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1 SHOULD WISH TO DEDICATE THIS ACCOUNT

OF THEIR MASTER’S RESEARCHES.
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PREFACE.

THE portion of the second volume of the History of Elasticity
now published as an extract is devoted solely to the later re-
searches of Saint-Venant. It may appear to the reader that an
undue amount of space has been allotted to this one scientist, but
it must be remembered that these researches extend over a period
of thirty-five years, and in a certain sense contain in themselves
the history of elasticity during those years. Their importance
arises not only from what they themselves contribute to our
subject, but from the fact that so much of the important work of
the last three decades has been suggested by or has followed the
lines of Saint-Venant’s papers. The contributions of such elas-
ticians as Kirchhoff and Clebsch, as Boussinesq and Lévy to both
elasticity and plasticity frequently take their starting point from
an idea of Saint-Venant’s, while a host of minor memoirs help to
fill up the gaps in his work. Thus our Chapter X. may be taken
as the frame, the stoutness and solidity of which will enable us
the more readily to build up the remainder of our history. By
explaining the ideas, definitions and methods of the modern
science of elasticity, it allows of a more succinct and orderly

account of the contemporary work.

! This preface as well as the index refer only to the present extract.

S.-V. b



X PREFACE.

guide in this direction, till the years have given time for the
completion of the whole Hustory.

The responsibility, however, for the space and the manner in
which Saint-Venant’s researches have been dealt with rests
entirely with the editor. Hence any disproportion, any possibly
crude opinions, any erroneous criticism in this part of the work
must be attributed to him and not to the author. The articles in
this part due to the late Dr Todhunter are only three or four in
number and these refer to the less important memoirs. They are
marked as in Volume L by the omission of square brackets round
the article number, e.g. 101, 102, 103. This editorial preponder-
ance requires some explanation, which will be found partly in a
consideration of Dr Todhunter’s original plan, partly in the dates
of Saint-Venant’s memoirs. As I have pointed out in the preface
to Volume I. the original plan of this work was a first volume
devoted to ‘Theory’ and a second to ‘History.” Thus it arose
that the important memoirs on Zorsion and on Flexure were
incorporated in the ‘Theory’ volume, and the manner in which
they appear in that text book does not allow of their transfer
to the  History.” Large parts of these memoirs were at the same
time omitted as having little mathematical interest, for example
the entire discussions of the “fail-limit” formula and of combined
strain: see Arts. 5, 52—60, ete. of this Part. Further the memoirs
on I'mpact (written before 1870) were dismissed as falling outside
the limits which Dr Todhunter had set to his work. Thus he
wrote of the memoirs on transverse impact, that they form “an
interesting investigation of a mechanical problem, but it does not
belong to our subject.” The large section I have devoted to the
Legons de Navier would also not have formed part of the original
plan. The only reference to this work which occurs in Dr
Todhunter’s MS. is the following : “The third edition of Navier’s



PREFACE. x1

Legons sur Uapplication de la Mécanique... was published I think
in 1863 or 1864 with notes by Saint-Venant, but I have not
seen it.”

Of the majority of the other memoirs falling before 1870, there
exist in most cases only brief extracts in French from the intro-
ductory paragraphs. This would be sufficient to shew, without
the occasional remarks for changes scattered about the pages, that
the MS. is not in the form in which Dr Todhunter would finally
have published it. To these considerations must be added those
arising from the fact that all the memoirs and papers after 1871,
including some of the most important of Saint-Venant’s researches
on intermolecular action, plasticity, impact and above all the
Annotated Clebsch (see our Arts. 245—408), fall beyond the date
to which Dr Todhunter had carried his work.

Such then are the reasons which have led to the reconstruc-
tion of this portion of the History. I have felt the heavy respon-
sibility involved in adopting this course. But it has seemed to
me that the best memorial to the first Cambridge historian of
mathematics would be that the last history bearing his name
should have the widest possible sphere of usefulness. That useful-
ness will, I am firmly convinced, be best obtained by its compre-
hensive character, by its attempt to be a Repertortum of elasticity
rather than an Historique Abrégé of its purely mathematical side.
I recognise fully with my kindly French critic of the Bulletin the
importance of the latter, but its possibility will only be actual
on the completion of the former. To follow, even at a distance,
Wiedemann rather than Bertrand must be the editor’s duty; not
an easy one it must be confessed, but one requiring time and
labour rather than historical talent and insight. In the words
of the German proverb: wer giebt was er hat, der ist werth, dass
er lebt.



xii PREFACE.

For assistance in the revision of the proofs of this part I
have in the first place to thank Mr C. Chree of King’s College,
Cawmbridge. His suggestions and corrections have been of extreme
value to me, and his criticisms enabled me to remove many im-
perfections. Mr W. H. Macaulay has again lent me his aid in the
discussion of mathematical and other difficulties; while I am
much indebted to M. Flamant, Professeur & I'Ecole des Ponts et
Chaussées, for the generosity with which he has devoted a portion
of his busy time to reading the proofs of this account of his friend
and master’s researches. His corrections have been of much service,
especially in the French portions of the work. For the temporary
index attached to this part I am, so far as the titles are con-
cerned, personally respounsible. Perhaps, only the writer of a book is
in a position to prepare an efficient set of titles. I have, however,
to thank Miss L. Eckenstein for the more laborious task of
alphabetically arranging the titles and for a verification of the

entries.

KARL PEARSON.

Uxiversity CoLLEGE, LoONDON,
December 29, 1888.
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CHAPTER X.

SAINT-VENANT, 1850—1886.

SEctioN 1. Torsion.

[1] WE commence our second volume with some account of
the later work of the great French elastician whom we are
justified in placing beside Poisson and Cauchy. From the
last memoir referred to in our first volume till June 13, 1853 we
have nothing to report. A slight note, however, entitled : Divers
résultats relatifs & la torsion, which was read to the Société
philomathique (Bulletin, February 26, 1853, or L’Institut, no. 1002,
March 16, 1853), sufficiently indicates that our author had been
diligently at work during these years on his new theory of torsion.
On the 13th of June, 1853, his epoch-making memoir was read to
the Academy (Comptes rendus, T. XXX VL p. 1028). The memoir was
inserted in T. X1V. of the Mémoires des Savants étrangers, 1855,
pp- 283—560, under the title :

Mémoire sur la Torsion des Prismes, avec des considérations
sur leur flexion, ainsi que sur Uéquilibre intérieur des solides
dlastiques en géndral, et des formules pratiques pour le calcul de
leur résistance a divers efforts s'exergant simultanément.

We have referred to it in our first volume as the memoir on
Torsion, and shall continue to do so.

The memoir was referred by the Academy to a committee
consisting of Cauchy, Poncelet, Piobert and Lamé. Their report
drawn up by Lamé (Comptes rendus, T. XXxXVIL, December 26,
1853, pp. 984—8) speaks very highly of the memoir. We cite
the concluding words :

8- V. 1
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Le travail dont nous venons de rendre compte, mérite des éloges
A plus d’un titre: par les nombres et les résultats nouveaux qu'il offre
aux arts industriels, il constate, une fois de plus, I'importance de la
théorie de V'équilibre d’élasticité; par I'emploi de la méthode mixte, il
indique comment les ingénieurs, qui veulent s’appuyer sur cette théorie,
peuvent utiliser tous les procédés actuellement connus de Panalyse
mathématique ; par ses tables, ses pures, et ses modeles en relief’, il
donne la marche qu’il faut nécessairement suivre, dans ce genre de
recherches, pour arriver & des résultats immédiatement applicables & la
pratique ; enfin, par la variété de ses points de vue, il offre un nouvel
exemple de ce que peut faire la science du géométre, unie a celle de
I'ingénieur. (p. 988.)

The report gives a succinct account of the memoir. A second
account by Saint-Venant himself will be found in: Notice sur les
travauz et titres scientifiques de M. de Saint-Venant, Paris, 1858,
pp- 19—31, and 71—80. This work together with one of the
same title published in 1864, when Saint-Venant was again a
candidate for the Institut, gives an excellent résumé of our
author’s researches previous to 1864. We shall refer to them
briefly as Notice I. and Notice 1L

[2.] The memoir itself is principally occupied with the torsion
of prisms, a great variety of cross-sections being dealt with. This
particular problem in torsion has been termed by Clebsch: Das
de Saint-Venantsche Problem (Theorie der Elasticitit, S. 74),
and following him we shall term it Saint-Venant's Problem. The
memoir consists of thirteen chapters.

3. . The first chapter occupies pp. 233—236; and gives an
introductory sketch of the contents of the memoir. If the values
of the shifts of the several points of an elastic body are given the
stresses can be easily found by simple differentiation. But the
inverse problem—to find the shifts when the stresses are given—
has not been generally solved, because we do not yet know how
to integrate the differential equations which present themselves.
Saint-Venant accordingly proposes the adoption of a mized method
(méthode mizte ou semi-inverse), which consists in assuming a part
of the shifts and a part of the stresses, and then determining
by an exact analysis what the remaining shifts and the remaining

1 Copies of these numerous models are at present deposited in the mathematical

model cases at University College. They represent much better than the poor
woodcuts of the original memoir the distortion of the various cross-sections,
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stresses must be. Before proceeding to the torsion of prisms
Saint-Venant illustrates this mized method in the third and
fourth chapters of his memoir by applying it to simple problems.

[4] The second chapter occupies pp. 236-—288; it analyses
strain and stress and investigates the general formulae for the
equilibrium of elastic bodies. In 1868 Saint-Venant contributed
to Moigno’s Statique another elementary discussion of the funda-
mental formulae of elasticity; the later work is somewhat fuller
and contains the more matured views of the author; the earlier is,
however, very good. I will note the leading features of the treat-
ment adopted :

(a) On p. 236 Saint-Venant defines the shifts as the déplacements
moyens or as the déplacements des centres de gravité de groupes d’un certain
nombre de molécules. He thus starts from the molecular standpoint,
but this definition does not appear to be absolutely necessary to the
course of his reasoning.

(B) On pp. 237—248 we have the analysis of strain. Here the
slides first defined by Navier and Vicat (see our Vol. 1. p. 877), and
then theoretically considered by Saint-Venant in the Cours lithographié
(see our Art. 1564%), are for the first time introduced by name and
directly from their physical meaning into a general theory of elasticity.
The slide of two lines primitively rectangular is defined as the cosine
of the angle between them after strain (p. 238).

(y) On p. 239 Saint-Venant carefully limits his researches to very
small strains within the elastic limit, so that what he says later (pp.
281—288) on the conditions of rupture, must when applied to his
torsion problems be interpreted only of the elastic limit. Indeed, as for
certain materials, set is produced by any initial loading below the yield-
point and is not practically dangerous (i.e. the material is not ‘ener-
vated,” to use Saint-Venant’s language), we can only look upon the
conditions of torsional rupture given in the memoir as of value when
either (1) the material is elastic and follows Hooke’s Law nearly up
to rupture (cf. the steel bar H of the plate p. 893 of our Vol. 1.), or,
(2) the material has a state of ease extending almost up to the yield-
point.

(8) On pp. 242—5 we have the general expressions for s, and o,,.
The first is due to Navier in his memoir of 1821, the second is attributed
by Saint-Venant to Lamé (Legons...lélasticité, 1852, p. 46) but as we
have seen it had been previously given by Hopkins in 1847 (see our
Art. 1368%). From the second flows naturally a discussion of principal
and maximum slide, together with a proof of Saint-Venant’s theorem
that a slide is equal to a stretch and a squeeze of half the magnitude
of the slide in the bisectors of the slide angles (see our Art. 1570%).

1—2
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Finally the strain is expressed for small shifts in terms of the shift-
fluxions (pp. 246—8). There is reference in a footnote to the strain-
values for large shifts (see our Art..1618%).

() We next pass to an analysis of stress on pp. 248—254. Stress
is defined from the molecular standpoint as follows :

Nous appellerons donc en général Pression, sur un des deux cbtes d'une
petite face plane imaginde & Pintérieur d'un corps ou & la Uimite de séparation
de deux s, los résultante de toutes les actions des molécules situdes de ce cite
sur les molécules du cité opposé, et dont les directions traversent cette face;
toutes ces forces étant supposées transportées parallélement & elles-mémes sur
un méme point pour les composer ensemble. (p. 248.)

The reader will find it interesting to follow the evolution of the
stress-definition by comparing this with Arts. 426*, 440%, 546%, 616%,
678—9* and 1563 *,

From this definition Saint-Venant deduces Cauchy’s theorems (see
our Arts. 606* and 610*) and an expression for »*. On p. 253 p,, is
erroneously printed for p,,..

In a footnote to p. 254 a generalisation of the expression for i is
obtained. Suppose x, ¥, z to be any three concurrent but non-
rectangular lines, and let «’, 3/, 2’ be lines normal respectively to the
planes vz, 2z, zy. Then in our notation :

=

cosrx’ (_ cosr’x’ _ cosr'y _ cosv’
7 | xx 7T XY , T X7 7
€OS 24t €OS XX cos yy COS %%
y Lyl Aol N
cosry’ (. cosr'x __cosry __ cosr'z
= g 4 S Ea
cosyy COS X% cos yy' cos 2%

cosrz’ (. cosrx _ cosr'y __ cosr'd
=\ 2z 5 + 2y -~ =+ 2z X
€OS 22/ COS 2% cos Yy €Os 22

The proof is easily obtained by the orthogonal projection of areas.

(¢) Saint-Venant next proceeds to express the relations between
stress and strain (pp. 255—262). It cannot be said that this portion of
his work is so satisfactory as the later treatment in Moigno’s Statique
(see p. 268 et seq.) or the full discussion of the generalised Hooke’s Law
in his edition of Clebsch (pp. 39—41). In fact the linearity of the
stress-strain relations is obtained in the text by assumption: Admettons
done avec tout le monde que les pressions sont fonctions linéaires des
dilatations et des glissements tant qu’ils sont trés-petits (p. 2567). A
long footnote (pp. 257—261) treats the matter from the standpoint
of central intermolecular action. Appeal is made to Cauchy (Zxercices
de mathématiques t. 1v. p. 2: see our Art. 656%) for the reduction of the
36 coefficients to 15. Saint-Venant, however,—consistent rari-constant
elastician as he has always been—retains the multi-constant formulae,
remarking :
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Mais des doutes ont été élevés sur le principe de cette réductibilité des 36
coefficients & 15 inégaux. Bien que ce doute ait pour motif principal une
autre maniére de I’établir, et quil ne paraisse atteindre, tout au plus, que
les corps régulidrement cristallisés dont nous n’aurons gas 4 nous occuper
dans la suite de ce mémoire, et, méme, ceux seulement de ces corps ol des
groupes atomiques éprouveraient des rotations ou des déformations par-
ticulidres lorsque lon déforme l'ensemble, nous conserverons en général, &
lexemple de M. Lamé, lindépendance des coefficients, ce qui, comme il
Pa remarqué, ne rend pas plus compliquées les solutions analytiques des
problémes.

The reference to atomic rotations was suggested by Cauchy’s paper
of 1851 : see our Art. 681 %,

(7) We have next to deal with the reduction in the number of
coeflicients which arises in certain symmetrical distributions of homo-
geneity or in cases of isotropy. Saint-Venant adopts Cauchy’s defini-
tions of homogeneity and isotropy, which should have found a place
in our first volume under Art. 606* (see the Hwercices t. 1v. p. 2):

On dit alors que le corps est iomogéne, ou que lélasticité y est lo méme
dans les mémes directions en tous ses points (p. 263).

On the other hand a body is isotrope when it has une éasticité
constante ow égale en tous sens autour du point (p. 272). )

Saint-Venant refers to a semi-polaire distribution of elastic homo-
geneity as an example of elastic distribution. He has, as we shall
see later, thoroughly treated the entire subject in a memoir of May 21,
1860.

The various cases in which one or more planes of symmetry exist are
worked out, but I think brevity as well as uniformity of method are
gained by adopting Green’s expression for the internal work due to the
strains.

(6) As an example of Saint-Venant’s method in this section we
may take the following problem. He has shewn that in the case of one’
plane of symmetry, that of yz, the shears perpendicular to this plane
reduce to :

W= fOuy+ ROy, =0t ROyt (1),
where f = |xyxy| h = |\xyex| = |zzay)
1 e = |zwzxl ,

in the umbral coefficient notation : see Vol. 1. p. 885.

Now by a suitable change of axes these shears can be expressed
each in terms of a single slide. This problem is not reproduced in
Moigno’s Statique.

Turn the axes of yz round « through an angle 3, then we easily find :

7z =—zysin B + zacos B (i)
R TR |
Gy = Oy €OS 3 — 0y SIN B} ; (i)
O'mz=0'm/ Sin B = O'wz' COSB ..... ‘. ............... .



6 SAINT-VENANT. [4
Substitute from (iii) in (i) and then the values so deduced in (ii).

We obtain
& & (ff

e 3
2

_,_f_;.-e cos 2B + A sin 23) Ty

<+ (— f—;—e sin 28 + & cos 2[3) O e’ L
7= (‘f-—ﬂ 2 Sz cos 23 — A sin Qﬂ) T

i
2 (-f;—e sin 28 +  cos 23) s
; : 2h : s
Obviously, if we take tan 28 = e we reduce this last pair of

equations to
% =fx o'my'}

SR p
xz' =€) Oy

where f, and e, are roots of the quadratic u’—(f+e)p+fe—2°=0.

Such is substantially Saint-Venant's reduction. It is obvious,
however, that this result follows at once when a known problem as to
the invariants of a conic is applied to the work-function.

() A remark as to isotropy on p. 272 may be reproduced as
bearing on the uni-constant controversy :

Mais lisotropie parait rare. Non-seulement les corps fibreux, tels que
bois, les fers étirés ou forgés, mais méme les corps grenus ou vitreux, refroidis
de la surface au centre aprés leur fusion, peuvent présenter des élasticités
différentes en divers sens.

Saint-Venant refers to the experiments and remarks of Regnault,
Savart and Poncelet already noted in our first volume : see Arts. 332%,
978%* and 1227%,

(x) On pp. 272—8 we have deductions of the body-stress equations,
the body-shift equations and the surface-stress equations,

On p. 276 Saint-Venant deduces the body-shift equation for a
planar distribution of elasticity such as he requires for his torsion
problem. ;

He takes for the shears the expressions found in Equation (v)
above, and for the traction 7z perpendicular to the planar system the
expression

77 =as, + bs, + 8, + doy, + €04 + [,

with siz independent constants. Substituting in the body-stress equa-
tion ] + - + d=

de dy dz
shift-fluxions, he finds :

=X, and expressing the strain in terms of the
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Pu du Fu P e
@ e i % @2 dwdgr‘ daxdz
d*v d*w dv d*w d*v d*w
+(f'+b)*—da:dy+(e‘ +0)m+d(d——wdz+d§‘—*y> +f%2+ 6%5'=X'

Cest la seule équation dont nous aurons besoin pour les problémes sur la
torsion, comme on verra.

It will be noted that it contains eight independent constants, and
that X is a body-force, not a body-acceleration, and acts towards the
origin. It is needless to say that Saint-Venant much reduces the
number of his constants before he applies this equation to his problem.
In Moigno’s Statique (p. 637) he adopts in place of X the more usual
notation of — pX where p is the density.

[5.] The concluding pages of this-chapter (pp. 278—288)
contain matter which appears here for the first time, and which, as
1t is of considerable interest, deserves an article to itself. The
section is entitled: Conditions de résistance d la rupture éloignée ou
a une altération progressive et dangereuse de la contexture des corps.

(@) We have already noted the misleading character of this title:
see Art. 4. (y). In the first place initial loads frequently produce set
which although neither progressive nor. dangerous may alter the shape
or elastic homogeneity of the body ; and in the second place, if the body
be in a state of ease, still in many cases the generalised Hooke’s law
will be far from holding even approximately up to the elastic limit.
Saint-Venant recognises the first point by distinguishing between
small sets, “qui ne font qu'écrouir le corps ou rendre plus stable
I'arrangement de ses parties” (p. 278) and large sets, which he holds
either augment progressively so that “la matiere s'énervera bientdt”
(p- 239), or else by change of form destroy the value of a structure.
But he hardly seems to have taken note of the second point, for he
does not hesitate on pp. 280 and 286 to use stretch- and slide- moduli
which connote a proportionality of stress and strain. The same point
recurs in almost each torsion problem, where a condition de non-
rupture ow de stabilité de la cohésion is given (e.g. pp. 351, 396 etc.).
It is essentially a limit to the proportionality of stress and strain which
is in each case given, but this limit in many materials has no sensible
existence or may in the case of a material which does not possess an
extended state of ease be safely passed.

() Onme further remark before we proceed to Saint-Venant’s
process. He starts from the formula (p. 280)
8, = 8, €08’ a + 8, cos’ B + 5, COS® y + 7, €08 3 COS ¥ + 0, COS y COS @
+ 0y €08 @ COS Buuninninniinnns (i),
but on p. 242 he has obtained this by supposing the stretches and
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slides to be so small that their squares may be neglected. It is
conceivable that in some materials before rupture and, possibly, before a
dangerous set is reached, this might not be allowable.

() Our author begins by noticing that the proper limit to be
taken for the stability of a material is a strefch and not a traction limit.
He attributes to Mariotte' the first recognition of this fact “que cest
le degré d’extension qui fait rompre les corps” and remarks that
although it is legitimate, and occasionally convenient, to take a traction
limit given by 7'= E5 where § is the stretch-limit and £ the stretch-
modulus, 7' need not be the stress across any plane, whatever, at the
point in question.

Et cette sorte de notation est sans inconvénient si Pon n’oublie pas que 7'
représente simplement le produit Es, ou la force capable de donner (aussi par
unité superficielle) & ce méme petit prisme supposé isolé, la dilatation limite §
relative & sa situation dans le corps, mais qu’il ne représente que quelquefois
et non toujours Peffort intérieur ou la pression supportée normalement par sa
section transversale pendant qu’il fait partie du corps. (p. 280.)

This remark is all the more important as the distinction has been
neglected by Lamé, Clebsch and more recent elasticians: see our
Arts. 1013¥%, 1016 * footnotes and 1567 *,

(d) The stretch in any direction being given by the equation (i)
above, we have next to ask what in an aeolotropic body is the distri-
bution of limiting stretch? Saint-Venant having regard to equation (i)
assumes it to be ellipsoidal in character; in other words he takes

§=35,cos’a + §, cos* B + §, cos’y,
where §,, §,, 5, are three constants to be determined by experiment,
and the axes of ellipsoidal distribution are chosen as those of co-
ordinates. The condition of safety now reduces to the maximum value

of s/5 being = or < 1. By the ordinary max.-min. processes of the Differ-
ential Calculus we obtain for s/§ the equation :

8 S, 8 8, S S s 8,
45,53 ___x>(___w) ___e>_ 30 e
S“‘S"S*(é TAVRE W AVRGY P ol (e T

8 LSS !
- *%by, (g—é:)—o"wsz (E —.-é)-—ayza'ma'xyz() ...... (ii).
The roots of this equation are known to be real and we must have
the greatest of them = or < 1.
Suppose the material is subject only to a sliding strain, then
8, =8,=8,=0y=0,=0. Hence it follows that

8 Tyz

N
In other words if § is the limit of s, then 2~/§y §, is the limit of oy, or
gives the slide-limit. TLet us represent it by &,,.

1 Traité du mouvement des eaux, sixidme et troisiéme alinéa du second discours.
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Similarly we have &,, = 24/5,5, and &,, = 245, 5,
Saint-Venant then rewrites his equation (ii) as :

(s INWEE sy) s sz) o-,,z>”(s sz> <o-z,a)2 s s,,)
FRE L ¥ o e G \3 & Fost \5 4,

{! ("_wv) (ﬁ 3 i) 3 TmTmTw_g (iii)-
Goy/ \S &, Gy G Oy
He remarks that this equation may be adopted as it the six
limiting strains §,, §,, 5., &, G G, Were all independent, and the
values of the slide-limits & had to be found by experiment. At any
rate equations of the form &, =2 N/ 5;52 need only be used when there is
an absence of experimental data. (p. 284.)

(¢) In the following paragraph (25) Saint-Venant explains how
we are to find s/ for every point in the body and then take its
maximum value for all these points,

Pon obtiendra, en Pégalant & I'unité, la condition nécessaire et justement
suffisante de la résistance du corps & la rupture (p. 284).

We have noted that this language is hardly exact. The point where this
maximum takes place is called after Poncelet point dangerewx, a name
which it is convenient to render by fail-point. This term will not
necessarily connote rupture, but merely a point at which ¢linear
elasticity?’ first fuils. The consideration of this point leads Saint-
Venant to a concise definition of the solid of equal resistance :

Souvent il y a plusieurs points dangereuz, ou plusieurs points pour lesquels
la plus grande valeur de s/3 est la méme, d’apres la manitre dont les forces sont
appliquées. Lorsque, dans un corps de forme allongée, il y a un pareil point &
chacune de ses sections transversales, ce corps est dit d’dgale résistance: tels
sont les prismes lorsqu’ils sont simplement étendus ou tordus par des forces
appliquées aux extrémités.

(f) We have next the application of (iii) to the case of torsion
about x as axis. Here
8 =8, =8,=0,,=0,

8/8 = N (00T + (05 Fz)-
We have thus the limiting condition

2 2
g 7,
1=or>(_—“”) +(;ﬁz) .
Oy Oz

It is obvious that the principal slide in any direction /o’ + o’
is given by the ray of an ellipse of which &, and &, are the

whence it follows

1 T use the words ‘linear elasticity’ in the sense in which ‘perfect elasticity’ has
been used by the writers of mathematical text-books, i.e. to connote the elasticity
which obeys the generalised Hooke’s Law or the linearity of the stress-strain
relation.
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semi-axes. Saint-Venant uses throughout his memoir a slightly differ-
ent form. Let u, u, be slide-coefficients and §,, .S, the shears capable
of producing the slides &,, and &,,; then the condition of non-rupture
par glissement (i.e. of no failure of linear elasticity) is expressed by

] ]
1= i "W) /_‘sf,’.x%) :
o= () (5
The chapter concludes with a few general remarks on the physical
characteristics of rupture by torsion.

[6.] The third chapter occupies pp. 288—99 : it relates to the
simple case of a prism on any base, whose terminal faces and sides
are subjected to any uniform tractive loads. Lamé and Clapeyron
in their memoir of 1828 (see our Art. 1011%*) had treated the
simple case of isotropy. Saint-Venant as an example of the
mixed or semi-tnverse method gives the solution for the case when
there are three planes of elastic symmetry, the intersection = of
one pair being parallel to the axis of the prism. He assumes that
the tractions are constant and the shears zero throughout. This
satisfies the body stress-equations ; the constant values of the trac-
tions are in this case given by the surface stress-equations. The
stress-strain relations then give in terms of the elastic constants
and the loads the values of the shift-fluxions. We thus arrive at
a system of simple linear partial differential equations, whose solu-
tion is extremely easy. The complete solution gives for each shift
a part proportional to the corresponding coordinate and a general
integral which is only the resolved part of the most general dis-
placement of the prism treated as a rigid body. On p. 292 Saint-
Venant determines the value of the stretch-modulus when the
tractive load on the sides of the prism is zero, and on p. 293 he
considers the simple cases of (1) the axis of the prism being an
axis of elastic symmetry, and (2) the material being isotropic: see
our Art. 1066*. On p. 293 we have a remark that some writers
have doubted the exactness of the above results, considering
them only as plausible but not necessarily unique. Saint-Venant
asserts that they are unique, which is undoubtedly true in this
case, but I am not quite satisfied with the nature of his proof, for
it would at first sight apply to any elastic body. It depends
essentially on the following line of reasoning: Take any particular
integrals of the equations of elasticity u,, v, w, put the shifts equal
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to u,+ 1, v,+ v, w,+w'; we now obtain equations of elasticity
without body-force or surface-load. “On verra que «/, v, w’ seront
les déplacements des points d’'un prisme qui ne serait sollicité que
par des forces nulles. Ces déplacements seravent nuls euz-mémes.
Nos expressions offrent donc la solution compléte et unique.”
(p- 294.) This is true for the prism, but it does not always follow
that where there are no surface- or body-forces, the body is without
strain, or has only rigid displacement. For example, take a
cylindrical shell, a spherical membrane of small thickness, or an
anchor ring of small cross section, and turn them inside out, we
have a state of strain with no applied force.

On p. 295 Saint-Venant shows that his results for the prism
still hold if the shifts are large, but their fluxions remain small.

[7] A method of solving a still more general problem is
indicated on p. 296. Suppose a homogeneous aeolotropic body of
any shape to be subjected to a surface-load L which is the
values throughout the body and at the surface. Then we have
six equations from which to find in terms of the 21 elastic constants
the six strains. These are six simple partial differential equations
which give at once the shifts. Saint-Venant suggests how the
stretch-modulus for any direction may thus be obtained as a
function. of the 36 (21 or 15) elastic coefficients: see our Arts.
135—7, 198 (c), 306—8 and 796*.

[8] The final section of this chapter (§ 33, pp. 297—9)
relates to a point which Saint-Venant bhas frequently taken
occasion to refer to. The principle involved is the following :

C’est que le mode d'application et de répartition des jforces wers les
extrémités des prismes est indifférent aux effets sensibles produits sur le
reste de leur longueur, en sorte qu'on peut toujours, d’une manidre
suffisamment approchée, remplacer les forces qui sont appliquées, par des
forces statiques éguivalentes, ou ayant mémes moments totaux et mémes
résultantes avec une répartition justement telle que I'exigent les
formules d’extension, de flexion, de torsion, pour étre parfaitement
exactes. (Notice I. p. 22.)

Saint-Venant does not clearly state the portion of the prism
over which he holds the influence of distribution to extend, the
term sur le reste de leur longueur is somewhat vague. In the
memoir itself he uses the words en excluant seulement les points
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trés-proches de ceux ov agissent les forces (p. 299). We can
perhaps, however, reach some conception of the field to which
he supposes the influence to extend by paying attention to a
footnote on p. 22 of Notice 1.

Suppose the terminal of a prism subjected to any system of
load statically equivalent to that distribution which produces the
system of strains theoretically calculated. Impose upon the
terminal two equal and opposite loads having the theorctical
distribution. One of these will produce the theoretical strains,
the other will be in statical equilibrium with the actual load
distribution. The terminal is thus acted upon by two equivalent
and opposite systems of force. These systems will produce certain
small shifts in the end of the prism, and these shifts measure the
extent to which the prism is influenced by the difference between
the theoretical and practical distributions. Saint-Venant tells us
in his footnote that the influence of forces in equilibrium acting
on a small portion of a body extend very little beyond the parts
upon which they act.

L’auteur a fait deux expériences de ce genre sous les yeux de
I’Académie en lisant un de ses mémoires. Elles ont consisté simplement
4 pincer avec des tenailles un prisme de caoutchouc, et & dilater trans-
versalement une laniére mince de méme matiére, en tirant ses bords en
deux sens opposés. Tout le monde peut les répéter et voir que
I'impression ou Délargissement ne se jfait point sentir a des distances
excédant la profondeur dans le premier cas et Pomplitude dans le
second.

The reader will find this matter still further treated of in the
Nawier, pp. 40—41 and the Clebsch, pp. 174—7. The principle is
of first-class importance, as it is scarcely possible in a practical
structure to ensure any given theoretical distribution of load. The
terminals will generally take a form which lies beyond theoretical
investigation and only the statical equivalent of the load system
will be really ascertainable, e.g. the tractive load on a bar may be
applied by means of a nut carrying a weight, the nut itself being
supported by the thread of a screw cut on the bar.

[9.] Saint-Venant’s fourth chapter deals with the problem of
flexure by the semi-inverse process. The important results here
first published were afterwards considered at greater length in the
well-known memoir on flexure: see our Art. 69 et seq.
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Throughout the chapter the writer supposes three principal
planes of elasticity, one of which coincides with the cross-section,
and the two others intersect in the line of sectional centroids, i.e.
in the axis of the prism. He thus makes use of formulae which
in his notation apparently involve twelve independent coefficients,
but these he at once reduces to three independent moduli (Z, ¢, €')
and two coefficients (£, €): see pp. 303, 311—313.

As Saint-Venant justly remarks:

La détermination exacte et générale des déplacements des points
d’'un prisme sous laction de forces qui tendent i le fléchir, a échappé
jusqua présent aux recherches les plus laborieuses des géométres.

(p. 299.)

But although his solution does not solve the problem for all
terminal distributions of load, it is yet as close an approximation in
practice as, say, Coulomb’s solution of the torsion of a circular
cylinder. It cannot be too often repeated that the distributions
of tractive and shearing loads, such as occur in theory, are not
attainable in practice, and that we must be content with their
statical equivalent over small areas (see our Art. 8). But let us
hear Saint-Venant himself:

Aussi les résultats ci-dessus ne sont pas applicables d’une maniére
tout & fait rigoureuse.

Mais l'analyse précédente nous prouve toujours que si sur deux
sections quelconques, extrémes ou non, les forces sont appliquées et
distribuées de cette maniere, il en sera absolument de méme sur toutes
les sections intermédiaires, et que les déplacements, dans toute I'étendue
du prisme, seront représentés par les autres expressions trouvées ci-
dessus. Les formules donnent donc I'état de choses vers lequel
converge l’état intérieur réel du prisme & mesure que I'on considére des
parties plus éloignées de ses extrémités ou des points d’application des
forces qui font fléchir.

11 s’établit ici, dans l’espace, une sorte d’état permanent semblable &
celui qui est produit, dans le temps, par l'action continue de causes
constantes qui finissent par effacer 'effet des causes initiales d'un grand
nombre de phénomeénes. (p. 314.)

Saint-Venant’s solution of the problem of flexure is thus the
real solution of the problem, for were any other solution obtained
it could differ from his only by terms which would be really
insignificant as compared with the differences in terminal loading
which must occur, not only between theory and practice, but
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between any two practical cases of flexure. It is just as reasonable
or unreasonable to quarrel with Coulomb’s torsion solution as with
Saint-Venant’s flexure results.

[10.] With regard to the uniqueness of the solution obtained
by the semi-inverse method—supposing the theoretical shearing
and tractive loads were applied to the terminals—Saint-Venant
has some remarks on p. 307 which it is well to consider. After
remarking that the shifts satisfy all the conditions and equations
of the problem, he continues :

Et ils sont les seuls qui y satisfassent, car le probléme des
déplacements est complétement déterminé si, en donnant les pressions et
tractions sur tous les points de la surface, on suppose fixes l'un des
points du prisme (le point 0), et les directions d’un élément linéaire et
d’un élément plan qui y passent (un élément sur Vaxe des z et un
élément sur le plan yz) en sorte qu'il ne puisse y avoir ni translation
ni rotation générale & ajouter aux déplacements provenant de la flexion.

(p. 307.)

He then proceeds as on p. 294 to put the shifts equal to the
particular solutions found plus additional unknown parts (', v/, w’),
these latter he argues must be zero as they are shifts due to a
zero system of loading as appears by the vanishing of the load
terms from the equations on substitution. This sketch of a proof
of the uniqueness of solution of the equations of elasticity has
been adopted and expanded by Clebsch: see Kap. I. § 21 of his
Theorie der Elasticitit. 1 have suggested above that there is
need of applying the proof with some caution: see Art. 6.

[11.] In treating the problem of flexure Saint-Venant assumes
the longitudinal shifts and the lateral loading, hence he deduces
the transverse shifts and the terminal loading. The values of the
longitudinal shifts were doubtless suggested by the Bernoulli-
Eulerian solution of the problem, but in this chapter they appear
to arise very naturally from the consideration of the simpler case
of uniform flexure, or the bendings of each longitudinal ‘fibre’
into a circular arc; see pp. 292—304.

Saint-Venant makes two generalisations of his problem. The
first (p. 306) to the case when besides terminal shearing load,
there is also terminal tractive load. It is necessary, however, to
remark that when such load is negative, and the prism of con-
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siderable length as compared with the dimensions of cross-section,
the question of the buckling action of such load arises. This is a
point to which we have referred in our first volume: see Art. 911 *.
Saint-Venant does not allude to it. The second generalisation is
to the case of large shifts, or as it is here termed : Eaxtension de
cette solution & une flewion ausst grande qu'on wveut. I cite the
following remarks as suggestions which have been adopted by
later writers (e.g. Kirchhoff):

. Les formules donnant u, v, w ne s’appliquent, comme les équations
différentielles dont on les a tirées, qu'a des déplacements trés-petits
ne produisant qu'une petite flexion. On peut cependant en tirer des
déplacements d'une grandeur aussi considérable quon veut, tels que
ceux d’une verge élastique longue et mince qu’on ploie au point de faire
presque toucher les deux bouts, ce qui est trés-possible sans altérer
aucunement la contexture de sa matiére, car les déplacements relatifs
et les déformations peuvent rester petits dans chacune des portions
d’'une longueur bien moindre que le rayon p de la courbure, dans
lesquelles on peut diviser par la pensée un pareil corps; et cest leur
accumulation qui produit, & I'extrémité, des déplacements considérables
(p. 308). ;

12. The section of the chapter pp. 308-—313 which deals with the
general problem of flexure is reproduced in the memoir in Liouville’s
Journal and will be considered later : see our Arts. 69 ez seq.

Two results are given on p. 312 without demonstration. The first of
these relates to the case of an elliptic section ; it coincides with equation
(56) of the memoir in Liouville’s Journal (see our Art. 86, Eqn. 25)
when we put C the constant of that equation zero. The second of these
relates to the case of a rectangular section; it is an approximation :
the memoir in Liouville’s Journal gives the exact solution, but not this
approximation. It is however easy to supply the steps which lead to
the approximation. In equation (91) of the memoir in Liouville’s
Journal the exact value of F (y, z) is given depending on F (y, 2)
which is determined by (102). If we were to expand 7, (y, 2) in
powers of y and z, the term which involves z only would disappear by
(103) ; then the next two terms would involve y°% and 2* respectively.
This suggests our taking a form like that of (85) in the memoir on
Torston as an approximation; take this and calculate 7z, that is

& (G2 + 2. We find this to be
de  dz : .
G0t gyr| (K209 +(E-SB) )
then in order that this may vanish when y =0 and z = ¢ we must have
_ PP (E-fEK)
Wil
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Then Saint-Venant assumes that [z dw =- P; and this leads
to the value of A which he uses in this case: see p. 312 line 3 from the
foot.

13. On p. 311 Saint-Venant says that F =0, and dF/dz =0,
when y=0 and 2=0. Suppose that A and % denote very small
quantities ; then the value of w at the origin being denoted by wu, the
value at a point very near the origin would be

du du
U, + (d—y>'J h + (@)0 ]C.
Now (Z—;l') is zero since u is an even function of #, so that if we

have (%) zero as well as u, then the value of u vanishes all over
[

an element near the origin.

[14] Pp. 316—318 are deserving of close attention; they
give results which were partially published in the memoir of
1843 (see our Art.1581%) and which followed up the suggestion
of Persy: see our Art. 811* Saint-Venant namely finds the
plane of flexure when the load-plane does not coincide with the
plane of one set of principal axes of the cross-sections.

Let Oz, Oy be the principal axes at O the centroid of any cross-
section of area o; let «, «, be the swing-radii about these axes, and
¢, ¢ the angles which the load and flexure planes make respectively
with the plane through Oz and the axis of the prism. Then Saint-
Venant easily shews that:

2l 1 M [cos’¢p sin’¢
tangb:;z—,tan¢; ;zE—Z) ot +T’
Y z

v

where 1/p is the curvature, # the bending moment and Z the longitudinal
stretch-modulus’.

Assuming that only longitudinal stretch produces danger, Saint-
Venant deduces that if s, =7,/ £ be the limit of safe stretch then

T, o
cos sin ¢’
T
K,

2
Kg

M = or < the minimum of
Y
For the rectangle (20 x 2¢) we have

" 4T b’
it (bcos ¢+ csin ¢)’

_ 1 The first equation expresses geometrically that the plane of flexure is perpen-
dicular to the diameter of the momental ellipsc (neutral axis) conjugate to the plane
of loading : see our Art. 171,
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for the ellipse (2 x 2¢)
T, = b

= < — .,
e 4,/6% cos’¢ + ¢* sin’¢

Such results as these he has reproduced and considerably added
to in his edition of Nawier, pp. 52—60, pp. 122—126 and 128—136.
Indeed, we may affirm that Saint-Venant was the first to insist on the
practical importance of investigating the relation between the planes of
flexure and of loading, when the latter plane is not one of inertial
symmetry.

[15] The chapter concludes with the deduction of Saint-
Venant’s all-important discovery that the cross-sections of a beam
under flexure do not remain plane even within the limit of
elasticity. There is also an investigation of the change in
the cross-sectional contour (pp. 318—323). We shall return to
these points later, but meanwhile may quote the concluding
words of the chapter as some evidence of the satisfaction
which Saint-Venant legitimately felt at the results of his new
process :

On voit, par ce chapitre 1v, que la méthode mixte de solution des
problémes de I’équilibre des corps élastiques peut, non-seulement confir-
mer des résultats connus, en apprenant i quelles conditions ils sont
exacts, mais encore les compléter, et donner sur les circonstances de la
flexion des résultats nouveaux.

[16.] Saint-Venant’s fifth chapter defines torsion and deduces
the general equations by the semi-inverse method; it occupies
pp. 323—333.

The definition of torsion which does not involve the main-
tenance of the primitive planeness of the cross-sections is contained
in the following paragraph : '

Et nous nous donnerons une partie des déplacements ou de leurs
rapports, en ce que nous supposerons que ces déplacements ont produit
une torsion, autour d’un axe paralltle & ses arétes, torsion qui consiste en
ce que les déplacements transversaux des divers points apportenant
primitivement & une méme section quelconque perpendiculaire & Uaxe ne
different de ceux des points homologues d'une autre section, que par wune
rotation d'un méme angle pour tous, autour du méme axe ; en sorte que
les points qui se correspondaient primitivement sur les droites paralléles
4 laxe puissent étre ramenés i se correspondre encore, en les faisant
tourner d’'un angle qui est le méme pour les points des deux mémes
sections (p. 324).

S.-V. 2
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We will now sketch the method by which our author reaches
the general equations of torsion.

[17.] The axis of torsion will be taken as axis of z; the direction
of torsion will be from the axis of y towards that of z. The area of a
cross-section will be denoted by o, and we shall write w«,’= [y'dw,
ok, = [2*dw, these being the sectional moments of inertia. The torsion
referred to unit of length will be 7; that is, if we draw the radius-vector
of a displaced point in one section, and also that of the homologous point
in a section at distance ¢ from the first, then the second radius-vector makes
with a parallel to the first an angle of which the circular measure is ¢ ;
this angle is measured from the axis of y to that of z. This language
implies that the torsion is constant, but the meaning of r, when it is not
constant, will be assigned in the same manner as before at any point,
provided we consider ¢ as infinitesimally small.

The above definition of torsion leads us at once to the results :

advfde=="12," D/de =t T SR ().

The consideration that there is no lateral load gives for every point
of a sectional contour the equation

mdy - mdr=0.00 . (ii).

On p. 329 Saint-Venant fixes a point, line and elementary plane
as in our Art. 10, and remarks that the total torsion between the
terminal sections may be considerable provided each short element into
which we may divide the prism by two cross-sections receives only a
small distortion relative to itself, the length of the prism being great
as compared with the linear dimensions of the section. The total
shifts can then be obtained by summation from the solutions of the
above equations for each short element.

Referring to the equations in our Art. 4 (6) we easily obtain

w=f, (du/dy —12), zz=¢ (du/dz+7y) ........... (iit).

‘Whence if M be the moment of all the stresses on a cross-section
about the axis of z,

BN fn do[e, (du/dz +Ty) y — f, (du/dy — 12) 2] ......... (iv).
[
It will be seen that this agrees with the old theory—which gave
M=cr f do (y* + 2*),—only when e = £, and du/dz = du/dy. This, since

0
du/dx is assumed constant, amounts to % =0, or the old theory that
the cross-sections remain plane and perpendicular to the axis. Substi-
tuting in the equation of our Art. 4 («), and in (ii) above, we find for
body and surface shift-equations :

ad’u|de? + f,d*u|dy* + e d*u[d2? + fd*u[dady + ed®u|dxdz
+(ey —fz) dr[de =04 ...(v).
e, (du]dz + ry)dy— , (dufdy -13) da =0
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Saint-Venant (p. 331) at once simplifies these equations by taking
d*w/da?® = f d*u/dxdy = e d’u/dxdz =0 ; these follow at once from the
supposition that du/dx, or the longitudinal stretch, is constant or zero,
or again from the second supposition that it is constant only along
lines parallel to the axis of torsion and that a principal plane of
elasticity is perpendicular to this axis (i.e. e=/f=0).

In general we shall adopt the notation e;=pm, f;=p,, so that our
equations become

p, Puldy® + p, dPujdz’ =0 }
., (dufdz + ty) dy — p, (du/dy — v2) dz=0

Saint-Venant for the purpose of simplifying the form of his results

takes p, =p,=p in the following four chapters. Further to avoid the

complexity which would be initially introduced by treating at the same
time the problem of flexure Saint-Venant takes

8, =8,=8,=a,,=0.

‘We shall see in the sequel that Clebsch has combined the two
problems of torsion and of flexure by preserving the general form of the
equations.

The next four chapters of the memoir VI—IX. are occupied
with the torsion of prisms of various cross-sections. I shall
briefly give the results here for the purpose of reference; the
reader will find little difficulty in deducing the proofs for himself,
if the original memoir be not accessible. At the same time I
shall draw attention to one or two important points involved in
Saint-Venant’s discussion.

[18.] The sixth chapter occupies pp. 333—352, and is entitled:
Torsion d'un prisme ou cylindre & base elliptique.

The following results are obtained, the axes of the cross-section
being 25 and 2¢, and the notation being otherwise as before :

b= v =—T0% -
u__b—_—_z-}-chyz’ PR -rxy} .................. (1)
wb’c® dpro -4
M= px i s R A (ii).

By ¢l dbign b At il (ii).
Bt ot e

~ We see at once from (i) that the primitively plane sections suffer
distortion (gauchissement), and become hyperbolic paraboloids. In the

2—2

zy=—pr
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accompanying figure the contour lines of these surfaces of distortion are
marked ; broken lines denoting depressions.

Y S o ~\\ “\ ™
< megativg
~ ~ ~ & N, \
\ \\ \\ \ \\
S \\ Ne S Ay

The principal slide ¢ is given by
2r

2
o' =0y +0,° = (b_gji-_c?') (b= ity Ay st @iv).

The point dangereux or fail-point is obtained by making b%° + c'y* a
maximum, thus it is at the extremity of the minor axis, i.e. is the point
nearest to the awis of torsion.

From (iv) we obtain by means of our Art. 5 (f), if §;=8,=5,:
S, = OF Zgpme2bic /(7 e ERaa s et an S ),

2 2
whence it follows that M/ =or < 7rbc2 S <= or < M’) ...... o (vi).

The general appearance of the prism under torsion is given in the
figures on the next page, the torsion being diagrammatically exaggerated.

[19.] There are one or two important points to be noticed in
this chapter. In the first place Saint-Venant solves equation (vi)
of Art. 17 by a series ascending in powers of y and z; one term
(a',yz) suffices for the elliptic cross-section, he makes use of others
later. Secondly he points out pp. 339—341 that his results agree
with the theory of Coulomb only in the case of a circular section,
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for every other elliptic cross-section the value of the torsional
moment is smaller than that given by the old theory and there is

distortion. He shews by numerical examples on p. 352 how much
sooner the safe limit is reached in the true than in the old theory.
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[20.] On pp. 341—343 we have, thirdly, a footnote on
Cauchy’s suggestions that the torsion T should be made to vary
transversally : see our Art. 684* Saint-Venant shews that this
would require,—at least in the case of a circular cross-section and
an axis of elasticity coinciding with the axis of figure—a shearing
load at each element of lateral surface. This is a supposition
which could hardly be attained in any practical case.

[21.] Fourthly we have on pp. 342—345 a very concise and
admirable consideration of the point referred to in our Art. 9;
namely, the practical equivalence of statically equipollent systems
of terminal loading at very short distances from the terminals.

Nos résultats relatifs 4 la torsion d’'un prisme elliptique par des
couples quelconques peuvent &tre adoptés au méme titre et avec la méme
confiance qu’on adopte les formules, soit de 'extension simple, soit de la
flexion par des forces latérales, et la formule plus analogue du cas de
torsion des cylindres circulaires (p. 345).

In all these cases there is the same assumption as to the
equivalence of the shifts produced by the theoretical and by the

actual equipollent load systems.
[22.] Fifthly §§ 59 and 60 (pp. 346—7) may be noted. The first

w (0]

deduces from the equations f Edw:[ 7z do =0 that the axis of
0 <0

torsion for the shifts assumed must coincide with the line of sectional

centroids’ : see our Art. 181 (d). The second treats of the case of large
torsional shifts, see our Art. 17, p. 18. Saint-Venant remarks that the
values v = — 72z and w =7y of our Art. 18, equation (i), no longer hold,
but by an easy process of summation (p. 347) we find the new values:
v=-zsinrz—y (1 —cosrx)
w= ysinre-2z(l-cosrx)’

[23.] Lastly we may note on p. 349 the general argument by
which Saint-Venant would explain why the fail-points are those
nearest and not farthest from the axis of torsion as in the old
theory (la théorie ordinaire, S*-V.). He points out that at the
extremity of the major axis the slide produced by the distortion
of the plane section is zero and so we have only the slide produced
by the ‘fibres becoming helical,” while at the extremity of the
minor axis the two components of the slide both exist and com-
pound, operating together. Hence generally we see how it is
possible for the slide to be greater at the latter than the former point.

1 This paragraph was cancelled in the copies of the memoir remaining in Saint-
Venant’s possession.
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[24.] Chapter vir. of the memoir (pp. 3562—360) is occupied with
the analytical solution of the equation w,,+,,=0. The first form
obtained is that in a series of exponentials and sines or cosines of
multiples of y and 2.

The second is in terms of cylindrical coordinates. Let y =17 cos ¢,
z=7rsin ¢; then:
w=34,7" cos nd + 3B,r™sin me,
M = pr [rPdo— pSnd, [r"sin ngdo
+ pZmB,, [r™ cos mpdow.

These results are obvious. Special cases of uni-axial and bi-axial
symmetry lead to the vanishing of certain coefficients.

[25.] Chapter viIL (pp. 360—413) deals with the important
case of the torsion of prisms of rectangular cross-section (2b x 2¢).

The chapter opens with some account of Cauchy’s memoir of 1829—30
(see our Art. 661*) which had led Saint-Venant to recognise the general

distortion of the cross-sections in the torsion problem. Cauchy had
2 2

found as an approximation % = 7yz, Saint-Venant’s expression

—c
o + ¢
for the shift parallel to the axis in the case of an ellipse. This really is
only an approximation when & and ¢ are very unequal. It makes the
greatest slides take place at the corners, but when we note that 7y = 7%
and 7z=7%2, then since 7z and Zz are zero on the lateral surfaces, it
follows that at the angles the nullity of %z and % connotes that the
stress can only be tractive to the cross-section, or that :

il n’y a, en ces points, aucun glissement, et la section a da se ployer de
maniére 3 rester normale aux quatre arétes saillantes devenues courbes
(p. 362).

This perpendicularity of the cross-section to the sides, at projecting
points or angles, holds for all prisms. The recognition of it led Saint-
Venant to the investigation of a more exact expression for the torsion
of rectangular prisms than that discovered by Cauchy.

[26.] The equations to be solved are

Pufdy® + d*ufde’ =0,
{du/dy =7z for all values of z between ¢ and — ¢ when y= =5,
du/dz=— Ty for all values of y between b and —b when z==c.

At the suggestion of Wantzel, Saint-Venant reduced these equations
0 a known form by the substitution of »=— 7yz + «', when they become
& [dy? + d*u[dz® =0,
du'[dy = 27z for all values of z between ¢ and — ¢ when y==b,
du'[dz=0 for all values of y between b and —b when z==c.
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These equations can be solved by the assumption
o =S4, (€™ —e™™) sin mz

and the usual determination of the constants by Fourier’s Theorem.

[27.] Saint-Venant obtains the following general results :

[ (2n=1)my
el LAY gaee (= 1y BB - (2n-1)m
R A +:< ) b -1 (n=1) o @n— 1)7rb 2¢
L B sinh(Q—n_Dm
S gl 4>3b p gl g % . (In-l)my
S 'bfé(?: R (=1 . (2n-1)me 2b ;
cosh\— 2 —
4 S 2b
2n-1)my
ny (4)*2,.“ O A TR ¢ 1 ) £
XY =— - = e,
e A= n=1 (n— )c <h (2n—1)mb 2¢ '
2¢
2n—1)=z
oo (£ Do 1P % (@D
"’m(" St @n-1y o @n-Tme o1y B P
(ii) T 26
(2'n—1)1ry
Pl ANl (SR sk 2¢ (2n—1) il
.z'zlz ‘rb—( > 2 COS — )
amid net 2= 1) h(2n 1)75 2o
2n 1) 7z
h(
b2 - nee (CHP1 B (@a=D)ayl
i ( ) D @1y __@a-Dme %
T e =)
L 2b

1= pre? {1 (4) 531 (2n Ty “h(%:clm}

16 /4\° b 1 (2n—-1)xc
3 —
S {3 (71') Zont Ty AR }

[28.] It will be noted that Saint-Venant obtains in each case
double values for his quantities which are unsymmetrical in b

(iif) 4

1 Saint-Venant puts sinh for cosh in the denominator here by a misprint (p. 368,
equation 159).
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and ¢. Symmetrical values may be at once obtained by adding
and halving his solutions, Or, symmetrical values may be obtained
directly by the assumption of the particular integral

u=A smh—%cos?—r£g+3 sinh py f,

where p is a positive integer.

It will be found that the surface conditions are then very
easily satisfied, and the symmetrical forms of the results thus
deduced possess for some cases practical advantages.

Saint-Venant next proceeds to consider special cases of rect-
angular cross-section which will occupy us in the following seven
articles.

[29.] Cas o Vun des cotés du rectangle est trés-grand par
rapport & Vautre. (pp. 372—3875.)

From the first of the expressions for M, we obtain
M= %ﬁ prbe® (1 - 0630249 ¢/b),

and for a first approximation to u
u = — 7).
b -t

These results agree with Cauchy’s M = E BT e and U= =g S TYR

when ¢/b is very small.

Saint-Venant in a footnote deduces Cauchy’s results, but at the same
time brings out the insufficiency of his method, for Cauchy neglects the
fourth powers of the dimensions of the prism, but it is not at all clear
what the quantity is in comparison with which he neglects them, for

27 (y*z — y2*)

the term omittedm seems really of the same order as that

: o-c?
retained — ™ (p. 375).

[30.] On pp. 376—98 we have the full discussion of the prism
of square cross-section. The numerical results are calculated from
the tables for the hyperbolic functions given by Gudermann'.
They are calculated from both expressions obtained in Art. 27.
Saint-Venant seems to have taken from three to eight terms of
his series, but he has not entered upon any investigation as to
whether those series satisfy Seydel's condition of equal con-
vergence.

3 Theorie der Potenzial- oder cyklisch-hyperbolischen Functionen, S. 263,
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The values of u are calculated and given in a table on p. 877.
The accompanying figures give the contour lines of the distorted
cross-section and the boundaries of the cross-section as cutting the
lateral faces of the distorted prism in elevation (diagrammatically
exaggerated).

Elevate

For numerical values we have,
M = 843462 pro®b*/3
=or < 166532 S,6°

o =1350630 b7 is the maximum slide and occurs at the middle
points of the sides of the cross-section, which are thus the fuil-points.
These values are all less than those obtained from the old theory.

[31.] On pp. 382—387 Saint-Venant refers to the experi-
ments of Duleau® and Savart® as confirming his results. From
Duleau’s experiments on circular bars the mean value of p
obtained was 6,659,230,000 kilogs. but from his experiments on

1 See our Art. 229*%. 2 See our Art. 334 *.
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square sectioned bars it was only 5,636,625,000 on the old theory.
Saint-Venant’s however brings it up to 6,682,750,000, which may
be considered in fair agreement with the result obtained from bars
of circular section; especially when we remember the non-isotropic
character which was inevitable in the iron bars of Duleau’s experi-
ments (see table p. 383). At any rate Saint-Venant’s theory
accounts for the greater part of the inferior resistance to torsion of
square as compared with circular bars of equal sectioral moment
of inertia.

Some experiments on copper wires of square and circular
cross-sections are tabulated on p. 386. Here the mean for the
circular cross-section is w =4,174,825,000; the old and the new
theory give for u the values 3,384,121,000 and 4,012,180,000;
again to the advantage of the latter. The isotropy of these wires
is however very questionable.

[32.] Saint-Venant deduces on pp. 387—391 the value of the
numerical factor which occurs in M (see our Art. 30) by an
algebraic expansion for u and a calculation after the manner of
Fourier (Théorie de la chaleur, chap. 1L art. 208, Eng. Trans.
p- 187) of the indeterminate coefficients. It does not seem a very
advantageous process. A remark on p. 397 as to the difference
between résistance d la rupture éloignée and rupture immédiate is
to the point. Saint-Venant remarks namely that experiments on
the latter can throw little light on the mathematical theory of
elasticity. At the same time it is regrettable that he should have
retained the word rupture in reference even to the first limit. Some
support, however, for his theory may even be derived, he thinks,
from Vicat’s experiments on rupture; see our Art. 731* and p. 398
of the memoir. For Vicat found that for pierre calcaire, brique crue
and pldtre the moment of the forces required to break a prism of
square cross-section and length at least twice the diameter was
less than in the case of an infinitely short prism, i.e. a case where
the plane section cannot be distorted. This result of Vicat is of
great interest and would be well worth further experimental in-
vestigation.

[33] We now come to the general case: Cas d'un rapport
quelconque des deux dimensions de la base (pp. 398—413). Saint-
Venant has calculated numerically all the particulars of the i
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special case when b/c =2. We reproduce the contour lines for the
distorted cross-section as given by Saint-Venant on p. 400 accord-
ing to the table on p. 399.

The reader will at once note the change that these lines
present, and Saint-Venant on pp. 400—1 determines the value of
b/c for which the change from tetra-axial to bi-axial congruency
takes place.

In order to ascertain this we must find when du/dz=0 at the point
y =b, 2=0. For, with the tetra-axial congruency of the contour lines
w i3 positive as we pass from z=0, y =50 along the line y =04 into the
first quadrant, but in the case of biaxial symmetry du/dz is negative, for
u decreases or becomes negative as we pass along the same line. Our
author thus obtains the equation

® 1 (2n—1) e Y
A O 1 T ‘(Z> ’

the numerical solution of which gives b/c = 14513,

[34.] The following general results are obtained (b>¢):

M = prbe’B,
& 16 AL ﬁwl't"‘nh(gn—,‘zcl)ﬂ‘b
U |here p={F - 330132154 5(0) § gy }
(p- 401),
maximum slide o = cry,
4\ o 1

(ii) *{where vy=2- (7—‘_) ?(2 5 eeth S (p. 412),
n — B
2¢
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and this maximum slide takes place at the centre of the longer side of
the rectangular cross-section. (p. 410.)

(ili) S,=or > pyre, hence
M=or< g o' S,=M,.
Y

These complex analytical results are rendered practically of service
by a table on pp. 559—60 of the memoir, the most serviceable portion of
which we shall reproduce later. This table gives the values of 8 and
of B/y for magnitudes of the parameter b/c varying from 1 to 100, after
which they become sensibly constant. We are thus able to determine
M and its limit M.

Saint-Venant, however, gives in footnotes empirical formulae which
agree with less than 4 per cent. error with the above theoretical values.
He appears to have reached them by purely tentative methods, but he
holds that they satisfy all practical needs. They are

I Iy =es
(iv) ,8=?—3365<1—Eb—,).

B_8 : c) ig 406°%°
(V) ;—— (1+ 65 or, M;———15b+9c. 0°

{It should be noted that our ¢ =g,, our B=p, our r=6, our p=_@,
our §, =T, of the memoir.}

[35.] On pp. 403—6 we have a further discussion of experi-
ments of Duleau and Savart on the torsion of rectangular bars of
iron, oak, pldtre, and verre ¢ vitre, the paucity of the experiments,
and the large variation in the values of the slide-moduli as
obtained from Saint-Venant’s formula do not seem to me very
satisfactory. A series of experiments directly intended to test the
torsion of rectangular bars for variations of the parameter c/b
would undoubtedly be of considerable value.

[36.] We now reach Saint-Venant’s ninth chapter which is
entitled : Torsion de prismes ayant d'autres bases que Uellipse ou le
rectangle. It occupies pp. 414—454.

The chapter opens with an enumeration of the various forms
of contour for which it is easy to integrate the equations of
Art. 17. We will tabulate them on the next page.
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Solutions (3) and (5) are really identical. No. 4 has given rise to
the solutions in terms of conjugate functions: see Thomson and Tait’s
Natural Philosophy, 2nd Ed. Part 1. pp. 250-—3.

[37.] In the present chapter Saint-Venant dismisses Nos. 1
and 2 on the ground that the resulting curves are very difficult to
trace. He contents himself with two closed curves of the fourth
degree and one of the eighth as given by No. 5. On pp. 421—434
he calculates and traces these curves at considerable length. The
most practically valuable results are those obtained on p. 439.

We have there the following characteristic sections treated :

(a) The equation of the first curve is:
¥+7 > y* — 6y J 2+ 2t

=6 (Square with rounded angles).

2
ro

0=20636r" ; ok’ = T174r* =1-05860%/ 27 ;
M = -5873prr,* = ‘8186 urwk’ = 866 6pur0’/2.
() The equation to the second curve is:

y+z 5y—6y’z’+z

s =5 (Square with acute angles).

0 0

0=176287"; ok’ = 52597 = 1:06340°/27;
M =-4088utr,* = 1783 prox’ = ‘827 6purw’/ 2.
(¢) The equation to the third curve is, if y = 7 cos ¢, 2= rsin ¢,

r* 48 16 r*cosde 12 16+° ° cos 8¢ 1 36 16

BT s T8N W
(Star with four rounded points).
©=12202r2; 0k’=2974rS*=12551*/27 ;
M =-15983urr,’ = 5374 pror’ = "6745urw?/2m.
We add to these the results for the circle and square.
(d) Circle: M = proc’® = pre’/2m.
(¢) Square: M =-84346prwx® = ‘88327 prw’/2m.
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From the above numbers we can deduce some important
practical inferences, which we will do in Saint-Venant’s own words.

On voit quil faut, de DPexpression urewx’ de Pancienne théorie,
retrancher, pour avoir M quand la section est le carré & angles arrondis
et cOtés légérement concaves, une proportion des ‘1814, Nous avons vu
que, pour le carré rectiligne, il faut prendre M = 84346urwx® ou re-
trancher une proportion de '15654 seulement. La légére concavité des
cotés a plus influé pour diminuer le moment de torsion (pour méme
moment, d’inertie) que l’arrondissement des quatre angles n’a influé
pour I'augmenter.

Pour le carré curviligne & cdtés un peu plus concaves et angles
aigus, il faut retrancher les -2217. II suffit, comme Pon woit, dune
concavité assez légére des cotés de la base (1/22 environ) pour diminuer
assez notablement le moment de torsion d'un prisme carré.

Enfin, pour le prisme & cotes saillantes, il faut, de urwx®, retrancher
I’énorme proportion de ‘4626, ou prendre seulement ‘5374urw«® au lieu
de prox® que 'on prend pour une section circulaire, ou de ‘84346urw«®
pour une section carrée rectiligne.

Et comme on a, pour une section circulaire, «* = /27, M = pro®/2m,
Yon trouve que les prismes ayant pour bases le carré arrondi, le carré
aigu et D'étoile, n'offrent respectivement que les ‘867, les -828 et
les ‘674 de la résistance élastique & la torsion qu'ils offriraient 3 egale
superficie o de la section, ou & égale quantité de matiére, s'ils étaient 2
base circulaire, bien que les moments d’'inertie de leurs sections soient
1% -059, 1% 063, 1% -255 ceux de sections circulaires d’égale superficie.

Ainsi, les quatre saillies qui, malgré leur peu d’épaisseur, ont une
influence considérable sur la grandeur du moment d’inertie n’en ont
qu’une trés-faible sur le moment de torsion. Les pieces @ cdies, employées
st utilement contre les flexions, dowent étre exclues des parties des
constructions o les forces tendent @ tordre, ou, du moins, il faut
ne compter nullement sur une quote-part des quatre cbies ou saillies
dans la résistance (pp. 439—40).

[38.] Saint-Venant illustrates the inefficiency of projecting parts
still more effectually in a footnote to Art. 105, p. 454. He takes
a curve of the fourth degree whose equation is given in a footnote,
p- 448, and by ascribing a particular value to one of the constants
obtains two separate loops. The equation to the contour is:

Sz 18801 f— 6y%° + 2t
%,+ +a( F)(y’-z*)—ag——by?——-—=l—a;
and the longitudinal shift

—12bg—cz % — 7).
== (1-20) 2 — g — (Y2 -y

b*" +c
The special value of the constant assumed is ¢*=—58°/16. We have
then a figure of the form below and the value of 2/ is only equal to

S.-V. 3
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‘01857urwx’, or the torsion of such a pair of cylinders round an
intermediate axis is only one fifty.fourth of that given by the old

z
. o’ 3 . Y

theory :—* Cela ne doit pas étonner, si I'on consideére que le glissement
est nul aux points z=0, y == b/23 ou & trés-peu prds au centre de
gravité de chaque orbe.”

D

[39.] Saint-Venant on his pp. 441—9 discusses the contour-
lines of the distorted cross-sections of our Art. 37. This he
accomplishes by numerical tables in a footnote (pp. 441—3).
Then he considers the maximum slides and fail-points of the same
sections and finally the limiting values of the torsional couples.
These values are as follows:

s 3
For section (a) of Art. 37 M,= ‘8269 “;_i 8, = 7094 2_ 8,
0

o /7

. 3
WK W

v kDY M, = 85514 e S, = 6812 W) S,
2 w§

bl - By M,= 7285 “;_" 8, = 5695 T 8,

The reasoning by which Saint-Venant deduces the faal-points
cannot be considered satisfactory. Indeed the statement as to the
‘side of the triangle’ and the deduction of the maximum slide on
p. 444 are unsound. The same judgment must be passed on the
process of p. 447, where the maximum slide for the section (c) is
shewn to be on the contour. Thus Saint-Venant has not de-
monstrated his very general statement (237) on p. 448. The
reader will however find little difficulty in proving the accuracy
of Saint-Venant’s results by casting the expressions on pp. 444 and
447 into other forms or by the ordinary processes of the Differential
Calculus. In his edition of the Legons de Nawier, our author has
recognised the defective reasoning of these pages and replaced
them by more accurate arguments. (Cf. his § 31, pp. 308—310
and § 37, pp. 340—1: see our Art. 181 (¢).)

[40.] In the concluding pages of this chapter Saint-Venant
points out how the solutions of a number of other sections can be
obtained. Thus we can take solutions like (3) of Art. 36 involving
terms of the 12th and 16th degrees and so obtain curves equally
symmetrical with regard to the axes of y and 2.
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Et en y conservant des termes du deuxiéme, du sixidme, du dixi¢me degré
A puissances paires de y et z, tels que byr? cos 2¢ = b, (32 — 22), by cos 6p=etc.,
Von aurait une multitude de courbes symétriques par rapport & chacun des
deux axes de y et z, mais non égales dans leurs deux sens, et ayant Vellipse
pour cas particulier (p. 449).

‘We have referred to an example of this in Art. 38, and another is
given by Saint-Venant in a footnote; namely the curve whose equation is

,rﬂ
Tyt b,r° cos 3¢ = constant,

where w= b’ sin 3¢.

By taking b,=-— 6—1-6 and the constant=Z275?, the equation to the
contour of the section becomes

r 2 r 3
(3) ~3(@) =23

or (y+b) (z—gli/%g) <z+ %@J%_z/)=0 ................ a),

i.e. an equilateral triangle of height 35 and side = 263, the axis of ¥
coinciding with a median line. We reproduce Saint-Venant’s entire
treatment of this case as a good example of his method, and in order in
one point to indicate a weakness in his reasoning.

41. We find at once that

T 5
u=-5 (YR e .. L (ii).
Let ¢ be the greatest value of w which, on the side denoted by
2

y+b=0, will be where 2= —b; then c= %, and consequently
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Thus the form of the surface into which the originally plane
cross-section becomes changed by torsion is easily understood. In
the part between Oy and the perpendicular 0L, we have « negative ; in
the part between OL and OB we have w positive; in the part between
OB and yO produced through O we have u negative; in the next piece,
which is vertically opposite to the piece between Oy and OL, we have u
positive ; and so on.

We have as usual the equations

—~_du P .
xy—@-—'rz, .rz-t—z;+'ry,
these by (ii) of Art. 41 give

5?=—-r<z+:l%z), 2?:7( —?/,Q_bz)

The moment of torsion by equation (iv) of Art. 17 is
3 1
Hli= ,u,'r{ y'dw + fz’dw + %fyz’dw— %fyadm} :

All these integrations are easily effected ; for here if £ denote any
function of y and 2, even in 2, we have

Jédw =2 [¢dydz,
where we integrate for 2z from 2=0 to z-— «/3 ~,-and for y from

y=—btoy=2b Thus we find that
JZdw = 3b%/3,
Jy'do= 3943,
Jyafdw =—2b°/3,
[y*dw=2b°/3.
Then for the moment of inertia round the axis we have

- S 2 2 - 4 9
ok’ = [y'de + [2°de = 3b \/3—3»\/3’ for o=23b6",/3.
prod
Hence M = 3prok® =573 73

The new theory thus gives a value for M only ‘6 of that given by
the old.

42. To find the greatest slide, Saint-Venant considers the side
which is parallel to the axis of z; then he says that along this
3b° —2*

26
value of zz is when 2=0. Hence he tells us that the fail-point is on
the boundary at the point which is nearest to the axis. The greatest

side ¥ +b=0, so that z7=0, and 7z =—

7. Thus the greatest

value of the glissement principal is then %’ ; and to ensure safety
we must have as before
8, =or >3ubr.
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Combining this with M = 2puwx®s we have at the limit

2 4
Mo = % SbK— So 5 %SobaN/S iy '21%3'5’00,%'

Thus next to the circular section, the section in the form of an
equilateral triangle gives the simplest results.

[The above reasoning involves the assumption that the point
of maximum slide lies on the contour and is thus unsatisfactory.
Saint-Venant has given a thorough investigation of the point in
his edition of the Legons de Navier, pp. 287—09.]

[43.] In conclusion we may note that Saint-Venant holds that,
among the numerous curves he has considered, one can be found
sufficiently close to give practically the laws of torsion for a prism
of any given cross-section (pp. 451—2). -

[44.] The tenth chapter of the memoir deals with those cases
in which the slide-moduli are not the same in the direction of the
two transverse axes taken as those of ¥ and z. It occupies pp.
454—70.

Nous y avons aussi été déterminé par le désir de donner sous leur
forme la plus simple les seules formules que 'on puisse, jusqu’a présent,
appliquer & la pratique; car on n’a pas encore trouvé, par des ex-
périences, le rapport que peuvent avoir entre eux les deux coefficients
de glissement transversal u,, p, pour diverses matieres, et il faut bien les
supposer ordinairement égaux (p. 454).

Although well-planned experiments on the possible inequality of
fy M, arising either from natural structure or from some process of
working are still wanting, yet the inequality in the slide-moduli is
not without value as a possible explanation of several minor phe-
nomena of physical elasticity.

[45.] The equations which we have now to solve are those num-
bered (vi) in our Art. 17. Let us put in those equations y=~//71y’,
z=,/p,% ; they at once reduce to

d’udy"” + d*u/de* = 0}
(du/de’ + 7'y') dy' — (dufdy’ — +'2)dz/ =0
where 7= e, T
In other words our equations remain of exactly the same form

provided we write 7' = J @ﬂr for 7. Hence if we remember that every
contour must first be projected by means of the above relation between
y, z and ¥, 2, we may make use of all the previous results and
equations.
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[46.] Thus in the case of the ellipse (pp. 455—8 of memoir), we
2 2

Y

' A TP A e P e,
must write for At A= 1, i, B g us we obtain at once

the results :
| Nl Pl [ e c:/m
Ofp, + Sy 'fp, +

TYZW

5 3 2r2b* TN 27yc’
Similarl W e el
% Y R P I
b’c’r
and M=.."°T (see Art. 18).
bg/pl-i-c’/p.z ( ; )

Saint-Venant remarks that with this inequality, the cross-section
of a circular cylinder will be distorted by torsion. The elliptic prism
however, for which the ratio of the semi-axes b/c = /1y, Will retain
undistorted cross-sections although under torsion (p. 456). Saint-
Venant in the course of the chapter again refers to relations of this
kind (p. 462), but it is obvious that such are extremely unlikely to occur
in practice.

It must be noted that the ‘fail-limit’ (condition de non-rupture,
pp. 456—17) now takes another form, namely that of our Art. 5 (f),

e POy \* | (BT’
1—0r><—b,—l‘> +< s, ) f
From this we find at once
(B, + &) = or > 4° (B8, + 09"/,
‘We have then to find the maximum value of the right-hand side.
It is easily seen to be on the contour of the cross-section, and at the
extremities of the minor or major axis according as b/c is > or < §,/S,.
In the first case we find that the limiting value of M is given by

wbe?
=L 8,

[47.] Saint-Venant devotes pp. 458—460 to describing the
changes which must be made in the general solutions of our Art.
36 in order to adapt them to this case of unequal slide-moduli.
They follow easily from our Art. 45. On pp. 460—8 he treats at
some length the case of the prism with rectangular cross-section.
The results are the same as those of our Art. 27, provided we re-

place the ratios %and g where they occur in our formulae by

% 1 and l—; «/% respectively, and the exponentials
1

+@r=NTy SOl ulet gy i LCa-lme \/E-
e 2 candie %) thyel ad ey, fuandsel R2NEEEaA S

respectively.
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The maximum slides still occur at the middle points of the
sides, but at the middle of the greater side 2b or the lesser side 2¢

according as b/c > or < ¥y /u, Saint-Venant gives at the con-
clusion of the memoir a very useful table, which we reproduce for
reference. It serves for equal slide-moduli when we simply put

g, = p,. The parameter in the first column is % \/% and for it
1

values are taken from 1 to 100 as well as co. The second column

TABLE 1.

Torsion of Prisms of rectangular Cross-Section.

B,
—~ 4 1=~ yieT l 3= yobT - My=_—15—0%S,
%/\/ % (M_B: waf) (middle of side 2b) (midd.le of side 2c) (M‘_ﬁbcns ‘) ( ’; Zg "‘f )
5 n Ya B VB

1 2-24923 1-35063 1-35063 166534 1:66534
105 2:35908 1-39651 1-68954
11 2:46374 1-43956 1-71146
115 2:56330 1:47990
12 2:65788 1-51753 1-75363
1-25 2:74772 1-55268 1-13782 1-76970 154556
1-3 2:83306 ) 1:58544 1-7852
135 2-91379 1-61594 1-80316
14 2:99046 1-64430 1-81868
1-45 3:06319 1-67265
1-5 313217 1-69512 97075 1-84776 1-43402
16 3-25977 © 1-73889 91489 1-87463 1-39180
17 337486 1-77649
175 3-42843 1-79325 84098 191170 1-33107
1-8 3:47890 180877 1-92334
129 3:57320 1-83643
2 3:65891 1-86012 73945 1-96703 1-15286
225 384194 1-90546
2°5 398984 1-93614 59347 2:06072 1-07566
275 4-11143 1-95687
3 4:21307 1-97087 2:13767
3-333 44545
35 4-37299 1-98672 2:20111
4 4:49300 1-99395 37121 2:25332 <757
45 4:58639 1-99724 229636
5 4:66162 1-99874 29700 2:33200 628
6 477311 1-99974 2:38687
6667 22275
7 4-85314 1-99995 242663
8 4-91317 1-99999 18564 2:45660
9 4-95985 2 2:47993

10 4:99720 2 14858 2:49860

20 516527 2 07341 2:58264

50 526611 2 263306

100 529972 2 2:64986
@® 533333 2 0 266667
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gives the value of 8, where M= Bu,7bc’ is the value of the torsional
couple. The third and fourth columns give the maximum slides
by means of the coefficients y, and v, where o, = — ¢,cT and o, = 7,br.
The fifth and sixth columns give the maximum value M, of M

2
4
2

by means of the tabulated values of B/y, and fb 0 where
2 2
M, = (ﬁ) be' 8, and M, = (§ L ) 368, M, is to be taken equal
% 7.0 p,

to the lesser of M, and M,

[48.] Pages 468—9 of this chapter suggest the modifications
which must be made in the results obtained for prisms of other
cross-sections, when gy, differs from p,; while on p. 470 we have a
simple proof that in this case at corners and angles which project
there is no slide, or the intersection of the lateral faces at such
corners remains normal to the cross-section.

[49.] Saint-Venant’s eleventh chapter deals with the torsion
of hollow prisms (pp. 471—6).

In this case we have to satisfy the surface shift-equation

po (dufdz+my) dy —p, (dufdy —12) dz=0 ............ @)

over two surfaces. If then we form a family of surfaces satisfying this
equation and give to the arbitrary constant which appears on the right-
hand side two different values we shall obtain the two boundaries of
a hollow prism satisfying all the required conditions.

For example :

R Nkl [

‘“’ "Bl
satisfies the body shift-equation, Substituting in (i) we have on
integration

c’y* + b = constant.

Giving the constant different values we obtain a system of similar
and similarly placed ellipses. Thus we find for a hollow elliptic cylinder
formed by the ellipses (2 x 2¢) and (2’ x 2¢')

I wb°c? wbc® b’ {1 (b’)‘}
= THES = 772 2 X 2 T AT .
{b [+ py 6%t /m} Blp,+ g b

(0) In the rectangular section Al !
u==—r1yz+ 34, sinh (my/J ) sin (mz]/ ),

where —-r—( ) \/‘u (2n 1)3 sech (mb//,)

and m= (____2n hx i"i" <
2 c
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Substituting in (i) and integrating we find :

32 (= 1)*"* cosh (my//p,) 5P %
=3 @ =11 cosh b/ Jp) cos (mz/fp,) = 1 5+C.

By variation of C' we get possible boundary lines for hollow sections,
but since only C=0 gives a rectangle, the boundaries will not be
similar rectangles. Most of these curves would be extremely difficult
to trace; for small values of (, however, we may practically assume
we have a hollow cylinder whose cross-section is bounded by two
nearly equal rectangles. Saint-Venant finds in curves thus obtained an
analogy to the surfaces isothermes of Lamé.

(¢) Lastly we find briefly described the method of dealing with
solutions of the form (5) of our Art. 36. The curves are sketched on
p. 476 for the double family given by the equation of our A»“. 38. Any
two of either set might serve as the basis of a hollow prism. Saint-
Venant returns in the Legons de Navier (pp. 306, 325—332) to this family
and treats a special case of it—Section en double spatule, analogue &
celle dun rail de chemin de fer,—at considerable length.

[50.] ' I now reach Saint-Venant’s twelfth chapter which is
thus entitled : Cas 0% il y a en méme temps une torsion, une flexion,
des dilatations et des glissements latérauz. Conditions de non-rup-
ture sous leurs influences simultanées (pp. 476—522). It deals with
the all important practical question of combined strain, and may
be described as the first scientific treatment of the subject : see our
Arts. 1377* and 1571*. The chapter may be looked upon as
an extension of the safe-stretch conditions formulated for the first
time in the Cours lithographté, see our Art. 1567*. In the treatment
of the problem to be found there it will be remembered that the
slide was dealt with as constant over the cross-section; here the
new results with regard to the flexural and torsional distortion of
the cross-sections are applied to that extended form of the earlier
formula which was cited in our Art. 5 (d).

[51.] Before I enter upon an analysis of Saint-Venant’s results
I may refer to the substance of a footnote given on pp. 477—8 of
the memoir. Saint-Venant notes that under torsion the sides and
fibres of a prism originally parallel become inclined and helical and
so must suffer a stretch. This stretch is, however—if the product
of the torsion 7 and the distance of the farthest fibre from the
axis be small—a small quantity of the second order. Wertheim
in a memoir to be considered later (see our Chap. X1.) has referred
to certain phenomena which he attributes to this stretch.
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By a simple analysis Saint-Venant finds its absolute magnitude for a

right-circular cylinder of radius @. Take ,

a fibre at distance » from the axis and P P
let us consider the element P2 of it be- FIH
tween two planes at unit distance, Sup- ;
pose owing to torsion that the two planes

approach each other by a quantity % and P R AN
let 77V be the perpendicular from the new position of 7’ on the cross-
section through P,
PP = /PN + PN’ = J(1 =) + 77
727,9

=1l=9+ > nearly.

Saint-Venant takes for PP the quantity
L=+
T!TQ

= v iige)

but I do not think he obtains the first expression very rigorously. He
has practically the same value in the Legons de Navier (pp- 240—1).
The traction in the fibre will now be given by 3

: e
Edw (—2— -—‘Y)> 5
where Z is the longitudinal stretch-modulus. The quantity — 4 must
be determined by the condition that the total traction is zero, or
a %2 ;
f 2nrdrE (T - ) sin P'PN =0.

[}

Since PG ). O . S0, (i
1-9+ s 4
2
it may be put =1 in the integral.
ot ; e’
We find —— =a’y, giving % = a result which agrees with

4 4’
Saint-Venant’s; our analysis thus proves that 7 is of the second order
in 7.

Further we have for the total-moment of these tractions about the
axis

2 2
ﬂ[:j“21rrdrE (7—3—2"1— T—Z—) cos PPN x r
1]
2
= Ent® fa 7°dr ('r”— %) , since cos PPN =1r;
0
Ena®
= (ra)?.
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If one takes account of the tractions produced by the lateral
squeezes of the fibres, we shall have a similar expression with a change
only in the elastic constant. Thus it appears that the effect produced
by the stretch of the fibres is of the third order in the torsion and may
be legitimately neglected if the torsion be small.

This point—that the stretch only varies as the cube of the
torsion—was first stated by Young without proof in his Lectures on
Natural Philosophy, Vol. 1. p. 139. He thence argued that torsional
resistance must be due to detrusion (slide) and not to stretch.
When the torsion T is considerable, then the quantity 3 above,
due to stretch of the fibres, becomes of importance, as appears from
Wertheim’s experiments in the memoir referred to: see our
Chap. XI.

[52.] Returning to the chief topic of the chapter under con-
sideration we first note with Saint-Venant the linearity of the equa-
tions of elasticity, so that it is possible to combine various strains
due to different forms of loading by vector-addition and so obtain
the total shifts due to a combined load system : see our Art. 1568*,
On pp. 479—80 Saint-Venant deduces the shifts for an elliptic
prism subject at the same time to traction, flexure and torsion.
Use is made of the results obtained on pp. 304 and 455 of the
memoir : see our Arts. 12 and 46.

[563.] Saint-Venant now turns to equation (iii) of our Art. 5 (d)
and after pointing out the difficulties of the general solution by
analysis for the case of any prism (p. 482) proceeds to some more
special and simple cases when the cubic can be reduced to an
equation of the second degree.

Case (1). Let the elasticity be symmetrical about the axis of », and
let the solid be a prism subjected only to a uniform lateral traction, we
have

8,=8,;, §= Sp Ooy=0py and Ty = 0.

Hence, if ¢,= J Ous + 0y, We find

s sm> s sy>_¢rm’
PR O e £
) EWONRT S oENT &
% ::%(%G*;’)*\/*(?‘T”) +(5) -
§ Sx 8y 5. 8, G,

In this equation we may put §,=7/E, §,=T/E, &,=8S/p,

§,/§y=ﬁ =1,/n and s,=—1ys,, where 5 = ratio of lateral squeeze to
2 4 K
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longitudinal stretch. Thus we find as safe-stretch limit

: 7 : 1-9 B \/ 1+9 B, >9 P-O'x)’
(i) ... 1 = maximum of —2—1,13“,4— TR A +<_S_ .

We take the positive sign of the radical, because if o, =0 we should

have the alternative between Tl 8, and — g—‘ s,:ﬁ’ s,, and the former

will be considered the greater (éaint-Venant, lp. 484)’.

Case (2). A like equation is obtained, if, without supposing an
axis of elasticity, two out of the three slide components vanish at a
Jail-point.

Case (3). This is a case of approximation, Saint-Venant supposes

o,. to be zero; but — s,/5, and — s,/5, without being equal to differ but

slightly, and he then takes them equal to 7, gf ‘une certaine moyenne

x
entre ces deux rapports” Thus he replaces (s/5—s,/5,) (s/5—s./5.) by
(s/5 +7,8,/5;)° and divides out all the terms by the same factor. We
thus reach the equation

s 8\ /S Sy Aty
S fsw o Wi D WEEY)vi . gt 1t A
(5 sm) (s - sx> R 0
and obtain for the safe-stretch condition
(ii) ... 1 = maximum of
1-», B, \/1+an1 ’ PO\ POz \
== } selfol % 1-2Y 9" X2 1
92 ‘,111sz+ ( 9 -Tl :c) (S, )+(b'!>
Here 7, is given, I think, most satisfactorily by the arithmetic mean
syt dsy Sy
a2 ) o S
%<§,, s) il 7
Now if s,=—19s,;, and s,=—17's,,

gx /§x
’19=%<"75+"7§—)

R S o A -
=2(1,_ ,+176_—,)sm:seeourArt.5(d),

Gy prs.

s () wn (B)) 2
-2{n(5) +7 () Jz

This result gives a constant value for 7, and appears to agree with
Saint-Venant’s note on Clebsck, p. 275. I do not think the value given
for ¢’ (=our 7,) on p. 485 of the memoir is quite satisfactory.

It will be noted that in all three cases the resulting quadratic is
practically of the same form and the condition may for all three be
thrown into a somewhat different shape, namely, transposing and
squaring we find

E s, E 1y o'a,y)’ (7 o-x,>’ »

(m)...(l Tx)(l +'t7,T1 sz) ( S ( s, =or>0.

1
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On p. 486 Saint-Venant gives the value of the moduli in terms of
the 21 coefficients, and points out the changes which arise when
we assume bi- or uni-constant isotropy. On pp. 487—8 we have a direct
deduction of the formula of Case (2) on the lines of the Cours litho-
graphié: see our Art. 1571%,

[54.] On pp. 488—491 Saint-Venant points out the method by
which a general solution for a prism can be worked out. Let the axes
of z and y be the principal axes of inertia of the cross-section and
P,, P,, P, the load-components parallel to the axes at one terminal and
M,, M,, M,the moments round the corresponding axes. Let o’y, o',
be the slides at any point on the section w due to the flexure or to
M, M,; let ¢”,, 0", be the slide-components due to the torsional
couple M, then
X Py ¥ M,z My .

Eo Eoxk' Eox,’

Further the ¢’ and ¢” components of slide will be known as soon as
the section is known and their sums must pair and pair be substituted
in equation (ii) or (iii) of Art. 53 for o, and o,,.

The equations of equilibrium,

w 3
Pv'—‘l‘ﬁj o'ny do |
(]

(iv) ~
7ok f L

o
will determine the constants in terms of the applied forces.

[65.] In section 125 (pp. 492—4) Saint-Venant treats the
exceptional case of a cross-section constrained to remain plane.

a

Telles sont celles qui sont soumises & ce que M. Vicat appelle un
encastrement complet, ¢’est-d-dire qui ne sont pas seulement contenues,
mais scellées ou soudées avec une matiere plus rigide ; ou bien celles qui
se trouvent serrées et sollicitées latéralement dans leur plan méme
par des forces tendant & trancher, comme il arrive aux sections des
rivets dans le plan de contact des tbles qu’ils assemblent, ou aux bases
des prismes tordus de longueur nulle comme dit le méme illustre in-
génieur (p. 492).

Sz

! Mx=p.gf 'y do — p, j 'y % do,
[ 0

Other such sections occur from the symmetry of load distribu-
tion etc.

For such non-distorted sections, we can suppose the ‘fibres’ formerly
perpendicular to become equally inclined, or the slide due to flexure
constant, and that due to torsion to follow the old law of Coulomb, i.e.

By Oy = Pylo, oy @y = P[0,
(V) 7’ "
] e T O 2z =TY,
whence by means of equation (iv) of our Art. 54, we can easily express
the slides in terms of 4, P, and P,.
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The expressions (v) of course are only true for these excep-
tional sections, which can never occur in pure torsion as sections of
danger, while in practical cases of flexure combined with torsion
or slide they are frequently found to be specially strengthened
(e.g. built-in ends).

[56.] We will now enumerate the examples Saint-Venant gives

of the above condition of safety.

Case (1). Consider a rectangular prism (cross-section 2b x 2¢) sub-
jected only to a force P parallel to the axis of z (or side 2¢). Let the
built-in terminal of the prism be so fixed that it can be distorted by
flexure. Then if the length of the prism be a, and 2¢ be much greater
than 25, we have

NP 2"
paTu=3 (1—?>, P,=P,=0,
ooy =0, Es,= Paz / 3
; : ; 4 1
so that, granting wuniconstant isotropy, S o T, =7 and thus the
equation (i) of our Art. 53 becomes

2 2
I'= maxmuumofgpa[ d 1——)J.
8 ¢t

Saint-Venant gives a table of the Values of the quantity between

square brackets for values of z/c=0 to 1, and for values of 2¢/a’

(depth to length) from 3 to 6. From this table the following results
may be drawn. So long as 2¢/a <305 the failpoint lies on the
surface of the prism where z/c = 1, or at that point where there is no slide.
If then the ratio of depth to length be < 3:05, the prism’s resistance is
just that of flexure without consideration of slide. If on the other
hand 2¢/a > 305 the maximum passes abruptly to the points for which
z/e = *2 about, and approaches more and more to those for which z = 0.
But this ]atter point lies on the neutral-axis, or it must be slide
and not flexure which produces the failure. When 2¢/a = 3:2 we may
calculate the resistance either from flexure or transverse slide, but
after 2c/a= 4, it is the slide alone which is of importance. Similar con-
clusions Saint-Venant tells us may be obtained for a circular section
(radius 7); in this case the fail-point passes abruptly when 2r/a =43
from z = r to 2= ‘2r about.

The reader who bears in mind Vicat’s attack upon the mathematical
theory of elasticity (see our Arts. 732*—733%) will find that the above
remarks satisfactorily explain Vicat’s experimental results.

Case (2). This is that of a prism (length 20, section 25 x 2¢) termi-
nally supported and centrally loaded. Here the section of greatest
strain suffers no distortion. If the load P be in the direction of

S

B T
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the axis of z we have by equation (v) of our Art. 55, o, =0 and
0z = P/(0op). Whence supposing uni-constant isotropy we find :

] 3 3Pa +\/ 5 3Pa>”+(_P_>’
=8 47b¢* <§ " 47Thc* 48/ *

Suppose &' and ¢’ to be the values to be given to b and ¢ that the
prism might safely withstand a couple Pa producing flexure only, and
5" ¢' to be the values to be given to b and ¢ that it might safely
withstand a shearing force P applied to the undistorted section. Then
we easily find .

_ 3Pa ol e B
T AT’ 488"

LA \/ 5 b’c”)’ I b”c”)*
=5 5a) o (55

gives the limiting safe values of & and ¢ for the strain in question.
Saint-Venant puts first ¢’ =¢” =¢ and so gets

b= + S+
whence he deduces and tabulates the values of /6’ and b/b” for various
values of 5”/0’ and &'/d" respectively, and also the value of
Zcr 380" _12b”fr. ol )
2—01(——17?,01'——5—70 1sotropy j .

From his table it appears that when

Hence :

2¢  depth ) : 3 :

e« A= 1t,
5o, Larigab or > £ the slide begins to influence sensibly the resu
2—2 = or < 10 the flexure begins to influence sensibly the result.

Between 2¢/2a = and 10 we are compelled to take both into account.

Case (3). This is the treatment of a cylinder on a circular base
subjected at the same time to flexure, torsion and extension. Saint-
Venant neglects the flexural slides and ultimately the extension. He
obtains an equation similar in character to that of the preceding case
and tabulates the values of the radius of safety in terms of the radius
of safety in the case of flexure alone for different values of the elastic
constant 7. He remarks (p. 503) that it is not necessary to consider
values of #,>} for then a stretch would not produce a positive dilata-
tion, ‘ce qui mlest point supposable’ This remark is omitted in the
Legons de Navier where a number of values of 5 > % are dealt with.
I may add that the problem is far more completely treated in that
work (pp. 414—21). Saint-Venant’s tables shew that the results
obtained are for values of , between 1/5 and 1/3 very much the same,
or we may adopt generally without fear of error the uni-constant
hypothesis » =1/4. This hypothesis Saint-Venant tells us is amply
verified by the experiments of M. Gouin (see page 486 of the memoir).
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T shall have something to say of these experiments when dealing with
Morin’s Résistance des matériaux, 1853 : see our Chap. xI.

Case (4) This case gives the calculation of the ‘solid of equal
resistance ’ for a bar built-in at one end and acted upon at the other by
a non-central load perpendicular to its axis, i.e. combined flexure and
torsion. Saint-Venant supposes uni-constant isotropy and neglects the
flexural slides. His final equation is

3
2 1 se 1 5 ST

Here P is the load acting on an arm %, and » is the sectional radius
at distance « from the loaded terminal. (p. 504.)

Case (5). An axle terminally supported has weight II and carries
two heavy wheels (w and =’) upon which act forces, whose moments
about the axle are equal and whose directions are perpendicular to the
axle. We have thus another case of combined flexure and torsion,
which is dealt with as before.

[67.] The next case treated by Saint-Venant is of greater com-
plexity ; it occupies pp. 507—18 of the memoir. It is the investi-
gation of combined flexural and torsional strain in rectangular prisms
(2bx 2¢c), and possesses considerable theoretical interest. In practice
also the non-central loading of beams of rectangular section must be a
not infrequent occurrence.

Case (6). Saint-Venant in his treatment does not suppose the elas-
ticity round the prismatic axis to be isotropic, but takes the general case
of two slide-moduli, supposing, however, that &,/u, > e/ RE

He neglects also the flexural slide-components. Let the torsional
slide-components be given by o,=—vy,er and o,=y,br for z/c=1 and
y/b =1 respectively. 7 must be eliminated by means of the relation
M"=Bu7d’. If ¢ be the angle the plane of the flexural load makes
with the plane through the prlsmatlc axis and the axis of y, and M’ the
flexural moment at section x, we easily obtain for the stretch s, the value

3M' fzcosdp ysing
4E’bc( B b )

M cy .
= (for z=c¢) m,(cos¢+g%sm¢>

3M' (2 c .
= (for y=10) VY, (;cos¢>+zsm¢>.
Let us substitute these values in equation (ii) of our Art. 53. Taking
these expressions alternately for the sides 26 and 2¢ we obtain :

T : 1—u,3M'
1 = maximum o7 460( ¢+ squ)

e+ (3 2L}
+\/[ o7 4be* (cos¢>+bzsm¢)] +(S—,I o)’

8=
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1- 1723M' ¢ )
57T i ( cos¢.+ sm¢

14+, 38" (2 ) 'yzb,u.s_]lﬁ)
Ay '\/ 97 4be’ ( e V2 sm<{> :] (S ep, Bbe
By means of the Table II. below and Table I. on our p. 39 all the
terms of these expressions can be calculated ; for y,/y, and v,/y, are given

1 =maximum ——

for values of b—‘/'f"_’ and also for values of /b and z/c respectively.
eNm

Hence so soon as ¢ and the section of danger, i.e. where M’ is greatest,

are known we can solve the problem by equating to unity the greater

of the two maxima written down above and so determine b¢® for the

section.

Saint-Venant by using ¥, ¢, b, ¢ with similar meanings to those of
our Art. 56, Case (2), throws the equation into a somewhat different
form.

If the section for which A/’ is greatest be so built-in or symmetrically
situated that no distortion is possible the values of the slides must
be those of equations (v) of our Art. 55 and not o, o, as taken above.

TABLE II.

Slides at points of the contour of the Cross-Section of a Prism on
rectangular base subjected to Torsion.

g1= —y,tT To=",07
(for z=c, or along the sides 2b) (for y =1, or along the sides 2c)
Value of ratio v,/y, Value of ratio [y,

For b\/ﬁ . % For b\/ Mo _

b c\/m 15 2 4 o c~/m 2 =4
0 | 1-0000 | 1-0000 | 1-0000 | 1-0000 0 | 1-:0000 | 1-:0000 | 1-0000
‘1 9932 | 9949 | -9962 | -9991 g *9932 | -9932 | -9933
2 9750 | 9795 | 9846 | ‘9973 2 9750 | 9729 | -9729
3 9429 | 9526 9639 | 9928 3 0429 ‘9384 | 9383
4 *8963 9127 | 9321 | 9842 4 ‘8963 | -8887 | -8885
5 8333 | -8572 ‘8857 | +9678 5 | -8333 | -8224 | -8220
-6 *7510 | 7820 8196 | 9371 6 7510 | -7369 | -7363
7 6447 | -6811 7260 | -8793 7 6447 | 6282 | -6278
‘8 5063 5441 5916 | -7695 8 5063 | -4892 | -4885
9 -3185 *3497 *3896 | -5540 -9 3185 | 3044 | -3040

1 0000 | -0000 | ‘0000 | -0000 {j 1:0 0000 { -0000 | -0000

This Table gives vy, v, in terms of the principal slides 71> 7 8t the centre of
the corresponding sides 2b and 2¢; the values of v, v, are given fn Table L. p- 39.

[68.] Saint-Venant treats with numerical tables the following
special cases:

(1) #=0and ¢<b (pp. 511—2).
8.-V. 4
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(2) ¢ so much less than & that ¢/b.tan¢ may be neglected as
compared with 1, i.e. the case of a ¢plate’ (pp. 511—2).

(8) Prism on square base, when tan¢ =0, =1, =1, and = anything
whatever when there is a non-distorted section for section of least safety
(pp. 512—4). The fail-points are also determined.

(4) Prism on rectangular base for which 6=2¢, when tan¢=0,
=4, =1, =2, =0, and = anything whatever when there is a non-
distorted section for that of least safety (pp. 514—518). The fail-points
are also determined.

[69.] On pp. 518—22 we have the treatment of a prism on elliptic
base subjected at the same time to flexure and torsion. Saint-Venant
only works this out numerically for the case of uni-constant isotropy and
when tan¢=co .

It is found that after a certain value of the ratio of torsional to
flexural couple, the fail-point leaves the end of the major axis (through
which the flexural load-plane passes’) and traverses the quadrant of the
ellipse till it reaches the end of the minor axis (p. 522).

[60.] We now turn to Saint-Venant’s final chapter (pp. 522—
558). This consists of three parts: § 135 Résumé général; § 136
Récapitulation des formules et régles pratiques and § 137 Ezemples
d applications numériques.

In the first article there is little to be noted. A reference is
made on p. 528 to the models of M. Bardin shewing the gauchis-
sement of the cross-section to which we have previously referred.
Saint-Venant also mentions the visible distortion of the cross-sec-
tions obtained by marking them on a prism of caoutchouc and
then subjecting it to torsion.

In the general recapitulation of formulae we have some results
not in the body of the memoir, as on p. 536 (d,) where the flexural

4 2

slides for the prism whose base is the curve (%) -- (f) =1 are
cited from the memoir on flexure: see our Art. 90. So again on
p. 546 for the flexural slides of other cross-sections. The best
résumé, however, of formulae as well as numbers for both flexure
and torsion is undoubtedly to be found in Saint-Venant’s Legons
de Navier to which we shall refer later. The last section § 137
contains some instructive numerical examples of Saint-Venant’s
treatment of combined strain.

1 Saint-Venant terms this sollicité de champ. When the load-plane is perpen-
dicular to this the prism is sollicité & plat, 3
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The memoir concludes with the tables for rectangular prisms
which we have in part reproduced on pp. 39 and 49.

[61.] Wehere bring to a close our review of this great memoir.
Since Poisson’s fundamental essay of 1828 (see our Art. 484%)
no other single memoir has really been so epoch-making in
the science of elasticity. It is indeed not a memoir, but a
classical treatise on those branches of elasticity which are of
first-class technical importance. Written by an engineer who has
kept ever before him practical needs, it is none the less replete
with investigations and methods of the greatest theoretical interest.
Many of its suggestions we shall find have been worked out in ful-
ler detail by Saint-Venant himself, not a few remain to this day
unexhausted mines demanding further research.

SectioN II
Memotrs of 1854 to 1864.
Flexure, Distribution of Elasticity, etc.

[62.] Comptes rendus, T. XXXIX. pp. 1027—1031, 1854. M¢-
moire sur la flexion des prismes élastiques, sur les glissements qui
Vaccompagnent lorsquelle ne s'opére pas uniformément ou en arc
de cercle, et sur la forme courbe ajfectée alors par leurs sections
transversales primitivement planes. This is a résumé of the results
of the later memoir on flexure (see our Arts. 69 and 93). It
cites the general equations for fexure, and the particular results
for the case of a rectangular cross-section.

[63.] L'Institut, Vol. 22, 1854, pp. 61—63. Solution du
probléme du choc transversal et de la résistance vive des barres
édlastiques appuyées aux extrémités. This is an account of Saint-
Venant’s memoir presented to the Société Philomathique. It con-
tains only matter given in the Comptes rendus, and afterwards
more completely in the annotated Clebsch: see our Art. 104.

4—2
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[64.] In the same volume of the same Journal, pp. 220—1,
are particulars of the memoir on the Flexure of Prisms communi-
cated to the Société Philomathique.

[65.] In the same volume of this Journal, pp. 396—398, is
another communication of Saint-Venant’s to the Société Philo-
mathique (July 8, 1854). This deals with the formulae for the
flexure of prisms and for their strength, when the cross-section
does not possess inertial isotropy. It gives the general equations
and treats specially the case of a rectangular cross-section: see
the Legons de Nawvier, pp. 52—58 and our Arts. 1581%* 14 and 171.

A final paragraph to the paper points out that the resistance
to torsion varies more nearly inversely than directly as the axial
moment of inertia: see our Art. 290.

[66.] On pp.428-—31 of the same volume of the same Journal
Saint-Venant communicates to the Société Philomathique (July 8
and October 21, 1854) the results obtained from the stretch-
condition of strength. These results were afterwards published in
the memoir on Torsion: see our Arts. 53 et seq.

[67.] Volume 23 of the same Journal, pp. 248—50. Further
results of the memoir on Zorsion communicated to the Société
Philomathique (April 12 and May 12, 1855), notably the case of
a prism on an equal-sided triangular base: see our Arts 40—2.

[68.] The same volume of the same Journal, pp. 440—442.
Diverses considérations sur Uélasticité des corps, sur les actions
entre leurs molécules, sur leurs mouvements vibratoires atomiques,
et sur leur dilatation par la chaleur. An account of a memoir
presented October 20, 1855, to the Société Philomathique contain-
ing general remarks on the rari-constant theory of intermolecular
action. The expression for the velocity of sound on p. 441 b

should be ./ SG;p and not \/ 3Gp+p : see L’Institut, Vol. 24,

p- 215. Saint-Venant refers to the labours of Newton, Ampere
and others on this subject: see our Art. 102. He points out that
in order to explain heat by translational vibrations, the second
differential of the function which expresses the law of intermo-
lecular force must be positive: see our Arts. 268 and 273,
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The method, however, of dealing with the velocity of sound by
means of an initial stress in an isotropic medium is unsatisfactory.
This was recognised by Saint-Venant himself, and he cancelled
the entire paragraphs on p. 441, beginning Newton va méme and
Quelque dyférents, of 42 and 10 lines respectively: see Comptes
rendus, 1876, Vol. 82, p. 34.

[69.] Mémoire sur la flexion des prismes, sur les glissements
transversaux et longitudinauz qui Uaccompagnent lorsquelle ne
s'opére pas uniformément ou en arc de cercle, et sur la forme courbe
affectée alors par leurs sections transversales primitivement planes.
Journal de Mathématiques de Liouville, Deuxidme Série, T. 1.
1856, pp. 89—189.

This is Saint-Venant’s classical memoir on flexure; extracts
from it will be found in the Comptes rendus, T. XXXI1X. 1854,
p. 1027 and T. XLIL 1855, p. 143.

Certain portions are reproduced in the Legons de Nawier,
pp- 389—414, but the analytical work does not seem yet to have
passed into the text-books.

[70.] Sections 1, 2 (pp. 89—98) are occupied with a history of
the old theories and an account of the Bernoulli-Eulerian hypothe-
sis as generally accepted at the date of the memoir. Saint-Venant
refers to the labours of Galilei (see our Art. 3*), Mariotte (Art.
10%*), Hooke (Art. 7%*), James Bernoulli (Art. 18*), Coulomb (Art.
117%*), Leibniz (Art. 11*), Duleau (Art. 227%*), Barlow (Art. 189%),
Hodgkinson (Art. 232*), ‘I'redgold (Art. 197%*), Girard (Art. 127%),
Navier (Art. 254*), Young (Art. 134%*), Robison (Art. 146%),
Dupin (Art. 162*) for the theory of beams, and to those of
Cauchy, Poisson, Lamé and Clapeyron for the general theory of
elasticity. His remarks are reproduced at greater length in the
Historique Abrégé, and as the reader of our first volume is already
acquainted with the researches of these scientists we pass over
these pages of the memoir.

In the second section Saint-Venant points out the falseness of
the Bernoulli-Eulerian theory, and refers to the corrections and
criticisms of Vicat, Persy and himself: see our Arts. 721%, 726%,
811* and 1571 *.

As we have already pointed out Saint-Venant in the memoir
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on Torsion had given the outlines of the true theory of flexure :
see our Arts. 9—13.

[71.] The third section (pp. 98—101) is entitled: Objet et
sommaire de ce memotre. Saint-Venant here indicates that he
intends to use the semi-inverse method (see our Art. 3) to test
how far the Bernoulli-Eulerian formulae :

Traction = Ez/p,
{ Bending moment = Ew«®/p,
Jzdw = 0,
(see our Arts. 20%, 65%, 75%, etc.)

are correct, when consideration is paid to the influence of slide.
There is also a succinct account of the contents of Sections 4—32
of the memoir.

[72.] Sections 4—12 (pp. 101—120) contain an elementary
sketch of the general theory of elasticity. Saint-Venant wrote
three other such sketches, namely (i) in the memoir on Zorsion
(see our Art. 4); (ii) in the Legons de Navier (see our Art. 190);
and (iii) for Moigno’s Statique (see our Arts. 224—9). This sketch
falls between (i) and (ii). It adopts rari-constancy and bases it
upon intermolecular action being central and a function of central
distance only. This rari-constancy Saint-Venant holds to be
without doubt true for bodies of ‘confused crystallisation’ such as
are used for the materials of construction (p. 108). At the same
time for the sake of the ‘weaker brethren, and as it does not
increase the difficulty of solving the elastic equations, he adopts
multi-constant formulae.

[73.] As a specimen of the mode of treatment, we reproduce
his proof of the equality of the cross-stretch and direct-slide
coefficients, 1.e. in our notation lezyyl = lxyayl".

We have to shew that the coefficient of s, in zz = the coefficient of
Oy N Ty,

Suppose all the strain-components zero except s, and ¢, and these
to be constant for all points of the body. Suppose the central distance
of two molecules m’, m” to have length 7, and projections x, ¥, z on the
coordinate axes before strain. After strain x and z remain unchanged,
but y will be increased by ys, owing to the stretch and xo,, owing to

1 See the footnote to our Art. 116.
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the slide. Thus the distance » between the molecules will be increased
by the quantity

Or = (ys, + woy,) % :
A mutual action
K/
S () sy + wom) 2

will thus be developed between the molecules by the displacement,
where f (r) is some func’clon of 7

If these molecules m/, m” form part of two groups situated at either
side of an elementary area o taken perpendicular to the axis of w,
we shall have w.zz and w. zy for the stresses obtained by resolving such
mutual actions as the above along the axes of z and y respectively
and summing them for all actions which cross the area . (See our
Art. 1563*.) :

Thus we have

o. zx—Ef('r) (‘/sy+wa-xy)g

-

S IR ?IE-B

0. 5 =3 (r) (yo, + wo,) .
f(’r) O-WEf()my,

w;y+

—_
z:

or,

G'Q

yEf(T) ¥+ "'xy Ef("')

‘*)

The form of these expressions thus proves the identity of the cross-
stretch and direct-slide coefficients on the rari-constant hypothesis.

[74] In Section 12 (pp. 117—120) Saint-Venant applies the
general formulae of elasticity to the simple case of a prism under
pure traction. He then deduces the stretch-modulus in terms of
the elastic constants for various kinds of elastic bodies.

In a footnote to p. 120 he supposes the body to have weight and to

be vertically stretched. He obtains with the notation of our Art. 1070*
the following results :

el T
o) W E\e o)y’

_1/Fz W2 Way'+ n'ﬁ”)

“’“E(w eXr 0 sy S

These results agree with those of our Art. 1070%, if we take =1/, or
suppose isotropy in the cross-section. Here 5, ' are the stretch-squeeze
ratios in the directions 2, ® and z, y respectively.

I had not noticed this footnote when commenting in the first volume
on Lamé’s treatment of the problem.
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[75] Section 13 (pp. 121—123) deals with Poisson and
Cauchy’s method of treating the problem of flexure by expanding
the stresses as positive integral algebraic functions of the co-
ordinates of the point on the cross-section referred to axes in
the cross-section : see our Arts. 466* and 618* (footnote). This
method Saint-Venant admits had served for the departure of his own
researches (p. 99), and he deals more gently with it here (p. 124)
than he does in his later work. The assumption of the possibility
of the expansion in a convergent series is a very dangerous one,
and leads in the case of torsion to very erroneous results: see our
Arts. 1626* and 191 (or Legons de Navier, footnote pp. 621—7).

[76.] In§§14—17 (pp.125—36) Saint-Venant gives the general
solution of the problem of flexure, carefully stating his assumptions
and once integrating his equations. He reduces the solution to
the determination of a single function F, which can be chosen to
suit a great variety of cross-sections. I will reproduce as briefly
as possible the matter of these sections.

[77.] Taking a portion of a weightless prism between two
cross-sections Saint-Venant proposes to determine its state of
equilibrium after it has been subjected to flexure on the following
suppositions :

(i) The character of a certain portion of the shifts and strains is
assumed ; namely, the axis of the prism, or the right line joining the
centroids of the cross-sections, is supposed to become a plane curve
(elastic line here one with the neutral line), and further the stretches of
the longitudinal ¢fibres’ vary in a uniform manner with their distances
from each other measured parallel to the plane of the elastic line.

Let « be the direction of the line of centroids before flexure and let
the origin be its fixed extremity (see (iii)), and let xz be the plane of
flexure (or of the elastic line), then the above condition is analytically
represented by

852 Ol i o B e g I et 0 (1),

where C and O’ are constants for the cross-section.

(i) The character of a certain portion of the stresses is assumed ;
namely, it is supposed that the fibres exercise no mutual ¢raction upon
each other, or that their mutual action is solely of the nature of shear.
Further, on the terminal cross-sections there is supposed to be no
tractive loading.
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These assumptions may be expressed analytically by

] @:_2:32:0 ................. ) S E (2),
Jzz dw = 0 for a terminal cross-section............... (3).

Further, it is supposed that although the mode of application and
distribution of the load is unknown, yet the resultant load aund its
moment (4) for each crosssection w at distance x from the origin are
known. )

It follows that
M = (7= zdw for each section .................. (4).

Further, to simplify the equations of unnecessary elements all
motion of rotation, or translation of the prism as a whole, all stretching
of the central axis or torsion of the prism are excluded. The latter
elements by the principle of superposition of strains can afterwards be
added.

(iii) One extremity of the central axis, the central elementary area
of the cross-section at that extremity and an elementary strip along the
trace of the plane of flexure on the cross-section remain fixed.

Analytically this gives us the conditions :

u=v=w=0, du/dz=0, when x=y=2=0............ (5),
v=0, dv/dz=0, when y=2=0 for all values of =......... (6).

[78.] Let us adopt the following additional notation : /, w«* and p
are the length, cross-sectional moment of inertia (= [2’dw) and radius of
curvature at any point of elastic line of the prism. Let us further
suppose that the material is such that the cross-sections of the prism are
planes of elastic symmetry, it follows easily that the stress-strain rela-
tions will be of the form :
7z =as, + ['s, +€'s, + hoy,
W =J"8,+ bs, + d's, + ko,
% =¢€5,+d's, + s, + noy,
vz =Hs, + k's, +n's, + doy,
8= €0, + oy,
’x; Al hmo'za; +f0'xy

See the annotated Clebsch, pp. 75, 6.

Since yy = 7z = vz = 0 we can determine from the first four equations
zx, 8, 8, and @, in terms of s,, we may thus write:

zm=Es,, =Sy SH=— N8 Op=Spriri.cen.. (8).
[79.] Considering the portion of the prism between the cross-section
o at distance z and the cross-section at the origin we have by (3) and

(4)— B -
0= fmdo=[E (Cz+C)do,

M= [ 2do = [E (Cz + (") 2dw,
whence C'=028nd C=M|Eok’.......ccccveueenennenn. (9).
It follows that 1 = S SN e B RV ISR JeF (10). -
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If we now turn to the body stress-equations we find they reduce to
dzy  dwz z dM

Wt T T e dm

. ¢ iz & s D ()
ded v skde

while the surface stress-equations reduce to the single one
Wy — a0 =04, L L e gt (12).

The last two equations of (11) lead us by means of the last two of
(7) to the conditions'
doy,

dz

dowy _

dw o

=0,

or, to

d'w +c£’i;_0 du +d’w_

dedy ~ do® 7’ dwdz " dxt

Hence, putting for du/dx = s, its value 2M/Ewx’, we have, since M s
supposed a function of x only,

dZ

0.

v
;i?:o, ——JF =M/Eumz .................. (13)
The first equation tells us that there is no curvature in the
2,
direction of y after flexure, the second that the curvature (1 lp=— %11,’
x

for small shifts) in direction of 2 is equal to M/Euw«’.

‘We thus obtain
M=Ewc’lp, s,=2[p, Z@=Ezfp...ccccc...... (14),

the formulae of the Bernoulli-Eulerian theory, here deduced without its
invalid assumptions (i.e. that the cross-sections remain plane and. normal
to the strained fibres).

[80.] The first equation of (11) shews that if A/ is variable or
in other words the curvature changes, the stresses zy, =z and therefore
the slides o, 0., cannot be zero, or it involves the contradiction of the
Bernoulli-Eulerian assumptions.

Further differentiating the same equation with regard to z, we deduce
by the second and third equations of (11) the result

a>M
ke (L e LN 203 e - ..(15),
or M must be of the linear form in z,
= PG o E R B (16),

1 Provided the relation e/h” =K"|f does not hold between the elastic constants.
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if we suppose La to be the value of M/ when £ =0. In many cases a=/[,
the length of the prism.

This result (obtained on p. 130 of the memoir) is extremely im-
portant, and does not seem to me to have been sufficiently regarded.
I remark that it is obtained without any consideration of the surface
condltlon (12) It thus jfollows that the assumptions 8,= Cz+ (),
w2 =y=y =0 are not Zegmmate, if M s other than a linear functwn
of the length of the prism. In other words all the important practical
cases of continuous loading are excluded from Swint-Venant's theory of
Sexure, and it remains yet to be shewn that for such cases the Bernoulli-
Eulerian hypothesis of (14) gives even an approximation to the truth.

[81.] With regard to the quantity P of the previous Article, we
obviously have — £ equal to the resultant, in the direction of z of the
load, or to the total shear across each section, that is

for all sections.

Thus we see that Saint-Venant’s theory, even without the limitation
of equation (12), excludes the possibility of any discontinuous change
in the shear, or the transverse load. He supposes the resultant of the
whole external load to act either at the extreme section (x=1[) or
beyond it in the central axis produced. This again narrows down very
much the number of practical cases for which the Bernoulli-Eulerian
equations have been shewn to be applicable.

[82.] Saint-Venant now proceeds to a first integration of his
equations and deduces the following results (p. 131):

20x — «* a—x ;
Ty e SHoT -2+ F (y, 2), v=—P2-E 2 (2,7 — &),

3ax® — o
6 (‘l)K9

where ¢, is a constant, representing the value of o, at the origin, and
F(y, )1 15 a function to be determined by the conditions

...(18),
w= M‘+P2E % 0y - ) - P

F=0, dF/dz=0, when y=2=0; )
EEogn FF BT
fdy2+(h +h’)dd ¢ 73
v E ’7 f_ -'7 e + (h,, k/ll m ) ]I,II
=i ; E(DK: #ohlh Fod® Py,
for all points of the cross-section ; and,  .--(19).

” dF 277,:1/2 — e’ " dz)
(7~ )(d./”) ) * (-1

dF 18 =0y
- ———— = O
¥ (dz O iy 2 )
for all points of the contour of the cross-section.
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These results follow by simple analytical work if we start with the
value of u obtained from the equation s, =z/p =P (¢ — ) 2/ Eox® and then
proceed to those of v and w given by the second and third equations of
(8), the values so found being made to satisfy (11), etc.

[83.] Saint-Venant, however, does not deal in his special examples
with this general case of elastic distribution ; he assumes the material to
have planes of elastic symmetry perpendicular to y and =z, as well as
perpendicular to . We then have A" =A"=h=k=n=~k =%k =n'=0,
and clearly e=0.

Further,

2y = Oy, 28 = 00, O IO AR S (20).

The equations (18) and (19) now become, if we take'
f = Py €= Mo

’71f_ nge =
¥ WAk
2ax — 2° a—x
u=2P Y F(y,2), v=—y P %L;K”) Y2, s
¥ P(a-2) (yy* ygz*) Saxf—a? [ :
T e, 75 ( i T s G

d'F  d°F b
® W + G P 1—}"(—2—1’ 2z throughout the section;

F =0, dF|dz=0, when y=2=0;| ...(19).

dar Pyz dF P a2y
M {@"'V:mfe}dz +#,{@+°‘o+ ﬁ?(ﬁ,—— ﬁl—)}dy=0
over the contour of the cross-section.

[84.] The last section of general treatment (pp. 133—6) gives
formulae for various quantities used for the special cases afterwards
dealt with. Thus we note:

First, the values of the stresses :

i AF P 2 gyl
xz = /Lg {Ez. + 0'0 + ﬁg (7; “ip ‘M:)}
It follows that
Owe=az[pg, Or=0, for y=2=0,
that is the inclinations of all the cross-sections at their centres to the
axis is the same and equals o, L

1 I have altered Saint-Venant’s notation to correspond with that of our History,

L W U WS O R
he puts for our {G’ B YA e‘, e?, oy 93'
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Secondly, the equation to the curved surface taken by the cross-
section, on neglecting small quantities of the second order, is shewn to be

il G AR £ R A A A (21),

where the origin is the centroid of the cross-section, the axis of 2’ is the
tangent there to the elastic line, that of ' is parallel to  and the plane
y'% is the tangent plane to the cross-section at the origin.

It is obvious that «’ is not a function of «, or the cross-sections all
assume the same distorted form. Hence we see why it is that the
different fibres are stretched precisely as they would be, were the cross-
sections to remain plane.

Thirdly, the total deflection 8 (la fléche de flexion) is obtained by
putting ¥ =z =0 and 2=/ in the value of w in (18'), or,

P (3alB )
=—al+— BB e

Saint-Venant assumes the resultant load to be applied at the
terminal, or that @ =/, thus still further limiting his solution. In this
case Q=g U B B aREE ookl pis o e (22').

[85.] The next twelve sections (18—29), pp. 136—68, deal with
the determination of o, and £ for various forms of cross-section.

In the first place Suint-Venant assumes # is to be a positive integral
algebraic function of y, 2. In this case it must be of the form

F(y,z):Aoy+A<y”——z’> z+B'(y’z ’:;z) B”( 2 —3—?—3/ )

+P1 % — Vs p340” ( G’I“yz +F" z}+()'" <yz ——y“z) -..(23),
6p 0k’
in order to satisfy the first of equa’clons (19°).
If this value be substituted in the third equation of (19') we obtain
the differential equation to the corresponding contour-curve.

[86.] Saint-Venant dea.ls however only with the special case, in
which the terms in % and 2’ are alone retained. He puts

m=1-vy — 2”"“ B,
and thus throws # into the form
F Rl P l-m—y, .
1) ] Q Lo el . T .
2 z) g 0K i Z;Llwl(g y= (24)

After some reductions and an integration he finds for the contour
from the third equation of (19):

Py 1 =2y, M
:”‘1 3m—2 P~ mP °
where C is a constant. ‘

Cyl-m + b
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If C' =0 this represents a family of ellipses. If C be finite and we
give various values to m we have curves symmetrical with regard to
the axis of y, and symmetrical or not with regard to the axis of z
according as m/(l —m) is even or odd. Equation (25) can be thrown
into a somewhat different form by assuming ¢ to be the semi-axis of
the curve in the direction of =2, and & the semi-axis in the direction
y. Thus y=0, 2==¢, but for 2=0, y=+b always, =—0 also if
m/(1 —m) be treated as even.

In putting ¥ =0, 2* =¢* we find,

Equation (25) now becomes :

(1_1-27,-7)zp,b’)(g)ﬁ+ 1-2y, —mpby
3m—-2 puc/\b B Yy T s Bl
Saint-Venant now proceeds (pp. 138—143) to discuss the various
forms that can be taken by this system of curves. This discussion
seems to me perhaps a little too brief. Thus, he says: Supposing
m /(1 —m) to be treated as even, then it is sufficient and necessary in
order that the curve may be closed,—and so capable of serving as a
contour for a cross-section,—that z/¢ have a real value when /b =1~
X being an extremely small positive quantity. This leads him to the
condition that m must lie between

1+ 271
L+ pyc®/(u %)

and 1.

[87.] We may note the following cases :

The ellipse (2b x 2c) is obtained (not by putting m/(1 — m) = 2 which
leads to a logarithmic curve owing to the appearance of indeterminate
forms, but) by making the coefficient of y™/*~™ vanish. Thus we have

) 2p,6” + (1 - 27,)_,11.299
. 3p.c’ + p b’ i
The circle (radius b) is obtained by putting b=c or
7 o 2u, + (1 = 2y,) P
Bpy + 1y
i

The false ellipse, iz
in the case of isotropic material for which uni-constancy holds, or

o=, Elp,=5/2 and y, =1/10.

More generally we must take m=2y,— 1, for a similar curve in
bodies with tri-planar elastic symmetry.

+ j—, =1, is obtained by putting m/(1 —m) =4

[88.] On pp. 139—40 Saint-Venant deals with and figures the
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various curves which arise in the case of isotropy, when m is given
different values, especially for the cases ¢ =5 and ¢=2b.

On pp. 141—3 he refers to the case of m/(1 —m) being odd, and
shews that not only are the limits for m narrower than in the previous
case, but that the ratio 5/c must remain within certain limits determined
by those for m.

. The case of m=5/7 and p, =p, is fully treated and it is shewn
that the equations represent for four values of b/c:

des ovales ou courbes ovoides dont un des bouts est plus gros que Uautre. Le
petit bout dégénere en pointe pour la premitre et pour la derniére. -

L’axe des z ne passe qu’exceptionnellement par le centre de gravité des
sections terminées par ces contours non symétriques ; mais peu importe, car
comme les fibres restent toutes dans les plans, tout ce qui préctde est
également vrai si on prend pour axe des x I'une quelconque des fibres qui ne
varieront pas de longueur. - (p. 143.)

89.] We will next write down in a form corresponding to equa-
tion (25), the values of the three stresses; these we eusily obtain from
equations (20). They are:

~_ Pla-xz)z . P(l-m)yz)
Sl Nkl

rr= ———p——, W=
WK WK

L. mP(c’—z’)+ P P(1 - 2y, —m)
20k* 78 20k*

—
Xz =

%

As one terminal cross-section usually corresponds to x = ! =a, we
see that zz =0 across it, or the total external force exhibits itself as
a shearing load, the resultant of which — 2 is distributed according to
a paraboloidal law. '

Saint-Venant adds to these results that for the total deflection &
from equations (22) and (26); thus we have (see his p. 148):

55 3m E c*
pe 3wa’( 2 n ﬁ)

2
: The form of the distorted cross-section deduced from equation (21)
is:

b)

P /m m—vy, 1—v —m
/. v by (el iie om0 Wa 1oy el 2
x e (2#2 cz 6”‘2 % 2/‘,1 K z) ...... (29).

2m + Pct
If m'0=T"2 Tt be the value of ' when y=0, z=—¢, this
may be written :
« 3m 2z m-—y (z5 o l—y —m ry\* 2
—_—=— ~+ 2 (2 3= L (2} O (29
@, 2m+y, ¢ 2m+y, c) 3 B 2m+y, (c) c (299,

[90.] Saint-Venant specialises the results of the previous Article on
pp. 144—148 for definite values of m, Thus he takes the case of the
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Jalse ellipse for a uni-constant isotropic material (m = 4/5, y,=y,=1/10);
of the curve m=9/10 (or 18/20, considered as even), also for a uni-
constant isotropic material—this curve approaches a rectangle of which
the angles have been rounded off and the top and bottom hollowed
out; and of m=1 (=2/2), the contour is here a quadrilateral formed
by four curved lines. Then he proceeds to cases which have for
practical purposes more definite contours, namely :

(i) The ellipse. Here, if ¢ = p c*/pb*, we have :

_1+29-2y,

7 R BRS

__1+2¢-2y, 2P T L 5§+—292 4—1—) for uni-consiant isotr :,
O T By i LT R BRABer. MR S

P 2 2
= 45 %:237; ?gf g [ = {;I ZZ’—iZE ‘%? , for uni-constant isotropy ;:l
Pl 2_1)l"1_29:,271<1 _z_’) S
> 1+ 3¢ ¢ o 1+3¢0°°
AP Bt 260 s 2N AP f : ti 2

S 3023’_( - - bo 3 15 or uni-constant isotropy;

S 410 {1 3(1+29-2y) E i"}
3 Euwc’ 2(1+3q) p,0%°

= —4PZ’ 1+ wbg ‘.’f} for uni-constant isotro ]
[‘ 3Fuwc* 6c® + 2b° I°f” Py

(ii) The circle. We have only to put b =c in the above results.

[91.] We may note that the term to be added to the deflection
2
owing to shear is generally about 3 <E> of that due to bending, if we deal

l
2
with a uni-constant isotropic material (i.e. for circle % (70) , for false
2 2
ellipse 3 (%) , for rectangle with tlattened angles 281 (;) , ete.).  This

represents the amount neglected in the ordinary theory. If in practice
we may safely neglect an error of 1/100 in the deflection, it follows
that the ordinary theory will give sufficiently close practical results so
long as the length of the beam is 8 or 9 times its diameter.

[92] On pp. 148—156 Saint-Venant goes through some most
interesting work to trace the form of the distorted cross-sections.
He traces these surfaces by means of level oxr contour lines for
different ratios of @'/«’, [see equation (29°)], that is by the trace of
the surfaces on planes parallel to the tangent plane at the origin.
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The form of these families of curves may be roughly described as
follows:

The critical member (¢ = 0) of the family is an ellipse (or in
special cases a circle) and its diameter (the neutral axis). The critical
member divides the family into two—for «'/#, a positive fraction,
we have a loop below the neutral axis and a ‘snake’ passing outside
and above the critical ellipse with the neutral axis for its asymptote ;
—for &'/, a negative fraction we have curves congruent to these
only the loop is above and the ‘snake’ below the neutral axis.

The contour of the section itself falls almost entirely within
the critical ellipse and so gives a surface cutting the loops, the
‘snakes’ only apply for the distorted cross-section ideally produced.

The traces of the section made by planes parallel to the
plane of flexure are cubical parabolas and are hatched in Saint-
Venant’s figures. It appears from them that the slide o,, has its
maximum value at the centre. Saint-Venant draws attention to a
noteworthy point on p. 152: Since b does not occur in the equation
(29) the contour-lines are the same for all sections having the
same m, ¢ and «’, The constancy of #’, involves P/w«® remaining
the same, except in the case of the fulse-ellipse where the term

involving g disappears from the equation to the contour; thus

such ellipses are all orthogonal projections of each other.

We have reproduced three figures giving the form of the
distorted sections on the frontispiece to this volume.

Only in Fig. (i) the ‘snakes, which are contour-lines falling
outside the real section, are given. The contour-lines for elevations
above the tangent plane are given by whole lines, those depressed
below it by dotted lines. The traces by planes parallel to the
plane of flexure are shaded. The figure corresponds to a circular
cross-section when the material has uni-constant isotropy.

It gives very approximately the surface for elliptic cross-
sections when b is < 1-5¢.

In Fig. (ii) we have the contour-lines for a fulse ellipse.

In Fig. (iii) for the rectangle with rounded angles and hollowed
top and bottom referred to in our Art. 90 (m=9/10). We see
that the contour-lines become straight.

In calculating and plotting out both Figs. (ii) and (iii) Saint-
Venant has supposed uni-constant isotropy.

8.-V., S
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It may be remarked that the conception of these surfaces
is much assisted by plaster-models, which exist for the case of the
circular and square cross-sections (see below Art. 111).

[93.] Saint-Venant now passes to the discussion of the flexure
of a beam of rectangular cross-section. This occupies pp. 156—168.
By the assumption
L(l-v,)2° 7,1’ :
Fy, D) =x(y,2)+—5— 6o wK,;t/z.........(30),
Saint-Venant reduces the equations of condition (l 9’) for F (y, 2) to

I8 j’s + ZZ* 0 for all values of ¥ and z,
x (=¥, 2) = x (v, ?) everywhere,

x=0 and dy/dz=0 for y =2=0,
dx _ Pct 71P 4 il
S TR Y G ;—w— y® for z== ¢ and y between = b,

> ...(31).

dx =0 for y==b and z between =c.

dy J

Here 2b and 2¢ are the horizontal and vertical (flexure plane) sides
of the rectangle.

The first equation of (31) is satisfied by taking

x=3e" {Aq cos \/5’ gy + 4’ sin \/& qg/} ......... (32).

The sines must however disappear in virtue of the second equation,
and since x =0 when y=z= 0, we must have 4,=-4_,, or,

x =34, (e —e) cos , /L2 qy.
Hy

The condition dy/dz=0 for ¥ =0, 2=0, shews us that a certain
relation must hold among the coefficients 4,; it will serve later to

determine o,
The condition dx/dy =0 for y ==b will be satisfied if
"
)
g
n being any whole number, and obviously it will be sufficient to deal
only with positive whole numbers. For n =0, we must introduce a

term 4, (e°-*— e7°+*) which gives us a quantity Kz.
Hence finally we may write :

= Kz+22A sinh @\/P’ cos nary/b.

Y
=3
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The fifth condition of (31) then gives us the following equation to
determine 4, by Fourier’s method

% nr  [fu nre [,
K+324 ——-J—‘cosh —\/—‘cosn b
? ng H i H, wy/
YIP

JEi 5
sSasOS QEQ;K’ + I;,;u;g Yy ...(33)-
Saint-Venant indicates in a foot-note (p- 159) that the form (32) is
the most general form which will satisfy all the conditions of the
problem,

[94.] Equation (33) easily gives us the following results ;
Pc? < v, Pb*

WSS e
= 2pok® By ok®’

3 oY S \n—1 L]
24,=- 413 # KL (=1) sech <7$ ,\/’i)

™V op opo’  n?

2
We are thus able to write down the complete value of y, namely :

Pc? F -ylPlf)
2p06® " Buok® i

X= (_ Ik
" nwrz [
g 1 Sinh (* 4)
o (= b
| Yl'f:bg/\/”'? i; E (_71;3_ %&_ Ccos 9’&71'2/ (34).
mocV 7 3 cosh ("7 \/ #
bV o,

) T DR
In order finally to fulfil the condition dx 0 for y =2=0 we must

dz =
take
A py 29,8° 122 (=1 qre \/,7, _
ao_-%wk,{l - 8 [1_;% i sech 7 /1 }...(35).

We have thus the complete determination of all the constants of the
problem,

[95.] Inthe following pp. 162—3, Saint-Venant deduces from (18'),
(20), (30), (34) and (35) the values of the three shifts and the three
stresses ; we tabulate them for reference,

2 — o*

U=

/e Py Pb%2 14 i (= Tyre nare _1
+(1—72)6 R d +y _2( nz) sech (T \/ﬁ)
2

g =] 2 1 g Stg)
14, 0K 2p, 0K IRV ] ”

inh (275 /1 o5 "™
oy \/ﬁ; 4§(_1)"_1 smh( 3 \/F«)COS 5
o SR SN o 75, )

2
71 R 71'3 » e T ’
0K Ay 1 ok (Z?f/rc \/ &)
b 2

5—2
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3 e P(l—a:)q”
v= Yl’pqug J")

Pct 1o 20° 12 2 ( 1)"‘ \/,4,1
e U L

b
» 0=
Qwx?
smh( —\/"i> mr'/
—~ _nl 4 /M“’( net bV p

.z'_wK37r2\ M1 n? hn \/#
F‘?

na © nwy
P8 py |y 3y _12g (-1 L (77\/@) N
+n 3ox® py 5T 1 n? b (n‘rrc \/ ’71
cos. el
SN

Saint-Venant verifies these results by shewing that they satisfy the
bounda.ry equatlon Zzdy—aydz=0 and the load-condltlons [zZdo=-P,
f wdo=

[96.] The next two sections 28 and 29 (pp. 164—8) are occupied
with numerical, graphical and simpler algebraic expressions for the
quantities which occur in the previous sections.

For o, Saint-Venant obtains the following results when v, = ;:

When%\/’:z 1 3 2 1 (125 | 15| 2 |25 3
2

3
—gy=— X |*67624 |-84918 [-90729 |-94031 |-96177 [-97101 |-98341 |-98934 | 99259
07 2u,wi?

It is shewn that for all values of G\//Ll >b,\/,u.g the sum-term in
equation (35) may be omitted, or we can write _

3P ypt P

Further the deflection & is then given by :
5= Pr 1 3E ¢ b
3 3Ewr<’( +§— F_ﬂ‘F)
since Y= "2,
For the case of isotropy: 7, =14, E/n, =5/2, or

JE 15¢° - b*
5 3‘5«38(“ )
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The Bernoulli-Eulerian theory takes no account of the second term
within the brackets.

[97.] Saint-Venant devotes his next few pages to a calculation of
the value of ' which gives (see our equation (21)) the form of the
distorted surface. He treats especially the case of d=¢, and uni-
constant isotropy (i.e. y,=v,=1/10, p, = p,).

I have reproduced his diagram of the contour-lines, as Fig. iv. of the
frontispiece ; the hatched lines as before denoting sectlons of the surface
by pla.nes parallel to that of flexure. The contour-lines are drawn
for &', =0 to = 1 by steps of 2.

The trigonometrical terms in «’ have little importance when b < ¢, so
that in that case we can practically take

8 el {z 1-4y, z)s}
=k 2p, 06" g (E )

3 TR T e e AL 8}
=g Ys { L ¥ (c> 4

This is equivalent to neglecting terms in the expression for & in-
volving the factor b/c. It -is obvious that the contour-lines now become
stralght lines.

The above value of «’ is obtained by Saint-Venant f'rom very simple
considerations in a foot-note on pp. 184—5. It had already been given
in the memoir on Torsion (see our Art. 12) without the term Ve
(circa 1/10); a similar proof of the formula is given in the Legons de
Navier : see our Art. 183 (a).

[98.] Saint-Venant’s thirtieth section (pp. 168—171) is en-
titled : Sections de forme quelconque. This amounts to little more
than the statement that, a solution having been found for the
equations (19) with regard to certain cross-sections we may
infer that a solution exists for all cross-sections. The inference is
strengthened by reference to a corresponding problem in the
conduction of heat.

[99.] Section 31 (pp. 171—187) is termed: Démonstration
directe et sans analyse des formules connues de la flexion des
prismes due & leurs seules dilatations longitudinales. This investi-
gation can be easily followed by those who have grasped the
analytical calculations, but it seems to me very doubtful if it
would be of value for elementary teaching (e.g. of engineering
students). Saint-Venant did not reproduce it in his Legons de
Navier.
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[100.] The final section of the memoir (§ 32, pp. 187—9) is
entitled : Conclusion. Observation générale pour le cas ot le mode
d'application et de distribution des forces extérieures vers les
extrémités est différent de celui qui rend tout & fait exactes les
Jformules auwquelles conduit la méthode mixte.

This reiterates the principle of the practical equivalence in
elastic effect of two surface distributions of load which are
statically equivalent : see our Arts. 8 and 9.

101. Sur les conséquences de la théorie de Uélasticité en ce
qui regarde la théorie de la lumidre. L'Institut, Vol. 24, 1856,
32—34. The article adopts the view that much remains to be
done to render the theory of Physical Optics satisfactory; it
supports the views of Cauchy, especially with regard to the
existence of a third ray as obtained by him in his discussion of
what is termed double refraction. The article concludes thus:

Quoi qu’il puisse é&tre de ces explications, que nous devons nous
borner 4 soumettre aux physiciens et aux physiologistes, et bien que
l'on puisse continuer sans doute de regarder le mouvement de la lumiere
dans les cristaux comme représenté approximativement par la surface
d'onde du quatrieme degré de Fresnel, nous pensons qu’il convient de ne
plus passer sous silence les composantes longitudinales des vibrations
pour éluder quelques difficultés dont elles sont le sujet, et que, pour
rendre la théorie de la lumitre exempte d’inexactitude loolque et
provoquer pour l'avenir des recherches qui seront peut-étre suivies
d’importantes découvertes, il y a lieu de ne plus présenter les vibrations
de T'éther, dans les milieux biréfringents, comme étant tout & fait
paralléles aux divers plans tangents & la surface des ondes lumineuses

qui &’y propagent.

102. Sur la vitesse du son. IL’'Institut, Vol. 24, 1856, 212—
216. Newton obtained a certain expression for the velocity of
sound which gives a result much smaller than that found by
experiment. Laplace modified the formula, and thus obtained a
result agreeing with experiment: see our Arts. 310* and 68.
Saint-Venant is not satisfied with any investigation which has
been given, even with the aid of the formulae of the theory
of elasticity. He says

On voit toujours, par ce qui précéde, qu'il reste encore bien des choses
4 savoir sur la théorie du son, objet des recherches d’hommes tels que
Newton, Lagrange, Euler, Laplace, Poisson et Dulong; qu’'on ne doit
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pas s'étonner de trouver des différences entre les résultats de Pobservation
et ceux de la formule de vitesse la plus généralement adoptée jusqu’ici

\/ cg’a” ni se hiter de déduire de cette formule, probablement fausse,
P

des valeurs du rapport ¢/¢’, comme 'ont fait plusieurs physiciens éminents ;
enfin que ce qu'il paraitrait y avoir de mieux & faire dans enseignement,
jusqu’a éclaircissement, serait de démontrer la formule newtonienne et
d’énoncer simplement les raisons qui rendent son résultat trop faible

(pp. 115—6).

Saint-Venant’s article contains valuable references to pre-
ceding writers on the subject. See too Die Fortschritte der
Physik vm Jahre 1856, pp. 159—164.

103. Sur la résistance des solides. L’Institut, Vol. 24, 18506,
pp. 457—459. This article relates to the moments of inertia
and the situation of the principal axes of plane figures; the
results given are useful in connexion with the resistance of beams
to flexure, and are accompanied by various numerical calculations.
Two formulae are given with respect to the moment of inertia of
a triangle which may have been new at the time, but which now
are particular cases of a known general proposition, namely that
the moment of inertia of a triangle of mass M about any axis is
the same as that of three particles of mass {; M at the angular
points, and a particle of mass § M at the centre of gravity. From
this may be easily deduced another formula which Saint-Venant
gives : the moment of inertia of a trapezium of mass M about one
of the non-parallel sides is } M (y*+y”), where y and 3 are
the perpendiculars from the two opposite angles on this side.
Again we have a formula respecting the product of inertia
for a right-angled triangle. Let M be the mass, and a, b the
lengths of the sides. Then if the origin be at the angular
point, and the axes coincide with the sides, the value as found
by an obvious integration is ; Mab. Hence if the origin be
at the centre of gravity and the axes parallel to the sides, the
value is 5 Mab — % Mab, that is — 5% Mab. This will hold also if
the origin is on either of the straight lines through the centre of
gravity parallel to the sides, the axes remaining always parallel to
their original position.

[104.] Sur U'Impulsion transversale et la Résistance vve des
barres élastiques appuyées aux extrémités. Comptes rendus, T. XLV.
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1857, pp. 204—8. This memoir was presented on August 10, 1857.
It was referred to Poncelet, Lamé, Bertrand and Hermite. An
extract by the author is given in the Comptes rendus. Some of
the results of this memoir were communicated to the Socidté
Philomathique, November 5, 1853 and January 21, 1854, and
partially published in I’ Institut, T. 22, 1854, pp. 61—3, under the
title : Solution du probléme du choc transversal et de la résistance
vive des barres élastiques appuyées aux extrémités. This is a special
case of the resilience problem experimentally investigated by
Hodgkinson and theoretically by Cox : see our Arts. 939% 942%
999* and 1434—7*. Saint-Venant, however, does not like Cox
neglect the vibrations of the bar, or assume that its form will be
that of the elastic line for a beam which centrally loaded has
the same central deflection. In the Comptes rendus, Saint-
Venant gives some account of the history of both transverse and
longitudinal impact problems, but Cox’s memoir seems to have
escaped him.

The following result is given in the Comptes rendus, p. 206 :
sin mz/l  sinh mafl

cos m cosh m
2P,
2 &4 2 Y T
sec® m — sech® m +os 0
where the 3 refers to all the real and positive roots m of the equation
m (tan m — tanh m) = 2P/Q,

and the following is the notation used:

91 = length of bar, P its weight, @ that of body striking the bar
horizontally with velocity ¥V at its mid-section, % is the horizontal

displacement at distance z from one end and =,/ PP/(2gEwr®).

y=Vr3 % sin (m’t/‘r),

[105.] Saint-Venant makes the following remark :

Du calcul tant numérique gue graphique d’une suite de ces valeurs
du déplacement ¥, on peut déduire la snite des formes trés-variées prises
par la barre heurtée; ce qui permet de modeler un relief en plitre
donnant la surface que décrirait cette barre supposée emportée trans-
versalement d’un mouvement rapide, perpendiculaire aun sens ot elle
oscille, Cette surface est trés-ondulée & cause des oscillations provenant
des second et troisitme termes surtout de la série 3 (p. 206).

This surface in plaster of Paris was actually prepared under
Saint-Venant’s directions; and T have found a copy of it very
useful for lecture purposes.
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When P/Q does not exceed 3, the deflection obtained is very
approximately that given by Cox in his memoir: see our Art.
1437*. It is not directly upon the deflection, however, but upon
the greatest curvature that the maximum resistance of the bar de-
pends, and this when P/@Q = 2 is about 1'5 as great when obtained
from the true transcendental formula as when obtained from
statical considerations in Cox’s manner. (See also Notice II.
p- 20, under 2°.)

[106.] If the transverse blow be vertical, we must add to the
above value of y the statical deflection and replace V7 sin (m’¢/7)
by the expression V7 sin (m®t/r) — (g7*/m*) cos (m’t/T).

[107.] Saint-Venant compares his results with the numbers
obtained by Hodgkinson : see our Arts. 1409*—10*, He finds
that the values of the stretch-modulus so obtained agree among
themselves, but differ from the statical values obtained from pure
traction-experiments. He attributes this to thermal differences,
such as had been considered by Duhamel and Wertheim: see
our Arts. 889* and 1301*. On p. 207 there is a brief reference to
some results for longitudinal impact.

[108.] The memoir itself appears never to have been published
but its results together with many extensions and developments
are given in the Note finale du § 61 of the annotated Clebsch
Pp- 490—596. Just thirty years after their discovery! We shall
consider them in detail when dealing with that work, as the
problem is an extremely important one in the theory of structures.

See in particular Notice I. pp. 36—41 and Notuce I1. pp. 19—20.

[109.] Etablissement élémentaire des Formules de la torsion des
prismes élastiques. Comptes rendus, T. XLVI. pp. 34—8, 1858.
The formulae in question are those of our Art. 17 but they are
obtained only for the torsion of isotropic bodies. Saint-Venant’s
object is to deduce the results of the memoir on Torsion in an
elementary fashion for the use of technical schools and practical
men. The method does not seem to me entirely clear and
satisfactory, and it is not at once obvious why the reasoning only
applies to an <sofropic body. Special proofs of various portions
of the theory of clasticity may be now and then of service, but it
cannot be denied that they, by tending to obscure the broad lines
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and general principles of the subject, may do more harm than
good to the student.

The fairly elementary treatment of the Legons de Navier seems
to me more advantageous (pp. 245—250). The treatment of the
present paper is also reproduced in § 7 (pp. 250—2) of the same
work.

[110.] L’Institut, Vol. 26, 1858, pp. 178—9. Further results
on Torsion communicated to the Société Philomathique (April 24
and May 15, 1858) and afterwards incorporated in the Legons de
Navier (pp. 305—6, 273—4). They relate to cross-sections in the
form of doubly symmetrical quartic curves and to torsion about
an external axis: see our Arts. 49 (c), 182 (), 181 (d), and 182 (a).

[111] Vol. 27, 1860, of same Journal, pp. 21—2. Saint-
Venant presents to the Société Philomathique the model de la
surface décrite par une corde vibrante transportée d'un mouvement
rapide perpendiculaire d son plan de vibration. Copies of this as
well as some other of Saint-Venant’s models may still be obtained
of M. Delagrave in Paris and are of considerable value for class-
lectures on the vibration of elastic bodies.

[112.] Vol. 28,1861, of same Journal, pp. 294—5. This gives
an account of a paper of Saint-Venant’s read before the Société
Philomathique (July 28, 1860). In this he deduces the conditions
of compatibility, or the six differential relations of the types :

d’s, _d (do,,  doy doy

dydz  dx _d‘;/—-'- o dw)

Toy _dty, T4

dyde: d° * dy’
which must be satisfied by the strain-components. These con-
ditions enable us in many cases to dispense with the consideration
of the shifts. A proof of these conditions by Boussinesq will be
found in the Journal de Liouville, Vol. 16, 1871, pp. 132—4. At
the same meeting Saint-Venant extended his results on torsion to:
(1) prisms on any base with at each point only one plane of
symmetry perpendicular to the sides, (2) prisms on an elliptic base
with or without any plane of symmetry whatever; see our Art.
190 (d).
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[113.] Sur le Nombre des Coefficients inégaux des formules
donnant les composantes des pressions dans Uintérieur des solides
édlastiques. Comptes rendus, T. i1 1861, pp. 1107—1112. This
paper gives very meagrely the outlines of Appendix V. to the
Lecons de Navier: see our Arts. 192 to 195. Cf. also Moigno’s
Statique, Art. 270 and Stokes’ Report on Double- Refraction, p. 260.

[114.] Sur les divers genres d’homogénéité des corps solides et
principalement sur Uhomogénéité semi-polaire ou cylindrique, et sur
les homogénéités polaire ou sphériconique et sphérique. This paper
was read to the Academy on May 21, 1860 and published in
Liouville’s Journal de Mathématiques, 1865, pp. 297—349. An
abstract appeared in the Comptes rendus, T. L. 1860, pp. 930—4.
See also Notice I1. p. 23 and Moigno’s Statique, p. 668.

This memoir is important as the first attempt to explain various
results of experiment inconsistent with uni-constant isotropy by
an extended conception of homogeneity applied to aeolotropic
bodies. Cauchy had defined homogeneity as consisting in the
elasticity of a body being the same for the same directions at
all points. Saint-Venant alters the latter words and thus defines
homogeneity : ‘

Un corps est homogeéne lorsque Pun quelconque de ses éléments imper-
ceptibles est identique & tout élément du méme corps pris aillewrs ayant
méme volume et méme jforme, mais orienté d'wne certaine maniére qus
peut changer d'un endroit @ lautre. 11 Pest méme encore lorsque cette
identité de deux éléments, pris n’importe ol et convenablement orientés,
souffre exception pour certains points isolés ou ombilicaux (tels que sont
ceux de l'intersection commune des plans des cercles de longitude de la
sphére dont on vient de parler...).

Le mode d’orientation des éléments, ou la direction relative de leurs
lignes homologues, détermine le genre de ’homogénéité, genre dont
chacun admet, comme nous verrons au no. 3, des sous-genres ou les
orientations possibles en chaque point sont multiples. (p. 299.)

Let us take any two lines of the elastic system at right angles
and arrange all lines homologous to the first along the normals to
a given surface, the second system of lines may then be arranged
according to any law we please, e.g. as tangents to any system of
curves we please to draw on the surface. If the given surface be of
the nth order, we have an n-ic distribution of elastic homogeneity ;
the curves on the surface to which the second system of homo-
logous lines are tangents determine the sous-genre or sub-class.
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[115.] The following paragraphs describe the quadric distri-
butions of elasticity with which Saint-Venant proposes to deal.

After describing the amorphic body or body of confused-
crystallisation, such as a rolled metal plate, the elasticity of which
varies in length, breadth and depth,—Saint-Venant continues :

Qu’on enroule en tuyau cylindrique cette plaque homogeéne rectangu-
laire non isotrope supposée mince, en dirigeant, par exemple, les
génératrices dans le sens de sa longueur. ZXlle ne cessera pas d'étre
homogéne ; mais P'égalité d’élasticité aux divers points n’aura pas lieu
pour les directions paralleles entre elles. Il y aura égale élasticité
suivant les rayons qui vont tous couper perpendiculairement l'axe du
cylindre : ce sera 'élasticité dans le sens de 'épaisseur. Il y aura égale
élasticité suivant les diverses tangentes aux cercles ayant leur centre sur
cet axe, Il n’y aura que les élasticités égales suivant la longueur qui
auront conservé des directions paralléles entre elles. (p. 298.)

We shall term this a cylindrical distribution of elastic homo-
geneity.

The following describes a spherical distribution :

Qu’on imagine maintenant une sphére solide pleine ou creuse, ou un
corps de forme quelconque divisible en couches sphériques concentriques.
Si la résistance ou la réaction élastique, pour mémes' déplacements de ses
points, est partout égale dans le sens des rayons, et partout égale aussi
dans certains sens perpendiculaires entre eux et aux rayons, ceux par
exemple ol se comptent les latitudes et les longitudes pour un équateur
donné, la matidre est homogene, mais polairement, on d’'une maniére que
nous pouvons appeler sphériconique vu le réle qu’y jouent les cdnes de
latitude ayant un axe déterminé, le méme pour tous. (p. 298.)

Such distributions of elasticity are, Saint-Venant asserts,—and
I hold him to be entirely right—the true explanation of the
anomalies which occur in experiments on a variety of cast, rolled
and forged bodies. Even granted that isotropy is bi-constant, it is
certainly not scientific to seek by means of two constants to
account for the divergency between uni-constant formulae and
experimental results on wires, plates, or cylindrical and spherical
bodies. Physically it is obvious that the working of such bodies
really produces in them varied distributions of elastic homogeneity,
which bi-constant formulae only serve to mask. The isotropic
boilers’ treated of by Lamé (see our Art. 1038%*) or his ‘isotropic
piezometers’ (see our Art. 1358%*) have practically no existence
(see our Arts. 332* and 1357%), and all elasticians can adopt Saint-
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Venant’s formulae with entire approval although they may not
accept his view of the equations of uni-constant isotropy :

Formules qui sont les conséquences obligées et rigoureuses de la loi
des actions moléculaires que tout le monde tnvoque ouvertement ou tacite-

ment, et méme sans laquelle tout établissement de formules mathéma-
tiques d’élasticité est illusoire. (p. 300.)

[116.] Saint-Venant on pp. 301—3 makes some remarks on
the elastic coefficients, and on the subject of multi-constancy; for
the purpose of the memoir, however, he adopts the 21 constants
of Green'.

If the stress be given by formulae of the type

Pag = |x2zz| 8, + 2237 8, + lzxzzl s, + (xxyz) Oy, + |xxzz) 0 4, + lxzeyl Ty
Dy, = lyzxx| 8, + lyzyy! 8y + lyzzzl 8, +yzvzl 0y + lyzzx| G, + Y22yl Oy

then the coefficients can only be treated as constants when we
suppose the axes-system to vary in direction from point to point
of the material. This granted, the above expressions for the
stresses will be given in terms of constant coefficients.

[117.] Insection 3 (pp. 303—6) after some general remarks as
to homogeneity and its various sub-classes, Saint-Venant supposes
the distribution of elasticity to be symmetrical with regard to

! He refers to Rankine’s terminology, which we may here throw into a form
brief enough for convenience : .

|xzzz| = direct streteh coefficient=the coefficient of direct elasticity of Rankine.
|zzyy| = cross stretch coefficient = the coefficient of lateral elasticity of Rankine.
|«yxy| = direct slide coefficient=the coefficient of tangential elasticity of Rankine.

|leyyz| =cross slide coefficient

|wxxzl =direct slide-stretch coefficient )

|zxyz| =cross slide-stretch coefficient = coefficients of asymmetrical elasticity
|xyxx| = direct stretch-slide coefficient of Rankine.

|wyzz| = eross stretch-slide coefficient

All elasticians agree that the slide-stretch coefficients whether direct or cross
are equal to the corresponding stretch-slide coefficients; further that the cross
stretch and cross slide coefficients are equal for the pair of faces involved in the
cross. This amounts to saying that we may interchange the first and second pairs
of subscripts. We have thus the fifteen relations of Green. For a body with three
planes of elastic symmetry all the asymmetrical coefficients vanish. The rari-
constant elasticians assert that the eross stretch coefficients are equal to the direct
slide coefficients, when the eross is made for the two directions involved in the slide
(i-e. |rayyl = |ayayl), and further that the cross slide-stretch coefficients are equal
to the cross slide coefficients when the direction of the streteh is involved in both
the slides which are crossed (i.e. |zayz| = |ayxz]). This gives the six additional
relations of Poisson, or we may interchange between the first and second pair of
subscripts.
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three planes, or all the asymmetrical coefficients to vanish. In
this case the types of traction and shear are:

(a) Z==as,+fs,+¢%s, V= doy,,
=S8 +bs,+d's, T = €0 o
— 7 4 —
m=e8,+ds+cs, 7 =fory.

(See our Art. 78.)

b) If the normal to the distribution-surface be the axis of x and
the elasticity be isotropic in the tangent plane, we have also:

b=c, e=f, =f"and b=2d + d.

(¢) If the material be amorphic, there is an ellipsoidal distribution
of direct-stretch coefficients (see our Arts. 139 and 142), and we have

9d +d = Jbe, 2+ ¢ = Jea, o +f = Jab.
(d) In the case of rari-constant elasticity, the dashed and undashed
letters are equal. Thus for the amorphic body we have:]
o

d

=33 s, +fs,+es, 7z =doy,,

5= d L
w=fs+ 3‘1;— 8y + ds, 22 = 0,

de
7 Sy ;-’7=f0':z:y'

(See, however, our Art. 313.)

z=es,+ds, +3

[118.] Before we can apply these formulae to any given
distribution of elasticity determined by curvilinear coordinates,
it is necessary to find :

(1) Expressions for the above strain-components (s., s,, S,
s Oy Ooy) corresponding to the elements of the three rectangular
surface normals or intersection-traces in terms of the curvilinear
coordinates.

(2) To express the body-stress equations in terms of curvi-
linear coordinates. Saint-Venant indicates in § 4 (pp. 306—12)
two methods of attacking this problem, and compares them with
Lamés method (in the Legons, 1852, § 77) which he terms “un
procédé en quelque sorte mixzte” The analysis of the problem
does not probably admit of much simplification, and for practical
purposes the general results of Lamé’s treatise on Curvilinear
Coordinates may well be assumed : see our Arts. 1150*—3%,

In§5 (pp. 312—18) and in § 9 (pp. 333—9) Saint-Venant obtains
expressions for the strains and the body-stress equations in terms

P —
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of eylindrical and spherical coordinates respectively. These agree
with those of Lamé': see our Arts. 1087* and 1093*. The re-
lations between stress and strain are then given by the formulae

of the preceding article.

[119.] The novelty of the present memoir consists in the
solution of the elastic equations for cylindrical and spherical shells
subjected internally and externally to uniform tractive loads, when
the material of these shells is amorphic and has cylindrical or
spherical distribution of elasticity. By means of the solutions
given, we see that the difficulties encountered by Regnault and
others can be more naturally met by presupposing aeolotropy,
than by assuming bi-constant isotropy.

[120.] Saint-Venant takes first (§ 7) the case of a long cylindrical shell
subjected to internal tractive load — p, and external —p,. As in Lamé’s
problem, we may suppose it closed by flat ends in such a manner that
the transverse sections are not distorted. Supposmo' dw|dz =+, we easily
deduce (see footnote) the equation % + 4 ;M
stress-values from formulae (@) of Art. 117 expressed in terms of the
strains given in the footnote we have, if a, = du/dr

@ (U + u, 1) = bufr® + (¢ = d') [ (yr) = 0.

1 As in this volume we shall have frequent occasion to refer to these formulae
I tabulate them here for reference—the notation will readily explain itself :

0, or substituting the

Cylinder Sphere (¢=co-latitude)
@ d;'-? drd  drz - ¢¢ dw  d(récosg) drj 27 56 -0
g > aa P =
Slar TragT @t +pR=0 T reosgdd  reospdy - r Al
<
3] ¢’>7- déd | dbx | 2% dér | d(dcosg) dey | 2pr+ydtang
T - 2rg agr =
& f dr " rdg N +pq> 4 dr ' reosgdg = rcosgdy r gzl
8 | dzr dz¢ dzz 2- dir | d(¥$cose) Ay 30r — Gdtane i |
glar tragt @t e dr * rcosgdd = rcosedy ] e
8y wr Sr Up
3¢ ve[r+ulr S velr+ufr
8z Wy sy wy[(r cos ¢) +ufr—-vfr.tan ¢
hz vz + wefr ooy vy/(r cos ¢) + we/r+w/r .tan ¢
oo wr+uy oyr wp + uyf(r cos ¢) —w/r
o IV ors —
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Hence we tind for the shifts

B L TN
u=C0r"*+C'r “+(T—Fyr, v=0, w=yz
The stresses and strains can be at once deduced ; they will contain

constant terms in y and powers of # of order = g —1. The constants
C, ¢’ and y are to be determined from the surface conditions and the

5
relation pyrry’ — pyar’ = 2w f " Zrdr for total terminal tractive stress.
ro
[121.] Saint-Venant considers various special cases:
(1) »,—r,is a small thickness ¢. (pp. 324—5.)
(2) a=b. Here the solution changes its form, we have (p. 326):

u=Cr+ C)[r+ d2;e vr logr.

If o' =¢ the solution becomes that found by Lamé and Clapeyron,
and applied by Lamé to Regnault’s piezometers: see our Arts. 1012*
and 1358%,

(3) When there is an ellipsoidal distribution of elasticity and rari-
constancy is assumed, i.e. when a = 3¢f/d, b=3fd/e, c=3de[f. In this
case wu=Cr? + C'r=4 — dyr [{3f (d]e + 1)}.

The values of the stresses are then easily determined, as well as
those of €, €’ and y (p. 329).

The results contain three independent elastic constants, and
they differ in the form of the r-index from those found for the
case of isotropy. Hence we can explain by means of them as well
as or better than by biconstant formulae the divergencies remarked
by Regnault in his piezometer experiments.

[122.] A result is given on p. 331, which is worth citing. The
coustants d, e, f of the ellipsoidal distribution are not easy to determine
by direct experiment. Let Z,., Ey4, E, however be the three stretch
moduli in directions #, ¢, z, then we easily find that:

d=32JEE,, ¢=%JEE, f=3%JE.L,.
From equations 50 (p. 332) Saint-Venant might have deduced the

criterion for failure arising first by lateral or first by longitudinal stretch.
These equations are :

s—i&/E‘ﬁ—“/@p"—plr' =18\/E_~/E¢P0_P) '

ol AR R AR T
z ") ¢ “y

il rdetm

€ 7 3
580 that =251, —n =e
- -

€
where 7, =17 o | and r =7+




123—124] SAINT-VENANT. 81

So long as £,>"4195 £y, s4 is > s, and failure will occur by lateral
stretch. If the absolute strengths R, and £y were, as some writers have
supposed, proportional to the moduli, and rupture took place in the
same manner as failure of linear elasticity, we should say the cylinder
would burst across a cross-section or open up longitudinally according
as the longitudinal absolute strength £, was < or > than 4195 times
the transverse absolute strength 224,

A footnote on pp. 331—3 criticises with hardly sufficient severity a
memoir of Virgile to which we shall refer later.

[123.] Saint-Venant (pp. 339—47) obtains similar results for the
case of a spherical shell. He seeks first to find a solution of the equa-
tions (footnote p. 79 and stress-strain relations (a) of Art. 117) by
taking v=0, w=0 and w3 =0. This gives three equations to be satisfied
which are inconsistent unless a certain relation is satisfied by the con-
stants. Now v=w=0 must for the case of uniform internal and ex-
ternal tractive loads be a necessary condition for change in size without
distortion. Hence the equation (74) arrived at by Saint-Venant must
be the condition for such a strain ; it is:

. b—c\* b-c b+c+2d-é¢-f
SR T s
In this case the solution is simply
b-¢
(i) u=Crs7,
The condition (i) is however not sufficient; we find also from the
surface equations that we must have

L=
po/pl ¥ (7'0/7'1) i (p- 342).
It will be seen that without elastic isotropy in the tangent plane, it
is only very special surface loads which will not produce distortion.

(p. 340).

[124.}] In§ 11 (pp. 342—8) the problem of isotropy for all direc-
tions in the tangent plane is dealt with. In this case ¢ =/, b=g¢, and
stresses and constants are easily obtained by aid of the solution :

v=w=0, u=Cr"%+ ('r-"3,
Where n:%/\/1+86+dT—e’

the body-shift equations being now reduced to the single one:
Ay, + 2an,r — 2 (b + d — ¢') wfr=0.

By evaluating the constants Saint-Venant obtains the following
expression for u:

1 poro"*'g- _pl'rln"-& -1 po’l'og-"' —P1’l'1§‘"‘ oM u—n—1
Tlm—rom{(n—%)a+20' p ot (n+%)a—2e’ ("'07'1) 7 ”}:

which gives the lateral stretches sy = sy = u/r at once.
8.-V, 6

w =
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The important point in the piezometer problem is the dilatation of

the spherical cavity. This is equal to 3:“’

(1]
_ Srd {]’o”'o“g —purtd + pord =" — prd" i m}
T —r® (n-1)a+2¢ (n+da-2¢ ' J°
We see that it involves #hree elastic coefficients, and is thus, even as
an empirical formula, better adapted to satisfy numerically Regnault’s
experiments than Lamé&s bi-constant isotropic formula obtained by
putting d'=¢, b=a and n=3/2.' On the other hand it is physically
more plausible. The constants reduce to fwo, if we suppose the body
amorphic and of rari-constant clasticity ellipsoidally distributed. If
we take 7, =1 —¢/2, 7, =7 +¢/2, we easily find for the mid-sphere of
radius 7'

sl a (P -D)7
PENT B+ d) -2 2%

or in the case just mentioned

3 (p—p)7
= 1y=g0g PP
But E‘#:%Jij 5= 5—;-l by Art. 117 (6) if there he tangential isotropy.
Hence finally :
PR B v R ) i
i B

[125.] The final section of the memoir is entitled: Vase cylindri-
que terminé par deux calottes sphériques (pp. 347—9). This treats a
problem similar to that dealt with by Lamé in his Note of 1850: see
our Art. 1038*. The mean lateral expansion of the spherical ends is
made to take the same value as that of the eylindrical body by equating
the expressions for sy obtained in our Arts. 122 and 124. Saint-Venant
thus reaches a more general rule than that given by Lamé as a result
of bi-constant isotropy. We have :

L 8B J By _ g 1 )
% E¢m € SEy ¢

where the subscript | refers to the spherical portions of the surface.

Hence
(3 7 8/ E¢ -1 / E2E¢
L ek LA R
. 3/ Edn
In the case of the two portions being of the same isotropic material,
we have By =L,=E,, or

Im
| s

7

Wi~

)
o3

1

1 In Lamé’s notation a=X\+2u and ¢’=X\: see our Art. 1093%,
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This agrees with Lamé’s result : see our Vol. 1. p. 564. If the thick-
nesses are equal, the radii ought to be as 3:7:

ce qui est la régle indiquée par M. Lamé pour les fonds sphériques
compensateurs, élevant en quelque sorte, dit-il, le systéme des chaudidres
eylindriques au rang des formes naturelles ou des solides d’égale ré-
sistance. (p. 349.)

[126.] Sur la distribution des élasticités autour de chaque
point dun solide ou d'un maliew de contexture quelconque, par-
ticuliérement lorsqu’il est amorphe sans étre isotrope; Comptes
rendus, T. LvI. 1863, pp. 475—479, p. 804. This is an abstract
of the memoir published in Liouville’s Journal in 1863: see the
following article.

[127.] Mémoire sur la distribution des élasticités autour de
chaque point d'un solide ou d'un miliew de contexture quelconque,
particulierement lorsqu'il est amorphe sans éire isotrope. This
memoir was presented to the Academy, March 16, 1863, and some
account of it appeared in the Comptes rendus, see preceding article.
It is printed at length in Liouville’s Journal de mathématiques,
Vol. viir. 1863, pp. 257—95 and 353—430.

[128.] The opening pages of the memoir (257 —9) as well as
the concluding (425—30) entitled respectively: Objet and Résumé
et conclusions pratiques, give an account of the purpose and results
of the memoir. As these will sufficiently appear in our treatment
of the intervening five sections (four, according to Saint-Venant,
but III occurs twice by mistake), we shall not reproduce here any
part of these preliminary and final remarks.

[129.] The second section is entitled: Formules diverses ot
entrent les coeﬁczents dont Uélasticité dépend. Etablissement, de
plusieurs maniéres, d'une partie souvent omaise, ot figurent sur
constantes complémentaires, qui sont les composantes des pressions
pouvant exister antériewrement aux déplacements des points (pp.
‘260—286)

The aim of this section nay be thus expressed Let there be
an initial systemn of stress given by iy, Wy, Tgs Vg, EEO, ., and let
the elastic nature of the body be given by thirty-six constants
lzeza|, |ayay, |zywyl, etc. Green has decisively determined that
these thirty-six can be reduced to twenty-ome by the law of

6—2
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energy : see the footnote to our Art. 117. It is desirable to
obtain a proof of the elastic formulae due to Cauchy without
appealing to the principle of inter-molecular action being central
and a function only of the distance.
Subscript letters attached to the shifts #, », w denoting
fluxions, the formulae are given by the types:
7z = 7z (1 +uy — vy — w,) + 27y, wy + 272, w, + 72,
72= 72y (1 = up) + 99, Wy, + 72, U, + 22, 0, + Ty Wy + v }
where
22y = loazz| 8y + |wxyy| 8, + |wazz| 8, + |vwy2| Oy + |0222] @y + |2z2Y] 0',,,,} (li),
2y = lyzwa| 8, + lvzyyl 8, + |yz22l 8, + |yawel Oy + |v22al Oy + lyzayl Oy
while the type of resulting body-shift equation is:
— X = 8 Uy + Ty Uy + Ty + D72 U+ 272 Uy + 2T Uy
+ |22x2| Wy, + l292Y| Uy, + |02202] Uy
+ 2leay| Uy, + 2\zzer) Uy, + 2lwazy] Uy,
+ laxzy| Uy + |2yyyl Uy, + |2292] Vyy L (iii).
+ {lzypzl + laxyyl } 0y, + {lzaval + l2zmayl} v,y + {lreyyl + \2yay} vy,
+ |rzza| Wy + |xyy2| Wyy + l2azz| Wy,

+ { |2xyz] 4+ |x_1/zzl} Wy, + { |xxzz| 4 lzzz.rl} Wy + {lxxyzl + lxyzzl} Wy

These results representing the most general equations of
elasticity for small strains were originally given by Cauchy, as is
implied in our Arts. 615%, 616*, 662%, 666*. He obtained them by
calculating the stresses as the sums of intermolecular actions on the
rari-constant hypothesis. Saint-Venant in this section proposes to
deduce them from the principle of energy (by Green’s method) in
a manner which will satisfy multi-constant elasticians.

[130.] The proof attempted by Saint-Venant is not legitimate,

because in the expression he takes for the work the linear term
5;08_,,+ 3/?/06‘,,+208,+ -;’-‘;oo'vz"l';;'oo'w"‘aoa'av

occurs where s,, s, $,, 0y, 0., 0, are stretches and slides. As-
suming this term correct, which it is not, these ought to be ex-
pressed to the second power of the shift-fluxions as in our Art.
1622*, for we want the work to the second power. This Saint-
Venant does not do, but treats the strains s and o as if they
were the quantities e,, €, €, 7y, T, 7, Of our Art. 1619%. This
mistake was pointed out by Brill and Boussinesq, and is acknow-
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ledged by Saint-Venant in a memoir of 1871: see our Art.
237. The formulae (i)—(iii) of the preceding article can thus
only be considered as valid, when we accept the rari-constant
hypothesis and deduce them after the manner of Cauchy. We
shall see this point more clearly when dealing with the memoir
of 1871. Green gets over the difficulty by expanding his work-
function in powers of the €’s and #’s; he thus gets a linear term,
whose constants vanish with the initial stresses, but are not
determined as functions of the initial stresses, still less does he
show what functions, if any, the remaining constants are of the
initial stresses.

[181.] In the course of this section Saint-Venant gives a
proof of Cauchy’s formulae (i) to (iii) above on the rari-constant
hypothesis (footnote, pp. 273—5); he refers to the memoir of
C. Neumann (Zur Theorie der Elasticitit, Crelle, Lvii, 1860,
p. 281: see our Chap. XI), where a similar method to his
own is used for the case of isotropy (footnote, pp. 275—80), and
to the memoir of Haughton (see our Art. 1505%) for a treat-
ment which generalised leads to the same formulae on the rari-
constant theory (p. 280 and footnote). Finally we may refer
to his footnote (pp. 284—5) for a process by which the body-shift
equations (iii) are deduced by means of the rari-constant hypo-
thesis, without a previous investigation of the stresses®.

[132.] The third section of the memoir (pp. 286—95) is en-
titled : Formule symbolique générale fournissant, en jfonction des
coefficients d'élasticité pour des axes donnés, ceux qui sont relatifs ¢
d’ autres axes ausst donnés et rectangulaires, et, ausst, les coefficients
qui dotvent entrer dans U'expression dune composante quelconque
de pression méme oblique.

Saint-Venant adopts a symbolic representation of the stresses,
strains and coefficients in order to express the relations among
them. He thus describes this method:

On abrége singulidrement le calcul et 'on arrive & quelque chose de
fort simple au moyen de notations symboliques comme celles que plu-
sieurs auteurs anglais appellent Sylvestrian wmbrae, parce que M.
Sylvester, qui les a employées avec succes, appelle ombres de quantités
(shadows of quantities) ces sortes de notations dont se sont servis
précédemment, au reste, Cauchy et d’autres analystes (p. 290).

1 There is a wrong reference to Rankine’s paper (p. 269, footnote), it should be
Vol. v1. (p. 63), not Vol. v., of the Camb. and Dublin Math. Journal.
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There is a footnote referring to Sylvester’s papers in Camb.
and Dublin Math. Journal, Vol. viL. 1852, p. 76, and Phil. Trans.
1853, p. 543.

[133.] Suppose symbolically vym= tptm = yyyty tO Tepresent |iiml,
where j, k, [, m are any of the letters zyz, «'y'2" etc. Further 7 7 to
represent the stress 77, and e, or €, to represent s, and finally 2¢.€.
to represent o,. Let ¢,. denote the cosine of the angle between the
directions 7, 7.

We are now able to reproduce in symbolic form the following well-
known typical relations :

77 =8 Cpy Cpry + W Cry Cpry + 22 Cpy Cpry
+ 9% (Cry Cpa + Cpg Cry) + 7 (Cpy Cpr + Crip Crg) + 79 (Cpip oy + Cry €} - (iV),
8, = chcgml‘i'syl ng"' Sztcsxz' o Oy Cayf Cory + Oy Corgy Cory + (Txlvlcm,fcwy....(v),
Oy = 28, Cyxt Corr + 28;(/ Cyy Coy + 2s, Cyz Coz 5
+ Cyz (CW Coz + Cyz Czyl) + Oy (Cyz Cogy + Cye sz) + Oy (CW Cay + Cyy szl) .. (Vl)-
See our Arts. 659* and 663*%, ;
(The last two are most readily obtained from the stretch-quadric of
Art. 612* for axes «'y'z’, namely :
8y + 8, Y+ 8,2 v oy YR + oy oy == 1.
Substitute for #’ its equivalent ¢,y + ¢, + 2¢, and similar quantities
for #" and ¢/, then the coefficients of «? and yz will be s, and o, as given
above.)
The symbolical forms are :

TT OF J7 = Ly OF 4y X (1€ + L€y + 4€) o ounennnns (vii),
whence it follows from (iv) that
77 = (g + 4Cry + telrz) (Ll + ULy + i) % (1€ + ty€y + 1.6,) . (Viii).
Further we have from (v):
€06 = (€0 + €C0y + €,01,)°
€€ = (€xCy + €40 + €4Cy) (€xCoy + €4C0y + €4€.0),
whence we can take
€= €00 F €Ci + €Ci it (ix).
Pub j=uw, y, » successively and substitute for e, ¢, ¢, in (viii), we
have '
7 = (tCro + 4Oy + ULrs) (LaCrp + Ly + LLs) X
{(tor + 1Ly + 1o € + (Ll + Uy + LCuy) €
+ (o + Uy + 1.0 €f o n. b Rt SR 6.0 "
But we may obviously also express = in the form
= X 8y Faannn iy
+ 1Y 7) O+ Ferrren
= bty [ty € F iy it € Toales - hetoihis (),
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Comparing (x) and (xi) which must on development give the same
result, we see that it is necessary to take :

G s B U e A e AL SRS SRS PR (xii),
4 ey (= g Gt TR L S5 ) (xdii),

where ¢, is given by (xii), and 2/, y’ are any two of the three new axial
directions, (¥, ¥', ), 7, »’ any two directions we please, and n any arbi-
trary direction.

Thus we have any coefficient of one set of axes expressed in terms
of those obtained for another set. The product t... ¢, ought to be
made in the order indicated, except that the first pair and the last pair
may have their members interchanged in themselves. If r, 7' are both
axial directions (ie. chosen from &/, %/, z’) then the first pair may be
interchanged as a whole with the last pair. If we accept the rari-
constant hypothesis, however, for axial directions all interchanges of the
order of the ¢s will be permissible.

or,

134.] Saint-Venant notes one or two other symbolical results,
Thus, if ¢ be Green’s work-function and we suppose no initial stresses :

= F [(mer T eyt €)™ oeeeennnrinnnnnn (xiv).

Further the types of stress and of the general body-shift equations
(i) to (iii) of our Art. 129 become on the rari-constant hypothesis :

2% @z
{;;} = {»ﬁi} (1 _u’w"‘”ﬂ—wz)
+(,_ d+A 1+A _ql_){%‘ou
Fodw” Yo dy N2 de 70w+?0v}

+ {fm} (e Ei el FRaeDEENR Fial 00, (8 s (xv),

Y2
Rt e SN
_PX=<”°c7x+y"Ey+z°a_l§>u
0 Lw‘{ + ¢ »d.,-“flf L fl_+¢ﬁ+z—c£>(tu+w+zw)(xvi).
o Ao N e ey N\ S da Y e i) BN

[135.] The next section, III bis (pp. 3563—380), contains some
very interesting and important matter. It is entitled: Surfuces
donnant la distribution des élasticités autour d'un méme point.—
Maxima et minima—Distribution ellipsoidale des élasticités di-
rectes.—Solides ou milieux amorphes.—Intégrabilité des équations.

Some of the results had already been given by Rankine in his
memoir: On Axes of Elasticity and Crystalline Forms, Phil.
Trans. 1856, pp. 261—85, but there is much that is new and the
method is very good.
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[136.] The relation (xiii) gives for lrr| the value

vl = [ (Gl LGy ) | - e St REE (xvii),

or the direct stretch coefficient in direction #, (¢, ¢y, €), in terms of
the system of elastic coefficients for the axes z, ¥, 2.
If we put

az:cm./:/lrﬁ‘r:l, :‘/‘—"cru/:/’—r?: Z=crz/:/‘—"_r;l’
and substitute, we obtain the surface
1={(u+ 4y + u2)},
which expanded gives us Rankine’s tasinomic quartic :
1 = |zeazl & + lyyyyl y* + |2222) 2 1
=130 {]yyzzl ) Iyzyzl} Y%=+ 2 {lzz.ml g9 lz.nx[} 220% + 2 {l-m‘yyl
3.2 lxy.zwl} ac“’y2
+ 4 {laayzl + 2 |zawy)} 0Pyz + 4 {lyyzel + 2 layyal} 4o L (xviii).
+ 4 {2yl + 2 |yzaa)} 2Py
+ 4 |lyyyzl y"‘z + 4 222y zsy + 4 |zzzx) 2% + 4 |wawz) %%
+ 4 |zazy| oy + 4 Lyl

This equation with its fifteen homotatic coefficients was first
given by Haughton in his memoir of 1846. These 15 coefficients
are the 15 coeflicients of rari-constancy multiplied by the numbers
1, 6, 12 or 4, so that the expressions for the work, stresses etc.,
can on that hypothesis be given in terms of the coefficients
of this equation.

Its fundamental property is that the direct-stretch coefficient
in any direction varies inversely as the fourth power of the corre-
sponding ray.

[187.] Paragraphs 10 and 11 together with the footnote
pp. 359—62 reproduce results of Rankine and Haughton with
regard to the nature of the elastic coefficients. Thus it is pointed
out :

(i) That there are sixteen directions real or imaginary for which
trrrrl is a maximum or minimum. These directions cut the tasinomic
surface at right-angles, and possess the peculiarity that any stretch in
their direction produces a ¢raction only across a plane normal to their
direction (pp. 356—7).

(ii) That if we take
|aww |+ |¥Xyy |+ w2y = Sz,’

or S, equal to the sum of direct- and cross-stretch coefficients for the
direction «', then

Sz = (bl + 4wy + 1Lw2)" (e + Uy + L)
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Thus S, varies inversely as the square of the ray of the ellipsoidal

surface :
1 = (g + by + 1) (1 + 4y +1.2)7,
which developed gives us :
1=82"+ Sy + 82° + 2R yz + 2R 2 + 2R, 2y,

where L O A T e Lt B A e (xix).

This is the ellipsoid discovered by Haughton in 1846 and termed by
Rankine orthotatic. It shews us that by a suitable change of axes
we can put B,,= R,,= R,,=0, which give three inter-constant relations,
and so reduce the 21 (or 15) elastic constants to 18 (or 12).

(iii) That if an equal stretch s be given in the three orthotatic

directions {i.e. those of the axes of the ellipsoid (xix)} this stretch system
will produce no shear, for if x,, ,, 2; be these orthotatic directions:

y = lmanml 8 + a8 + lnanal s (from Equation (ii) of Art. 129).
=Ry, 8=0.
The orthotatic directions are thus those for which the sum of the
corresponding (direct and cross) slide-stretch coefficients vanish,

(iv) That a body may possess orthotatic isotropy, or R, =0 for all
rectangular systems «/, 3, z. The orthotatic surface now becomes
a sphere or §,=8,=5,. Such a body however does not possess
complete elastic isotropy.

(v) That there exists a surface which measures the difference D
between a cross-stretch and direct-slide coeflicient, i.e.
D =yyzz| - W2y,
This is Rankine’s heterotatic surface, and is given by

D = {lyyee| — lyzyal} €y + {l22ww) — Jzaz|} €%y + {lzwyy] — layayl} ¢y
519 {[w.zyzl - lzx.zy{} CyaCoy + 2 {l?/yz.zl - Ixyyzl} Co Cony (xx).

+ 2 {layz] = lyzzal} oy Cpr
The thorough-going rari-constant elastician will fail to observe the

existence of this surface, at least the Ossa of his multi-constant colleague
will appear to him a wart.

(vi) Finally that there exist nine axes at each point of a body for

which
lynnal = laaawl,
or the two direct-slide-stretch coeflicients are equal. These directions
Rankine terms metatatic. The condition for the metatatic isotropy
of a body, or for metatatism in all pairs of rectangular directions, is
wy27| + 2 ly2ye| = L {wyyyl + 12222} (xxi).
Such a body, however, is not elastically isotropic’.
1 I have here introduced some portion of Rankine’s work as given with great

clearness by Saint-Venant in order that it may be the more easy to refer to these
results in later articles.
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[138.] Saint-Venant in the twelfth paragraph of this section of his
memoir (pp. 360—05) treats the case in which the elastic material has
three rectangular planes of symmetry. This reduces the 21 coeflicients
to nine, for all the stretch-slide coefficients and cross-slide coefficients
(i.e. Rankine’s asymmetrical elasticities) must now vanish,

Let a, b, ¢ be the direct-stretch
d, e, f ,»  direct-slide } coeflicients.
d,e,f ,, crossstretch
Then the tasinomic surface (xviii) becomes :
l=ax'+by' +c2'+ 2 (2d + d) y*2* + 2 (2e + ') 2"+ 2 (2f + f') . .. (xxii).
The maximum-minimum values of [l are now sought and are
found to lie in the three axial directions «, ¥, 2, and in pairs of others
lying in each plane yz, zx, xy, or 9 in all. The first three solutions are
always real ; the second six will be imaginary, since the ratio of their
direction-cosines become imaginary, when

2d+d' band ¢
2¢ +¢ } lie between {c and a,} respectively...... (xxiii).
2f + f" aand b

Saint-Venant remarks that the conditions (xxiii) are those for the
gradual wvariation in one sense of the stretch-coefficients in the three
principal planes of elastic symmetry—a physical characteristic, he holds,
probably possessed by all natural bodies.

[139.] In the following section we have the statement of the
conditions for ellipsoidal elasticity, i.e. that the first three
quantities of (xxiii) be respectively equal: (i) to the arithmetic,
or (ii) to the geometric mean of the corresponding second three
quantities of (xxiii). In either case the direct-stretch coeffi-
cient |rrr| can be represented by the ray of an ellipsoid. In
the first case the direct-stretch coefficient varies as the inverse
square of the ray of the ellipsoid :

1=asz®+ by’ + c2*;
and in the second case as the inverse fourth power of the ray
of the ellipsoid :

1=2*Ja+ 1 Jb+ 2% Je
The practical application of this ellipsoidal distribution has

been discussed by Saint-Venant in the annotated Clebsch: see
our analysis of that work in Arts. 307 to 313

[140.] The next two paragraphs (pp. 367—72) are occupied
with an cextension of Lamé’s solution of the equations of elastic
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equilibrium by means of potential jfunctions: see our Arts.
1061*—3*,

On the rari-constant hypothesis we should have d=d’, ¢=¢ and
JS=/. As a sop to Cerberus Saint-Venant assumes that

A e e = G ol s (xxiv).
We may, however, doubt whether Cerberus would accept this sop ;
for, while supposing the constants unequal, it yet assumes their inequality
isotropic in character. If multi-constancy really does exist, the relations
(xxiv) are still probably very approximately satisfied for many bodies :
see our Arts. 149 and 310.
Writing a/(2 + 1) =a’,
b/(2 + 1) =Db?,
/(2 +7) =¢?,
and supposing ellipsoidal distribution of the second kind, Saint-Venant

finds
J=[fi=ab, d=d[i=bc, e=¢[fi=ca.

This enables him to reduce his body-shift equations to the type
dé

Ay, + bty + Cyy + (1 +7) J;=O’

where PR DU NG b o Dys éa e s woiels (xxv).

A very straightforward analysis then leads him to the result:
é=[[[f(aB:7) {(”;“)f + "bﬁ)g T3t ‘07)2}’* dadpBdy...(xxvi).
He also obtains (p. 371) the shift-type :

u= S o) {22 BT 2V dugay ... i),

where v and w will have other arbitrary functions x,, x,.

These arbitrary functions x;, x,, x; do not seem to me so arbitrary as
the reader might assume from Saint-Venant's words. We have so to
choose x,, X, X, that the value of ¢ obtained from (xxv) by means of
(xxvii) shall be the same as that obtained for ¢ from (xxvi).

It appears to me that , », w ought to be the z-, y-, z-fluxions respec-
tively of a quantity

y=1JJff (B, ) \/(”;“)gﬁu WBY G duddy... (i),

In addition we might add to them certain expressions arising from
the twists and giving a zero value for ¢.

[141.] In the following paragraph Saint-Venant shows that
the ellipsoidal conditions of the type (2d + d’) = J/bc are necessary
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if a solution in terms of direct and tnverse potentials is obtainable
(pp. 372—4).

[142.] Hitherto the set of ellipsoidal conditions of the type
2d +d' = Jbe

has been seen as one only of the number which satisfies the rela-
tions (xxiil). Saint-Venant now attempts to give it a far more
important and special physical meaning. Namely, he proceeds to
show that these relations hold exactly or very closely for bodies
which originally isotropic have afterwards received a permanent
strain unequal in different directions. He describes the bodies in
question in the following terms :

En effet, dans les corps & cristallisation confuse tels que les métaux,
etc., employés dans les constructions, oit les molécules affectent indis-
tinctement toutes les orientations, si les élasticités sont égales dans trois
directions rectangulaires, elles doivent I’étre en tous sens, car on ne voit
aucune raison pour qu'elles soient plus grandes ou moindres dans les
autres directions. Si les élasticités y sont inégales, cela ne peut tenir
qu’a des rapprochements moléculaires plus grands dans certains sens que
dans d’autres, par suite du forgeage, de I'étirage, du laminage, etc., ou
des circonstances de la solidification. Calculons les grandeurs nouvelles
que doivent prendre les coefficients d'élasticité dans un corps primitive-
ment isotrope ainsi modifié (p. 374).

Bodies with ‘confused crystallisation’ Saint-Venant terms amor-
phic solids, and he now proceeds to show that within certain limits
of aeolotropy, they possess an ellipsoidal distribution of elasticity.
He assumes that the bodies have rari-constant elasticity.

[143.] Let s, s, s” be the principal stretches of the permanent set
given to the body, let p,, 7, , ¥, #, be the density, distance between
two elements, and its projections on the directions of the principal
stretches before the isotropy is altered. Then if p, 7, @, ¥, z be the value
of these quantities after acolotropy is produced, we have

w=ux,(1+8), y=y,(1+¢), z2=2,(1+¢"
p=pJil+s.1+5.1+4%}

Let f(r) be the law of intermolecular action, and F(r) = dr{ (r)} 7

then we have, m being the mass of a molecule :

{Iif/;:; ll} =5 mF(r) { } ................ (xxx).
|zyay| 'y’
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These results flow at once from the definition of stress on the rari-
constant hypothesis and had been given by Cauchy in 1829 (see for
example the annotated Legons de Nawier, p. 570, footnote and our Art.
615%).

Further if 7 — 7, be small, we have :

F(r)= P(r)+(r r) F'(r,),

2
'r—ro—— ‘% +—s
TO 7'“ TO

In the case of primitive isotropy we have

%EmF(r)x —-EmF(r)yo ¢, say,

Rl Sy s iy
% Sm ( ) {,'y,% or x 'z 7 or y 'zf or y '« *} are all equal
=¢,,, say. J
We will also put s
p_2° E e F(ro) wog yo’ =
F’
%sz fr)xogyog z02= cZ
Now substitute from (xxix) in (xxx) and using these values, we find
1 3
lrezad = (_1+(—s;-(_i92ﬁ) e, +c,8+¢,,8 +c¢, 8", ]
(1+8)* ! = ..
lyoyy| = T +9)(1+5) c,+c,  s+¢,8+c¢, 8" ... (xxxii).
(1 3 s)(l +s ) / /
| zyzy| = AR Rl Chpgt CoS+C, ,8+C,,,.8.

Now there are certain relations holding between the constants ¢,
which are easily found thus: Change the axis of x by linear transfor-
mation :

®, = ax, + By, + vz, where o’ + 82 +y* =1,
then from the initial isotropy we have
2 mX (7‘0) .'1304 o 2 mx (To) wom’
and Smyx(r)z’=3Smy(r,)x,"

where x (r,) is any function of 7, and a, B, ¥ may be any direction-cosines
we please ; it follows that :

(& 48+ I mx (e = Imx () Bt )} (i
(@ + B+ oV Imx (r) 2’ =Zmx (r,) (a2, + Byo+v2,)" ] :
These must be identities as they are true for all values of a, B3, y



94 SAINT-VENANT. [144

Hence we may equate like powers of o, 8, y on both sides. 1In the first
relation by equating the coefficients of B8* and again of a’8® we deduce
the first of relations (xxxi) and also

Smy(r)x=3Zmyx(r,)z, 'y,
or 04 = DICT SRR S o e e SR (xxxiv).

In the second relation by equating the coefficients of a'f*, a'y?,
B'y* and B'a® we obtain the third of relations (xxxi), as well as the
new one

By equating the coefficients of 3° we reach the second of relations
(xxxi) ; and by equating those of a’8%* the new one:

MR ot S il S S A O R L 2 (xxxvi).

From these relations’ among the ¢’s we have by multiplying out the
first two expressions of (xxxii) and neglecting the products of s, ', s”,

2 /\2
bﬁ—)I(sl"_;;’l € o+ Cyy Copp (68+ 068 + 2s")}

= 9 |wyayl”.

|axxz) X lwyyy) = 9 {

This is the required type of relation on the hypotheses of rari-
constancy and small permanent strain.

[144] With regard to the latter assumption Saint-Venant
remarks that the terms neglected can only produce very small
erTors : ik

...s1 Pon considére que les écrouissages et la trempe, qui changent
tros-sensiblement la ténacité et les coefficients d’élasticité, altérent a
peine la densité des corps. On peut d’ailleurs s’assurer, par un calcul,
que les portions ainsi négligées de I'expression de 3|zyzyl sont constam-
ment comprises entre les portions correspondantes de celles de lrzzz| et
lzvvyl, en sorte qu'en supposant méme qu'elles altérent légérement les
valeurs absolues de ces trois coefficients, elles n’altéreront pas sensible-
ment pour cela la relation de moyenne proportionnalité de 3 (zvzyl entre
|exzx| et |ywyyl, donnée par les termes du premier ordre en s, s, s”

(p- 379).

The calculation mentioned is made by Saint-Venant in a foot-
note pp. 379—S81.

The other assumption that rari-constancy holds for isotropy
seems very approximately, if indeed not absolutely, true in the

1 Saint-Venant obtains these relations among the ¢’s by appealing to a general
principle given by Cauchy in his Nouveaux Exercices, Prague, 1835, p. 35. It
amounts to replacing 4 or 6 in (xxxiii) by the general index 2n and then equating
general terms,

B R IIR==
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case of metals, We may then, I think, very legitimately adopt the
ellipsoidal distribution indicated by the relations

2d +d' = Jbe, 2+ ¢ =Jea, 2f+f' =.[ab ...(xxxvii)

together with rari-constancy d/d’ =e/e’ = f/f' =1 for most cases of
worked metal such as is used in constructions.

[145.] The fourth section of the memoir (pp. 381—414) is
entitled: Conséquence, en ce qui regarde la théorie du mouvement de
la lumiére dans les milieux nmon tsotropes, en tenant compte des
pressions antérieures aux vibrations excitées.

This section more properly belongs to the history of physical
optics, and I shall content myself here with referring to its chief
points without reprodueing the analysis.

[146.] In the first place Saint-Venant refers to Green’s memoir
of 1839 (see our Arts. 917—18%), and states the conditions Green
thinks needful in the optical medium which doubly refracts. These
conditions in our notation are:

lwzax| = lyyyy| = |2z2z] = 2 lvzvzl + |yyzzl = 2 |eaze| + |2202)
= 2 |ayxy| + (wayy|

(xxxviii).

lwyel = lezzy| = |22ax| = |2xaz] = |exxy] = |yyya) = 0

|wxyz] + 2 lexxy) = \yyaz) + 2 \wyyz] = |ezay| + 2 yezxl =0

They are obtained on the hypotheses of multi-constancy, of what
Green terms extraneous pressures,—but Saint-Venant better initial
stresses (pressions antérieures),—and finally of transverse vibrations
being always accurately in the front of the wave. These conditions
are practically identical with those obtained by Lamé: see our
Art. 1106%*.

~ [147.] Saint-Venant asserts that these conditions involve the
isotropy of the medium in question, and therefore destroy the
possibility of double refraction. If we suppose rari-constancy they
are of course the conditions for isotropy,—does this however remain
true in the case of multi-constancy ?

Glazebrook in his Report on Optical Theories (British Associa-
tion Report, 1885), p. 171, holds that Saint-Venant’s criticism fails
to reach Green. Let us endeavour briefly to indicate the lines of
Saint-Venant’s attack.
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On pp. 384—393 he shews that Green’s conditions flow from
the hypotheses with which he has started. He then proves:

(i) From the tasinomic relation that the stretch-coefficient is
the same for every direction or

|ww x| = \raxwl.

Thus an equal stretch always produces the same element in the
traction whatever its direction.

(ii) That the second set of Green’s conditions are fulfilled for all
axes, i.e.
Wyyz| = lz2zzvi =0, ete.

(iii) That the conditions whose type is
12227) = 2 2y 7| + lyy 27|
are true for any change of rectangular axes.

(iv) That the third set of conditions of the type
lway?| + 2 |Zray| = 0
are also true for any change of rectangular axes.

(v) That the reciprocal theorems are true, i.e. if any one of the
relations in (i) to (iv) hold for all rectangular axes, then Green’s
fourteen conditions follow.

It will thus be noted that Green’s conditions are not based upon any
conception of direction in the body, if fulfilled for one set of rectangular
axes they are fulfilled for all. So far as these conditions are concerned
the body possesses isotropy of direction, i.e. there is nothing of the
nature of crystalline axes, or the peculiarity of the medium has no
relation to direction in space. This seems to me the element of isotropy
in Green’s conditions which Glazebrook misses, and which Saint-Venant
overstates when he identifies it with absolute elastic isotropy. Glaze-
brook well points out that if we give a stretch s, only we have the
following system of stresses’:

—_ —~
xx = |xxxx| 8y, yz = lyzax| 8y,
7y = laxyy] Sy; =0,
7z = |lvwzz| 8y, 7z =0.

Here we are at liberty to take the stretch in the direction of the axis

! By choosing as our axes the orthotatic azes we can reduce the stress-strain
relations as given by Green to the following types :
TZ=ab - 2f8y — 2es,,
yz=doy,,
where a=|zzzx|=same for all directions

d =
u (i _ values for orthotatic axes of
€=lzrzzl 0 = girect-slide coefficients,

S=layzy|
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of «, because of the directional isotropy of Green’s conditions. Tt
follows that such a stretch produces no shear on a face perpendicular to
its direction. Glazebrook notes that it does produce a shear 7z, and
that this shear together with the tractions 7y, zz may be functions of
the direction, since Green’s conditions do not involve

|zzyyl, |vxzzl, and |yzzz)
being the same for all systems of rectangular axes.

But is this the system of stresses we should expect to find in
the ether in a crystallised medium ? It seems to me physically
very improbable, but it is best to let Saint-Venant speak himself,
only remarking that the reader will do well to understand by Saint-
Venant’s use of the word isotropy, the independence of Green’s
conditions of all sense of direction, as explained above :

I1 en résulte que 'exacte transversalité des mouvements moléculaires,
ou leur parallélisme & des ondes de toutes les directions dans un milieu
transparent, exige une foule de conditions qu'on ne voit remplies que
dans les corps isotropes. On remarque, surtout, que non-seulement une
dilatation s, ne produit qu’une pression exactement normale 7z, ou aucune
composante tangentielle de pression sur une face qui est perpendiculaire
4 sa direction (wyz@|= \wzaw)=0) et, aussi, qu'un glissement sur une
Jace w’y engendre jamais que des composantes tangentielles (lxxxy| = 0),
mais encore qu'en fout sens, ou quelle que soit la direction «’ dans ce
milieu, une égale dilatation s, y produit une pression d’égale intensité
72 (wawr| constant).

Or une pareille égalité est contraire 3 toutes les idées qu’on peut se
former, d’aprés les faits, des corps doués de la double réfraction. Ils
sont cristallisés sous des formes polyédriques non régulieres et variées ;
ils offrent des clivages suivant certaines directions; ils sont, en un mot,
d’une contexture essentiellement inégale dans les divers sens, et qui doit,
tout porte a le faire présumer, rendre inégaux les rapports ¥@/s, = |vza'x|
des pressions dans 1’éther dont ils sont imprégnés, aux petites dilatations
qui les engendrent, et rendre les pressions obliques aux dilatations,
excepté pour certains sens principaux. Cette présomption est changée
en certitude, si I'on considére la biréfringence artificiellement produite
par une compression donnée dans un seul sens, ou inégalement dans
plusieurs, & un corps amorphe primitivement isotrope et uni-réfringent, tel
que le verre. On a en effet calculé, au no. xxxii (equation of our Art.
143), Pinégalité des coefficients |zzzzl, lyuyy) due & 'inégalité des rapproche-
ments moléculaires dans les sens et y. Ce calcul était fondé, il est vrai,
sur les expressions (equation xxx) assignées aux deux coefficients par
Panalyse des actions s’exercant entre les points matériels suivant leurs
lignes de jonction deux & deux, et proportionnellement & une fonction
de leur distance. Mais quelque motif quon puisse salléguer de
révoquer en doute cette grande loi qui ne préjuge pourtant rien quant
a la forme de la fonction, et quelque chose qu’on puisse concevoir i sa

S.-V. 71
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place, il est impossible de ne point convenir que I'inégal rapprochement
moléculaire en divers sens doit influer sur la grandeur des élasticités
directes \axzx| = 7#[s, comme elle influe bien certainement sur celle
des antres élasticités, dites latérales, \exyy) =7i[s,, ou tangentielles,
leyayl = 2y /0, etc., puisque sans les inégalités au moins de celles-ci en
divers sens, les formules ne donneraient pas de double réfraction. Un
milieu ne peut étre élastique et vibrant si ses parties n’agissent pas les
unes sur les autres, et quelque soit le mode de leur action, il n’est pas
possible d’imaginer qu’elles engendrent des élasticités directes parfaite-
ment égales, lorsqu’il y a une inégalité de contexture qui rend inégales
les élasticités latérales ou tangentielles. (pp. 396—8.)

This argument seems to me of great weight (see, however, a
point raised in our Art. 193 (1)), and would incline me to reject
Green’s conditions (especially when we remember that Green him-
self supposed the ether-density to vary in refracting media), even
were there no other grounds for questioning his hypotheses.

[148.] Saint-Venant now proceeds to deduce the exact wave-
surface of Fresnel on the supposition that the vibrations are not
accurately in the wave-front. He does this on the lines of
Cauchys memoir of 1830, but he does not assume rari-constancy
and in many respects his method is an improvement on Cauchy’s.
This leads him to the following inter-constant conditions; the
structure of the ether being supposed to have three planes of
symmetry and thus its elasticity to be represented by the nine
constants of our Art. 117 (a):

(b—d)(c—d)=(d+d’)’, (c—e)(a—e)=(e+€)
=) Py ;
@GP D) 0-do—g |
=2(d+d)(e+€)(f+S)

If the relations (xxxix) are satisfied we shall have Fresnel’s
wave-surface. If we make a =b=c we shall reduce these con-
ditions to Green’s, which are thus only a particular case of those
of Cauchy and Saint-Venant. (pp. 398—406.)

[149.] On pp. 406—411 Saint-Venant demonstrates that the
relations (xxxix) give practically the same results as the ellipsoidal
distribution of (xxxvii). He supposes d/d’ =7 and then solves the
first equation of both sets (xxxix) and (xxxvii) for d; let the values
so obtained be respectively d, and d,. Then by a numerical
calculation we reach the following results:
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If b/c varies from 11 to 1'5, then for values of 1 between }
and 2 the ratio of d /d, always lies between 98641 and -99962.
In other words whatever the multi-constant ¢ is between these
limits, the relations (xxxix) and (xxxvii) give practically the same
value of d.

Thus the Cauchy-Saint-Venant conditions correspond closely to
the ellipsoidal distribution, which is the distribution we should
expect in a body like the ether originally isotropic, but, owing to
its presence in the doubly-refracting medium, subjected to an
initial state of strain.

The fourth condition of (xxxix) is shewn to be very nearly true
if the first three are satisfied (pp. 409—411).

[150.] The objections to Saint-Venant’s theory are given by
Glazebrook (op. cit. pp. 172—38). They consist in: the difficulty
of reconciling the theories of double refraction and reflexion so
long as we suppose the latter to depend “on difference of density
and not of rigidity in the two media,” and the existence of the
“quasi-normal wave.” The latter objection is met by Saint-
Venant with the arguments of Cauchy (see his pp. 411—13), and
it does not seem insuperable; the former is in some respects
serious, and is not discussed by Saint-Venant. At the same time
we must observe that the ellipsoid-distribution to which the
Cauchy-Saint-Venant conditions approximate does suppose a
change in the elastic constant lyzp2| owing to the isotropic ether
being rendered aeolotropic in the doubly-refracting medium: see
our Art. 143, equation xxxii.

The whole subject is of peculiar interest apart from its bearing
on the theory of light, as tending to introduce us by means of the
elastic constants into the molecular laboratory of nature—indeed
this is the transcendent merit of rari-constancy, if it were only
once satisfactorily established !

[151.] Saint-Venant’s fifth section (pp. 414—425) is entitled :
Distribution, en divers sens, des modules ou coefficients d'élasticité
définis & la maniére de Young et de Navier. This is the determina-
tion of the stretch-modulus quartic as first given by Neumann
(see our Art. 799%). It is shewn how this may be determined for
multi-constancy, but it is pointed out that in the most general

7—2
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case there will be a denominator of 720 terms in the constants,
and Saint-Venant wisely contents himself with the case of three
planes of symmetry and a 9-constant medium.

The conclusions drawn as to the nature of the quartic and its
special reduction to an ellipsoid, are all treated with somewhat
fuller detail in the annotated Clebsch, and we have accordingly
discussed them in our analysis of that work: see our Arts. 308 to
310.

[152.] We may note that Saint-Venant (pp. 424—5) attempts to
apply the ellipsoidal distribution of elasticity, which leads to the
ellipsoidal distribution of stretch-modulus, i.e.

1 e i e o i
sy 4 i e 4
JE, JE TR
to the case of wood. He appeals to Hagen’s results (see our Art. 1229%)
and compares Hagen’s empirical formula
1 Niezgiitcyl

—_—=— 4+

E,. Ex E .............................. (a)
with that given by the ellipsoidal distribution
1

Crap? - o
ﬁ;" = ﬁ + m .............. ;S e O (ﬁ)

He shews the theoretical impossibility of Hagen’s formula, arising
from the fact that if £,= &, E, is not equal to them, and endeavours to
shew by curves that (8) and () coincide within the limits of experimental
error. By graphical representation of the curves it is seen that only
the ellipsoidal distribution gives anything like a satisfactory theoretical
as well as practical figure, and Saint-Venant concludes that, although
proved for a different kind of medium (see our Arts. 142 and 144), it
may be practically of use in the case of fibrous material like wood. Later
Saint-Venant saw occasion to alter this opinion; he treats this im-
portant material very fully in the Lecons de Navier (pp. 817—25) and
in the annotated Clebsch (pp. 98—110). Under the latter heading we
shall discuss his more complete treatment of the subject : see our Arts.

308—310. The memoir ends with the résumé to which we have before
referred.

(153 Sur la détermination de U'état d’équilibre des tiges élas-
tiques a double courbure. Les Mondes, Tome 3, 1863, pp. 568—
575. This note was a contribution to the Société Philomathique,
August 8, 1863 ; see also L’ Institut, 1863, pp. 324—35.

Consider a rod of double curvature; let M,, M,, M, be the
moments of the applied forces about the tangent to the central
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axis, the normal to the osculating plane and the principal radius
of curvature. ILet I, I' be the moments of inertia about the
principal axes of the cross-section, and let e be the angle the
radius of curvature p makes in the unstrained state with the axis
of I'; then Saint-Venant gives the two following formulae, where
€ is the increment in ¢ and &8s is an element of central axis :
2 32
sin e =-]% {Mp (%‘e 3 Sl? e) M sinecose (T— T)}
aM, M,
T

Hence when ¢=0 or 7/2, or I =1’, e depends only on M, the
moment of the forces round the radius of curvature.

The second equation shews that the moment of torsion M, is
only constant when M, = 0 along the whole length of the wire.

Saint-Venant refers to the work of Poisson, Wantzel and Binet:
see our Arts. 1599*—1607*. He also reproduces the example of
the Comptes rendus: see our Art. 155, and that of the horizontal
semi-circular bar of rectangular cross-section built-in at both
terminals and loaded at its mid-point used in the Legons de
Navier, p. cxxxiv, which bring out clearly the need of taking into
consideration the angle e.

Saint-Venant refers to Bresse: Cours de mécanique appliquée:
Résistance des matériaux, 1859, p. 86, for a good investigation of
the general formulae for elastic wires of double-curvature when
the shifts are small.

[154.] Sur la théorie de la double réfraction : Comptes rendus,
T. 57, 1863, pp. 387—391.

This is a note on a memoir by Galopin, and points out that
there is no need to put the initial stresses zero in the ether in
order to obtain Cauchy’s conditions for double refraction: see our
Art. 148. The contents of this note are practically involved in
the memoir of 1863: see our Art. 127, and concern properly the
historian of the undulatory theory of light.

[155.] Sur les flexions et torsions que peuvent éprouver les tiges
courbes sans qu'il y ait aucun changement dans la premiére ni dans
la seconde courbure de leur axe ou fibre moyenne: Comptes rendus,
T. 56, 1863, pp. 1150—54. See also L’ Institut, Vol. 31, 1863, pp.
195—6.
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This memoir draws attention to the point considered by Saint-
Venant in his memoirs of 1843 and 1844 ; see our Arts. 1598* and
1603* ; namely the importance of taking into consideration the
“angle of torsion’ or angle between new and old osculating planes
in dealing with the elastic equilibrium of wires of double-curvature.
Saint-Venant brings out the importance by a good example, namely
a curved wire turned upon itself so as to have the same curvature
at each point of the central axis, but so that the naturally longest
and shortest ‘ fibres’ interchange places.

He points out that the stretch in a fibre distant z from the
central axis is:

21/p* —2/pp, . cose +1/p},
where p, p, are the new and the primitive radii of curvature and e
the angle the new and old radii of curvature make with each
other. In the example above referred to p = p, and e=, so that
the stretch becomes
2z/p,

Generally when p = p,, the stretch equals
2z/p, . sin §e.
In conclusion Saint-Venant refers to the contributions of
Lagrange, Poisson, Binet, Wantzel and himself to the subject: see
our Art. 1602* for references.

[156.] DMémorre sur les contractions d'une tige dont une extrémité
a un mouvement obligatoire ; et application au frottement de roule-
ment sur un terrain wny et élustique : Comptes rendus, T. 58, 1864,
Pp. 455—8.

This memoir was written in 1845, and is an attempt to apply
the theory of elasticity to the phenomena of rolling friction. The
chief results were published in the Bulletin de la Société Philoma-
thique of June 21, 1845. The following conclusions are given in
the résumé in the Comptes rendus :

On en déduit que le frottement de roulement sur un pareil sol est:
1° proportionnel & la pression; 2° en raison inverse du rayon du cylindre;
3° indépendant de sa longueur (ou de la largeur de jante, si c’est une
roue); 4° proportionnel & la vitesse ; 5° d’'autant moindre que le terrain
élastique est plus roide ou moins compressible.

Saint-Venant remarks :

Ces résultats sont d’accord avec un certain nombre d’expériences de
Coulomb et de M. Morin. (p. 457.)

L. g | T (S —
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There is a general indication of the method of treatment adopted
in the original memoir, but it is not sufficient to replace its
analysis. The memoir itself appears never to have been published.

157. Travail ou potentiel de torsion. Maniére nouvelle d'établir
les équations qui régissent cette sorte de déformation des prismes
dlastiques. Comptes rendus, T. 59, 1864, pp. 806—809. Translated
in the Philosophical Magazine, January, 1865, pp, 61—G64.

In his memoir on Torsion Saint-Venant used one equation
which bholds at every point within a body, and one which holds at
every point of the convex surface : see equations (vi) of our Art. 17
on that memoir. In the present paper Saint-Venant undertakes
to obtain these equations simultaneously by the aid of the principle
of Work. \

The potential of elasticity, that is to say the molecular work ¢

which a deformed element is capable of furnishing, is thus expressed for
the unit of volume of the element :

d=%r2s, +3mwsy +4@s, + 3oy + im0, + faoy,

Now the values of the component stresses zz, 77,...... can, we know,
be expressed as linear functions of the six strains s,, s,, 8,5 0y Toy 0y ;
substitute these values in ¢, and we obtain an expression of the second
degree in the strains, consisting of twenty-one terms. In the case of
torsion which we are considering, the strains reduce to the two o,
and o, so that we have

b =3p, (0m)" + I, (0",
where p, and p, are the slide-moduli in the directions of y and z: see
Art. 17 of our account of the memoir on Torsion.
Now let M denote the moment of torsion so that

M= [dy dz(zzy — zy%).
Thus if the moment of torsion is measured by an angle = we have

M % for the molecular work ; so that by equating the two expressions

for this work we obtain
L[ dy dz (1,6%y + p,0°%) = 37 [dy dz (z2y — ©2)......... D).
Now we assume that the body has three planes of symmetry perpen-
dicular to the axes of x, y, 2 respectively ; so that

XY = o T gys 72 = Gy
du du
also Clyies d?/ — 7%, Opa = ¥y + 7Y,

by equation (iii) of our Art. 17.
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Substitute in the above equation (1) and we obtain

du (du du (du
ffdydz{f"'l d__?/ <d.’1/ o Tz) + B 7z (az + 77)}=0'

Integrate this equation by parts in the usual way, and it becomes
du du
Ju [p.l (‘—137 - -rz> cos (ny) + p, (c_l? + ry) cos (nz)] ds

d’ d'u
ST [,Lla;ﬁw,dz,] SIS R ATl @);

here (ny) and (nz) denote the angles which the normal to the surface
at the point (z, ¥, z) makes with the axes of y and 2 respectively ; and
ds is an element of the curve of intersection of the body by a plane at
right angles to the axis of .

If we equate to zero the term in brackets in the double
integral we obtain the equation which must hold at every point of
the interior; and if we equate to zero the term in brackets in the
single integral we obtain the equation which must hold at every
point of the surface. d

But Saint-Venant does not explain why we must equate these
terms separately to zero; that is, he does not explain why he
breaks up equation (2) into fwo equations. Moreover the whole
process borrows so much from the memoir on Torsion that it has
not the merit of being an independent investigation.

Saint-Venant says :

: Or la deuxiéme et la premitre parenthese carrée, égalées séparément
a Zero... :

by this he means the terms contained within the square brackets
in (2). The English translation has very strangely “Now the
squares of the second, and of the first parenthesis, each equated
to zero,...”

[158.] A remark of Saint-Venant’s on p. 809 may be cited :

Le calcul du potentiel de torsion a aussi, en lui-méme, une valeur
pratique; car les ressorts en hélice, qu'on oppose souvent a divers chocs,
travaillent presque entitrement par la torsion de leurs fils, ainsi que je
I'ai montré en 1843, et que 'ont ermarqué, au reste, Binet dés 1814,
M. Giulio en 1840, et récemment des ingénieurs des chemins de fer.

See our Arts. 175%,1220%, 1382* and 1593—5*. The 1814 and

the récemment (1864) mark the wide interval which too often
separates theory from practice !
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[159.] Théorie de Uélasticité des corps, ou cinématique de leurs
déformations. Les Mondes, Tome 6, 1864, pp. 607 and 608. If a
body is deformed any small portion originally spherical becomes
an ellipsoid: see our Art. 617*. In the present paper Saint-
Venant undertakes to establish this proposition by simple general
reasoning ; the process does not seem very satisfactory.

SecrioN III
Researches +n Technical Elasticity.

[160.] Résumé des Legons...sur Uapplication de la mécanique
a Vétablissement des constructions et des machines.... Premiére sec-
tion. De la Résistance des corps solides, par Navier....Troisiéme
Edition avec des Notes et des Appendices par M. Barré de Saint-
Venant. The title-page bears the imprint, Paris, 1864. A foot-
note, however, on p. 1 tells us that pp. 1—224 appeared in 1857,
pp. 225-—-336 in 1858, pp. 337—496 in 1859, pp. 497—688 in
1860, pp. 689—849 in 1863, while the Notices et I’ Historique, pp.
i—ccexi, were finally added in 1864. Thus the whole work of
more than 1100 pages occupied some seven years in the production,
and thus necessarily lacks somewhat of the unity which is to be
met with in other treatises. Under the form of notes to a few
sections of Navier’s original work (see our Art. 279%*), Saint-Venant
has given us a complete text-book of elasticity from the practical
standpoint.- At the same time, by additional notes and appendices,
he has rendered his text-book of surpassing historical value and
physical suggestiveness. The leading characteristics of the book
are simplicity of analysis and copiousness of reference. See Notice
L, pp. 41—2 and Notice IL., pp. 28—9.

[161.] The ccexi. pages of introductory matter are occupied
with the following subjects: Table of Contents, pp. i—xxxviii;
Notice biographique sur Navier by de Prony extracted from the
Annales des ponts et chaussées (1837, 1 semestre, p. 1), pp. xxxix—
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li; the funeral discourses on Navier by Emmery and Girard, pp.
li—liv: a bibliography of the works of Navier with copious remarks
due to Saint-Venant, pp. lv—Ixxxiii; the original prefaces to the
editions of Navier's Legons published in 1826 and 1833; pp. Ixxxiv
—xc; and finally Saint-Venant’s Historique abrégé des recherches
sur la résistance et sur U'dlasticité des corps solides, pp. xc—ccexi,

[162.] The Historique abrégé is practically the only brief
account of the chief stages of our science extant. Girard had
written what was for his day a fair sketch of the incunabula (see our
Art. 123%), but it remained for Saint-Venant, without entering into
the analysis of the more important memoirs, to describe their
purport and relationship. It fulfils a different purpose to our own
history—for it makes no attempt to replace the more inaccessible
memoirs—but as a model of how mathematical history should be
written, we hold it to be unsurpassed, and can only regret that a
recent French historian has not better profited by the example
thus set’.

We would especially recommend to the student of Saint-
Venant’s memoirs pp. clxxiii—cxeii, which treat of the relation of
his own researches by means of the semi-tnverse method to the
work of his predecessors. The point we have referred to in our
Arts. 3, 6, 8 and 9 is well brought out in relation to Lamé’s pro-
blem of the right-six-face.

We will note one or two further points of the Historique in the
following five articles.

[163.] On p. cxeviii in the footnote Saint-Venant gives the expres-
sion for the work-function in terms of the stresses when there is an
ellipsoidal distribution of elasticity : see our Art. 144. He finds

il @4_5_5 ’z_?z)z Z?—g?}22+223—z’2£i+;7—ﬁ17§
T 2(2+3) (a b 2be 2ca Db ma
where for isotropy ¢ =A/p and a®= b= ¢* = p.

w

1 The essential feature of scientific history is the recognition of growth, the
interdependence of successive stages of discovery. This evolution is excellently
summarised in Saint-Venant’s Historiqgue. Our own ‘history’ is only a biblio-
graphical repertorium of the mathematical processes and physical phenomena
which form the science of elasticity, as a rule for the purpose of convenience
chronologically grouped. M. Marie’s Histoire des sciences mathématiques is a
chronological biography, without completeness as bibliography or repertorium.
Excellent fragments there are in it, but the conception of evolutionary dependence
is wanting.
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Generally :
| = (2 +1) a?, |yzyz| = be, | yyzz) = the,
lyyyy| = (2 + 1,) b, \ewza] = CQ, | 2222 | = toa,
| zz2z| = (2 + ©) € leyay = ab, |zayy| = tadb.

[164.] Pages excix—ccix deal with the history of the problem
of rupture, According to Saint-Venant, two kinds of rupture may
be distinguished : rupture prochaine and rupture éloignée. The
former falls outside the theory of ‘perfectly elastic’ bodies, the
latter he thinks may be deduced from the hypothesis that
when the limit of mathematical elasticity is passed,—i.e. when
the stretch is greater than the limit at which stretch remains
wholly elastic and proportional to traction,—then the body
will ultimately be ruptured if it has to sustain the same load.
The reader who has followed our analysis of the state of ease
and the defect in Hooke's Law given in the appendix to
Vol. 1. and also our Arts 4 (y) and 5 (a) in the present volume
will recognise that this hypothesis has only a small field of
application. What we have really obtained is a limit to linear
elasticity. It is the more important to notice this because Saint-
Venant argues that we must take as our limit the maximum
posttive stretch, for, as Poncelet has asserted: “que le rapprochement
moléculaire ne peut étre une cause de désagrégation” (p. cci). It is
probably true that rupture can only be produced by stretch, but
squeeze can surely produce failure of linear elasticity when the body
is so loaded that no transverse stretch is possible. Hence when
Saint-Venant introduces the stretch and slide-moduli into his con-
dition for safe loading and so makes it a question of linear elasticity,
it seems to me that he ought at the same time to alter his statement
as to the greatest positive stretch being the only quantity we are
in search of. Indeed, his condition seems partly based upon an
idea associated with rupture, and is then applied to constants and
equations deduced from the principle of linear elasticity (see his
p. ceviii, § xLviiL). The limitations to which his theory is sub-
Jected were, however, partially recognised by Saint-Venant himself
(see his pp. cev—vii). Thus he writes:

Nous ne prétendons pas, au reste, qu'une théorie subordonnant
uniquement le danger de rupture d’'un solide & la grandeur quatteint
une dilatation linéaire n’importe dans quelle de ses parties, et indépen-
damment des autres circonstances oll il se trouve en méme temps, soit
le dernier mot de la science et de 'art.
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He refers on this point to the experiments of Easton and
Amos: see our Art. 1474%,

[165.] Pages ccxiv—xxiv deal with the problems of resilience
aud impact.

In the footnote p. ccxvii, there is an error in the integral of the

2,
equation %g: gcosa— 3’ z there given. It should be

z=fcosa+ V\/gsin N/‘gt—fcosacos \/gt

The error was noted by Saint-Venant himself in a letter to the
Editor of this History, August, 1885.

On p. cexxii and footnote there should have been a reference
to Homersham Cox with regard to the factor £ =17/35. His
memoir of 1849 (see our Art. 1434*) seems to have escaped Saint-
Venant’s attention.

A further consideration of the effect of impact on bars when
the vibrations are taken into account occurs on pp. cexxxii—viii,
and then follows (pp. cexxxix—xlix) an account of Stokes’ problem
of the travelling load (see our Art. 1276*). Saint-Venant refers
to the researches of Phillips and Renaudot, but his account wants
bringing up to date by reference to more recent researches.

[166.] On pp. ccxlix—ccliii Saint-Venant refers to the rupture
conditions given by Lamé and Clapeyron and again by Lamé for
cylindrical and spherical vessels. It seems to me that he has not
noticed here that these conditions are, on his own hypothesis of a

stretch and not a traction limit, erroneous : see the footnotes to our
Arts, 1013* and 1016*,

[167.] After an excellent and succinet account of the course
of the investigations of Euler, Germain, Poisson, Kirchhoff &c. with
regard to the vibrations of elastic plates (pp. cclili—cclxxi) the
Historique closes with two sections LXI. and LXIL (pp. cclxxi—ccexi)
on the experiments made by technologists and physicists previously
to 1864 on the elasticity and strength of materials. Good as these
pages are, they are insufficient to-day in the light of the innumer-
able experiments of first-class importance made during the last
twenty years,
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[168.] In considering Saint-Venant’s edition of Navier we
shall leave the original text out of consideration, and note only
those points of Saint-Venant’s additions (ten-fold as copious as the
original text) which present novelty of treatment or result. We
put aside all matters already discussed in the memoirs on Torsion
and Flexure. Those memoirs are here to a great extent embodied,
their processes simplified and their results extended.

[169.] (a) On pp. 2—3 we find Saint-Venant basing the theory
of elasticity on the principle of a central inter-molecular action
which is a function of the distance.

(6) On p. 4, § 6 we have écrouissage and énervation defined.
These definitions are rather theoretical than practical. Thus
Saint-Venant defines as écrouissage the arrangements taken by the
molecules of a body when they pass by changes which are persistent
from a less to a more stable condition of equilibrium, as énervation
the arrangements when they pass to a less stable condition. It
will be noted that the physical characteristics of set, yield-point
and plasticity are not clearly brought out by these definitions.

(¢) Pp.5—14 treat of rupture by compression. Saint-Venant
rejects the theory of Coulomb (see our Art. 120%) as giving a stress
not a stretch limit. He adopts that of Poncelet, who in 1839 in a
course given at Paris, ascribed rupture by compression to the
transverse stretch which accompanies longitudinal squeeze (pp. 6
and 10, and compare with footnote p. 381). That short prisms of
cast iron, cement &c. often take 8 to 10 times as great a load to
rupture them by negative as by positive traction and not the 4
times of the uni-constant theory, is attributed not to bi-constant
isotropy but to terminal friction which hinders the lateral ex-
pansion, or to want of isotropy (pp. 10 and 12). Such rupture,
however, really lies at present outside theory,

(d) On pp. 15—19 we have the generalised Hooke’s Law and
the definition of the stretch-modulus (£) and the stretch-squeeze
ratio (p). Saint-Venant remarks, that theoretically n= 1 (i.e. on
the uni-constant hypothesis), that Wertheim finds it differs little
from 4, and that it can never be >} as otherwise a traction would
diminish the volume of a prism of the given substance, “ce qui
n'est pas supposable” There is no further reason given why we
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cannot suppose the volume to diminish. We may, however, look
at the matter thus:

Let £=the ratio of the slide-modulus to the dilatation coefficient
(= p/M), then (Vol. 1. p. 885) :
é= 3-Elp .
Blp -2

Hence, since ¢ is necessarily positive, we must have ]9'//J,> 2and <3
(the mean of these gives the uni-constant hypothesis Z/u =5/2). But

Y

.= 5;1 — 1, or 7 can only have values from 0 to §.

This proof holds only for an isotropic material. In the case of
an aeolotropic material it does not seem obvious why a longitudinal
stretch should not produce a negative dilatation. The ratio of dilatation
to stretch

8 +8,+s,

o s
and in the case of wood the values obtained for %, %, would seem to
give this a negative value, for they are > 4. Saint-Venant admits later
this possibility : see his pp. 821—2. Hence any set of experiments
which give values for %>} may be taken to denote that the material in
question is not isotropic and homogeneous,

=1=n =,

(¢) On pp. 20—21 it is suggested that for some substances
it is advisable to consider the stretch-modulus ' as varying over
the cross-section of a prism. Saint-Venant refers to the experi-
ments on this point of Collet-Meygret and Desplaces : see our
Chapter X1. He also regards Hodgkinson’s experiments as lead-
ing to a like conclusion notwithstanding a special experiment to
the contrary : see our Arts. 952% (iii), 1484* and references there.
We thus have the formula

P,=s,[E do
put forward by Bresse, where P, is the total traction in a prism
stretched s, in the direction of its axis #, and ([F,dw)/w is the
mean value of the stretch-modulus over the cross-section w. For
metals couléds ou laminds, where on the lateral faces there is a surface
or skin change of elasticity, Saint-Venant would take:

P,=s,(Ew+ex),

x 6tant le périmétre de la section supposée diminuée d'un & deux
millimétres tout autour, afin de représenter le développement moyen de
In crofite douée généralement de plus de roideur et de nerf que le reste ;
et L, et e étant deux coefficients 4 déterminer par les méthodes connues de
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compensations d’anomalies en faisant des expériences d’extension sur
des barres ayant des grosseurs ou des formes sensiblement différentes

(p- 21).

(f) Saint-Venant returns to this same point on pp. 42—44,
and pp. 115—118 when treating of the problem of flexure. In
the former passage, Saint-Venant gives reasons for adopting in the
case of metal a skin change only in the elastic-modulus, He pro-
poses the formula
_EJl+ei

p ’
for the bending-moment, 1/p being the curvature, I the moment of
inertia of the section, and ¢ that of its contour, or rather of the
mean line of the skin zone (ligne qu’on peut placer & 1 ou & 2 milli-
metres & l'intérieur). %, and ¢ are to be determined by experiments
on the flexure of bars of the given material but sensibly different
in size and form.

In the case of wood, Saint-Venant, referring to the experiments
of Wertheim and Chevandier (see our Art. 1312%), adopts a para-
bolic law for the variation of the stretch-modulus. Let %, and E|
be the moduli in the direction of the fibre at the centre (r =0) and
circumference (r=r,) of the tree, then at any other point (r) we
have

M

E=E,-(E,—-E)rr’
Saint-Venant determines the value of [Ey’dw—i.e. the ‘rigidity '—
for a bar of rectangular cross-section (b x ¢) whose centre of gravity
was, before it was hewn, distant r, from the centre of the tree
(p. 44).

In the second passage to which I have referred the rupture
condition (rather the failure of linear elasticity) is deduced from
the like hypothesis of skin-change. Saint-Venant obtains a formula

L, ik A
M, =y, (Bl + o),
where M is the maximum bending moment which will not cause
the elasticity of a ‘fibre’ at distance % from the neutral axis (where
the stretch-modulus = E) to fail by giving it a greater stretch than
T,/E. We have then to find the fibre for which 7'/Ey is smallest.

Si I'on a des raisons de penser que c’est la fibre la plus dilatée,
comme quand la matidre est homogeéne, ou que la contexture hétérogéne
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est telle que le rapport 7,/E varie moins que y, l'équation sera, en
désignant comme & l'ordinaire par y' la grandeur de 'ordonnée de cette
fibre, et par E', T",, les valeurs correspondantes de %, 7, ;

_ET 0 el
=Ty Ty
ou bien, C et ¢ désignant deux constantes dépendant comme £, et ¢ de la
nature de la matitre et de son mode de forgeage ou de fusion,

M,=Clly +cily.

Saint-Venant calculates the value of M, for a rectangular
section, and also deals with a similar expression for the case of
the wood prism referred to above; see his pp. 117—S8.

(9) In §§8—12 (pp. 22—26) the reader will find some account
of the behaviour of a material under stress continued even to
rupture. This account was doubtless for the time succinct and
good, but there are several points which could only be accepted
now-a-days with many reservations. For example the statement
(§ 11): Le calcul théorique est toujours applicable pour limiter les
dilatations et établir les conditions de résistance & la rupture
éloignée—is one which requires much reservation. We have seen
in Vol 1. p. 891 that a material may be in a state of ease and yet
not possess linear elasticity for strains such as often occur in
practice. Further that even when there is linear elasticity its
limit can often be raised without enervation almost up to the yield-
point, where one exists. Hence when Saint-Venant takes s, to
be the stretch at which material ceases de s'écrowuir et commence @
Sénerver, ce qui se manifeste par la marche des allongements per-
sistants, and puts P, = or < Ews, as the safe tractive load—where
E is the stretch-modulus and  the sectional area—we find some
difficulty in ascertaining what limit s, really represents. In most
cases before enervation begins, linear elasticity will be long gone,
and all the formula really can tell us is the stage at which linear
elasticity fails; this fail-limit may be very far from the yield-
point, and in some materials very far indeed from the elastic limit.

Saint-Venant refers to the ‘fatigue’ of a material due to re-
peated loading and to the question whether vibrations can change
the molecular structure from fibrous to crystalline (see our Arts.
1429%, 1463* and 1464*). These are points on which we know
to-day a good deal more than was accessible in 1857.



170—172] SAINT-VENANT. 113

[170.] Article III. is devoted to the flexure of prisms and
commences with a criticism of the Bernoulli-Eulerian hypothesis
as expounded by Navier. Saint-Venant shews with the simplest
analysis that the cross-sections neither retain their original contour
(not even in the simple case of ‘circular’ flexure, § 3, p. 34) nor
their original planeness (§ 4, pp. 36 —9). To § 6, p. 40—2, we have
already referred when dealing with the question of equipollent
load-systems in Art. 8 of our account of the memoir on Zorston.

[171.] Pages 52—58 of this Article reproduce with some
important additions the formulae of Art. 14 of our account of the
memoir on Torsion. Saint-Venant proves the following results for
the case when the load plane is not a plane of inertial symmetry :

(a) The neutral line is the diameter of the ellipse of inertia
conjugate to the trace of the load-plane on the cross-section. (This
theorem was given by Saint-Venant and Bresse about the same
time: see our Arts. 1581* and 14.)

(b) The ‘deviation’ or angle between the load- and flexure-
planes is o maximum when the former has for trace on the cross-
section a diagonal of the rectangle formed by the tangents at the
extremities of the principal azes of the ellipse of inertia.

A good illustration of a simple kind shewing the deviation is
given in § 7, p. 57.

[172.] The notes on pp. 78—85 deal with the elastic line
when the flexure is not so small that we may neglect the square of
the slope which the elastic line makes with the unstrained position
of the central axis. The results here given express the maximum
deflection and terminal slope in series ascending according to
load X (span)?

rigidity

powers of , further the load and maximum stretch

: ¢ : max. deflection
in series of ascending powers of —————

span
stretch-modulus in terms of max. deflection, span and load.
Saint-Venant in Notice 1. (p. 42) claims some originality for
these results. This I think can only refer to the convenient form

into which he has thrown them: sce our Art. 908%.
S.-V. 8

, and finally the
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[178.] Article IV. (pp. 86—186) is entitled: Rupture par
Fleanon.
This practically deals with the formula for the maximum

moment

T ox
M= —h—

where h is the distance of the ‘fibre’ most stretched from the
neutral axis' and w«® the sectional-moment of inertia about that
axis. The question then arises: what is 7? Saint-Venant holds
that if T, be the stress at which enervation commences, we have
in reality a condition for the safety of a permanent structure. This
involves the enervation-point being very close to the limit of linear
elasticity. In many materials this is certainly not the case, even
were it possible to define exactly this enervation-point. We must
treat the results of this article as applying only to the faul-limat,
ie. the failure of linear elasticity (p. 91). Saint-Venant indeed
fully recognises that the formula does not give any condition for
tmmediate rupture, and that no argument against the mathematical
theory of ‘perfect elasticity’ can be drawn from experiments on
absolute strength. He states clearly enough that for beams of
various sections, for which w«®/h retains the same value, T varies
with the form of the section and is greater than,even to the double
of, the value obtained from pure traction experiments (this is the
well-known ‘crux’ which the technicists raise against the mathema-
ticians): see his pp. 90, 91. Yet it seems to me that even the
extent to which he adopts the formula is not valid. It only gives
the fail-limit, which in some cases, perhaps, may indicate rupture
élorgnée.

[174] On pp. 95—101 our author treats of ‘Emerson’s
paradox’ or the existence of ‘useless fibres’. In other words,
the expression w«’/h can be occasionally increased by cutting
away projecting portions of o,

We have the cases of beams of square, triangular and circular
cross-sections fully treated, as well as that of the crour d’équerre.

1 We use ‘ neutral axis’ for the trace of the plane of unstrained ‘fibres’ on the
cross-section, while we retain ‘neutral line’ for the succession of points in the plane
of flexure through which pass real or 1magmary elements of unstretched fibre. It
will only coincide with the ¢elastic line’ or distorted central axis when there is no
thrust.
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The elastic failure of such outer fibres does not. however denote that
the truncated section possesses greater strength than the complete
section, as Emerson argued from the formula, Rennie confirmed
and Hodgkinson refuted by experiment: see our Arts. 187* and
952* (ii). Saint-Venant very aptly terms them fibres tnutiles.
We may indeed calculate the maximum elastic eﬂimency of such
sections by supposing them truncated till w«’/h is a maximum,
but the difference is generally so small as not to repay the labour
of calculation, albeit it suggests a method of economising material.

[175.] Pages 103—105 treat of the obscure point of how to
determine the value of T, in the formula of Art. 173, so that
there shall be no danger of rupture éloignéde. Saint-Venant
apparently recognises that the exact point at which enervation
begins is difficult to discover experimentally, especially when
the duration and repetition of loads have to be taken into account

(p. 105).

Let 7, T, be the stresses which in positive and negative traction
respectively mark the limit of rupture élotgnée ; let 7', 7'y be the corre-
sponding easily discovered stresses which mark cohésion instantanée. Then
Saint-Venant observes that we may learn from previous constructions and
from our experience of structures submitted to long use what fraction
T, is of T, and that we are justified in taking for the same kind of
material, even in its several varieties, a constant ratio between 7', and
Ty, eg Ty=11,.

On n’aura pas pour cela la dilatation limite s,=7/Z égale au 1/8 de la
dilatation finale positive ou négative, puisque la proportionalité des efforts
aux effets cesse longtemps avant. Mais on aura un certain rapport aussi
peu prés constant entre ces deux dilatations (p. 106).

Saint-Venant even suggests (p. 107) that 7', may be taken proportional

2
to the 7 obtained from the formula P=17". % E%(- where P is the concen-

trated mid-load which will rupture immediately a bar of length
terminally supported. As the 7' obtained from this formula when used
for rupture is found to be a function of the section, this suggestion seems
to me a dangerous one.

{176.] On p. 109 (§ 13) a formula is given for finding 7 when 7',
is known. Suppose that the material is a prism with longitudinal stretch-
modulus %, and that Z, is the same modulus for all directions trans-
verse to the axis; let 7\, and 7}, be the limiting elastic and the

8—2
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rupture stresses when the material sustains a tractive load in the
transverse sense, y the stretch-squeeze ratio. Then:
%ﬁ — stretch in transverse direction due to 7%, ,
t

1 % = squeeze in longitudinal direction...,
t

7
E s Z’E"-,-‘ — safe limit to negative traction in longitudinal direction.
N e

Thus we must have:

Ti - l T 0,t
1) 7] 't ’
I i 1E 7T,
hence gy W—E: T,

Now by what precedes, Saint-Venant holds that we can legitimately
replace T,,/T, by T/T), a ratio easily found from rupture experi-
ments, thus:

Pyl By
T, o7 BT X

In the case of isotropy 7,=7T, E=2E, and thus on the uni-
constant hypothesis we should have 7/7, = 1/n = 4.

Saint-Venant finds from experiments of Wertheim and Chevandier,
that for oak 7",/T,=1-21 or 1-08; for cast-metals he suggests 3, for stone
8 to 10, and for wrought iron 2. He holds the value 6 as obtained by
Hodgkinson for cast-iron much too large to be prudently adopted, and
discusses at some length Hodgkinson’s experiments on the beam of
strongest section : see our Art. 243%.

Finally we may note that on p. 115, he states that for different
varieties of the same material it is more legitimate to take 7|, proportional
to T of the formula of Art. 175, than to the stretch-modulus as some
writers have done.

[177.] Pp. 122—171 are occupied with what is generally
known as the comparative strength of beams of -various sections—
in reality it is the failure of linear elasticity and not strength
with which we are dealing.

(a) On pp. 123—5 we have the faillimit determined for cases of
loading in planes of inertial asymmetry. The formula of our Art, 14
namely :

Tow
zcos¢ ysing’

57 Feiggpin

Ky Ky

M, = minimum of

we find repeated.
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When, as in the case of a rectangular section, 2, ¥ have values independent
of ¢ corresponding to a maximum of the denominator, we find at once

M=T°w/\/i;+lj-
Kyt K

Saint-Venant applies these results to rectangular and elliptic
sections.

() On pp. 143—156 we have a very full investigation of the
I-section with special reference to Hodgkinson’s section of greatest
strength. Although Hodgkinson’s experiments were made on absolute
strength, Saint-Venant finds that his results are true for the fail-limit
(rupture Eloignée). The general conclusions given on p. 155 are: (1)
When 77, is sensibly greater than 7|, the T-section with unequal flanges
has a higher fail-limit, but a less resistance to flexure, than one with
equal flanges, provided the squeeze of the smaller flange is not
accompanied by lateral stretches more dangerous than the longi-
tudinal in the larger flange, nor the smaller flange receive lateral
flexure (buckle) owing to its compression. (2) When the height of
the section is increased by 4 to -7 of itself we obtain for the same
area a TI-section of equal flanges with a higher faillimit than one
of unequal flanges and the lesser height; at the same time the
resistance to flexure is largely increased. Such increase of height,
however, increases the possibility of déversement being produced by a
slightly oblique load and facilitates the lateral flexure of the squeezed
flange.

() On pp. 156—163 we have a discussion of the faillimit of
Jeathered axes. Saint-Venant shews that their advantages are not so
great as has been frequently supposed, while as we have seen (Art. 37)
in the case of torsion they give no increased resistance worth mentioning.

. [178.] The next point we have to notice is one of considerable
interest and has recently been again attracting the attention of
the technicists’. It is the calculation of the absolute strength
from an empirical relation between stress and strain supposed to
hold nearly up to rupture. That strain increases more rapidly
than stress after the beginning of set even up to rupture had been
long noticed by experimentalists, and various modifications of
Hooke’s Law had been suggested by Varignon, Parent, Biilfinger
and Hodgkinson : see our Arts 13%, 29 8%, 234* and 1411*. There
has been, however, considerable obscurity about the various
empirical formulae suggested, and they have only been applied to
the old Bernoulli-Eulerian theory of flexure with its unchanged

! See the discussion and references in Stabilité des Constructions: Résistance

des Matériauz by M. Flamant, pp. 322—9, and also in the Engineer, Vol. Lx11., 1886,
pp. 351, 392, 407.
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cross-sections. To begin with, they can hardly be taken as ap-
proximate for any material having a distinct yield-point; nor in
the second place is it clearly stated how far they represent stress-
strain relations for bodies whose elasticity is non-linear, or how far
elastic-strain and set are to be treated as coexistent.

Saint-Venant after citing Hodgkinson’s formulae (see our Art. 1411%*)

takes by preference the following for the positive and negative tractions
1, o at distances %, ¥, from the neutral axis of a beam under flexure :

p=p{1-(1-3)"}, n-n{i-(1-%)},

where P,, P, are the tractions at distances Y;, ¥, from the axis, and
my, m, are constants. On p. 177 traces of the curves for p in terms of
y are given for values of m from 1 to 10, and they are compared with
the curves obtained from Hodgkinson’s formula.

It will be observed that the difficulty of stating exactly the
physical relation between stress, elastic-strain and set is avoided
by an assumption of this kind. There is, however, another assump-
tion of Saint-Venant’s which does not seem wholly satisfactory.
He states it in the following words:

Observons d’abord que lorsque la dilatation d’une fibre a atteint sa
limite, comme une faible augmentation qu'on lui fait subir produit la
rupture ou bien fait décroitre trés-rapidement sa force de tension, il est
naturel de regarder la courbe des tensions comme ayant 3 l'instant de la
rupture sa tangente verticale ou paralléle & 1'axe coordonné des y,
d’autant plus que cet instant a été précédé d’une énervation graduelle

(pp. 180—1).

This paragraph assumes that for the material dealt with the
rupture stress is an absolute mawimwm, but in several automati-
cally drawn stress-strain relations which I have examined this does
not appear to be the case (see Vol. I. p. 891), and at any rate
in some materials it could only refer to the maximum stress
before stricture and not to the rupture-stress.

On pp. 178—184 the case of a rectangle is treated at some length.
Saint-Venant obtains general formulae on the supposition that the
curves for negative and positive traction coincide at the origin, i.e. on
the supposmon that the stretch- and squeeze-moduli for very small
strains are equal (mPy/Y,=m,P,/Y,). The limiting value of the
bending moment is then calculated.

In §3 various values are assumed for m, and m,; in particular
if m,=m,=1, it is shewn that to make the initial stretch- and squeeze-
moduli unequal is to increase the resistance to rupture by flexure.
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In the case of m, =m,, P=P,, Y,=7Y, we easily find for a rect-
angular cross-segtion (b x ¢) :

e be? 3m (m + 3)

6 2(m+1) (m+2)’

be? be?
which increases from £ - to R, 2" as m increases from 0 to o .

°6 °4
If we take m,=1 and m, any value, we obtain a more complex
value for M,, which increases with m, from 2, I% to R, b2i Thus in all

cases the value lies between those given by Galilei’s theory and by the
ordinary Bernoulli-Eulerian hypothesis.

Saint-Venant does not venture into the analysis required to deter-
mine how the constant » given by M,=n £ bc?/6 varies with the shape
of the section, which must be the true test of any theory of this kind,
ie. the constant m must be found to have the same value for all
sections.

[179.] Saint-Venant gives on pp. 186—204 an excellent
elementary discussion of slide and shear; on pp. 206—214 a like
discussion of the effect of slide in changing the contour and shape
of the cross-sections of a beam under flexure. The method of
treatment is very simple, and by the consideration of a special case
the action of the slide is well brought out.

[180.] Pages 216—237 are devoted to combined strain, flexure,
stretch due to pure traction and slide. The fail-limit is deter-
mined by simple geometrical considerations, and the examples,
chosen from those of Chapters xiI. and XIII. of the memoir on
Torsion (see our Arts. 50 to 60), are treated with considerable
numerical detail. The example on the combined flexure and
slide exhibited by the strained axis of a pulley is new (p. 234).

[181.] On pp. 239—271 the general equations of torsion are
deduced. The treatment is in some respects better than in the
memoir of 1853. We may note a few points :

() Pages 240—242 give a fuller discussion of the resistance to
torsion due to longitudinal stretch of the ¢ fibres’: see our Art. 51.

(b) Pages 244—5 (§ 4). Elementary proof that the cross-sections
of all prisms, except the right-circular cylinder, are distorted by torsion.
(c) Pages 261—2. .The expressions [zpdw and [zzdw = 0 for every
section of a prism under torsion. This is true whether or not the axis
of torsion passes through the centre of the section, supposing it to have
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one. Saint-Venant had ooly treated of this matter in the case of
the elliptic section (§ 59 of the memoir on Zorsion : see our Art. 22).
A geueral proof is here given in a footnote.

(d) In§ 15, pp. 264—7, we have a fuller treatment than occurs in
the memoir on Zorsion of eccentric torsion, or torsion about any axis
parallel to the prismatic sides. Taking the equations of torsion for an
isotropic material (equations vi. of Art. 17):

Uy + Uy = 0,
(u, +7y) dy — (u, — 72) dz = 0,

for which the origin lies on the axis of torsion, let us put %' =y +9,
% =z +{ we find y and { being constants :

u,,,, + Uyy = 0,
fuy+7(y — )} dy —{uy — 7 (¥ - {)}dz'=0.
These equations have for solution
u=u'—71(ly — ),
where o' is the value of » when 9={=0, or in other words the shift

when the torsion operates round an axis through the new origin. The
shifts «' and « giving the distortions in the two cases differ only by

(&Y ~ ) =7(ly - ),
or the two distorted surfaces are superposable by rotating the one
through small angles 79 and — ¢ round the axes of y and z respec-
tively.

U+ TY =%y + 7Y
Further, { * gt

or the slides determined for either axis

’ ’
Uy —TR=Uy—TZ

are equal for the same points. Thus it follows that the torsional couple
will in both cases be the same.

Saint-Venant then shews how by placing two prisms of equal cross-
sections with corresponding lines paralle]l, and fixing their terminal
faces so as to remain parallel after torsion about a mid-axis, we can
obtain eccentric torsion. The torsional couple will be just double of
that obtained from the simple torsion of either. Their axes it is true
will be bent into helices, but the bending introduced is a small quantity
of the second order in the torsion.

(¢) In §17 (pp. 268—71) we have an investigation of the
maximum-slide and the fail-points. We cite the following passage:

Si o, [o,=1le plus grand glissement principal] croissait toujours de
I'intérieur & lextérieur de la section pour chaque direction, ce serait
constamment sur son contour qu’il faudrait chercher les points dan-
gereux. Mais nous savons qu’il y a souvent des points du contour ou le
glissement est nul, et il peut y avoir, dans l'intérieur, quelque point de
maximum absolu de ¢’ (quoique cela ne se soit présenté dans aucun des
exemples ci-aprds traités); et il n’est pas impossible que ce maximum
excede toutes les valeurs de o’ relatives aux points du contour (p. 269).

I RENNNRIRER————




182] SAINT-VENANT. 121

We have then an analytical investigation of the fail-points,
which suggests a general method of investigation adopted in the
sequel for the special cases. This method avoids the ambiguities
of some of the paragraphs on this subject in the memoir of Torsion :
see our Arts. 39 and 42.

[182.] Pages 271—372 treat very thoroughly of the torsion-
problem. They reproduce to a great extent the formulae and
tables of the memoir on Zorsion, but at the same time make
frequent additions and improvements. We may note the following:

(2) Eccentric torsion of a right-circular cylinder. The coordinates
of the centre referred to the axis of torsion being %, {, we find with
the notation of our Art 181 (d), @ being the radius :—

e (Zy ~ "Tz);
o'acy="7'(z_§)’ O'acz=7(y_"7)7

a 2
while M = pr f r*do = pro . t;—, as in the case of central torsion.
(]

() A fuller treatment of the prisms whose cross-sections are
included in the equation :

%2 + agr’ cos 2¢ + ar* cos 4¢ = const.  (See our Art. 49 (c).)

The most interesting of the cross-sections included in this equation
is entitled by Saint-Venant : Section en double spatule analogue o celle
dun rail de chemin de fer (p. 365). It has the shape given in the
accompanying figure.

¥yl

c/2

B’ T4
e

case of ¢=5/b

See pp. 305—307, 312—317, 325_335.

(¢) The accurate investigation of the fail-points for the bi-symmet-
rical curves of the 4th and 8th order; see pp. 308—312, 339—341.
Cf. our Arts. 37 and 39.

(d) In a foot-note to p. 335 Saint-Venant treats a special case of
the curve of the fourth degree

% 4 27
3/_;'M + a5 (4 = 2%) + a, (y* — 6% + 2*) = const.
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By taking a,=—1//2, a,=2 (/2 - 1)/b* and the constant = 0, we
obtain an isosceles triangle having for base a portion of the hyperbola
#2=b*/4+(J2 = 1)?2* and for sides lines making with the bisector of the

base angles whose tangent =.,/2—1. The length of the bisector

from vertex to hyperbolic base is then 5/2. The torsion takes place
round an axis through the vertex. Saint-Venant finds approximately,

M=.56702 prwx’

This value agrees very closely with that of the equilateral triangle:
see our Art. 41,

[183.] Pages 372—460 deal with the conditions for resistance
to rupture €loignée under simultaneous torsion and flexure.
Most of this matter had already been given in Chapters XIL or
xnlL of the memoir on Zorsion or in the memoir on Flexure:
see our Arts. 50—60 and 90—8. One or two points may be
noticed :

(a) In the memoir on Torsion Saint-Venant when seeking for
the fail-limit neglects as a rule the flexural slides (see our Art. 56,
Case (iii) etc.). - Here he commences with an investigation of the
values of these slides. The approximate methods of Jouravski and
Bresse for obtaining the slide in a beam of small breadth are con-
sidered (see our Chapter XL), and are applied to the rectangle,
ellipse and X-cross-sections. A footnote gives the value of the
slide in the same approximate manner for an isosceles triangle.
See pp. 391—8. But the expressions thus obtained are not exact,
and in a considerable number of cases differ sensibly from the real
values, especially when the section has a measurable breadth per-
pendicular to the load plane. The expressions found by Jouravski
and Bresse give the total shear upon a strip of unit-breadth
taken on a section of the beam perpendicular to both the cross-
section and the load plane, but they do not determine how such
shear is. transversely distributed, still less the magnitude of the
maximum slide on the cross-section. Saint-Venant then proceeds
as in the memoir on Flerure to deduce exact expressions for the
flexural slides (pp. 399—414). The notation used differs from
that in the original memoir. The reader will find the two nota-
tions placed side by side in the footnote, p. 405. The treatment
in the Legons de Nowier is shorter and not nearly so complete as

'
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in the memoir. The diagrams reproduced in our frontispiece are
given in a footnote on pp. 410—12: see our Arts. 92 and 97.

(b) Pages 414—60 are- occupied with combined flexure and
torsion: in those cases where we may neglect the flexural slides,
They reproduce with some modifications and extensions the results
of Chapter XIL.of the Torsion memoir. There is a good summary
on pp. 4563—9.

[184.] ' On pp. 461—9 Saint-Venant treats of rupture (rupture
immédiate) by torsion.

(@) He shews that the moments capable of producing rupture are
for similar sections as the cubes of their homologous dimensions. A
footnote (p. 463) refers to Vicat’s experiments which apparently con-
tradict this result; see our Art. 731%. Saint-Venant attributes this
divergence to flexure having taken place in the short prisms of pldtre
and brigue crue used by Vicat.

(6) In§ 61 (p. 464) Saint-Venant endeavours to find the absolute
strength of a circular prism (radius ¢) under torsion by the assumption
of an empirical formula, similar to that of our Art. 178, for the shear ¢
at distance 7 from the axis of torsion. Namely :

¢=e1-(1-7)"]

where @ is the shear at distance b, and m is a constant.

We are only told in favour of this formula, (1) that for small values
of » and for very small shears ¢ is proportional to 7 and thus to the
slide, (2) that ¢ increases less rapidly than 7, or the slide, when the slide
becomes greater.

If S, be the rupture shear and correspond to 7 = a, we have

. @=8/{1 (1 - a/t)"}.
Then, introducing the same sort of questionable condition as in our
Art. 178, namely that dg/dr =0 when r = a, we have further

a=>band S;= Q.
This leads us to & rupture couple 4, = f S rq do,
0

2
3
o (3 (m+1)(m+2)(m+ 3))
Or, as m changes from 1 to o0, MM, cha.noes from § to Z of #a®S, (p.
466)".
(c) Saint-Venant then attacks the problem of the prism of rectan-

1 Saint-Venant’s result seems to be } of the real value, owing to the displace-
ment of a factor 2,
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gular cross section (b x ¢) for which & is much greater thanc. Here the
approximate values of the slides before the linear limit is passed are:

2 Ay

b TY.

These results may be deduced from Art. 46 by replacing the
elongated rectangle by its inscribed ellipse and neglecting ¢*/u, as com-
pared with 5*/p,. See also Table L. p. 39, and Art. 47,

He assumes that after the linear limit is passed :

se-0i-(-)), 2eo (P}

Hence, since for small slides or small values of 2z and y, 2y = w0,
and =z = py0,,, We must have:

Ooy== 212 Op=

ek o S 2¢  @Q'n

RPN e A el
. 0 _gmek
These give, QQ=QI7IIF7L.

Further, since the fail-points are the mid-points of the much longer
side b, the rupture points are taken there also. Thus it is necessary
that:

dzy[dz =0, zy =8’ when z=c/2.

It follows that A=c/2 and @' =.', the absolute shearing strength in
direction of y.

To proceed further Saint-Venant assumes that the slide o, always

remains much less than the slide o,,, so that for the former it is sufficient
to retain the linear strain form, we have thus

c 2y

T=Quylk=Sm 3. L,
together with T Y {1 4 (1 B %’i)m}
It easily follows that
i o ,n_?: 2m-1 m )
MR- (6 Tmihm+2)

Cases (b) and (c) confirm the law of the cube stated in (a). Such
formulae, although by no means satisfactory from the theoretical stand-
point, are yet useful as suggesting lines for future experiment.

[185.] Pages 469—77 (§ 62) contain a useful discussion of the
various methods of determining the elastic and fail-point constants,
especially in the case of prisms whose material is transversely aeolo-
tropic. Saint-Venant (p. 471) adopts the result given in Art. 5. d.

of our account of the memoir on Torsion, o,,= 2»,/.?,,3‘,, to obtain a
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plausible relation between shear fail-limit (S;) and tractive fail-limits
T,and T,. We have thus the formula S,/ @ = 2JTJE x T, [E.

[186.] Pages 477—480 deal with the problem of the torsion
of circular cylinders (radius a) having a cylindrical distribu-
tion of elastic homogeneity. In this case u is a function of the
axial distance 7. There will be no distortion of cross-sections.
Saint-Venant supposes x to remain constant from the axis up to a
radius ¢ — &, and then at distances 7 from ¢ — ¢ to a to follow the
law

H= o+ (1, — o) @ where z =1 — (a - {).

He easily deduces the following formula for M,
T (@=80¢ 3(a=5°¢ 3@-0¢ & }
M—‘u°77+27(“'—’u")7{ n+1 + n+2 T nt3 +n+4 J
Special cases are :

(1) Wooden cylinder whose axis is about the same as that of the
tree out of which it has been cut; here we may put { = a, and we have:

="t
n+4
(2) Forged or cast iron cylinder with skin change of elasticity :

1.

M = 1 (pyi® + y27a%) where y= ’-‘;;—’1“’:.

Supposing the fail-point to be on the surface, we have ;= p7ra, and
eliminating 7 :
M,= Axa?® + Bwa®,
where A and B are two constants depending only on the elastic nature
of the material. Thus the fail-couple depends partly on the cube, partly
on the square of the radius of the cylinder.

[187.] The text of the work concludes with numerical examples
such as are given on pp. 551—8 of the memoir on Zorsion. The
remainder of the volume is filled with five appendices and an
Appendice complémentaire occupying pp. 510—849, which from
their historical and physical aspects are perhaps the most interesting
portions of the work,

[188.] Appendix I. (pp. 512—19) contains certain elementary
proofs due to Poncelet as to the curvature, deflection ete. of the
elastic line. A point on p. 518 on the question of built-in
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terminals (encastrements) may be noted. Poncelet remarks that
for a cantilever we may suppose two forces, whose resultant is
equal and opposite to that of the load, to act at the built-in end.
These forces—whose points of application are very close, one on
the upper and one on the lower surface of the beam—are very
great and alter the surfaces of the built-in beam and the sur-
roundmg material, so that the elastic line at this end is not
horizontal, but takes a certain inclination varying as the terminal
moment directly and inversely as the profondeur de Uencastrement.
Small as this inclination is, it affects sensibly the experimental
accuracy of the theorgtical results based on the perfect horizon-
tality of the elastic line at the built-in end. This was noted by
Vicat: see our Art, 733*., Saint-Venant holds that careful ex-
periments ought to be made to determine its influence.

[189.] Appendix IL is entitled: Sur les conditions de U'exacti-
tude mathématique des formules tant anciennes que nowvelles d'ex-
tension, de torsion, de flexion ave¢ ou sans glissement.—Démonstra-
tion synthétique de ces formules quand on suppose ces conditions
remplies. This appendix contains first an easy refutation of
Lamé’s illjudged sneer at the procédés hybrides, mi-analytiques,
et mi—empim'ques ne servant qu'd masquer les abords de la véritable
sctence : see our-Arts, 1162* and 3 Saint-Venant shews that his
methods have precisely the same vahdlty as those adopted in the
cases of simple traction, of the old theories of flexure, and of torsion
for a circular cylinder. In the sequel he demonstrates afresh the
torsion and flexure equations. He starts from an axiom and
definitions involving the hypothesis of central intermolecular action
as a function of the central distance only. The appendix occupies

pPp. 520—541.

[190.] Appendix ITIL contains a complete theory of elasticity
for aeolotropic bodies so far as the establishment of the general
equations of elasticity and the usual formulae of stress and strain
are concerned. It occupies pp. 541—617. Proceeding from central
intermolecular action, Saint-Venant on pp. 5§56—9 reduces the 36
constants of the stress-strain relations to 15, We may note one
or two points of interest : '

(@) § 23 (pp. 562—T74) with its long footnote is specially worthy
of the readers attention. Saint-Venant obtains expressions for the
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stresses on the hypothesis that initial stress has produced considerable
initial strain in the body. In this case the strain developed by the
initial stress sensibly influences the effect of the later strain. We can
no longer add initial and secondary stresses as independent factors of
total stress.

Let the initial stresses be 7z, 2y, etc...., the secondary stresses zz,, zy,
ete., and the total stresses zz, 7y, ete.

Let , 3, # be the directions of three right-lines slightly oblique to
each other which were initially the rectangular set z, ¥, z; let «, ¥/, =
be three other lines rectangular or slightly oblique among themselves,
taken close to the former (x, ¥, #) and normal to the three planes by
which we determine the six stress-components. Then, if ¢, be the
cosine of the angle between the lines » and s we have as stress types:

7o =z (1 +sw—s,,—sz)+2Ey‘ocy1,,,+2z’iocz]d+al, )

Regrs § ~ 2 = iy i SO
7 = yz, (1 — sx) + vy, cylz e zzoczly i ”’ocmly’ i "’-”oczlz' + 2.

To these we must add the purely geometrical relatious of the type :

Cyl,g + cz‘y: =0y + Cyfgf vesseeesansnnscoiotecanans (ii),
which reduce if 2/, ¢/, 2’ are taken rectangular to the type :
Cyrt Coy = Tyguneennnniiinniin i (1ii).

‘When, however, the initial stress is not such that the shears are
zero or can be neglected when multiplied by small strains, we may
simplify equations (i) by a proper choice of 2, ¥/, 2. Thus if &/, ¥/, 2’ be
taken perpendicular to ,, %, @, or =z, @, 7 respectively, which is
compatible with their rectangularity, then either Coy = c,,l,g:cyl,,:O,
Oy Cyy=Cow=Cpy = 0, and we can replace the remaining cosines in (i)
by the slides Oys Omey Ty By taking @, 3/, 2 bisectors of the angles
between the lines 23, 7,, 2, and the perpendlculars to the three shcrhtly
oblique planes #,2,, %%, #,%;, i.e. the closest rectangular system to
Xy, Yy, %1, We obtain :

Oy = Coy = O PRI S50 0 o o oo (iv)
as the type of equation (iii).

In the case (le seul qui ait été supposé par les divers auteurs de
mécanique moléculaire, ftn. p. 571) in which the shifts are very small
and consequently the directions «,, ¥, #, almost coincident with x, ¥, 2,
we can take the latter for the rectangular system «/, ¥, 2’ and we thus
find :

Cye=dw|dy, c,y=dv|dz, o ,=dv]dz,
€y = du/dy, Co = Aufdz, ¢, ,=dw/de,
and reach the equations (i) of our Art. 129.

These again reduce to the relations of our Art, 666% if we put
X, =Yy, =0, 2z,=¢, and yzo—zxo_xyo—o and give the proper values to
the secondary stresses.

Saint-Venant proves equations (i) by the molecular method in the
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footnote before referred to. He makes some remarks on the Navier-
Poisson controversy, and refers to a paper of his own published in
1844 on Boscovich’s system : see our Arts. 527* and 1613*.

(6) On p. 587 the remark is made that the stress-strain relations,
the body stress-equations and the body strain-equations remain true
whatever be the amount of the shifts in space provided the relative
shifts of adjacent parts or the strain-components are small. In this
case, however, the values to be given to the strains in terms of the
shifts are those of our Art. 1618% The ordinary shift-equations of
elasticity hold only for small portions of an elastic body, when the
total shifts are not small. Hence they cannot be directly applied to
large torsional or flexural shifts. The whole treatment on pp. 587—92
is good, and better than that of the memoir of 1847: see our Art. 1618*.

(¢) Saint-Venant points out that it is not sufficient to find values
of ‘the stress-components which satisfy the body and surface stress-
equations. There are also certain conditions of compatibility between
the strain components deduced from these stresses which also must be
satisfied : see our Art. 112.

These equations hold for all values of the shifts, provided the strains
remain small, i.e. if they take the forms given in our Art. 1618*,

(d) Pp. 603—17 contain a direct investigation of Saint-Venant’s
torsion and flexure equations from the general equations of elasticity.
In both cases the method adopted assumes a given distribution of stress
and deduces the corresponding shift-equations.

In dealing with torsion Saint-Venant supposes a single plane of
elastic symmetry perpendicular to the axis of torsion, and starts from
formulae for the shears of the form

W=f0uyt+hoy, @==eoyu+hioy,

where / and &’ are supposed unequal. See our Art. 4 (6) on the memoir
on Zorsion. He deduces the general torsional equations, which now
contain four constants, and solves them for the case of the ellipse. The
discussion does not seem to me of much value, as all elasticians, multi-
or rari-constant, would agree that =4, in which case by a change
of axes we can take A=7'=0: see the same Article. In the case
of an elliptic contour a direct analysis gives:

M 410

Ty + 1o + (1/k? — 1) (1/py — 1/py) sina’

where a is the angle between the direction in which the slide-modulus
is p; and the axis of the ellipse about which the swing-radius is «,.
The reader must note that p, and p, are not the same constants as in
Art. 46 of our discussion of the memoir on Zorsion, where we supposed
‘the principal axes of elasticity’ to coincide with the principal axes of
the elliptic section.

[191.] The fourth Appendix occupies pp. 617—45 and contains
a careful comparison of Saint-Venant’s theory of Torsion with the

— —
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experimental results of Wertheim, Duleau and Savart: see our
Arts. 1339* and 31. It is followed by some discussion of torsional
vibrations. Thisappendix is practically directed against Wertheim’s
memoir on Torsion of 1857: see our Art. 1343* It will be
remembered that Wertheim had asserted the theoretical accuracy
of Cauchy’s erroneous torsion formula (see our Art. 661%*), had
persisted in retaining the value for the squeeze-stretch ratio which
he had deduced by a fallacious theory in 1848 (see our Art. 1319%),
and finally had exhibited complete ignorance of Saint-Venant’s
results for the elliptic cylinder. Saint-Venant easily shews the
insufficiency of Wertheim’s criticism, and how the mean results of
Savart and Duleau for rectangular prisms, and of Wertheim him-
self for elliptic prisms confirm the new theory: see our Arts. 31
and 35,

In the discussion on torsional vibrations, Saint-Venant re-
produces the matter of his memoir of 1849: see our Art. 1628*.
He regards of course the theory given as only approzimate (p. 633),
but sufficiently so for all practical purposes, as indeed appears
from the comparison of theory and experiment (p. 643).

[192] The fifth Appendix, devoted to the elastic-constant
controversy, occupies pp. 645—762. It is an excellent piece of
scientific criticism, to which some multi-constant elasticians have
insufficiently replied by squeezing caoutchouc or loading piano-
forte wires. The difficulty of critical experiments lies first in
obtaining a purely isotropic material free from all initial stress
and without any superficial elastic variation, and then in assuring
the extreme nicety required to determine successfully the stretch-
squeeze-ratio. In our first volume we have referred to the leading
features of the controversy (see our Arts. 921*—932%) and the
chief of the earlier experiments in this field (see our Arts. 470%,
1034*, 686*—90%, 1358*%). We shall find other remarkable ex-
periments as well as theoretical conclusions have sprung from the
controversy in the last 40 years; these will lead us on more than
one occasion to examine the validity of Saint-Venant’s arguments.
Meanwhile we may refer to one or two points brought forward in
the present essay.

(@) Saint-Venant’s criticism seems to me unanswerable, when he
attacks the validity of the method by which Poisson, Cauchy, Green, or

S.-V. 9
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Lamé have deduced the linearity of the stress-strain relation without
any appeal to experiment or any statement of physical fact or any
axiom of intermolecular action : see Saint-Venant’s pp. 660—5 and our
Arts. 553%, 614* 928%, 1051* and 1164* footnote.

() On pp. 665—676 we have a long and careful numerical
examination of the experiments of Regnault on piezometers of copper
and brass. In general they accord with the uni-constant theory, or at
least better with that than with Wertheim’s (see our Art. 1319%*). This
is followed by some remarks on Wertheim’s and Clapeyron’s experiments

on caoutchoue. The former found ’i =—1to 3, and the latter ’X” = gohor
see our Art. 1322% and Chapter x1. Results so discordant as these lead
Saint-Venant to remark that neither uni- nor bi-constant isotropy, nor

méme des formules linéaires quelconques, ne sont pas applicables au
caoutchoue, liquide coagulé ou épaissi plutét que solidifié, et d’'une nature en
quelque sorte intermédiaire entre les fluides et les solides (p. 678).

(¢) Pages 679—89 are occupied with a criticism of Wertheim’s
hypothesis, that 2u= A\, and with the results of his experiments. Saint-
Venant points out the great probability of a want both of homogeneity
and of isotropy in the cylinders used by Wertheim (see our Art. 1343*)
and he examines analytically the ratio of longitudinal to transverse
stretch-moduli, when such isotropy is not presupposed. We shall return
to some of Saint-Venant’s arguments when examining Wertheim’s later
memoirs,

(d) On pp. 689—705 we have a consideration of Cauchy’s hypothesis
of 1851 : see our Art. 681% namely, that it is possible if a body be
cerystalline that :

les coefficients des déplacements et de leurs dérivées dans les équations
d’équilibre intérieur ne sont plus des Zuantités constantes, mais deviennent
des fonctions périodiques des coordonnées (p. 689).

In other words we arrive at stress-strain relations in which the
36 constants are not connected by 21 relations. Saint-Venant conducts
a new investigation (pp. 697—706) with fairly simple analysis. The
turning point of rari- or multi-constancy for such regularly erystallised
bodies is then seen to lie in the legitimacy of bringing stretches like
¢, outside certain summations of the form

S, Reos® (rx). s, 3, R cos (rz)cos? (rz) . &,

and replacing them by their mean values s,, s,. Here s, is the
mean value of &, for all the atoms under consideration, and we may
replace §', by s, if the body is isotropic or possesses confused crystallisa-
tion. On the other hand in regularly crystallised bodies, there may be
terms in ¢, periodic in the coordinates and we cannot replace &, by s,
and bring the mean stretch outside the summation. Hence we have
not the 21 relations between the coeflicients fulfilled. Saint-Venant
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holds, however, that even if this periodicity be true for regularly
crystallised bodies, it can only introduce small differences into the
otherwise equal constants. But further, if it does exist

cette altération ne peut regarder que cerfains cristaux réguliers. Elle n’est
jamais relative aux corps & cristallisation confuse, comme sont tous les
matériaux de construction, et comme sont aussi tous les corps isotropes.
11 n’y a donc aucune raison de changer les formules trouvées depuis un tiers
de siecle pour les pressions dans ces sortes de corps (p. 705).

© [198.] On pp. 706—742 we have an analysis and criticism of

the various methods which English and German elasticians have
adopted in order to obtain the fundamental equations of elasticity;
there is also a résumé of their views on the elastic-constant contro-
versy. Here the memoirs of Green, Neumann, Haughton, Clebsch,
Clausius, Thomson, Kirchhoff, Maxwell and Stokes are briefly con-
sidered. Saint-Venant devotes special attention (pp. 721—32) to
the value of Green’s results as bearing on double refraction and
the disappearance of the stretch-wave. This discussion is only of
importance to us in its bearing on the elastic-constant controversy.
Green’s treatment of the ether demands the independence of the
21 constants, but we may question whether his results are
the only possible ones, nay, even whether they are so satisfactory,
as to stand per se as a justification of multi-constant formule.

In order that the vibrations may be exactly parallel to the wave-face
Green finds the relations xxxviii. of our Art. 146.

If to these 14 conditions of Green we were to add the six additional
conditions of rari-constancy, namely :

lygzz) = lysyzl, * leayz|i=ilamply otel oo i (i)

we should then have :

|wxxz) = |yyyy) = |2222) = 3 |yzyz| = Slaxex| = 3lwyay] = 3 |yyae|
= lrexx]) = Slwwyyl .evuevnnininnnn.. (it)

and all the other constants zero.

Thus the condition for exact parallelism would be isotropy, or
this parallelism would be incompatible with double refraction.
Now are Green’s conditions so extremely probable that we
ought to reject the six molecular conditions (i) which render them
nugatory ? Saint-Venant argues that they are not, chiefly for the
reason that they involve: [wwww|= zzzzl.

This is proved in the footnote p. 726. It denotes physically
9—2
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that, in whatever direction we take «/, the same stretch s, will
produce a traction 7z of the same intensity. Such an equality
seems opposed to our ideas on the nature of bodies endowed
with double refraction. The arguments used to support the
improbability of this relation are identical with those of the
memoir of 1863 and have been cited in our Art. 147.

[194] While recognising the weight of Saint-Venant’s
reasoning in this Appendix and in the memoir of 1863, and
admitting the difficulty of conceiving a double-refracting medium
to obey such conditions as those given by Green, we have yet to
notice a point with regard to the arguments Saint-Venant advances.
A distinction must be drawn between an isotropic body held by
external pressures in an aeolotropic state of elastic strain, and a
body also primitively isotropic which has received set of different
intensity in different directions. In the former case the initial
stresses may enter into the elastic constants (as in our Art. 129)
and so affect the elasticity in different directions. In the latter
it would appear as if the molecules must be brought in some
directions nearer together and so the direct stretch coefficients be
affected and varied. But is this experimentally the fact? If a
bar of metal be taken and stretched beyond the elastic limit, so
that it receives set, it is found that its stretch-modulus, which is
certainly a function of the direct stretch-coefficients remains nearly
constant. Now this set may be of two kinds, first : a set occurring
far below the yield-point, which is often little more than a removal
of an initial state of strain due to the working: and secondly, a set
which denotes a large change in the relative molecular positions
and can occur after the yield-point has been reached. If it can
be shewn that the stretch-modulus remains nearly constant not-
withstanding one or both of these sets, it would be interesting to
investigate experimentally whether such is also true for the slide-
moduli and the eross-stretch coefficients before we condemn Green
entirely.

Experiments on simple traction and torsion of large bars before
and after very sensible set would throw light on this matter.

[195.] Saint-Venant further remarks that Green’s conditions
are not necessary in order that we may obtain exactly Fresnel’s
wave-surface. Saint-Venant in a foot-note gives a fairly easy
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analysis leading to Cauchy’s four conditions which are compatible
with rari-constancy (see the memoir of 1830, Exercices mathéma-
tiques 5° année). These conditions are given in our Art. 148 as
Equations xxxix.

Les quatre relations ou conditions (xxxix)...... n’ont rien d’arbitraire
ni de bizarre, bien quelles soient d’'une forme moins simple & coup sfir
que les cing conditions de Green (xxxviii of our Art. 146) qui n’en sont
qu'un cas particulier....En effet lorsque les trois coeflicients d’élasticité
directes a, b, ¢, entre lesquels elles permettent telle inégalité qu’on veut,

ont des rapports mutuels n’excédant pas 14 ou 2, il est facile de s'assurer
par des calculs quelles sont, numériquement, presque identiques aux

relations 2d +d =./be, 2e+¢ _Jca 2f +f" _Jab que nous verrons
étre celles qui donnent la distribution la plus simple des élasticités
autour de chaque point dans les corps hétérotropes, et appartenir, au
moins avec une grande approximation, aux corps dont lisotropie primi-
tive a été altérée par de simples compressions ou dilatations inégales,
c’est-d-dire généralement aux corps amorphes ou & cristallisation confuse.
Or tous les physiciens admettent que ¢’est seulement & cet état d’inégal
rapprochement moléculaire en divers sens que se trouve 1'éther dans les
cristaux dont la forme n’est pas un polyedre régulier (p. 731, foot-note).

We have ventured so far from our subject into that of Light,
only to shew that Saint-Venant brings forward strong reasons
why, even if we dogmatically assert the elastic jelly character of
the ether, it is not necessary to summarily reject the rari-constant
hypothesis.

[196.] Pages732—42 are occupied with an excellent discussion
of Stokes’ memoir of 1845: see our Arts. 925%*—6* and 1264*.
There are also a few remarks upon Maxwell’s- memoir of 1850:
see our Art. 1536*. Saint-Venant states that Thomson and
Kirchhoff while adopting multi-constancy have not added any
additional reasons for its validity. This at the present time is
hardly true. I may note Kirchhoff’s memoir of 1859: see Poggen-
dorff’s Annalen, Bd. 108, p. 369, and Thomson’s of May, 1865:
see Proceedings of Royal Society for that date. Saint-Venant’s
objections to those arguments of Stokes which are drawn from
the ‘doctrine of continuity,'—practically from the equivalence
of the plasticity of metals and the viscosity of fluids—seem to me
very forcible and should be read by all scientists interested in
the ultimate molecular constitution of bodies. In the question
of rari- or multi-constancy are involved, not merely points of
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technical expediency, but principles going to the base of our
knowledge of matter,—such as our proofs of the equation of
energy and the application of the laws of motion to inter-mole-
cular action.

[197.] Pages 742—46 are occupied with a review of Clausius’
memoir of 1849: see our Art. 1398* It is only necessary to
remark here that recent experiments would, we think, have
removed Saint-Venant’s doubt as to the existence of elastic after-
strain in metals (p. 745). The appendix concludes with a résumé
of all the arguments brought forward in favour of rari-constancy
“(pp. 746—62).

[198.] The Appendice complémentaire is chiefly occupied with
an examination of the elastical researches of Rankine, Clebsch and
Kirchhoff, which Saint-Venant tells us had not then been properly
studied in France. We note one or two points:

(@) In § 78 (pp. 764—7) Saint-Venant cites experiments of
Morin to prove the linearity of the stress-strain relation. These
experiments are really not conclusive, and I especially distrust
the results cited for cast-iron. For elastic strains of such magni-
tude as occur in structures, the stress-strain relation for this
material is certainly not linear. Nor again can arguments drawn
from wires reduced to a state of ease serve the purpose Saint-
Venant has in view of demonstrating the linearity and perfect
elasticity of all materials for small strains.

(®) § 80 (pp. 771—4) treats of what Saint-Venant terms
Pétat dit naturel ou primatif. This is the state of no internal
stress. It is used as a means of deducing the uniqueness of the
solution of the elastic equations. If there be no body force or
surface load the internal stresses are all zero, and wice-versd.
I have already had occasion to remark on the caution with
which this principle must be accepted: see our Arts. 6 and 10.
The arguments of this section do not seem to me very convincing.

(¢) On pp. 783—86 the reader will find some interesting
notes and valuable historical references on the origin of the terms
potential and potential function.
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(d) § 84 (pp. 789—96) reproduces the erroneous method of
the memoir of 1863, for finding the stresses when there is an
initial state of stress. C. Neumann (see our Chapter X1.) had
previously obtained similar results for the case when the initial
stress is given by an uniform traction : see our Arts. 129—31.

(e) Pages 801—25 are occupied with an important discussion
of the distribution of elasticity in aeolotropic bodies. Saint-
Venant using the symbolic method of Rankine arrives at some
of the results of his memoir of 1863 : see our Arts. 135—7.

The investigation of the tasinomic equation for particular
cases, of the distribution of the stretch-moduli, and of the ellip-
soidal distribution of elasticity in amorphic solids or cases of
confused crystallisation follow the lines of the memoir of 1863:
see our Arts. 136 and 151. They are accompanied by a discussion
of the experimental results of Hagen, Chevandier and Wertheim, as
bearing upon this theoretical distribution of elasticity. We shall
return to this point when treating of the annotated Clebsch :
see our Arts. 306—13.

(f) The remaining pages of the volume (825—49) are
occupied with a sketch of Clebsch’s treatment of the problem of
torsion and flexure (see his Theorie der Elasticitit § 23) and
Kirchhoff’s memoir on rods (see Crelles Journal, T. 56, p. 285,
Ueber das Gleichgewicht und die Bewegung eines unendlich-diinnen
elastischen Stabes). Saint-Venant shews how they are in agree-
ment with his treatment of the problem, but does not contribute
any additional matter.

[199.] Our analysis of Saint-Venant’s edition of the Legons
de Navier will, we hope, have gone some way to convince the
reader of the thorough study which this work deserves. Taken
in conjunction with the annotated Clebsch (see our Art. 297) it
forms the best introduction to the wide subjects of elasticity and
the strength of materials yet published.
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SEcTtioN IV.

Memoirs of 1864—1882.
Impulse, Plasticity, etc.

[200.] Compléments au Mémoire lu le 10 aodt 1857 sur
Uvmpulsion transversale et la résistance vive des barres, verges ou
poutres élastiques.

Comptes rendus, T. LX. 1865, pp. 42—47 and pp. 732—35, T.
LXL 1865, pp. 33—37 and T. Lx1L. 1866, pp. 130—134. These
extracts of additions to the memoir of 1857 (see our Arts. 104—8)
are all more fully developed in the annotated Clebsch: see our
Arts. 342 et seq.

[201.] Note sur les pertes apparentes de force vive dans le choc
des pieces extensibles et flexibles, et sur un moyen de calculer
élémentasrement Uextension ou la flewion dynamique de celles-ci:
Comptes rendus, T. LX11. 1866, pp. 1195—99.

This note suggests the application of the principle of virtual
displacements and of the hypothesis that dynamical strain is of the
same form as statical strain to the problem of impact. Saint-
Venant apparently considers that in his papers of 1865—66 he had
been the first to adopt this method, but as we have seen it is
really due to Cox: see our Art. 1434*. The discussion in this
Note appears in a more consistent form in the annotated Clebsch :
see our Art. 368. It is Saint-Venant’s great service to have
shewn that the accurate and approximate methods agree fairly
closely, and why they agree. Cox’s method gives a result which
is almost the same as that given by taking the term involving the
principal vibration only. This point is well brought out in the
concluding paragraphs of the Note, pp. 1198—09.

[202.] Démonstration élémentaire: (1°) de Uexpression de la
vitesse de propagation du son dans une barre élastique ; (2°) des
Jormules nouvelles données, dans une communication précédente,
pour le choc longitudinal de deux barres: Comptes rendus, Tome
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Lxiv. 1867, pp. 1192—5. This is an extract from a memoir
afterwards published in the Journal de Liouwille: see our Arts.
2083—20. Other parts of the same memoir are extracted in
Comptes rendus, T. LX11L 1866, pp. 1108—1111, and T. LXIV.
1867, pp. 1009—1013.

[208.] Sur le choc longitudinal de deux barres élastiques de
grosseurs et de matidres semblables ou différentes, et sur la propor-
tton de leur force vive qui est perdue pour la translation ultérieure;
... Bt généralement sur le mouvement longitudinal d'un systéme de
deuw ou plusieurs prismes élastiques: Journal de Liouville,
T. x1. 1867, pp. 237—376, (the last two pages containing
errata). :

This is a long and theoretically very interesting memoir on
the longitudinal impact of rods. It is the first complete treatment
of the subject published. German writers have made some claim
in this respect for Franz Neumann, who in his Kénigsberg lectures
of 1857—8 dealt with the problem in somewhat the same fashion.
But Neumann’s investigations as first published in the Vor-
lesungen tiber die Theorie der Elasticitdt, 1885, pp. 340—346, are
very insufficient and incomplete as compared with Saint-Venant’s.
Experimental investigations have been made by Boltzmann,
W. Voigt, Hausmaninger and Hamburger with a view to testing
the theory. Their results are not in full accordance with Saint-
Venant’s formulae. I shall refer to certain points of difference in
discussing the present memoir, but the articles devoted to their
memoirs must be consulted for fuller details.

[204.]) The memoir is divided into two parts, the first treats
of the impact of two rods of the same material and of equal cross-
section. It is divided into seven articles. The first of these
(pp. 237—244) deals with the history of the problem. At the
invitation of Coriolis in 1827 Cauchy had investigated the influence
of the vibrations produced by impact in altering the translational
energy of two rods; Coriolis having recognised that these vibrations
must be a source of loss in visible energy. Cauchy accordingly
presented on February 19, 1827, a short note to the Academy,
which was printed in the Bulletin...de la Société Philomathique,
December 1826, pp. 180—182, and afterwards in the Mémoires de
UInstitut. Cauchy treated only of the longitudinal impact of two
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rods of the same material and section. He concluded that the
impulse terminated whenever the two bars had not the same
speed at their impellent terminals. This, as we shall see, is not
true, and the conclusion vitiated some of Cauchy’s results, the
analysis of which does not appear to have been published.

Poisson in the second edition of the Traité de Mécanique (1833,
Vol. 11. pp. 331—47) also attacked the problem supposing his rods
of the same material and cross-section. He used a double condition
for separation, namely, not only that the bar which precedes shall
have a greater speed at the impelled terminal than that which
follows, but that the squeeze in both at the impellent terminals shall
be simultaneously zero. This condition led Poisson to the singular
conclusion that two unequal bars would never separate. He had
forgotten that physically they can never sustain a stretch at the
impellent terminals. In fact Cauchy’s condition of excess of speed
in the preceding bar is insufficient, and Poisson’s additional one of
no squeeze is superabundant. The true condition is clearly excess
of speed at a time when there is zero squeeze at the impellent
terminals, which can never sustain a stretch. It will also be
necessary to shew that the bars thus separated are separated for
good, and do not, owing to their vibrations, come again into
contact.

[205.] Saint-Venant’s method of treatment is to investigate
the vibrations of a bar, of which the initial condition is given by
zero stretch throughout, and by speeds constant for each of the
several parts into which the rod may be supposed divided. The
first instant at which a zero stretch at the section between any
two of these parts is accompanied by an excess speed in the terminal
of the preceding section marks a disunion if the parts are not
those of a continuous rod. In this manner Saint-Venant shews
that if two bars of the same section and material are in impact
the shorter takes ultimately and uniformly, while losing all strain,
the initial speed of the longer.

This result was stated by Cauchy in 1826. Saint-Venant
refers to the elementary proof of it given by Thomson and Tait in
§§ 302—304 of their Treatise on Natural Philosophy which in
1867 was in the press. His notice had been drawn to this proof
by an article in The Engineer (February 15, 1867) due to Raunkine
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who, reviewing the extract in the Comptes rendus of Saint-Venant’s
memoir, had also given an elementary proof of one of his results
for rods of different materials and cross-sections.

[206.] The second paragraph of the memoir (pp. 244—251)
gives the general solution in finite terms of the equation for the
longitudinal vibrations of a rod, when the initial speed and stretch
of each point are given. The third paragraph deals with the
special case of this when a rod of length @ =a,+ a,+ a,+... has
these parts initially subjected to uniform speeds V, V,, V,...
and uniform squeezes J,, J,, J,... ete. respectively (pp. 252—259).
On pp. 254 and 258 we have diagrams which exhibit graphically
in the special cases of two or three parts the speed and squeeze
at each point of the rod during the motion. These diagrams are
extremely instructive, and a similar method might be used with
advantage in other cases of vibratory motions solved by arbitrary
functions.

[207.] The fourth paragraph is entitled: Probléme du choc
longitudinal de deux barres de longueur a,, a, parfaitement élasti-
ques, de méme matiére et de méme section, animées primitivement
de wvitesses uniformes V,, V, sans compression initiale (pp. 259—
262). This applies the results of the preceding paragraph to the
simple case of impulse above stated, taking V, >V, and @, < a,
Diagrams are given for the values of the speed and squeeze up

to the time ¢ given by &t = 2a, + 2a, for the two cases 2a, <a, and

a,<a,<2a, Here k=velocity of sound (=+EJp). I have
reproduced these diagrams reduced in scale on p. 140. Along the
horizontal axis the values of k¢ are laid down, and along the vertical
we have the various points of the combined rods, 04, =a, 4,4 =a,,
In each area is placed the value of the speed and squeeze for that
area, so that by means of the coordinates k¢ and # we can find the
speed and squeeze of any point of the rod at any time. We see
from this that at time ¢=2a,/k the contiguous terminals will be
moving with unequal velocities ¥, and 4 (V, + V) but that this is
only for the instant, and as there is no stretch at those terminals,
the bars will not separate. They afterwards move till ¢ = 2a,/k with
the same velocity at the contiguous terminals and no squeeze.
The impulse is terminated, but the bars do not yet separate.
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Unequal speeds occur again when t=2a,/k, and now the
j=—(V,—= V)/2k at the

upper bar has a negative squeeze, j) =

CASE 2¢a, < a,.
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impelled terminal. Hence the solution no longer holds, and we
have to treat each bar from this epoch as a distinct one. The
bar a, moves obviously without strain and with the speed V,
which the bar a, initially had. To deal with the bar a,, we have
to distinguish two cases. Let us suppose:

(1) 2a,<a, We have to enquire how a bar of which a
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portion 2a, has initially a speed v=3%(V,+ V,) and a negative
squeeze j=—%(V,— V,)/k, and a portion @, — 2a, a speed v="7V,
and a squeeze j = 0 subsequently moves. This has been ascertained
in the second paragraph of the memoir and is represented by
Saint-Venant in the accompanying diagram.

A"
x=ay+as
% v= Vg
2 j=
x=3a; x{{% J=0 x=3a,
Vi+V
i , Dt
Vi—Va 2
% e n-ra
;\p-“' HE
[\2d
W v=V;
Al" Y J=0
xr=a;
kt=2a; ki=2a, kt=2ar+2a,

We see at once that after ¢=2a,/k the terminal moves with
speed V, and therefore separates from the terminal of a, with
speed V,—V, This lasts till ¢=2 (e, + a,)/k, when what
happened at time ¢ = 2a,/k repeats itself and the terminal moves
with speed V,, i.e. with the same speed as the terminal of a,
Thus it alternately moves with greater and equal speed, or the

two terminals never again come into contact.

(2) a,<a,<2a,. We have to enquire how a bar of which
a portion 2a,—2a, has initially a speed v =3 (V,+ V,) and
negative squeeze j=—34(V,— V)/k, and a portion 2¢,—a,, a
speed v=V, and squeeze j =0 subsequently moves.

The motion is represented in the first diagram on p. 142, and
we see that after the time ¢ =2a,/k these bars never again come
into contact.

[208] The second diagram on p. 142 represents the whole
motion of the two bars supposing them to be endowed with a
uniform velocity perpendicular to their lengths during and sub-

~ sequent to the impact. The full lines give the paths of various
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points of the rods, the dotted lines give the points at which the
speed or squeeze of the rods changes abruptly. They corre-

¥ A" k=2a,+as Kt=3ag
r=a;+ag
x=2as—ay
”n
4,
x=a
kt=2ay kt=2ag kt=2a,+2ag

spond to the sloping lines of the previous diagrams. Saint-
Venant calls the points at which velocity and squeeze change
abruptly points d’ébranlement. It is hardly necessary to add that
the stretch and squeeze of the rods are for diagrammatic purposes
enormously exaggerated.

eﬂ\
a /
____,//%

’_/—_%

« ]
1 /Of lov

T g 717 1V

B L 003 2370 s ol (el ol | '
o va kt=ay 2a; ag I l2ﬂ2 a;+2ap § 3as a;+3as 4ag 2ay+4ay kt=6ay T

v kt=0 a1tas 2a1+as  ki=2ay+2ay

The separation of the two rods is discussed in Saint-Venant’s
sixth paragraph, the fifth having been devoted to a verification by
means of the solution in trigonometrical series of the general
results of the fourth paragraph: see pp. 262—269 of the memoir.

[209.] The seventh paragraph (pp. 278—86) is entitled ; Con-
séquences—Force vive translatoire perdue dans le choc des deuz
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barres élastiques de méme grosseur et de méme matidre.— Vitesses
de translation aprés le choc. Let U,, U, be the centroidal speeds
after the impulse, i.e. at time ¢ =2a,/k; then, as we have seen on
p. 140, U,=V,. To obtain U, we have only to make use of the
principle of conservation of momentum, or

a,U,+a,U,= a,V,+a,V,
whence we find
P S
2
together with U="7,
We easily deduce

m n M o, M) o, Ma a,
'2_(a1V12+a’2V2)_ 2 Uz_ 9 Ul"' 1<1_E> (V—V)2

2 . 1 2
Or, the loss of kinetic energy of translation
_ma, /. @ T i
=5 (1 a) BEL =2V )° L A (i1).

Writing M, =ma,, M,= ma,, we see the following differences
between Saint-Venant’s theory and the ordinary theory of the
impact of perfectly elastic bodies:

Saint-Venant’s theory Ordinary theory
21,
= V. Sl aleas 20t 24
o A Ky (T 7
= i, 2M,
0= V2+A,—[2(V1"‘V2) V2+EI_M2 (V1= 72)
Loss of M, 2
Energy % ‘DII ( T Mg) (Vl 5 V2) 0

Comparison with the so-called inelastic bodies of the ordinary
theory gives no better agreement.

[210.] It may be noted here that Voigt's results for rods
' of equal cross-sections do not agree with Saint-Venant’s theory
when the shorter is the impelling rod. (Annalen der Physik,
Bd. x1x. 1883, p. 51.) Further Saint-Venant makes the duration
of the impulse = 2a, /k, or = 2a,/k if we take it till the instant
when the rods actually separate. In either case the duration
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of the impulse is proportional to the length of one of the rods
and independent of the area of the cross-section. These results do
not agree with Hamburger’s experiments (Untersuchungen iiber die
Zeitdauer des Stosses elastischer cylindrischer Stdbe: Inaugural-
Dissertation, Breslau 1885, pp. 23—27). Hamburger finds that
the duration is a function of the velocity of impact, which con-
tradicts Saint-Venant's results.

[211.] The second part of Saint-Venant’s memoir is entitled :
Choc de deux barres dont les sections et les matiéres sont différentes.

The first paragraph (§ 8, pp. 286—98) gives in a double form
the solution of the problem of the motion of two contiguous rods :

1° in trigonometrical series. This result Saint-Venant had
obtained in an earlier memoir: see our Arts. 107 and 200. He
adds the solution for beams in the form of truncated cones as
given in the Comptes rendus, LXVIL; see our Art. 223. He remarks
of these solutions :

Au mémoire cité, complément de ceux que j'ai présentés depuis

1857 et qui vont &tre imprimés au Journal de I Eeole Polytechnigue, on
trouvera le développement de cette solution, & laquelle il convient de
recourir quelquefois méme pour les barres prismatiques, comme nous
verrons plus loin, notamment quand une des deux parties a une section
relativement fort grande, une longueur fort petite ou une résistance
élastique considérable; suppositions qui poussées plus loin "encore,
permettent de réduire l'une des deux parties ou barres & une masse
étrangére parfaitement dure, pouvant étre venue heurter I'autre barre
supposée libre aussi, ce qui constitue un probléme dont la solution
directe, a été présentée en 1865 (Comptes rendus, T. 1X1., p. 33 : see our
Arts. 200 and 221).

2° in finite terms. This solution is somewhat lengthy, but is
accompanied by diagrammatic representations of speed and
squeeze of the same character as in the simpler case when the
bars have equal cross-sections and sound-velocities. It is of a
more complex nature, however, in particular the sloping lines
become more numerous and change their slope abruptly at the
horizontal line which marks the contiguous terminals: see p. 297
of the memoir. :

[212.] The general solution is applied to the special case of the
impact of two rods where initially the squeeze is zero throughout
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and the velocities are respectlvely V., V,: see the ninth and tenth
paragraphs. The results are again of a somewhat complex nature,
but are rendered more intelligible by the aid of diagrams. They
occupy pp. 299—326 of the memoir.

[213.] The eleventh paragraph is entitled: Conséquences, en
ce qui regarde le mowvement des deux barres aprés Uinstant de leur
choc, lewr séparation, et les witesses a Uinstant ov elle sopére
(pp. 327—336).

Let M, (=muay), &y, &y, By, Vi, vy, ji be the mass, length, velocity of
sound, stretch-modulus, initial velocity, and velocxty and squeeze of any
point at any time of the first bar; similar quantities with the subscript
2 will refer to the second bar. Let r=myk,/(mk,), and = =a,/k,
T,=ay/k,, We shall suppose 7, <7, or that sound traverses the following
in less time than it does the preceding bar; this supposition is allowable as
we can choose arbitrarily which sense of the velocity shall be considered
positive. In discussing the results of the investigation we have to
consider three possible cases :

r=1, r>1, and »<1.
Case (i). r=1, or myk, = mk,

The impulse ends when ¢= 27,, but the bars do not separate until
t=2r,. 'We have for the centroid-velocities after impact,

M,
g ; g V2+jl—[;(V1— 7).

Thus the two rods behave in this case exactly like bars of the same
material and of equal cross-section.
Case (ii). r>1, or myk,>mk,.

The impulse ends and the bars separate when ¢ = 2r,.
In this case :

AR S e
U=Tom 2 e, V1 T
M, mk,
U,=7, +2M RETIVEE (V1= Vo).
Case (iii). r<1 or myk, <mk,.

The bars no longer separate when ¢= 2r,, but at the instant given
by t=2m,

If n be a whole number such that

nr<m<(n+l)r,
then :

S.-V. 10



146 SAINT-VENANT. [214—215

e () - G-

Uy= V’+T[:(V‘_ U,).

where the value for U, on the right of the value for U, must be substituted
from the first expression.

[214.] It will be observed that these formulae are again
widely removed from those of the ordinary theory. They have
been tested by Voigt for the velocities U, and U, of rebound,
and by Hamburger for the duration of the impact. Neither find
a really sufficient experimental accordance. Voigt attributes the
discrepancy to the hypothesis adopted for the contiguous terminals,
and considers that the rods cannot, while the contiguous terminals
are in contact, be replaced by a single rod. He proposes a new
theory, which introduces an elastic couch of some indefinite
material (Zwischenschicht) between the terminals. This in a
limiting case reduces the expressions for U, and U, to those of the
ordinary theory, which in the same case agrees fairly with the
results of experiment. In the general case, however, he has
neither sufficiently specialised his hypotheses nor worked out his
analytical results, so that we are unable to form any but the
vaguest comparison of theory and experiment. His constants are
unknown functions of material and of cross-section, and there
seems no means of determining their form: see our discussion of
his memoir later. A good test of Saint-Venant’s theory might be
made by experimenting in a vacuum and so removing a portion
of Voigt’s couch. I am inclined to think the discrepancy has
more to do with thermal effect than with the couch of air, and
that we ought to seek for results corresponding to those of the
ordinary theory not when the coefficient of elastic impact is taken
as unity, or the °‘elasticity perfect, but when it has a value
differing from unity and so allowing for a loss of energy by heat.
The problem ought not to be impossible with the aid of Duhamel’s
thermo-elastic equations.

[215.] In the twelfth paragraph (pp. 336—342) it is shewn
that the bars after separating at time ¢= 27, or =27, as the case
may be, do not again come into contact. The thirteenth paragraph
represents by diagrams similar to the figure on our p. 142 the motion
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of the two bars before, during and after the impact. These diagrams
bring out very clearly the time of separation, and in Case (iii.), r <1,
shew how both bars retain a portion of the energy in the vibrational
form, while in the previous case one bar only has any vibrational
energy: see pp. 342—7 of the memoir, especially the diagram
p- 345.

[216.] The following or fourteenth paragraph (pp. 347—50)
is entitled: Condition générale de séparation des barres d un
wnstant donné quelconque, exprimée en fonction des vitesses et des
compressions de leurs extrémités jointives & cet instant.

Let V5, J; be the velocity and squeeze of the bar a,, supposed to be
the impelled or preceding bar, at the point of contact.

Let V7, Jy' be the like quantities for the impelling or following bar.

Saint-Venant deduces the necessary and sufficient condition for
separation as follows :

Supposons en premier lieu, ce qui est permis, qu'elles se séparent pendant
un temps infiniment petit. Le dlagramme (23) du no. 3 relatif aux barres se
mouvant isolément, ou le théoréme qu'on en déduit, énoncé a la fin de ce
méme numéro, montre que leurs vitesses, au point de leur Jonctlon, devien-
dront immédiatement aprés :

Ve —kyJy’ pour ay,

Vi +kJ, pour a,.
Cette soustraction —#Z,/, et cette addition X4, faites & leurs vitesses
posﬂ;lves, viennent, comme on a dit alors, de -la détente de compressions
JY, Jy. Sila nouvelle vitesse de a, excéde la nouvelle vitesse de a, elles

’élmgnent alors 'une de lautre.
La condition de séparation ou d’éloignement est donc

Vy — by — Vi— ki >0.

This arises from the fact that a wave of squeeze j is propagated along
the rod with the velocity % of sound ; = %j is then the velocity at which
a cross-section is shifted (vitesse de détente), and if the whole of the rod
were moving with velocity v, the rate of transfer of the section
through space would be v=£%j. But in the case of a free terminal
section this must denote its absolute velocity, where » now becomes
the velocity through space of the element at the end of the rod: cf. pp.
357—8 of the memoir with p. 347.

[217.] The fifteenth paragraph treats of the loss of kinetic energ
or the energy of translation transformed into energy of vibration. All
the formulae of our Art. 213 may be included in the forms

U=Vi—a(V,-Vy), U,= V+a—(V V).
10—2
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The energy lost is then represented by
M {2a—(1+ M| M) a?} (V= Vo)™
Since there must always be a loss of energy, it is necessary that
2M,

<M+ M,

Saint-Venant shews from the values of a in the various cases referred
to in Art. 213 that this is always true (pp. 361—355).

The coefficient of dynamic elasticity e as investigated by Newton
(Principia, Ed. Princeps, p. 22) has probably relation to the energy lost
not only in vibrations, but also in the form of heat. To make Newton's

. e M,
formula agree with the above, it is necessary to take a= Wik, (1+e),

supposing for a moment Newton’s laws to hold for rods and that the
energy lost is principally vibrational, not thermal. This gives us, for
example in Case (ii) of Art. 213,
g Mt + Mty Ky
myky + moky

Thus if the rods were of different materials, it is difficult to
see how ¢ could be independent of their masses, which Newton
proved for the impact of spherical bodies. Further in the case
of equal rods of the same material e would always equal unity.
This again is not true for most bodies. Hence we are driven to
conclude either that the amount of thermal energy generated is
generally of importance or that the conditions at the surface of
impact adopted by Saint-Venant are not satisfactory. It would
be interesting to make experiments for a material for which e is
nearly unity, the rods being of equal cross-section and the same
material, and then endeavour to ascertain by varying their masses
whether there was any change in e. Haughton’s experiments
seem to indicate that e is not constant but a function of the
velocity of impact ; this does not suggest Saint-Venant’s form, but
it is interesting as pointing out a want of constancy in this coeffi-
cient: see our Arts. 1523* and also 941%, 1183*.

l+e=

[218.] In his sixteenth paragraph (pp. 355—373) Saint-Venant
proceeds to give an elementary proof of the formulae of Art. 213.
This proof does not involve differential or integral processes, but
it seems to me that, while luminous and suggestive to the reader
of the previous analysis, it would not in the more complex cases
be of equal value to the student who approached in this manner
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for the first time the problem of the impact of bars. Similar
proofs for the simpler cases have been given by Thomson and
Tait (§§ 302—305 of their Natural Philosophy), and by Rankine
(The Engineer, February, 1867, p. 133).

[219.] The elementary discussion opens with a deduction of
the value of the velocity of longitudinal sound vibrations in a rod
(=+/EJp). At that time Saint-Venant thought it novel, believing
that no elementary proof had been offered since Newton’s rather
obscure demonstration of the velocity of sound. In a Note in the
Comptes rendus, LXXL 1867, p. 186, Saint-Venant acknowledges
the priority of Babinet, who had given the proof in oral lectures
40 years previously and published it in his Ezercices sur la
Physique, Second Edn, 1862. In the same Note Saint-Venant
gives in a footnote an elementary demonstration of the velocity of
slide waves (= J/u/p).

[220.] We shall not reproduce any of Saint-Venant’s elemen-
tary treatment, but merely refer the curious reader to the sixteenth
paragraph of his memoir. We conclude with a short extract on
this point from the résumé of his memoir which he gives in the
seventeenth paragraph:

J’aurais pu borner mon travail i ces sortes de démonstrations, . Mais
les solutions analytiques, telles que celles qui m’ont conduit aux résultats
présentés, portent leur genre de conviction comme les solutions synthé-
tiques, et ce n’est pas trop du concours de deux genres de recherches et
de raisonnements pour établir complétement des résultats tout nouveaux
et controversés. Kt puis, il eut manqué quelque chose, savoir la preuve

que les deux barres, aprés s'étre séparées pendant un temps fini, ne se
rejoindront pas en vibrant (p. 374).

[221.] Choc longitudinal de deux barres élastiques, dont lune
est extrémement courte ou extrémement roide par rapport & Uautre :
Comptes rendus, LXVI. 1868, pp. 650—3.

This may be looked upon as a supplement to the memoir in
the Journal de Liouville: see our Art. 203. Saint-Venant had
treated this case in that memoir by expressions involving trigono-
metrical series; he now proposes to give its solution in finite terms.

If @), a, be the lengths of the two bars, &, k, the corresponding
velocities of sound, M, M, the masses, V,, V, the initial velocities, U,, U,

the final mean velocities of the impelling and impelled bars, then Saint-
Venant had obtained in that memoir the following results for the case
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in which a,/k,, or the time sound takes to traverse the second bar, is an
exact multiple n of the time a,/k, it takes to traverse the first bar:

U, = V+< >(V, 7.),

AR { (E—:)}(V, AT P I A (),

_ M, a,kz
= A J

Now if the impelling bar is infinitely short or infinitely hard (if a, =

where,

or ky=c0), the number » (— 'g—% 1) will be infinitely great, hence it

follows that :
1 P\l
(1 i 'r) i T,

and the formulae (i) become :
C Uy =V (Vy = V) e 20/
U,=Vy+ My M,. (1 - 222y (7, _ 7)),

[222.] Saint-Venant also shews in this memoir how to obtain
from the results of his previous memoir the velocity and squeeze
of each bar at each instant of the impact. Thus:

(1°) For the impelling bar. From ¢=0 to 2a,/%,,

velocity = V, + (V;— V) ¢~ Mol - batlas
squeeze = 0.

(2°) For the impelled bar. First from ¢=0 to a,/k,:

V,) ¢~ M. (Rt s
= My/H, . (gt =)ty

velocity = V,+ (¥, -
squeeze = (V= Vy)/ky. e
{ velocity = V,

{squeeze = 0.

Secondly from ¢= a,/k, to 2a,/k,:

From z=0 to kg, {

From x = /%, to a,,

From =0 to 2a, — &yt the velocity and squeeze have the same values
as previously from 2 =0 to %,
From x = 2a, — kyt to a,,
{velocity =V, +(V,— V) {e'Ma/Ml <lest=2)/ag - Mo/ Dy (kat+:v—2a,)/a»z}’
squeeze = (V,— V,)/ky. {e~ Mo/ 2 - Cit=alas _ o= I/My . (it +a=20,)/asy

This gives the whole state of the bars up to the end of the impact or
until ¢ = 2a,/k,.
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Saint-Venant tests these results: 1° by the principle of con-
servation of momentum, 2° by that of conservation of energy, 3° by
comparing the above finite forms with the solutions in trigono-
metrical series. He finds them verified in all cases. In the con-
cluding paragraph he promises in a future communication to deal
with the case of a bar with one terminal fixed and the other
terminal struck by a load represented by an infinitely short second
bar. This is a fundamental problem in suspension bridge bars,
and solutions in trigonometrical series had been given by Navier
and Poncelet: see our Arts. 272* and 991*. Saint-Venant
promises one in fintte terms.

[228.] Solution, en termes finis, du probléme du choc longi-
tudinal de deux barres élastiques en forme de tronc de céne ow de
pyramide : Comptes rendus, LXVI. 1868, pp. 877—81.

This is again a complement to the memoir in the Journal de
Liouville (see our Art. 213). It gives in finite terms a solution
for a case in that memoir, which Saint-Venant had only solved
in trigonometrical series. Namely the case when the bars instead
of being prismatic are truncated cones or pyramids.

The equations for the vibrations are in this case of the form :

d (B,Q, duy/dx,) d*u,

S e 2

where p, is the density and Q, the cross-section == o, (1 + 2,/h,)% o, and A,
being constants, If we put Z,/p, =%,* we have an integral of the form :

S (e + by + Byt) + Fy (e, + by — i)
= !
@y + Iy

Similarly there will be two arbitrary functions f;, F, for the
second bar. The problem is to determine these four functions by
the initial conditions du,/dt= TV, from 0 to a, du,/dt=—V, from
0 to a,, while the initial squeeze is zero throughout the bars. The
terminal conditions have also to be satisfied throughout the
motion. The forms of the functions are given on pp. 879—80 of
the memoir, and the general treatment of the problem indicated,
without, however, any numerical details for special cases.

La solution s'étendrait méme & plusieurs barres juxtaposées bout a
bout, et.par conséquent au choc de deux solides allongés quelconques &
axe rectiligne, car ces solides peuvent toujours étre approximativement
décomposés en troncs de pyramide & base quelconque (p. 881).
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[224.] Legons de mécanique analytique, par M. I’Abbé Moigno.
Statique. Paris, 1868. The last two Legons of this work, the
twenty-first and twenty-second, pp. 616—723, contain a general
theory of elasticity by Saint-Venant. This is the fourth such
general theory that we have from his pen, the former three being
respectively in the memoir on Torsion, in that on Flezure, and in
the Legons de Nawvier: see our Arts. 4, 72,and 190. Saint-Venant’s
treatment is in the main a modified and improved form of that of
the second, third and fourth years of Cauchy’s Ezercices de mathé-
matiques ; that is to say it starts from the molecular definition
of stress (p. 617). After a very full analysis of stress and strain
we reach the general elastic equations. The hundred odd pages
form one of the best introductions to the subject of elasticity,
though they naturally contain no new results. We may refer to
one or two points.

[225.] Saint-Venant rejects like Lamé that definition of stress
across a plane, which considers stress as the force necessary to
retain the plane in equilibrium if it were to become rigid (footnote
p. 619). This apparently simple definition conveys, he holds, no
exact notion and its simplicity is a pure delusion. In other words
he insists upon the importance of the molecular-definition of stress:
see Lamé’s Legons sur Uélasticité, § 5, and our Arts. 1051* and 1164*.

[226.] The well-known theorems of Cauchy and the equations
to his ellipsoids are reproduced with short proofs: see our Arts.
603*—12*. We may note also on p. 630 a demonstration of
Hopkins’ theorem: see our Art. 1368*. Relations for change of
direction of stretch and slide, such as those of our Art. 133, are
given on pp. 644—5. Saint-Venant remarks that these relations
were first given by Lamé in 1851, but that he assumes that the
shifts are small ; the proof given by Saint-Venant holds for any
shifts, provided the relative shifts, i.e. the local strains, are small.

[227.] On pp. 652—3 Saint-Venant states as a Lemma and
proves the principle of linearity of the stress-strain relations, ie.
the generalised Hooke’s Law. The proof appeals to the rari-
constant hypothesis. The reader will remember that there is an
unjustifiable assumption often made in the proof of the generalised
Hooke’s law by Green’s method: see our Art. 928*%. We may note
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here how Saint-Venant as a rari-constant elastician proves his
Lemma. After stating that the stresses must be functions of the
strains he continues:

Et elles en sont fonctions linéaires ou du premier degré ; car, comme
les actions réciproques entre molécules sont fonctions continues de leurs
distances mutuelles r, celles que développent de ¢rés-petites augmenta-
tions rs, des distances leur sont proportionnelles; et les changements
trés-petits des inclinaisons mutuelles de ces actions & composer ensemble
pour avoir les pressions sont proportionnelles aussi & des augmentations
rs, de distances. Or ces petites augmentations positives ou négatives :
TSy =TC Sy + 108y + TC8, + TCpCr 0y + TCrlra sy + TCrellry Ty

[see our Art. 547%)
sont sommes de produits des premidres puissances des dilatations et
glissements s, o par des quantités rc%.,...r¢c,, qui ne dépendent que de
Pétat antérieur aux déformations...... Les composantes zz...zy des pressions
sont donc fonctions du premier degré des mémes six quantités trds-
petites s et o, ce qui est le lemme énoncé.

It will be noted that a clear reason is here given for the
legitimacy of Taylor’s theorem and the retention of the first
powers. [t depends on the rari-constant hypothesis. A slight
discussion of this point with a reference to the Appendice V. of
the Legons de Nawier will be found on pp. 654—6: see our Arts.
192 and 298. There is a footnote on the arbitrary assumption
of the stress-strain relations for isotropic bodies by Cauchy and
Maxwell : see our Arts. 614* and 1537*,

[228] On p. 670 there is a footnote citing the values of the
stretches and slides for large shifts. This requires modifying in
the sense of my remarks in Art. 1619*—22%,

There is an excellent proof on rari-constant lines following
Cauchy of the most general elastic equations with initial stresses
on pp. 673—689. It is followed on pp. 694—7 by some useful
remarks on the difficulties which occur in the treatment of stresses
as the sums of intermolecular actions: see our Arts. 448* and 1400%.
The pitfalls into which Poisson, Navier and others have fallen are
well brought out.

[229.] This discussion on elasticity concludes with a deduc-
tion of the expression for the strain-energy (Green’s function) by
means of Lagrange’s process and the rari-constant hypothesis (p.
717). The method is similar to that used by C. Neumann in his
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memoir of 1859: see our Chap. XI. It is pointed out that if
Navier's error of taking (r, —r) f” (r) instead of f(r) + (r, = r) f' (r)
for f(r,) be avoided, and if the summations be not replaced by
integrals, then Poisson’s objection to the application of the Calculus
of Variations to molecular problems falls to the ground (p. 719):
see our Arts. 266* and 446*. Finally there is an account of Green’s
process and an unfavourable criticism of his theory of double
refraction (pp. 719—23) : see our Arts. 147 and 193.

[230.] Formules de Ulélasticité des corps amorphes que des
compressions permanentes et négales ont rendus hétérotropes.
Journal des mathématiques, Tome Xmir 1868, pp. 242—254. In
his memoir of 1863 Saint-Venant has shewn on the rari-constant
hypothesis that the ellipsoidal distribution of elasticity holds for
aeolotropic, but amorphic bodies, i.e. bodies such as the metals,
whose primitive isotropy has been altered by a permanent strain,
which has not converted their elements into crystals; such a
permanent strain for instance as would be produced by the pro-
cesses of rolling, forging, ete. This ellipsoidal distribution he has
applied to explain the phenomena of double refraction, without
adopting exact transversality of vibration, but obtaining without
approximation Fresnel’s wave-surface. The ellipsoidal conditions
are of two kinds:

(i) a group of the type 2d +d’' = /be }
or, (ii) i3 L » 2d+d=1%(b+c)

If the differences of the direct-stretch coefficients (b—¢, ¢ —a,
a —b) are so small that their squares may be neglected, these two
groups of conditions are identical ; this is probably the case in the
metals used for construction, and in doubly-refracting media:
see our Arts, 142—7. The conditions by which Saint-Venant
would replace Green’s relations—the Cauchy-Saint-Venant con-
ditions as we have termed them—amount to an ellipsoidal dis-
tribution of elasticity (see our Art. 149), but this distribution
Saint-Venant has only discussed on the basis of rari-constant
equations. Boussinesq in a memoir entitled: Mémoire sur les
ondes dans les milieux isotropes déformés, which immediately pre-
cedes the present memoir (pp. 209—241 of the same volume) has
deduced the Cauchy-Saint-Venant conditions for double refraction
on the basis of the ellipsoidal distribution without any appeal to

g ek g W



231] SAINT-VENANT. 155

rari-constancy. The ellipsoidal distribution is proved by Bous-
sinesq for amorphic bodies on the multi-constant hypothesis,—
provided we assume the elastic coefficients to be themselves
linear functions of three small quantities corresponding respec-
tively to the three principal rectangular directions of the perma-
nent strain given to the initially isotropic material. Saint-Venant
proposes to give a new proof of Boussinesq’s result, so that the
ellipsoidal distribution may be accepted for the amorphic bodies
in question even by multi-constant elasticians.

[231.] Suppose the body initially isotropic to be permanently
strained in such manner that at each point there are three planes of
elastic symmetry, then the stress-strain relations are of the form :

o= a8, + s, + €8, vz =doy,
VW=J)8,+bs, +d’s, fa =00 g8 Yoratiiie LALK Ay (ii).
i =¢s,+d's,+cs, 7y =[O,

Let ¢, €, €' be the three small quantities corresponding to the three
rectangular directions x, v, z of which the elastic constants are, accord-
ing to hypothesis, to be functions, or let the types be

a = o+ he+me + e,
d =8 + pie + q,€ + ke,
d=08+71e+8€ + e

Then since the original condition is isotropy, ¢ must be related to ¢
and €’ in the same way, and further in the same way to € as b to € and
¢ to €. Thus l=my=m,, and m=m=L=n,=l;=m, Similar
relations hold for the constants of d and d’. Thus we may write as
types:

a=a+le+m(d+¢€),
b=a+ld+m(e+¢’),
d'=8+pe+q(d+¢),
¢ =8 +pe+q(e+e’),
d=08+re+s(d+¢"),
e=8+7¢ +s(c+€).. et
. Now if we take ¢ =¢’, or the stretch the same all round the
direction 2, we ought to have not only b=¢, e=f, ¢ =4, which
easily follows, but in addition the values of the constants ought not

to be affected by a rotation of the axes round that of « This
however is easily shewn to involve

b=2d+d,
or what is the same thing

a+me+(l+m)e=280+8+(2r+p) e+ (4s+29) €.
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This involves, as an identity true for all values of ¢ and €, the
further results
a=28+8, m=2r+p, {+m=4s+2q.
Whence we easily find generally :
b+c=2a+ (¢ +¢€") (I +m)+2me,

=2(28+8)+2(¢+€")(28+9)+2(2r +p)¢

=2 (2d +d),
or 2d+d' =% (b+c),
the type of ellipsoidal condition for the second group. It will be

identical with the group of type (2d +d')= Jbe, when we may neglect
the squares of the differences of g, b, ¢, or quantities like (I—m)® (e— €)%
Hence the ellipsoidal conditions have been deduced on a hypothesis
very probable in character and not opposed to multi-constancy.

[232.] The memoir concludes by noting that to the stress-strain
relations (ii) subject to the inter-constant relations (i), we must add
terms of the type :

22y (1 + u, — v, — w,) to zz,

72y U, + W Wy to 7z,
if there be an initial stress xz,, 73, 7z, symmetrical with regard to the
planes of symmetry of the primitive strain. Saint-Venant appeals for
these to his memoir of 1863, but as we have seen he has really only
proved them there for rari-constancy (see our Art. 129).

[233.] Calcul du mouvement des divers points d'un bloc ductile,
de forme cylindrique, pendant qu'il s'écoule sous une forte pression
par un ortfice circulaire; vues sur les moyens d’en rapprocher les
résultats de ceux de Uexpérience: Comptes rendus, LXVI. 1868, pp.
1311—24. This memoir deals only with the motion of the parts
of a ductile mass, and does not take into consideration the stresses
which produce those motions. Its methods thus approach those of
hydrodynamics rather than of elasticity; it belongs as Tresca’s own
theory, to which it refers, to the pure kinematics of deformation.
A report drawn up by Saint-Venant on Tresca’s communications to
the Academy immediately precedes the above memoir (pp. 1305-11).
It deals with and criticises Tresca’s pure kinematic theory.

Memoirs by Saint-Venant treating of the flow of a ductile solid
or of a liquid out of a vessel will be found in the Comptes rendus,
LXVIL 1868, pp. 131—7, 203—211, 278—282 and LXVIIL 1869,
pp. 221—237, 290—301. They cannot be considered to fall in
any way under the title of the elasticity or even the strength of
materials.
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[284.] Note sur les valeurs que prennent les pressions dans un
solide élastique isotrope lorsque Uon tient compte des dérivées dordre
supérieur des déplacements trés-petits que leurs points ont éprouvés :
Comptes rendus, LXVIIL 1869, pp. 569—571. This note gives
without proof expressions for the traction and shear at any point
of an elastic solid. when we do not neglect the squares of the
shift-fluxions, Saint-Venant says that his results have been
obtained from rari-constant considerations. He finds:

.20 Yoy du a0 . du
1‘1’—60(64-2%)4-61{2 %2+V (0+2%)}

a0 dw
2 i 2X72
+ € {4V Tla,c“+v \% (6+2d-—x)}
d*0 du
2%72 2¢72%72 i
+es{6VV—dxz+VVV (9+2dm)}+'"

i = d—v+£ﬁ)>+ 2———d20 +V2(@+dw>}
Bpe (dz dy El{ dydz dz" dy

+ e {4v2£9—+ vy (P, dw)}

dydz dz  dy
d*0 dv  dw
272 297272 e L
+ € {GVV 5 + VIVIV (dz+ dy)}-'

viilhyg &
d " dy* " dz¥
and ¢, €, €, €...are constants depending on the elastic nature of the
body.

Here 0 is as usual the dilatation, V* is the Laplacian

Saint-Venant concludes his note with the remark :

Ces formules serviront peut-étre & expliquer des faits relatifs 3
certaines substances élastiques pour lesquelles le rapport entre les
efforts et les effets varie plus rapidement lorsqu’on les comprime que
lorsqu’on les étend, en sorte que les vibrations qui y seraient excitées
augmenteraient leurs dimensions comme fait la chaleur, dont les effets
de dilatation peuvent étre attribués, comme jai eu l'occasion de le faire
remarquer (Société Philomathique, October 20, 1855: see our Art. 68), &
ce que les actions entre les derniers atomes suivraient une loi analogue,

(p. 571).

[235.] Sur un potentiel de deuxidme espéce, qui résout U'égquation
aux différences partielles du quatriéme ordre exprimant Uéquilibre
wntérieur des solides dlastiques amorphes mon isotropes: Comptes
rendus, LXIX. 1869, pp. 1107—1110,
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This note merely refers to E. Mathieu’s discussion of the potential
of the second kind

¢=[[1f(a B, V) (@ —a) +(y = B) + (2~ 7)' daddy,
by means of which the equation V*V°¢ =0 can be solved. This equation
occurs in the treatment of an isotropic solid. Saint-Venant notices the
form

P S WASC A TR 0w

which solves the equations of elasticity when there is an ellipsoidal
distribution of elasticity : see our Arts. 140-1.

Saint-Venant speaks highly of Cornu’s memoir of 1869 and its
bearing on the constant-controversy: see our Articles below on that
physicist’s work.

[236.] Preuve théorique de Uégalité des deux coefficients de
résistance au cisaillement et & Uextension ou @ la compression dans
le mouvement continu de déformation des solides ductiles au deld
des limites de leur élasticité : Comptes rendus, LxX. 1870, pp. 309
—I11.

The object of this note is to prove the equality between the
coefficient of resistance to slide and the coefficient of resistance to
stretch or squeeze, when both slide and stretch are plastic.

Saint-Venant takes a right six-face of edges a, b, ¢, and supposes
the two faces a x b to be subjected to shearing forces in direction
of @ which produce a plastic slide-set o x ¢, so that the limit of
elasticity is passed. If K’ be the force necessary per unit of area,
the work expended in producing this set is

K'abx o xc,
or, it equals K'e per unit of volume.

Now this same slide-set could have been produced by diagonal
stretch and squeeze of magnitude o/2: see our Art. 1570%. Let
us take the right six-face abc and divide it up into others of the
same breadth b, but of length @’ and height ¢’ making angles of
45° with ¢ and ¢ and having their end-faces ¢’ x ¢’ in the faces
axc. In order to produce set-stretch it is necessary to apply to
the faces b¢' a traction given by Kbc' and to the faces ba' a
negative traction given by Kba', where K is the coefficient of
resistance to both stretch and squeeze. Hence to produce a
stretch of o/2 and a squeeze of o/2 parallel to a’ and ¢’ respectively,
we require work equal to j

e
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! o_ o ‘ -’ g ’
Kbe 5@ and Kba'. 5

or, per unit volume of the little prism a’bc’, we require work equa
to
Ko.
But this quantity must equal the previous K'c or
I ik
the result experimentally ascertained by Tresca.
Saint-Venant concludes the note as follows:

Ce raisonnement me paralt, aussi, justifier I'hypothése, hardie au
premier apergu, mais, en y réfléchissant, trés-rationnelle, de I'égalité des
résistances 3 Dextension et & la compression permanente, par unité
superficielle des bases des prismes qu'on y soumet; bien entendu, sous
la condition générale, que tout ceci suppose remplie, de mouvements
excessivement lents, ou tels que leur vitesse n’entre pour rien dans les
résistances aux déformations qu’ils produisent.

In a footnote he refers to a method by which the flow-lines of a
plastic material might be obtained experimentally.

It must be noted that the proof assumes the coefficients K,
K, of resistance to squeeze- and stretch-set to be equal, otherwise
we should have

K + K,=2K'

The reader may compare Coulomb’s results on shearing and

tractive strength referred to on p. 877 of our first volume.

[237.] Formules des augmentations que de petites déformations
d'un solide apportent aux pressions ou forces élastiques, supposées
constdérables, qui déjd étaient en jeu dans son intérieur.—Complé-
ment et modification du préambule du mémoire: Distribution des
élasticités autour de chaque point, etc. qui a €té inséré en 1863 au
Journal de Mathématiques, (see our Arts. 127—152). This memoir
is published in the Jowrnal de Mathématiques, Tome XVI 1871,
pp- 275—307, and is divided into two parts; the Premiére Partie
(pp. 275—291) is occupied with correcting an error which Brill
and Boussinesq had pointed out in the memoir of 1863 (see our
Art. 130); the Deuxiéme Partie deals with the relations between
the elastic constants leszz(, etc. and the six components of initial
strain. It occupies pp. 201—307 and forms the subject of a note
on pp. 355 and 391 of the Comptes rendus, T. LxX11, 1871,
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[238.] The error in question was really indicated in our first
volume (see Art. 1619%), namely that the true relations between
the strains, s,, ¢’,, and the shift-fluxions are in their most general
form of the types':

Sz+'l'3z’=ux+1}(uzg+ vxs‘*‘wzz) !
oy (U i) (s mme il g - o +'w,,w,} (s

but that these are not the values taken by Saint-Venant in his

memoirs of 1847 and 1863: see our Arts. 1622* and 130.

Accordingly Saint-Venant’s attempt to deduce Cauchy’s equations
from a multi-constant hypothesis is erroneous.

The full value of the potential energy is

b=+ 72 (8o + 182 + oo Fyrvnl
e ?zo o"yz (1 & 31,) (1 + Sz) i oy o AN } ............. (ll),
+ ¢

as Boussinesq had pointed out, and not
P=chy+ Ty S+ .nunn P + 92 0¥ et o a b + ¢y,

as assumed in the memoir of 1863 (see our Art. 130). But the expres-
sion (ii) kas been deduced only from molecular considerations on the rari-
constant hypothesis. The fact is that we can on the multi-constant
hypothesis expand ¢ in linear and quadratic terms of the strain-com-
ponents e, €, €, Ny, Nury Ny Of our Art, 1619%, as Green in fact did
(Collected Papers, pp. 298-9), but we cannot determine to what extent
the resulting coefficients are functions of the initial stress-components.
This apparently requires us also to make some molecular assumption.

[239.] Starting with expression (ii) for the potential energy,
we should arrive at the equations of Cauchy (as Saint-Venant had
done in his memoir of 1863 by a double self-correcting error), but
we must renounce the hope of arriving at (ii) on the simple
assumption of a generalised Hooke’s Law. We may note one or
two further points in the first part of the memoir:

(#) To the second order of small quantities,
8= Uy + % (V7 + w,7) } (i)
OO it + b, Lo L ikt :
This was first noticed by Brill: see p. 279 of Saint-Venant’s memoir.

1 ¢/,, differs from the o, of our Art. 1621*, it being the cosine and not the
cotangent of the slide-angle. See Saint-Venant’s definition of slide in Art. 1564*,
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() If we assume that the work-function may be expanded in
powers of 8,, 8, 8,, Oy Ouey Oy, and Write
¢:¢o+ﬁosx+@osy+aosz
2 zg/o Oy t+ T2 Oy + Ty UW
+ ¢,
then we are throwing a portion of ¢ involving initial stresses into ¢,,

which thus differs from the ¢, of (ii). 'We thus obtain for the stresses
the types:

7z = 7zy (1 — v, — wy) — 29, (vp — uy) + 7@y (U, — Wy) + 73, } &
;;='-77"0(1_um—vy—wz)+?yowy+;;ovz+;‘;ovm+;?;0wm+;;g ’ L
But zz, and 7z, while being of the same form as Cauchy’s zz;, ¥z, [see

our Art. 129, (ii)], will in reality have constants increased by the corres-

ponding initial stresses, as is shewn by the rari-constant investigation.
Thus :

|xxzz|y = |x2zx| + a’r.;ﬂ
| ypzly = lywyz| + vz,
| 22yz 1y = | 2292| + ¥z,

It is the impossibility of determining on the multi-constant theory
how these initial stresses occur in the changed values of the constants,
which throws us back on rari-constancy for a proof of (if). Results (v1)

combined with (v) convert the latter into Cauchy’s formulae: see our
Art. 129, (i).

[240.] The second part of the memoir deals with the following
problem : If lwazal, |zazyl, lxzyz, efc. are the elastic constants when
there 1s an wnitial state of stress zz,, v, etc. 1t is required to
determine these constants in terms of |ewxx|, |lzxxy| , \eayel ), etc. the
elastic constants before this initial state of stress.

Saint-Venant deals with the problem on rari-constant lines. We
have, with abbreviated symbols (see our Art. 143):

la#] OF 9824 OF [982] OF latys] =1 Em f( ) {x* or y%2 or % or 2°yz} ... (vii).

Further we have, 1f o by be the position of the molecule m
relative to a second before the initial strain, w, v, w, its shift due to
that strain, and «, ¥, z the relative position after the strain,

duo du, duo 1 <d 2y 24 )
s

Ty v Y179

0 ey y°dJo * dz,

17 ,du,
R | [T i ot S Ses
Ty dex,

d 2
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2
rdr <f£7)) rjm (f%:"b ai (1) do"l‘o :o CZ‘o (_"('?)) 3 Ttk !

= Po
(= (1 dlﬁ)) Tt d”o) <1 g %) _ dvydw, _ dw, du, duo dvo+
& dzx, ( dy, dz, dey dy,  dux, dz, ~ dy, o dit,

=Po (1 = Sxy syo = Szo);

if we suppress squares and products.
Substituting in Equation (vii) and remembering that

|@4], OF |¥222|,OT |82, O la2y2], = Po Sm —— o {f( °)} {ac*y or %% or Y’ O &Yz |
9:2% 9]

we obtain the typical results g
o = latly (1 = Bty — vy = w, ) + 4 (Iz%yly wy, + l2%ly 11,),
92221 = 922y (1 = g + vy + wy) + 2 (19380 v, + lawtly Uy + 12922ly Wy + %210 Wy ),
2l = 132l (1 = 2 + 20, ) + 3 (19222l 0, + lavsly 0) + (1ewly Wy + 19y 0,),
latyz| = [a2yaly (1 + uwo) + 2 (w2l Uy, + loyatly Uy ) + 1282y Vg + 032y vy + %Wy Wy,
+ la%y?, w,
Here u,,... denote du,/dx,..., and since the stresses 7, 7z, are given

functions of' umo Vg -+Uy .- -€tC., We can express the new coefficients (4.

in terms of the old |a4,... and the initial stresses. These results are
obviously only a more general case of the formulae of our Art. 616%,
The following pages 297—304 are concerned with other modes of
looking at these results or expressing the stresses in terms of them.

[241.] Let us take as a special case that of a bar of primitively
isotropic material subjected to a traction zz, there being an initial
traction 7z, We have

85, = &ag| By 8y =8, =—s,[4.
Further, if  i#2%,=A=p, then |=4,= 3\ and Z,=5)/2.

Sy

oo A SR = ———— . 2
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Thus, et =3\ (1 — g_s,%), 14 = I, = A,
laeog) = st = A (1 + 8,,),
=X (1-3 8”0)’
y82| = latyz| = ete. = O,

Substituting in the traction-type as given by Cauchy’s formula,
Eqn. (i) Art. 129, we have

ar=aa {1 + 8, — 28} + 3A(1 - 8, ) 8, + 2\ (1 +85) 8y,
w=0=3As, +A(1 +8,) s, + A (1 = §5,) 5,
Whence we find from the second equation :
8y (4 =3 8) == (1 +83,) 8
or 8,==}8 {1 +1ls,}, neglecting &%,
Substituting in the first we easily deduce

Pid 5\
72 =z, + 5 S0 X 38, + A8, {5 - -1-1%’-3%},
5N
—;Z‘.Z'o+ —2 Sy (1 49 Smo),
7@ — az B9
or i sm“f"o = Eo = 4—0 22

Thus if & be the new stretch-modulus, we have £ = E, — 13 72,

This shows that a large initial traction can alter to some
extent the value of the stretch-modulus. It slightly decreases .
Saint-Venant obtains in our notation

E=F+45,
but I do not think this result is correct. It would denote an
wncrease of the stretch-modulus. Saint-Venant in fact puts the
stretch-squeeze ratio after the initial stress =%, (thus on p. 305

he writes s, =s, = — }s;), but it seems to me that this ratio
=—(+8)/(4—§5)=—3 (1 +¥ 5),
and is only =—1/4 when s, =% /E =0, or, when there is no

initial stress.

The matter is one of theoretical rather than practical interest,
for supposing £ were 30,000,000 lbs. per sq. inch, it is unlikely
that 2z, could be at most more than 40,000 to 60,000 lbs. per sq.
inch; hence the change in £ would not amount to more than
140,000 to 200,000 lbs., or at most to 1/150 of E, which with
the want of uniformity in any material is in practice almost
within the limits of experimental error.

11—2
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[242] In Tome Xxv. of the Journal de Liouville, 1870, there
are two articles by Saint-Venant, but they refer to a matter
which I have thought it well to treat as lying outside our field,
namely the stability of masses of loose earth. The history of the
memoirs in question may be briefly referred to. Maurice Lévy in
1867 had presented to the Academy a memoir entitled: Essac sur
une théorie rationnelle de U'équilibre des terres fraichement remuées,
et ses applications au calcul de la stabilité des murs de souténement
(published in the Journal de Liouwille T. Xviit. 1873, pp. 241—
300). This memoir had been referred to a committee including
Saint-Venant for report. The report appeared in the Comptes
rendus, T. LXX. 1870, pp. 217—28, and was reprinted in Vol. XV.
of the Journal, pp. 237—49. Lévy as well as the committee
appear to have been ignorant of Rankine’s memoir: On the
Stability of Loose Earth (Phil. Trans. 1857, pp. 9—27) which had
contained most of Lévy’s results. Lévy had started from Cauchy’s
stress-theorems (see our Arts. 606* and 610%), and arrived at
certain general equations. Saint-Venant in his first note solves
to a first approximation Lévy’s equation (pp. 250—63 of Tome
xvlL) and hopes some mathematician will proceed further. This
was done by Boussinesq, who proceeded to a second approximation
in a memoir occupying pp. 267—70 of Tome Xv. of the Journal.
Saint-Venant then reconsidered the whole matter in a second me-
moir, which occupies the following pp. 271—80. In a footnote he
recognises Rankine’s priority of research. The memoirs of Saint-
Venant and Boussinesq appear also in the Comptes rendus. T. LXX.
1870, pp. 217—28, 717—24, 751—4 and 894—7.

[243.] Rapport sur un mémovre de Maurwce Lévy: Comptes
rendus, T. LxX111. 1871, pp. 86—91. This is a report by Saint-
Venant and others on Lévy’s memoir establishing the general
body-stress equations of plasticity in three dimensions: see our
Art. 250. The Rapport speaks well of Lévy's memoir as
advancing the new branch of mechanics, “pour laquelle I'un de
nous a hasardé, sans le préconiser comme le meilleur, le terme
d’hydrostéréo-dynamique” This branch of research has been called
later plastico-dynamics, a better word, and we shall refer to it
simply as plasticity.

[244.]) Sur la mécanique des corps ductiles: Comptes rendus,
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T. LxXIm. 1871, pp. 1181—1184. Saint-Venant here replaces his
first name—hydrostereo-dynamics—by plastico-dynamics. He re-
fers to the Complément to his memoirs on this subject in the
Journal de Liouwlle: see our Art. 245, (iii), and to the two ex-
amples of the plasticity of a cylinder under torsion and of a prism
under circular flexure dealt with there. The object of this note
is to show that a formula obtained by Tresca for the torsion of
a semi-plastic cylinder contributes no more than Saint-Venant’s
formula of the above-mentioned Complément, while it is at the
same time obtained in a semi-empirical fashion. While Tresca’s
formula involves a new constant K, Saint-Venant depends only
on the elastic slide-modulus x and the plastic-modulus K.
Saint-Venant distinguishes in his cylinder only two zones, an
elastic and a plastic one, Tresca supposes a mid-zone in which
elasticity alters to plasticity or, as Tresca terms it, fluidity. Saint-
Venant’s discussion has the theoretical advantage, but it seems
not improbable that physically something corresponding to Tresca’s
mid-zone has an existence.

[245.] We have next to turn to a series of interesting and
important memoirs by Saint-Venant in which he deals with the
plastic equations. These are:

(1) Mémoire sur Uétablissement des équations différentielles des
mouvements tntérieurs opérés dans les corps solides ductiles au deld
des limites ot Uélasticité powrrait les ramener & leur premier état.
Journal de Mathématiques. Tome XVI. 1871, pp. 308—316. [See
also Comptes rendus, T. LxX. 1870, p. 473.]

(i) Eatrait du mémoire sur les équations générales des mouve-
ments intérieurs des corps solides ductiles au deld des limites ol
Pélasticité pourrait les ramener o leur premier état. Par M. Maurice
Lévy. Ibvd. pp. 369—372. [See also Comptes rendus, T. LXX. p.
1323, and Saint-Venant’s correction referred to in our Art. 263.
Some account of the memoir itself will be given under the year
1870.]

(i) Complément aux mémoires du 7 mars 1870 de M. de
Saint-Venant et du 19 juin 1870 de M. Lévy sur les équations
différentielles ‘ indéfinies’ du mouvement intérieur des solides duc-
tiles etc.;... Equations ‘définies’ ou relatives aux limites de ces
corps ;—Applications, 7bid. pp. 378—382.
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[246.] The first paper begins with an interesting account of
the history of the theory of plasticity. It refers to Tresca’s memoirs
and to the attempts of Tresca and Saint-Venant himself to obtain
solutions by means of pure kinematics. It is pointed out that the
problem is essentially mechanical as well as kinematical and
involves a consideration of stress as well as of mere continuity.

In the first place the ordinary equations of fluid-motion must be
replaced by others involving inequality of pressure in different directions.
Thus the well-known type of hydrodynamic equation :

d du  du du du
d_Z=P<X - —U——0 ),

Tdt Tdx  dy Y
becomes the plastico-dynamic type :

@.{.@.ﬁ@—.. (X_d_u_ud_u_viqf_w@> 1
de " dy T dz P dt de ~dy d2) . @
The change of sign is due to change from pressure to fraction.
To this we must add the equation of continuity :
du dv dw %
& + @ ek = = Qe o bt s S A (11).

The four equations given by (i) and (ii) represent the relation between
the flow (velocity-components u, v, w) of the material and the stress-com-
ponents. The material in the plastic state is treated as incompressible.

[247.] Now Tresca has demonstrated that, if a material is in
the plastic stage, the maximum shear across any face must have
a constant value K, which he has ascertained experimentally for a
variety of materials. This constant resistance to maximum slide
we shall term in future the plastic modulus. Hence to obtain
the plastico-dynamic equations we must express the fact that

the maximum shear across any face =K.......... (iii).

Again, Tresca has demonstrated that the direction of the
maximum shear is also that of the maximum velocity of slide.
This forms then our last condition :

maximum shear and maximum slide-
velocity are co-directional
Equations (1) and (ii), with conditions (iii) and (iv) should give
the complete plastico-dynamic equations.
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[248.] Saint-Venant only treats the case of what we may
term uniplanar plasticity, or the motion the same in all planes
parallel to that of #, z. Thus the co-ordinate y disappears from his
results.

Let «, 2’ be two rectangular axes making an angle o with those of
x, 7, then it easily follows from the first formula in our Art. 1368% that,
7o ="""" sin % + 7= cos 2a.

-

This takes its maximum value for

T
(V)

tan 2a = —2—';,.2— ...........................

and is then of the intensity
Y Jizr (@ - m)
Thus condition (iii) becomes

'3 (A” - ’7””>2= RPN i sl sy, o (vi).
Further the slide-velocity is easily found to be given by
égl+d—u’— - du) in 2 dw+d—u>cos2a
dx dz’_(i_% 5 a+<% dz :
and therefore takes its maximum when
dw du
& dw
tan 2a = W .
de " dz

Hence condition (iv) becomes

=z (dw du) cizf_!_ d_u) (vil)
g .
Finally equations (i) and (ii) take in this case the simpler
forms:

dm  di (A du du_wc_lg)
&P\ Yam Yk
dzz  d7zz dw dw iiw) viii
—CE-FTZ—-_F,(Z_%-u’d_w—wdé )( ......... ( ).
du dw
A

Equations (vi), (vii), and (viii) are those for uniplanar plasticity.
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[249.] Saint-Venant remarks that even these equations will
be difficult to solve for any except the simplest cases. He suggests,
however, that those for a cylindrical plastic flow would not be
difficult to obtain.

In a final paragraph (p. 316) to the first paper Saint-Venant
remarks :

Je ferai seulement une dernidre remarque: c’est que si, aux six
composantes de pressions ci-dessus, zz,...... zy, Uon ajoute respectivement
les termes: 2eu,, 2ev,, 2ew,, € (v, + w,), € (W, + u,), € (u, + v,), représentant,
comme on sait, ce qui vient du frottement dynamique di aux vitesses de
glissement relatif dans les fluides non visqueux se mouvant avec régula-
rité, les équations des solides plastiques, ainsi complétées, s'étendront au
cas ol les vitesses avec lesquelles leur déformation s’opére, sans étre
considérables, ne seraient plus excessivement petites, et pourraient en-
gendrer ces résistances particuliéres, ordinairement négligeables, dont on
a parlé au No. 3. Les mémes équations, avec tous ces termes, seraient
propres, aussi, & exprimer les mouvements réguliers (c’est-a-dire pas assez
prompts pour devenir tournoyants et tumultueux) des Awides visqueuz,
ot il doit y avoir des composantes tangentielles de deux sortes, les unes
variables avec les vitesses u, v, w, et mesurées par les produits de ¢ et de
leurs dérivées, les autres indépendantes de ces grandeurs des vitesses, ou
les mémes quelle que soit la lenteur du mouvement, et attribuables a la
wviscosité, dont K représenterait alors le coefficient spécifique.

[250.] In the second paper to which we have referred in our
Art. 245, Maurice Lévy establishes two sets of results. In the first
place he obtains the general equations of plasticity ; in the next
he considers the special case of a cylindrical plastic flow.

We cite the general equations here, but refer to our later
discussion of Lévy’s memoir for remarks on his method of obtaining
them.

The general equations (i) and (ii) hold for this case. The condition
(iii) becomes :

4(K%+q)(4K2+¢)+ 272 =0..... cevcennnen. (ix),
where g=8,0,+ AN + A A, — VP -2 — T,
r=00+ AT+ AG —~ A AN, - 2w,
and ww—Dp=p—Ay=m—D,=L(mm+w+7)

The condition (iv) becomes

—_ —_ —_

o= b =
yz S = zy _ w—s | = xx (X)
Vot Wy wptu, u+v, 2(v,-—wy) 2 (w,—uy)

Thus (i), (i), (ix) and (x) are the requisite equations.
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[251.] On p. 371 Lévy remarks that Saint-Venant in the case of
uniplanar plasticity has not considered the stress 77. From equation (x)
since v, =0, and therefore w, + u, = 0 from (ii), we have

L S
Yo we _ zz
2u, —4du,’
or, T I R A B A R (xi).

[252.] On p. 372 we have the equations for a cylindrical plastic
flow. If z be the axial, » the radial directions, ¢ the meridian angle,
u, w radial and axial velocities, they take the form :

L i o it
e S L, NS . dn L (xii)
dn du m=__ (, dw__ dw g@) e 2 Y

dr T T P(° & a T

du w dw
o ;+—d;—0 ........................ (xiii),
4B (F-BPR=4E e, (xiv),
= - -5 ().

We shall see later that the condition (xiv) is not sufficient nor
always correct : see our Art. 263.

As a rule when the plastic movements are very small and the effects
of gravity can be neglected, we may put the right-hand sides of equations
(i) and (xii) equal to zero.

[253.] In the third paper whose title is given in our Art. 245
Saint-Venant first makes the remark that if the velocities be neglected
the equations of uniplanar plasticity reduce to the discovery of an
unknown auxiliary y, where :

~_¥ - _ady
X = %2 ) e = W ’

LA
FET deda’
N :
and 4 (aa;) + <@ — W) = LY o (XVI)

He suggests that this equation might be solved by approximation.

[254.] Saint-Venant next passes to the treatment of the
limiting or surface conditions of plasticity, i.e. the conditions which
hold at the boundary of the portion of the material in a plastic
condition. He terms them the dquations définies ou détermindes;
the previous equations being called the édquations indéfinies.



170 SAINT-VENANT. [255

These conditions are of various kinds. A certain portion of
the block of matter alone is plastic (called by Tresca the zdne
d'activité), other portions may remain elastic, or after passing
through a plastic condition return to elasticity (e.g. a jet of metal
after passing an orifice).

The conditions break up into three classes:

1st. Those which relate to the surface of the material at points
which have retained or resumed their elasticity. Let such a surface be
exposed to a traction 7, and let the elastic stresses be z...... 5., the
sufix e merely referring to their elastic character. The type of surface
condition will be

72, €08 (n) + zy, €08 (ny) + =z, cos (n2) = T, cos ()...... (xvii),
where 7 is the direction of the surface-normal and ! that of the applied
traction 7.

2nd. The material is in a plastic stage at the bounding surface, 7',
being the traction: the type of equation, if zz,...... Zyp denote the plastic
stresses, is:

72 €08 (nic) + Ty, €08 (ny) + a2y cos (nz) = T cos (lz)...... (xviii).
3rd. Equations which must hold at the surface at which the
material changes from plasticity to elasticity. These are of the type:
(2, — 7@p) cos (nix) + (29, — 7v,) 008 (ny) + (22, — 27,) cos (nz) =0...(xix).
In the equations (xvii)—(xix) the elastic stresses and plastic stresses
must be obtained from the general equations of elasticity and of plasticity
respectively.

[255.] On pp. 378—380, Saint-Venant treats the special case of a
right circular cylinder of radius » subjected to torsion till plasticity
commences in the outer zone from 7, to . He easily finds if 4/ be the
torsional couple, u the slide-modulus and r the torsional angle:

5 ot %y 11
M =27 [p.'r—4— sk K(-:—s—— 3—) y
while at the surface of elasticity and plasticity we must have
BT o =N

There will be no plasticity then so long as

T< 1£, or ﬂ[<¥-l(.
wr

&

If = be greater than this we have :

2 . 1K
M_WK% W‘E,Tfs)'

o f
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[256.] On pp. 380—381 we have the case of plasticity produced by
the equal or ¢circular’ flexion of a prism of rectangular section.

Let 2¢ be the height in the plane of flexure, 25 the breadth of the
section, 2¢, the height of the middle portion which remains elastic, and
1/p the uniform curvature. Then it is easy to see that the bending
moment M is given by :

M= g % B+ 4KB (¢ — o).

At the surface of separation of the plastic and elastic parts:

o4 2K.
P
Whence we find :
4 K%
Ec : : : :
where we must have p < & " the prism will remain elastic.

[257.] Saint-Venant in conclusion indicates that only after
first ascertaining ezperimentally the general form taken by the flow
in special cases will it be possible to attempt approximate solu-
tions of the equations of plasticity.

I may remark that Saint-Venant assumes that elasticity and
plasticity are continuous. This does not seem to me at all borne
out by experiment, the stresses have long ceased to be proportional
to the strains before plasticity commences: see the diagram on
p- 890 of our Vol. I. and my remark in Art. 244.

[258.] Two memoirs by Saint-Venant on plastico-dynamics
or plasticity occur in Vol. LxX1v. 1872, of the Comptes rendus.
They are entitled :

(1) Sur Vintensité des jforces capables de déformer avec conti-
nuité des blocs ductiles, cylindriques, pleins ou évidés, et placés dans
diverses circonstances (pp. 1009—1015 with footnotes to p. 1017).

(2) Sur un complément d donner & une des équations présentées
par M. Lévy pour les mouvements plastiques qui sont symétriques
autour d'un méme axe (pp. 1083—1087).

These memoirs may be looked upon as supplements to those
of Saint-Venant and Lévy in the Journal de Liouwille: see our
Arts. 245—57.
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[259.] The general principle, Saint-Venant tells us in his first
memoir, of plastic deformation is that the greatest shear at each
point shall be equal to a specific constant (denoted by K in Tresca’s
memoir of 1869). It follows by Hopkins’ theorem that at each
point the greatest difference between the tractions across different
faces ought to equal 2K : see our Art. 1368*,

Saint-Venant treats two special cases, and a third by approxi-
mation. We will devote the following three articles to their
discussion.

[260.] The first is that of a right six-face of ductile metal.

If the axes of coordinates be taken parallel to its edges, and its faces
be subjected to uniform tractions zz, 3y, %z, then these tractions will be
the principal tractions at any point of the material, and it will be
necessary if zz ~ 7" be the greatest difference that :

o~ g = QR T L R ().
This condition is fulfilled if

w=—ygy=—uz=K,
or if w=—gy =— 2z =— K,

Of this Saint-Venant remarks :

C’est dans ce sens qu’il faut entendre, avec M. Tresca, que la résistance,
soit & I'allongement, soit & 'accourcissement du solide plastique, est constante,
et égale & sa résistance au cisaillement (p. 1010).

An extension of this case is that of a cylinder on any base, for which
vy = zz without being equal to K, that is to say the transverse or radial
tractions which we will denote by 7= are all equal and the longitudinal
tractions zz are greater than them. We have then for the condition of
plasticity:

= QET R DA e ().
If the radial tractions are greater than the longitudinal we have :
i QAR T Y M B (ii).
Either equation (ii) or (iii) gives us by variation
dza = &7r,

or, any increment of longitudinal, is accompanied by an equal increment
of transverse traction. This is Tresca’s principle that in plastic solids
pressure transmits itself as in fluids, although he proves it by the
principle of work.

[261.] The second case dealt with by Saint-Venant is that of
a hollow right circular cylinder placed between two rigid fixed
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planes perpendicular to its axis. The external face being submitted
to a pressure p, we require the internal pressure p,, necessary to
reduce the material to a plastic condition.

This problem can be solved by introducing the velocities, here
solely radial, of the points of the material. The principles which
determine these velocities for a plastic material are: 1st, that
there is no change in the volume of the element; and 2nd, that on
each elementary area in the material the direction for which the
shear is zero, must be that for which the slide-velocity is zero.
The latter principle involves the ratios of the half-differences of
the tractions to the corresponding stretch-velocities being equal
two and two.

Let r be the radial distance from the axis of any element of the
material, £ and B, the external and internal radii of the cylinder; V
the radial velocity of the element at =, and 7, $4, 2= the tractions along the
radius, in the meridian plane and parallel to the axis at the same element.

Then for the equilibrium and conservation of volume of an elementary

annulus 2wrdrdz, it is necessary that :
drr - 58 av v
P et

Further from the second principle it follows that :

T-m_ w-@ "
Vs = AVl = 7 oo !

Eliminating dV/dr between the second equation of (iv) and (v) we
have

-@=2(7 - 5)=2(z -8)

whence it results that 7 — §3 is the greatest difference, and therefore by
Eqn. (i)

It follows from the first equation of (iv) that
drr [dr = 2K]r.
Or, integratiug Tr=—pi+ 2K 1og (r/Ry)eecniiiiiiiiiiii (vid).
Hence from (vi) we deduce :
6 =—p + 2K + 2K log (r/R)), }
2 =—p,+ K + 2K log (r/R,).
We see from these equations that: (a) the pressure on the rigid faces
is not uniformly distributed over the surface of the material in contact

with them, (b) the meridian traction will increase and generally change
from a negative to a positive value as we pass outwards.
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If we make r =R, we have r# =—p,
or, pi=p+ 2Klogi(B/T)). L. . . Bt (ix).

If the pressure applied p, has a less value than this, the ‘annular
fibres’ near to the inside face can very well acquire stretches exceeding
the limit of elasticity and even that of cohesion for isolated straight
fibres; but as the fibres in the neighbourhood of the external face
remain elastic, there will not be rupture, nor sensible deformation,
Saint-Venant refers to the well-known experiment of Easton and Amos :
see our Art. 1474%.

In the last Section 5 of the Note Saint-Venant refers to Tresca’s
somewhat unsatisfactory proof of the formula (ix).

[262.] In a foot-note pp. 1015—1017, Saint-Venant deals
approximately with the following case: the outer surface of a
right circular hollow cylinder (radii R, R,) is supposed to rest on
a rigid envelope, the internal surface is then subjected to great
pressure which diminishes the thickness (R — R,), but increases
the height (), to determine the pressure which will produce this
plastic effect. Tresca had obtained a solution of this problem on
two hypotheses, which cannot be considered as entirely satisfactory.
The general equations of plasticity are indeed too complex to offer
much hope of an exact solution for this case. Saint-Venant gives
a solution involving only the acceptance of Tresca’s second hypo-
thesis namely: that the upper base of the cylinder and all the
plane-sections parallel to it remain plane and perpendicular to
the axis of the block, and that lines parallel to the axis pre-
serve their parallelism. It is obvious that this hypothesis is
only approximately true; but Saint-Venant’s investigation is
an interesting one, as it deals with one of those cases, in
which the maximum difference of the principal tractions is not
given by the same pair for all values of the radial distance.
This breaks up the solution into two parts corresponding to
3r* < or > R’ and the case itself into two sub-cases corresponding
to 8R’<or> R’ Saint-Venant’s results are not in accordance
with Tresca’s.

[263.] Sur un complément d donner & wune des équations
présentées par M. Lévy pour les mouvements plastiques qui sont
symétriques autour dun méme axe: Comptes rendus, T. LXXIV.
1872, pp. 1083—1.
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Saint-Venant refers to Lévy’s third equation for plasticity with
axial symmetry, This equation is (see our Art. 252, Eqn. xiv.):

4727 + (7 — %2 )P =4K°
He remarks that this equation is only the true condition for plastic
motion, when the greatest and least of the negative tractions (pressures)
are in the meridian plane of the point considered. This is not always

true and Lévy’s third condition requires to be replaced by the following
one :

2K =the greatest in absolute value of the three quantities :
2.J7+ 1 (7 - =)

BT i)
- .
T+ 7

B-— Ju/;-;ﬁui(ﬁ-;?,)zJ
This follows at once from the consideration that the discriminating
cubic for the principal tractions is :
T-2w)(T-w)(T-2)-w* (T -=)—=*(T - 7)
-2 (T -%)-2% = w=0,
and this becomes when we put :
™, $6, 2z, 0, 72, O for zz, , zz, 72, 22, =¥,

respectively
€@ (7-25 2 - J iy
(7-752 + S+ -5) =0
Lévy appears to have divided out by 7' — &3 and neglected this root.

[264.] Saint-Venant remarks that g3 is, however, sometimes the
greatest or least of the three principal tractions, as for example in the
problem of our Art. 261, for in that case

™+ 6

5

In the approximate solution of our Art. 262, the traction g3 is
involved also in the maximum difference when 372 < X% Thus Lévy's
memoir requires to be corrected so far as this equation is concerned.

In a foot-note Saint-Venant points out that his solutions (see our

Arts. 261—2), are really obtained by the semi-inverse method and he

suggests that the same method might be used to solve other plastic
problems,

—_—
2z =
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[265.] Sur les diverses maniéres de présenter la théorie des
ondes lumineuses. Annales de Chimie et de Physique, 4° série,
T. xxv. 1872, pp. 335—381. This memoir was also separately
published by Gauthier-Villars in the same year.

The contents belong essentially to the history of the undulatory
theory of light. Saint-Venant considers at considerable length the
researches of Cauchy, Briot, and Sarrau in this field and points out
the defects in the various theories which they have propounded.
Finally he deals with Boussinesq’s method of obtaining from a
general type of equation the special differential equations which
fulfil the conditions necessary for explaining the various phenomena
of light. Saint-Venant praises highly Boussinesq’s hypothesis, and
considers that his theory:

qui offre 4 la fois plus de simplicité, d’'unité, de probabilité, et je
crois aussi, de rigueur que les autres (quel que soit le remarquable talent
avec lequel ont été présentés ces autres essais, qui ont toujours avancé
les questions), mérite d’étre enseignée de préférence (pp. 380—1).

I must remark, however, that convenient as Boussinesq’s
hypotheses may be as a grouping together of analytical results
under one primitive formula, it cannot be held as sufficient till
we understand the reasons why and how the molecular shifts are
functions of the ether-shifts and their space and time fluxions,
and are able to deduce the jform of these functions from some
more definite physical hypothesis.

§§ 1—2 treat of the early history of elasticity. As in the
memoir of 1863 (see our Art. 146—T7) Saint-Venant holds that the
conditions presented by Green for exact parallelism and those
suggested by Lamé for double refraction are only consistent with
1sotropy.

Aussi Lamé et Green ne sont pas compris dans l'analyse que je fais
des recherches de divers auteurs sur la lumiére. Il importe que des
hommes de talent ne s’égarent plus, en pareille matiére, sur les errements

des deux illustres auteurs de tant d’autres travaux plus dignes d’eux.
(Footnote, p. 341.) See our Arts. 920%, 1108%, 146 and 193.

[266.] Rapport sur un Mémoire de M. Lefort présenté le 2
aotit 1875. This report is by Tresca, Resal and Saint-Venant (rap-
porteur) and will be found in the Comptes rendus, T. LXXX1. 1875,
pp. 459—464. It speaks favourably of the memoir, which deals
with the problem of finding the bending moment at the several
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sections of simple and continuous beams traversed by moving loads.
We shall refer to the memoir under Lefort.

[267.] = De la suite qu'il serait nécessaire de donner aux recher-
ches expérimentales de Plastico-dynamique: Comptes rendus, T.
LXXXL 1875, pp. 115—122.

This note refers to the need of new plastico-dynamic experiments
with a view of extending the number of solutions hitherto obtained
and also the basis of the existing plastico-dynamic theory. Saint-
Venant points out the insufficiency of Tresca’s method of dividing
the plastic solid into separate portions and applying to these the
laws of fluid-continuity ; he refers to his own researches in this
purely kinematic direction: see our Art. 233, and then to his later
theory and equations, as supplemented by Lévy, and based on
Tresca’s law of the equality of the stretch and slide coefficients of
resistance : see our Arts. 236, 245 and 258. He points out that to
develop this theory, what we want is not the form taken by jets
of plastic material, but the absolute paths of the elements tn the
material. He suggests how this might be ascertained by allowing
the same load to act in the same manner but for different periods
on a nuniber of like plastic blocks, in which a series of points had
been previously marked by a three-dimensional wire netting placed
in the molten metal. He notes also other methods likely to give
the same result. In the course of the note he refers to the simple
cases of plasticity solved by Lévy, Boussinesq and himself: see
our Arts. 255—61. At the end are a few lines from Tresca, who
recognises the importance of the experiments proposed by Saint-
Venant, which, I believe, he did not live to undertake.

[268.] Sur la manidre dont les vibrations calorifiques peuvent
dilater les corps, et sur le coefficient des dilatations; Comptes rendus,
1876, T. LXXXI1L, pp. 33—38.

This is an attempt to represent thermal effects by the change
produced by thermal vibrations directly in intermolecular distance
rather than indirectly by their influence in altering the constants
of molecular attraction. Saint-Venant deals with two molecules
only and supposes one fixed.

Let 7, be the intermolecular distance in equilibrium, 7=7,+v the

displaced distance and f(r) the law of intermolecular action, then we
easily find for our equation of vibration :

S.-V. 12
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@
m S =/ (r) = f (r+ o)

" vﬂ !’ 'vs a4
=vf (ro) + gf (ro) + g‘f (ro) + ...
If dv/dt=9,, for v and ¢=0, we have as a first approximation
v= % sin at, where f* (r,)/m = — a.

For a second approximation :

. 9 9 Z
0= =2 sin (@b ) (1 — cos at)?, where M =163
a 6a*r, m
Let us find the mean value v, of v from £=0 to 27/a; we have:
Nt b2
™ datr,’

Hence the stretch due to the thermal vibration
v, mo 1 [ (r)
T 2 2 {0
Thus we see that the stretch is proportional to the kinetic energy

m®,%/2, which is generally regarded as a measure of the absolute tempe-
rature, and will be positive if f (r,) is positive.

Saint-Venant states that these conclusions will still hold, if the
two molecules be replaced by a system. The thermal effect would
thus depend on the derivatives of the second order of the function
F(r). —

If there should be a point of inflexion in the curve which
represents the law of intermolecular action plotted out to distance,
we should have a case in which increase of temperature reduced
the volume, as occurs in certain exceptional substances. Saint-
Venant suggests the form of the figure below for the curve
y=f(r); OD being the distance and Oy the force axis.

Here Ok = r, marks the point at which the action changes from
repulsion to attraction; if the axes Oy, OD are asymptotic in
character, we have the infinitely great force and infinitely small
force at infinitely small and infinitely great distances respectively
well marked. pM marks the maximum attractive force between the
molecules, and any force greater than this, if maintained, will produce
rupture. It corresponds to a distance Op, which defines that of
rupture. Great thermal vibrations which impose such a velocity

—
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on the molecule that the intermolecular distance exceeds Op may
perhaps, indicate liquefaction by heat. The point ¢ corresponds
to a point of inflexion, and to a contraction due to heating the
substance in the liquid state.

%

The discussion, if not very conclusive, is interesting especially
in its bearings on rari-constancy. See our Arts. 439* and 977*.

[269.] Surla constitution atomique des corps: Comptes rendus,
T. LxXXIIL 1876, pp. 1223—26.

Saint-Venant in this note refers to a remark of Berthelot on
the paradox involved in the indivisibility of an atom supposed to
be endowed with matter and thereforc of necessity extended. He
refers to his memoir of 1844 (see our Art. 1613*),and declares that
he considers partly for metaphysical, partly for physico-mathematical
reasons, continuous extension to belong neither to bodies nor to
their component atoms. The point which alone concerns us here
is his reference to the rari-constant hypothesis:

A cette occasion je ferai une remarque. Plusieurs auteurs, soit
anglais, soit allemands, dans des ceuvres qui sont du reste d'une haute
portée, voulant étendre 4 des substances élastiques celluleuses, ou spon-
gieuses, ou demi-fluides, telles que le liége, les gelées, les moelles végétales,
le caoutchouc, les formules d’élasticité des solides, découvertes et établies
en France de 1821 & 1828 par Navier, Cauchy, Poisson, Lamé et
Clapeyron, et ayaut besoin, pour une pareille extension, d’augmenter en
nombre ou de rendre indépendants les uns des autres des coeflicients de
ces formules, se sont pris & condamner vivement, sous le nom de théorie

12—2
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de Boscovich, non pas son idée capitale de réduction des atomes & des
centres d’action de forces, mais la loi méme, la loi physique générale des
actions fonctions des distances mutuelles des particules qui les exercent
réciproquement les unes sur les autres. Et ils attribuent ainsi au célebre
religieux lerreur grave ol sont tombés, suivant eux, Navier, Poisson et
nos autres savants, créateurs, il y a un demi-siécle, de la Mécanique
moléculaire ou interne. Or cette loi blamée, cette loi qui a été mise en
euvre aussi par Laplace, etc. et prise par Coriolis et Poncelet pour base
de la Mécanique physique, n’est autre que celle de Newton lui-méme,
comme on le voit non seulement dans son grand et principal ouvrage,
mais dans le Scholie général de sa non moins immortelle Optique.
L’usage fait de cette grande loi n’est point une erreur; et les formules
d’élasticité & coefficients réduits ou, pour mieux dire, déterminés, ou elle
conduit pour les corps réellement solides, tels que le fer et le cuivre,
sont conformes aux résultats bien discutés et interprétés d’expériences
faites sur ces métaux (Appendice v. des Lecons de Navier: see our
Art. 195), expériences au nombre desquelles il y en a de fort concluan-
tes, récemment dues & M. Cornu (p. 1225).

That Boscovich deprived an atom of its extension, but that
Newton treated intermolecular force as central, is a point which
deserves to be recalled to mind : see our Art. 26*.

[270.] Sur la plus grande des composantes tangentielles de
tension intérieure en chaque point d'un solide, et sur la direction des
JSaces de ses ruptures. Comptes rendus, 1878, T. LXXXVIL, pp.
89—92.

Potier had given the following formulae for the shear 7 acrossa
face whose normal » makes angles @, 8, v with the directions of the
principle tractions 7, T,, T}:
n=(T,—T,) cos’acos’B + (T, — T,) cos’B cos’y + (T, — T,) cos’y cos'a,
maximum value of 7 =1 (difference of greatest and least principal
tractions).

He had then proceeded to apply these formulae to the conditions
of rupture. Saint-Venant notices that these results had been
given by Kleitz in 1866, by Lévy in 1870, and by himself in
1864. He might also have added by Hopkins in 1847. The note
then points out that rupture in the direction of maximum shear is
hardly confirmed by experiments, which point rather to rupture in
the direction of maximum stretch. Saint-Venant finally considers
the results of some then recent experiments, but remarks on the
need for further research in this direction.
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[271.] Sur la dilatation des corps échauffés et sur les pressions
qu'ils exercent. Comptes rendus, 1878, T. LXXXVIL, pp. 713—18.

This memoir should be read in conjunction with that of 1876 :
see our Art. 268. It shews us how the phenomena of heat may
possibly be accounted for by the law of intermolecular force as
assumed by rari-constant elasticians. The assumption made by
Saint-Venant is that the vibrations of the molecules, to which the
phenomena of heat are due, are translational vibrations, and not
of the nature of surface pulsations. This does not seem to me
very probable, because in a highly rarified gas, it would denote the
absence of any thermal vibration ; for, there seems no reason why
a molecule should have a periodic translational vibration when its
fellow-molecules exercise little or no influence upon it.

The bright line spectra of such gases appear indeed to con-
tradict the assumption, and it seems probable that if the thermal
vibrations are pulsatory in the case of gaseous molecules, they will
be of a like nature in the case of liquids and solids.

[272.] Saint-Venant commences his article with some account
of his earlier memoirs, namely the communication made to the
Société Philomathique in 1855 (see our Art. 68), and the first
memoir of 1876 (see our Art. 268). He deduces by similar
analysis to that of the latter memoir the same result

shewing that it is necessary to take into account the terms of the
second order, if we are to deal on these lines with thermal
phenomena.

[273.] In addition, however, he here proceeds to consider the effect
that translational vibrations would have on the pressure exerted by a
system of molecules on a surrounding envelope. To obtain some idea
of this he supposes a free molecule placed between two fixed ones at a
distance 27, from each other. He easily obtains for the vibrations of
the free molecule the equation :

d* 7 v
"R 2uf" () + gf' ()i 1% = e o (ii).
If we put 2" () =—ma®, and neglect only the cubes, we find

il
v=—sgina't,
a
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As the other two molecules are fixed, there is no question here of
dilatation. To find the reaction on either molecule we have to substitute
this value of v in f (r, +v) and we obtain

Flraroy=flmy+ 5D

Thus the mean value of p, the pressure upon the envelope of the
vibrating elementary mass, would be

’ * g
4, 8in @'t + %@,ﬁ 2 gsintate. (i),

= peye {; ,((7:3) %2m ......................... (iv).

Saint-Venant remarks that as f” (r,) is obviously negative (= —ma’*/2),
we have only to suppose f' (r,) negative in order that this may connote
an increase of pressure due to the vibration.

Referring to the value of the pressure as given by Eqn. (iv) he
suggests in a footnote :

Cette sorte de considération, avec mise en compte, comme il est fait
ici, des dérivées du second ordre f (r) des actions, n’est-elle pas propre

a

a remplacer, avec avantage, ces chocs brusques des molécules des gaz
contre les parois de leurs récipients, avec réflexions multiples et répétées,
que des savants distingués de nos jours ont inventés ou revivifiés, dans
la vue de rendre compte mathématiquement des pressions exercées sur
ces parois, ete. ?  (p. T17.)

[274.] Saint-Venant in his fourth paragraph (p. 717) asks
whether we can extend the results here found for two or three
molecules to a multitude of molecules. He replies, yes, because it
is easy to see that the new terms of the second degree due to the
first derivatives f’ (r) will add to the second derivatives in f” (r).
On this point he refers to a footnote on p. 281 of his memoir in
the Journal de Liouville, 1863 (see our Art. 127), and to one by
Boussinesq in the same Journal, 1873, pp. 305—61.

Saint-Venant concludes therefore that when on the rari-constant
hypothesis, we calculate the stresses by means of the linear terms
only for the shifts, we destroy all dilatation and all stress due to
increase of temperature; we annul in fact all thermodynamics.
According to his theory then thermal effect is entirely due to the
second derivatives of the intermolecular action expressed as a
function of intermolecular distance. The point is obviously im-
portant in its bearing on the rari-constant hypothesis. Do the
constants of f£(r), the law of intermolecular reaction, vary with
the temperature—as would be the case if the “strength of the
intermolecular reaction” were to vary with the energy of pulsa-
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tional vibrations,—or, does heat only affect the mean distance of
the molecules by producing molecular translational vibrations, so
that £(r) is no direct function of the thermal state of the body ?

[275.] De la Constitution des Atomes. This paper was con-
tributed to the Annales de la Société scientifique de Bruaelles,
2° année, 1878. No copy of this Journal is to be found in the
British Museum, the Royal Society Library, or the Cambridge
Libraries, and my references will therefore be to the pages of an
off-print (Hayez, Bruaelles) for which I am indebted to the
kindness of M. Raoul de Saint-Venant. The off-print contains
78 pages, and deals—with considerable historical, philosophical and
scientific detail—with the continuity of matter and Boscovich’s
theory of atoms. It may be considered as Saint-Venant’s final
résumé of the arguments brought forward in the memoirs of 1844
and 1876: see our Arts. 1613*, 268 and 269"

[276.] The theoretical basis of the theory of elasticity and
the strength of materials must be ultimately sought for in the law
of molecular cohesion; the discovery of that law will revolutionize
our subject as the discovery of gravitation revolutionized physical
astronomy. Hence it is that the elastician looks for aid to the
atomic physicist, who in his turn will find much that is suggestive
for the theory of molecular structure in experiments on the
constants of elastic and plastic materials. Bearing this in mind,
a great deal that is profitable may be obtained by a perusal of the
above memoir, although many scientists would disapprove of much
of the method and of several of the conclusions of the author.

In order to place clearly before the reader the scope of the
memoir, I preface my discussion of it with one or two remarks.
We may legitimately question whether the laws of motion as
based upon our experience of sensible bodies really apply to those
elementary entities which form the basis of the kinetic properties
of sensible bodies®. It is, however, most advisable to investigate

! In a footnote (p. 1) Saint-Venant remarks from hearsay that the memoir of
1844 (of which I have only seen the extracts in I’Institut), appeared in full in a
Belgian Journal Le Catholique in 1852.

% For example the Second Law of Motion depends on the masses of the reacting
bodies 4 and B not bein<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>