
Mt-ntical equation-

that the general .solution for strain in tlnv<- dimrnsions obtained

by Airy's metlm.l is

711
=

/"[<*>
-

(1 -i- o^v'Xi]^ - + *)* (Xa + Xs
~

Xi) + ^s(y)/ \/*

^-
(I + <r) (Xl + Xj

-
Xs) + t*(x)

"~

In a^p >e general f.TinuliB to the case of Plane Sti

w rked out iiidt'iM-n-l.-utly in Example 25, put Xi
=
X2= ^ Xs = X-

\\ must also write

as will at once appear on forming the equations analogous to (C)
of :)' /

y>
an-1

>//
t'unrt ions are quite detrnninatr, tl..-

ar itrary terms which appear on integration representing b<><lily
tr; nslations and rotat i

34. nbrain a solution analogous to that of 307, when a
>1; oe stress is caused by the Applied Forces

T 3 v 3~

leingany 1'uncti^n .f ./ an-l // wliich .sati-ti.--,

th surfac- inch M to a.Imit "f r:

i v I iii lit a -

tli,. i'unrti.,n in term- !' \\liicli t'lir

i ts are expressed.

35. A free charge E of el'-ni-jrity li-tribut.-> it-.-lf over a

pla le disc boun<l-

.1
*
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with surface density
E

4:vAB J 1 - x'2jA
* -

y-jh
2

on either side of the disc : the potential produced being
TT> s*y> T\E I dA.

at points within the disc, and

E r
U

at points without it
; being the greatest root of the cubic

*2

_

Hence deduce, as in 321, that a rigid right cylinder of weight
W^ whose normal section is of the same form as the disc will, if

placed upright upon the ground, descend vertically through a

distance

iirmnA

where e is the eccentricity of the elliptic section, and F denotes

the elliptic integral of the first kind; and determine the distribu-

tion of displacement throughout the earth.

[Take ^= - W/ZirAB Jl -

36.] A cylindrical vessel is filled with liquid to a height D,
in vacuo. The vessel and its contents are then weighed under
an atmospheric pressure II, and at the same temperature as

before. The mean density of the liquid in the vessel being thus

found to be p
f

,show that its true natural density maybe deduced

by the formula

where k is its compressibility for the given temperature.



CHAPTER VII.

BEAMS AND WIRES.

INTRODUCTORY.

_'.]
Definitions. The terms Beam, Wire, and Hoop, in

Ebon uded sense in which they will l>e employed in the

lenote bodies which ha\v the following charac-
t- ri ity in OOmmoO :

Each is so related to a c raight or continuously c
iur\ e 1

liie, called its Central Axis,
8- ction by a plane perpendicular to the Central Axis lies iv

Central A\i>
'

ay be situated wholly or partly
v ithin or with"iit the substance of the

body.
'11 f & Beam is a straight line, and un

tec be expressly stated the beam is to be supposed
< lindrical or n form, the generators of tl

* rface being parallel to d tin plant ends of the
1 am 1" ing perpendicular to it and of dimensions comparable
v th its length.

'l'h- ('< losed curve of continuous

Hoop is defined l.y that of

We shall only
with uniform -

'

""/>-, in which theAxis is a circle,whrfe

ntral : l.y those Ol' ill onl;

;i leetioiu in planesperpendicular to the Axis are equal and similar

tii ures, simil, :

i regard to its polar line (/'./.. the

Bt aight line drawn through it perpendicular to its plane.)
A beam, or hoop of any form, tin- dimensions of whose trans-

vt ^Q sect: all very small in comparison
with the 1

of Uie central a\i- il.ut yet tinif. will he called a Wire. Kor
;

/ >ii*poses,8.
\ y be regarded as coincident

v.

We -ntine oiir-elve. to the conoid. -ration of wires of

na nrally "n>f,-n> t mnsverse section, but no restriction will he,

1 upon the natural form
2 I'.
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323.] The class of Strains to be investigated. Ex-
clusion of Lateral Surface Tractions. The main object of

this Chapter is to obtain reliable data for the employment of

beams in structures and mechanism, where their function is to

transmit from one body to another forces or couples, the straining
effect of which upon themselves is in general very great in com-

parison with that of their weight.
The distinctive character of all the strains discussed will

therefore be the absence of all stress across the lateral surfaces of
the beams, wires, or hoops.

The straining of beams will be considered as due to forces

and couples applied by means of surface tractions acting over

their ends alone. These may be supplemented, in the case of

terminated wires, by impressed forces.

Since closed hoops have no ends, they will be regarded as

under the influence of impressed forces only.

ST. VENANT'S PROBLEM: STRAINING OF A NATURALLY
CYLINDRICAL BEAM, FREE FROM IMPRESSED FORCES, BY
SURFACE TRACTIONS APPLIED TO ITS ENDS ALONE.

324.] Anticipation of the General Character of the
Strain. Geometrical conditions imposed. It is sufficiently

obvious, from a superficial view of the conditions of equilibrium
of the beam as a whole ( 146), that the most general form of

small strain which external action of the supposed kind will tend

to produce must be compounded of the three comparatively

simple types

(i.) Longitudinal Extension of the beam, accompanied by
lateral contraction : due to equilibrating forces parallel to the Axis.

(ii.) Torsion, or twisting of the beam about some straight
line parallel to its Central Axis, with or without warping of the

transverse sections and distortion of the lateral surfaces
;
due to

equilibrating couples in planes perpendicular to the Axis.

(Hi.) Flexion of the beam, of such a kind that the Central

Axis assumes the form of a plane curve: due to equilibrating

couples in planes parallel to the Axis.

We shall find, on analysing the general equations of strain

obtained in 327 below, that this anticipation is fully borne out.

To simplify the geometrical conditions of the problem, we
shall suppose the centre of gravity of the area of one end of

the beam (henceforth referred to as the Base) to be an absolutely
fixed point, which we shall take for origin. The Central Axis of

the beam will be our axis of z, and the principal Axes of Inertia

of the area of the base our axes of x and y.
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Thus we shall h;.

ffxdxdy =ffy&
'

/dxdy = ................... (1)

identically,
vals are t liolo area of

any nunual of the Kui:i A tote the area of

>n Sv 3* its moments of inertia about

principal axes
through

its centre of gravity parallel to Ox, Oy,
aii'l JT3 its moment of inertia about the Central Axis of the be;

ff>

Thee<- are of course constants v 1 only on
al form and tlinirn>ii>ns >f the 1- at all on

We shall fr. ttheelemeir
'

a^e imin-.li-

at?ly origin always retains its initial plane, and
tl at an el n- in that plane for simplicity, say the
ii itial -retains its natural e geo-
n )trical conditions to be satisfied at the origin are therefore

Conditions of Equilibrium. Besides the general
nations of equilil.rium ( lo:> ( .r < 104) of 2s
nents n

].
( ^ ( -.l uj...n tlu-in

t'

tl J beam are fre< 1< -n^th of it,

K unded 1

!y 1-y tlie

t al stresses across it rompom
:

c- iples across those equal, and it follows

e mtions

}

I
J

li\"

beabsol 'i-lent

vill appev in tli- ti.\- tin-

ebe
do t



388 BEAMS AND WIRES.

326.] Statement of St. Venant's Problem. Since the

lateral surfaces, over which the stress components are everywhere
zero, are parallel to the Axis, the boundary conditions reduce to

The first two of these will be satisfied identically if we
assume * that

P=Q=V=0 .................................... (5)

throughout the body ;
and in this case the only condition to be

satisfied by the special values of the stress components at the

lateral bounding surface is

*.T + pS=0..................................... (6)

To obtain a solution of the general equations which will

satisfy (4) and (5) throughout the body (6) all over the lateral

surface, and (3) at the origin, is the problem justly named by
Clebsch

"
St. Tenant's Problem."

The peculiarity of the solution is that c = 0, and e=/= arg

throughout the body, so that each longitudinal "fibre," or ele-

mentary prism parallel to the Axis is extended longitudinally and
contracted laterally just as if it were solitary ( 213), while its

transverse sections do not suffer shear.

327.] Solution of the Problem. Substituting from (5) in

equations (40) of 214, we have

R
'dz q

*du 'dv 'dw
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while the boundary condition (6) may be written

v f^u 'dw\ fdw . "dv\ A
A(-- + ^-l +

/i[
- + 1 = (13)

\dz e I

Differentiating (10), (11), (12) as to x, y, z respectively, and

:racting the tirst tw. results from the third,

= 0,

and therefore by (8)

(M)

Again, differentiating (10) as to y and (11) as to x, and adding
results,

Vfdv.-du\ cr 'l^- +
xdyte

<.nl therefore by (9)

S5*5-
v'

Lastly, differ, ntiat ing (12) as to z, and taking account of (14),

lit if we differentiate (10) as to y, and (11) as to x, and subtract

he results,
~\* ** -

= 0.

finally

-&ftw\_ B2

^ "

appears that ^w;/9 cannot contain any power of x, y or

c above the first, nor the JM
n-1 it follows at once from

t * and from (8) i

.(15)

here all the coefficients are absolute constants.
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Equations (10) and (11) may now be written

and from (15) and (16) we easily deduce that

(i.) u contains no higher power of x than x2
,
and no higher

power of z than 3
;

(U.) v contains no higher power of y than y
2

,
and no higher

power of than z3
;

(Hi.) w contains no higher power of z than 2
.

Integrating (15) and (16), and supplying arbitrary functions

with due regard to these limitations, to equation (9), and to the

conditions (3) which are to hold at the origin, we have finally

v = -
o-[ey

-
BTgajy

- fafy*
- a;

2
)]
-

+ y
g)J

where the new coeflBcients introduced are also arbitrary constants,

i/r
is any function of x and y satisfying

and vanishing at the origin, and

denote the values of its derivatives at the origin.
The stress components are

R = q\t-

= J"~Ta-(l+o-)/fy-(2

_
(2

(19)
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and the boundary condition (13) becomes

-
/3, {(2 (20)

Thus the mechanical conditions only involve
\fs

in connection
with the four constants r, ft, /3V jS2 J

but these constants are per-

arMtrary, and th<-ivi'ore in<k'p<-ii,l
( -nt. and the terms nuilti-

by them may be taken t<>
re]

rn.l.-nt strains ..!'

simpler i'nrniN. In nnl.-r that each of these forms of strain may
y the conditions of the probl- i that

i//-
mu>t !>

nn of four functions of x and //. iimltii>lifd n-sju-etively l>y

T, /8, )8lt /82 , and such nations (18), (20), and the further

"t enndition to be deduced below from (4), are sat

>se terms wh <-ach coefficient.

iiuinu' t! that

_C in (18) and (20), we have the general equations

y*w y*w' ^wl
= yJ

Wj 0,

boundary conditions

+ /
- J -

We may show at once that w' cannot possibly satisfy both

t ic general equation and the boundary condition, for if we take

t e integral

o 'er any normal section, and integrate it l>y parts, it bec< .:.
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where ds is an elementary arc of the periphery of the section.

Now, we have by (2)

so that the boundary condition satisfied by w' requires that

which is obviously inconsistent with

-

Hence it follows that /8 must be zero.

It will be found, on substituting from (19) in (4) and taking
account of (1), that the first, second, third and sixth conditions of

equilibrium are satisfied identically. In order that the fourth
and fifth may be satisfied we must have

"wK-^-(4*v>Jj|

Finally then, collecting terms according to the six arbitrary
coefficients, the displacements are

t?= -

-()!\ 9 1 oJ ...(21)
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and the stress components are

;

<2

(22)

motions of x and y, vanishing at the origin,

yiui: th.

(23)

- he body, and the boundary conditions

*+*-*-'
- (2

-

..(24)

..(25)

..(26)

'.is lateral surface : and also the condition* of v<iiiilil>rium

...(28)

...(29)

the double integrals are taken all over any transverse

M be observed that the stress components S and T are

and therefore constant along each longitudinal

-.] Determinateness of the Solution. We already
mow from general principles ( 255) that the solution is

perfectly
determinate w of stress over the ends of the

learn is given. We may however show that the soli;

abject to the boundary conditions (24-26), is perfectly deter-f abject to i
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minate in itself, so that the distribution of stress over the ends,

as deduced by means of (22), is not at all arbitrary, but is

governed by fixed laws depending only on the form and dimen-

sions of the beam. To prove this, it will be sufficient to show,

by a method equally applicable to all,* that any one of the w
functions is completely determined by (23) and the appropriate

boundary condition (24), (25) or (26).

If possible let these conditions be both satisfied by two
different values of w (for example): let f be the difference of

these two values. Then f must satisfy

throughout the body, and

*

all over the lateral surface. Now if we integrate the expression

by parts it becomes

and each of these terms is identically zero. But (compare 254,

256) the original integral is the sum of a number of essentially

positive quantities, each of which must therefore vanish separ-

ately. Consequently

3_3Lo
'dx ^dy

throughout the body, and since w is supposed to vanish at the

origin, and thus cannot involve a constant term, f must be zero

throughout. Hence the two values of w are identical, and it is

obvious that the same may be proved, in precisely the same

words, of w
1
and w

2
.

First Component. Simple Extension.

329.] Complete Solution. Making all the arbitrary con-

stants zero, with the exception of e, we have the simple strain

u= -crex, v= trey, w = t

giving ,(30)

* This is, in effect, a special proof of Green's general theorem, adapted to

the case in which the solution of Laplace's equation is independent of 2, while
the surfaces bounding the region within which that equation is satisfied are

either parallel or perpendicular to Oz.
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This is the case already fully discussed in 213. A longi-
tudinal tension E is applied to the beam l>y means of a uniform

n E JV over each end, and produces a uniform extension

e = E JV'y throughout the beam, accompanied by a uniform con-

traction a-e in every tran^\vr>e direction. The ratio t = &q of the
:i to the consequent elongation is called the Coefficient of

I-'.

'

itOM i' i':. beam. and sometimes HovkSn
: but it must be rememb.-ivd that it depends upon the
> of the body, as well as on the properties of the

not a tr :c modulus, in the sense in

which we have ah'. :>ln\v,l the t-nu. For a beam of given
material it is proportional to t >nal area, and for a beam

M "lulus of the material.

It L be the length .f the beam, equation (41) of 214 give>
for the total potential energy due to exten

(31)

I f c' be the coefficient of extension of a second beam of the

i, of the same length L but of section Jl', then
e =

Q'q, and

- the masses of the beams are also in the ratio

J/' l/ V '

-\

lore

ml/if.

we deduce that the resistance to tension or //////.<

// to its mass, of a beam < /ength is precisely
t e same whatever it* I [Compare the re>ult>

< : g 336 and 338.]

Second Component. Torsion.

).] Equations of Strain. Annulling all the arbitrary
ave

(32)

u=
L'

v= n\x+-
f*W

C-



396 BEAMS AND WIRES. [330.

and

(33)

where w may be any function of x and y which vanishes at the

origin, and satisfies

-'................................<">

throughout the body,

over the lateral surface, and the conditions of equilibrium

...................... <36>

331.J Geometrical character of the Strain. The sim-

plest way of ascertaining this is to investigate (i.) the curve

assumed by any longitudinal fibre of the beam, and (ii.) the

surface into which any (initially plane) normal section is warped.
Let the point initially at (x, y, z] be displaced by the strain

to (x't y', z'), so that x'= x+u y y'
= y+ v, z'= z+ w.

(i.) Along any longitudinal fibre of the beam the initial

coordinates x, y are constants. Thus (see 68) the form assumed

by any such fibre is represented by the equations

or

*-* y'-y" ="

Thus, when the strain is very small, each fibre remains a

straight line, and the foot of each fibre (the point in which it cuts

the plane of xy) retains its initial position. In general each fibre

is inclined to the Axis of the beam at a small angle
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but the particular fibre for which

397

is altogether unaffected by the strain. This fibre is called the
Axis of Torsion, and the strain is said to be a Torsion about
thi> axis Again, each strained iibiv lies in a plane

which is perpendicular to tin- >t might line joining its foot to that
of the Axis of Torsion. Thus the generators of any circular

cylinder

["(f)J*H :)]'="
ibed about the Axis of Torsion in tin- unstrained beam,
ne one set of generators of the one-sheet hyperboloid of

revolution

This surface Is represented, on an exaggerated scale of torsion.

rained fibres may however, to the same degree of

pproximation, be regarded as helices of pitch

(5
ibed on circular cylii

of Torsion, and
ii> U the form they actually
ike und-r torsion of finite

i mon

any naturally
normal section of the

. the initial OOOrdi

and it appears by
. 'plying 68 to the third of

i luations (32) th,; such

F rtion i> warj
a

r

) curveil surface

z + / v ifd'\ "1' _ x[ I -y ( 1

\5/ V >J)J
\ h. re \v' denotes the same
f motion of x a n .

i A does

o x and FIG.44.



398 BEAMS AND WIRES. [332.

Torsion about the Central Axis of the Beam. St. Venant's
Solution for a certain class of Beams.

382.] Equations of the Strain. When the Axis of

Torsion coincides with the Central Axis of the beam, we have

In this case, equations (32) reduce to

u= -ryz, v = rxz, w = rw- ..................... (38)

the other equations of 330 being unaffected.

The strain now obviously consists of the bodily rotation of

each normal section through an angle TZ about the axis, together
with a general warping of these sections by longitudinal dis-

placement. The quantity r is called the Twist per unit length
of beam, or the Amount of Torsion.

333.] St. Venant's Solution. The problem can now be

readily solved for a large and important class of beams, as

follows. Let us suppose that the equation of the cylindrical
surface (or of the closed curve bounding the base) can be put into

the form
4> + !(a

2 + 2/
2
)
=

tf, ............................. (39)

where is any solution of

and C is a constant.

Then

cte *dy

and the boundary condition (35) becomes

+ + x + A * - = -

-dx 'dx ty V \3a> Oy) \dy &*)

thus (34) and (35) will in all such cases be satisfied if we suppose

that is if we choose w so that and w may be Conjugate Func-
tions * of x and y. This is St. Venant's celebrated solution which
is developed so skilfully and with such beautiful results in his

Memoir on the Torsion of Prisms, already referred to.

* See Article 245, and Examples 1-4 on Chapter V.
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The conditions of equilibrium (36) will also be satisfied identi-

cally upon this assumption, for they may now be written

or

tegrals being taken round the perimeter of the
section. But by (1)

ffxdxdy =ffyJxJy
= 0,

and therefore
</>
nm-t !> ^nuh that

ce (39) must be supposed to represent a closed curve,

-0.

(x*+ y*) = C ftM round tin- p>riplnry, these last

uation-

ai d consequently

i< -ntically.
In urd-r that ( *>7 may be satisfied w must n<>t contain a

ear function of x and y : nor therefore must 0. lint this con-

ion is necessarily sat i ! involve any such terms,

integrals f<f>dx
and J, t

. .1.1 involv.- t-rms of the fnn

J iy and
y//

/.'
,
whi< roportional to the area <2t of tin-

tr nsvers icntly cannot vani.sh.

ll-nce all t j.n.l.l.-m an- >ati>fird by any
VL ue of wl (40) and mak-s tin- Imundary ('

th base a closed curve, pmvi ,1,-d that tin- inclulMl area has tin-

or gin for its centre of gravity and Ox and Oy for its principal
a> s of inertia.

334.] The Torsion-Couple, Coefficient of Torsion and
PC tential Energy of the Strain. It follows from (1) and (30)

ih; t th.- dUtribut: over any kzan8veT86 .M-ction of

th beam (which is the saim- i'.-r all snch sections) reduces to a

coi pie in the plane of th. > < -tiun.
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If T be the magnitude of the couple applied to either end of

the beam

by (2) and (41). Thus if

<
42

>

the torsion-couple required to produce an amount of torsion T is

given by
T =

tr, ....................................... (43)

and t may be called the Coefficient of Torsion* of the beam.
For a beam of given material it depends only on the form and
dimensions of the transverse section, and for a beam of given
dimensions it is proportional to the rigidity n of the material.

Again, if L be the length of the beam, the total potential

energy of the strain is by (41) of 214.

Now

y (39) and

=
0, because the periphery is a closed curve.

* Also known as the Torsional Rigidity.
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Thus finally
= ZT-:2t; ................................. (44)

this formula should be compared with (31) of :>2!).

.]
Circular Cylinder. If the base of the beam be a

it- centre nm-t K> at tin.- origin, and we must therefore put= in (39) and take \A- for the constant term. A will then
be tl of the 1

It is cvidt.-nt that v. ith
<f>,

and then-fore

u = -
ryZy v =

TJCZ, 10 - : .............. ( I .">)

so th;r normal section N >iniply rotated :
> its own

about t an An-'lc proportional to

it> di :ixed base, without warping or distortion of

any kind. T! . ('...-il'ici'-iit of Torsion for a beam of circular

t = nJ3
= n3t*/*r= i'

r ' ................... (40)

The formula
T = "3.7 .......................

or the torsion of a circular cylinder, was first obtained by
Coulomb in his researches into the theory of the Torsion Balance,
nd i> usually alluded to as Coulomb's fwmula.

interesting to note that, since by equations (33) the tangential
depend upon tically, and tin-

comlitious will in consequence be satisfied, f<T .ill t'.-un- <>f \\, if

be formed of a vucou* liquid instead of an ela.sti. -,.li,l mat.ti.il.

I j)ly to such a beam, whatever be the form of
s section, as may easily

be shown by twisting very gradually ami i \ . nly a
) juare stick of fine sealing wax. Boundaries of transverse sections, scratched

wax beforehand, will be fou < <>m-

1
ire .' low.

]
Hollow Circular Cylinder. L-t the beam, in

f : being soli-! a coaxial cylindrical cavity of radii;

1 1- n ^ is zero for bof -s, and w i 'j-oiiLchout the
I nly, as before. The coefficient of torsion will be in this case

It i, i

a \ if we con he coefficient of tin- >olid < ircular

b .a, as given by (4(j), we find

: I.

r> it the masses of the two beams, it th.-ir l.-n-_rths are equal, are

in the ratio

.I/':.!/:: I -K' : I,
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whence we deduce that the resistance to torsion, proportionally
to its mass, of a circular cylindrical beam of given length and
external radius is increased by making it hollow.

This principle is of great importance in the economy of struc-

tural materials, and will be referred to again later.

337.] Elliptic Cylinder. If in equation (39) we make

it becomes

(l-a>2
+(l+a)2/2 = 2C7, (48)

and if C is positive, and a is positive and less than unity, this

represents an ellipse having its major and minor axes along Ox
and Oy.

Fig.45.

If A and B be the semi-axes of this ellipse

q C 1

and we have

w = cuxy xy ;

thus

A*~B*
.(49)
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Also

=
]r

The tran- verse sections are in this case

warped into hyperbolic paral><>lid-, any :

which is cut ly planes perpendicular to the
( Vntral Axis in a series of hyperbolas having
their asymptotes . at with tin-

]>rii!

axes of the unstrained ellipt Q. It i-

nt from the form and MLTII <>f 7r that i

are concave towards the po> i t i ve di

+ ;j/)and( xt ?/) quad-
rant-, and 00m* ' in the remaining quadrant-.

!"> represents the "contour 1:

/>es topogmphiques) in which tlie warpi-d
is cut by a series of ]'lan.

-
p.-r-

c.icular to the axis. The principal axes A A',
jiff lined section are unaltered l.y

t he strain, being merely twi-ted l><>lily tin

f n angle TZ about the axis of torsion :

t re therefore the contour lines for the
/ "vd of the wrt i n The dotted

hyperbol.i
\ le quadrants AB, A'& are below tne original
1 -vel (as looked at from the I of the
1 jain QiOM in tin- ivmaining auadr.

-6 aboi-' _rure 46 shows very clearly t h

N arping of the secti- may be real

i
]

on a creatly exaggerated scale,

1 r t -rubber band <f .]'

FIG.46.

]

Hollow Beam, bounded by cylindrical surfaces
o

'

similar Elliptic sections. If I m fa hollow and

b undfd lliptic cylinder

(j>

- "of the same form for both surfaces, and w and // have the

sa ,ie form as before.

It' l be the coefficient of ton !<-h a

f
| )!._.-
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Thus the resistance to torsion of an elliptic cylindrical beam of

given material and given length, per unit mass of the beam, is

increased in the ratio 1 -f /c
2

: 1 by hollowing it. [Compare the

corresponding result for beams of circular section in 336.]
It is easy to show from equation (42) that this result applies

to beams of any section, provided that the internal surface is

similar to and similarly situated with the external surface.

339.] Beam of Equilateral Triangular Section. If in

equation (39) we write for the constant term C^/IS, and put

it becomes

or 6 v/3(*
3 -

So*/
2
)
-

9(?(a
2 + y

2
) + C3 = 0.

The expression on the left hand side splits into three linear factors

(2x J3 + C)(x N/3 + 3s/
-
C)(x Jl-2>y- C),

and it is easily verified that the boundary represented by the

above equation is an equilateral triangle, having its centre of

gravity at the origin and one vertex on Ox, the length of each

side being C.

Fig.47.

Thus if we write

we obtain at once the solution for an equilateral triangular beam :

the contour lines, given by

?/
3 3x2

2/
= constant,

are represented in Figure 47.
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'.]
Beam of Square Section. Let the transverse

i of the beam be a square, with its sides (of length 0)

parallel to Ox and o//. The problem of determining the appro-
priate form of in this case will be much simplified by writing

it is easily seen that
\Js

also must satisfy (40), while the equation
(39) of the bounding curve may now (by writing JC- in>ieiid of C)
be put in the form

Our function \fr must consequently be such a solution of (40) that

ally when y = W for all values of x between
and JO, anl is .jual to \C*-y

2 when #=J(7 for all

values of y betw* ''and
Now con-taut- and rvm

|>
wers of T/ maybe expanded by

rein in series of cosines of multiples of y. and on

'>
ring t>

t ie appropriate form of solution is

Fig.48.

to Example 4 < Hi. f,ge ! at once apparent that
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The first of the required conditions will be satisfied identically if

we suppose all the values of p included in this series to be of the

form (2i+ l)7r/C, where i is any integer, or zero : and the solution

will then be fully determined by the remaining conditions

from which it is at once evident that A
t

By Fourier's Theorem *

4 J^ 90-

( 2i2 - 2 ,

_o

y '

and consequently

andf

xii +w = -

The contour lines are represented as before in Figure 48, and

Figure 49 gives a view of the warped sections for comparison
with those of the Elliptic Beam.

341
.] Character of the Stress. By equations (5) and (33)

the only existing stress components are R and $
;
thus equations

(21) and (22) of 163 reduce to

* Todhunter's Integral Calculus, Article 326, formula 5.

t Example 4 (iv.), page 258.
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>t' the principal
- lierefore vanishes at every point,

an<l since the Directions of the lines of zero stress are given by

lane curves in pla' n.liciilar

to the Central Axis an<l cutting the lateral

:ace at r: Vs.

The reinainiiiLT principal stresses are

etpial in ! -1 of op:

'

_rn, so

TV point is a simple
shear' is, of magnitude

in a plan-- parallel to < >z the direction cos in- >

of which are given by

8

The system of Prii irfaces enveloping
1 hese planes has for its difierei > . t i

- n

Sdx-Tdy-0,

integral of which is, by (33) an 1 (41)

^ + i(^ + y
f
)
~ constant.

system tli'T.-i'i.iv inclu.l,^ tin- lateral

urface of the K. am
may also be deduced from i "> I >

he di -if tli.- principal traction and
reasii' tare inclined at anglea

)totheO
magnitude of the resultant : stress is

FIG.49.

S "T

that the surfaces <i> = constant are tlm.sr Principal Surfaces

i --OBS which th'-ro is no stress, hut which envelope the [>lanes of

& .oaring stress; t!

S r ....(52)

Since w, dw/dx, dw/dy all vanish at tin- oii-in. so also do 0,"

ij,
an-1 <|>, d$/dx and (&/dy. $ therefore incre;
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continuously in numerical value from (along the Central Axis)
to G (over the lateral surface). Similarly, S is zero along the

Central Axis, and for corresponding points
* on the different <3?

surfaces S increases continuously with the numerical value of <j?

until we reach the surface. To determine therefore the points of

maximum stress (" points dangereux ") we have only to determine

those points on the lateral surface of the body at which the

expression (52) for S becomes a maximum.
It follows at once from (52) that S is zero at any projecting

angle (such as the edges of the square and triangular beams) and

infinite at any reentrant angle. Angular grooves ~f*
are therefore

fatal to beams intended to sustain torsion, and the slightest crack

in the surface will tend to spread indefinitely until the beam is

destroyed. On the other hand, angular ridges add nothing to

the torsional strength of the beam.
St. Yenant has, however, proved a more general, and perhaps

more striking property of torsion-shear. This is that the stress

at the surface is always a maximum at those points nearest to

the axis, and a minimum at those points farthest from it.

We can prove this property without difficulty for the cases

which we have solved.

(i.) Circular Beam:
Here * = \(x* + y*),

S = nr \/c
2 + 2/

2 = nrA.

Thus S is constant all over the surface.

(ii.) Elliptic Beam :

Here * = (Ay +
and

S = 2m- N/2y + B*x*l(A* + j&2)
= 2nT[A* -

(A
2 -

Thus S has its maximum value 2nrA 2
B/(A

2 + B2
) when x= 0,

i.e., at the extremities of the minor axis, and its minimum

*
Corresponding points on any family of curves, involving one variable

parameter, are those points in which the family are cut by any one of the

orthogonal system. With the notation of Chapter V., any function taken

along the curve 77
=

const., f= const., can only vary with .

t It seems possible that the curious twisting of old poplar trees, growing
in situations where they are exposed to prevalent winds in a fairly definite

direction, may be due in part to the presence of deep and sharply cut longi-
tudinal grooves in the trunk. The unsymmetrical growth of the boughs
affords a leverage to the wind, which thus exerts a powerful torsion couple.
This tendency is of course greatly increased when the trees form an avenue,
for they are then much more exposed on one side than on any other.

The Cambridge student will find excellent examples of the action here
referred to in the old poplar avenue at Newnham Croft, near the University
Swimming Club's sheds.
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lien ./= ^1, i.e., at the extremities of the
ten c-uiiM'|Uently two lines of minimum stress

!, A'A' in Figure 4(!). ami two fines of maximum stress (BB,
iiule length uf the beam.

II

an. I S =

The >il - uf the beam are represented by

x/3 + C'- 3/-C = 0, a; v/3-3y-C = 0.

Thus over the first sil'

S-iw%/5(i(

an-l thix '-xpression vanishes wli. n //= \C (i.e., alon^ tlie ed

which :

I has its maximum value ir?rC'x
/
:>

when
2/
=

(/.c., along the straight lin- drawn parallel to the

to bisect the face). Similarly for the other two sddea

>-e Beam.

Here

the com}' esses can easily be delmvl by ditierentiation,
'.at-'l mi: \\ and tl '.nt dt-duc.--l.

antgivestah Biesult- T la Tor?

des Prismes, \
wliieli show conclusively that S

num wh =
%C, and wh.-n x~ {)

,
the

four corresponding values being equal, and that S vani^l

angles.
Thi> latt-r ]>r.perty rna\

,-isily be pro\ ! directly; for

i

^Todhui mometry. ( 'li. xxiii., Ex, B.)
Tlm> it app^ai-N that \-ry lii ..im-d by making

. intended t> D only, with ]>r<jecting lon^itudin.-d

ridges, or flanges. We shall however pn-^-ntly see that such
: the greatest a valu- in

resisting (

rly disposed.
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342.] Erroneous Extension of Coulomb's Formula.
It was assumed by engineers,* before St. Venant had obtained
the complete solution of the problem, that all beams of what-
ever section behaved under torsion like circular cylinders : i.e.,

that their normal sections rotated without distortion in their own
planes. Thus the formula T = ^Jf3r was supposed to be univer-

sally applicable, whereas we know from formula (42) that it is a

unique property of the circular cylinder.
The true value of t as calculated from (42) for a beam of any

other form, is found always to be less than that given by the

application of Coulomb's formula, and also (as we might have

expected from the last Article) less than that of a circular

cylinder of the same sectional area. Figure 50 shows the results

of St. Tenant's comparison : the first line of numbers giving the

ratios of the values of t for beams of the sections represented to

(A) (B) (C) (D) (E)

8435
8833

8186
8666

Fig.50.

those deduced from the fallacious theory just referred to, and
the second line their ratios to the value of t for a circular cylinder
of the same sectional area. The waste of material in forming

projecting ridges is very conspicuous in case (D).

Third Component Flexion.

343.] Equations of Strain. Retaining only the terms in

the second lines of equations (21) i.e., annulling all the arbitrary
constants but ^ and /^ the displacements take the form

-
L^\

v = - *2
) + fc

2 -
...(53)

* This statement is made by St. Venant, and quoted by Thomson and
Tait. Neither authority gives any references, and I have not been able to

verify it personally.
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while the stress components are

/: m - nr
lV // + /?,.

] (54)

The function w
:
must satisfy the condition-

throughout the 1"

A^-H/
+ <r)Aay + /x[^ +H^-y2

)]
......

l the lateral surface, and finally

v)3t- (4^)^ = 0.

for the preservation of equilihrium.

;.) Geometrical Character of the Strain. Any longi-
tudinal fibre (x, y) of the beam is strain--'! into tin-

/'/<'// cun e

CT.cr -
(J.z [<rxy - C^*\ "1 1

1

'

~
(58)

Fhe plane of each strained fibre is parallel to O//. an. I th. curve
t is a parabola of th- thinl il.-^n-.-, which how.

n.l very small does not .litl'.T much from a j.arahula

ree, nor i "f lari:' di

set of fibres which before the strain tWinnl tin-

- of a rectangular hyperholic < ylinder

-C,

lanes of yz and zx for its asymptotic plan-
trai:

J
iii'_

f in th- >y>trm Q|

B

ind, i: generators of the cylinder

<rxy

>ecoi I in planes parallel to yz.
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The Central Axis itself lies when strained in the plane

through Oy

its curvature at a distance z from the fixed base being

c^-ft*
The elongation of the longitudinal fibres of the beam is given by

so that all fibres initially in the plane of zx and in particular
the Central Axis retain their natural lengths unaltered. We
have thus a Plane of Zero Extension dividing the beam longi-

tudinally into two portions. If ^/^ be numerically greater
than the length L of the beam, all fibres on one side of this plane
will be elongated, and all fibres on the other side of it contracted,

throughout their whole length. If however ^^^ be numerically
less than L, the elongation of every fibre not in the plane of zero

extension changes sign at a point initially distant **!/& from its

foot. The curvature of the Central Axis, and indeed of every
fibre, changes sign at the same distance from the base, so that in

this case each strained fibre has a point of inflexion.

The plane transverse sections are deformed into the surfaces

Awi'' ......(59)

where, as in 331, w/ bears the same relation to x
f

, y' as w1
to x, y.

The tangent plane to any such surface at the point where it

is cut by the Central Axis is found on expanding w/ by
MacLaurin's Theorem to be

it is therefore parallel to Ox.

345.] The Second Flexion Component. The terms in-

volving or
2, /32 and w2 in equations (21), (22), (23), (26), (29) may

be deduced from those discussed in the last two Articles by inter-

changing the suffixes 1 and 2, and the coordinates x and y. The
strain represented by them is therefore a flexion of precisely the
same character, only in converse relation to the principal planes
of the beam.

Plane Circular Flexion in a Principal Plane.

346.] Reduction of the Strain. If we now annul /31? and
with it all the terms involving w1 (see 327), and retain only
those which have ^ for coefficient, the character of the strain is

greatly simplified.
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The displacements become

u =

v=K
} (- *^U ........................... (60)

ami the stress compon

P=Q = S=T=U=0 ................. (61)

7.] Geometrical Character of the Strain. The easiest

way to re; effects of tin- -trail: solve tin- displace-
in, nts (GO) into the three simple component systems

anl to our onler of approximation

-

-V ^ ,_

(^ i

Sbn parallel to the Central A ainr.l in

ircof a cin-1'-. lyin-_r
in rawn throu-li it-> oriirina! dii-.-c-

aii'l lia\ iiiiT its centre in a -traiirlit

in-- drawn parallel to Ox to c ! ~, i'mm the

)rigin in th-
j

A!i fibri ! initially in tin- plane
n-tain t! ral Irn^tli unalt-n-'I

Second
!;.

'-^-TEr*EvJI

; follows that ' (

.

,r Wtf 1

\\ lin- in tli.- l.-aiM initially parallel to Oy is strained

nto a - plane of yz, and meeting the line
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of centres of the circular fibres. In fact, each such straight line

becomes a radius of all those circular fibres which lie in the same

plane parallel to yz.

Thirdly, every straight line in the beam parallel to Ox
remains a straight line, and is shifted bodily parallel to itself.

See Figure 51.

Fig.51

(ii.) This component is obviously similar to the first, x, z, u,

w, 0-5?! being substituted for z, x, w,u, trr
1

.

Every longitudinal fibre remains straight, and is shifted

bodily parallel to itself.

Every line in the body parallel to Ox becomes a circular arc

in the plane drawn through its initial direction parallel to xy,
and having its centre in a straight line drawn parallel to Oz to

cut Oy at a distance 1/o-tr^ from the origin in the negative
direction.

Every line in the body parallel to Oy remains a straight line

in the same plane parallel to xy, and becomes a radius of all the

circular arcs in that plane. See Figure 52.

(iii.) represents a displacement of every point in the body
perpendicular to the plane of xz, and in the positive direction of

Oy (i.e., that towards which the beam is bent), the amount of which

depends only on the initial distance of the point from this plane.
Thus every straight line of the three principal systems remains

straight, and parallel to its initial direction.

Superposing these results we see that
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(i.) Every longitudinal tihre of the beam is strained into a
circular arc of radius 1

~
1 >/ in a plane making a small angle

v, it]

(ii.) K raight line parallel to O.r is strained into a
circular arc of radius '. in a plane making an angle ^^
with

ry straight line panOd to Oy remains a straight
;

< >ns of which are

gnat

\ wliich is a radius of all the < arcs of eitlu r system
vhich int'

Fig.53

The general 11 planes parallel
10 xy and yz in the form of plants and to warp all planes ])arall-l
1 o ZX ; 'i*' 'iirvatun-. 'l'h' ^trained form

i' the pi
/ is shewn in Ki-jun- ~^\.
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Since e=f=(^s1y, g= -

this plane is a Plane of Zero Strain, that is to say, it is warped
in such a manner that any figures drawn in it preserve (to the

first order of small quantities) the dimensions and proportions of

their elementary parts unaltered, although they cease to be plane

figures. This plane is known as the Neutral Plane.
All fibres on the side of this plane towards which flexion takes

place are uniformly shortened and dilated, and all fibres on the

other side of it are uniformly lengthened and compressed, the loss

or gain in length being proportional to the distance of the fibre

from the Neutral Plane. This proportionality ensures that all

transverse sections and in particular the ends of the beam
remain plane.

All fibres initially in the plane of yz become circular arcs in

that plane, and a strain of the kind that we have been investi-

gating is called a Circular Flexion in the principal plane of yzt

or about the principal axis Ox. The amount of flexion is

measured by the curvature rs^ of the Central Axis. The plane in

which the Central Axis is flexed is called the Plane of Flexion.

348.] Character of the Stress. All the stress components
vanish except the longitudinal traction, and by (61)

The tension across any transverse section of the rod is

ffRdxdy
= -

q^ffydxdy
=

by (I). The action across every transverse section consequently
reduces to a couple ;

and since the component couple in the plane
of zx is

JjxRdxdy
= -

qTZ^Jjxydxdy
=

by (1), this couple is wholly in the plane of flexion.

349.] The Flexion Couple, Coefficient of Flexion, and
Potential Energy. The couple in the plane of flexion, applied
to either end of the rod, is the same as that acting across each
transverse section throughout its length, its amount being

P
T
= -Rydxdy^q^ytdxdy^qK^................. (62)

This is called the Flexion Couple, and its ratio to the amount
of flexion produced, namely

Pi
= *ilni = q3v .............................. (63)

is called the Coefficient of Flexion in the principal plane yz.
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It' L V thr length of the beam, the total potential energy of
strain N

l

P~r (2p (64)

('anil'tnn lit f C't i-Cdlil i'

1

] Displacements, Stress, Coefficient of Flexion, etc.

In exactly th* -anir way w.- may shw that, if in equations (21)
null all tTiiix l.ut thu.xi- which have ^

2
for coetlieii-nt. tliey

will n-pn-.-nt a circular tl.-ximi f aimmnt ~., in the principal

plan plane of yz beinu ii'\v the plane <>f /, . r ,. -train.

Thr
li>pla--- are

10=

-y2) + ,m

the trartin i

r- B

p. '/-

he coefficient of tlr\i..n

p

potential nergy
1C (68)

.'

.] Equations of Displacement. Let the l-ram he

in surh a way that the < Vntral AjOfl tak.-x the t',.nn nf a

, rcu! plane inclined at an anirlc a to

t le principal plai.

Then, by a ximplr aj. plicati*
n -t' Heunlei - Th-c.rnn the com-

enrvatui-.- ..f the Axifi in th- t\v principal planes are

D -CTcosa, CT = tT7 (f'9)

K.ing the-- xuhxtitutiniix in e. jiiatinnx n'l ai '. e Imve

r< r the <lisplacem< i

n = CT [o-ary
CO8 a + :.

-']
sin a}

"j

73<rx sin a + iv(//-
-

.'/-
?

)
f :-

)

ms .1
1

-

- m{i/zcona + xz*\-

2D
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and for the longitudinal traction

j? = -
q?3(x sin a + y cos a), (71)

the other stress components vanishing, as before.

352.] Flexion Couple, etc. The total action across any
transverse section still reduces to a couple, -but this couple is no

longer in the Plane of Flexion. The component couple in this

plane, which may still be called the Flexion Couple proper, is

p = cos
a.J'J'yRdxdy

- sin affxEdxdy
=^J 1

cos2a + J( 2
sin2a), (

72
)

so that the Coefficient of Flexion

P = 2(Jicos2a + J 2
sin2a

) (
73

)

is still, as in the simpler cases [(63) and (67)] of flexion in a

principal plane, equal to the product of Youngs Modulus into

the moment of inertia of the transverse section about an axis

in its own plane, through its centre of gravity, perpendicular to

the plane offlexion.
It will be observed that

p-
= p^cos^ + p2

siu2a, (74)

where ^ and p2
are the principal coefficients of flexion.

The component couple perpendicular to the plane of flexion is

<?5T(jfj
-
Jf 2) sin a cos a =

(p^
- p2)

sin a cos a, (75)

the sign being taken so that it tends to bend the Axis towards
the plane of yz, in which the coefficient of flexion is pr In other

words, this couple is necessary to prevent the beam from acquiring
the given amount of flexion in the easiest possible way, i.e., in

that principal plane in which the coefficient of flexion is least.

If the plane of the resultant couple make an angle i//-
with zx,

the component couple perpendicular to this plane vanishes, so that

sin ^jyRydxdy
- cos ^J^Rxdxdy

=
0,

or tan ^ = |p tan a = ?2
. tan a (76)

Jl Pi

Hence, when the form of the transverse section of the beam is

given, and either the plane in which the couple is to be applied,
or the plane in which flexion is to be produced, the second plane
can be found by the following geometrical constructions :

(i.) Describe any momental ellipse
*

Six<2 + Jf 2?/
2 = constant

of the transverse section, and a central radius of this ellipse to

* Eouth's Rigid Dynamics: Volume
i., Article 19 (4th edition).
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-nt the trace on the plane of the section of the plane of
11. The perpendicular from the centre on the tangent to the

ellipse at the extremity of this radius will be the trace of the

plane of the resultant couple.

I >. M-ril.e the elt''j>*e of gyration
*

)
1 JV

of the tran-\ ;..n , and a central radius representing the
trace of the plane of the r.-ultant couple. The perpendicular

bre nn the tan-Tut to the ellipse at the extremity of

adiu- will l.e the trace of the plane nf tlexion.

:;.]
Beams of Equal Flexibility in all directions.

t'r<>m t)i- Tuction>, nr directly from (7.">) and
hat the plane of the resultant couple does not in general

c. .incidf \\ith thf plane of flexion unlr^ the latter is a principal

plai
In all case- :u which the area of the transverse

'//// >////
! about its centre of gravity,

>!.>. anl p = Pi
= p. The lu-ain is

^aidtol- and tli-xinn takes

accurately in th. j>lane of the applied couple

The Potential Energy of Flexion. By e,
(

uati..ii

if

! v COB a + a; sin a)*d

l^faAi)
- /P Jp. , 77)

]
The Stress. Economy of Material in Beams

iesigned to resist Flexion only. The I beam. It follows

be tin- form of the t

udinal ti limit the Neutral

'Ian- nfral A\U po pnidieular to the

Ian- 'iiaximum positive
; nd i valu.-s jilmi.j tho>,- .

\ th.- L.-am \\hieli

i] .-itln-r -id.-.

Sin liki- that nf bonion, depend
i pon th- niMin.'nts of in.-rtia f n. a j.recisely

DCOnomy >f mat. rial. Of in'-n-a-.- of sti'-n^th per unit

;.
lioll.win- out that ]...rtinn

of the lieam which

s irrniind- tin- ( '.-utral A

*
//,///. Arti. :
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\y

Flange srtbje t to Thrust

When the plane of the straining couple is determinate in

actual structures this is usually the vertical plane through the

Central Axis a still greater economy of material is possible,
because our only object is then to make the coefficient of flexion

in one given plane as great as possible, while that in the perpen-
dicular plane may theoretically be reduced to any extent. We
shall therefore gain by concentrating the substance of the beam
as near as possible to the plane of flexion, and as far as possible
from the neutral plane. In practice we have to take into account

possible small flexions in other planes, as well as accidental

torsions, so that the reduction of material in the central portion
of the beam must not be carried too far. The best practical

compromise is found in the

"I beam," in which the section

consists of two flanges con-

nected by a web, the whole

being symmetrical about the

plane of flexion.

In the case of wrought
iron, and the other more

perfectly elastic materials in

which the working strengths
under tension and compres-
sion are approximately equal

[see Table (D), page 203],
the Neutral Plane should be

equidistant from the two
extremes of the section. In
cast iron, however, the work-

ing strength under compres-
sion is nearly three times that

under tension, so that the

greatest economy of strength
will be gained by making
the distances of the Neutral

Plane from the extreme sur-

facesof the flanges in thesame
ratio. Since the centre of

gravity of the entire section

Plane

s u bj e c t to 7V // s i o it

Fig.54.

must always lie in the neutral plane, this consideration of course

requires that the sectional area of the stretched flange should be

considerably greater than that of the compressed flange.
The Coefficient of Flexion for an I beam of given dimensions

is easily calculated.* Let "depth" denote dimensions parallel

* In practice the inward angles are rounded off, to guard against acciden-
tal torsion, and other shearing actions (Art. 341).
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to the plane of rlexion (f/: , and "breadth" dimensions perpen-
dicular to this plane. Let B

lt
F

l
be the lnvadth and depth of the

geonthemd ''- which tlexion takes place, and which
i> therefore subject to longitudinal t: -'^o'), and let # F.,

he the dim.-nM.'iis of tli.- Ha Hire subject to . Let B
3
be the

dth of th- well, and Y^ Y, tin- di>tanc-> from the neutral

plan- 8 of the contracted and extended

igee.
Then

neutral plane contains the centre of gravity of

the >'-cti")i

)-,-/-,+ ) / (Y r

-a -Wi-i'i)
the fXtr.-ii. 3, Dd th.'ivfoiv al>o by (ill)

me onlinat.-s, are to be in the ratio of tin- working
un.l'-r thru-t (C^ I- that und-r t.-n-ion (T),

C:T...

KFt -JJ

.--'iXA' '.-r*

.h.%
in. at i and (79) p may easily be found in t. rms of

dimensions of the flanges, and of the total depth ( )*, + F
2)

of

ie beam. T >us adopted in practice are such that the

;rength of t m is about -i\ tim. ^ that of a simple rect-

u la r btt be same sectional area (Cotterilh.ngmar i

Si* ' ''"' 1<

't tht.' C< itfr.il J

]
The Displacements and Stress Components.

..inp-.undini: tin- juati"!
\v- obtain for

t ie resultant nts

u= -<re:-Tys + CT{(neycoBa+ i[<r(a^-7/ MUJ

v^ r/-2 + cr{o-.v l[<Ky
2 -.< "!

w*z + rw- T3z(x sin o + y co a)

a ' f'T t
:

R =
y[f

- ~i ./ sin a i y cos a)]

(82)

i
)
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357.] The External Forces and Couples to which this
Strain is due. Independence of their effects. Over either

end of the beam T=F, S=G, R= H, and on substituting from
formulae (82) in the surface integrals (6) and (7) of 146, and

integrating over the area of the transverse section, we find for

the system of external forces and couples which must be applied
to the ends of the beam to produce the strain represented by (81)

(i.) A force, parallel to the Axis, of amount

E = ?JU-te, (83)

(ii.) A couple, in the principal plane of yz, of amount *

Pl
= - q^{^ cos a = -p^STcosa (84)

(Hi.) A couple, in the principal plane of zx, of amount

P2 q^^p sin a =
ty.fl

sin a (^5)

(iv.) A couple, in the plane of xy perpendicular to the Central

Axis, of amount

Thus each of the component distortions e, w^ = or cos a),

CT
2(
= GT sin a), r, is related to the corresponding external action as if

it existed alone. Consequently, if the external action on the ends
of the beam is distributed according to the laws of equation (82),
the effects of the longitudinal force and the component couples
will be entirely independent.

Let E be the longitudinal tension, and the resultant couple
applied in the plane having A, /x, v for its direction cosines : then

by equations (83-86)

It should also be observed that, even in the most general form
of strain, the force and couple across any transverse section of the
beam are transmitted, unaltered in magnitude, from one end to

the other.

358.] The Total Potential Energy. By equation (20)
of 199, we have

W =
\Lff{Rg + Sa + Tb}dxdy,

* The couples are here taken in the standard directions of Appendix I.

If the plane of flexion lies between the positive directions of Ox and Oy, the
effective couple in the plane of yz must be negative.
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ami i
r tinu- and u>in-- where neev

t' the previous Artieh-s, that

r-ji[**4 . +
t7--'j )

= U[ee- p~ -

tr-']

*

Thus tli-- potential -i eneoilfl quadratic function
of tli ;.M. torsion and each term appearing in

form a- it' tin- -inlin^ kind of strain

'lI.ir.HIl-.M AM> M". \ATL-l:ALLY
Wn

'.]
General considerations applicable to bodies of

infinitely small transverse dimensions. Tin- first point to

linn with Mich l.ndi.-s ix, that tl infinite
'

iie88 of / Displacement of points sit

> from, one another (tin- in-tvary and >uii

.nditit.n >mallnrs.s <!' strain, a.ssunu-d l.y our

l>e consistent v
reUi'

ntly ..l.M-un- -t, may be illustrat-l by a
r\. lie case of p'

ilar tl-\ion of

i \vir it appears tliat tin- Mrain com-
:its are of tli- th.- riirxatun- uf

,he Central Axis and tance of any point from that

ir.-d parall.-l t. t'hr j.lan.-
: I l> h- what Vffl

mve called t!. it- iitaxiiiiiini

liiiirnsiuii in : ion, the
j

" h may !M- taken
nt UM dim. nsions of the strain. Now, suppose a wire

>f tii -li L. naturally straight, to be bent into a circle.

Supposing the law f tl.-xinna' id for such a case, tin-

al Axis will be unalt-n-d in nr\ at ur- will

herefore be t3= 2-ir/L. '1'hus tin- strain will ! ..f lini-n>ii)ns D/L,
.nd if the transverse <lim-i wirr ! intinitrly small in

M with its tiiiit-- I'-nirth. tin- strain at every point will

.-main intinit.-ly small alth-. 1

. tive displacements of

verse sections separated 1-y
t'n will ohviou.sly le.

init. -. The case of torsion may be treated in a pronely similar

vay.
''I'll.-,- r.-ults may be gei follows:

If
OW Or I

f tfie dimensions of a bo<l U ><> oompcu
.<! I,,/ J

, i

, may suffer finite

/cement*. ! '!<<>" nswn,
, *iiuill >7/v//'/w and stresses

po'
!
j.
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On the other hand, by considering the longitudinal extension

of an infinitely fine wire, we may easily show that the relative

displacements of all points in such a body, parallel to a finite

dimension, must be infinitely small, if the strain and stress are

to be infinitely small.

Thus, if an infinitely fine wire have one point fixed, the

necessary and sufficient conditions that the strain and stress may
be infinitely small throughout are that the longitudinal displace-
ments of all points be infinitely small, and that the transverse

displacements of points at finite distances from the fixed point
be either finite or infinitely small. And, in such a case, the dis-

tribution of small strain and stress throughout the wire may be
assumed to be of the same form as in a beam of finite section

under the same mechanical conditions.

Secondly, it is evident that the impressed forces (if any) on
an elementary length of the wire are always negligible in com-

parison with the tensions or couples acting across its ends : the

factors expressing the impressed force per unit mass and the

stress per unit area being supposed finite (compare the method
of 144). The form in which stress is transmitted along the

wire may therefore be assumed to be independent of the exist-

ence of impressed forces, the only effect of the latter being to

cause the magnitude of the stress to vary from element to

element. The same reasoning is of course applicable to the

effective forces, if the wire be in motion. It should be observed
that a transverse force, impressed or effective, of finite

magnitude per unit mass, acting on a finite length of wire, will

in general require the application of equilibrating transverse
forces to its ends, in the form of tangential stress of finite mag-
nitude per unit area. These will give rise to tangential or

shearing stresses between consecutive elements of the wire,
wrhich may be taken into account by simple superposition.*

Thirdly, although the forces and couples found in 357 to be
transmitted along a beam of finite section depend upon a certain

definite distribution of surface traction over the ends of the

beam, yet, as the section is indefinitely diminished, we may take
it for granted that the exact distribution of stress over it

becomes of less and less importance, until finally we may assume
that any equilibrating forces and couples, of the general type
described in that article, applied to the ends of an infinitely fine

wire, must distribute themselves over those ends in such a way
as to transmit throughout the length of the wire forces and

* An elementary length of wire is a body all of whose dimensions are of
the same order of magnitude. All the relative displacements of points
included in such an element must be infinitely small, and the principle of

superposition may therefore be safely employed.
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couples of the form we have found necessary for equilibrium in

Vase of a beam of finite section.

Finally, the curvature of the infinitely small transverse sec-

due to the strain, may be ignored, and they may be
ded as plane elenu-nts, everywhere cut perpendicularly in

their centres of gravity by the Central Axis.

>.] Approximate application of the foregoing con-
siderations to Wires whose transverse dimensions,
though finite, are very small in comparison with their

length. Tin- consideration^ of tin- last article are rigorously

-illy of wires uf infinitely small -rcti>n, l.ut they also apply
t the Win-- defined in i :\-'2, and the close

approximation of the theoretical formula- deduced from them
with the results ;m-nt amply justify the application.

\\'.- DOW propose to consider the eijuilihrium and vibrations

\\hich we shall in general assume, fur Mmplicity,
to be of e.pial flexibility in all din- Qndei CoT068 and

cniiples applied to it with ai ;n nf im-

presx-.l forces throughout it> mass. \V- .shall assume

(/.) that tin- tran-\--i-se sections an- appn\imatrly small

f lane surfaces licularly in th.-ir centre^ -f gravity liy

t le Central A

.) that
'

be t.-nsinn or thrust

ti -TOSS any section ia equal to r t In- < Initiation
<

'

the Central Ax id wh- i th. section, and c

t te coefficient of ext- nt.

khe oonple between the two elenu i-atrd i.y

; iy trans\-i-r-- * in a plane perpendicular to tin- prin-
c pal normal to tin- (Vntral Axis at the corresponding point.

f this euupli- in the jilam- <f tin-

b cti<>: tangent to the Central
'

V h-n- T \- the rate of th- win- ai-oul th-- A xi^.and t the

t- efti ion at the p<

that t

ppne&i
of this coup],- in tin- osculatin-

]
in- / ion at the point),

o! about its VuiH-rmal. is ^ rhere f3 i- the curva-

ti re of the Cent r. . ;nd p tl. ..f tl.-xion at the

p-
ii

ff the wire l,e of uniform .section throughout, the coellici

tj P
'

!t ^-

_-in n he
i

I point of the (Vntral Axis, and
denote ' -rc of the strained Axis, reaching

fi .m n to the point .'
, // ', :') initially at (x, y, z). Then, if Jt

1.. the -mull s.-ctional area of the wire at the point (a ', //', ;'), the

of voluiiM- may ! taken a> '/JV'/>'.
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To express the impressed and effective forces and couples as

functions of s, we may proceed as follows :

Let x'= a;' -{-', y'= y'+ 1/, z=z-\- f be the coordinates of any
point in the section Jt terminating the length s of the wire, so

that
', >/, f

'

are the coordinates of any point of the section, in its

strained position, referred to axes through its centre of gravity,

parallel to Ox, Oy, Oz.

If X, F, Z be the components of the impressed force per unit
mass at (x, y, z), and if

^c*3t = jye, etc., ........................... (89)

then
yo^JB, /><2l|j, pJlE are the components of the impressed force

per unit length of wire.

The components of the impressed couple per unit length about
the axes of reference are

or p\M + Ti')Z- (*' + f)^31, etc.,

or P&\y'% -
z'l] + pfftfZ

- f r)rfjt, etc.,

which^we
shall write /o^'E-^l + |C), p(sfg-x'Z + JfK),

"$ y'& +
$>)> where obviously

-tS
....................... (90)

The components of the effective force per unit length are

, etc.,

and these obviously reduce to /oJUc

Lastly, the effective couple about Ox,

or
ffp[(y'

+ i)(z' + i'')
-

(z

reduces to
/>Jt(^'

-
z'y

1

)
+ p

so that the component effective couples may be written

pJK^'-^y+l), p&(z'x'
- x'z +m), p&(x'y'-y

f

x+\\), where
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No\v l't UN oniMiK-r tin- Mjuati>u> >t' motion of tlu> length s of

>,0,0 bo Let A
,
B

y
C denote

iifiits parallrl tu tin* ar1>itrarily <liivcti-l axes of refer-

bhe tension ac l'urtli-i- cn-l. anl U-t the sutfix

ilistinirui^h tlir valu.'x a-^uin''l ly t'uiu-tions of s when ,s'
= 0.

MULT |>arallel to ' Oz,WG have

l=P/':-VV''-V
it

Of -J
\

L=^>

G

kin, the direction te tangent to the Central *
(which i- th- axi- -.f tli- t'.r-iMU (-..uplr an-

tj''fi8,dy'/('*.

that th- c..iiijM.n-iitx ..f thi- c..tipl.- al>ut tl :-ivnce are

S milarly. th- lii-ctiMii cosinefl >!' th- liiii>riual t< tli- ( 'ciitral

ijl') being

l

{ \

~\ I

I tl J C']||}
1 ..ll.'!lt->

)

taking ....... M'lit^ :il".ii( ".,. u,. !

\ rir9*"! fJV 3V 3*'

) L J., L
p

( 5 - , ,

yC -/.-../ <3l I (y1

1

I fft)*,-// .- .V + l,),/,,

--"
'5

'
-

!

r
,( iL 3 r
\9 S* 3 3*2 /J

y the aeoond of equation
i xiilitrar- .in tli.- other,

//-^'- /

y the aeoond of equation .

f*, and tin-

i xiilitrar- .in tli.- other, W* l.tain
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and on substituting* this result in (93) it becomes

[360.

and two similar equations may be obtained by taking moments
in the remaining coordinate planes.

For practical purposes equations (92) and (9-4) are more

readily available after being differentiated as to s ; so that finally

we write

3s

.(95)

and [on elimination of A ,
B

Q ,
C
Q by means of (92) after differen-

tiation of (94)]

3s

-

......... (96)

_ , _
P " ~

2 ' ^
(

We also have, as the analytical expression of assumption (ii.)

above,
/dx' r>3y' sfiz> _

xA + B + C = t (9/ )

3s 3s os

The geometrical equations, expressing T, 1> tn, n as functions of

x'
t y, z', s, are troublesome to obtain in the general case of finite

curvature and twist
;
and as we shall only apply the dynamical

equations involving them to cases in which the transverse dis-

placements are small, we shall investigate later on the simple
forms they assume under those circumstances.

*This transformation of course only amounts to shifting the point about

which moments are taken from the origin to the farther end of the arc s.
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The terminal conditions, to he ^ati^tied at each end of the wire,
are as follows :

(i.) A, B, C must be equal to the components of the applied
ion.

- mu>t be equal to the applied couple /// the plane of

rniinal

p- nui>t be equal to the applied couple in the plane

perpendicular t<> tin- terminal section.

I the terminal valu-

ijual the direction cosines of the plane in which the couple

Applied.

(v.) cc must e.jual the normal component of the applied

It i^ evident that, if there 1>- and if the flexion be

in on,- plane throughout, the equations of motion and terminal

c >nditions will be ^ipially a wire of any form, such

the principal a\.-- - us lie throughout in two

S oneofwh: Mes with the plane .>: In such

a case 11 merely have to write p, or pa for p 860),

i

]
The "Linea Elastica" of James Bernoulli. If

ippose a wire of uniform -ect ion to be held in ejuilibrium
1 y equal opposing keonoOfl applied to it- . n.l-. either directly, or

1 Y mean* oi ith the tu is and
t ie lines in which that there will be

i 3 torsion, and that t -n will be wholly in that plane.

Taking the line of | and the

I
ane of ;us plane equations of equilibrium

r duce to

</'
'

LI i

</*

w 'th the terminal condition- .1 /.' <. i' the tensioii (7 applied
rid. and

P
t

= the couple ( if aiiv i applied to either end by mean- of the rigid
ai ms.
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Thus A=B= Q, and G= G
, throughout the length of the wire,

and the remaining equation of equilibrium is

If a be the length of either arm, we have psr = (7 when x=a, so

the constant of integration is zero, and

frtar-O^,

or the curvature at every point is numerically proportional to

the distance from the line of tension. Transforming the inde-

pendent variable from s to z'
',
this equation may be written

and, on multiplying by 2dx/dz' and integrating,

or
(7 2(/)2

- a;'
2
)
2 '

where D is an arbitrary parameter. This is then the equation of

the curve into which the wire is strained; it is known as the

Linea Elastica.

When dx'/dz'= 0, x'= */D*2p/Cv so that if <7 be taken
to represent the numerical magnitude* of the tension, the

maximum distance of the curve from the line of tension is

*JLP+ '2y/C ,
and the minimum distance (if any true minimum

exists) is \/D2
2p/C f

. In the cases of Figures 55-58 D2 must
be therefore taken less than 2p/ (7

,
and in the case of Figure 60

greater. Figure 59 represents the intermediate case, in which
D2 = 2p7(7 ,

where the equation of the curve reduces to the integrable
from

jc' x/4p
-

6V''
2

v4p

or, G being necessarily positive in this case,

Figures 55-60 are taken from Thomson and Tait's Natural

Philosophy : they are copied from the actual forms assumed by
flat springs of such small breadth that no appreciable tortuosity
(and consequent torsion) was introduced by the crossing of the
different branches.

* This is positive if the ends are pulled apart as in Figures 58, 59, 60, and

negative if they are pulled towards one another as in Figures 55, 56, 57.
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362.] The Helix of Equilibrium of a Uniform Wire
under no Impressed Force or Couple. Writing in the

general equations of equilibrium TS for the resultant curvature,

(X, yu, v) for the direction cosines of the tangent, and (X', //, i/) for

those of the binormal to the curve assumed by the Central Axis,

under no impressed force or couple, they become

dA_dB
ds ds

d,

ds

*.

ds

A
fo\_\

XA

v']
+ BX-Ap = V

u.B + vC =

Thus A=A
,
B=B

,
C=C throughout the wire, or the tension

is constant in magnitude and direction. Let E be its magnitude,
and let us choose the arbitrary axes of reference so that Oz may
be parallel to its direction. Then (7=E, A=B =

Q, and the

equations of equilibrium will be satisfied by the assumptions that

e, T, & are also constant, and that

as

(98)

o
ds

Thus v, v are constant and X// X'/m O, or the tangent and
binormal are inclined at constant angles to Oz, and the principal
normal is everywhere perpendicular to Oz. The curvature being
constant, it is obvious that the Central Axis of the wire assumes
the form of a regular Helix, described upon a right circular

cylinder having Oz for a generator. If r be the radius of this

cylinder, and a the pitch of the helix, r = cos2
a/^, e = E sin alt.

If we now transform the origin to a point in the axis of the

cylinder, and choose Ox so that it shall pass through the end z'= Q
of the wire, and if

<j>
denote the angle through which the arc s of

the wire turns about Oz, we shall have

x' = r cos <, y'
= r sin <,

' - r< tan a, s sec a,

and the second and third of equations (98) both reduce to

ar sin a - tr cos a + rE = (99)
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When the magnitude of tlie couple applied to either end and
filiation of it^ axi- to ": are given,

~
and - can he deter-

1. and (99) will then serve to determine a; whence finally
r and e can he found.

:;.] Equilibrium under Terminal Couples only.
Writing E = O. we have t

- = 0, and if P, T le the flexion and
11 coupl.-s (99) reduces to Psin <i Tcosa = 0, while

r = pcos'
2 P. Let the magnitude of the couple he C, and let its

axis in any po^ihl,. pu>iti<n of t-.juilihrium make an an-'le \'r witli

":. MII the same side of it as the tangent to the curve. Then
P 0<-"-(u + ^r), T = Csin< u + >//>, and hy (99) sin \!s = 0. Conse-

<ju*-ntly t: f the helix is perpendicular to the planes of the

terminal mil]
Thus if

e.|i; .-ouples in parallel planes he applied
nds of a fine \\ I take the form of a uniform neliz

;l>ed upon a cylinder with its axis ].er])en.licular to the

phui'-v ,,f tli-- the length 1 and radius r of the cylinder,
th-- ])itch a of the h.-l: hidi it cuts the planes ..f

nd the angle </>
t which it turns ahoiit the

a? is, being coi

the nia-jnitu.le C f the CMiipl.'s
he Lriven. there ;n

ii init-- numher of p.^silil,- j .|iiilihrium. hut if in

a dit . '. ijuanti: be known, the

l< ution ; Ti:, curvature of the wire

w 11 he Cn.s,i p Onno/f throughout.

304.] SimpMed form of the equations, when the
ir iximum curvature of the Central Ayia is very small.
Ii tl all points of the

A IB :>. to c-'iiicide with its un-t i

di ection. ,all |iiaiitities.

a well a

|tii
68, * is rijiial to ; . and I tit to d/dz.

*

/;

(101)

1

\\ ii tit will now of course
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and the approximate values of T, 1, in, 11 may be found as

follows. The curvature being very small, the displacement of

any point in the transverse section JV, relative to its centre of

gravity, will be very approximately perpendicular to Oz, and due

entirely to twist about the Central Axis. If be the angular
rotation of this section about the Central Axis due to torsion

( 332), which we must in general suppose to vary from one
section to another ( 359) under the influence of impressed

couple, and which is not necessarily very small, the amount of

torsion, or rate of twist per unit length of wire, is evidently

Let ( >;, z) be the initial coordinates of that point of the section

whose strained coordinates we have denoted in 8 3GO by
2/'+ /, s'+f) ;

then we shall have very approximately

Substituting these values in (91), and remembering that every
diameter of the section through its centre of gravity ( 353) is a

principal axis of inertia, we find (on the assumption that the

angular velocity of rotation of transverse sections about the
Central Axis is small)

l-m = 0; &n = $ s
........................... (104)

Equations (96) and (97) now reduce to

(105)

and

In applying the terminal conditions it is to be observed that
the components of the flexion couple in the coordinate planes are

Of course, if the wire be of uniform section, t, p, c, JV and
are absolute constants.



AN1 \VIKKs.

fcsofS), ',>!)

!es.

.]
Free Longitudinal Vibrations. Annulling all the

impressed forces and cuples and all the displacements but 10, we

-*>-<>> *

Th''>e equations are obviously ^ati^tied (to tin- tir-t order of small

piantiti' .1 = /f = 0. and

C - f =

t

Til-- latt.-r i> the equation of vil-ration i -tied tlirnu^hniit

til-- win-, and i: i it that the s that

tli motion may hi- entir are that

-^ = 0, when z = and when z = L .5
\\'i liml that to and "','

sa i

= 0,

e terminal con <_fiieral -olution of (his

W" ha\e iinallv

'
'

nd M . /, are

Thr v.-lor'ir 1 alon-j a \\ iiv is t

N 'i with tin- velocity

^/ //-; mianon throu-h an

ilil nit.- iiH-diuin. \V- -hall \\'\ ^
/ />.

3<>(;.l Lateral Vibrations in a Fixed Plane. Th. win-

b. TI-_' .|iially tl.-xibl.- in all dir
'

< any plain-
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through the Central Axis, e.g. the plane of zx
t
as plane of vibra-

tion. Annulling therefore v, w, and 0, we have

Eliminating between the third and fifth of these equations, and

neglecting the square of du/dz, we obtain

and, on differentiating as to and eliminating J., the equation of

motion reduces to

The tension is, to our order of approximation, entirely transverse

(i.e. due to shearing stress only), and its value is

^=-f^, (
108

)

the flexion couple being

pcr
= + p ^ (109)

G L

The equation satisfied by the amplitude ut ( 260) is

or, if we write

then

The general solution of this equation is

;/
cos + ^sinh + ^/ cosh .......... (Ill)

JJ Aj LJ JL/

where the four coefficients are arbitrary constants, to be deter-

mined by means of the terminal conditions at the two ends.

These are as follows :
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(i.J at an end tliat is ah-'lntely free, tlu>iv can he neither

nor Hexion couple, so that at such an end

(n.) at an end that IN fixed in p.iMtinn. but so that the ter-

minal portion of th>- win- is t'ree t-i i'haiii;v it- direction
((

. the di-placeiiient i- B6TO, and BO i- th- tl.-\iin couplo. and
at -Mch an .-ml

(113)

t an t-ii'l that i- that the terminal portion
;it t'> tin- Axis at its

termination QJ with its initial liivctin : at Mu-h an
did tli'T''t',,iv

.0, |"
= 0. (114)

.

(iV.) a
1

: vin_u a rigid m;is^ M, Init utlu-rwis,- ;

th( COUpl- B, while the trail inilM <hviMi>ly he

eual t<> D M. Tim- at >m-h an end

.

For the ap' litions, and the diti'eivnt

fOl US >ll t- W' 'idellt

is -eferred to Lord B ttd," Chapter
VI I., and to Donkin'> -

Ac.. IX.

t<> .

367.] General Equation of Equilibrium. Let a thin

'iy numher .f ri-_:id supports in die

izontal strniirht tine, It i- n-.jnin-d t d.-termiu.- the -mall

ecr : the h..i-i/,,Mtal. bhe >upports,
sod

1-;.

Take' ,-uiy jM.int in th- lin.- -t' -upports for and that

t and let u.i- h- ,

ically downward-.
* e the detl.Tti..n will be entirely in the vertical

t -g, J)
= 2 =

0,

jH .nilihriiim reduce to

fu
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and, on elimination of A,

Integrating this equation four times, we see that the curve

assumed by each portion of the rod terminated by consecutive

supports, or by a free end and a support, is represented by an

equation of the form

M = K + K
1
2 + K

2
32 +K3

3 + /OgJ^/24fr .................. (116)

where /c , KV /c.
2 , /c3

are constants, different in general for each such

portion.
To show that the solution is completely determinate, we will

take the general case in which there are p supports at given
distances apart, and the ends are either free or clamped. The
rod will be divided into p+ 1 curves, each represented by an

equation of the form (116), and there will consequently be 4p+ 4

constants to be determined. Now,

(L) the line of supports being the axis of z, the values of u,
as deduced from the equation of any portion of the rod, must
vanish at each of the supports which bound that portion (2p

equations),

(ii.) the curvature of the rod being necessarily continuous,
the values of du/dz arid d^/dz

2 at each support, as deduced from
the equations of the curves on either side of it, are necessarily

equal (2/> equations).

(Hi) at either end, whether free or clamped ( 366) two
conditions must be satisfied (4 equations).

Thus, on the whole, we have exactly 4p+4 equations of con-

dition to determine the 4p+4 constants involved.

The thrust on any support is equal to the difference in the

values of A, immediately on either side of it.

368.] Rod supported by one end only, that end being
clamped in a horizontal position. In this case, u and

du/dz must vanish at the clamped end (z
=

0), while d^ujdz- and
ds

u/dz* vanish at the free end (z
=

.Z/) ( 366). Thus

=
0,

and the curve assumed by the Axis of the rod is

(117)

giving an extreme depression at the free end of



VM) wii,

'.]
Rod freely supported at its middle point. This

: once di-dm-ed from the last, for it is obvious from

syiiuiu-try tliat tin- tan-vm t<> the Axis of the rod at its middle

point will be lmri/on: M-nieal conditions an-
as if that point were clamped. Taking the middle

point :n. and writing \L for L in ( 1 17 . we have for the

equation of that half of the rod f>r which : is
p. -hive

=
t

t

*
................ (118)

P

Th extreme <f eii ,- end is therefore

pg^L' lisp.

j
Rod supported (but not clamped) at its two ends.

;mish when : -= and
wh- 'iat

%&1 L'lp
=

an 1 tl th.- middle
poini

foe only d by the middle point of a

n 1
- ndv

i

371.] Method of Investigation. In th- tin., foil,,,

pi )bli-niN \\,-
| hid, the

n; ural
iirtJgl In-am. ii

; ivumM; OOmefl

ui liable, In ill be

ca ised b\ .use of a geometrical quantity invol\ ,1

$1 gi in :.?:i the

El jul;i
:

iill'^ method con-

ai> s in
raj be passed, and a -mall dftlection of

til Central A I line t<> i

in let , hich

tl) i <l the limitin-- vnbu-

wl ich ilivil.- \alue

ity in th' I f'nii.

1
The maximum height of a vertical pole, con-

sir cent with stability under gravity.* Let a pde of len-ih

L, in tin- form of ,; a \--ri LCal

' .uiil>. I'hil. Society,
:
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with its base rigidly fixed in a vertical direction, be supposed

slightly deflected from its naturally straight form. Taking the

highest point of the axis for origin, we have X= Y= 0, Z=g, and

consequently Jt
= I =

0, B = g, $ =
Jft

= |t = 0. If the plane of

xz coincide with the plane of flexion, equations (101) and (105)
reduce to

~dz

and, when C has been eliminated, the equation of equilibrium
becomes

If T denote the radius of the section Jt at distance z from the

summit, Q> -rrr
2
,
and p = J-rgr

4
( 349, 353), so that

dz\ dz2
/ q dz

(120)

o

When r varies as any given power of z, the solution may be

obtained in terms of Bessel's functions, for on putting r = zpjDp~ l

our equation reduces to

the solution of which satisfying the terminal condition that the

curvature d?u/dz
2 vanishes at the free end z = is

du - *=

where K is an arbitrary constant.

Since the base of the pole is rigidly fixed, we must have

du/dz= Q, when z = L
t and consequently

=

Thus, if i be the least positive root of the equation

J4p_i(i)
=

0, (121)

and if

Jr3

, (122)
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it' L<
/,,, it is impossible for tin- pole to maintain a slightly

i form as a .stable form of equilibrium, and consequently
_ht form N stable. L is therefore the critical

<|iiired.

If the pole be cylindrical. />
=

(), and D is the radius

of tli- the critical bright is iriven by

'

jfl tin- lea-l p >ot of

J .(i)
= 0.

'.]
A cylindrical shaft, of equal flexibility in all

directions, rotates without torsion between fixed bear-

ings (clamps) ; required the greatest angular velocity
of rotation consistent with the stability of the natural

Staight form.* Let u> -.uppMs.- that. wlnMi tln angular \vlocity
itb tin- axis slightly curved.

Then u= urn, r= urr, and the equation- of motion b.-cmm-

i

all, by rliiiiiiuitini; J and /*' bi-tw.-rii tin- last

B obtain

id. air

du dtv dv d*u

nish at thr b.-arin^. tliis c, n -

.- ant
'1'bii- tli-- coiiip,,!!.-!!' ire of t

1

11 th- plan.- p.-r

-ndi. r the form assumed l-y tb.-

tis a pla' Writing thru r=(tt
f+ t)t for

t ie radial .lisplar.Mn.Mit. W6 bave

,-0,

-t' wliich M-oinp;i!
. I-

' ::v
p-

poi,



442 BEAMS AND WIRES. [373.

Since r and dr/dz vanish at both bearings (z
= and z = L),

the coefficients must satisfy the relations

M + N= M' + N' = 3/cosh i + M' sinh i + jV^cos i + N' sin i

= M sinh i + M' cosh i N sin i + N' cos i = 0,

and consequently on elimination of M, M' , N, N',

cos i . cosh i = 1 (123)

If therefore i be the least positive root of (123), the critical

angular velocity is given by
"

\|;
(124)

for if a)< o) steady motion is impossible with the Central Axis

curved, and the straight form is consequently stable.

374.] A cylindrical shaft, of equal flexibility in all

directions, rotates between bearings under twisting
couple and longitudinal thrust; required the greatest
length of the shaft consistent with stable motion with
the Central Axis straight.* Let T be the twisting couple,
E the longitudinal thrust, and o> the angular velocity of

rotation about the line of bearings. Assuming the Central Axis
to be slightly deflected from its naturally straight form, the

equations of motion are when the motion is steady

dA ~
2 = dB_

~ 9 = dG-
~f- /

J
^C\

^ M'
j r^\ 7

dz dz dz

clT.dO du ..dV

dz\_dz

dz

^-Ach =
0,

dz dz

u v r<v j>,^w" + c " ~

dz
l

dz

while at either end

These equations are satisfied by assuming that

^T <7 = E = *
~dz t' dz (125)

* Mathematical Tripos, 1881, and Proceedings of the Institution of
Mechanical Engineers, April, 1883.



374.] DEA.Ms AND \VIlil>. 443

throughout the sliat't, it'

p- 3W. =

A possible >>luti<>n

u = K,COS -is + K
2co8/z + K

3
cos a ; cosh /;fe + K^'m u: sin

v- -Kf. >'m\\fiz ]
"

a iv tin- ival roots, an<l ai3 are tlie imaginary roots

be <iuartie -|uatioii

EA--/.^^ .................... (ll>7)

".]
Th- nm>t u'eneral ease i> complicated to \\-oi-k out, hut

ample cases may 1. Lf we suppose that the ends of
.aft are absolutely ti.v-d in p..sitinn, but able to change their

the only terminal

condition necessu > i is that u = v = at each end.

Similarly :nU be damped rigidly in their initial direction.

'le to
j. their initial line the

ily //- rminal C at
t icll end.

In either ..{' these cases d only retain the completely
8), the soluti' in the HIM case of the

t irm

u = K(COH iz - cojz) }

v -
*c(s

i

; id in the Ncond term

)

-J l

}\

.-litinn iii ,-ai-h CAM that

(i~J

l-ini: any j.

ritieal l'-nuth in fore Jiven by

1 -' (128)

6
]

In tin- ea.sr \\ h- i elooity of rotation i^

th. thru-t and t.r>ion couple very great, so that

i- tl'fts of in.-r
1

igible in coni].ari>on, the quartic
liiee^ to tin- ipiadi':

P-V--TA + E 0,
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the roots of which, E being essentially negative, are real. Thus

''i~j* x/T^4pE/^

and the critical length L is given by

^T!- E
(129V 4p

2
v'

This solution is very approximately applicable to the screw

shafts of large steamers, and accurately true in the case of equi-
librium under thrust and twisting couple.

NATURALLY CURVED WIRES. CIRCULAR HOOPS.

377.] Equations of Motion and Terminal Conditions.
If a wire of infinitely small section have for its Central Axis

a curve of any form, but everywhere of finite curvature, an

elementary length of the wire can always be measured from any
transverse section, such that its length is of at least the same
order of dimensions as its greatest diameter, and yet so small

that the portion is practically straight. The conditions of strain

and stress in such an element may be taken to be the same as in

a naturally straight beam, and by superposing one such element

upon another until the curvature of their aggregate becomes

sensible, it will appear that the conditions of strain in a wire

of naturally finite curvature may be deduced from those of a

naturally straight wire simply by substituting for "curvature
due to strain

" "
change of curvature due to strain'' and for

"
direction of the unstrained Central Axis

" " direction of the

tangent to ike unstrained Central Axis at any point!'
With these changes the considerations (iv) on page 425 are

applicable to naturally curved wires of equal flexibility in all

directions, as are the terminal conditions on page 429, with the

exception of (iv),
& denoting the change of curvature due to

strain. Equations (95) and (97) also retain the same form, but

equations (96) and the terminal condition (iv) become more com-

plicated, owing to the form of the flexion couples. If

-dy &*_?* Vy ,_<y Vz> W Vy>
ds ds* -ds W ^s ^ ~ds

'

then the natural curvature at the point (x, y, z) is approximately
x/A2+ M2+ >'

2
>
and the altered curvature at the corresponding

point (x, y
f

, z'} is strictly Vx'2+/2+ /2
: thus the resultant

flexion couple is ^(x/X
/2+ /x

/2+ ^-x/X2+^+ i/
2
), and the direc-

tion cosines of the osculating plane of the strained Axis, in which
this couple acts, are as before A'/x/A'

2+/2+ j/
2

. The components
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of the tlexion couples, parallel to the arbitrary coordinate planes,
are now ther- :'

instead of simply pY.

, etc.,

v] The Energy Method. Owin^ to this complication
of the ordinary equations of motion and equilibrium, problems

1 wires and hoops are generally attacked by means of

j-y Method.
Let tli- natural form of a uniform wire of unequal flexibilities

h that tlie curvatuiv at any point of the Central Axis is ~,

the < _: plain- at that point making an an^le a with

principal plant- of iin-rtia in which the o.'tiiei-nt of tlexion

'iirN^itun-s
in th.- principal planes

-,
= nf cos a, S7., = rn sin tl . Then, it' the ril'rct

l>e to cl
-

a to ~.
~

. i"l to

li, a ,"and i the potential
>f win- at tic- point in .[iirstimi will he.

W-i (130)

>
rn< i

c -..-..,,

i e,.npli^ Will be with our

]
revious notati'>n

,(131)

P.

be of equal flexibility in all din bepoten-
mergy per unit 1.

-){( (132)

th 'ii coiipl.- in tli'- tinal oscillating plane at

P= r (133)

-Iffinin^ the con-

:n, tin- resistance per
lit l.-nu'th nir.-r.'d by an .-l.-mrntary p-.itioii

f tin- wire to the
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increase of is of course di$&,/d. In other words, there is a force

9<sH/9f if is linear, or a couple 9oH/9^ if
(

is angular, per unit

length, on each element of wire, tending to diminish From

(130) and (131) we easily deduce that this action may be ex-

pressed in the form

/I QX\
(134)

379.] Rotation of a wire of equal flexibility about
its Central Axis. The formula (133) shows that the energy
of such a wire, whatever its natural form, depends only upon
extension, torsion, and change of resultant curvature. If there-

fore the wire be set in motion in such a way that each point
describes a circle about the centre of gravity of the normal
transverse section in which it lies, no resistance will be offered to

the motion except that due to inertia. We have thus an ideal

means of transferring rotatory motion without loss of energy
from one rigid axis to another in any other direction, by con-

necting them to the terminals of a perfectly elastic wire of

uniform flexibility, so placed that in its natural form the tan-

gents to the Central Axis at either end coincide exactly with the

axes of rotation.

This result does not apply to curved wrires of unequal flexi-

bilities, because, even if the resultant curvature be maintained

constant, the component curvatures in the principal planes of

inertia at each point must change periodically during each

rotation. (See 382.)

Applications of the Energy Method.

380.] Stretching of a uniform circular hoop of equal
flexibilities in all directions. If the Central Axis of a uniform
wire be in its natural state a circle of radius r, and if the wire be

stretched, without change of the circular form and without

torsion, until this radius is increased to r, the length of the wire
will be increased from 2?rr to 2?rr, and its curvature diminished
from 1/r to l/r. Thus we shall have e (r r)/r, and

_ (r
-

r)
2
(gr

2 + y)
2r2r2

The tension will be *(r r)/r, and the flexion couple in the

plane of the wire exerted across each transverse section will be

y(r r)/rr.
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Si-. -.1 entirely in terms of the linear
tlu' resultant action on each element of the wire is

a for ientre, >f magnitude

pr)
(//

=

per unit length.

:M.] Small radial vibrations in the plane of the

hoop. Let us now
-11].]..

.x,. that the \viiv performs small vil.ra-

al.o'it its natural configuration, the displacement of each

\\holly radial. an. I tin- form of tin- Axis always
circular. Tin- \vl . point will he /. and tin- kiiu-tie

r unit length will hi- ! r J\/ -. Tin- ]>rinri|)lc of

vation -
: Qfl

Ditl'nvntiaf an-1 \vritinir r-T+tt, wlu-rc // is a

>mall 'luantityof th- : mparfl with r. tin- ^nation of

hnvs to

10 periodic time of small vibration

]

Wire hoop of unequal flexibilities. A hoop has

i' neatest

Vxihiliiy (.., that in which i <l.-\ion is 1,-aM at

rich point making an anide ,< with tin- plane of the circle. It is

bed inf- held BO that the plane of

u _'!
<;,

with the plane
f tl,

I!. I, if Pi bel
' coetlic'lellt of flexion.

..- ha\e with the nutatiuii ol

Oj - C0>

, nd fi ( / r

:ms

i i //"-r\J />-.;', OMttV /sin-/, sin
=
*{'( , )

( (r
~

I on each el.-meltt <>f til'" WM of

(i.) a radial I

, p
/,. u /,i.,__sinc/A (1;

,.
)M\ r . ) /-A r ' /

T 1,-n-th. tend!' the h'x.p to it- natural radius,
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(ii.) a couple

pjsin </cos a _ cos <ft\ _ p-^osj

"^f \ r r / r

per unit length, in the normal plane of the wire at each point,

tending to turn it about its Central Axis, and restore to the

angle its initial value a. This couple vanishes when

r=r (p,- yi)rin2*
2 p^cos 9 sin a - pjSin cos a

so that, for every value of less than tan'^tan a/pj), it is

possible to stretch the hoop so that its elements may experience

only radial force. For every assigned value of r it is possible to

determine
</>

so that the turning couple may vanish. If the

external action be confined to keeping the hoop stretched, it will

assume a form in which < has one of the four values given by
(137) when the value of r is assigned. The four positions of

equilibrium thus determined are alternately stable and unstable.

If in the natural form of the hoop the plane of greatest flexi-

bility at every point coincides with the plane of the hoop, and if

the latter retain its natural radius, a = and r = r. Thus the

turning couple is

and the four positions of equilibrium are given by
< =

0, </> TT, and
(f>

7rcos~ 1

[p1/(p pj)],

the latter two of which are only possible when p2 > 2^. The first

value of
</> represents the natural state, and the second the condi-

tion of the wire after each section has been turned through two

right angles about the Central Axis or till the plane of greatest

flexibility once more coincides with the plane of the hoop.

383.] Hoop having one very great coefficient of

flexion. If p2
be enormously great in comparison with ylt

as in

the case of an ordinary barrel hoop, the first term in (136) may
be neglected in comparison with the second, and the position of

equilibrium when stretched is given by <p
= sm~ l

(r sin /r) ; or, in

other words, the change of the component curvature in the plane
of small flexibility is negligible in comparison with that of the

other component. The flexion couple in the plane of greatest

flexibility will be

(cos

a cos d>^-
and, since from symmetry the resultant flexion couple must be in

the plane of the hoop, this latter will be

pj /cos a cos
<f>

coscM r
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EXAMPLES,

[/'' //(//'// /.N-

i fnnill i/ straight,
from tl<c action of

\ <>r

'//."]

1.
<>i>: ntimetre-grammes are applied

to the tw 'ouml har of iron [Young's modulus aoout
million irrain Jit j.-r square centimetre] of LM rmti-

l-'iii-l tli-- rurvatuiv jroliuvl. Also the
nrvatuiv j.o^ihl,' within tlu> clastic limits of the

:al, anl tin- c..ii|.lc ivjuiiv.l t> ])r.>du,-c it. asNuniin^ tlircc

million ^rainiii-N weigili i-r -<pi:iiv (.ntim.-trc to IM tli' triiacitv

Sli.\v T- win- IM-
xiil.j.Tt.-.l t ti'iiNinn an. I flexion

C(iii])l'
-11. 1,- that tli.-

].ro<lii xrnsiMr. the

will 1-- p( l-f-e).

It' a iinit'oini l.ar, l...tli of \\
'

ti\<-.l. In- so dis-

p'aced li. initially on,- half is uniformly
a -I t

1 half uniformly r..nr ract.'d, j-r I

'

th.-

n -nt at tinii- f will I..- iriv.-n l>v

1

r2
\\ ier-

'

of

(> 30"

I. Th' d to springfl
of

S!

'

l)i an amplitu |.- :rulinal \ EM, th.'ii i i- a root of

I (i-c

w er-
'

io of the

to ision A|>jli.-.l
t.

; of -mall rlli].'
ii. ami /, Centi-

m. tr<- one .-n.l. Th.- \vh<-n

vi rni in !! j.rinri|ial plane of flexion, and tin-

h.-n \ ihratinur in th.- oth.-i
1

principal

|il; nr, hoth h;i l 256
]

I. Show that the

1 v
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semiaxes of the section are about 0'00179L2 and 0'00028GL2

numerically, having given that

(i.) Steel is 7'85 times as dense as water.

(ii.) Young's modulus = 2*14 x 1012 C.G.S. units (absolute).

(Hi.) The two smallest roots of the equation of frequency
are 1-875 and 4'694.

6. A wire infinitely extended in one direction has its nearer

end firmly clamped. If a series of simple harmonic transverse

waves travelling along the wire be reflected at the clamped end,

show that the reflected waves have the same amplitude as the

incident waves, but that their phase is accelerated by one quarter
of a wave length. What will be the result if the end be free

instead of clamped ?

7. A straight vertical wire of length L is attached at its

lowest point to a cylindrical weight, the moment of inertia of

which about the Axis of the wire is /. If the upper end of the

wire be made to execute forced angular oscillations given by
$ = asini, show that the oscillations of the weight will be

represented by
,. _ a cos [tan"

1

^// \/pJf 3t)]
sin it

cos [tan"
1

^// v p^^C) + iL v ^<j/3/tj

the elongation of the wire being supposed negligible.
Prove that the frequency / of natural oscillations of the

system is expressed by
^/Ftan 2;

[The equation of motion is by (105) td20/dz
2- p$B

= (\ and
the terminal conditions are (taking the origin at the lowest

point)
= a sin it when z= L, and tdO/dz 10 = when = 0. In

the case of free vibrations, i must be such that the total energy
of the system remains constant, so that

is independent of t. Evaluate this expression and equate co-

efficients of cos2
i and sin%]

8. A wire is held bent by suitable forces between two points
A and B so that, the area between the wire and AB being given,
the work expended in bending the wire may be the least possible.
Show that the curvature at any point varies as r2 D2

,
where

AB = 2D, and r is the distance of the point from the middle

point of AB. Show also that, if the wire be bent completely
round to satisfy the same conditions, the curve assumed will be
of theformr3 ^<73cos3&



win ix 4:>i

!'. A square AJH'J) is formed of four rods, ^ach of length L,
-her at tin- corners, the rod An hehiLr elastic, and

ther three riifid. It' tin.- system revolve alout ('/> with
uniform angular velocity o\ -uch that \L is a small quantity

p, the displacement of any point
"f All at a dNtanc-r : from it> centre wil'

! A/,) -f sin J.AA(-tli A~-cosh JA/-)
sinh JAL cos A + sin A A// cosh .1 A A
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i-laiiquMl at any one

support in a jnxiti.n >tli.-r tlian that which it would naturally
.- wh-n
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!y
! iii*

II. ( 'alculat.- the
]

|
,.f a heavy lar

which re-t- u: .-quidi-tant -upp^rt^. tw.> of which are at

its ends.

I -2. A 1;' n\ v l-.-aiii . !' l.-n-_rth /. i^ cut in half, and on.- of the

hal\- i- aurain divid.-d into f,.ur e.jual which are placed
tV.'in Miir another. If the

rein i:- /' he the thrusts

on the in- :hat

I
:: lie//-' t

is'-.p :

ported I

ntal straight line. If P u e, ,uple
bween the

nppora,
:

" = i/^g

A v. . :_ditle>s \\

[1 le nded from it

ji point
1 1 ei it

)i any

p/.

I).

//' are t!

}, aid the u] in the ambiguity
-, lu i on the

,,p|

1 A i ! o.l / (hroiiLdi three |i

p,,nt J. / i line. Show that the deflection f the

fcart /.I. 'in-

the i d had ! two |'oiuN J and

HT on ,
wh<

. .
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16. If the rod be constrained to pass through an infinite

number of points, at intervals each equal to AB, the constraint-

as regards the part OA will be the same as if the rod had been

constrained to pass through A and Fonly, where A Y= Jx/3 . AB.

17. The maximum height for stability under gravity of a

conical pole of semi-vertical angle a is

T _3i2 tan 2a

T6^ ;

where i is the least positive root of the equation J
3(i)

= 0.

18. The maximum height for a paraboloid of revolution, of

latus rectum D, planted with its vertex upwards, is

where i is the least positive root of the equation J|(i)== 0.

19. If a rod revolve about its Central Axis under a given
tension, prove that the straight form will be unstable when the

number of revolutions per second exceeds the number of lateral

vibrations executed in a second by the same rod under the same
tension.

20. A rod of given length, securely clamped at one end and
with the other end free, rotates about its Central Axis. Show
that the greatest angular velocity consistent with the stability
of the straight form is given by the least positive root of

cos i . cosh i = 1, where i has the same value as in 373.

21. If the clamp in the last example be replaced by a

universal joint, and the angular velocity be such that i is a root

(other than the least) of the equation tani tanhi, the Central

Axis of the wire will describe the surface of revolution

iiff . . .
, iz . , . . iz\Ml sm i sinh + sinn i sin - 1.

22. If the hoop of 380 be cut, and the ends twisted through
p complete turns and then joined again, and if the hoop be con-

fined between two perfectly smooth parallel planes, so that the

Central Axis must remain always a plane curve, the radius of the

hoop in equilibrium will be a root of the quartic

r2 = 0.

If this radius be denoted by r
1?
the time of a small vibration

about the position of equilibrium will be

27T



r.K.v.Ms AND wi I;L:S.

A wire ifi twisted, ami strained into tin 1 form of a helix,

ainl it- t-nds an- tlu-n join.-d. s that it forms an endless spiral
eurv- round a tuhular core. Find the direction and magnitude

the iv.Miltaiit TO68 any transverse section.

L'4.
;-

;

and
;;
are conjugate funf anl

//.
the

-1. If a win- liave for it- Central Axis a nirve of the

:ily. an-1 if it ext-cute xmall vibrations in its own }>lane, so

ic-h )oint moN-fs alon^ th- }rinci])al normal to tlie Central

and thi- lattt-r it-main-- always a curve of the same familv,
th- tinif 11 oscillation will lu-

tin- int. ; all round the ciir\ e, an- ;

L'iv.-n it- initial value after diti'.-n-nt iat ion.

.j.ply this r,->ult t-.ohtainini .-Hipt ic integrals
ths time win- which alwa\ - retains the

foill focal ell:

26. A tural state the form

of a circular arc of hi or. A rin-_: is form,-d

lo joinini: t! r.and is laid U]MM a smooth hori-

zr ital tahl.-. with ircular hoi,, in the

ta le. A perfectly Ten, vertical angle 2^9,

ai 1 of weight -- I itly on tl,,. rin-. with ii

V( lie; : ;i\
ily. PrOVC

th .t if th.- rim: i ..-- ..t' the hole, if its

in rti;' ;id it' it

r- iaii dl oscillation ahoiit a josition
Of -'juilihi

im.

\

i..- 0e1 iii \ihration with initial ti

niA and v-l iven ly =
/>(c), u

'tht ai- bsequeni be represented hy

+(fr
[rr\+(fr

i

wl ?re oo* - 9/1* a. 1
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28. Obtain directly St. Tenant's solution for the torsion of

beams ( 333) by adopting the conjugate cylindrical coordinates

rj,
z of Example 4

(?'.), page 258, (making p unity), and assum-

ing a = 0, /3
= %T.

[It will be found that the general equations of equilibrium are

satisfied by making div/dz = Q and d2w/dg
2+ chv/drj

2 =
0, while the

boundary conditions reduce to

The differential equation of the bounding surface must there-

fore be

fdw
to

or, if ^ and w be any conjugate functions of and
rj,
and therefore

also of x and y (Example 2, page 257),

This is satisfied by all surfaces of the form

<f>
+ JC'

2re
2^ - constant,

or </>
+ ^r(x

2 + 2/
2
)
= constant.

[See also Boussinesq's Application des Potentials a Vetude de

et du mouvement des Solides Elastiques, pp. 435-463.]

APPENDIX V.

Strength of Materials under Torsion and Flexion.

Strain- Reversal (Nachwirkung).

Strength under Torsion. A cylindrical bar, subjected

only to torsion couple applied to its ends, experiences only

shearing stress ( 330). The elastic strain produced depends
therefore entirely on the rigidity of the material, and the only
elastic limit involved is its hardness (page 181). To exhibit

clearly the form of yielding to torsion stresses exceeding the

elastic limit we will consider the simple case of a right circular

cylinder ( 335, 341), following the account of Prof. James
Thomson.*

*
Cambridge and Dublin Mathematical Journal, Nov. 1848, sections 10-20;

reproduced in Sir W. Thomson's article on Elasticity in Encyclopaedia
Britannica, section 9.



The slioarii: - und.-r torsion - N
[jj

:U1 (/.)] S - nrr,
from the (A-ntral Axis: the torsion

couple '.$ oo.")) witliin the elastic limits is T =^ \ nA*T, where A is

ili- cylinder.

Ljppoae
th- matt-rial to In.- perfectly plastic

p. 17<M and of solidity S. If the torsion couple be gradually
until r = S n A and T= -l-.-l

::

S, the limit of elasticity
will 1- I for tin- extreme hounding portion of the cylinder,
which will then l-.-in t.. tl,.w. When ^till greater torsion has

roducrd, >o that r = S i>- i^ l,->x than J.all that portion
inder hetwr.-n tin- >urfare> /-and .1 will he in a state

of tlo\v with a uniform >tiv>s S throu-'hout, while the portion

eompri-^-d within tin- surfan- / will >till he in a ^tate of ela>tie

strain. The t..rsiin o.upli- will then ohvioii^ly he

T /
"

; / S -

L'r/yA-j

- r S

ion -t.'adily inrrea^-s the radius / of tin- >urfaee

limiting tin- tlow diminish. ->. until we reach a limit at which all

but th ! in tin- imii neighbourhood
Oi the Central At thi^ limit the maximum

1m- T= 57rJ \\ hieh is J of

va! C limit. Thi- ; -nts the

resistance to torsion of a \lind. i of iadiu

If ! t hi-re will he

il .r iiir of th.- win-, which will

ninMi th.- strOM I
amount pr.'p.-rti.'nal to

pose that, when the

^tress at distance / from th.

.1

01 C=-|S/^l. Thu> tl kreas doe to 00t is a
8t 688 8(1 Jr .1 . AM i' n of tin- har rontaiiu-d

(0 r-JJ 1 in th- dhveti,,n in

W tich ; to<.k
]

all the portion /','//,,,,// that

8i ^ac 1 iu tin-
Op]

'I' 1 "'

Th- p.-rman.-nt stn-xs h.-in^ -\,-rywhriv within tin- elastic

iit> <[' ,sU|M-r]M.-ition
that the

,1 l,y tl, lOD coiij. l.\ ///

her th- har were in a

te of ease (see page 185 ktanaltor,
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the couple sufficient to produce flow, when applied in the original

direction, we shall have

rA

/ [<V + S(l
-

$r/A)]r . 2irrdr * Tp
*o

where C^A - JS = S
;
and consequently T\ - 7r^ 3S.

Similarly, if T
2
be the Couple required to produce flow in the

opposite direction,

where C
2
4 + JS = S; and therefore T

2

Thus the strength of the bar under torsion is twice as great in
the direction in which it was originally twisted as in the other.

These results are only true numerically of bars of perfectly

plastic material, but the principle is obviously applicable also to

ductile materials, the hardness of which increases during flow.

Thus it is evident that the apparent strength of a bar under
torsion may depend very largely upon its previous elastic history.

Strength under Flexion. In this case the strain is a

longitudinal traction or pressure, proportional to the distance

from the neutral plane. Taking the case of a rectangular bar of

plastic material, of depth 2D and breadth B (see page 420), and of

equal strength under tension and thrust, it is easy to show that

(i.) The elastic limit is reached when the flexion couple
amounts to %D

2BG.

(ii.) The maximum strength to resist flexion is D2BC.

(Hi.) On removal of the couple the tension of fibres distant

y from the original neutral plane is R= C(l 32//2D), the axis

of y being taken as in 843-349. Thus the stress vanishes at

distances fD from the original neutral plane.

(iv.) If the beam be bent again in the same direction, its

strength is given by (ii.).

(v.} If it be bent in the opposite direction, its strength will

be ^D2BG, or one third of the former.

We see therefore that in the case of flexion, as in that of

torsion, the apparent strength of a bar, even of the most regular
kind of material that we can imagine, depends chiefly upon the
relation of the method of testing to the processes to which the
bar may have been previously subjected.

Strain-Reversal (Nachwirkung). This phenomenon is

described in this place because it appears most prominently, and
was first observed, in connection with torsional strains. It is,
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in all probability an invariable accompaniment of all

strains which approach ur >urpass the elastic limits of the body.
Th- following account is extracted from Prof. Tail's

"
Properties

_"-. The phenomenon is of purely physical
st, and no satisfactory explanation of it has yi-t l>een

advanced. "All this ]iart of our suhjeet is still very imperfeetlv
1 out. . . . Then- is no donl.t that all elastic recovery in

solids is Lrradual. so tliat. for instance, in ... torsion vihra-

BD wlu-n tlu-iv is no si-nsihli- visci>ns rc-istaiu-.-,

'nt of tl. incide with the original
untw; ;tion <>f tin- win-. It is always >hifti-l towards the

si-1'- t which t"i-ion wa> applie-l, ainl to a uivatrr extent the

wire has U-.-n k.-pt twi>t-l 1-ei'ore l-ein^ allowed to

viiratf. With every vibration, however, ii creepe >lwly hack

tnwanl> the original nnli>tnrl.e.l ]Mitin. hut n>nally coin. - to

. . . Til.'-,- phrimiiH-iia ai-e seen in a

tWin \\ li.'ii \s- dispense \\ ith >M-illatinn. Thi

-uppoM- tin- wire to !

k.'pt twiNte.l throi] U-h !>() to the

th. -n t'.-r halt' an hour !<) tthe left, ami he

<> -.rnulnally i^ no oscillation. When it is

If it turns >l>wi . gradually undoing

pirt of tl i.-c.'iit tui^t. then stops, and twists

s ill ii rds the left, thus und ihe<ina>i-

I
irnmiieiit tl-rt ..f th.- i-arli.-r twi>t. Thus tin- l>ehaviur of >uch

;i \vir- >mple\ onr.d.-pendin--
:i if \\i-n- np<.n it- wl lotU hi-t-rv: though of COUrse the

t aCe l'ft : ;ieht i s 1, -. i , , a r k, ., 1 as ( ) ,];, ( ,
.

l'hi> >ui.j.-.-t ha> ..f late attracted

li.-

'

leden
rk Maxwri; this
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CHAPTER VIII.

PLATES AND SHELLS.

INTRODUCTOR Y.

384.] Definitions. The term Plate will be used in this

Chapter to denote a body cut from a right cylinder or right prism
of any form by two (necessarily parallel) normal sections. These

sections form the Faces of the Plate, while the intercepted

portion of the original bounding surface of the prism forms the

Edge or Edges of the Plate.

The Thickness of the Plate is the normal distance between

its faces. A Thin Plate is one whose thickness is a small

quantity of the first order compared with its least transverse

dimension.
A plane drawn parallel to either face, and equidistant from

both, will be called the Median Plane, and the section of the

plate by this plane its Median Surface. The centre of gravity
of this section is the Centre of the Plate. The section of the

plate by any plane perpendicular to its faces is called a Normal
Surface. The straight line drawn through the Centre, perpen-
dicular to the faces, is the Normal Axis."

The form of the plate is determined by that of the prism from
which it is cut : thus a Circular Plate is derived from a right
circular cylinder, a Square Plate from a right prism of square
section, and so on.

A Closed Shell is a body contained by two surfaces belong-

ing to one of a set of three orthogonal families; the surfaces

being each of one sheet, and one of them entirely enclosing the

other : e.g. a Closed Spherical Shell is contained between two

complete spherical surfaces, one of which entirely encloses the

other, but which may or may not be concentric.

An Open Shell has for its faces two surfaces of one family,
while its edges are formed by surfaces of one or both of the

remaining families of an orthogonal system.
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In a Thin Shell the thickness here measured by tlk'

of an- <>t' the orthogonal curve intercepted between the faces of
.uill quantity of thr tirst order compared with

its k-ast -uperlicial dimension.

">.]
The Class of Strains to be investigated. Exclu-

sion of
^

Surface Tractions on the Faces of the Plate or
Shell. Throughout tin- pivM-nt Chapter, platea and shells will

to the jR-ti.in ,f Surface Tractions on tin ir

. ith or without tin- accompaniment of Impi
will in any 1 to act ai-ro.vs th-

hfi plat.- Of -hell.

idered as pt-rfonnin-- vihniti. Dfl

uii-1 sed forces only.

,.\..\', OJF .1 /'/ I*'/.\/TJ-

Tin'; BT 8m
. /.v DIRECTIONS

t VEHY\Vi

]
Statement of the Problem. Takin- th. oii-in at

I tin- N boundary
itioi -jf'=0 must bt- thfl t-ntiic area of

; he whole
f tin- !_ parallel to Oz

t
the

Involved in th.- actual

\\liieh will t 1688 t-ntiiely

ry if We at OD06 mak-- l\\>- ;i D
*

that

# = N /

i

the -llUt.

hound; 1 th.-n he >atistir.l identically, as

\ao will th.- third .juilibriuni [i lo:>)

ill'' lllo>t vVUeral

\ th.- fir-t and second of

t 1686, as well as (1) a th* pi.

;.] Solution of the Problem fmm (1)

r ; ^i i-

-

<r) + a + .o..
'&* \dx oy)

j>age 388.
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to be satisfied concurrently with the first two of the general

equations, viz. :

3 3% 3W\
+

a* Oy oz) |

/^^s^l.x =0
j\ox oy oz J

Differentiating (3) and (4) as to
,
and eliminating u and v by

means of (2), we obtain

Again, differentiating the first of equations (4) as to x and the

second as to y, and eliminating du/dx+ dv/dy from the sum of the

equations thus formed by means of (3), there results

2
.
32

\3</; ~

From (5) and (6) we deduce

ap*\ ap\_3p\
^\9z2

/ ty\^*) ^Z\W)-
Wu, rwhence -^

-

% =& + ", .................................... (8)

where C is a constant, and w a function of x and y t which by (6)
must satisfy

Integrating (8) again, we may write

where x is a second function of a; and T/, and &v cr
2 ,

tar
a
are con-

stants. The last term is introduced on purpose to simplify the

equation of condition satisfied by x : on substituting in the first

of equations (5), we see that, if we make (7=o-(cr1 + cr
2)/(l <r),

we shall have simply

?^ + x = (10)
*
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,

.

- -

\vhil<> equations (_> -iv.-

or on integration

~te*

3v z* 3<i>- ~- +

<9 2 3y
Mctionx ,,f ./ ami //only. Sul.xtitution from

(Ii) an- 1

(13)

ai -I r "f r..mliti.'ii to be satUtir.l Ky </,
ami xV an-

tl en t'.Miml fr"iu 4 1 to be

i rt/^ +^ + n <r^P++W\ o\'I =u
l

(14)

h \\ ill ing tin- i

ipationfl
i i

a to./, ami t: I ;i.Mi!i'_r tin- n-snlts, that the
\ hit- of to a* givni l'\

i-l.-ntically. Thus \Vl .

n iy liminar 1 ami (12) 1 'V m.-an^ nf (l.'i). ami tin-

c
in].l.-t.-

aii'i ition "f tin-
jinijH.-i-.l j.rol.I.'iii will

Ii tafty be represented by

*4.^ +
;

H 1 dv-
tZT-y: D f y -I- -

9^

,

,J(r:
-

\\

aid 1 v ally.
Al /.' o. it f..llo\

/ 7
, -

r/ . (?
=

>7~i \ 7v\ 7\

I '.ty\
\ I

<r<~ fd<i> ?Al
.

(

K/J

ien- 'I
// which >atisfv (10)

,id(U) : y.

Al /.' o. it f-.llows t'rmii filiation^ <:;, ,,f
.

_'.":; that
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Consequently the component stresses will be

,(16)

2(l-o

Bearing in mind that the limiting values of z at the two
faces are equal and of opposite algebraical signs, it is evident
that the terms in the expressions (15) for the displacements

depending upon &lf
cr

2,
sr

3 , ^ are due solely to couples applied to

the edges in planes parallel to the Normal Axis, while the terms

depending upon < and \^ are due to tensions and thrusts in direc-

tions parallel to the faces, or to couples in planes perpendicular to

the Normal Axis.

Flexion by Couples only.

388.] Case of Uniform Flexion of the Median Surface.
If in equations (15) we annul all the terms but those involving
the constant coefficients TSV &2 ,

sr
3 , they reduce to

v =

W -

giving

a = 0, 6 = 0, c = - 2(

and consequently

1-0-2

l-o-2

1 +0-

(19)

389.] Form of the Median Surface. The origin being at
the centre of the plate, and z being zero throughout the Median
Surface, the form into which this surface is strained is represented
i

), (20)
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so that it ahv; ihe piano of
.///

at the origin. With
certain limitation the magnitude of the strain, this is a

surface of throughout, i.e., a surface such
that the curvatures of all parallel normal sections* are equal.
For ! I'oint in a normal section making an

+ , //'+ /
-'+ P h* 1 an adjacent point

in the same section. Th n

, t
-dz' & Ml (

'-+
'/)

L- t
= rcos^, >;

-rsi

,at {
=
^(CTjX + ET

sy')co8 ^
--

(CTja;'
+ GT

2y')sin ^]

'(CTjCOS
2"

-S^)

,say).

Th IK l.y tin- (r'lin;iry formula, the curvature of the section at

(x
f

y', :' i- />' il-f J-)T, and consequently, if the .strain be BO

liiiiitvo! tl / an- intiuit-iy .small thmu^h-
<>u tin- limit< of the Median Surface, this c!ir\atun- will he

CTj
-os

20- . f^cosd; ami this firieia only with f).

A&sum: to ljnl.1. the curvature of any
n< -mal se ,-h the Me.lian Surface of

tl)
I-

be pat in!

-CT,)co82^+r

l 3 t into

(i.) a parallel

EFj
in all normal

[:irall-l t

(it.) a '1+^) f ftM normal sections

i ;iny ilii
, ~.)

f no; e.jiial and .

indrieal cm ; .irallel

fz. This 1. n'ieal CM! 1 to form

The tTin iuvolviiiLj
~

consists of a cylindrical curvatur--

mal s.-rtimis jiarallfl t< tin- liis.-ctor of tlie ])ositi\e

'

. in an infinit ! y
I Mr.li;m Surf.K-.- ;uv inlinitcly

,,lly iilriilical.

Til- IM-II the i-.'nlius f

;i\.- .liri-.-tinii >f the
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angle between zx and yz, and an equal and opposite cylindrical
curvature ^

3
of all normal sections parallel to the other bisector.

This term therefore also represents an anticlastic system of

amount cr
g

.

The most general mode of uniform curvature may therefore

be analysed into a spherical or synclastic system and two anti-

clastic systems.

390.] Transformation to the Principal Axes of the
Strain. If the tangents to the lines of curvature of the strained

Median Surface at its centre be taken for axes of x and y, the

Indicatrix * of the curvature will be referred to its principal
axes, and the surface will take the form

With these axes of reference, equations (17), (18), (19) reduce to

(22)

-
(23)

a = ft = c =

Z7=0

so that the shear disappears, and the new axes of x 'and y are

the principal axes of the strain.

It is obvious that the Median Surface is a Neutral Plane

( 347), i.e., it simply suffers warping without strain of any kind.

The analysis of 34-7 will sufficiently explain the nature of

the strain.

391.] The Flexion Couples.t Returning to the arbitrarily
directed axes Ox, Oy of 388, the components of the stress, at

any point (x, y, z), across a Normal Surface of the plate the

perpendicular on which from the Centre makes an angle 9 with

Ox, are

os B + (
1 -

cr)trr3
sin

...(25)

r - 2 i + (
1 -

(r)tars
cos 0]

~T^~
* Frost's Solid Geometry, Article 382.

t The formulae of this Article are proved synthetically in a paper by Mr.
R. K. Webb, Messenger of Mathematics, vol. XI.
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:-atin<_: F. (r, :F. :'r from z=+JT to s = Jr (where T is

lickness of the plate), we see that the total stress action

any length of a Normal Surface of the plate reduces to a

couple, thf components of which per unit length of the Surface,
lied parallel to the Faces about axes parallel to Ox and

Uy, in the standard directions are

9r*[(CTa + o-ar^sin 6 + (1
-

o-)ST3
co8 0]

,

f~T~ .,n
_ yT

3
[(cr 1

+ o-ST.,)oo8 04(1- o-)ST3sm 0] ('

'

.:<l-r)

Tip-- ion Couple proper, in a plane perpendicular to

>t th- N.ni;il Surface and parali , of amount

-cr)[(CT1
-CT

2)c082d + 2nT
3
8in 2^]}... .(L'7)

per unit length, and a couple in the plane of the Normal Surface,
mount

a
-
~ SI

' )8in ~9 + 26T>C06 2d]............. (28)

pe unit length (compare 352). The t. nn. r omple consists of

tw ) part>, dn- v to 8yncla-t ie and antielastie tlexion :

th la- due to a' a alone. The directions of

th se Normal Surfaces across which the tlexion couple is a max-
in mi or a minimum art- i^ivt-n by

tan20-
o?5L, (-J)

an I for Surfaces in these directions t ; d c.upl- vanishes.

Tl e are of r f th- principal axes of the

Bti An, as maybe deduced directly bra
'

( > by the pro-
- <>f tin- Indirutr

If n..\v \v.- v.

a
//T

' 1

..(30)
1-Jl I -.r,' I'Jd .r,'

i.4hi exprv- , tl.-xinn c..upl- pmp.-r may be written

2^J............ (31)

t he coefficient of * N th.- curvature of "fibres" of the

,,. du- to 8^
tl.-xi..n !' tin- ]>lal-.

and the

eoi- Bcient of a is the curvature <>t' tibres *f the Median Surface

per >endicular t-. nial Surface across which the nexion

con >1< r parali. -1 to th.- plantj of the couple) due to anti-
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clastic flexion of the plate. Thus, with a notation analogous to

that of 349, and a may be termed Coefficients of Synclastic
and Anticlastic Flexion respectively.* If we write

p _ 2 p _ 2 i p
1
--

' 2
-- ~

'

the components (26) of the couple per unit length across any
Normal Surface perpendicular to Ox will be P

3
and P

1?
while

those of the couple per unit length across Normal Surfaces

perpendicular to Oy will be P
2
and P

3
: all being reckoned in

the standard directions. The flexion couple proper (31), across

any Normal Surface, is

P1 + P2 ) + J(Pi-P2)cos20 + P8
8in20 ................ (33)

per unit length. Equation (29) may be written in the equivalent
form

tan 20= ^ .............................. (34)
*V~*s

392.] The Potential Energy. By equation (20) of 199
we have

W=
\ffj(P* + Qf+ Uc)dxdydz

qT
*^-L"i---a i-2--v "/-3J

.(35)

where JC is the area of the unstrained Median Surface. The
latter form exhibits W in terms of the Invariants of the Indi-

catrix, and we may deduce from this, or directly from 390, that

where I^ and II2
are the principal curvatures.

If 8W be the increase of energy due to a small increment of

each of the curvatures,

+ 2(1 -o-)CT88cT3]

'...(37)

* These coefficients, since they occur in expressions for couples per unit

length of surface, are one linear dimension below those of Article 349.
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If therefore the configuration of the strained Median Section be
in term- of any numht-r of independent coordinates, of

which
;-

4

i- one, the resistance offered to an increase of g will be

Ir p B p ~,
.

DarF
:

-p
;vj

^

;.]
Case of Non-uniform Anticlastic Flexion. The

term- depending upon ^ are

*--*&- -%"-*
10). It' we analyse this strain lv the

' .> '.>
'

\
<j- y

dx&y
mall within the limit- of the plate, the curvature of

iy normal section of the strained Median > of the plate

given by

W
(\^?

, ^
rh ch \vo systems of anticlastic curvature. Neither

I heae can vanish for any position ,,f the axes of x and //. uul.

i. a quadratic fu 1 1 i these coo'rdinat. -. in which case the

e? ion is uniform, and th- >train is ineludt-d in tin- typ- just
>J id>

'071

4.] The Remaining Terms. Th- trnn> d.-p.-ndin u
-

upon
.n tin- ^nn-ral -,

i -present a strain which is

GU' solely to t and thru>N applird round tin- l^l-v-, of t he

[pla ; in 1 to tip and coupl.^ in planes
I'linilar to the Normal A

t taWM th.- M.-dian Surface absolut.-ly unchanuf''d, and pro-
all parallel surfaces, proportional to

1 1 face.

Ve shall ! with this strain.
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EQUILIBRIUM OF A THIN PLATE UNDER IMPRESSED FORCES
THROUGHOUT ITS MASS, AND SURFACE TRACTIONS APPLIED TO

ITS EDGES, SUCH THAT THE COMPONENT FORCES PARALLEL TO

THE FACES ON ANY PORTION OF THE PLATE BOUNDED BY
NORMAL SURFACES ARE EITHER EVANESCENT OR REDUCIBLE TO

COUPLES.

395.] Preliminary. The results obtained in 388-392 for

the case of uniform flexion of a plate of any thickness by surface

tractions applied to its edges in directions parallel to its faces, and

everywhere reducible to couples or evanescent, are extended to

the case of a thin plate subject to impressed forces and surface

tractions the components of which parallel to the faces satisfy this

condition, by a procedure very much like that of 360. We
assume in fact that the stress due to the applied couples will be

everywhere of the form of that just discussed, only that the

curvatures will vary from point to point of the Median Surface,

and that the applied forces (necessarily perpendicular to the faces)

on any portion of the plate bounded by normal surfaces will intro-

duce shearing stresses in the same direction across those surfaces.

The plate may be considered geometrically as coincident with its

Median Surface.

396.] Equations of Equilibrium.* If X, Y, Z be the

components of the impressed force per unit mass at (x, y, Zj,

the restriction imposed upon the form of the resultant force

acting on any part of the plate bounded by Normal Surfaces

requires that

r \r r \r

/
xdz=J yfc=o, (40)

-\r -\r

r\r

Let /Zdz=T%, ....(41)

-\r

and let the components of the impressed couple on a rectangular
element rdxdy of the plate, about axes through its centre(#, y, 0)

parallel to Ox and Oy, be pr^dxdy, prffidxdy. The sole im-

pressed force on the element is of course prZdxdy. acting through
its centre parallel to Oz.

Let A, B be the shearing forces per unit length at (x, y, 0)
across Normal Surfaces drawn through that point perpendic-
ular to Ox, Oy respectively. The components of the flexion

* This and the two following articles are taken, with merely a change of

notation, from Thomson and Tait's Natural Philosophy, Articles 644-648.
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these surfaces, per unit length, are by
1 -Pj, P., an<l -P

3 n-speetively. Hence the equations
[uihbrium are easily seen to be

^ + i^y/v -/J_A,/.,;;
I

Y/,/

+(B< } (/;-^|)^
= o

* i '//

- 1 /'/*
-

Pj

or. ..n simplification,

(p,

- i.

p
..-

It may be shown, as in 389, that it
-, *

Hi 1 0&wflxdy+ y&w/dy* aiv intinit.-ly small within th.- limits of
Ji< plate,

~S a
*~l& "5sy" (43)

Su^
{

I'l-Min .

:;2),

/M
f

' " ;

i

wh IP (1 -f-(r)
= (l a ' I-- may In- writtt-n

M -

0_ ?> fd*w +

(45)



470 PLATES AND SHELLS. [396.

On elimination of A and B between these three equations,
we obtain

_I
(40)

a linear partial differential equation of the fourth order, to be
satisfied by w in all cases of equilibrium under strain of the

kind supposed.

397.] The Boundary Conditions. Poisson's three bound-

ary conditions are easily obtained by considering the equilibrium
of a triangular element of the plate, bounded by planes of length
dx, dy parallel to zx, yz and an element of the edge of length ds.

Let the outward normal to ds make an angle with Ox
;
let H

be the surface traction on the edge parallel to Oz, and let

Hdx = rh

so that rhds is the shearing force on the element rds of edge.
Let Pds and qds be the couples on the element in the plane

perpendicular to it and in its own plane. Then, on the assump-
tion that the force and couples acting across the edge must be of
the same form as on any Normal Surface within the substance of
the plate, we have first

rhds = Ady + Bdx

or r\\ = A cos 0+ B sin ............................ (47)

and further by (33), (28) and (32)

............ (48)

............
(
49

)

These are Poisson's three conditions. Kirchhoff, however, has

shown that the assumption involved in them (expressed in italics

above) is not necessarily fulfilled, so that they express too much.
The proof of this statement depends upon the fact (to be proved
in the next Article) that if we apply, all round the edge of the

plate, a shearing force parallel to Oz of amount r(l)
-

It), per unit

length and couple round axes everywhere parallel to the Median
Surface and perpendicular to the edge, of amount (Q -

q) per unit

length, such that

(50)

no modification of the strain whatever will be produced, except at

points infinitely near the edge.
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Thus we may suppose rlj to be the shearing force per unit
h and Q the couple per unit length in the tangent plane to

the e<
:

at each point, where J) and Q may be
title* cu, ,i (50), h and q being given

by 47. and 4!.

Eliminating h and q by means of (47) and (49), and A and B
by means of (42) from (60 . W6 obtain

I

'

/>( sin 6 - Jl cos 0)]
-

;
, p,

-
P,) sin ** 4- P, cos 20]

r p

(S
Equations (4-8) and (51) are Kirchhotl"> hop boundary conditions.

If tb' \s determining tlie values of ir at the e.l-v,

P, Q and i ma;. ted as entirely arbitrary couples and

applied to the ed

|

Proof of KirchhofiTs Boundary Theorem. " The

prop*' the last Article "is equivalent to this:

tl at a c t' normal* -hearing force on the

b funding edge of a finite plate maybe det.Tinin.-.l which shall

j- odnoe th.- a t a> any given di^triliiitiun of couplt-s round
a :es ev-ry\vl.- r to the Normal Surface supposed
t' C<>! "I ill

o .posite ii '-h >ide of the middle

li ie+ and parallel to it. e..n>ti' ipposed di-trilnitinn <f

c uple. It mu-t I-- un-l.TNt ..... 1 that the forces are actually dis-

t lniti-d alon-j tht-ir lin.-s of action, and Dot, Sfl in the abstract

d -nan I bodies, applied indifferently al any points
o the ^ amount of Ibe force per unit length, tnougb
e ual in th.- n.-iirld.Muriiiij parts of tin- two lin.->, mu^t ditl'er fnm
P int to jM.int al ..ii- th. edge, to constitute any other than a

iform di-tril.ut: Lastly, we m;iy roppose the

ces in th.- ..pp- iionsto benol r..ntin.-d to two lines,

>h..wn iii the diagram, but to be diffused over the two halves

th middle line ; and further, the

lount : intinit.'ly >mall bn-adth.s at ditl'erent

itanc.-^ from tin- middle line must b. tional to these dis-

ioc> riven diMrihiitin <.f

"Let now th.- wh..l.-
edge

be divided into infinitely >mall

:tan_ as ABCD in Figure <'!. by line- drawn per-

..f th.-
j.l

fTh- lii
l

i tin- !; i- .-Ht l.y tin* M.-ili.-m Sutf.-i.-.- ,,f tin-
])I;i'.-.
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pendicularly across it.* In one of these rectangles apply a

balancing system of couples consisting of a diffused couple equal,
and opposite to the part of the given distribution of couple
belonging to the area of the rectangle, and a couple of single
forces in the lines AD, CB, of equal and opposite moment. This

balancing system obviously cannot cause any sensible disturb-

ance (stress or strain) in the plate, except within a distance

comparable with the sides of the rectangle ; and, therefore, when
the same thing is done in all the rectangles into which the edge
is divided, the plate is only disturbed to an infinitely small

distance from the edge inwards all round. But the given dis-

tribution of couple is thus removed (being directly balanced by
a system of diffused force equal and opposite everywhere to that

constituting it), and there remains only the set of forces applied
in the cross lines. Of these there are two in each cross line,

derived from the operations performed in the two rectangles of

which it is a common side, and their difference alone remains

Pig.61

effective. Thus we see that if the given distribution of couple
be uniform along the edge, it may be removed without disturbing
the condition of the plate except infinitely near the edge."

Otherwise, "a distribution of couple on the edge of a plate,
round axes everyiuhere in the plane of the plate (i.e., in the plane
of the unstrained Median Surface), of any given amount per
unit of length of the edge, may be removed, and, instead, a dis-

tribution offorce perpendicular to the plate, equal in amount
per unit length of the edge, to the rate of variation per unit

length of the amount of the couple, without altering the flexion
of the plate as a whole, or producing any disturbance in its

* To the unstrained Median Surface.
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." For, in Figure
(il. let AB = 'l#. tlio are > K-ing measured from A towards B.

Then, q-Q heini: tin- amount of the givi-n couple per unit
i, tin- amount of it on the rectangle ABCD is (q Q)ds.

Thus tin- forces introduced along ./ID, (75 to form the balancing
a mu>t he of aiuouut q Q. Similarly, the amount of the

I introduced along 7>V and the next transverse line is

q Q-f 'k
, <q Q\ and tinally we are left with a force of

amount els--j- '--

along BC, and a similar force in the negative

on of the Normal Axis along every other such transverse
;

.viou>ly we may suUtitute for forces of amount

/> at intinite-imal intervals (Is a continuous distribution
Of

of force of amount -
, l"-r unit lenirtli round tlie whole

edge, witlmut causing disturbane. in tlie plate except at infinitely
- from the edge, H.nr--, tinally, we have the

'

Stlted in .-.|uation (60) I

A\/> XORMAL VIBRATIONS <>r 7V//.V /'/

Si BJJ '/M/.l/. /.//'/; A'NNA'fl FOROM
t

L T J "./ /.//' /: A>* EXCEPT AT Till

r EATHI> /;) 777 /
'

/.T ///>.

399.] The Total Energy. The secon<l <.f th dona

(fl ) for th.- j.-.p-ntial j|,-rgy of a plate of \ xul>i-ct-d t

ui iform tl.-xion. may be written l>y m.-an^ of (-.}(}
j
and (4.S) in

th form

]

Tl tl.-xion . :

f may be considered uniform

MI, T ai;, . so that w.- d-.Iur :

!(
- entire

pu -atial energy of a plate subject to non-uniform llexiou

"^:'T<^'-&"?-O]!-"
w
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If the plate be executing normal vibrations, the entire kinetic

energy will be

(54)

and the total energy of the plate will of course be

400.] The Variational Equation of Motion, and the

Boundary Conditions. Let us suppose the plate to be either

in equilibrium, or executing normal vibrations freely or under
normal forces only, and that its edges are either free or

"
sup-

ported
"

or "
clamped

"
( 366) all round. In the most general

case, the small amount of work done in producing the incre-

ment Sw of normal displacement will be, with the notation of

396-397,

where rds is the element of edge, and dv the element of outward
drawn normal to it. [The work done by the couple Q, as couple,
that is in producing flexion about axes perpendicular to the

edge, is /Q^ ds
t which, since s is necessarily a closed curve,

/ vS

vanishes identically. This is the analytical justification of Kirch-
hoffs principle.] Thus the variational equation of motion is

Taking the first term separately, and making use of the

general theorem

(56)

where the double integral is taken over the entire area of the

plate, and the single integral round the whole of its boundary
edge, we have

Again, the second term of (55), on being integrated twice by
parts, gives
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rr r -& a2** t a2^ \n , ,

/1 6
i ''v

jj L V '

.'v _

/YT 32*0 S32M? B2!^ 832
t/'n T

=// 2-
+ ^^^-^ ~ 2

-5- rr'fy
^// LC|r ^xj 3a^ dy

2
3c3y Sart //J

= f$L*i
\*jj2

(--" -fel^
V '

Z// ay j

/ ; (eoB^-Bm^ycos^-sin^y ' \ /r ae^/\ 3f 3x /

di

'-"l^'

wh< s the sail ing as in 307 Integrating the firsl

t3rm again 1-y JMK-. an-l negl the integrated portion (s

1

'-iug necessarily a close- 1 mrvt-. an.l tip- t'lmrtiuii t> ! int-_;T:it.'l

i ecessarily singK'-valu.-'l', \\.- lia\.-

~J~ I Arf Ol V \ ' '

L w ay* ard//j

! inal'. !i-l ">S\ multiplying tln-m

i v- tli.-ir pn-j

'

,
nii'l ;nllin_u

r tli- n-mainin^
t rms nf tliat rxpn nal . ^nation U

rrc
-/

)

-*>!";] (
>*

-2nn tfooii" 1 -SPl.^.dJ d"

Thus the general
\ il. ration. t> !

p int "f tin- plat-

(e + a)v
2V2w?+ 2/.r 0,...

at every

(60)
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while the two boundary conditions are

< (0 + a)
^ w

+ 2a I sin 9 cos Ol
W
- - ^

j

+ (oos'tf
-
sin*0)|^~| + 2(rD - **} ]5=0 (61 )

and

( L uw;- uy~

-2sin0cos# - 2P I -=0 (62)

If the edge is clamped all round we have Sw = 0, fidw/dr =

everywhere, and (61) and (62) are necessarily satisfied.

If the edge is only supported Siv= Q, and we must have

/ \O f\ I "O/l*^ WJ o r\ L/ w/ i% /I /t O* tv /-v T^
(0 + a)v w> -

2a|
sm2 + cos2^ 2 sin 6 cos 6 I = 2P,

or

(g
_
a)y

2w + 2a cos2^ ^ + sin2# + 2 sin cos ^- I = 2P . . . (63)

If the edge is free, we must have, in addition to (63),

It is easy to show that, on making |C, Jl, zero, and writing
E- w for B, equations (46), (48), and (51) reduce to (60), (63) and

(64) respectively.

401.] Transformation to Conjugate Cylindrical Coor-
dinates. Let g and rj

be conjugate functions of x and y, and let

the form of the edge be such that it can be represented by the

equation g= constant. It is obvious that the equations of the

last Article will be much more readily applicable if they can be

transformed from x and y to and
r\.

It is an excellent example
of the methods of Chapter V. to effect this transformation ab

initio.

The principal curvatures TLV II2 of any surface $(x, y, z)
= Q

are the roots of the quadratic
*

+ B*b + C*c + 2BCa + WAV + 2ABc' - hV<f>]

+ A\bc - a'2
)
+ B\ca - b'

2
)
+ C\ab - c'

2
)

+ '2BC(b'c'
-

aa') + WA(c'a' -
bb') + 2AB(a'b'

-
cc')

= (65)

* Frost's Solid Geometry, Article 60ft.
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A ....... i' = c*$/dydz ......
, and

Putt in- 4> = c+ </-, and transforming (65) from
formula >

. i':U, 245, we obtain

n+n.
( )

: ( ;

,
:

/? +
<0

*

.(66)

.

. ,
.

..I'tain an
ezprefifflon

t'..r 11' analo-ous
!. -in. -nt >!' Mirt'ac.- lM-in ur (

/^,/,; /<-, an .l tin- arl.itrarv

I' i'
l

.i- must be equated to

( >n iiit.-_rratiiiu
r lv parts and rearranging terms, we li;iv- finally

t ie general equation of vibration *

(0 + a)vV" + V(i* - B) =
(67)

t igetht-r with tin- v mnditioDS

a supported .!-, andOf these (6s mu-t l^e satistir-l

b -tli P.und a/rec edge.

niijiles on Normal Vibrati-.n^ if l'lat-> tin- .student is

r< fen-. ind/' Chapter
X.. and

F< r example ..n f.juilibrinm t> Tli-.m-Mn and Tait - "Natural

U<M \V.- -hall here cnntinr our-
^ >s to a single \ampl. < t the latter class, to exhibit the

ivenience of curvili: rdinato in Bjmmetrical
|1 ain.

* There i apparent .

; i.il ilmililt- im> i tin- second term of
'

but i -rail conjugate
-. See Note at
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Circular Plate Symmetrically loaded and supported.

402.] The General Expression for the Displacement.
A circular plate of radius is placed so that its unstrained plane
is horizontal, and loaded and supported in a perfectly symmetri-
cal manner about its centre : required the general expression for

the vertical downward displacement of any point.
If Oz be directed vertically downwards through the centre it

is evident that the load, and the boundary forces and couples
(if any) must be functions of r only ( 244). Thus taking the

conjugate coordinates of Example 4 (i\ page 258,

C), r)
=

6, .............................. (70)

all the quantities involved will be independent of
r\.

The general

equation (67) of equilibrium thus reduces to

,
2
d2

j
<>

or, since h = l/r and d/dg= r . d/dr,

r dr dr r dr dr + a"

"

Integrating four times we have

9/*r 7 /- /*r 7 s^r
-or /ar / , / dr / , 7w = L_ / / rar / - / ?xc?r
+ ay rj J rj00 00

............ (72)

where 0', C"
t C'", G"" are arbitrary constants. Since however it

is clear from symmetry that the tangent plane to the strained

plate at the centre will be horizontal, we must put
<7'" = ............................................. (73)

403.] The Boundary Conditions. Equations (70) and

(71) reduce in this case to

(74)

404.] Plate under Gravity, supported by its Centre

only. In this case ^ = g, and w = when r =
; also, since the

edge is free, P=0, S = 0. Thus <7'" = 0, C'= - g/orC
2
/^+ a),

,
and finally

.................. (76)
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5n.MAL VinnAT; I'/i/x SHELLS C^DER NORMAL FORCES.

4 <:>.] Formation of the Variational Equation of
Motion. We nu\v advance from the consideration of thin plates
to that of thin shells, subject only to normal impressed forces

and it' op,-n shells, to surface tractions applied to the edges only,
and >uch that poiient tensions in the tangent plane to the

U at '-aeh point of its rdif reduce to couples.
A

]
du-11. as detined in .> :>^4, may ho takon of such

small sup.-rtieial dimensions that in its natural state it is practi-
iiilf tin- 'lire produced in it by the

strain is practically uniform. Thu>. if the }>rincipal curvatures

at any ]).int -11 be increased l'r<>m II,, II... to ll r II.,. wo
an- Ifd. as in - the a>^umj'tions '/.) that the couple-
unit loii^th across th- principal normal ^urt'ace.s at any point of a
thin si),.)]

'

-

w lero -r : shell at the point, and </'.) that

th 3 potential m.-riry. p.-r unit f unstrained superlioial area of

tl 3 late3 plate

||
i'./; ........

Since the thickness general, a fuuotiMn of tin- position
'

oi th 11 the pl;
(

-

'longeour
fc tli' 'ii. With th.- notation of

Chajiter
V.,

le the surfaces cA -sented by g=C,(=('+K,
W ere if is a small quantity of the tirst ..r.l.-r in <-..mparison with

th range of value thesurfac-- of the plate (^ 88 h
n thr thickness r at the point (C, n , f) will be (J ^30)

T-K//V (79)

^ laving of course the value it assumes when g=C, and IH in-

in xmsc n of / and f.
Thus if \\. writ--

-nff^y
'

.

s a id a will be absolute constants. We also ha\., l.\ equations

<1C ) of 232,
:

" -
'',: I
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where we again are to make g=C after differentiation, and (78)

may now be written

(82)

The vibrations being supposed normal, r\
and f will remain

constant for each point, and the only effect of the strain will be

to change the value of
(
from C to (7+ a, where a is a small

quantity of the first order, and in general a function of
r\
and

The normal velocity at time t will be ( 237) a/hv and the kinetic

energy per unit of unstrained superficial area will be
/
o/ca

2
/2/^1

3
.

Thus, the element of surface ( 230) being dr]d/h2
h
3 ,

if we write

for the normal impressed force per unit area

the variational equation of motion will be

, + n2
-^ - ptf

where /cH)/^i is the shearing force per unit length applied to the

edge in a direction perpendicular to the faces, P is the couple

per unit length in the plane parallel to this force and perpen-
dicular to the edge (flexion couple), and Q is the couple per unit

length in the tangent plane to the edge. In an edge formed by
a portion of an

r\
surface ds = d/h3 , dv = dtj/h2 ,

and in an edge
formed by a portion of a f surface ds = drj/h2, dv dg/h3 .

In default of general formulae, analogous to (66), giving the

sum and product of the increments of the principal curvatures in

terms of a and its derivatives as to
tj
and f, the equation of motion

and boundary conditions cannot be obtained in general terms,

but each case must be solved separately from this point.

406.] Case in which the surfaces of the shell remain
always members of the family to which they initially

belong.* If we suppose the vibration to be of this kind, a will

*
Examples: (i.) a shell bounded by concentric spheres performing nor-

mal vibrations symmetrical about the centre, (M.) an ellipsoidal shell with

conf'ocal surfaces, vibrating normally so that the surfaces remain confocal

with their initial forms, etc.
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ofc independent of
>i
and

^' (.$ '24'2}. and we shall have

simply

a
a

that equation iucfs to

[
!

...................<>

Th- boundary condition to be satisfied, in all <-a>rs in winch
the assumed mode of vibration d>.^ not rnjiiin' the edge to

ivniaiii ti\-d. 5-

;., g -.-p^j-o
................... (s&o

iodsof nK>il,lr viliratinns of tlii^ kind aiv indrjx-ndont
tli.- iinjin-s^d fore.- | these are prri.xlir). and can be

fr ?crtain-d wln-n tli- frm and dim< !' tin- -li'll aiv given.

H>7.] A spherical shell of radius r and small uniform
tl ickness T. performs free radial vibrations symmetrical
a >out a diameter, the amplitude of the displacement
b ing proportional to a zonal harmonic. Required the

p riodic time of the vibration. *
! the axis of

8} nun-try, and U tli.- radial di-i.lac.-iii.-nt. Th.-n, with tin-

n- tion of ' i- ind.-|..-nd.-nt of w, and .-.|iiati..n (S4-) of

I 0-"

II '

.Mil,-! r
)( M i

.

J^- ...... *"

But if /' 1... th.- jM.int
i^+ u, 0) nn th.- xtrain.-d sh.-ll, and /''/

:-mal at 1 and making an angle i/r
with

01 . we liav.- /

TT ! '''/^ TT
!

( )'

"
7
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_
l ~C V~ C2

and
r sin c/ r

cot (9

Thus, if we write

we shall have

/! Clfc
cos v = p, p~~- -u =

dp

d*u

and consequently

so that equation (87) may be written

T / iiSudp = 0.

Since 1 ^
2 = at both limits, the first line reduces, after

integration by parts, to

s + a

while the second line is equal to
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Th nation of mot inn

Ii' w.- nnw assault- that tlir li>placement is ,.f the form

n =
P,(cos 0)

where P 'It-notes a Legendre's coeffici- -nt, we have u= i*u and

] :

hat t
1

.-.tinii \\ ill IN> sati.stirtl if

-uHJ-l

lir.'.l
jn-i-io.lic tiiii.- -J

I:\AMII.I

'I'll.- most general BO] Clebech
1

lYnl.lrm,

:'..nn

-
1sx^^^ry-Jfl2(<rx

2 +

J-fa -*.*+.

:. Kind tli- vertical d.
].!

inn undrr Lr ia\ity ni' tin- crntn-

if a uii ifl >Mj]M-i-tt-d all rniind ly
bal rircul:
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3. If a thin circular plate be supported by its centre so that

the tangent plane there is horizontal, the ratio of the vertical

depression of the edge when the weight is uniformly distributed

over the plate to that when the weight is concentrated uniformly
round the edge is 7+ So- :

4. A uniform rectangular board, of length 2L, breadth 2(7

and weight W, is hinged all along its four edges to a fixed rigid
horizontal frame. Show that a possible form of equilibrium is

given by

the origin being at the centre of the frame, and Ox, Oy being

parallel to the edges.
Find the distribution of couple which must be applied to the

edges to maintain this configuration.

5. A uniform plate of infinite length, of breadth C and
thickness r, is fixed along the middle line of one of its edges,
and is acted on along the opposite edge by a tangential force

perpendicular to the plane of the plate, the resultant magnitude
of which per unit length is r3). Verify that, if the fixed line

be taken for the axis of y, the conditions of equilibrium are

satisfied by the displacements

_"

T
et)|

c= ^.1 _

I

6. A spherical shell of radius A, and uniform thickness T,

performs small radial vibrations symmetrical about its centre.

Show that the periodic time is 7r^l
3
x/2/oT/s.

7. A thin shell is contained by two confocal spheroids
of revolution, whose major and minor semi-axes are A, B

;

\/A 2
K, \/B2 K respectively. If the shell performs small

normal vibrations in such a manner that its surfaces remain

always confocal with their initial forms show that the periodic
time is

4A2 + 8A4
)/30(s + -a)Cl

or S-n-A 3
N//oicA

6
(8 + 4A* + 3A4

)/30(s + a)<?2 ,
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accord in:: as the- >hell i> ullit>' or /W</f<\ where

: -

and

-

log
i + v/r- AS

VI - A-
[2(1 +2<r)A

< - (l+5<r)X+
'

[Emili.y ti MM;, with tli> nutation of 251,

Thf un^traiiifl >url'acf> [' tin 1 >ln-ll \vill In- --'IYCM l>y 4
? = 0, ^=/c.

1

Philosophical Society, Vol. V..

pp. 'is an- 1 81!



CHAPTER IX.

IMPACT.

408.] Definitions and Fundamental Principles. Under
the general term Impact we include all cases of sudden change
of strain, of sudden application of stress to a body hitherto in its

natural state (such as may be caused by the shock of contact

with another body), and of sudden release from strain of a body
hitherto in equilibrium under stress.

It is of course impossible for any but infinitely great forces

to produce finite strain instantaneously, or in an infinitely short

time, and hence it follows that a finite stress requires a finite

time for its application or removal. We may however suppose
that strains and stresses of such magnitude as we have dealt with
in this work may be applied or removed, by continuous increase

from or decrease to zero, in periods of time quite insignificant in

comparison with the finite times of their subsequent application,
or during which their effects last: and all such cases may be
treated analytically as if stress were applied instantaneously, or

as if it were within the order of magnitudes which we are dis-

cussing from the very moment that its effects begin.
These effects take the form of small straining vibrations, into

the kinetic energy of which is transformed a portion of the

initial energy possessed by the body before the impact whether

potential energy of strain (as in the case of a body suddenly
released), or kinetic energy of bodily translation (as in the case

of a body suffering collision).
Such rapid applications or removals of stress as we here

suppose will in reality ( 21-26) generate local variations of

temperature, and consequently cause dissipation of energy by
conduction of heat, etc. For reasons, however, which have

already been fully discussed in Chapter I., we leave out of

account all disturbances due to changes of temperature, and
we are therefore reduced to the artificial assumption that The
total energy of any system of perfectly elastic (or rigid) bodies

between which impacts take place reckoned by summing up
for all the bodies of the system (i.) the kinetic energy of each
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-it uf tt-ti iix/iifit'n a,- i-<it"ti'm of tltc
6(/(/// (/,s

5 /"/// #ti-< -thru. t ion* jn'OjHigated
! (ii.) ti

,-tjif of each due
rtdnt tjiKiiitit)/,

icft ti f>r> < a />..,/;,-x
exclusively

n. Tliis is the fundamental Principle of
- rvation of Kner.

Of four-.-. in a', . which impre ed forces act upon all

any of tin- hodie^ in tin- -y-tem, the work done by or against
fin inu-t !' tak.-n into accmint in a])jlyiiiLT this principle.

of tin- impart, in rases of collision, is thr

'it "f M *
impuUivrlv communicated to one of the

rollidiiiLf l-odir-, and tak.-n tVnn tli.- other during the period of
\\

"

-liall rontiin- unrflv.-< 'xclu>ivfly to rasrs of tlinrt

in wliirli th'- colliding l'odi t -s mo\c a^ a \vliolr in

ion>. tin- ^Mrfa'-'-" of contact bein^ imnnal to the
1 >uch ca>f> tin- impact is entirely in

tin- direction of initial motion, and ronx,.,|nriitly ///'' r&UUant
!ai' directim

Kurthcr. ^inc.- the momentum
in the direction of impart lost ly one lody is gained hy the other

(iinpn' a j.nrely mutual reaction, like all other results of

st -ess) the. re* tin- direction

oj inititd m<>t two state-

n mt express the fun ! 1'rinriple <.f the ( 'oii-rr\ation of

> .ni.-ntniii.

In ! and livd obstacles,

Oi of release :
I iy retain-

In such cases it-

:B\ bst-' bateofmoi called the state of EJquivalenl
^ )tion, or i: n of the l.ody as a whole
ni .[!, !. hit 1

or obviou
u can only ' principle of

opnservatlan
of iiiomentiiiii

ii cli; impact.

/.

40!).] A uniform rod of length L is stretched to a
n iform extei md held thus in equilibrium ; required

4 effect of suddenly letting one end go, the other

nining fixed. Ohviou-lv \\ill he no tendency to

<ioii I any ]>oint
in tin- central

5 of the rod will th. i
,on-itudinal. Taking O:

'I'll.- iiK.iiiriitiun
'

' tak. n as tin- alge-

>IIIM .f tin- in.. i
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coincident with this axis, being at the permanently fixed end,
and expressing by w the excess of the distance from of any
point in the axis, at time t from release, over its distance in the

natural state of the bar, w will evidently satisfy the equations
of 365, so that

Since t is reckoned from the instant at which motion begins, we
must obtain a solution of (1) which will make w = ezt

w= 0, when
t = 0, for all values of from to L

;
and we are also to have

w= when z= Q, and dw/dz= when z= L, for all values of t.

The form of the solution is clearly

w =?
for this satisfies (1) and three of the limiting conditions identically,
and we have now only to determine A

t
so that

for all values of z from to L. Hence we find, by Fourier's

theory, that

A - e ~

7T
2

(2t+l)

and consequently

[It may be observed that, when t= and z = L
t
this expression

reduces to

as of course it should.]
The equation expressing the principle of conservation of

energy is

where Jl is the transverse section : or

................<>
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This i^ easily reduced, on substitution from (3), to

vT" 1_ r 1

I
. ., (

'2t_
4- 1 K: n

i y i 2/, ~2Z

+ 00.

x -1- -I*
i

which is an identity.
Whenever the time from release is an odd multiple of L

!>,,

or the time required for a sound vibration to travel the length of
i 10 < f..r all values of : and the rod passes through its

Whenever the time is an even multiple of 2Z/17p
:. and the rod pas-es through its initial state of strain.

Whenever the time i> an odd multiple of -11. i> p u'= t : and tlie

initial -r rain i- r-

The tracti.n <,n the tixed end of the bar

-
1" "^

'I ii>
:

U>f< from t = to t = L/tlv \\-hen it suddenly can^-s
lijD |

His and i>
.-,|ual

to _ / '..' to / = 27.1.) p this

< eh- In-iii^ r-prat-d ind.-tinitrly in njual ]M-ri..d> of time.

/
A'/'//;// Obstacle.

no.] A Rod of length L moving with velocity U in

ti e direction of its length, comes into direct collision
v ith a fixed rigid wall. Required the subsequent motion.
1 irini: tin- \vholr tini.- that tin- n.d is in contact with the wall

tl ) end in contact will be absolutely fixi-d. Thus if ire take

tl it fiid f..r origin, and 1 for Oz, we have
tc =0 wht-n / -----a from : = t> : A. and "- = 0, w=0 when c =
di

ril^
whole tin ntact. AK.,, -inc.- th- further end is

fr 6,0l0/3f0 when : A for all time.

The form of the displacement during contact with the wall is

ev dent I y

thi> satieties all the tWe^uin condition-. The constant>] MM
i'>re<joinff

conditions, me constant

M tlici.-nts maj be determined by the consideration that at the

s'Ant of in,] .-y point in the body is moving with a

1 >city U towards the wall, and consequently, for an unappreci-
interval following that instant e\eiy point in the body has
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a velocity U relative to the end 0. Thus we must have iu= U
when = for all values of z between and L, including the

limit z = L but excluding the limit z = Q (where w= ti).

Now the series

4U^ 1 (2i+l)7rs

TT ^2i + 1 2L

= U from z = to z 2L, exclusive of both limits, and vanishes

when z = 0. Thus we shall satisfy this condition by making

sin

or

2L

8LU 1

and consequently

The equation of conservation of energy is

which reduces to the identity

At the instant when t = 2Z/Q 1
w = throughout, and

4UvN 1 (2i+l)7rzw = \ _- sin v-^1
TT <&2i + 1 2L

U throughout.

At that moment therefore the rod is instantaneously in its

natural state, and is moving bodily from the wall with velocity
U. Contact consequently ceases after a period 2L/Ql

from the

first impact.

Confining ourselves for the present to the period of contact,

we deduce from (5)

^>w 4U^ 1 - (2i+I)7rz . (2i= - - sin
7rtt2i+I 2L 2L

<>
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illy, the first of tin- - =
\TT from : + Q^ = to

+(V2,and = -]- from c +O^-o/; to c + Q^ = 0; also
"! B0ri

- from z {\t = to c-Q^=:2L, and =
JTT

from :-0^= __>/. t( , : _o
i
f = o. Thus, within the limits and

L f.>r :. and and i*/,/^ for t, we see that:

If /
. I. i>. the tir>t i ITT from : =0 to : = L, while

= -JTT from :=() t> : = 127 and = ITT from
A.

It' *> /- --'
I'.v putt in- e= A

12, T-/' and c = A-:'

9ff= L)/
'

' V '

sin
-1 L'/.

+ > M< 01
2i r

^ !>/-/> and
while tli.' second series =i?r

A Thu the IV. .in :=o to

*"27. (

..'
' and ; 2 Q A. while tin-

se:on - L.

Suninii!

-
()

from : = n f :=!>/. and

t<> / = L m : <> to
--

rhn
L.

Th wall Mitl'rrs iniiform COm-
.in strain :

ai Itl

fr m t ,d with unitonii \,-loeitv
12,

alon-- tin- r>.l. i^

n- 6Ct urns \\ ith th<- same ve:

te ehlng tin- wall a-:! -A L' wh.-n contai-t

The thrn-t on th-- i-nd in wall i.s cU 1.'

be wall it is unstrained,

an < > iiinviri'_f with th.- initial velocity U r-\-

Slice '
' on tli- \ity will continue

to nov- with ' i
i th.- kin. (!< energy 'lue to

th> motion oi ti. ot .-iloiic will he c.jual to its

th.- impact. H.-ne.- tin- kim -tic energy of
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motion of the parts of the rod relatively to its centre of gravity
is zero, and consequently no such motion can take place. The
rod therefore retreats in its initial unstrained condition and with
its initial speed U.

EXAMPLES.

1. Two uniform heavy beams AB, CD, equal in every respect,
are connected by a weightless inelastic string BC ;

the beam AB
lies unstrained on a smooth rigid horizontal table, while CD is

suspended at rest under the action of gravity by the string which,

being held at B, passes over a small smooth pulley at the edge of

the table, and in one line with AB produced. Investigate the

motion of the string when set free
; prove that its tension, after

being instantaneously diminished by one half, remains constant.

and that its velocity receives equal increments at equal intervals.

2. Example 3 on Chapter VII. (page 449) may be treated as

a case of sudden release by the method of 409.

3. Prove that if we make y^O in equation (80) of 271 it

will represent the vibrations excited in an infinite plate of thick-

ness I, moving with velocity U, on its median plane being instan-

taneously brought to rest.

4. A uniform elastic bar is suspended vertically by one end,
and to the other is attached a weight W, which is supported so

that the bar is unstrained (the effect of gravity upon it being
neglected). If the weight be suddenly set free, investigate the

motion of the system.

5. Prove that if an elastic bar, of length L, impinges directly
with velocity U on a longer bar, of length pL and the same cross

section, the first bar will be reduced to rest by the impact, while

the second bar will appear to move forward by successive

advances of the ends with velocity U for intervals of time 2L/Qlf

alternating with intervals of rest of duration 2(p l)X/Qr

6. If the revolution of the square described in Example 9 on

Chapter VII. (page 451) be suddenly stopped by its sides striking

simultaneously a smooth fixed rigid plane, prove that the dis-

placement at any subsequent time t from the impact will be

given by

)
) .

2

) /

C<
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immation extending to all values of i given by the equa-

7. A uniform circular <lisc is rotating about an axis through
ntiv. perpendicul&i t it- plane. It is .suddenly stopped by

all the part within a concentric circle being rigidly clamped.
Show that the >train at any point i^ a pure shear, and that the

.ill hav a tendency to >plit from the inner circle outwards,

m.-nciniT at an anirle of 4"> with the radiu>.

Several practical examples n Im]>act will he found at the

end of Chapt.-r X\"I. of IW. ( '..tt. -rill's "Applied Mechanics,"

which the Ntudent i- >trngly recommended to consult.



CHAPTEE X

VISCOSITY.

41 1.] Analytical Expression of the effects of Viscosity.
We have seen in Appendix IV. (pages 175-177) that the effect of

viscosity, in an elastic body undergoing changing shear, is to

introduce a shearing stress depending only upon the rate at

which the shear increases, and, when this rate is small, directly

proportional to it. We have also seen that a mere cubical dilata-

tion or compression does not call any viscous resistance into

play.
Since the elastic shearing stress is simply proportional to the

absolute amount of shear, it is evident that the effect of viscosity
will be taken into account if we replace the elastic shearing

stress 2 by ZH -57, where v is the modulus of viscosity (page
111 Ot

177). We have seen in 210-213 that the most general small

strain can be resolved into dilatation and shears, and that, in the

expressions for the stresses in an isotropic solid, the modulus of

compression k appears only as a coefficient of dilatations, and the

modulus of rigidity n only as a coefficient of shears. If then we

express every coefficient in our linear equations of motion in

terms of k and n, and then replace the coefficient n by the

operator ln+
v^-,

V we shall have taken viscosity fully into account.

It follows that the coefficient m must be replaced by the operator

412.] Equations of Motion and Boundary Conditions
for a Viscous Solid in Motion. Taking equations (48) of

239 as the most general form, and modifying them as just
described, we have
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(

'

;

+ p(Z -?) =

and. similarly, the boundary condition- (4: of ; i^is l.ocomo

------ ^ * -- - - - ;;
'i

n

; CT?

, 34 , ry,A
s^ = hX'-

wh . in ti-niiN <f //, /, t(; by
equ; tinn ,1 h l.y -.|uati..n (lii)

*

13.] Torsional Vibrations of a viscous cylindrical
rod of circular section. Witli tin- nutation of

J :M4, l.-t tin-

surf c p"l be
given l.y / c, tin- ori-in ln-in-_;- at one end

oft) J central a\i>, and tin- l-n-_rtli of tin- rod hfin^ /..

I roin i led to assume that the

torsi nal motion will c.n-i-t in a
l.o.lily t\\ iM in-_r of .-adi transvi-r>

secti- n about tin- a.\i> in it- own plan**; or, analytically, that in

pure : i function only of

t.

C i t :ii]'tion W6 ]

-^ 6

e
i 3?r.

'
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and the equations of motion (1) reduce to the single equation

the conditions (2) for freedom of the lateral surface being satis-

fied identically.

414.] Free Oscillations. We can now solve completely
the case in which the end = is fixed and the end z= L, after

having been held twisted through an angle rL till the rod
assumes the configuration of equilibrium <j>

= TZ ( 335), is set free.

We have

(i.) when t
-

0, <f>
=

rz, <f>
= 0.

(ii.) when z = 0, < = 0.

(Hi.) when z = L, 3</9z = 0.

Thus the appropriate solution of (3) will evidently be of the form

$ = ^,A
i
sin pz e~Jt cos it,

substitution giving us the relations

or, if Qt^ as in 266

sin pz . e * .t (4)

To satisfy the remaining boundary conditions we must have

p = (2i+l)7r/2Z, where i is any integer, and

Thus finally

A - SLr
(~ '

n
J

The effect of viscosity, in increasing the periodic times and

steadily diminishing the amplitudes of the vibrations, is obvious.
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TO

41.").] Equations of Motion. It' we regard a liquid as a

limiting form of the solid state in which the elastic rigidity is

itely /! an deduce the equations of motion of a
is liquid from (41 of <i '2X7 by simply making =(), and

f>=(
<
>=/;= II. wh.-iv II ix the hydntatic pressure, .., the

onlv that can exist in such a hody (see Appendix
IV.*.

pages
l<

have th'-n in general

( )

'

\ wAJfc f\

")-/v.
t
.=o.

The relative displae.-m.-nts in a liquid may h>\\v\ .T he in-

rtinitely great consistently with infinitely .small strain except
ich as to produce cuhieal dilatation or com-

>reSM i it i- in g-iTal impos>il,l<. to identify their

nag litudt-N i.r .i . All that we are c.,ncrnied with

)rac- i' '/" "/ of different

>art liquid, and this mu^t of course he small in order

iat t 1'e small. If \\e change our

ot ion. making it, V, W r> tlie />/</</'//*> of displacement
>am lei to ti ', A tlie ,-"t

I tl L' loi. irs and cul.ical dilatation, the

cju;
ion> of motion will he, when ", Vt W ar. \ei\- small,

.I-**
ill | O I C \ O I >> \ II

4- '
j

"V'
_ ;

I v I a I
"

^^1 1 9L I I
j

I I /

I

.,/ / / / \
t

-' / 2^'.- I//I; i

C/iyyA-Aj/
/'

"'/
/'

| ^''/ Ov\

1 1 1 r / \ / \~i i ''/n 3"'

L \FRrw W W
/,,

w[ (

-

Tieqnantit .
' will still he gi^n in t. -mis of

v,'t;by the li: and (29) of 235.

^ i
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416.] Liquids treated as "Incompressible." In all

mobile liquids the numerical value of k is so very great in

comparison with that of v, that it is usual to neglect i/A in

comparison with II. In fact, if the hydrostatic pressure be

supposed of the same order of small quantities as the shearing
stresses due to viscosity, the rate of cubical compression will be

very small in comparison with the rate of shearing. This treat-

ment of liquids as
"
incompressible

"
is of course only an approxi-

mation, intended solely to reduce the great analytical difficulties

introduced into hydrodynamics by taking viscosity into account.

On this assumption the equations of motion may be written

in the form

vlh

,311
t

vh^l

with the further condition

(6)

e + =
(7)

When referred to Cartesians these equations take the simple
forms

_

a

with
'du

so that, in the case of conservative impressed forces, derived from
a potential Mr, we obtain by elimination

[Compare this with equation (164) of 30:3.
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417.] Boundary Conditions. In practice, the bounding
surt'a- liquid must be either (/.) free, (//.) subject to the

in normal pressure of a gas, or (n't.) in contact with a solid

or another liquid; and in all but the first of these cases the
contact must be maintained throughout the motion.

Thus in ca- ) we have the purely kinematic
that tli' velocity of every point in the surface

of a liquid is equal to that of the point in the surface of the other
. of whatever nature) in contact with it.

Tin- dynamical condition is when relative motion takes place
n th.- two bodies, tangent ially to the dividing surface, the

1 on either is proportional to the relative

.--.lid in a direction tending directly to retard it. Tims,
U- the velocity of any point in the surface of the liquid

resolved in ti to tin- -urt'ae.-, and n' the surface

ody in contact with it : then u satisfies the

qua'

...(11)

wh'Ov el.-m-nt of normal to tin- >urfac-. m.-asured out-

wards from the liquid, and u i> a n.-w c<>n-tant the "modulus
of i

In th mop- m-'bil.- liquids (ether, alcohol, ,-tc the value of
/JL

is . > great tha ifl ]lace at the

'iitact, so that Eftoe \'-lociti.^ of the litjuid, /'//

t...dy limit in

Ql case found by writing

n= 0, A '. Z II X ", /' <> n -11 in equation., < -1 ,.

Th s they b li o, ir new notat

1 1 /
3*

, =
u

'
1
1

*m +
(W-n)*j^+*-

.+

,...(18)

Examples of tl. Liquids will be found in

nbV'Motio,, of Fluids" Chapter IX.
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APPENDIX VI.

Economy of Material in Nature.

A few simple examples of economy of material i.e., the

principle of producing the greatest possible elastic strength under

specified types of strain, with the least expenditure of a given
material have already been discussed in Chapter VII. Numer-
ous beautiful applications of this principle are to be found among
organic structures, and in fact they may be looked for with con-

fidence wherever great strength in proportion to the material

available, or great lightness in proportion to strength is an

advantage.
Good examples in the vegetable kingdom are to be found in

the stems of the grasses and the order Umbel liferse. These plants

grow thickly together, or force their way among other thickly

growing plants, and often on very poor soils. They are all

enormously reproductive, and bear their seeds in heavy masses.

It is therefore of the utmost importance to them to use the least

possible material in building up their stems, and at the same
time to make them strong enough to resist considerable vertical

thrust and flexion couple. They all have largely hollowed cylin-
drical stems.

Very young trees, which have to struggle for food with the

surrounding grasses, etc., have most of their mass concentrated in

an external cylindrical layer of the stem, the axial portion being

occupied by a soft and light pith. As growth proceeds, however,
and their leaves in the one direction, and their roots in the other,

emerge from the sphere of close competition, they accumulate
material beyond the strict needs of economy, and it is largely
devoted to hardening of the axial portion of the stem. Conse-

quently in old trees the "
heart-wood "

is the more durable and
valuable portion of the trunk.

The stem of the common rush, on the other hand, compose<
of a thin but very tough outer rind, requiring some exertion oi

strength to break it, and a pith of large relative volume but very
small mass, is a good instance of the attainment of extreme light-
ness without too great a sacrifice of strength.

It is, however, in the complex structure of the bones of the

higher animals that we find the most consistent and remarkable

application of the principle of economy. It is of course advisable,
in order that the muscular power may be fully utilised, that the

bones, which from a mechanical point of view are simply an inert

system of levers, should be as light as possible, and at the same
time the exertion of that very power exposes them habitually to
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considerable Btresaea. In order to explain how these varied

requirements an- met, we will describe the structure of the
human thigh-bune as a typical example. This is a long bone,
the principal office of which is to transmit half the weight of the
trunk and head to the knee-joint, and thence to the ground.
Tin- principal streea to which it is subject is therefore one of

longitudinal thrust. It is however also subjected, especially in

walking or runn: .iniderable flexion couple and slight
The bone consists uf two terminal articular

vhich receive the complicated stresses from the joints
and i 'meeting shaft, almost the only function of

which i- to transmit im one articular mass to the other.

The shaft, which for our purposes may be regarded as approxi-
mat'-ly cylindrical, thu- } Imoet its entire stives across its

end - lance with the princi; :>^!), 330,

nsively hollowed out throughout its length, the

hard, ri'_rid and h.-avy IM.I, noe being compactly arranged,

mainly in the tWm !' longitudinal tilres. as a cylindrical easing,
and tlie jut- - tilled with light and .semi-fluid

marrow, which 1W practical purposes may be said to <>tler refiiftt-

anre only to cubical <-Miii]r.--i'.n. The structure .f the articular

HMissc's which are -uhject to very \ari.-d st\

]
tion .f t! 01068, is naturally much mre complicated.

Bi tad l>e said that the rigid b< me-.substance

of tli- infl the terminal maafl into

a hii: ng, and a Beriefl "f thin lamina 1 which in the

mi in : the principal TO t' the m<M\ 8eV6T

,foi OD which t:
;

.jert, the small orthogonal

Up;
Ot'- d by the^e lamin.-e being tilled with marrow. I'nder

tfl* Hpecitie-1 -train the lamin;e are in the proper position to

trt ism it principal normal ' and ;nv only
811 J6Ct tO Cubical GOBI]

and the ini t. chan

VO 111: ''dell th'- Ills ..tit ! Illparable

'wi h t 1. < >n the other hand, the comp.-ite structure

acl liisreadil;. U d.-t'on indei accidental shocks in

un ccn^tomed dii The advantages .,f this arrangement
n\ , r a solid 1 Bine strength or of the

weight,

Fig .htly dia-rammatic \ iew of the lines

.}' ti the up]er |M>rtionof the thigh-bone, cut

.-iiid looked .'it from the front. It

wil : that the "head" .!/>' has a considerable inclination

inv ards, h'-ad of a crane. The direct thrust, due to the

t' the body, falls exclusively upon the surface A, the

/; d l>. A'. // and ./ being due to liga-

*Of
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ments and muscles exerting the couple necessary to maintain the

upright posture. The muscles arising from F and assist in

keeping the knee-joint rigid. It is evident that the main thrust

will be transmitted by strut lines down the inner side of the

shaft, while the orthogonal tensions required to support the

"head" will act along tie lines arising from the outer side. The
details of the arrangement are shown in the figure.

Fig.62

On comparing this with Figure 63, which is /rom a photo-

graph of an actual section of the same bone, the reader cannot
fail to be struck by the extraordinary closeness with which the

sections of the bony laminae correspond to the theoretical lines

of stress.

The small bones of the body, such as those of the spine, the

Wrist, and the ankle and heel, are practically in the position of



PLATE IV.

Fig. 63.

n.\H MI
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articular : -.\ithout sha ft s, and are constructed on the same

principle. Fi_ n .l ivpiv-.-iits the theoretical lines of stress in

Fig. 64.

the b ulatingat tin- ankle-joint, and Fi^uiv (i~> i> i'nnn a

pi otograph of a section of tli In -1

*Tlie Btudent should read a hariiiin niit!..| "IIow a B>in- is

Ut,' 1 MacalisU-i. in tl..- ed M:i--;i/.ine" for

ly,
1 are lak.-n

f tli.- rul.lisli.-r>. Th.- ,-nv

J I >. ObOp0T, .ui.l tin- diagram I'.i is t'rmii a drawing
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L 8, page 2.

SpJiere of Action of the Intermolecular Forces.

Some very interesting cases are known of the appreciable
action between the molecules of bodies whose surfaces can be

brought into really intimate contact. Professor Tait supplies
the following instances ("Properties of Matter") :

(i.) Finely powdered graphite is re-solidified in the manu-
facture of lead pencils by the application of powerful pressure.

(ii.) Two freshly cut lead surfaces, pressed firmly together with
a screwing motion, will adhere very strongly to one another.

(Hi.) Sir Joseph Whitworth's steel planes are so true that, when
pressed together, they offer a resistance to separation markedly
greater than can be accounted for by the pressure of the atmos-

phere, (iv.) The surfaces of marble blocks may be so truly
worked that, on being pressed together, either can be lifted

suspended from the other, even in vacuo (if its weight be not
too great in comparison with the area of contact), (v.) All the

processes of gilding, silver-plating, etc., as well as the properties
of gum and glue, depend upon the cohesive forces between mole-
cules brought within insensible distances of one another.

II. 123, page 50.

Expressions for the Component Strains and Rotations, to

the second poiver of small quantities.

Let the coordinates of the points P, Q, R in the natural
state be (x, y, 0), (x+dx, y, z), (x, y+ dy, z), and let P', Q', R' be
the strained positions of these points. Then, if the component
displacements of P be u, v, w, the coordinates of Q' relative to

P' will be

-T| '

SaT"' -dx



ADDITIONAL NuTKS.

But FQ'=(l+e}PQ=(l and therefore

thus to the second order of approximation

__
*du

j,

F/? r\ -
fdw&

I I "i" I oox L\ '/

/-
'

] FY^Y
^y L\ '^/

^w i r~/3w\2 /di^
r/= ^ + i U I +(^^ 'LV / ya*j

Again the prijrrtinN .f /'7i' upon tin- axes are

-r<fy> f
1

)

"
<7^

ay \ /// oy

and

>-c)

(I

3u\c>iA "'''

) -.y^

, so that

i \ *

a id ultimately

Sr\
,

n

, u, w u>. u t;

:

'

at*\ ^u/i- IT I'-
ox/ ,'/\ //

Finally it' /' '

t

'
. /' /.' make ;!n_ \vitli tin- plane nt'

* + +
//

r

-L\ / \ /
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Thus ultimately

III. 2.35, page 222.

Transformation of the Component Rotations.

With the notation of Chapter V.,

= ?l 5_/ w>\-?l l/^\+?2 ^/^.\_?5 ?)
(
v
\

dz -dy\hj -dy -dz\hj ^z -dt\h.J ^j -dz\hj

and so for #2
and $3

.

But O
x
= X^x+ /*!&>+ 1/^3 ;

and therefore

**5L

and so on.
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IV. $239, page 22!>.

/(>"> transformation of the General Eqind'n> !.-<.

Multiplying 'i|uat: I of jj *218 by \, JJLV v
l respectively

in<l a-Miiiir, w obtain

.+ U
\

Li
fdO*^

+ p[A

or, with tin- notation of Chajit r \

+J
I

- 61

f ^ ^ ^

tin- n-sult.s f the last N-

'

(
i

,)(")

-^i ( )

-j
(

i c;\ I \ i

w ::
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V, 241, page 231.

Differential Equations of the Lines of Stress, referred to any
Curvilinear system.

It follows at once from 163 that the principal stresses NvN
2,

JY
3f
at any point are the roots of the cubic in

P-<t> U
U Q-<{>

T S

and that the directions of the principal axes are given by

_

where A, /m, v are the cosines of the angles made by the principal
axis corresponding to N with the elements dsv ds

2 ,
ds

3 ,
and the

notation is throughout that of Chapter V.

Now ds^X = ds
2//uL

= ds
s!v
= ds, where ds is the element of the

principal axis, so that these latter equations may be written

s^ ^_
Tds

l
Uds

2
+ Tds

3 _ Uds
l
+ Qds2

ds
1

ds
2

These then are the differential equations of the Lines of Stress.

See 293 for an example.

VI 401, page 477.

A Theorem in Conjugate Functions.

If
//
be conjugate functions of x and y, and if

it is required to show that V2
lg ^= 0.

Whatever function h may be of x and y,

identically. But

"'

'*(!)
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a ni I therefore

Y ^ ^ ^ SLY
"\ac a^ dy at-:/// \<S

%/ f\nn v-;- + ?f ^n
I y/JLS 3f By ay J
f\nn v-;- + ?
y/JLS 3f B

1

[7 ^V / Vl/ "^-
' L\ -'7 V v) J\

= identical 1

; v (
= 0.
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[The Arabic numbers refer to the Articles.]

Absolute moduli, 221.

JSolotropy, 201-206.

AIRY, Sir G. B., general solution under
surface traction only, 302 ; under applied
forces also, 307-309, 307 bis.

Anticlastic flexion of plates, 389
;
coefficient

of, 391
; do., for thin shells, 405.

Applied forces, 4; form an equilibrating

system, 29 ; work done by, against stress,

21, 27, 31; measure of, 136; continuous
and finite, 136; work done by, during
change of strain, 193-195 ; vibrations

under periodic, 279-283 ; equilibrium
under conservative, 303-321.

Areal dilatation, 129.

Asymmetrical elasticity, 201.

Axes of reference, choice of, 50, and App. I. ;

change of, 121, 159.

Axes, principal, see Principal axes.

Axis of stress in one dimension, 186.

Axis, central of a beam, hoop, or wire, 322.

Axis of torsion, 331.

Beams, defined, 322.

BERNOULLI, James, the Linea Elastica,
361.

Boilers, strength of cylindrical, 291.

Bone, structure of, App. VI.

BOSCOVITCH, theory of intermolecular

force, 37, 208.

BOTTOMLEY, J. T., on effects of set, 15.

Boundary conditions, in Cartesians, 145,

217, 218; in curvilinears, 238; for wires,
360, 364; for thin plates, 397, 398, 400,
401

;
for viscous solids, 412

;
for viscous

liquids, 417.

BOUSSINESQ, J., solution of the problem
of vibrations, 283, 284 ; of equilibrium
under conservative forces, 310-321.

Breaking stress, App. IV. (B.)
Brittle materials, 13, and App. IV. (C).

CAUCHY, Aug., on the sphere of action
of intermolecular forces, 38 ; the first to

introduce the modern idea of stress,

App. 111.

Central axis of a beam, hoop, or wire, 322.

Centre of a plate, 384.

Change of direction of straight lines in

homogeneous strain, 55
;
of axes of refer-

ence, 121, 159.

CLEBSCH, problem on flexion of plates,

386, 387.
CLERK MAXWELL, J., on viscosity of

air, App. IV. (A.) ; on Nachwirkung,
App.V.; and Faraday's theory of dielectric

tension, Ex. 21, page 260.

Coefficients of elasticity, 198-212
;
of longi-

tudinal extension, 329
;
of torsion, 334

;

of flexion in beams, 349, 352 ;
of synclastic

and anticlastic flexion in plates, 391 ;

do. in shells, 405.

Coefficient of viscosity, App. IV. (A.)
Collisions, 408.

Components of displacement, 51, 235; of

rotation, 86, 123, 235, and Notes II. and
III.; of strain, 89, 107, 108, 123, 234,
335

; of stress, 142, 148-152, 237-239.

Compressibility, 211.

Compression, cubical, see Cubical compres-
sion.

Compression quadric, 74.

Concurrent strains, 110; stresses, 156.
Cone of no elongation, 77 ; of constant do.,
78 ; normal, of shearing stress, 166

;

tangent, of do. do., 168.

Conjugate cylindrics, 245, 246.

Conservation of energy, and of momentum
in impacts, 408.

Conservative system, conditions for, 24.

Constraint, state of, App. IV. (B.)

Continuity of displacement, 47,287 ; of stress,
137.

Continuous elastic matter, 42.

Contour lines, 337.

Contraction, 53.

Contrary strains, 110 ; stresses, 156.

Conventional theory of elasticity adopted,
39.

Coordinate surfaces in general, 230; their

principal curvatures, 232.

Coordinate systems ; spherical polars, 243 ;

cylindrical polars, 244 ; conjugate cylin-

drics, 245, 246; surfaces of revolution, 247,
248; conjugate do., 249, 250; spheroidals,
251;ellipsoidals, 252.

COTTERILL, J. H., "Applied Mechanics "

quoted passim.
COULOMB, torsion coefficient of right

circular cylinder, 335; erroneous exten-
sion of do. to prisms in general, 34 2.

Coupes topographiques, 337,



1NDKX. .511

Crisis,elastic,in ductile metals,App. IV. B.)
non, IHL', in:>;

Ullifo: D of,112;
cubical ami longitudinal do., behaviour
of ductile metals under, App. IV. (B.)

principal, of coordinate sur-

t'urvil: mates, 230.

Cylindrical polar>.
. conjugate, -

1A! -principle, 41.

Deflection of uniform beams from the hori-

il under p-:

uess of the solution under
D boundary conditions, 2.~>

:

tions, stand-

JL
H
.'.

mt measurement*, of shear and
shearing stress, !*>-: of cubical a
M'.n and hydrostatic pr.--.ur.-. 171.

(train. 126; do., in vibrations, :

D ssipa strain,

lanes of no, 93, 94, and A p]>. II.

I naniicn, of a p

xxly, II.

te, state <

tnder flexion. 3.V> ; in naturv, Ap

Vpp. IV.; limits of

V. : i : coefficieir

rl. and App. 1 \
.

f shape
nd bulk, 1 1 ; peif.-cr.

02-206; isotropi.
f Toltirin , -1 1.

K iIK>id, strain, : stress, 169;

.

El ngation, 68, 83; qu > rones of

>osiant, 78; cone of

jK?ciHcation
.

'

:

-

natural state, 20 ;

]
tential of strain, * nergy ;

< m\\
t -Ul, of free vibrations, 2'<

.

rved wires and hoops, a

t tin pUte
; r,

Equations of motion and equilibrium in
C 'artesians ; in terms of stress, 138-143 ;

in terms of strain, 217 ; in terms of dis-

placement, 218 ; Lame's form, 218
;

deduced from principle of virtual work,
JU>; in curvilinears, 237; Lame's form,
239, and Note IV. ; of naturally straight
wires, 3GO ; do., when curvature small,
364 ; of thin plates, 396, 397, 400, 401 ;

of thin shells, 40-~>, 40G ;
of viscous solids,

412 ; of viscous liquids, 415; do., treated
as incompressible, 416, 417.

Equilibrium, of the body as a whole, 146 ;

general problem ,

::03; unstable
tan of, App. IV. (B.)

K'piipou-ntial surfaces of displacement. 1 2."i :

for homogeneous strain, 126
;

in curvi-

linears, 2K>.

>n, maximum of ductile metal bars.

App. IV. (15.); ultimate of do., ibid;

longitudinal, behaviour of ductile metals
under, //.<</; of bi-ams. 32'j; coefficient of

longitudinal

FAKADAV, 9* ( 'K-rk Maxwell.
. rla-tic, 16.

. App. II.

l-'lexi.i;. : plane circular in a prin-
cipal plant-. :> It'. :'.:>(>: in any plane, :C>I-

'; Cnrtliri,
|

\!'p. V.; of plates ; uui-
uclastic and anticlastic,
! ; .-...-iru-ients of, 3'.M :

thin shrll-

:ds ami thuds, A]>\>. 1\".

uniform ami local, in

is under tension, App.

Fluidity, Fluids, App. IV. (A.)

lar, 3; applied or im-

pressed, Kt Applied f.

Free vil>; blMB of, 261

'

problem. 2."3 : of vibratioi.

ilibrium under .surface

"iis only, 2S5-2S7 ; do. under con-

R, 303.

,d T.. on elh-cts of set. I.\

liis foundation of a th

:i tin.' principle of energy, App.

.KKKNHII .! Kleins on stability

>.f bars ami plates,
i in App. I

pp. I\'. (]',.)

H.irni": ;-lierical har-

:1.rations due to, 2, 6 ; do. ignored
.-tonal theory of elasticity,

ilibrium of a naturally straight

;ain, 122; stress, 1S7:

tching of cast-iron

.' IV.(C.)
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Homogeneity of molecular structure, 7 ; of

continuous matter, 43.

Homogeneous strain, 59-121 ; stress, 157.

HOOKE'S law, 197, App. III., App. IV.

(B.)

Hoops, 322; motion and equilibrium of,

377-383.

HOPKINS, W., on form of crevasses in

glaciers, Ex. 23, page 381.

Hydrostatic pressure, 174.

I-Beams, 355.

Impact, denned, 408.

Impressed forces, see Applied forces.

Intensity of stress, 131.

Intermodular forces, 3 ; probable sphere
of action of, 38 ;

Boscovitch's theory of,

37; stresses, 28-33.

Invariants of the strain, 111; of the stress,
164

; potential energy expressed in terms

of, 209.

Irrotational strain, 66; conditions for, 81,

82; components of, 89, 107; displace-
ment potential in, 124

;
free vibrations,

267-274.

Isotropy, 207 ; heterogeneous, 220.

KENNEDY, Alex. B. W., experiments on
ductile metals, App. IV. (B.)

KIRCHHOFF, G., boundary conditions for

thin plates, 397, 398, 400, 401.

KOHLRAUSCH, F., effect on rigidity of

change of temperature, Table (F. ), page
204.

LAME'S theory of elasticity, App. III.;
form of the equations of motion in Car-

tesians, 218 ; do. in curvilinears, 239, and
Note IV.; analytical theorems in curvi-

linears, Ex. 23, page 260.

Length moduli, 221
;
of rupture, 222.

Limits of elasticity, 12-15 ; mathematical
of perfect elasticity, practical in ductile

metals, of uniform flow, and of tenacity,

App. IV. (B.)
Linea elastica, 361.

Lines of flow, App. IV. (A.)
Lines of stress, 216, etc.

Lines in body, 44 ; preserve continuity of

structure, and of curvature, 55 ; and per-
manence of intersections, 56.

Loads, maximum and terminal, of metal
bars under tension, App. IV. (B.)

Local flow, stage of, App. IV. (B.)

Longitudinal stress, 132, 148; extension,
coefficient of, 329.

MACALISTER, Donald, on economy of

material in nature, App. VI.
Malleable substances, 13, and App. IV.
Mathematical limit of perfect elasticity in

ductile solids, App. IV. (B.) and Table

(C.), page 201.

Matter, structure of, 1, 2, 3; solid do., 6;
elastic properties of, 11-16.

Maximum load, extension and strength of

ductile metal bars under tension, App.
IV. (B.)

Median surface of plate, 384.

Moduli, elastic, of isotropic solids, 210

(rigidity); 211 (compression); 213(Young's
modulus); various systems of measure-
ment, 221.

Modulus of rupture, 222.
Modulus of viscosity, App. IV. (A.)
Molecular structure of matter, 1, 2.

Molecules, 2
; probable size of, 36.

Momentum, how affected by collisions,
408.

Motors, App. I.

Nachwirkung, App. V.
Natural state, 5

; intrinsic energy in, 20
;

stability of, 21
;
of a ductile solid after

manufacturing processes, App. IV. (B.)
NAVIER'S theory of elasticity, App. III.

Neutral plane in flexed beam, 347; do.,
surface in flexed plate, 390.

NIVEN, C., normal vibrations of a thin

spherical shell, amplitude varying as a
zonal harmonic, 407.

Non-rotated straight lines in homogeneous
strain, 82.

Normal axis of plate, 384.
Normal stress, 132, 148 ; principal do., 163;

cone of shearing stress, 166.

Notation, for strain, 59, 71, 72, 73, 100,
103, 123, and Note II.; for stress, 142;
for potential energy, 196, 198; for isotropic

solids, 212.

Origin of axes of reference, choice of, 50,
and App. I.

Parallelism of straight lines and planes,
unaffected by homogeneous strain, 61,

Particle, dynamics of, 40.

Perfect elasticity, 18
; approximation of

natural solids to, 19
; mathematical limit

of, in ductile solids, App. IV. (B.)
Plane of stress in two dimensions, 184.
Planes of no distortion, 93, 94, and App. II.

Plastic substances, 13, and App. IV. (A.)
Plates, 384; uniform flexion of, 388-392;

thin, see Thin plates.
Points in body, 44.

POISSON'S integrals of the equations of
free vibration, 278.

Polars, spherical, 243
; cylindrical, 244.

Position ellipsoid, 84.

Potential, displacement, 124; for homo-
geneous strain, 126; for vibrations, 267.

Potential energy of strain, 21, 27, 34; equal
to work done by applied forces, 21, 34,
188

; per unit volume, 196 ; relation to

stresses, 32, 196
; do. to strains, 200

;
as

an invariant of the strain, 209; of iso-

tropic solids, in terms of strain, 212
; in

terms of stress, 214.

Potential energy, of beam, 358 ; of wire or

hoop, 378; of plate, 392, 399, 401; of thin

shell, 405.

Practical elastic limits in ductile materials,

App. IV. (B.), and Table (C bis), page
202.

Pressure, 131
; surface, 133 ; hydrostat'c.

174.
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Principal axes of strain, r..\ 7l, 80, 81, 82 ;

"f stniiu and stress in

isotr. '21'' ; in tlexed plate,
sea

Principal elongations, 83 ; normal stresses,
ins of principal elonga-

tions, 215; surfaces of >train, _'!;, 84L

Principal curvatures of coordinate surfaces,

la of superiK>sition, *7, SS, I.V.. 1'.'7.

Pui i, gee Irrotat ional

guadrics, elongation and compres>
:. ellipsoid, M, 70, 1.

ellip- I, K.!: direc-

tor quadric of stress, 1

rtress, 102 ; fourth do. do., 172; cone of
no elongar ... of const

-; stress, 166 ;

tangent do. of do. do

RAY] ie waves
fact- of

mated as

to arbitrarily

44; of extension into dilatation and

\';
Ie extension, tors:

l ion, surfaces of, 247, 248 ; conjugate
o., .

II.

f do.

l: .ttional strain, >."., Ml
; component* of

... !<

us, conijionent, 86, ami N
"ir.i III.

i I- i.
1

:.- "ii for

100; axes of, 92; amount
Hi, and

ring, r.'l.

, App. II.

.Hi.

.ul.-l
]. lanes, remai:

ous strui:

2

Simple strain and stress, 33; elongation,
'.'0. ll, 113; shear, 92-100, 114; dilatation,
102-105, 112.

Small strain, 51-58 ; stress, 153-155.
Solid matter, 6 ; body, homogeneous, 8

Solidity. App. IV. (A.)
Sound, plane waves of, 268-271 ; spherical
harmonic do., 272; simple spherical do.,
273; possible forms of do., 274; velocity
of, in infinite medium, 268

;
in wires,

Specification, in terms of standard com-
ponents, 111 ; of cubical dilatation, 112 ;

of simple elongation, 113; of simple
shear, 114

; of most general small strain,
116.

Spherical harmonics, solution in terms of,
for fn-e vibrations, L'72, 273; for equi-
librium of sphere under surface tractions

only, 295-300; do. under applied forces

M potential can be expanded in a
- of harmonics, 304-306 ; normal

vibrations of thin spherical shell, am-
plitude varying as a zonal harmonic,

2i::.

Spheroidal coordinates, L'~d.

Stability of natural state. 21.

i-fect elasticity according to
unstable elastic equi-

librium, of uniform tlow, and of local

flow, in ductile metal*, App. IV. (B.).
Standard components, of strain, 106-110;

rotors, App. I.

and of ease of ductile
:

Natural state.

STOKJ x itch's hypo-
on experimental proof

II law. App. III. ; on viscosity

in molecular structure, 10; coordi-

'; simple, 33; type of,

tinuous matter, 47--
r
>0 ;

<>ii.-. .Mi-lL'l ; pure
or ii rotational, fill

; concurrent and con-
i-ation of, 111-115;

nd Note II. ;

in tv. -eometry of,

App. I. ; invariants of, 111; work done
i .my small, 192;

iii t- : Mh '-'"i', -11 ; relation to
:

.

i_:y per unit volume, 200;
in cut vilinears, 231 ; principal

i:; principal
Jll, 212.

I. 70, 12:;.

rlciniii), App. V.

222; of ductile metals

ion, and cubical and longi-
tudinal compre.ssion, App. 1 V. (Ii.); do.

under torsion and flexion, App. V.

Molecular, 28; an equilibrating
i

; resists increase of, and
vanishes with, strain, 30; type of, 33,
1 :',; simple, 33; work done by or

against, 31 ;
relation to potential energy

of strain, .12 : in continuous matter, 130,
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131; sign of, 131; intensity of, 131;
total, 131

; normal or longitudinal, 132,
148 ; tangential, 132, 149 ; shearing, 132,

150-152; two aspects of, 134, 135; re-

sistance to, 135 ; continuity of, 137 ;

components of, 148-152
; small, 158-155 ;

homogeneous, 157 ; graphic properties of,

159-186 ; general theorems on, 159-161 ;

resultant, 160; quadrics of, 162, 167,

169, 172; principal axes of, 163, 215;
invariants of, 164 ; special forms of. 174 ;

in two dimensions, 175-184 ; plane of do. ,

184 ; in one dimension, 185, 186 ; axis of

do., 186; heterogeneous, 187 ; work done

by in, small arbitrary increase of strain,
189-192

;
relation to potential energy per

unit volume, 196 ; expressed in terms of

strain, 197, 212 ; principal normal, 163 ;

do. in terms of principal elongations,
215 ; lines and tubes of, 216 ; breaking,
maximum and terminal, of ductile metal
bars under tension, App. IV. (B.)

Strut lines, 216.

Summary of the general problem, 253.

Superposition, of small strains, 87, 88 ; of

small stresses, 155 ; of strain and stress.

applied to proof of Hooke's law, 197;
of partial solutions of the general equa-
tions, 254-259.

Surfaces in body, 44 ; preserve continuity
of structure, and of curvature, 55; and
permanence of intersections, 56 ; of re-

volution, 247, 248; conjugate do., 249,
250 ; principal, of strain, see Principal
surfaces.

Symmetrical elasticity, crystalline or seolo-

tropic, 202-206 ; isotropic, 207 et seq.

Synclastic flexion of plates, 389
; coefficient

of do., 391 ; do. in shells, 405.

Tables ; Factors for reduction from one

system of units to another, (A.), page
199 ; Compressibility of liquids, (B. ), page
200; Weight moduli of solids, in C.G.S.

units, (C.), page 201; Practical moduli,
in English measure, (0 bis], page 202;
Ultimate and working strengths, (D.),

page 203 ; Effect on Young's modulus of

change of temperature, (E.), page 204;
Effect on rigidity of do., (F.), page 204;
Velocities of plane sound waves in infinite

media, page 290.

TAIT, P. G., examples of sensible inter-

molecular force, Note I. ; account of

Nachwirkung, App. V.
Tangent cone of shearing stress, 168.

Tangential stress components, 132, 149.

Temper, 15.

Temperature, 20; constant, 21; free to

vary, 22.

Tenacity, 222, and App. IV.

Tension, 131.

Terminal load of ductile metal bars under

tension, App. IV. (B.)

Theorems, general, on the partial solutions

of the linear equations of elasticity,
254-259.

Thin plates, 384 ; equations of motion and

equilibrium under normal forces, 396,

397; Kirchhoff's boundary conditions,
397, 398; treatment by energy method,
399-401 .

Thin shells, 384; motion and equilibrium
under normal forces, 405, 406.

THOMSON, Sir Wm., on viscosity and
fatigue, 16, and App. IV. (A. ) ; on
thermoelasticity, 25 (footnote) ; on size
of molecules, 36

; on Navier and Poisson's
deductions from Boscovitch's hypothesis,
37 (footnote) ; on permanent change of

density, due to longitudinal extension,
App. IV. (B.) ; solution for free vibra-

tions, 265-267, 275; on theories of the
luminiferous ether, 276; application of
his method to obtain a general solution for

equilibrium under surface tractions only
in the form of potentials, 301.

THOMSON and TAIT'S "Natural Philo-

sophy," first combines the principles of
Green and Stokes as a mathematical
basis for the linear Delations between
strain and stress, Ap.j. III. ; spherical
harmonic solutions, 295-300, 304-306 ; on
equilibrium of thin plates, 396-398; also

quoted passim.
Thrust, 131.

Tie lines, 216.

Timber, App. IV. (D.)
Torsion of beams, 330-342; axis of, 331;

couple, 334; coefficient of, 334; economy
of material under, 336, 338 ; false exten-
sion of Coulomb's formula for, 342;
strength under, App. V.

Total stress, 131, 133.

Traction, 131; surface do., 133; resolved
into dilatation and shear, 213.

TKESCA, on flow of plastic solids, App.
IV. (A.)

Tubes of stress, 216.

Twist, 332.

Type of strain, 33, 110; of stress, 33,
156.

Types of reference, for strain, 89-109; for

stress, 148-152.

Ultimate state of ease of a ductile solid,

App. IV. (B.); do., strength of materials,
Table (D.) page 203.

Uniform flexion of plates, 388-392.

Uniform flow, stage of, App. IV. (B.)

Vectors, App. I.

Velocity of sound, in infinite media, 268; in

wires, 365.

Vibrations, free or under periodic surface

tractions only, 260-278, 284 ;
under

periodic applied forces, 279-283; Bous-

sinesq's solution for, 283, 284; of wires,

365, 366.

Viscosity, 16, 19, 25, and App. IV. (A,B.)
Viscous liquids, App. IV. (A. ) ;

torsion of,

335 ; equations of motion of, 415, 416 ;

boundary conditions for, 417.

Viscous solids, App. IV. (A, B.); equations
of motion of, and boundary conditions

for, 411, 412.

Weight moduli, 221.
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ct on Young's modulus
:iiperature, Table (E.),

equilibrium and motion of

:;i>0; do. do.,
win-! t: small vibrations,

during
. small

arbitrary increase of strain, 180-192; by
applied forces in do. do., 193, 195; iden-
tical equality of these, 194, 195.

Working strength of materials, Table D.).
203.

i YOUNG,onHooke'slaw,App.IIL; Young's
modulus, 213; change of do. with tem-

peratur.-. TabU> (E.), page 204.
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