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This work has been carefully prepared with two objects in view
;
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PRE FACE.

THIS work has been the outgrowth of lectures on the

elasticity and resistance of materials, given by the author to

succeeding classes of students in the department of civil engi-

neering at the Rensselaer Polytechnic Institute. Although
those lectures, as given, form the basis of the work, they have,
of course, been considerably elaborated and extended, so as to

cover many details of the subject which it would be impossible
to include in any ordinary technical course of study, but which,

at the same time, are necessary to a complete and philosoph-
ical treatment.

The first, or "
Rational," part of this work, is intended to

furnish an analytical or rational basis for the "Technical" or

practical development contained in Part II. It will undoubt-

edly impress a great number, and perhaps all engineers in

active practice, that it is unnecessary to the proper treatment

of such a subject. Indeed, a very considerably extended

experience in iron and steel constructions places the author

himself in position to fully appreciate the weight of such a

criticism at the first glance. But it may be contended, and he

thinks must be admitted, that the present advanced state of

ring as a profession implies the existence of something
that may be called the " natural philosophy

"
of engineering.

In other words, the engineer of the pivsi-nt timr must n

th< i:iM.,i-cd and increasing (K-m.uuls upon him in some
one or more specialty, not only by the aid of sound common
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sense and a well-trained judgment, but also by a systematic

knowledge of so much of natural philosophy as is involved

in practical engineering operations. The ideal simplicity of

stresses and strains in a perfectly isotropic body, and the clear-

ness of action of " external forces" applied at any
"
point

"
or

distributed over any
" surface

"
according to some known and

well-defined law, are not, it is evident, the things the technical

student will encounter in his practice as an engineer. He will

find few, if any, of the ideal conditions realized, and the diffi-

culties constantly confronting him will be those involving
modifications of the analytical or mathematical results based

upon ideal quantities and conditions. Nevertheless, it is cer-

tainly true that in engineering practice he deals with precisely

the same quantities as in the natural philosophy of engineering,
but in different amounts and with far different and vastly more

complicated conditions. And it is equally true that a correct

knowledge of the consequent modifications, both in kind and

amount must be based not only upon a correct recognition of

the actual circumstances into which the ideal conditions trans-

mute themselves in engineering works, />., upon sound prac-

tical knowledge, but also upon a thorough comprehension of

the things involved, in the abstract, and the laws governing
their actions and relations. In other words, but in essentials

the same, an engineer's preparation for active practice must

consist both of that philosophical training in what is largely

ideal, and which he acquires in the technical school, and of the

purely practical training of the first few years of his profes-

sional life.

The first, or "
Rational," part of this work is, then, designed

for few others than technical students, although there are

engineers whose tastes induce or circumstances require inves-

tigations in connection with the elasticity and resistance of

materials. The writer would esteem himself fortunate if the

mathematical portion of the book should find favor with such

individuals and be useful to them.



PREFACE.

In Part II. the mathematical results obtained in Part I. are

subjected to the test of experiment. By the aid of experi-
mental results in a great variety of material, empirical coeffi-

cients are established which involve the -varied and complicated
circumstances of material in actual use. The formulae, which

otherwise express ideal conditions only, are thus rendered of

the greatest practical value
;

in fact they constitute the only
reliable practical formulae in use by engineers.

All the experimental results are, of course, compilations

only, but they have been taken in all cases from what are

believed to be trustworthy sources, and it has been the inten-

tion to give credit to the experimenter in every case. It may
appear that too great a profusion of experimental results has

been introduced. But it has been the aim of the author, even

at the risk of being tedious, to represent truly and completely
the great variety of both quantitative and qualitative phenom-
ena exhibited by material under test

;
to show not only the

variation in products of different mills but the variation in

different products of the same mill; to exhibit the variations

due to difference in size, shape, relative dimensions and condi-

tion of specimens ; to show that specimens apparently identi-

cally the same may even give considerable diversity in results

and to prove the difference between the finished member and

its component parts, as well as to indicate the direction in

which further investigations may most profitably be prose-

cuted. A few groups of tests are not sufficient to the attain-

ment of such a series of results.

In the course of the preparation of the MSS. the author

found it necessary to reduce a very great amount of experi-
;tal quantities from the crude shape of a mere record of

s to a useful condition, and to change many others from

one unit to another. These numerical operations involved

much labor, and although they wen performed \\iti care

and repeated in almost every instance, it is very probable that

errors have crept in, though it is believed that tli lew,
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if any, of importance. The writer will feel indebted to any
one who will discover them. In all cases, unless otherwise

specifically stated, the ultimate resistance, elastic limit and

coefficient of elasticity are expressed in pounds per square
inch of original area of section.

In a few of the tables of Art. 32 the "
strains," /'. e., amounts

of stretch, are given as decimal fractions (hundredths) of orig-

inal length, while the otherwise uniform method of expression
is by means of whole numbers giving per cents, of original

dimensions. This diversity is unintentional and due to the

fact that a part of the MSS. was a portion of that used in

lectures.

The distinction between " stress
" and " strain

"
conflicts,

so far as the latter word is concerned, with ordinary usage.

But some distinction is absolutely necessary, and that used has

had a long existence, and is at least consistent with the ety-

mology of the words. There certainly can be no way of

filling the hiatus caused by the absence of a word to concisely

express changes of shape or dimensions, without some incon-

venience, and that followed will probably cause as little as

any.

W. H. B.

RENSSELAER POLYTECHNIC INSTITUTE,

1883.



PREFACE TO SECOND EDITION.

THE present edition of this work is the result of a careful

revision and extension of the first edition. Since the issue of

the latter, very considerable developments have been made in

constructions of iron and steel, particularly in those of steel
;

civil engineers are also pushing their investigations in timber,

cement, cement mortar, building stones, bricks, etc., with

energy and corresponding success. Abstract results in pure

engineering science are constantly finding their applications in

the practical operations of the engineer ; while experimental
results with members built for actual use in structures are con-

tinually furnishing bases for new inductions of the greatest

practical or technical value. It has been the design to bring
the present volume into such a condition as to be quite abreast

of these material advances. Considerable old matter has

been canceled and new matter supplied, and Addenda to many
Articles have been written. For convenience of reference it is

believed well to state that new matter and Addenda will be

found in or added to Arts. 20, 21, 24, 32, 34, 42, 45, 46, 51, 57,

65, 66, 67, 70, 73, 76, 78, 84, 85, 86, 87, 89, 90, 91 and Addenda
at the end of the book. These additions are entirely in the

domain of engineering practice and contain valuable practical

data.

W. H. B.

PHCENIXVILLE, PA.,

Sept., 1887.





PREFACE TO FOURTH EDITION.

THIS fourth edition contains new matter replacing the old

on pages 296 to 298, 303 to 305, and 325 to 329, together with

such typographical corrections as have escaped notice in the

previous editions. The new matter relates entirely to the

latest advances in the manufacture and treatment of structural

steel members.
W. H. B.

COLUMBIA COLLEGE IN THE CITY OF NEW YORK,

January, 1894.
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ELASTICITY AND RESISTANCE OF

MATERIALS.

PART I. RATIONAL.

CHAPTER I.

GENERAL THEORY OF ELASTICITY IN AMORPHOUS SOLID
BODIES.

Art. i. General Statements.

THE molecules of all solid bodies known in nature are more
or less free to move toward, or from, or an^ong each other.

Resistances are offered to such motions, which vary according
to the circumstances under which they take place, and the

nature of the body. This property of resistance is termed the
"
elasticity

"
of the body.

The summation of the displacements of the molecules of a

body, for a given point, is called the " distortion
"
or "

stra.

at the point considered. The force by which the molecules of

a body resist a strain, at any point, is called the "stress
"

at

that point. This distinction between stress and strain is fun-

damental and important.
Stresses are developed, and strains caused, by the applica-

tion of force to the exterior surface of the material. These

stresses and strains vary in character according to the method
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of application of the external forces. Each stress, however, is

accompanied by its own characteristic strain and no other.

Thus, there are shearing stresses and shearing strains, tensile

stresses and tensile strains, compressive stresses and compres-
sive strains. Usually a number of different stresses with their

corresponding strains are coexistent at any point in a body
subjected to the action of external forces.

It is a matter of experience that strains always vary con-

tinuously and in the same direction with the corresponding
stresses. Consequently the stresses are continuously increasing

functions of the strains, and any stress may be represented

by a series composed of the ascending powers (commencing
with the first) of the strains multiplied by proper coefficients.

When, as is usually the case, the displacements are very small,

the terms of the series whose indices are greater than unity

are exceedingly small compared with the first term, whose

index is unity. Those terms may consequently be omitted

without essentially changing the value of the expression.

Hence follows what is ordinarily termed Hooke's law :

The ratio between stresses and corresponding strains, for a

given material, is constant.

This law is susceptible of very simple algebraic representa-

tion. As the generality of the equation will not be affected,

intensities of stresses and distortions or strains per linear unit,

only, will be considered.

Let/' represent the intensity of any stress, and /' the strain

per unit of length, or, in other words, the rate of strain. If

E' is a constant coefficient, Hooke's law will be given by the

following equation :

If the intensity of stress varies from point to point of a body,
Hooke's law may be expressed by the following differential

equation :
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lip' and /' are rectangular co-ordinates, Eqs. (i) and (2) are

evidently the equations of a straight line passing through the

origin of co-ordinates. It will hereafter be seen that the line

under consideration is essentially straight for very small strains

only.

Art. 2. Coefficients of Elasticity.

In general, the coefficient E' in Eq. (i) of the preceding

Art., is called the "
coefficient of elasticity," or, sometimes,

" modulus of elasticity." The coefficient of elasticity varies

both with the kind of material and kind of stress. It simply

expresses the ratio between stress and strain.

The characteristic strain of a tensile stress is evidently an

increase of the linear dimensions of the body in the direction

of action of the external forces.

Let this increase per unit of length be represented by /,

while/ and E represent, respectively, the corresponding in-

tensity and coefficient. Eq. (i) of the preceding Art. then

becomes :

/ = /, or, E = ...... (i)

E is then the coefficient of elasticity for tension.

The characteristic strain for a co'mpressive stress is evi-

dently a decrease in the linear dimensions of the body in the

direction of action of the external forces. Let /, represent this

decrease per unit of length, /, the intensity of compressive

stress, and El the corresponding coefficient. Hence :

or, ,
= ...... (2)
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lt consequently, is the coefficient of elasticity for compres-
sion.

The characteristic strain for a shearing stress may be deter-

mined by considering the effect which it produces on the layers

of the body parallel to its plane of action.

In Fig. I let ABCD represent one face of a cube, another

of whose faces is fixed along AD. If a shear acts in the face

BC, whose plane is normal to the plane of the

paper, all layers of the cube parallel to the

plane of the shearing stress, i.e., BC, will slide

over each other, so that the faces AB and DC
will take the positions AE and DF. The
amount of distortion or strain per unit of length
will be represented by the angle EAB = cp. If

the strain is small there may be written q>, sin cp

or tan cp indifferently.

Representing, therefore, the intensity of shear, coefficient

and strain by S, G and q>, respectively, Eq. (i) of Art. I be-

comes:

5 = Gq>, or, G=-- (3)

b - *>
^

It will be seen hereafter that there are certain limits of

stress within which Eqs. (i), (2) and (3) are essentially true,

but beyond which they do not hold
;
this limit is called the

"limit of elasticity," and is not in general a well defined

point.

Art. 3. Lateral Strains.

If a body, like that shown in Fig. i, be subjected to ten-

sion, all of its oblique cross sections, such as FE and GH, will

sustain shearing stresses in consequence of the components
of the tension tangential to those oblique sections. These
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tangential stresses will cause the oblique sections, in both

directions, to slide over each other. Consequently the normal

cross sections of the body will be decreased ; and if the normal



ELASTICITY IN AMORPHOUS SOLID BODIES. [Art. 4.

if powers of / higher than the first be omitted. With r be-

tween o and y2 ,
there will be an increase of volume, but not

otherwise.

If the body is subjected to compression, the edges of the

cube become : a(\ /,), a(\ -f- r,/,)
and a(i -f- r,/x) ;

while the

volume of the parallelepiped takes the value :

(2)

As before, the higher powers of /, are omitted. If the vol-

ume of the cube is decreased, rx must be found between o

and 2 .

Art. 4. Relation between the Coefficients of Elasticity for Shearing and

Direct Stress in a Homogeneous Body.

A body is said to be homogeneous when its elasticity, of a

given kind, is the same in all directions.

Let Fig. i represent a body subjected to tension parallel to

CD. That oblique section on which the shear has the greatest

B intensity will make an angle of

45 with either of those faces

whose traces are CD or BD
;

for

if a is the angle which any

oblique section makes with BD,
P the total tension on BD, and

A' the area of the latter surface,

the total shear on any section whose area is A 1 sec a, will be

P sin a. Hence the intensity of shear is :

P sin a P
r, sin a cos aA 1

sec a A (i)

The second member of Eq. (i) evidently has its greatest
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value for a = 45.
'

Hence, if the tensile intensity on BD is

p
represented by =/, the greatest intensity of shear will be :

A

Then by Eq. (3) of Art. 2 :

In Fig. I EK and KG are perpendicular to each other, while

they make angles of 45 with either AB or CD. After stress,

the cube EKGH is distorted to the oblique parallelepiped

E'KG'H'. Consequently EKGH and EKGH' correspond to

ABCD and AEFD, respectively, of Fig. i, Art. 2. The angu-
lar difference EKG E'KG' is then equal to q> ;

and EKE'

= GKG' = -. Also E'KF' = 45 - -^.
2 2

Using, then, the notation of the preceding Arts., there will

result, nearly :

(45'- |)
= l^=i -/(i +r); . . (4)

remembering that F'K= FK(\ + /) ;
and that

E'F' = FK(\ - rl\

From a trigonometrical formula, there is obtained, very

nearly :

(45
-

P-] =
tan 45

- tan - I

'
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From Eqs. (4) and (5) :

? = /(i+r) ....... (6)

Substituting from Eq. (3), as well as from Eq. (i) of Art. 2 :

It has already been seen in the preceding Art. that r must

be found between o and J^, consequently?/^ coefficient of elas-

ticity for shearing lies between the values of % and ^ of that of
the coefficient of elasticity for tension.

This result is approximately verified by experiment.
Since precisely the same form of result is obtained by

treating compressive stress, instead of tensile, there will be

found, by equating the two values of G\

or, S-fte- (8)
i + r i + r,

It is clear, from the conditions assumed and operations

involved, that the relations shown by Eqs. (7) and (8) can only
be approximate.

Art. 5. Expressions for Tangential and Direct Stresses in Terms of the

Rates of Strains at any point of a Homogeneous Body.

Let any portion of material, perfectly homogeneous, be

subjected to any state of stress whatever. At any point as (9,

Fig. i, let there be assumed any three rectangular co-ordinate

planes ;
then consider any small rectangular parallelepiped

whose faces are parallel to those planes. Finally let the

stresses on the three faces nearest the origin be resolved into
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components normal and .parallel to their planes of action,

whose directions are parallel to the co-ordinate axis.

The intensities of these tangential and normal components
.will be represented in the usual manner, *>., pxy signifies a

tangential intensity on

a plane normal to the

axis of X (plane ZY\
whose direction is paral-

lel to the axis of F,

while pxx signifies the

intensity of a normal

stress on a plane nor-

mal to the axis of X
(plane ZY) and in the

direction of the axis of

X. Two unlike sub- o

scripts, therefore, indi- Fig.1

cate a tangential stress, while two of the same kind signify a

normal stress.

From Eq. (3) of Art. 2 and Eq. (7) of Art. 4, there is at

once deduced :

2(1 + r)
<p

Now when the material is subjected to stress the lines

bounding the faces of the parallelepiped will no longer be at

right angles to each other. It has already been shown in Art.

2 that the angular changes of the lines, from right ani;

the characteristic shearing strains, which, multiplied by G, give

the shearing intensities.

Let fy be the ch f angle of the boundary lines

parallel to X and F.

Let tpt be the change of angle of the boundary lines

parallel to Fand Z.
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Let q>3 be the change of angle of the boundary lines

parallel to Z and X.

Eq. (i) will then give the following three equations:

A.=% ...... (3)

(4)

In Fig. i let the rectangle agfh represent the right pro-

jection of the indefinitely small parallelepiped dx dy dz. If

&, v and w are the strains, parallel to the axis of x, y and 2, of

the original point h, the rates of variation of strain
, -=-,

-
dx dy dz

etc., may be considered constant throughout this parallelo-

piped ; consequently the rectangular faces will change to

oblique parallelograms. The oblique parallelogram dhck, whose

diagonals may or may not coincide with those of agfh^ there-

fore, may represent the strained condition of the latter figure.

Then, by Art. 2, the difference between dhc and the right

angle at h will represent the strain 9?,. But, from Fig. i, q^

has the following value :

(5)

But the limiting values of the angles in the second member
are coincident with their tangents ;

hence :

de be
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But, again, de is the distortion parallel to OX found by

movingparallel to OY
y only ; hence it is a partial differential of

, or, it has the value :

, du ,

de
=dy

dy ........ (7)

In precisely the same manner be is the partial differential

of v in respect to ;r, or :

dv ,

be j- dx.
dx

By the aid of these considerations, Eq. (6) takes the form :

du dv

If XY be changed to FZ, and then to ZX, there may be

at once written by the aid of Eq. (8) :

dv . dw

dw du
^ = s+a

Eqs. (2), (3) and (4) now take the following form :

<">
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The direct stresses are next to be given in terms of the

displacements u, v and w. Again, let the rectangular parallele-

piped dx dy dz be considered. Eq. (i), of Art. I, shows that

the strain per unit of length is found by dividing the intensity

of stress by the coefficient of elasticity, if a single stress only

exists. But in the present instance, any state of stress what-

ever is supposed. Consequently the strain caused by/**, for

example, acting alone must be combined with the lateral

strains induced by/^ and/w. Denoting the actual rates of

strain along the axes of Jf, Y and Z by / /2 and /
3, therefore,

the following equations may be at once written by the aid of

the principles given in Art. 3 :

04)

('5)

A, +/- ..... (
6
)

Eliminating between these three equations :

07)

- - 08)

But if w, z; and w are the actual strains at the point where
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these stresses exist, the rates of strain / /, and ^ will evi-

dently be equal to,,-, and
, respectively. The volume

of the parallelepiped will be changed by. those strains to

+ 4)
= d*dydz(\ + /, + /,+ 4),

if powers of / /a and /
3
above the first be omitted. The

quantity (/z + /, + 4) ^s
> then, ///* rate of variation of volumet or

/^r amount of variation of volume for a cubic unit. If there be

put

du , dv . dw ,
~ E

6 = -=- -=-, and G = -7 .,dx dy d* 2(1 -f- r)'

Eqs. (17), (18) and (19) will take the forms :

2r

The form in which Eqs. (14), (15) and (16) are written,

shows that if /, /> or /, is positive, the stress is tension,

and compression if it is negative. Consequently a positive

value for any of the intensities in Eqs. (20), (21) or (22) will in-

dicate a tensile stress, while a negative value will show the

stress to be compressi\ c .

The Eqs. (14) to (19), together with the elimination in-

volved, also show that the coefficients of elasticity for tension
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and compression have been taken equal to each other, and that

the ratio r is the same for tensile and compressive strains.

Further, in Eqs. (11), (12) and (13), it has been assumed
that G is the same for all planes.

Hence Eqs. (u), (12), (13), (20), (21) and (22) apply only to

bodies perfectly homogeneous in all directions.

It is to be observed that the co-ordinate axes have been

taken perfectly arbitrarily.

Art. 6. General Equations of Internal Motion and Equilibrium.

In establishing the general equations of motion and equi-

librium, the principles of dynamics and statics are to be applied
to the forces which act upon the parallelepiped represented in

Fig. i, the edges of which are dx, dy and dz. The notation to

be used for the intensities of the stresses acting on the dif-

ferent faces will be the same as that used in the preceding
Article.

Let the stresses which act on the faces nearest the origin

be considered negative, while those which act on the other

three faces are taken as positive.

The stresses which act in the direction of the axis of X are

the following :

On the face normal to X, nearest to O
; pxx dy dz.

" farthest from O', (pxx -f -^~dx\dy dz.

11 "
dy dx nearest to O

; pgxdy dx.

" farthest from 6>; (ptx + -^dz^dydx.
" " dzdx nearest to O\ pyx dzdx.

" farthest from O
; (pyx + -^dy\dzdx.
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The differential coefficients of the intensities are the rates

of variation of those intensities for each unit of the variable,

which, multiplied by the dif-

ferentials of the variables,

give the amounts of varia-

tion for the different edges
of the parallelepiped.

Let X be the external

force acting in the direction

of X on a unit of volume at

the point considered : then

X dx dy dz will be the ^
amount of external force ^.^^
acting on the parallelepiped.

^
These constitute all the forces acting on the parallelo-

piped inthe direction of the axis of Xy and their sum, if un

balanced, must be equal to ;// - dx dydz-, in which m is the
at*

mass or inertia of a unit of volume, and dt the differential of

the time. Forming such an equation, therefore, and dropping
the common factor dx dydz, there will result :

dx
dp,x~ __*- *

Changing x to r, y to z, and z to xi Eq. (i) will beconu :

</r

Again, in Eq. (i), changing x to z, * to y t and y to x :
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The line of action of the resultant of all the forces which

act on the indefinitely small parallelepiped, at its limit, passes

through its centre of gravity, consequently it is subjected to the

action of no unbalanced moment. The parallelepiped, therefore,

can have no rotation about an axis passing through its centre

of gravity, whether it be in motion or equilibrium. Hence, let

an axis passing through its centre of gravity and parallel to the

axis of X, be considered. The only stresses, which, from theii

direction can possibly have moments about that axis, are those

with the subscripts (yz\ (zy\ (yy), or (zz). But those with the

last two subscripts act directly through the centre of the paral-

lelepiped, consequently their moments are zero. The stresses

-ZZLdy . dx dz and ^-dz . dx dy are two of six forces whose
dy dz

resultant is directly opposed to the resultant of those three

forces which represent the increase of the intensities of the

normal, or direct, stresses on three of the faces of the parallele-

piped ; these, therefore, have no moments about the assumed

axis. The only stresses remaining are those whose intensities

are pzy
and pyz

. The resultant moment, which must be equal

to zero, then, has the following value :

pyjdx dz . dy+ptydx dy . dz = o .... (4)

A.= -A, ........ (5)

Hence the two intensities are equal to each other.

The negative sign in Eq. (5) simply indicates that their

moments have opposite signs or directions
; consequently, that

the shears themselves, on adjacent faces, act toward or from

the edge between those faces. In Eqs. (i), (2) and (3), the
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tangential stresses, or shears, are all to be affected by the same

sign, since direct, or normal, stresses only can have different

signs.

The Eq. (5) is perfectly general, hence there may be
written :

P*y =/, and / =/ ..... (6)

Adopting the notation of Lame, there may be written :

A* = Nn pyy
= N,, A. = Ny

P*y
= Tiy pn = Ta , pxy

= Ty

by which Eqs. (i), (2) and (3) take the following forms :

dN, dT. JT, d*u

dT dN
v _W d ~dz
+ Y* ~ *-& ' ' ' '

dT, dN.

The equations (i i), (12), (13), (20), (21) and (22) of the ;

ceding Art. are really kincmatical in nature ; in order that the

principles of dynamics may hold, they must satisfy Eqs. (7), (8)

and (9). As the latter stand, by themselves, they arc appl

ble to rigid bodies as well as elastic ones; but when the values

of jY and T, in terms of the strains ,
v and w, have been in-

i:d they trictcd, in their use, to clastic bodies only.

With those values so . they form the equations on

\\hicharebased the malhcmatic.il theory of sound and light

vibrations, as well as those of clastic rods, membranes, <

2
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In general, they are the equations of motion which the dif-

ferent parts of the body can have in reference to each other,

in consequence of the elastic nature of the material of which
the body is composed.

If all parts of the body are in equilibrium under the action

of the internal stresses, the rates of variation of the strains

-jy, -j-
and -yy ,

will each be equal to zero. Hence, Eqs. (7),

(8) and (9) will take the forms:

dT, dTt dN.

These are the general equations of equilibrium. As they

stand, they apply to a rigid body. For an elastic body, the

values of N and T from the preceding Art, in terms of the

strains ?/, v and w, must satisfy these equations.

The Eqs. (10), (11) and (12) express the three conditions of

equilibrium that the sums of the forces acting on the small

parallelepiped, taken in three rectangular co-ordinate direc-

tions, must each be equal to zero. The other three conditions,

indicating that the three component moments about the same

co-ordinate axes must each be equal to zero, are fulfilled by

Eqs. (5) and (6). The latter conditions really eliminate three

of the nine unknown stresses. The remaining six conse-

quently appear in both the equations of motion and equilib-

rium.

The equations (7) to (12), inclusive, belong to the interior
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of the body. At the exterior surface, only a portion of the

small parallelepiped will exist, and that portion will be a

tetrahedron, the base of which forms a part of the exterior

surface of the body, and is acted upon by external forces. Let

- be the area of the base of this tetrahedron. and let/, q and

r be the angles which a normal to it forms with the three axes
of X> Y and Z, respectively. Then will

da cosp = dy dz, da cos q = dz dx, and da cos r = dx dy.

Let P be the known intensity of the external force acting on

da, and let TT, x and p be the angles which its direction makes
with the co-ordinate axes. Then there will result :

X = Pda . cos TT, Y = Pda . cos x and Z = P da . cos p.

The origin is now supposed to be so taken that the apex of

the tetrahedron is located between it and the base
; hence that

part of the parallelepiped in which acted the stresses involving
the derivatives, or differential coefficients, is wanting ; con-

sequently those stresses arc also wanting.
The sums of the forces, then, which act on the tetrahedron,

in the co-ordinate directions, are the following :

- (Nt dy dz + T
3
dz dx -f T, dy dx) + Pda cos TT = o,

- (T^dzdy + Nt dz dx + T
t dy dx) + Pda cos x = o,

-
( T, ds dy + T

l
ds dx + N3 dy dx) + Pda cos p = a

Substituting from above :

N
l
cos p -f 7*

s
cos q + 7*. cos r = P cos TT . (13)
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T̂ cos p -\- JV3 cos q -|- Tt cos r = P cos x

T3 cosp -f- 7*, cos q -{- N^ cos r = P cos p
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The intensities of the normal stresses in the directions of

X and r will be indicated by Nt and R, respectively. The
remainder of the notation

will be of the same gen-

eral character as that in

the preceding Article
;

i.e., TXT will represent a

shear on the face dr . r dip

in the direction of r, while

NW is a normal stress, in

the direction of cp, on the

face dx dr.

The strains or dis-

placements, in the direc-

tions of x, r and q>, will

be represented by #, p
and w ; consequently the

unbalanced forces in those directions, per unit of mass, will be :

m w mv i ft * *.

.
m - and m -

Those forces acting on the faces /if, fe, and he, will be con-

sidered negative ;
those acting on the other faces, positive.

Forces acting in the direction of r.

R . r d<i> </i , and ;

Rr dcf> dx + (^-dr
= r^dr 4- Rdr^dtpdx.

dx, and ;
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-j- T^rdrdx + J
r
dcp.drdx.

d<p

Tyr . r dcp dr, and
;

+ Txr . r dcp dr -\
---~^ dx . r dcp dr.

On the face dr dx, nearest to ZOX, there acts the normal

stress \N^dr dx -f --^^ dcp. dr dx N'. Now N' has a com-

ponent acting parallel to the face/> and toward OX, equal to

N' sin (dcp)
= N'

r ^- = N'dcp. But the second term of this

product will hold (dcp)
2
,
hence it will disappear, at the limit, in

the first derivative of N'dcp .'. N'dcp N^dcpdrdx. Since

this force must be taken as acting toward OX, it acts with the

normal forces on ///, and, consequently, must be given the

negative sign.

If RQ is the external force acting on a unit of volume,

another force (external) acting along r will be R . r dcp dr dx.

The sum of all these forces will be equal to

, , , d 2
pm . r dcp dr ax .

77-.

Forces acting in the direction of cp.

dr dx, and
;

drdx -f dcp . drdx.

. r dcp dx, and
;
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Tx* . r dcp dr, and
;

+ TJC+.rdcpdr + ^^dx . r dcp dr.

As in the case of N^, in connection with the forces along

r, so the force T$ r dr dx has a component along q> (normal to

fe) equal to T$ r dr dx . sin (dcp)
= T^ r dcpdrdx. It will have

a positive sign, because it acts from OX.
The external force is, # . r dcp dr dx.

Forces acting in the direction of x.

N
l

. rdq> dr, and ;

-\- Nl
r dcp dr -\

--- dx . r dcp dr.
ax

Trx . dx r dcp, and

+ Trx .dxrdcp+ (^^ dr = r^ dr + Trm
dr}

dx dcp.

T+x dx dr, and
;

+ T^dz dr +
d ** dcp.dxdr.
dcp

The external force is, X9 . r dcp dx dr.

Putting each of these ilnve sums equal to the proper rates



24 ELASTICITY IN AMORPHOUS SOLID BODIES. [Art. 7.

of variation of momentum, and dropping the common factor

r dtp dx dr :

These are the general equations of motion (vibration) in

terms of semi-polar co-ordinates ;
if the second members are

made equal to zero, they become equations of equilibrium.

Eqs. (2), (3), and (4) are not dependent upon the nature of the

body.
Since x, r, and cp are rectangular, it at once follows that :

Trx Txr , Trt = T$r,
and 7^> = T^x. ... (5)

In order that Eqs. (2), (3), and (4) may be restricted to

elastic bodies, it is necessary to express the six intensities of

stresses involved, in terms of the rates of variation of the strains

in the rectangular co-ordinate directions of x, r, and cpt Since

these co-ordinates are rectangular, the Eqs. (11), (12), (13), (20),

(21), and (22) of Article 5, may be made applicable to the pres-

ent case by some very simple changes dependent upon the

nature of semi-polar co-ordinates.

For the present purpose the strains in the co-ordinate direc-

tions of x, y, and 2 will be represented by #', v\ and w'. Since

the axis of x remains the same in the two systems, evidently :

M_ _ du

dx
"

dx
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From Fig. I it is clear that the axis of y corresponds exactly
to the co-ordinate direction r

;
hence :

<U_ = dp

dy
~

dr

From the same Fig. it is seen that the axis of z corresponds
to cp,

or rep. But the total differential, dw', must be considered

as made up of two parts ; consequently the rate of variation

will consist of two parts also. If there is no distortion in
dz

the direction of r, or if the distance of a molecule from the

origin remains the same, one part will be x
= j-. If,

however, a unit's length of material be removed from the dis-

tance r to r + p from the centre O, Fig. i, while <p remains

constant, its length will be changed from I to I . f i -f
-- V in

which p may be implicitly positive or negative. Consequently
there will result :

dw dw
, p

r'

,

f[

dz rdcp

For the reasons already given, there follow :

du du . dv' dp
. = -r- and r- = .

dy dr dx dx

In Fig. 2 let dc be the side of a distorted small portion of

the material, the original position of

which was d'e. Od is the distance r ^-^
from the origin, ad = dr and ac = dw, ,j

while dd" = w. The angular change

in position of dc is = -\ but an
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amount equal to - - = is due to the movement of r, and is
ad r

not a movement of dc relatively to the material immediately

adjacent to d.

Hence :

dw' __ dw w . dv' __ dp

dy dr r
J

dz r dcp

There only remain the following two, which may be at once

written :

dw' dw du du
-j = -r- and -

.

dx dx dz r d(p

The rate of variation of volume takes the following form in

terms of the new co-ordinates :

6 - -1- -1- - 4- -I-
^w

I
- (6\

^~dx~^d~ ~dz
~
dx^ dr^ rdc^ r

Accenting the intensities which belong to the rectangular

system *, y, z, the Eqs. (11), (12), (13), (20), (21) and (22), of

Art. 5, take the following form :

(7)

(8)
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dw w \+ 77

du

If these values are introduced in Eqs. (2), (3) and (4), those

equations will be restricted in application to bodies of homo-

geneous elasticity only.

The notation r is used to indicate that the r involved is the

ratio of lateral to direct strain, and that it has no relation

whatever to the co-ordinate r.

The limiting equations of condition, (13), (14) and (15) of

Art. 6, remain the same, except for the changes of notation,

shown in Eqs. (7) to (12), for the intensities N and T.

Art. 8. Equations of Motion and Equilibrium in Polar Co-ordinates.

The relation, in space, existing between the polar and

rectangular systems of co-ordinates is shown in Fig. I. The

angle cp is measured in the plane ZY and from that of XY\
while

i/}
is measured normal to ZY in a plane which contains

OX. The analytical relation existing between the two systems

is, then, the following :

x = r sin 0, y r cos $ cos <p, and * = r cos $ sin p.

The indefinitely small portion of material to be considered

is a /ted. It is limited by the co-ordinate planes located by
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<p and V',
and concentric spherical surfaces with radii' r and

r -f dr. The directions r, cp and //-,
at any point, are rectangu-

lar ; hence, the sums of the forces acting on the small portion

of the material, taken in these directions, must be found and

put equal to

*
and m

in which expressions, p, ?; and GO represent the strains in the

direction of r, <y> and if> respectively.

Fig.1
xx /

Those forces which act on the faces ah, bd and cd will be

considered negative, and those which act on the other faces

positive.

The notation will remain the same as in the preceding Ar-

ticles, except that the three normal stresses will be indicated

by Nr , N^ and N^.
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Forces acting along r.

- Nr . r d^ r cos
// d<p.

+ Nr .r* cos
</< dip dcp + (^

N
r ^ dr = r*^r dr + 2rNr dr

\ ar ar

cos ip dip d<p.

. r d dr d<p .

- r . r

j j
. rcos$d<pdr+

r cos

- T+r sin ^
dip)

r dcp dr.

N$ . r dif> dr . sin aOc = N+ . r dtp dr . cos dtp ;

face ce.

N+ . r cos $ dcp dr . sin aOb = N+ . r cos y- d<p dr

on face be.

Forces acting along <p.

. r costy dcp rdi/-.

cos dtp dtp.
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N$ . r dtp dr.

+ N* . r dil) dr -\ 7^- dcp r dip dr.
dcp

T^ . r cos *p dcp dr.

, , . f
-f TW cosip .rdcp dr+ (

cos

sin
ip dtp

J
r dcp dr.

-\- T^r r dtp dr . cos ip dcp ;
on face ce.

, . , f . , r cos
t/> dcp \ . .

- TM r dip dr
(
sin akc = - -

)
= T^ r dip dr . sin ip dcp\

\ r cot ip J

on face ce.

The lines ak and ck are drawn normal to Oc and Oa.

Forces acting along ip.

-
T^, . r cos tp dcp . r dtp.

rr^ _ .7 7 . . / c^\ JL +*\ij f I -f
- i^ j. *// . r^* 1

-\- 7 r^r
3 cos ip dcp dtp -f- ( -p

- f= f" i
2 ar -f- 27* 1 ^ dr

cos *p dip dcp.

- TW . r dip dr.

dT&,
-f- 7^ r^ flfr + .

^
dcp . r dtp dr.

N^ . r cos
if) dcp dr.
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dcp dr
^

- N^ sin ty dy\r dcp dr.

-+- T^r r cos *p dq> dr . dtf) ;
on face be.

-|- N^ . r dfy dr . sin akc = -f- N$ r dfy dr . sin $ dcp ;
on face ce.

The volume of the indefinitely small portion of the ma-

terial is (omitting second powers of indefinitely small quan-

tities) :

r cos
*(> d<p . r dfy . dr = A V\

and its mass is m multiplied by this small volume. The latter

may be made a common factor in each of the three sums to be

taken.

The external forces acting in the directions R, cp and ^ will

be represented by :

R AV, $ 4V and

respectively.

Taking each of the three sums, already mentioned, and

dropping the common factor AV> there will result :

dNr dT*r _ dT)r 2Nr -N+ -Nj -
dr r cos $ . dcp r d$ r

<ir r cos ty . dcp

2^-f TV- T .~~ "
>
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dr r cos
if> dcp r

27^ + T^-N+tant + Nttant d'oo~~ ~ ~

Since r, <p and i/>
are rectangular at any point :

T$r Trt T^ TV and T^ = T^.

Hence :

2 T^ + TV - tan $(T^ + 7^) _ 3^- 2tanty .

r r

These relations somewhat simplify the first members of

Eqs. (2) and (3).

Eqs. (i), (2) and (3) are entirely independent of the nature

of the material ; also, they apply to the case of equilibrium, if

the second members are made equal to zero.

The rectangular rates of strain, at any point, in terms of

r, <p and ?/.-
are next to be found. As in the preceding Art.,

the rates of strain in the rectangular directions of r, cp and if:

will be indicated by :

dv dw du' dv du'
ftpj 11 j i ~j r> j >f j 'i ci.v

dy dz dx dx dy

Remembering the reasoning in connection with the value of

-= , in the preceding Art., and attentively considering Fig. i,

there may at once be written :
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du' d&> p

isIn Fig. i, if ac = i and ab = GO, while ak = r cot . *j> (ak i

perpendicular to aO\ the difference in length between ac and

bh will be :

oo GO tan ty

r cot ty
r

This expression is negative because a decrease in length takes

place in consequence of a movement in the positive direction

of n/\

Again, a consideration of Fig. I, and the reasoning con-

nected with the equation above, will give :

dw^ _ drj p oo tan $
d^

~

rces
i/> dq> r r

Without explanation there may at once be written :

dv' dp

dy dr*

Fig. i of this, and Fig. 2 of the preceding Art. give :

du' da> _
oo dv' _ dp

These are to be used in the expression for 7^ Precisely

the same Figs, and method give :

dv* dp dw' dtj rj

,
and ,-j

= -T- - -;

which are to be used in finding

3
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The expression for -=; will be composed of the sum of two

parts. In Fig. 2, ab is the original position of r dfi, and after

the strain
77

exists it takes the position ec. Consequently ac

(equal and parallel to bd and perpendicular
to ak) represents the strain 77, while cd rep-

resents dij. Since, also, fc is perpendicu-
lar to ck, the strains of the kind

77 change
the right angle fck to the angle fee ;

or

the angle eck is equal to

\

dw' 7,77 ed ca__ = ^ + ^ = _ + _

:*L "
r dip r cot *p

In Fig. 2, the points a, b and k are iden-

tical with the points similarly lettered in Fig. I. The expres-

sion for ~ may be at once written from Fig. i. There may,
dz

then, finally be written :

dw' drj rj tanW '' =

r ~d
H

r

du doo
and, -j-,

= T~T~dz r cos fy dcp

These equations will give the expression

The value of

for

_duf_ _<W_,_~
dx'

""

dy
' H~ '

now takes the following form :

dp , drj
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The last two terms are characteristic of the spherical co-

ordinates.

The equations (20), (21), (22), (i i), (12) and (13), of Art. (5),

take the forms : .

(5)

2G*
e + 2G(

dr>

(fI 2r \T cos ip dq> r

N*=^i 6 + 2G(^+ $ (7)

77 tow+ _-^W+ C .... (8)

' c 5 7 + f3H (9)

, v

If these values are inserted in Eqs. (i), (2) and (3), the

resulting equations will be applicable to isotropic material

only.

As in the preceding Art., r is used to express the ratio

between direct and lateral strains, and has no relation what-

ever to the co-ordinate r.

It is interesting and important to observe that the equa-

tions of motion and equilibrium for elastic bodies, arc only

special cases of equations which are entirely independent of

the nature of the material, of equations, in fact, which express

the most general conditions of motion or equilibrium.



CHAPTER II.

THICK, HOLLOW CYLINDERS AND SPHERES, AND TORSION.

Art. 9. Thick, Hollow Cylinders.

IN Fig. I is represented a section, taken normal to its axis,

of a circular cylinder whose walls are of the appreciable thick-

ness /. Let/ and/! represent the interior and exterior inten-

sities of pressures, respectively. The material will not be

stressed with uniform intensity throughout the thickness /. Yet

if that thickness, comparatively speak-

ing, is small, the variation will also be

small ; or, in other words, the intensity

of stress throughout the thickness t

may be considered constant. This

approximate case will first be con-

sidered.

The interior intensity / will be

considered greater than the exterior

/n consequently the tendency will

be toward rupture along a diametral

plane. If, at the same time, the ends of the cylinder are taken

as closed, as will be done, a tendency to rupture through the

section shown in the Fig. will exist.

The force tending to produce rupture of the latter kind

will be :

Fig.1

(I)
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If N
t represents the intensity of stress developed by this

force,

N - _Z_ - **-PS;
l
~

n(r?-r'*) r? - r*

If the exterior pressure is zero, and if r is nearly equal to

-POL-
r')

In this same approximate case, the tendency to split the

cylinder along a diametral plane, for unit of length, will be:

If N' is the intensity of stress developed by F' :

N' is thus seen to be twice as great as yV, when/, = o. If,

therefore, the material has the same ultimate resistance in both

directions the cylinder will fail longitudinally when the interior

intensity is only half great enough to produce transverse rup-

ture ;
the thickness being assumed to be very small and the ex-

terior pressure zero.

N^ and N' are tensile stresses, because the interior pressure

was assumed to be large compared with the exterior. If the

opposite assumption were made, they would be found to be

compression, while the general forms would remain exactly the

same.
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The preceding formulas are too loosely approximate for

many cases. The exact treatment requires the use of the

general equations of equilibrium, and the forms which they take

in Art. 7 are particularly convenient. As in that Art., the axis

of x will be taken as the axis of the cylinder.

Since all external pressure is uniform in intensity and nor-

mal in direction, no shearing stresses will exist in the material

of the cylinder. This condition is expressed in the notation

of Art. 7 by putting :

T$x = Trx = Tr$ o.

Again the cylinder will be considered closed at the ends,

and the force F
9 Eq. (i), will be assumed to develop a stress

of uniform intensity throughout the transverse section shown
in Fig. i. This condition, in fact, is involved in that of making
all the tangential stresses equal to zero.

Since this case is that of equilibrium, the equations (2), (3)

and (4) of Art. 7 take the following form, after neglecting Xw
R and < :

dN,

(7)

These equations are next to be expressed in terms of the

strains u, p and w.

In consequence of the manner of application of the external

forces, all movements of indefinitely small portions of the
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material will be along the radii and axis of the cylinder.

Hence :

u will be independent of r and q>\

p
" " " "

<p
" x ;

w = o.

The rate of change, therefore, of volume will be (Eq. (6) of

Art. 7):

As p is independent of x, -y-
=

-^ ;
hence if the value of

ax ax2

N
t
be taken from Eq. (7) of Art. 7 and put in Eq. (5) of this

Art. :

dN, '

= O, and u = ax -f a.
dx*

But the transverse section in which the origin is located

may be considered fixed. Consequently if x = o, u = o and

thus a = o. The expression for u is then : u = ax.

The ratio u -r x is the /' of Eq. (i), Art. I ; while the /'

of the same equation is simply Nt
of Eq. (2), given above.

Hence :

-'
(9)

.r /: E(r* - r')

Again, Eq. (8), of Art. 7, in connection with Eqs. (8) and (6)

of this, gives:
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_ p <._ P _. 2G
* * ^* ~

rdr r*J
~
\dr*

~

r dr r*

. - . = n
dr* rdr r*

~

dr*
~

dr
~

dp p

r dp -|- p dr d(pr) = cr dr.

cr3
,

, cr b
.. pr = - f b', or, p =- ... (lO)

2 2 r

This value of p in Eqs. (8) and (9) of Art. 7 will give :

At the interior surface R must be equal to the internal

pressure, and at the exterior surface to the external pressure.

Or, since negative signs indicate compression ;

lir = r' ..... R = -
p.

Either of these equations is the simple result of applying

Eqs. (13), (14) and (15) to the present case, for which,
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cosp = cos r = cos n = cos p = o,

cos q = cos x == i
,

and P p or - pr

Applying Eq. (ii) to the two surfaces:

Subtracting (14) from (13):

Inserting this value in Eq. (13)

The general expressions of R and A7

^, freed from the arbi-

trary constants of integration, can now be easily written by

inserting these last two values in Eqs. (i i) and (\2\ By making
the insertions there will result :

R _ A',
1 - P'' _ (A ~ /) r.V i.

/
}

r; _ r
_

r" - r' ~r>

'

H . Prt-p**
|

(A-/)^' '

(l^**-
rJ r,.

r" - r,

~
?'

The stress ^^ is a tension directed around the cylinder, and



42 THICK, HOLLOW CYLINDERS. [Art. 9.

has been called "
hoop tension." Eq. (16) shows that the hoop

tension will be greatest at the interior of the cylinder. An ex-

pression for the thickness, /, of the annulus in terms of the

greatest hoop tension (which will be called //) can easily be

obtained from Eq. (16).

If r = r' in that equation :

.

^ -- (
r' \2A -

h +P

Eq. (17) will enable the thickness to be so determined that

the hoop tension shall not exceed any assigned limit h. If/,
is so small in comparison with / that it may be neglected, /

will become :

If/, is greater than /, N^ becomes compression, but the

equations are in no manner changed.
The values of the constants b and c may easily be found

from the two equations immediately preceding Eq. (15).

It is interesting to notice that the rate of change of volume,

0, is equal to (a -f- c) and, therefore, constant for all points.
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Art. 10. Torsion in Equilibrium.

The formulas to be deduced in this Article are those first

given by Saint-Venant, but, with one or two exceptions, es-

tablished in a different manner.

It will in all cases, except that of the final result for a rec-

tangular cross section, be convenient to use those equations of

Art. 7 which are given in terms of semi-polar co-ordinates.

Let Fig. I represent a cylindrical piece of material, with

any cross section, fixed in the plane ZY, and let the origin of

co-ordinates be taken at O. Let

it be twisted, also, by a couple

V

-o

P. ab = p/
9

the plane of which is parallel to

ZY. The material will thus be

subjected to no bending, but to

pure torsion.

The axis of the piece is sup-

posed to be parallel to the axis of

X as well as the axis of the couple.
Normal sections of the piece, orig- 2

inally parallel to ZOY, will not re-

main plane after torsion takes place. But the tendency to

twist any elementary portion of the piece about an axis pass-

ing through its centre and parallel to the axis ofX will be very
small compared with the tendency to twist it about either the

axis of r or (p ; consequently the first will be neglected. In

the notation of Art. 7, this condition is equivalent to making
T* = o.

As the piece is acted upon by a couple only, all normal
stresses will be zero.



44 TORSION IN EQUILIBRIUM. [Art. 1Q.

Eqs. (7), (8), (9) and (i i),
of Art. 7, then become :

~du
e + 2G = (0

* =

(3)

-dp dw w
V* = G(

~
)
= o . . . . . (4)\r d<p dr r J

After introducing the values of Trx and T^xt from Eqs. (10)
and (12) of Art. 7, in Eqs. (2), (3) and (4) of the same Article,

at the same time making the external forces and second mem-
bers of those equations equal to zero, and bearing in mind the

conditions given above, there will result :

dTrx dT^ Trx _ r ,

. J^ ~ (jr
\ J^a > ~JI~J~.. ~Tdr r dcp r \drt dr dx n

r dy dx
'

r*d<p

du d

dT.rx
dx

-o .... (6)

Also by Eq. (6) of Art. 7 :
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fi
du dp dw p^- ..... 8

The cylindrical piece of material is supposed to be of such

length, that the portion to which these equations apply is not

affected by the manner of application of the couple. This

portion is, therefore, twisted uniformly from end to end ; con-

sequently the strain u will not vary with any change in x.

Hence :

Eq. (i) then shows that 6 = 0. This was to be anticipated,

since a pure shear cannot change the volume or density. Be-

cause 6 = o, Eqs. (2) and (3) at once give :

= -+=0 ...... (.0)dr

As the torsion is uniform throughout the portion con-

sidered :

dx r dx

Eq. (n) in connection with Eq. (10), gives:

j
W

,
= O (12)

r dx d(p

Eqs. (n) and (12), in connection with Eq. (10), reduce Eq.

(5) to the following form :
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- - o - I- rrdr~
~ ~

Both terms of the second member of Eq. (6) reduce to zero

by Eqs. (9) and (u), and give no new condition. The second

term of the second member of Eq. (7) is zero by Eq. (9) ; the

remaining term therefore gives :

As the stress is all shearing, p will not vary with cp.

Hence :

dp

Eqs. (10), (n) and (15) show that p = o, and reduce Eq.

(4) to :

dw w
-r-

- -- = O ....... (16)dr r

Eq. (10) now becomes
' - = o, and shows that w does not

r dcp

contain (p ;
while Eq. (14) shows that w does not contain x2 or

any higher power of x. The strain w, in connection with

these conditions, is to be so determined as to satisfy Eq. (16).

If a is a constant, the following form fulfills all conditions :

w = arx (17)

Eq. (17) shows that the strain w, in the direction of cp, i.e.,

the angular strain at any point, varies directly as the distance
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from the axis of X, and, as the distancefrom tlte origin measured

along that axis. This is a direct consequence of making T^
= o.

The quantity ot is evidently the angle of torsion, or the

angle through which one end of a unit of fibre, situated at

unit's distance from the axis, is twisted
;
for if

;

r = x = I, w = a.

An equation of condition relative to the exterior surface of

the twisted piece yet remains to be determined
; and that is

to be based on the supposition that no external force whatever

acts on the outer surface of the piece. In Eqs. (13), (14) and

(15) of Art. 6, consequently, P = o. The conditions of the

problem also make all the stresses except :

TI = T^ and T, = T^

equal to zero, while the cylindrical character of the piece
makes :

p 90 .-. cosp = o.

If cos t be written for cos r :

cos t = sin q.

Eq. (13), just cited, then gives :

T^cosq-^- T^sinq Q ..... (18)

But since p = o and w = arx :

<">
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~/ du
and

Eq. (18) now becomes:

du

dr dr= - tanq = --d-. . . . (21)

rdcp

in which r is the value of r for the perimeter of any normal

section.

Eqs. (13) and (21) are all that are necessary and all that

exist, for the determination of the strain u. Eq. (13) must be

fulfilled at all points in the interior of the twisted piece, while

Eq. (21) must, at the same time, hold true at all points of the

exterior surface.

After u is determined, Txr and 7^, at once result from Eqs.

(19) and (20). The resisting moment of torsion then becomes :

M = 7^ r>dq> . dr = G- .rdrdcp + Galp . (22)

In this equation Ip \\r3
. rdcp dr is the polar moment of

inertia of the normal section of the piece about the axis of

X, and the double integral is to be extended over the whole

section.

According to the old, or common, theory of torsion :

M = Gal?

The third member of Eq. (22), shows, however, that such an

expression is not correct unless u is equal to zero, i.e., unless

all normal sections remain plane while the piece is subjected
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to torsion. It will be seen that this is true for a circular sec-

tion only.

It may sometimes be convenient to put Eq. (22) in the

following form :

M =
G^rdr

. ^ dtp + Galp = G \u . r dr + Galp . (23)

In this equation u is to be considered as :

while the remaining integration in r is to be so made that the

whole section shall be covered.

It is very important to observe that the equations of con-

dition for the determination of u, and consequently the general
values of T*, and 7^, are wholly independent of any consider-

ations regarding the position of the axis of torsion, or the axis

of X. It follows from this, that the resistance ofpure torsion is

precisely the same wherever may be the axis about which the

piece is twisted. It is to be borne in mind, however, that, if

the axis of the twisting is not the axis of the cylindrical piece,

the latter will be subjected to combined bending and torsion ;

the bending being produced by a force sufficient to cause tin-

piece to take the helical position ne-

cessitated by the torsion. The cylin-

drical axis is the straight line locus of

the centres of gravity of all the normal

sections.

If, as in Fig. 2, there are n cylinders

whose centres c arc all at the saim-

distance Cc I from the centre C of

twisting, or motion; and if M is the

total moment of torsion of the system,

4
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while ;;/ is the moment of torsion of each cylinder about its

own axis or centre c, then will M = nm ; and each cylinder
will be subject to a bending moment whose amount can be

determined from the condition that the diameter of each piece

lying along Cc before torsion, must pass through C after, and

during, torsion, also.

Since Txr and Tx$ act at right angles to each other, the re-

sultant intensity of shear at any point in an originally normal

section of the twisted piece will be :

T= VTxr*+ TV (24)

According to the ordinary methods of the calculus, the co-

ordinates of the point at which T has its greatest value must

satisfy the equations :

dT dT

d*T
(

d*T \ 2

_d*T <
_

;

\dcpdr) dq?
'

dr*
~

After the solution of Eqs. (25), it will usually be necessary

only to inspect the resulting value of T, in order to determine

whether it is a maximum or minimum, without applying the

tests which follow those equations.

Equations of Condition in Rectangular Co-ordinates.

In the case of a rectangular normal section, the analysis is

somewhat simplified by taking some of the quantities used in

terms of rectangular co-ordinates.

In the notation of Art. 6, all stresses will be zero except



Art. 10.] TORSION IN EQUILIBRIUM. 51

T
3
and Ty Hence Eqs. (10), (11) and (12) of that Article re

duce to :

_

dT.
-

Tdx
The strains in the directions of x, y and z are, respectively,

, v and w. Introducing the values of T
3
and Ta in the equa-

tions above, in terms of these strains, from Eqs. (n) and (13)

of Art. 5 ;
and then doing the same in reference to the con-

ditions

Nt
= N, = N3

=: T
t
= O :

the following equations will result :

d*u d*u

~+=o (27)dz dy

The operations by which these results are reached are iden-

tical with those used above in connection with semi-polar co-

ordinates, and need not be repeated.

Eq. (27) is satisfied by taking :

s axz ;

W - - n :

in which <r is the angle of torsion, as before.
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Eqs. (11) and (13) of Art. 5 then give :

_, ~{du . dv \ ~(du . \T
3
=

Gi-j- + -T-
)

=
G( -f az

}
. . . (28)

\dy dx J \dy J

(29)

The element of a normal section is dz dy. Hence the mo-
ment of torsion is

(30)

= G\(zudz - yu dy} + GW^ .... (31)

is the polar moment of inertia of any section about the axis

of X.

The integrals are to be extended over the whole section
;

hence, in Eq. (31), zu dz is to be taken as :

z dz .
, -j-
*-*.dy

and yu dy as :

y
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in which expressions, y and # are general co-ordinates of the

perimeter of the normal section.

Eq. (26) is identical with Eq. (13), and can be derived from

it, through a change in the independent variables, by the aid

of the relations:

2 = r cos (p ;
and y r sin (p.

Solutions of Eqs. (13) and (21).

It has been shown that the function u, which represents the

strain parallel to the axis of the piece, must satisfy Eq. (13) [or

Eq. (26)] for all points of any normal section, and Eq. (21) (or

a corresponding one in rectangular co-ordinates) at all points
of the perimeter ;

and those two are the only conditions to be

satisfied.

It is shown by the ordinary operations of the calculus that

an indefinite number of functions
,
of r and (p, will satisfy Eq.

(13); and, of these, that some are algebraic and some tran-

scendenta?.

It is further shown that the various functions u which

satisfy both Eqs. (13) and (21) differ only by constants.

If u is first supposed to be algebraic in character, and if r,,

c c
3 etc., represent constant coefficients, the following general

function will satisfy Eq. (13) :

, ,

-f c\
r cos (p -f ca r* cos 2<p + <rj

rs cos 3<p -f '

and the following equation, which is supposed to belong to the

perimeter of a normal section only, will be found to satisfy

Eq.(2i):

\- c
,
r cos <p + c9 r* cos 2<p + c

3
rs cos $<p +

c\ r sin q> c'9 r* sin 2<p c'
3
r* sin $<p . = C (33)
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C is a constant which changes only with the form of sec-

tion.

If -^ and -^ be found from Eq. (32), while ~ be taken
dr rdcp r dtp

from Eq. (33), and if these quantities be then introduced in Eq.

(21), it will be found that that equation is satisfied.

The only form of transcendental function needed, among
those to which the integration of Eq. (13) or Eq. (26) leads,

will be given in connection with the consideration of pieces

with rectangular section, where it will be used.

Elliptical Section about its Centre.

Let a cylindrical piece of material with elliptical normal

section be taken, and let a be the semi-major and b the semi-

minor axis, while the angle cp is measured from a with the

centre of the ellipse as the origin of co-ordinates, since the

cylinder will be twisted about its own axis. The polar equa-

tion of the elliptical perimeter may take the following shape :

T-
2 r2 b7- a2 a*b*
+ '** ' ' ' (34)

By a comparison of Eqs. (33) and (34), it is seen that :

&* a2 a*b*

*-5p-T*5
5
and c

%>+T> ;

and that all the other constants are zero. Hence Eq. (32)

gives :

The quantity represented by /is evident.
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By Eqs. (19) and (20) :

, ^ - a*
T^ = Ga-j- r sin 2<f> (36)

S2-_
Since

r ' T-- = dA, A being the area of the ellipse, or

nab, the second member of Eq. (22), by the aid of Eq. (37),

may take the form :

M = Gad> r* cos

Then using Eq. (34) :

M= Ga-

If
Ip is the polar moment of inertia of the ellipse (/>., about

an axis normal to its plane and passing through its centre), so

that

nab(cP -f ^)
*" "T"

then:

At.

(39)
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Using f in the manner shown in Eq. (35), the resultant

shear at any point becomes, by Eq. (24) :

T = Gar vf2 + 2f cos 2cp -}- !

*1L

gives :

sin 2cp = o, or 9? = 90 or o.

Since f is negative, T will evidently take its maximum
when cp has such a value that 2/ cos 2cp is positive ; or, cp must

be 90.
Hence the greatest intensity of shear will be found some-

where along the minor axis. But the preceding expression
shows that T varies directly as the distance from the centre.

Hence, the greatest intensity of shear is found at the extremities

of the minor axis.

Making cp
= 90 and r = b in the value of T:

T=Tm = Gat(l -/) =
Ga^-^

. . . (40)

Taking Ga from Eq. (40) and inserting it in Eq. (38) :

= 2Tm^ ; (41)

in which :

,. nab*

4

or the moment of inertia of the section about the major axis.
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Equilateral Triangle about its Centre of Gravity.

This case is that of a cylindrical piece whose normal cross

section is an equilateral triangle, and the torsion will be sup-

posed about an axis passing through the

centres of gravity of the different nor-

mal sections. The cross section is rep-

resented in Fig. 3, G being the centre

of gravity as well as the origin of co-
h

ordinates.

Let GH = y2GD = a. Then from

the known properties of such a triangle :

FD = DB = BF = 2a

Fig.3

Hence, the equation for DB is ; r sin <p = o.

Va

Hence, the equation for BF is
;
r cos q> -f- a = o.

Hence, the equation for FD is; r sin cp -f -

Taking the product of these three equations, and reducing,
there will result for the equation to the perimeter :

20*
(42)

Comparing this equation with Eq. (33) :

= --; and, C= .

\M

Hence:
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r3 sin
*= -"-

M = Galt - Ga dr d<p.

r T r j= Gal* Ga\ ;r-2Z- dr.
6a

since Ip polar moment of inertia =
By Eq. (24) :

/. - = o, gives sin 399 = o
;

</<p

or <p = 0, 60, 120, 1 80, 240, 300 or 360.

The values o, 120, 240 and 360 make:

cos $<p = + I
;

And by Eqs. (19) and (20) :

r,,*-att ....... (44)

.... (45)

Eq. (22) then gives :

= Ga(lp - -
0Vj)

= 0.6 a/, = 1.8 6^ ^vT ; (46)

(47)
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hence, for a given value of r, these make T a minimum. The
values 60, 1 80 and 300 make:

cos

hence, for a given value of r these make T a maximum.

Putting cos 2)9 = ~ I in Eq. (47) :

This value will be the greatest possible when r is the

greatest. But cp = 60, 180 and 300, correspond to the nor-

mal a dropped on each of the three sides of the triangle from

G. Hence r = a, in Eq. (48), gives the greatest intensity of

shear Tm ,
or :

(49)

Or, the greatest intensity of sltear exists at t/ie middle point of

each side. Those points are the nearest of all, in the perimeter,

to the axis of torsion.

The value of Ga, from Eq. (49), inserted in Eq. (46), gives :

..... (50>

in which /= side of section = 2a

Rectangular Section about an Axis passing through its Centre

of Gravity.

In this case it will be necessary to consider one of the

transcendental forms to which the integration of Eq. (i3)[or



60 TORSION IN EQUILIBRIUM. [Art. IO.

(26)] leads
;
for if the polar equation to the perimeter be formed,

as was done in the preceding case, it will be found to contain

r4
,
to which no term in Eq. (33) corresponds.

If e is the base of the Napierian system of logarithms (nu-

merically, e 2.71828, nearly), and A any constant whatever,

it is known that the general integral of the partial differential

equation (13) may be expressed as follows :

..... (51)

when n2
-f n'

2 o. For :

L 4-
d*u

- + . = A(n
2 + n 2

)* 2 n- - .

dr* r2
d<f r dr

But the second member of this equation is evidently equal

to zero if

(n
3
-f n'

2

)
= o, or n' V n2

.

These relations make it necessary that either n or n shall be

imaginary.
It will hereafter be convenient to use the following notation

for hyperbolic sines, cosines and tangents :

# e~ t
(? 4- e~* e* e~*

sih t = - -
; coh t - -

; and, tah t = ,
\ -t22 t
I

By the use of Ruler's exponential formula, as is well known,

and remembering that n 2 = - n2
, Eq. (51) may be put in the

following form :

u ^cnrcos ^ \A n sin (nr sin cp) -f- A'n cos (nr sin cp}] ;

in which the sign of summation is to be extended to all pos-
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sible values of A n and A'n. At the centre of any section for

which r is zero, u must be zero also, for the axis of the piece is

not shortened. This condition requires that A'n =zO', u then

becomes :

u = 2^Br r * An sin (nr sin <p).

The subsequent analysis will be simplified by introducing
the form of the hyperbolic sine, and this may be done by

adding and subtracting the same quantity to that already

under the sign of summation, in such a manner that :

u = 2[A n sin (nr sin cp) . sih (nr cos cp)

+ */2AH sin (nr sin <p)e-'+] .... (52)

Now if the product :

sin (nr sin <p) e- Mrcot *

be developed in a series and multiplied by A ut one term will

consist of the quantity :

r* sin cp cos (p

multiplied by a constant, and if :

2A M sin (nr sin <p) e~ *****

be replaced by simply :

nr 3 sin (p cos <p

all the conditions of the problem will be found to be satisfied.

This is equivalent to putting:

ar* sin <f> cos <p
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for a general function of r sin q) and r cos 9. This change will

give the following form to u, first used by Saint-Venant :

u = sin (nr sin <p) . sih (nr cos (p) ctr* sin tp cos (p . (53)

Fig. 4 represents the cross section with C as the origin of

co-ordinates, and axis. The angle cp is measured positively
" V^

'

XX B A

-

Fig.4

from CN toward CH. At the points N, H, K and L, in the

equation to the perimeter, dr will be zero. Hence, at those

points, by Eq. (21) :

-r- 2\_AM sin (nr sin cp] . n cos (p . coh (nr cos <p)

-\- An . n sin cp . cos (nr sin cp) . sih (nr cos qjj]

2ar sin cp cos cp
= O.

At the points under consideration cp has the values o, 90,
1 80, 270 and 360. At the points A" and K

y <p = o or 180;

icnce, sin cp
= o, and both terms of the second member of -

dr

reduce to zero, whatever may be the value of n. But at H and

L, cp
= 90 and 270 ; hence, sin cp

=
-j- i or I and cos fp

= o.

In order then, that -j-
= o at H and Z, these must obtain :
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cos nr = cos ( nr) = o.

*

= c-
J and, KN = b

;
then :

nc ( nc
cos _ = cos (- _J

= o ..... (54)

If the signification of n be now somewhat changed so as to

represent all possible whole numbers between o and oo, Eq. (54)

will be satisfied by writing :

c

for n, in that equation. Eq. (53) will then become :

- f2H - I \ ft /* 1 Nu = 2A n sin ( nr sin cp\ . sih ( nr cos cp]

ar* sin cp cos cp (55)

The quantity A n yet remains to be determined by the aid

of Eq. (21), which expresses the condition existing at the

perimeter of any section.

Now, for the portion BN of the perimeter :

b
r cos cp = -,

2

and -
r

will be the tangent of ( cp) or,

dr

r dcp

Hence, Eq. (21) becomes :
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du

dr

r dcp

or:

du
ar

= tan cp (56)

du du
ar sin cp = -r- cos cp

--- sin cp.dr r dc

Substituting from Eq. (55), then making :

r cos cp
= :

. 2n i . /2n i A
r sin cp = 2A n .

- - 7t . coh {
- - no

}

2ac \ 2C J

. (2n
- i \

. sin f
- - nr sin cp}.

If r sin cp be represented by the rectangular co-ordinate

y t
and another quantity by H, the above equation may be

written :

= H, sin +ff, sin + H, sin
c c c

rr . (2n I \
H- ... // sin (

- 7t } y -f- ...

If both sides of this equation be multiplied by

. f2n i i ,

sm(- - ny )
. dy,
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and if the integral then be taken between the limits o and -, it

is known from the integral calculus that all terms except the

n* will disappear, and that :

2n \Hu =

^
I

stri* (- - ny j
. dy.

Completing these simple integrations :

Hence:

A =

If this value of A n be put in Eq. (55), and if rectangular co-

ordinates :

y = r sin q>, and z = r cos g>,

be introduced, that equation will become :



66 TORSION IN EQUILIBRIUM. [Art. IO.

This value of u placed in Eq. (31) will enable the moment
of torsion to be at once written.

The limits -f7 and y are -f-
- and

;
and the limits

-j- z and z are -| and . Hence :

., 2n - l \

*')

<(2- 2f J

= 2, for brevity.

(i}"~ l

.2si/t( itb ) . sin ( av )
/* oo ^ / \ *y /* ] \ /* /

nj b i , f2n i . \
(2n i)

3 coh i nb )

For the next integration :

-4-

2bc , 2n
. coh

2c

i , 4^ ., /2ni
nb -. -r sih f- -

(2n-\fn* \ 2c

Tt b ,



Art. 10.] TORSION IN EQUILIBRIUM.

r+*

I

*

f

2<r

Thus the integrations indicated in Eq. (31) are completed.

Hence:

M=

Remembering that :

Ry dy -f

*

64^
-

But it is known that :

(2*
-

I)'

. . (58)

, (2
-

!)

"
1.2.3' 2*

Hence Eq. (58) becomes :
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M = Gabi

Since :

2n - 1

*b\~\\ 2c )

(2H - i)s

/I tah n I tah $n i ^^ $7t \
"

\ I

~~
1
"

'

/

tan it tan ^n tan ^rr
_|__

^ _1_ J

i V ~5^~

and since:

-^
= 0.209137,

and remembering that :

i i

Eq. (59) becomes :

M = Gabc* f - 0.210083 I

0.209137

-tah* i-tah&L
- ---

Eq. (60) gives the value of the moment of torsion of a rec-

tangular bar of material.

/--
/
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If z had been taken parallel to
,
and y parallel to c, a

moment of equal value would have been found, which can be

at once written from Eq. (60) by writing b for c and c for b.

That moment will be :

M = Gac&- - 0.210083 -

0.209137

Eq. (60) should be used when b is greater than c, and Eq. (61)

when c is greater than b> because the series in the parentheses
are then very rapidly converging, and not diverging. It will

never be necessary to take more than three or four terms and

one, only, will ordinarily be sufficient. The following are the

values of,

nn

for a few values of n :

( I tah
*-J

= 0.083 : 0.00373 : 0.000162 : 0.000007.

n = i : 2 : 3 : 4

Square Section.
i

If c = If cither Eq. (60) or Eq. (61) gives :

M = 6 - 0.2 101 +
0.209(1

- tah
^
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.-. M= 0.1406 Ga6* = Ga
-^-j-',

..... (62)

in which A is the area (
=

b*) and Ip is the polar moment of

.. / b\inertia = -
.

Rectangle in which b = 2c.

If b = 2<r, Eq. (60) gives :

M Ga . 2c* (- -
0.105 -f 0.1046 (i tah 7t)\

.'. M = 0.457 Gac* = Ga -- ; ....... (63)
42 ^/

in which A is the area (= 2ca

)
and Ip = polar moment of inertia

12 6

Rectangle in which b 4^.

If ^ = 4^7, Eq. (60) then gives :

M = Gabc* (- -
0.0525^

= 1.123

.: M= Ga
; (64)

40.2 ^

in which ^4 = area = 4^ and / = polar moment of inertia
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If b is greater than 2c, it will be sufficiently near for all

ordinary purposes to write :

(65)

Greatest Intensity of Shear.

There yet remains to be determined the greatest intensity
of shear at any point in a section, and in searching for this

quantity it will be convenient to use Eqs. (28) and (29).

It will also be well to observe that by changing z to y, y
to z, c to b and b to c, in Eq. (57), there may be at once
written :

* =

.

(
- -

-
If

This amounts to turning the co-ordinate axes 9/3.

Since the resultant shear at any point is:

it will be necessary to seek the maximum of

<du V fdu
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The two following equations will then give the points de-

sired :

fdu \ d*u
(-} h az

) -r
\dy J dfdy

du
(67)

du \ / d*u

=

It is unnecessary to reproduce the complete substitutions in

these two equations, but such operations show that the points

of maximum values of T are at the middle points of the sides of
the rectangular sections ; omitting the evident fact that T=o
at the centre. It will also be found that the greatest in-

tensity of shear will exist at the middle points of the greater
sides.

This result may be reached independent of any analytical

test, by bearing in mind that an elongated ellipse closely ap-

proximates a rectangular section, and it has already been

shown that the greatest intensity in an elliptical section is

found at the extremities of the smaller axis.

By the aid of Eqs. (28), (29), (57) and (66), it will also be

found that T
3
= o at the extremities of the diameter r, and

Ta
= o at the extremities of the diameter b. The maximum

value of T will then be :
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= - T.= - G - a, ... -.. (69)

By the use of Eq. (57):

*L
dz

n . /2 I \ , /2 I \
(- I)' .

-
. stn

{
- - ny

)
. coh

\ c
- nz

J

,- \Jcoh

Putting z = o and y = in this equation, there will result :

r. - 1 v^ n
1

(2
-

i)
2 coh (

I

*')!

= Gac i
-

2

(70)

If b is greater than c the series appearing in this equation is

very rapidly convergent, and it will never be necessary to use

more than two or three terms if the section is square, and if b

is four or five times c there may be written :

Tm = Gac (70

Square Section.

Making b c in Eq. (70) and making n i, 2 and 3 (*>.,

taking three terms of the series) there will result :
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Tm = 0.676 Gac .-. Ga - 148.

Inserting this value in Eq. (62) :

M = 0.21 frTm =
l ~

(72)a

/. Tm = 0.8 -=- a = 5 -,- (73)
/ A3 * *

in which :

b* be
I = and a = - = -

.

12 22

Rectangular Section ; b = 2*:.

Making b = 2c in Eq. (70) and making w = i, only, there

will result :

TT = o.o^ CW .*. (9ar = 1.08 --
.yo

i:

Inserting this value in Eq. (63) :

= 1.47^ .... (74)

;-^==2^;
.... (75)

in which :

/ = =
2 and = -

.

12 6 2



Art. 10.] TORSION /A' EQUILIBRIUM. 75

Rectangular Section ; b = qc.

Making b = $c in Eq. (70) and making n = I, only:

TTm = 0.997 Gac .'. Got = 1.003 --

Inserting this value in Eq. (64) :

M= 1.126 <*Tm = 1.69^? . ... (76)

. M M
.-. 7 = 0.6

-j
a =

0.9 ; . . . . (77)

in which :

, be* c< c/=--=- and a = .

12 3 2

Circular Section about its Centre.

The torsion of a circular cylinder furnishes the simplest

example of all.

If r is the radius of the circular section, the polar equation
of that section is :

r*
L = C, (constant).

Comparing this equation with Eq. (33), it is seen that :

r. = r. = r. = . = c1 = c' . = a
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By Eq. (32) this gives u = o. Hence, all sections remain

plane during torsion.

Eqs. (19) and (20) then give :

Txr = o
; and, Tx* = Gar . ... (78)

Eq. (23) gives for the moment of torsion :

M = Galp........... (79)

or:

M = o. 5 nr* . Ga =
-^-

a ..... (80)

In which equation, A is the area of the section and

The greatest intensity of shear in the section will be ob-

tained by making r r in Eq. (78) ;
or :

Tm = Gara .: Ga = ^ ..... (81)ro

Eq. (80) then becomes :

m = 2-^- ..... (82)

in which

... Tm = 0.64^ = 0.5 ~r>; .... (83)

/= -111?

4
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It is thus seen that the circular section is the only one
treated which remains plane during torsion.

General Observations.

The preceding examples will sufficiently exemplify the

method to be followed in any case. Some general conclusions,

however, may be drawn from a consideration of Eq. (33).

If the perimeter is symmetrical about the line from which

<p is measured, then r must be the same for -f- <p and (p ;

hence :

If the perimeter is symmetrical about a line at right angles
to the zero position of r, then r must be the same for :

<p
= 90 -f cp' and 90 -

q>' ;

hence:

r,
= r

s
=

r,
. . . =

c\
=

c\
= c

'

6
= . . . =0.

In connection with the first of these sets of results, Eq. (32)

shows that every axis of symmetry of sections represented by Eq.

(33) will not be movedfrom its original position by torsion.

If the section has two axes of symmetry passing through
the origin of co-ordinates, then will all the above constants be

zero, and its equation will become :

.
-| ctr* cos 2g> -f cj* cos 4(p -f <y

6 cos 6(p -f . . . = K.



TORSIGNAL OSCILLATIONS. [Art. II.

Art. ii. Torsional Oscillations of Circular Cylinders.

Two cases of torsional oscillations will be considered, in the

first of which the cylindrical body twisted is supposed to be
the only one in motion. In the second case, however, the mass
of the twisted body will be neglected, and the motion of a

heavy body, attached to its free end, will be considered. In

both cases the section of the cylinder will be considered cir-

cular.

Since these cases are those of motion, the internal stresses

are not, in general, in equilibrium ; hence, equations of motion
must be used, and those of Art. 7 are most convenient. Of
these last, the investigations of the preceding Art. show that

Eq. (4) is the only one which gives any conditions of motion in

the problem under consideration.

Putting the value of :

in Eq. (4) of Art. 7, that equation may take the form :

G
; or

'd

/"

For brevity, b2
is written for .

m
That dimension of the cross section of the body which lies

in the direction of the radius will be assumed so small that w
may be considered a function of x and / only. The results will

then apply to small solid cylinders and all hollow ones with

thin walls.

The general integral of Eq. (i), on the assumption just

made, is (Books'
"
Differential Equations," Chap. XV., Ex. i) :
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in which f and F signify any arbitrary functions whatever.

Now it is evident that all oscillations are of a periodic char-

acter, i.e., at the end of certain equal intervals of time, w will

have the same value. Hence since /and /'are arbitrary forms,

and since circular functions are periodic, there may be written :

w = A n \sin (a^x -f- ctjbf) + sin (ot^x <*nbt)\

- Bn \cos (c*** -f ajbf)
- cos (<**

- ajbt)\ ; . (2)

in which <TW , A n and Bn are coefficients to be determined.

Substituting for the sines and cosines of sums and differ-

ences of angles :

w = 2 sin fr^(A n cos ajbt + Bn sin ambt) ... (3)

Let the origin of co-ordinates be taken at the fixed end of

the piece ;
w must then be equal to zero, as is shown by Eq.

(3). But there may be other points at which w is always equal

to zero, whatever value the time / may have. These points,

called nodes, found by putting w = o ;
or :

sin ax = o (4)

This equation is satisfied by taking:

it 2* \it nn

and x = a ; in which a is the length of the piece.

Hence, at the distances :
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a a a
'

2
'

3
'

n

from the fixed end of the piecey
there will exist sections which are

never distorted or movedfrom their positions of rest. These are

called nodes, and one is assumed at the free end, although such

an assumption is not necessary, since a is really the distance

from the fixed end to the farthest node and not necessarily to

the free end.

If, as is permissible, A n and Bn be written for twice those

quantities, the general value of w now becomes :

Ttx f A nbt nbt \w = sin - {A.cos - - + B, sin - -
)

a \ a a J

}

. 2nx( A 27tbt n . 2n
-f sin -

(
A 2 cos - |- B2 sin -

a \
'

a a

+ sin A, cos 3-' + B, sin

mtx ( A nnbt D . nnbt \An cos --h Bn sin
. A D .

+ sin ^(An cos
^
--h Bn sin ^J ($)

<

The coefficients A and B are to be determined by the

ordinary procedure for such cases, Let :

w, = <p(x)

be the expression for the initial or known strain at any point,

for which the time t is zero. Then if AM is any one of the co-

efficients A :
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2 f
a

, x . nnx j ,,xA n = -\ <f>(x) sm-^-dr (6)

The velocity at any point, or at any time, will be given by :

dw . itx ( A . Ttbt itbt \ nb
- sin (A.sm- B^cos -

-} . . (7)
dt a \ a a J a

In the initial condition, when the time is zero, or / = o, it

has the given, or known, value :

dw. nb f . nx .- = $(x) = LB,sm+ 2#a sz;
2TtX

sin
<z

Then, as before :

Bn = -?-=- f $(x) sin - dx ..... (8)
nnb} a

Thus the most general value of w is completely deter-

mined.

The intensity of shear at any place or time is given by :

dw'

w being taken from Eq. (5).

The second case to be treated is that of the torsion pen-

dulum, in which the mass of the twisted body is so incon-

siderable in comparison with that of the heavy body, or bob,

attached to its free end that it may be neglected.
6



82 TORSIONAL OSCILLATIONS. [Art. II.

Let M represent the mass of the pendulum bob, and
,
its

radius of gyration in reference to the axis about which it is to

vibrate ; then will Mk* be its moment of inertia about the

same axis.

The unbalanced moment of torsion, with the angle of

torsion a
y is, by Eq. (9) of Art. 10:

The elementary quantity of work performed by this un-

balanced couple, if ft is the general expression for the angular

velocity of the vibrating body, is :

Galp . ft dt.

This quantity of energy is equal in amount but opposite in

sign to the indefinitely small variation of actual energy in the

bob
;
hence :

dt = - d (^^-\ = _ M&ft dp.

But if a is the length of the piece twisted :

d(oLa] d\ad)6 = \ y
,

and dft = --^ -
.

dt dt

'^}(aa)
= -Mt?^.

Multiplying this equation by 2d(ad), and for brevity put-

ting :

= H;
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then integrating and dropping the common factor a? :

When a = a^ the value of the angle of torsion at the ex-

mity of an osci

be zero. Hence :

tremity of an oscillation, the bob will come to rest and -j- will
at

C =
and

da ,

C' = o because a and / can be put equal to zero together.
At the opposite extremities of a complete oscillation a will

have the values :

(+,) and (-a,)-

Putting these values in the expression :

and taking the difference between the results thus obtained,
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the following interval of time for a complete oscillation will be

found :

The time required for an oscillation is thus seen to vary

directly as the square root of the moment of inertia of the bob and

the IcngtJi of the piece, and inversely as the square root of the co-

efficient of elasticity for shearing and the polar moment of inertia

of the normal section of the piece twisted.

The number of complete oscillations per second is -. If

this number is the observed quantity, the following equation
will give G :

G=-(L

The formulas for this case should only be used when the

mass of the cylindrical piece twisted is exceedingly small in

comparison with M.

Art. 12. Thick, Hollow Spheres.

In order to investigate the conditions of equilibrium of

stress at any point within the material which forms a thick

hollow sphere, it will be most convenient to use the equations
of Art. 8. As in the case of a thick, hollow cylinder, the in-

terior and exterior surfaces of the sphere are supposed to be

subjected to fluid pressure.

Let r' and r^ be the interior and exterior radii, respect-

ively.
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Let / and /x
be the interior and exterior intensities,

respectively.

Since each surface is subjected to normal pressure of uni-

form intensity no tangential internal stress can exist, but normal

stresses in three rectangular co-ordinate directions may and do

exist. Consequently, in the notation of Art. 8,

= o.

With a given value of r, also, a uniform state of stress will

exist. Neither N^ nor N$ can, then, vary with q> or
t/,\ By the

aid of these considerations, and after omitting ^ ,
#

,
Ww and

the second members, the Eqs. (i), (2) and (3) of Art. 8 reduce

to :

dr r

- N* + N* = o

ByEq.(2):

TV, = A^ .

Eq. (i) then becomes:

On account of the existing condition of stress, which has

ju t been indicated, it at once results that :

77
= G? = o,

and that p is a function of r only.
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Eqs. (4) to (10), of Art. 8, then reduce to :

After substitution of these quantities, Eq. (3) becomes :

2Gr ( d*p 2rdp-2pdr\ ,

_r ^P _ y , r ^P
i - 2r\ df*

~

r*dr )
H *

dr*
~

r dr

or :

a
One integration gives :

Hence (9, the rate of variation of volume, is a constant

quantity. Eq. (7) may take the form :

r dp -f- 2p dr = cr dr.
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As it stands, this equation is not integrable, but, by inspect-

ing its form, it is seen that r is an integrating factor. Multi-

plying both sides of the equation, then, by r:

r3 dp -f- 2rp dr = d(r*p) cr* dr.

rl + b ,. P = y + . - - (8)

Substituting from Eqs. (7) and (8) in Eq. (5) :

It is obvious what A represents.

When r and r, are put for r, Nr becomes - p and -/,
Hence:

r 3

and :

These equations express the conditions involved in Eqs.

(13), (14) and (15), of Art. 6.

The last equations give:
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These quantities make it possible to express ^Vr and Afy in-

dependently of the constants of integration, c and
,
for those

intensities become :

-" oo

Thus it is seen that N$ =
-Afy has its greatest value for the

interior surface
;
that intensity will be called h.

It is now required to find r, r' = / in terms of ^, /
and /,.

If r = r' in Eq. (u):

Dividing this equation by r'3 and solving :

r?_ = 2(h+p)
r'*

"
2h -+

, , ,-r . . (12)

If the intensities / and/, are given for any case, Eq. (12)
will give such a thickness that the greatest tension h (suppos-
ing A considerably less than /) shall not exceed any assigned
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value. If the external pressure is very small compared with

the internal,/, may be omitted.

The values of A and ^Gb allow the expressions for c and b

to be at once written.

If Pi is greater than /, nothing is changed except that

N+ = N+ becomes negative, or compression.



CHAPTER III.

THE ENERGY OF ELASTICITY.

Art. 13. Work Expended in Producing Strains.

THE general expressions, in rectangular co-ordinates, for the

unbalanced forces which act in the three co-ordinate directions

upon any indefinitely small parallelopiped of material subjected
to any state of stress whatever, are given by multiplying each

of Eqs. (7), (8) and (9) of Art. 6 by (dx dy dz). If an indefi-

nitely small change in the state of stress takes place, that in-

definitely small parallelopiped will suffer a displacement whose

rectangular components are du, dv, dw
;
and the amount of

work performed in moving it will be found by multiplying each

of the three unbalanced forces, determined as above, by each

of the three small strains belonging to the same direction with

the force (as in Art. 6, u, v and w are strains in the directions

of x, jj/
and z). This differential quantity of work, integrated

throughout the extent of the body, will give the elementary

quantity of work required for the small deformation and mo-

tion of the whole body.
The resulting equations form the foundation of investiga-

tions in elastic vibrations and resilience
; they also furnish the

means of reaching some general conclusions in reference to

suddenly applied loads.

Let dW represent the elementary quantity of work required

for the motion only, then the operations which have just been

indicated will give the following expression :
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1 ** dy dz +

4- ^ 4- * <** dy dz 4-

dy dz -f - 1 ^' dy dz 4-
3

^/x dz J

4- K dv 4- Z

~ 4- dx dy dz = dW . (i)

This equation, however, can be put in a much simpler form,

and, caused to take a shape which will show at a glance the

true character of each part ; dx, dy and dz are differentials of

independent variables, hence they are arbitrary and independ-
ent. Integrating by parts, therefore :

dx .dydz.du=
J J(;V/

du' - N
t

"
du") dy dz

-Ilk- '(

in which the primes indicate the values of N
t
and u at one

point of the exterior surface of the body, and tlu- s t \^iii/s those

values for another point of the exterior surface; these points

being taken at opposite extremities of a bar of the material

whose normal section is (dy dz) and which extends entirely through
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the body in the direction of x. Maintaining the same notation

and proceeding :

^-dy .dxdz.du =
11(7;' du' - T

3

"
du") dx dz

du"

dz .dxdy.du = (TJ du' - T3

" du 1

)
dx dy

But by referring to the equations which immediately pre-

cede (13), (14) and (15) of Art. 6, it will be seen that the sum
of these three double integrals will represent the amount ofwork

performed on tJie body by the external forces acting in the direc-

tion of the axis of x. Precisely the same general results are

obtained for the directions of y and z by treating in the same
manner the remaining derivatives of the internal intensities in

Eq. (i). The preceding operations are typical, therefore they
need not be repeated.

Again, by reference to the notation and demonstrations of

Art. 5 :

, fdu\d
(dy)

+
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Finally :

, d*w I _ fdw\*dw j-
- d(-

)
.

dl* 2 \dtJ

Introducing these reductions and quantities, Eq. (i) be-

comes :

[P'da' (cos it' du' -f cos x' dv' -f cos p' dw)

\P"da" (cos n" du" + cos x" dv" + cos p" dw")

X4 +N& -fN& + 7^, + T;^, + TX^s) dx dy dz

dz

Eq. (2) shows clearly the distribution of the different por-

tions of work expended. Tin- ilr>t two (single) integrals evi-

]y r( present the total amount of work performed by forces

ng on the exterior surface of the body; it will be indicated

by d\\\. If the forces P' and /'"are of the sanu kind (i.e. t

both pulls or both pushes), the algebraic sum of any two terms
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of these integrals will be a numerical sum if they involve co-

sines of the same letter but of opposite signs.

The correct application of Eq. (2) depends largely upon the

proper observance of the signs which should affect P', P" and
the cosines.

The first triple integral in the first member of Eq. (2), in

which each intensity of stress is multiplied by the differential

of its characteristic strain, and which will be indicated by dWv
is evidently the amount of work required for the small distor-

tion alone, of the body. The quantity within the parentheses
is called the potential energy of the elasticity of a cubic unit of

material, since, if it be multiplied by (dx dy dz\ the product will

express the amount of work that small portion of material can

perform in returning to its original condition.

This potential energy for a cubic unit is easily integrated

by the aid of Eqs. (11), (12), (13), (17), (18) and (19) of Art. 5.

Making the substitutions from those equations and integrat-

ing :

H =
\(NT dl^ -f- N9 dl3 -f N3

dl
z -f T3 d(pt + T;^3 -f- Tt dcp2)

2Gr (/T + /,+ /J
2

-f
2r

H is the potential energy of a cubic unit of material for a

change of state extending from the limit o to the strains / /a ,

etc.

The last triple integral in the first member of Eq. (2) ex-

presses the work done by external forces which take hold of

the mass of the body. Let it be represented bydWz . This
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triple integral added to the first two single integrals, which

belong to the surface of the body, will give the total work

done by external forces.

The second member of the equation is the small variation

of actual energy, which usually exists in consequence of vibra-

tions.

Let V be the resultant velocity of the parallelepiped, then

will:

By transferring dWv the first two members of Eq. (2) may
take the form :

dW, + dW^ = dW, + [\\mVdVdx dy dz .

dz . . (3)

Or, the total external work performed is equal to the work

done in distorting t/te body added to the change of actual en-

This result expresses the law of the conservation of energy
for the elastic bodies considered.

If the external work is nothing, the first member of Eq. (3)

is zero. The actual energy will then exist in consequence of a

state of vibration. Let its variable value be represented by U.

Since dxy dy, and dz arc arbitrary :

V*= [\\m~dxdydz -C\
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C representing a constant of integration. Under the circum-

stances assumed, then :

W.+ U=C . (4)

Hence, the total energy of the vibrating body (i.e., the sum of the

actual andpotential} will be constant.

Art. 14. Resilience.

The term resilience is applied to the quantity of work which

is required to be expended in order to produce a given state of

strain in a body. The analytical expression for this amount of

work is obtained directly from Eq. (2) of the preceding Art.

Let the simple case of a single straight bar be considered
;

and let all the external forces act parallel to the axis of the bar

while they take hold of the end surfaces, which are normal

sections. These external forces will be considered equal to the

internal stresses developed ; consequently no vibrations will

exist. The action of the external forces XQ ,
F and ZQ will also

be omitted.

Now, if the axis of x be taken parallel to the axis of the

bar, and if that end of the bar to which P" is applied be fixed,

there will result from the preceding conditions :

cos TT' cos n" = i,

cos x cos p' = cos x" = cos p" - du" = O,

N^N3=Tl =T2
= T,= o.

Eq. (2) will then become :

(P'da du' = v; dl, dx dydz .... (i)
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But if the intensity P' is uniform and A the area of normal

section, Eq. (i) becomes :

P'A du' = AN, x,dl, ...... (2)

in which xr
is the length of the bar.

From Eq. (i) of Art I :

hence :

\P'A
du' = Resilience = Ax, E

J'

1

1, dl, = Ax, E
1

^-
. (3)

The quantity:

N*
Elf = -

is called the " Modulus of Resilience" This term is usually

applied when N
t

is the greatest intensity allowed in the bar.

If one end of a bar, placed in a vertical position, is fixed.

while a falling body whose weight is w, acts upon the other

end, the height of fall may be sufficient to produce rupture.
Let h be the height of fall required and Nv p the ultimate

resistance of the material of the bar. In order that rupture

may take place :

wj s dfi
. ... * = *,:! .. . . . (4)

2 E 2W E

Eq. (4) shows that tlte height of fall varies directly as the

length of the piece. It is virtually assumed, however, that the

extension or compression is uniform throughout the length of

7
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the bar, to the instant of rupture. This, in reality, is not true,

and // will not vary as rapidly as xv The principle established

in Eq. (4) is equally true for torsion and bending.

Art. 15. Suddenly Applied External Forces or Loads.

A very important deduction can be reached by an attentive

consideration of Eq. (2) of Art. 13, if it be assumed that the

external forces P' and P" are simple and direct functions of

the external strains u, v and w. In such a case the following
relations will hold, in which a, b and c are constants :

P' cos n' =. au ; P' cos %' = bv'
;

P' cos p =. cw'
;

P" cos TT" au'
;
P" cos x" bv"

;
P" cos p" = cw" .

Consequently the external work performed, omitting X ,
YQ

and Z
,
in changing the body from a state of no stress to that

indicated by the strains u', t)', to', tt", r", to", will be :

in which equations the integrals are to be made to cover the

whole extent of the surface.

If, instead of being variable, the forces P' and P" are con-

stant and equal to the final values of the preceding case (*>.,

equal to #u', t>', cw', #tt", etc.), the external work performed in

bringing the body to the final state u', t)', etc., will be :
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\d\\\ = (da
1

(an* -h bti* + cm
1

*)

(da" (an"
3 +W + nn"a

)
= 2 ".

This last case is that of "
suddenly

"
applied external forces

or loads, while the former is that of gradual application, in

which the external forces, at each instant, are equal to the in-

ternal resistances. In the case of sudden application it is seen

that the amount of work expended is twice as great as in the

other case ; consequently when the body arrives at the state of

strain indicated by n', t)', etc., there remains to be expended just
as much work as has already been performedy

and at the instant

in question it exists in the body in the shape of actual energy.

But if an amount of energy equal to W will produce the

strains n', u', etc., and if, while the force acts which performed
the work, an additional amount of energy equal to W be ex-

pended on the body, additional strains equal to n', t)', etc., will

be produced in the body.
When the body comes to rest, therefore, the external strains

will be 2n', 2t)', 2ro', etc. There is then no actual energy, all is

potential.

Since the external strains are 2tt
f

, 20', etc., the external

work which has been performed up to this instant will be found

by putting those quantities in the place of u', t)', etc., in the

expression for H/f
,
above. That expression will then become

For gradually applied loads Eq. (2) of Art. 13 becomes

>imply :

W =
\\\H dxdydz\

in which H is the potential energy per cubic unit for the state
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of strain corresponding to n', t)', tt>', etc. But, if the loads be

suddenly applied, in accordance with what has been given, the

Eq. (2) of Art. 1 3 becomes :

40"==

Now the expression for H, given in Art. 13, shows that

multiplying H by 4 is the same thing as doubling the strains :

4 4 4, <P V* and cpy

But by doubling the strains the intensities of stresses are

doubled. Hence, if the same loads are first applied gradually
and tJicn suddenly, the strains and stresses in tJic latter case will

be double those in theformer. This is a very important principle

in engineering practice, for it covers all cases of tension, com-

pression, torsion and bending. It also finds many important
extensions in special cases of such structures as iron and steel

bridges, particularly suspension bridges. For the considera-

tions involved in this Art. show that in all cases of sudden

applications of loads, actual energy will be stored and restored

during different intervals of time and, consequently, that vibra-

tions will be initiated.

Eq. (2) of Art. 13 furnishes a most convenient and elegant

point of departure for investigations in such special cases, as

will be exemplified in the next Art.

Art. 1 6. Longitudinal Oscillations of a Straight Bar of Uniform

Section.

The complete solution of this problem will not be given,

though it may be reached.

Let the bar be fixed at one end in a vertical position and
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let a heavy weight, W, act on the other. Also, let the axis of

x be taken parallel to the axis of the bar, whose uniform nor-

mal section will be represented by A.

On account of the circumstances of application of the ex-

ternal forces and position of bar, the following equations of

condition will exist :

cos / = cos p' = cos x" = cos p" = du" = Na
= N

3

T T T o Y 7- 2
i

J a J
3

U -- -TO ^o

dv dw
~di

''

~di

will be very small compared with -j- ,
hence they will be

omitted. P' is the heavy weight attached to the free end of

the bar divided by A ; consequently:

cos n' = i.

Eq. (2) of Art. 13, now reduces to :

(P'da du -
Jflffi

<//x dx dy dz + f f Lvo du dx dy dz

m I a ( -r.

The integrals arc to be extended throughout the whole of

the bar. Since strains and stresses are uniform for any one

cross section of the bar, and because X9
= w = weight of a

unit of volume of the bar (the force of gravity is the only ex-

ternal force which acts on the mass of the bar), Eq. I be-

comes :
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Wdu' - AE- dx + Awudx = A dx + C <t.v . (2)

This equation (C being a constant of integration) involves

the complete problem of longitudinal oscillations. Two spe-
cial cases, only, however, will be treated, in which the weight of

the bar is so small compared with W that it may be neglected.
This condition involves the omission of :

m fdu\* ,Awu dx and A ( ) dx
,

in Eq. (2), and makes /
x constant throughout the length of the

bar.

Since the equation must be homogeneous, C will represent
a quantity of actual energy ;

in fact, a part of that quantity

stored, at any instant, in W.

If ,r, represents the length of the bar, C may be put equal
to :

W_ fdu\
2g.r, \dt )

Also, because /
x

is constant for the whole bar :

Introducing all these changes in Eq. (2) and integrating :

If W is suddenly applied to the bar while in a state of

equilibrium or rest, for which :
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du

C' will be zero, as the equation shows by such a substitution.

For this case Eq. (3) becomes, after omitting the primes :

dt = lWx*
du-

v-,

. AEu
Sln

~

The limits of the amplitude are discovered by putting :

(the velocity) = o,

in Eq. (3), remembering that C' is also equal to zero. That

operation will give :

u = o and u = .AE

Putting these values in Eq. (4), successively, and taking the

difference of the results, the time occupied by one oscillation

will be :

in which equation :
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is the strain in the bar caused by a gradual application of W.

In the second case to be treated the bar is first supposed to

take a vertical position, with the weight attached to its free

end, in a state of equilibrium. An external force then de-

presses the free end a distance u , measuredfrom its position of

equilibrium. If the force F is now removed, the weight will

make excursions on each side of its position of rest.

Let #, represent the value of u' corresponding to the weight
W alone, as in the previous case

;
then let :

u' = u, + *,

u being measured from the position of equilibrium of the

weight W.

Eq. (3) will then take the form :

W

When u = UQ the body comes to rest. Hence :

Uo)- -(u, + Uoy = c. ... (7)
2,X,

Subtracting Eq. (7) from Eq. (6) :

since :

d(u T -)-) = du.

Remembering that :
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Eq. (8) may take the form :

g

<9)

(10)

Eq. (9) shows that the amplitude of a vibration is found by

putting :

u = + #o or ~ uo-

Putting these values in Eq. (10) and taking the difference

of the results, the time of a single oscillation is found to be :

T =

Eq. (11) is seen to be identical with Eq. (5). In this case

the amplitude is 2u , and the body oscillates through its posi-

tion of rest. Both oscillations are completely isochronous for

the same weight W.

If n is the observed number of oscillations per second;

either Eq. (5) or (i i) gives :

from which E may be computed, if W\s very great compared
with the weight of the bar or wire.
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THEORY OF FLEXURE.

Art. 17. General Formulae.

IF a prismatic portion of material is either supported at both

ends, or fixed at one or both ends, and subjected to the action

of external forces whose directions are normal to, and cut, the

axis of the prismatic piece, that piece is said to be subjected to
"
flexure." If these external forces have lines of action which

are oblique to the axis of the piece, it is subjected to combined
flexure and direct stress.

Again, if the piece of material is acted upon by a couple

having the same axis with itself, it will be subjected to " tor-

sion."

The most general case possible is that which combines these

three, and some general equations relating to it will first be

established.

The co-ordinate axis ofX will be taken to coincide with the

axis of the prism, and it will be assumed that all externalforces
act upon its ends only. Since no external forces act upon its

lateral surface, there will be taken :

T
T
= N, = N3

= o
;

retaining tne notation of Art. 6. These conditions are not

strictly true for the general case, but the errors are, at most,

excessively small for the cases of direct stress or flexure, or
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for a combination of the two. By the use of Eqs. (12), (21)

and (22) of Art. 5, the conditions just given become :

du dv dw\ dv, _ .

& "
d~y

H" dS)'
~

~dy

~~

dv dw dw
\
- 2r \dx dy

'

dv dw

Eqs. (i) and (2) then give :

dv dw
dy dz

In consequence of Eq. (4), Eqs. (i) and (2) give

dv dw du

By the aid of Eq. (5) and the use of Eqs. (i i), (13) and (20)

of Art. 5, in Eqs. (10), (n) and (12) of Art. 6 (in this case

X = Y = Z = o), there will result :

d*u . d*u
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dx dz (8)

The Eqs. (3), (5), (6), (7) and (8) are five equations of con.

dition by which the strains u, v and w are to be determined.

Let Eq. (6) be differentiated in respect to .r :

2 I I o
//1-3

'

/-A/* x/-,'
"T" //^2 ,/.,

' "
~df~dx d? dx

From this equation let there be subtracted the sum of the

results obtained by differentiating Eq. (7) in respect to y and

(8) in respect to z :

dx* dy

_

In this equation substitute the results obtained by differ-

entiating Eq. (5) twice in respect to x, there will result :

This result, in the equation immediately preceding Eq. (9)

by the aid of Eq. (5), will give :

=

After differentiating Eq. (7) in respect to y, and substi-

tuting the value immediately above :
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df dx dy>
= o (10)

Eqs. (9) and (10) enable the second equation preceding Eq.

(9), to give :

dx dz* (ii)

Let the results obtained by differentiating Eq. (7) in re-

spect to 2 and (8) in respect to y, be added :

dx dy dz
~~ ~~

dy
=

The sum of the second and third terms of the first member
of this equation is zero, as is shown by twice differentiating Eq.

('3)
in respect to x. Hence :

dy dz dx dy dz (12)

The Eqs. (9), (10), (11) and (12) are sufficient for the dc-

termirfation of the form of the function
^- , if it be assumed

to be algebraic, for :

Eq. (9) shows that x* does not appear in it ;

(JQ) jj
W (i

<
/| |\

U < ~1 (( ((

(i
i i 'i

"
\>z

" " '* ft
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The products xz and xy may, however, be found in the

function. Hence if #, av av b, b^ and b2 are constants, there

may be written :

du
. . (13)

Eq. (5) then gives :

*r* + "*? + x (b -f ^ + ^)J (14)

Substituting from Eq. (13) in Eqs. (7) and (8) :

d2v
- -*.-*# ...... (15)

The method of treatment of the various partial derivatives

in the search for Eqs. (13) and (14) is identical with that given

by Clebsch in his " Theorie der Elasticitdt Fester Korper"
It is to be noticed that the preceding treatment has been

entirely independent of the form of cross section or direction of
externalforces.

It is evident from Eqs. (13) and (14), that the constant a

depends upon that component of the external force which acts

parallel to the axis of the piece and produces tension or com-

pression only. For, by Arts. 2 and 3, it is known that if a

piece of material be subjected to direct stress only :

du
, dv dw

-=- = a and = -= ra ;

dx dy dz
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the negative sign showing that ra is opposite in kind to #, both

being constant.

Again, if z and y are each equal to zero, Eq. (13) shows

that :

du

dx
- a + bx.

Hence bx is a part of the rate of strain in the direction of x
which is uniform over the whole of any normal section of the

piece of material, and it varies directly with A-. But such a

portion of the rate of strain can only be produced by external

force, acting parallel to the axis of X, and whose intensity

varies directly as x. But, in the present case such a force does

not exist. Hence b must equal zero.

The Eqs. (13), (14), (15) and (16), show that #
,
and <?a , 2

are symmetrical, so to speak, in reference to the co-ordinates s

and r, while Eqs. (13) and (14) show that the normal intensity

X, is dependent on those, and no other, constants in pure
flexure, in which a = o. It follows, therefore, that those two

pairs of constants belong to the two cases of flexure about the

two axes of Z and K
No direct stress N

t
can exist in torsion, which is simply a

twistjng or turning about the axis of X.

Since the generality of the deductions will be in no manner

affected, pure flexure about the axis of Y will be considered.

F>r this case :

a = aa
=

,
= o = b.

Making these changes in (13) and (14) :

d7)
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I - 2r) . (19)ux uy uz

Also:

A. W w V *rf X_- _

I 2r dx

.'. NI = 2G(r + l) (a t -(- ^^ = ^(^ -f- ^)<sr . (20)

since :

2 (>+ i)- E.

Taking the first derivative of Nl :

. . . (21)

This important equation gives the law of variation of the

intensity of stress acting parallel to the axis of a bent beam, in

the case of pure flexure produced by forces exerted at its ex-

tremity. That equation proves, that in a given normal section

of the beam, whatever may be the form of .the section, the rate

of variation of the normal intensity of stress is constant ; the rate

being taken along the direction of the externalforces.
It follows from this, that N^ must vary directly as the dis-

tance from some particular line in the normal section consid-

ered in which its value is zero. Since the external forces Fare
normal to the axis of the beam and direction of A^, and be-

cause it is necessary for equilibrium that the sum of all the

forces N
l dy dz, for a given section, must be equal to zero, it
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follows that on one side of this line tension must exist and on

the other, compression.
Let N represent the normal intensity of stress at the dis-

Fig.1

tance unity from the line, b the variable width of the section

parallel toj, and let A =bdz. The sum of all the tensile stress

in the section will be :

\*
Jo

The total compressive stress will be :

<-
The integrals are taken between the limits o and the greatest

value of z in each direction, so as to extend over the entire

section. In order that equilibrium may exist therefore :

f

J-
= o.

= O (22)
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Eq. (22) shows that the line of no stress must pass through the

centre ofgravity of the normal section.

This line of no stress is called the neutral axis of the section.

Regarding the whole beam, there will be a surface which will

contain all the neutral axes of the different sections, and it is

called the neutral surface of the bent beam. The neutral axis

of any section, therefore, is the line of intersection of the plane
of section and neutral surface.

Hereafter the axis of X will be so taken as to traverse the

centres of gravity of the different normal sections before flex-

ure. The origin of co-ordinates will then be taken at the

centre of gravity of the fixed end of the beam, as shown in

Fig. i.

The value of the expression (#, -f b^}, in terms of the ex-

ternal bending moment, is yet to be determined. Consider

any normal section of the beam located at the distance x from

O, Fig. i, and let OA = /. Also let Fig. 2 rep-

resent the section considered, in which BC is

the neutral axis and d' and di the distances of

1

\^
the most remote fibres from BC. Let moments
of all the forces acting upon the portion (lx)
of the beam be taken about the neutral axis

BC. If, again, b is the variable width of the

beam, the internal resisting moment will be :

fd- fd'

NI bz dz =E (a, -f , -')
z2

. b dz.
J-d

l
J-d

I

But the integral expression in this equation is the moment

of inertia of the normal section about the neutral axis, which

will hereafter be represented by /. The moment of the

external force, or forces, F, will be F(lx) and it will be

equal, but opposite in sign, to the internal resisting moment.

Hence :
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at + *,*)/ (23)

,.
(24)

Substituting this quantity in Eq. (16) :

M
dx* El (25)

It will hereafter be seen that Eq. (25) is one of the most

important equations in the whole subject of the " Resistance of

Materials"

An equation exactly similar to (25) may, of course, be

written from Eq. (15) ;
but in such an expression M will repre-

sent the external bending moment about an axis parallel to

the axis of Z.

No attempt has hitherto been made to determine the com-

plete values of u, v, and w, for the mathematical operations
involved are very extended. If, however, a beam be considered

whose width, parallel to the axis of F, is indefinitely small u

and w may be determined without difficulty. The conclusions

reached in this manner will be applicable to any long rectan-

gular beam without essential error.

If y is indefinitely small all terms involving it as a factor

will disappear in u and w\ or, the expressions for the strains u

and w will be functions of z and x only. But making u and w
functions of z and x only is equivalent to a restriction of lateral

strain^ to the direction of z only, or, to the reduction of the

direct strains one half, since direct strains and lateral strains in

two directions accompany each other in the unrestricted case.

Now as the lateral strain in one direction is supposed to retain

the same amount as before, while the direct strain is considered

only half as great, the value of their ratio for the present case
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will be twice as great as that used in Arts. 3 and 4. Hence 2r

must be written for r, in order that that letter may represent
the ratio for the unrestricted case, and this will be done in the

following equations.
Since w and u are independent of y :

dw du
-j- = ,

dy dy dx

UW UU . rr /~><*V=
.
= 0, and 7;=^^.

But by Eq. (14) :

v = 2r (a, + biX)zy -f /(*, ^)-

By Eq. (3), since :

dw
^ = 0:

J = - 2r (a, + bs)y + *-

g
f(x, ,)

= O.

This equation, however, involves a contradiction, for it

makes /(^r, z) equal to a function which involves
jj>,

which is

impossible. Hence :

/(*, ^) = o.

Consequently :

J? = ~ 2r (a x -j- ,*> J

which is indefinitely small compared with :

dv-= -'ar^.

and is to be considered zero.



Art. 17.] GENERAL FORMULA. 117

Because /(jr, z)
= o :

dv ,- = 2rb
lzy.dx

This quantity is indefinitely small ; hence

is of the same magnitude.
Under the assumption made in reference to j, there may

be written from Eqs. (17) and (18) :

u = a^z + t>
t

z + f'(s)

Using Eq. (26) in connection with Eq. (6) :

(27)

By two integrations :

(28)

Using Eq. (27) in connection with Eq. (8) :

By two integrations :
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r/ \ /
a'3 a

i
x*

,/W = -

bi-g-
---- + c** + cn .

The functions ?/ and w now become :

u = a,x2 + ^ jr - -^ + * . . . (29)

~
(30)

The constants of integration c, c", etc., depend upon the

values. of 21 and w, and their derivatives, for certain reference

values of the co-ordinates x and z, and, also, upon the manner
of application of the external forces, F, at the end of the beam,

Fig. i. The last condition is involved in the application of

Eqs. (13), (14) and (15) of Art. 6.

In Fig. i let the beam be fixed at O. There will then re-

sult for x o and z = o :

du = o

(u =. o, and w =
o)^_ o

,

x = o

In virtue of the last condition :

c" = cn = o.

In consequence of the first :

c' =o.

After inserting these values in Eqs. (29) and (30)
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dw -
b,

- a,j: + c, ;

. (30

The surface of the end of the beam, on which F is applied,
is at the distance / from <the origin O and parallel to the plane
ZY. Also the force F has a direction parallel to the axis of

Z. Using the notation of Eqs. (13), (14) and (15) of Art. 6,

these conditions give :

cosp = I
,

cos q = o, cos r = o,

cos n = o, cos x = o, cos p = I.

Since for x / :

Af=F(/-x) = o,

Eqs. (24) and (20) give Nt
= o for all points of the end sur-

face. Eq. (15) is, then, the only one of those equations which

is available for the determination of cr

That equation becomes simply :

T, = P.

For a given value of <?, therefore, any value may be assumed

for Ty For the upper and lower surfaces of the beam let tin-

intensity of shear be zero ; or for s = d let Tt
= o. Hence,

byEq.(3 i):
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.-. T,= Gbt (i+r

r, = (d>
- *) ....... (32)

The constants a
t
and b

l
still remain to be found. The only

forces acting upon the portion (/ x) of the beam, are F and

the sum of all the shears T2 which act in the section x. Let

Ay be the indefinitely small width of the beam, which, since

z is finite, is thus really made constant. The principles of

equilibrium require that :

T, . Ay . dz = Gb^(\ +

The first part of the integral will be 2 Ajj/<^
3 and the second

part will be the moment of inertia of the cross section (made

rectangular by taking A7 constant) about the neutral axis.

Hence :

2Gh(i + r)f = F-, or b,
=

2g(l + ry
~- :

^/ (33)

r.-S**--'* (34)

If x = o in Eq. (24) :

,
= -

J- (35)

Thus the two conditions of equilibrium are involved in the

determination of <z
x
and bv The complete values of the strains

u and w are, finally :
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F x* & \ .

(36)

,
. Fd'xw = -Ir* - r*e - + -+ . . (37)

These results are strictly true for rectangular beams of in-

definitely small width, but they may be applied to any rectan-

gular beam fixed at one end and loaded at the other, with

sufficient accuracy for the ordinary purposes of the civil en-

gineer. It is to be remembered that the load at the end is

supposed to be applied according to the law given by Eq. (34) ,

a condition which is never realized. Hence these formulae are

better applicable to long than short beams.

The greatest value of Tv in Eq. (34), is found at the neutral

axis by making z = o
;
for which it becomes :

T ..Fd* _ 3 F , .T>- '17
-

2 *Td
...... (38)

p
, is the mean intensity of shear in the cross section ; hence,

the greatest intensity of shear is once and a half as great as the

mean.

In Eq. (36) if z = o, u =o. Hence no point of the neutral

surface suffers longitudinal displacement.
In Eq. (37) the last term of the second member is that part

of the vertical deflection due to the shear at the neutral sur-

face, as is shown by Eq. (38). The first term of the second

member, being independent of .r, is that part of the deflection

which arises wholly from the deformation of the normal cross

section.

The usual modification of the preceding treatment, designed

to supply formulae for the ordinary experience of the engineer,

will be given in the succeeding Arts.
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Art. 18. The Common Theory of Flexure.

The " common theory
"

of flexure is completely expressed

by Eq. (25) of Art. 17. That equation involves the condition

that no externalforce acts upon the exterior surface of the bar or

beam. In reality this condition is never fulfilled. External

loads are applied in any manner whatever, causing normal

compressive stresses to exist at any or all points of the ex-

terior surface. // is assumed in the common theory offlexure
that the equation :

d*w M

holds true, for pure bending, whatever may be the number or

manner of application of the externalforces or loads.

By
"
pure bending

"
is meant the action of external forces

whose directions are normal to, and cut, the axis of the beam.

As has already been seen in Art. 17, w, strictly speaking, is

a function of x, y and z.

It is further assumed in the common theory offlexure that w
is a function of x only.

This is equivalent to an assumption that the lateral dimen-

sions of the piece are so small that they can have no influence

on the value of w, and consequently that they will not appear
in it. In other words the common theory of flexure is the

theory of the flexure of pieces, one or two of whose cross

dimensions are indefinitely small in comparison with their length.

The neglect of this fact has led to some erroneous applications
and deductions in connection with long column formulae.

Eq. (i), taken in connection with these two important as-

sumptions, constitutes the ' Common Theory of Flexure,"

which is always used in engineering practice.
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Since the intensity of external loading is almost invariably

very small compared with the internal stress Ntt the first of the

above assumptions involves very little error in all ordinary
cases.

The second assumption, as was stated above, is equivalent
to taking the bar or beam so small that the strain or "

deflec-

tion
" w is essentially the same at all points of a given cross

section. With such small strains and large ratios of length to

lateral dimensions as almost always occur, this assumption,
also, involves no considerable error.

It is well known that if the curvature is very small, the re-

ciprocal of the radius of curvature, in the plane zx, is repre-

sented with no essential error by . Hence Eq. (i) may

take the form :

f=" w

in which p is the radius of curvature.

Let M' and M
t represent two bending moments which will

produce the two radii of curvature p' and pr Eq. (2) will then

give the following :

= *" (3)

Hence .

-
7)

- * - *'
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The second member shows that a bending moment :

MI - M' = M,

applied to a curved beam whose radius of curvature at any
section is p', will produce a change of curvature expressed by :

(A
~

7)'

In other words : the common theory of flexure is applicable to

curved beams of slight curvature.

In such a case
, Eq. (2), expresses the variation (increase

or decrease) of curvature caused by the moment M. It is to

be distinctly borne in mind, however, that Eq. (2) itself is

made approximately true only by considering the curvature

very small.

The limits within which the common theory is applicable to

curved beams, and the degree
of approximation of the appli-

cation, will be shown by the

following investigations, in

which the longitudinal com-

pression and extension, due to

the external forces, will be

neglected.
In the figure let a portion

of any curved beam, whose

lateral dimensions are small

compared with its length, be

represented. Let AB represent an indefinitely short length,

ds, of the neutral surface. C is the centre of curvature of ds

before flexure, and C' the same point after flexure. Since the
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lateral dimensions are small compared with the length, if the

strains are not great, any normal cross section may, without

essential error, be taken as plane after flexure, and such planes

passing through A and B will then contain the radii of curva-

ture at the points A and B. Let :

AC' = p
f and AC = p

also :

Aa Ab Be = Bd = unity.

Aa and Bd are the positions taken by Ab and Be after flexure.

The angle, before flexure, between two radii A C and BC, in-

definitely near to each other, is
;
after flexure, as the figure

shows, the same angle becomes
7

. Hence the change in

curvature (or change of angle between consecutive radii)

caused by flexure is :

Now let the amount of shortening or lengthening of a unit

of length of fibres, parallel to the neutral surface and situated

at unit's distance from it, be represented by u; concisely stated,

// i> the rate of strain for any point at unit's distance from the

neutral surface, In the figure, the amount of strain for

AB ds is :

ab -f- cd = u ds.

But the difference between the angles aC'd and bCc is .

(ab + cd) -i- Ab = ab + cd - u ds.
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But this difference is the change of curvature
;
hence :

* = 4 -
(6)

P P

This relation is purely kinematical
;
a value for u must next

be determined in terms of the bending moment M.
Under the circumstances of the case it has been seen that

the longitudinal strains parallel to the neutral surface vary es-

sentially directly as their distances from it (this law is the as-

sumption that plane normal sections before flexure are also

plane afterwards). The strain at any distance z from the

neutral surface will then be uz. But it was shown in Art. 17

that the intensity of longitudinal stress N^ varies directly as z
;

hence there may be written :

NI = Euz.

If b is the variable width of cross section, taken parallel to

the neutral surface, the internal resisting moment of the sec-

tion will be :

M \
W b dz . z = Eu \ bz* dz.= \N,bdz.z = Eu\

M = Eul (7)

M-

The integration is to be extended over the whole section.

Then, if the u neutral axis
"

is the line of intersection of the

neutral surface with the normal section, I is the moment of

inertia of the normal section about the neutral axis.
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Eqs. (6) and (8) then give :

Mil , ,

iri
=
7' 7 ....... (9)

This equation is true, under the assumption made, for any

degree of curvature whatever in the original beam.

If w and x are rectangular co-ordinates in the plane of the

beam, x being the independent variable, the expressions for

the reciprocals of the radius of curvature before and after

flexure, are :

<

<">

By the binomial formula :

and an exactly similar expression for
-,.

After introducing

these in Eqs. (10) and (i i), and supposing the deflections to be

small, there may be written :

i i t/~7i'' d*iv 3 (div
a dt

w'*\

!? ~p
~ '

~dx*
'

~dx^
' "

2 \dx*
'

Hx*) dx*

15 fdw* dw*
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If the deflections are small, the values of:

dw dw
l

&-'
and

is-

are nearly equal, and the equation just written shows that with

a considerable degree of approximation :

I i d*w'

J
'

7
: -& '

The smaller the curvature the more nearly accurate is Eq.

(12). If, as before, w is the deflection or strain normal to x :

w = w' w

hence, from Eqs. (9) and (12) :

M
El dx* 03)

Eq. (13) is exactly the same as Eq. (i) for straight beams.

These investigations show that the common theory of flex-

ure is not strictly applicable to the general case of curved

beams. In order to obtain Eq. (12) it was necessary to assume

the same law for stresses and strains, in any normal section,

both for curved and straight beams, which is not exactly true.

It was also necessary to assume small values of

dw
l

dw'
-p-

1 and -r
dx dx
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for a close approximation. Yet the application ofthe common
theory of flexure to curved beams, even within these restricted

limits, is of the highest importance.
In Art. 22 a generalization of the common theory of flexure

is given, in which the differential of the centre line of the beam
is used instead of dx. The resulting formulae are accurately

applicable to curved beams of any curvature. The only as-

sumption involved, in addition to those of the common theory,
is the identity of the law of variation of stresses and strains in

curved and straight beams
;
and that causes very little error.

One of the most important forms of Eq. (7) yet remains to

be established.

Let </, represent the distance from the neutral axis of any
normal section of the beam to that point of the section farthest

from it. Let K represent the intensity of tensile or compres-
sive stress (as the case may be) existing at this same point ; K
will be the greatest intensity in the section. Because the in-

tensity of stress varies directly as the distance from the neutral

axis, the intensity at distance unity from that axis will be :

But by Art. 2, this intensity also has the value Eu. Con-

sequently Eq. (7) becomes :

If the external moment is sufficient to break the beam, and

if Kq. (14) is applied to the section at which failure begins, K
is called the "Modulus of Rupture" for flexure. It is an

empirical quantity.
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Art. IQ. Deflection by the Common Theory of Flexure.

The common theory of flexure, as developed in the pre.

ceding Art., leads to very simple and, in nearly all ordinary-

cases, very closely approximate formulae.

Let ,r be the co-ordinate of some point at which the tan-

gent of the inclination of the neutral surface to the axis of x
is known ; then, from Eq. (i) of Art. 18 :

dw x M ,

r dx ....... (i)

w
[

-T- =
dx ]

j- will be at once recognized as the general value of the tan-

gent of the inclination just mentioned, or, in the case of curved

beams, as approximately the difference between the tangent,
before and after flexure.

Again, let x^ represent the co-ordinate of a point at which

the deflection w is known, then, from Eq. (i) :

w =

The points of greatest or least deflection and greatest or

least inclination of neutral surface are easily found by the aid

of Eqs. (i) and (2).

The point of greatest or least deflection is evidently found

by putting :

dw f ^

and solving for x. Since is the value of the tangent of the
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inclination of the neutral surface, it follows that a point of

greatest or least deflection is found where the beam is hori-

zontal.

Again, the point at which the inclination will be greatest or

least is found by the equation :

dx
~

(4)

But, approximately,
- is the reciprocal of the radius of

curvature; hence, the greatest inclination will be found at that

point at which the radius of curvature becomes infinitely great,

or, at that point at which the curvature changes from positive

to negative or vice versa. These points are called points of
" contra-flexure." Since :

there is no bending at a point of contra-flexure.

The moment of the external forcer,, M, will always be ex-

pressed in terms of x. After the insertion of such values, Eqs.

(i) and (2) may at once be integrated and (3) and (4) solved.

The coefficient of elasticity, ., is always considered a con-

stant quantity ; hence it mny always be taken outside the in-

tegral signs. In all ordinary cases, also, /is constant through-

ouUthe entire beam. In such cases, then, there will only need

to be integrated the expressions :

f
J
*0

Mdx and
*

J
*l

J
*o

Mdx\
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Before applying these formulae to particular cases it will be

necessary to consider some other matters.

Art. 20. External Bending Moments and Shears in General.

Beams subjected to combined bending and direct stress will

not be treated. Such cases are of little or no real value to the

engineer, and approximate solutions, even, are only to be

reached by the higher processes of analysis. In all beams,

therefore, pure bending only is to be treated. A beam is said

to be non-continuous if its extremities simply rest at each end

of the span and suffer no constraint whatever.

A beam is said to be continuous if its length is equal to two

or more spans, or if its ends, in case of one span (or more) suffer

constraint.

A cantilever is a beam which overhangs its span ; one end of

which is in no manner supported. Each of the overhanging

portions of an open swing bridge is a cantilever truss.

Let any beam be horizontal, and suppose it to be subjected
to vertical loads. The results will evidently be applicable to

any beam acted upon by loads normal to its axis. Let P be

any single vertical load, and let x be any horizontal co-ordinate

measured from any point as an origin. Let x^ represent the

co-ordinate, measured from the same origin, of the point of ap-

plication of any load P. Finally, let it be required to deter-

mine the external bending moment M at any section, x> of the

beam. The lever arm of any load P is evidently (x x^.

Hence, for any number of forces :

M = 2P(x -
x,} (i)

The summation sign 2 refers only to x^ and is to cover that

portion of the beam on one side of the section X, as is evident

from the manner of forming the equation.
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If the origin of x is in the section considered :

M=~ zp** (2)

From Eq. (i) :

dM
dx (3)

Now 2P= S is the algebraic sum of all the forces on one

side of the section considered, it is consequently the totalforce

acting in the section tending to move one portion of the beam past
the other; it is therefore called the " shear

"
in the section.

This quantity (the shear) is a most important one in the sub-

ject of the resistance of materials.

The reactions, or supporting forces, applied to the beam,
are to be included both in the sum 2P, and in the moment :

3P(x -
-r,).

Eq. (3) shows that the shear at any section is equal to thefirst

differential coefficient of the bending moment considered as a

function of x.

The sum of all the loads on the other side of the section x
would give the same numerical shear, but it would evidently

have an opposite direction.

As is well known, the analytical condition for a maximum
or minimum bending moment in a beam is :

dM
,/,-

From Eqs. (3) and (4) is to be deduced the following im
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portant principle: The greatest or least bending moment in any
beam is to be found in tliat section for which the shear is zero.

The importance of this principle lies in the fact that in the

greater portion of cases of loaded beams which come within

the experience of the civil engineer, the section subjected to

the greatest bending moment can thus be determined by a

simple inspection of the loading.
These principles can be well illustrated by the following

simple example.

Fig. I represents a non-continuous beam with the span /,

"*--

*r
? ^

FIG. i.

supporting two equal weights P, P. These two weights or

loads are to be kept at a constant distance apart denoted

by a.

It is required to find that position of the two loads which

will cause the greatest bending moment to exist in the beam,
and the value of that moment. The reaction R is to be found

by the simple principle of the lever. Its value will therefore

be:

(5)

Since the reaction R can never be equal to 2P, 2P, or the

shear, must be equal to zero at the point of application of one

of the loads P. In searching for the greatest moment, then,

it will only be necessary to find the moment about the point
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of application of one of the forces P. It will be most con-

venient to take that one nearest R.

The moment desired will be :

M= Rx =

- _ _"
2

""

4

This value in Eq. (6) gives :

P

Since :

1&
''

7~'

it appears that Ml
is a maximum.

If the load is uniformly continuous and of the intensity/,

in Rqs. (i), (2) and (3)/^', is to be put for P, and the sign
j

for

2. Hence :

M =

AT = -
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dx

But since dx and dxt are perfectly arbitrary, they may be

taken equal to each other, hence :

d*M

Or, the second differential coefficient of the moment, considered

as a function of x, is equal to the intensity of t/te continuous

load.

A very important problem arises in connection with the

principles discussed in this Art. It is the following :

A continuous train of any given uniform density advances

along a simple beam of span I. It is required to determine

ivhat position of loading will give the greatest shear at any

specified section.

In Fig. 2, CD is the span /, and A is any section for which

c A B D
^

'

ls ^quired to find the

| position of the load for
F| '2 ^ the greatest transverse

shear. The load is supposed to advance continuously from C
to any point B. Let R be the reaction at D

y
and 2P the load

between A and B. The shear S' at A will be :

R - 2P= S' ....... (8)

Let R be that part of R which is due to 2P, and R" that

part due to the load on CA
; evidently R is less than

Then :

R' + R" - 2P = S'.
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If AB carries no load, R and 2P disappear in the value of

5. Hence :

R" = S

is the shear for the head of the train at A. 5 is greater than

S' because 2P is greater than R. But no load can be taken

from A C without decreasing^". Hence: The greatest shear

at any section will exist when the load extends from the end of

the span to that section, whatever be the density of the load.

In general, the section will divide the span into two un-

equal segments. The load also may approach from either

direction. The greater or smaller segment, then, may be

covered, and, according to the principle just established, either

one of these' conditions will give a maximum shear. A con-

sideration of these conditions of loading in connection with

Fig. 2, however, wilt show that these greatest shears will act in

opposite directions.

When the load covers the greater segment the shear is

called a main shear; when it covers the smaller, it is called a

counter shear.

Addendum to Art. 20.

The position of the moving load for the greatest bending
moment at any section of a non-continuous beam may be very

simply determined. In Fig. 3, let F G represent any such

m of the span /, and let any moving load whatever, as

W\ . . . Wn > ... Wn advance from F toward G.

Let C be the section at which it is desired to determine the

,

L
t
' !/ *-H

0] r> r> n A
|Q Q Q &

W, Wn'
' w

FIG. 3.
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maximum bending moment, and let ri loads rest to the left of

Cy while n is the total number of loads on the span. Finally
let x' represent the distance of WM > from C and to the left of

that point, while x is the distance of Wn to the left of F. If

a is the distance between W\ and W^ b the distance between

W* and Wz ;
c the distance between W$ and W^ etc., etc., the

reaction R at G will be :

,,r
w,

a 4- b + c + + x

(9)

The bending moment M about C will then take the value

+ c +

+ W* x.

Or, after inserting the value of R from above :

+ Wn,)x' ............... (10)

If the moving load advances by the amount A*, the mo-

ment becomes, since &x =
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(i i)

Hence, for a maximum, the following value must never be

negative :

' - M =

=o (12)

Or, the desired condition for a maximum takes the form :

7 '

TJf i TAT _i_ i M/"
/

, + W.+ (13)

It will seldom or never occur that this ratio will exactly exist

if Wn is supposed to be a whole weight ; hence W*> will usually
be that part of a whole weight at C which is necessary to be

taken in order that the equality (13) may hold.

It is to be observed that if the moving load is very irreg-

ular, so that there is a great and arbitrary diversity among the

weights W, there may be a number of positions of the moving
load which will fulfil Eq. (13), some one of which will give a

value greater than any other; this is the absolute maximum
desired.

From what has preceded, it follows that W may always be

taken at the point C in question; hence,*' in Eq. (10) may
always be taken equal to zero when that equation expresses
the greatest value of the moment. The latter then becomes:

-f (W, + W>)b + ...... 4- (W, + W. -f ......

- (W,
+ ...... + W..-.H?) ........... (14)

In this equation x, of course, corresponds to the position of
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maximum bending, while the sign (?) represents the distance

between the concentrations Wn>- \ and Wn >.

It has already been shown in this Art. that for any given
condition of loading the greatest bending moment in the beam
will occur at that section for which the shear is zero. But if

the shear is zero, the reaction R must be equal to the sum of

the weights (W^ + W^ + ...... + W) between G and C\ the

latter now being the section at which the greatest moment in

the span exists.

Hence, for that section, Eq. (13) will take the form :

r___R_
/

~"

IV, + W* + W* + ...... + Wn
'

or, the centre of the gravity of the load is at the same dis-

tance from one end of the beam as the section or point of

greatest bending is from the other. In other words, the dis-

tance between the point of greatest bending for any given system

of loading and the centre ofgravity of the latter is bisected by
the centre of span.

If the load is uniform, therefore, it must cover the whole

span.
It is to be observed that Eq. (14) is composed of the sums

WK Wl -\- W^ etc., multiplied by the distances a, b, c, etc.

Hence tabulations of these quantities for any given system
of loading will expedite and simplify computations of actual

moments.

With a given system of concentrated loads it sometimes

becomes necessary to determine at what particular length of

span n weights W cease to give the maximum bending mo-

ment, and (n + i) weights begin to be employed, for a special

and constant fraction, ,
of the span. Eq. (14) gives the solu-

tion of this question at once. Let M be the moment for n

weights and distance x, while M^ is the moment for (n + i)

weights corresponding to the distance x^. Also let k be the



Art. 20.] GREATEST BENDING MOMENT.

distance between the weights or loads Wn and Wn + ,. Then
there results:

Jf, - lf=o = *- Wt +

The last term of this equation will not exist if, as is fre-

quently the case, the maximum moment continues at the same

load Wn'. Hence either :

Or,

+ w +1

(is)

.(16)

Since jrt cannot be negative, Eq. (15) shows that x = k for

the condition to which it belongs. Eq. (16) gives x\, when n

loads cease to be used and (n + i) begin, if the point of maxi-

mum bending at the same time changes from Wn>-\ to W*.
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Art. 21. Moments and Shears in Special Cases.

Certain special cases of beams are of such common occur-

rence, and consequently of such importance, that a somewhat
more detailed treatment than that already given may be

deemed desirable. The following cases are of this character.

Case I.

Let a non-continuous beam, supporting a single weight P
at any point, be considered,

and let such a beam be rep-
resented in Fig. i. If the

span RR is represented by

/ = a + b = RP + RP,
1

the reactions R and R' will be :

R -
j
P

y and R' = ~ P (i)

Consequently, if x represents the distance of any section in

JRPtrom R, while x represents the distance of any section of

R'Pfrom R', the general values of the bending moments for

the two segments a and b of the beam will be :

M = Rx, and M' = Rx' (2)

These two moments become equal to each other and repre-

sent the greatest bending moment in the beam when

x = a and x* = b*
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or, when the section is taken at the point of application of the

load P.

Eq. (2) shows that the moments vary directly as the dis-

tances from the ends of the beam. Hence, if AP (normal to

RR1

)
is taken by any convenient scale to represent the greatest

moment, P, and if RAR' is drawn, any intercept parallel to

APznd lying between RAR' and RR' will represent the bend-

ing moment for the section at its foot, by the same scale. In

this manner CD is the bending moment at D.

The shear is uniform for each single segment ;
it is evi-

dently equal to R for RP and R' for R'P. It becomes zero at

P, where is found the greatest bending moment.

Case II.

Again, let Fig. 2 represent the same beam shown in Fig. i,

but let the load be one of uniform intensity,/, extending from

end to end of the beam. Let C be placed at the centre of the

span, and let R and R', as be-

fore, represent the two reac-

tions. Since the load is sym-
metrical in reference to C,

R = R'.

For the same reason the mo- B

mcnts and shears in one half of the beam will be exactly like

those in the other
; consequently, reference will be made to

one half of the beam only. Let x and x
l
then be measured

from R toward C. The forces acting upon the beam are R
and /, the latter being uniformly continuous. Applying the

formulas of the preceding Art., the bending moment at any
section x will be :
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M = Rx -
p\ (*-*,) dx

T
.

Jo

' H=R*- P4 (3)

If / is the span, at C, M becomes :

But because the load is uniform

Hence :

if W is put for the total load. Placing :

2

in Eq. (3) :

The moments M, therefore, are proportional to the abscis-

sae of a parabola whose vertex is over C, and which passes

through the origin of co-ordinates^. Let AC, then, normal

to RR, be taken equal to Mlt and let the parabola RAR be
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drawn. Intercepts, as FH, parallel to AC, will represent bend-

ing moments in the sections, as H, at their feet.

The shear at any section is :

or, it is equal to the load covering tJtat portion of the beam be-

tween the section in question and tlie centre.

Eq. (7) shows that the shear at the centre is zero
; it also shows

that 5 = R at the ends of the beam. It further demonstrates

that the shear varies directly as the distance from the centre.

Hence, take RB to represent R and draw BC. The shear at

any section, as H, will then be represented by the vertical in-

tercept, as HG, included between BC and RC.
The shear being zero at the centre, the greatest bending

moment will also be found at that point. This is also evident

from inspection of the loading.

Eq. (2) of Case /., shows that if a beam of span / carries a

W
weight at its centre, the moment M at the same point will

be:

W I Wl

The third member of Eq. (8) is identical with the third

member of Eq. (5). It is shown, therefore, that a load, concen-

trated at the centre of a non-continuous beam, will cause the samt

moment, at that certre, as double the same load uniformly dis-

tributed over the span.

Eqs. (5) and (8) arc much used in connection with the bend-

ing of ordinary non-continuous beams, whether solid or flanged :

and such beams arc frequently found.
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Case III.

The third case to be taken, is a cantilever uniformly loaded
;

it is shown in Fig. 3. Let x and x^ be

measured from the free end A, and let

the uniform intensity of the load be

A represented by p. The entire loading
is uniformly continuous. Hence the

principles and formulae of Art. 20 give,

for the moment about any section x :
Fig.3

M = ~
P\

(*
~ O dx, = -

^j-
. . . . (9)

If AB /, the moment at B is :

(10)

The negative sign is used to indicate that the lower side of

the beam is subjected to compression. In the two preceding

cases, evidently, the upper side is in compression.
The shear at any section is :

dM
(ii)

Hence, the shear at any section is the load between thQ free

end and that section.

Eq. (9) shows that the moments vary as the square of the

distance from the free end
; consequently, the moment curve

is a parabola with the vertex at A, and with a vertical axis.

Let BC, then, represent Ml by any convenient scale, and draw
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the parabola CDA. Any vertical intercept as DF will repre-

sent the moment at the section, as F
t
at its foot.

Again, let BG represent the shear//, at B, then draw the

straight line AG. Any vertical intercept, as HF, will then

represent the shear at the corresponding section F.

Art. 22. Recapitulation cf the General Formulae of the Common
Theory of Flexure.

It is convenient for many purposes to arrange the formulae

of the Common Theory of Flexure in the most general and

concise form. In this Art. the preceding general formulas for

shears, strains, resisting moments and deflections will be re-

capitulated and so arranged. In order to complete the gener-

alization, the summation sign 2 will be used instead of the

sign of integration.

Fig.1

In Fig. i, let ABC represent the centre line of any bent

beam ; AF, a vertical line through A ; CF, a horizontal line

through *,
while A is the section of the beam at which the

deflection (vertical or horizontal) in reference to C, the bend-

ing moment, the shearing stress, etc., are to be determined.

As shown in figure, let x be the horizontal co-ordinate meas-

ured from A, and y the vertical one measured from the same

point ; then let 2 be the horizontal distance from the same
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point to the point of application of any external vertical force

P. To complete the notation, let D be the deflection desired
;

Mv the moment of the external forces about A
; S, the shear

at A
; P, the strain (extension or compression) per unit of

length of a fibre parallel to the neutral surface and situated at

a normal distance of unity from it ; /, the general expression of

the moment of inertia of a normal cross section of the beam,
taken in reference to the neutral axis of that section

; E, the

coefficient of elasticity for the material of the beam
;
and M

the moment of the external forces for any section, as B.

Again, let A be an indefinitely small portion of any normal

cross section of the beam, and let y' be an ordinate normal

to the neutral axis of the same section. By the " common

theory
"

of flexure, the intensity of stress at the distance y'

from the neutral surface is (y'P'E). Consequently the stress

developed in the portion A y
of the section, is EP'y'd, and the

resisting moment of that stress is EP'y'*A.
The resisting moment of the whole section will therefore

be found by taking the sum of all such moments for its whole

area.

Hence :

M = EP"2y'*A = EP'L

Hence, also .

EI'

If n represents an indefinitely short portion of the neutral

surface, the strain for such a length of fibre at unit's distance

from that surface will be nP.
If the beam were originally straight and horizontal, n would

be equal to dx.

P' being supposed small, the effect of the strain nP' at any
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section, B, is to cause the end K of the tangent BK, to move

vertically through the distance nP'x.

If BK and BR (taken equal) are the positions of the tan-

gents before and after flexure, nP'x will be the vertical dis-

tance between K and R.

By precisely the same kinematicai principle, the expres-
sion nP'y will be the horizontal movement of A in reference

to B.

Let 2nP'x and 2nP'y represent summations extending
from A to C, then will those expressions be the vertical and

horizontal deflections, respectively, of A in reference to C. It

is evident that these operations are perfectly general, and that

x and y may be taken in any direction whatever.

The following general, but strictly approximate equations,

relating to the subject of flexure, may now be written :

=2P

El

(i)

(2)

3*P' = 2n (4)

D =

(6)

Dk represents horizontal deflection.

10
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The summation ~2>Pz must extend from A to a point of no

bending; or from A to a point at which the bending moment
is MJ. In the latter case :

M
l
== SPg + Jf,' ....... (7)

Ml may be positive or negative.

Art. 23. The Theorem of Three Moments.

The object of this theorem is the determination of the re-

lation existing between the bending moments which are found

in any continuous beam at any three adjacent points of sup-

port. In the most general case to which the theorem applies,

the section of the beam is supposed to be variable, the points
of support are not supposed to be in the same level, and at

any point, or all points, of support there may be constraint

applied to the beam external to the load which it is to carry ;

or, what is equivalent to the last condition, the beam may not

be straight at any point of support before flexure takes place.
Before establishing the theorem itself, some preliminary

matters must receive attention.

If a beam is simply supported at each end, the reactions

are found by dividing the applied loads according to the

simple principle of the lever. If, however, either or both ends

are not simply supported, the reaction, in general, is greater at

one end and less at the other than would be found by the law

of the lever
;
a portion of the reaction at one end is, as it were,

transferred to the other. The transference can only be ac-

complished by the application of a couple to the beam, the

forces of the couple being applied at the two adjacent points
of support ;

the span, consequently, will be the lever arm of

the couple. The existence of equilibrium requires the appli-
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cation to the beam of an equal and opposite couple. It is only

necessary, however, to consider, in connection with the span
AB, the one shown in Fig. i. Further, from what has imme-

diately preceded, it appears that the force of this couple is

Fig.1

equal to the difference between the actual reaction at either

point of support and that found by the law of the lever. The

bending caused by this couple will evidently be of an opposite
kind to that existing in a beam simply supported at each end.

These results are represented graphically in Fig. I. A and
B are points of support, and AR is the beam

;
AR and BR'

are the reactions according to the law of the lever
;
RF = R'F

is the force of the applied couple ; consequently :

AF = AR + RF and BF = BR - (RF = RF)

are the reactions after the couple is applied. As is well known,
lines parallel to CK, drawn in the triangle ACB, represent the

bending moments at the various sections of the beam, when
the reactions are AR and BR'. Finally, vertical lines parallel

to AG, in the triangle QHG, will represent the bending mo-

ments caused by the force R'F.
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In the general case there may also be applied to the beam
two equal an,d opposite couples, having axes passing through
A and B respectively. The effect of such couples will be

nothing so far as the reactions are concerned, but they will

cause uniform bending between A and B. This uniform or

constant moment may be represented by vertical lines drawn

parallel to AH or LN (equal to each other) between the lines

AB and HQ. The resultant moments to which the various

sections of the beam are subjected will then be represented by
the algebraic sum of the three vertical ordinates included be-

tween the lines ACS and GQ. Let that resultant be called J/.

Let the moment GA be called Ma ,
and the moment :

BQ = LN = HA = Mb .

Also designate the moment caused by the load P, shown by
lines parallel to CK in A CB, by Mv Then let x be any hori-

zontal distance measured from A toward B
;

/ the horizontal

distance AB\ and z the distance of the point of application,

K
9
of the force P from A. With this notation there can be at

once written :

M = -W. + ^ + -W. (0

Eq. (i) is simply the general form of Eq. (2), Art. 22.

It is to be noticed that Fig. I does not show all the mo-

ments Ma ,
Mb and Mt

to be of the same sign, but, for conven-

ience, they are so written in Eq. (i).

The formula which represents the theorem of three mo-

ments can now be written without difficulty. The method to

be followed involves the improvements added by Prof. H. T.

Eddy, and is the same as that given by him in the "American

Journal of Mathematics," Vol. I., No. i.
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Fig. 2 shows a portion of a continuous beam, including two

spans and three points of support. The deflections will be

supposed measured from the horizontal line NQ. The spans

M6

Fig. 2

are represented by and /c ;
the vertical distances of NQ from

the points of support by caj cb and cc ;
the moments at the same

points by Ma , Mb and Mc ,
while the letters 5 and R represent

shears and reactions respectively.

In order to make the case general, it will be supposed that

the beam is curved in a vertical plane, and has an elbow at b,

before flexure, and that, at that point of support, the tangent
of its inclination to a horizontal line, toward the span la is /,

while /' represents the tangent on the other side of the same

point of support ;
also let d and d' be the vertical distances,

before bending takes place, of the points a and c, respectively,

below the tangents at the point b.

A portion of the difference between ca and cb is due to the

original inclination, whose tangent is /, and the original lack of

straightness, and is not caused by the bending ; that portion

which is due to the bending, however, is, remembering Eq.

(S), Art. 22 :

.= C - c - It - d =
Mxn
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By the aid of Eq. (i) this equation may be written :

In this equation, it is to be remembered, both x and z (in-

volved in M
t)

are measured from support a toward support b.

Now let a similar equation be written for the span /c,
in which

the variables x and z will be measured from c toward b. There

will then result :

E(ft -ct
- // - d 1

)

xn

When the general sign of summation is displaced by the

integral sign, n becomes the differential of the axis of the

beam, or ds. But ds may be represented by u dx, u being such

a function of x as becomes unity if the axis of the beam is

originally straight and parallel to the axis of x. The Eqs. (2)

and (3) may then be reduced to simpler forms by the following
methods :

In Eq. (2) put :

/ x \ xn i f* u (4 x}x dx-- ' -

Also :
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*.r(i.-*)d* _ '><(w/
I.}, I 4 J.

U (5)

Also:

4 * b

In the same manner :

= -^T^ (Q

x-ir^ = p^. ... (7)
IJ 4J* 4J& *

Also:

And,

(8)

4 J* 4 J*

Again, in the same manner :

... (9)

... (10)

Using Eqs. (4) to (10), Eq. (2) may be written :

Ax
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Proceeding in precisely the same manner with the span ln

Eq. (3) becomes :

E(cc
- cb

- // - d 1

)
= c

(12)

The quantities xa and xc are to be determined by applying

Eq. (4) to the span indicated by the subscript ;
while ua ,

za ,
ue

and ie are to be determined by using Eqs. (5) and (6) in the

same way. Similar observations apply to u'a ,
i'a ,

x'a ,
iic ,

i'c and
x'n taken in connection with Eqs. (7), (8) and (9).

If /is not a continuous function of x, the various integra-
tions of Eqs. (4), (5), (7) and (8) must give place to summations

(^) taken between the proper limits.

Dividing Eqs. (11) and (12) by la and
/,., respectively, and

adding the results :

-f-
'

i.

T
4

' U

,x Ax

iaxa + Mbua i'axa + McUJcXc + Mbiici'cx^ . (13)

in which T= t -\- t'.

Eq. (13) is the most general form of the theorem of three

moments if E, the coefficient of elasticity, is a constant quan-

tity. Indeed, that equation expresses, as it stands, the " the-

orem
"

for a variable coefficient of elasticity if (ie) be written

instead of i; e representing a quantity determined in a mannef

exactly similar to that used in connection with the quantity i
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In the ordinary case of an engineer's experience T = o,

d = d ' = o, / = constant, u = ua = ue
=

etc., = c' = secant of
the inclination for which t t' is the tangent ; consequently :

'a
= *a = *<

=
*c
=

*.
=

If
=

From Eq. (4) :

_
6

*

From Eq. (7) :

*= 44
*a ~

-g-, *; = -^-.

The summation "2M^x Ax can be readily made by referring

to Fig. i.

The moment represented by CK in that figure is :

consequently the moment at any point between A and K,

due to P, is :

Between A" and ^ :

M
t

' =
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Using these quantities for the span la :

^\M^ Ax =
*

M^x dx +
A

M^X dx =

For the span 4 the subscript a is to be changed to c.

Introducing all these quantities Eq. (13) becomes, after

providing for any number of weights, P:

6EI , . - .^ -...,_ MJa + 2y]^ (4 + ^

j
a

j
<:

4
^

4
"

Eq. (14), with ^' equal to unity, is the form in which the

theorem of three moments is usually given ;
with c' equal to

unity or not, it applies only to a beam which is straight before

flexure, since :

T= t + t' = = d = d'.

If such a beam rests on the supports a, b, and c\ before

bending takes place,

4

and the first member of Eq. (14) becomes zero.

If, in the general case to which Eq. (13) applies, the deflec-

tions ca , c&, and ce belong to the beam in a position of no bend-

ing, the first member of that equation disappears, since it is

the sum of the deflections due to bending only, for the spans /a>

and 4, divided by those spans, and each of those quantities is
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zero by the equation immediately preceding, Eq. (2). Also, if

the beam or truss belonging to each span is straight between
the points of support (suck points being supposed in the same
level or not\ ua = u'a = M = constant, and uc

= u'c = UK = an-

other constant. If, finally, /be again taken as constant, xa and
jrf, as well as 2M^ Ax, will have the values found above.

From these considerations it at once follows that the second

member of Eq. (14), put equal to zero, expresses the theorem
of three moments for a beam or truss straight between points
of support, when those points are not in the same level, but

when they belong to a configuration of no bending in the

beam. Such an equation, however, does not belong to a beam
not straight between points of support.

The shear at either end of any span, as 4, is the next to be

found, and it can be at once written by referring to the obser-

vations made in connection with Fig. I. It was there seen

that the reaction found by the simple law of the lever is to be

increased or decreased for the continuous beam, by an amount
found by dividing the difference of the moments at the ex-

tremities of any span by the span itself. Referring therefore,

to Fig. 2, for the shears S, there may at once be written :

s,=

M M
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The negative sign is put before the fraction,

Ma
- Mb

in Eq. (15), because in Fig. I the moments Ma and Mb are rep-

resented opposite in sign to that caused by P, while in Eq. (i)

the three moments are given the same sign, as has already
been noticed.

Eqs. (15) to (18) are so written as to make an upward re-

action positive, and they may, perhaps, be more simply found

by taking moments about either end of a span. For example,

taking moments about the right end of 4 :

sj. - ip(4 -*) + M. = Mb .

From this, Eq. (15) at once results. Again, moments about

the left end of the same span give :

Sb la
- ZPz + M> = Ma.

This equation gives Eq. (16), and the same process will give

the others.

If the loading over the different spans is of uniform inten-

sity, then, in general, P=wdz-, w being the intensity. Con-

sequently :

2P(P -
z*}z =

[
w (I

2 - z2

)

In all equations, therefore, for

h
= w

4
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/s
there is to be placed the term w* ;

and for
4

/3
the term we . The letters a and c mean, of course, that

4
reference is made to the spans /a and /c .

From Fig. 2, there may at once be written :

/

R = S; + 5. (19)

;?' = s; + s> (20)

*" = $ + $ (21)

etc. = etc. -f etc.

Art. 23a. Reactions under Continuous Beam of any Number of Spans.

The general value of the reactions at the points of support
under any continuous beam have been given in Eqs. (19), (20),

(21), etc., of the preceding Art. Before those equations, how-

ever, can be applied to any particular case, the values of the

bending moments, which appear in the expressions Sm , Si, S*,

etc., for the shears, must be determined. In the application of

the theorem of three moments, it is invariably virtually as-

sumed that the continuous beam before flexure is straight

between the points of support, and that the latter belong to a

configuration of no bending. The moment of inertia / and

the coefficient of elasticity E are also assumed to be constant.

This is frequently not strictly true, yet it will be assumed in
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what follows, since the method to be used in finding the mo-

ments is entirely independent of the assumption, and remains

precisely the same whatever form for the theorem of three

moments may be chosen.

Agreeably to the assumption made, Eq. (14) of the preced-

ing Art. takes the following form, which is almost, or quite,

invariably used in engineering practice :

MJ. + a C
la

-

LC

Let Fig. I represent a continuous beam of n spans, equal
or unequal in length. At the points of support, o, 1,2, 3, 4, 5,

Fig.1

etc., let the bending moments be represented by Mm Mv Mv

My etc. The moment M is always known
;

it is ordinarily

zero, and that will be considered its value.

An examination of Fig. i shows that, by repeated applica-

tions of Eq. (i), the number of resulting equations of condition

will be one less than the number of spans. But if the two end

moments are known (here assumed to be zero), the number of

unknown moments will also be one less than the number of

spans. Hence the number of equations will always be suffi-

cient for the determination of the unknown moments.

For the sake of brevity let the following notation be

adopted :
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etc. = etc. etc.

a =/s

4
== /

4 ; 4̂
=

2(/4 + /
5) ; /4

=
/,

Pi = li ; ^ =
2(/, -f /, , ,) ; st

= /,-.,;

i denoting any number of the series i, 2, 3, 4....... . It Is

thus seen that, in general,

also that ^a
=

,, ra = ^
3, </

s
= r

4 , etc. These relations can be

used to simplify the final result.

By repeated applications of Eq. (i) the following n equa-
tions of condition, involving the notation given above, will

result :
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+ +

= *.

The moment ^fw + x will also be equal to zero. In conse-

quence of this last condition it is seen that the coefficients of

the Ms occupy precisely the places of the elements of a deter-

minant of the nth
degree. Of the array indicating the deter-

minant, however, there exists only the leading diagonal and

one diagonal on each side of it. The determinant for n equa-

tions, or (n -\- i) spans, has, then, the value :

f
#,, bv o, 0,0,0,

2> 2 ^ o
,
o

,
o

,

o
,
bv cv dv o

,
o

0,0,0,

- - (3)

O, 0,0,0,0, . . . . O, /, qn

Also let Di represent the value of the determinant D when



Art. CONTINUOUS REACTIONS. 161

the column indicated by the i
th letter of the series a

y b, c, d, fy

etc., is replaced by the column ?/ ua ,
uy u

4, etc. If, for exam-

ple, i = 3, the i
th letter is c. Hence :

av bv f/If o ,
o

, o ,

<7a ,
b2 ,

7/2 , 0,0,0,

o
,
by Uy </y o,o,

0,0, ;/
4 , d4 , /4 , o ,

O , O , Uy dy fy gy

o , o , , o , o , o , . . o,

... (4)

Then, in general :

(5)

Eq. (5) will give the value of the bending moment at any

point of support, whatever may be the number of spans or the

law of loading on any or all the spans.

Precisely the same formulae are to be used ifM and Mn are

not zero, but have definite values and are known. In such a

case, however, //, and un would be replaced by :

The same equations also hold true whatever form of the

theorem of three moments may be chosen. It is only to be

IT
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remembered that the values of the quantities a, b, c, etc., //

uaj uy etc., will depend upon the choice.

If all the moments are desired, it will be most convenient

to put the vertical column ult ?/2 ,
?/
3 ,

. . . un in place of the ver-

tical column rf
x ,
av o, o, . . . o, in Eq. (4), and then find the

resulting determinant D^. Eq. (5) will then give the value of

Mv which, placed in the first of Eqs. (2), will enable M2 to be

at once found. M
3
will then result from the second of Eqs. (2),

M
4
from the third, etc., etc.

So far as the general treatment of the question is con-

cerned, there yet remains to be considered the expansion of

the determinants D and Dt
.

The expansion of the determinant D is very simple, and

leads to the following results :

For two spans :

D = a,......... (6)

For three spans :

D = aA ~ "A ..... (7)

For four spans :

D = aj>fi
- aj> 9

-
ajf^ ..... (8)

For five spans :

D = aj)^d,
- a,bzc2d4 - aj)^ - ajbj^ + aj)j& . (9)

For six spans :

D = ,VA/5 -

4
' - ' 0)
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By the observance of two or three simple rules, the deter-

minant for
(;/ -f i) spans, or // points of support, may easily be

written.

A series of numbers such as 1,2, 3, 4, 5, 6, etc., is said to

be written in its natural order. Let any permutation of this

series, 2, I, 3, 6, 5, 4, be written, in which 2 is placed before i,

6 before 5 and 4, and 5 before 4. In this permutation, there-

fore, there are said to be (i -f- 2 + i) 4 inversions.

Let (A w) represent any letter of the series a
, b, c, d, etc., which

has the subscript ;/
; also, let (A,). and (AJ,,., represent the th

and (;/ i)
th letters of the same series which have the sub-

scripts n. In general, the letter inside the parenthesis repre-

sents the subscript figure in the determinant, and that outside,

the place of the letter in the series a, b, c, d, f, etc.

The ** determinant for (n -|- i) spans, or n points of sup-

port, will then be :

D. = D,. t (A.). + />._, (A.). . , (A. . , ) .

Now, with the notation taken, if the letters in each term of

the determinant are written in their natural order, as abcdfg,

etc., the number of inversions in the subscript figures of any term

will determine the sign of that term, i.e., if the number of in-

versions is odd, the sign is minus, but if the number is even the

sign is plus.

Since ;/ is the greatest subscript in any term, and since (/*)

occupies the most advanced place in the scries of letters, no

inversions arc introduced in multiplying DH _ , by (A,),. Hciu <
,

all terms ofDn . , (A w)w will have the same signs as the correspond-

ing terms of A, _
,

.

Similarly, since n is greater than (n i), the product

i\i involves one inversion. Hence, all terms of- ii

,. .(A.).., (A..,).



164 THEORY OF FLEXURE. [Art. 230:.

will have signs contrary to those of the corresponding terms of

/>....

The number of terms in DK will evidently be the sum of

the numbers of terms in DH _ I and Dn _^.

An examination of the notation will at once show that :

(*) = 2(4 + /,,); (A.). . ,
= 4 ;

and (A. . ,)
= 4.

Hence there will result :

. . (ii)

The minus sign before the last term of the second member
is on account of the inversion introduced, as already ex-

plained.

The general value of the determinant Dt (shown in Eq. (4)

when i = 3) can be most easily expanded by considering it

the sum of two determinants
;
and in order to illustrate this

method let it be supposed that M
3

is desired. It will then be

necessary to expand the determinant D
3 , given in Eq. (4). As

is known from the theory of determinants, Z>
3 may be written

as follows :

0,, O, O , O, O, . . .

av b &2 ,
o

,
o

,
o

,
. . .

O
, by lly dy O

,
O

,
. . .

o
,
o , u4 , d^ f4 , o ,

. . .

O , O ,
O

, dy fy gy . . .

, o, o, o, o, 0,0,.. /, qj o, o, un> o, 0,0,.. /, qn \

aly ^,, O , O t O ,
. .

aa ,
b o

,
o

,
o

,
o

,
. .

0,^3,0,^,0,0, . .

o
,
o

,
o

,
d

4 , /4 ,
o

,
. .

0,0,2/5, dy fy gy . .

(12)
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or :

A = A' + A" ..... 03)

Eq. (12) shows at a glance what Zy and D
3 represent.

D
3

'

is precisely the same in form as D
y
and is given at once

by the Eqs. (6) to (n) after writing u2 ,
u
3
and u

4
for cv c

3

and <:
4

.

In general, /?/ is found by simply writing #.-_ ut and <+I

for
(A.,. _,),-, (A,),-

and (A,-^,) ,
in the determinant /?.

As a general method, that of alternate numbers is probably
as simple as any for the expansion of the determinant D-'.

For example :

D,' =

. . . (^s + /.'- + ?*.); ..... (14)

in which r,, r2,
r
3, etc., are the units of the alternate numbers.

The circumstances of any particular case will frequently
either furnish a more expeditious method than that of alternate

numbers, or allow the expansion of D-' to be written at once

from an inspection of the array given in Eq. (12).

In any case the method of alternate numbers may be used

as a check.

Special Method for Ordinary Use.

If the number of spans is large, the expansion of the deter-

minant D{ will, at best, be found somewhat tedious. Special

methods may be employed which involve only the determinant

D, given in Eqs. (6) to (i i) ;
and it has already been seen that

that determinant admits of a very simple expansion.
Let any one span carry any load whatever, while all other

spans carry no load. In such a case, P will be zero for every
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span but one, and, in consequence of the notation employed,
all but two quantities in the series # u3,

uy u
4 ,
uy etc., will also

become equal to zero.

If li (the z
th

span) carries the load, there will result :

(15)

4- 2P(V ~
*]* (16)

H

All other us reduce to zero. Although Eqs. (15) and (16)

have the same form, they are not identical except in special

cases, since z is not measured from the same end of the span
in both expressions.

Now let Ui_i and u{ take the place of those letters in that

column of D formed with the z
th letter of the series a, b, c, d,

etc., which have the subscripts i and i I
;
u

i ^ l
is equal to

zero. Or in the notation already employed, let ui _ l
and z<,

take the place of (Af.j), and
(A,-),-,

while zero takes the place of

(A,- + I ),-.
The resulting determinant, Dif will then be precisely

the same as D in general form. The expansion of D{ can then

be at once made by simply putting in D the substitutions

above indicated. There will then result :

07)

In order to find Mf_ iy with the same loading on the same

span, ui _ l
and #

f
. must take the place of (A ,-_,),-_,

and (A^),-.,, re-

spectively, while (A (-_ a),._ x becomes equal to zero. Making
these substitutions in the determinant D, there will result the

determinant /?,-_,. Then :
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The values ofMt and &?<_ thus obtained, placed in the I
th

and (i i)
th of the Eqs. (2) will at once give :

Mi_ 3 and M^ t
.

Similar substitutions in the other equations will give all the

moments. Thus the solution is complete, for the span and

loading taken, with the use of the expanded determinant D
only.

Each span may be treated in the same manner and the

same expansion of D will be the only one necessary.
This method is equivalent to splitting the elements ?/ uv

uy u
4t etc., of the general determinant /?,-.

In order to determine the bending moment at any point of

support, for loading which covers more than one span, or por-

tions of more than one span, it is only necessary to take the

algebraic sum of the separate moments (as above determined),
at the point of support in question, found for the loading in

each single span. The result will be the moment due to the

combined action of all the loading.

It is thus seen that the solution of the most general case is

made to depend on the one expansion of the determinant D.

Example.

Let there be a continuous beam of six spans, and let any

loading rest upon the fourth ; it is required to find the expan-
sions of the determinants D{ and D{ _ r

The expansion of D is given in Eq. (10), and need not be

repeated here.
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Using the preceding notation :

I = 4- (A," -,),-
= 4

1-1=3. (A,),
- 4.

#,.
=

4
. (A,. + ,),.

=
4/3.

*<-! =
S-

In Eq. (10) then, d4 and */
3
are to be displaced by u

4
and uy

while zero is to take the place of dy Hence :

Again :

(
A<-x)<-i = ^ (

A )*-i = C
4'

Then, in Eq. (10), placing z/
3
and u

4
for c

3
and c

4 ,
and placing

(A,--^--!
= c2 o,

there will result :

A- = tf

These values placed in Eqs. (17) and (18) will give J/
4

and J/
3

.

The lengths of span may be any whatever
;
if they are equal,

the results will be simplified.
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Special Case of Equal Spans.

If all the spans are of equal length, each may be repre-

sented by /. There will then result :

"* = *>3
=

*4
=

^5 = ' = Pi = **
= C* = d

3 =/4 = Si
= l

}

\ (21)

*, = l>*
= c

z
= < =fs

= - = qi = 4*

These values of a, b, c, etc., placed in Eqs. (6) to (10) give :

For two spans :

Z>=4/.

For three spans :

D = is/
2
.

For four spans :

D =
56/3.

For five spans :

D - 209/
4
.

For six spans :

D = ;8oA

Others may be easily and rapidly written by the aid of Eq.

(n), which now becomes :

l -l*Dn . t ..... (22)

I f the determinant for seven (i.e., n + l) spans is desired :
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and Dn _ a
= 209/4.

Hence :

Dn = D6
= 3i2o/

6
20Q/

6 = 291 1/6
.

Similarly for eight spans :

D 4 x 2911/7 78o/
7 = 10864/7.

For nine spans :

D = 4 x io864/
8 -

291 1/ 8 = 40545/
8
.

For ten spans :

D 4 X 40545/ 9
10864/9 = 151316/9.

The values given in Eq. (21) will correspondingly simplify
the expansion of the determinant D{,

either in its general form

as exemplified in Eq. (4) or as given in the special method.

As an illustration, Eqs. (19) and (20) become, respectively :

A- 1
= 225/^3 6o/4

4
.

These values then give :

__ A _

/



Art. 24.] THE NEUTRAL CURVE. 171

Then by Eqs. (2) :

M,=
u --

M - '
1
~

~2~
'

Thus all the moments are known for this example, f>, with

six spans and loading on the fourth span only.

Reactions.

After the moments are found either by the general or

special method, for any condition of loading, the reactions will

at once result from the substitution of the values thus found

in the Eqs. (15) to (21) of the preceding Art., which it is not

necessary to reproduce here.

Art. 24. The Neutral Curve for Special Cases.

The curved intersection of the neutral surface with a ver-

tical plane passing through the axis of a loaded, and originally

straight, beam may be called the " neutral curve." The neu-

tral curve is the locus of the extremities of the ordinates w of

Art. 19 ; it therefore gives the deflection at any pojnt of the

beam.

The method of finding the neutral curve for any particular

of beam or loading can be well illustrated by the opera-
tions in the following three cases.
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Case I.

This case is shown in the accompanying figure, which

represents a cantilever carry-

ing a uniform load with a sin-

gle weight W 2& its free end.

JB
As usual, the intensity of the

uniform loading will be repre-

sented by/.

Measuring x and w from

By as shown, the general value
Fig.1

of the bending moment is :
, .

Integrating between x and /, remembering that

dw

for x = I :

Hence :

The greatest deflection, w t ,
occurs for x I. Hence :

i

Z7
Wl* //

4\" = - + T) ..... (4)
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The greatest moment, J/,, exists at A, and its value is :

....... (5)

These equations are made applicable to a cantilever with

a uniform load by simply making W=o. They then be-

come :

m JL.(*.-'
6EI

Again* for a cantilever with a single weight only at its free

end, / is to be made equal to zero in the first set of equations.

Those equations then become :

= Wx ...... (ii)
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W

wi*

(15)

The general expressions for the shear and the intensity of

loading are :

<">

Case II.

This case, shown in the figure, is that of a non-continuous

beam, supported at each end, and carrying both a uniform load

k----x

Fig.2

(whose intensity is /) and a single weight W at its middle

point. The reaction R, at either end, will then be :
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The general value of the moment will then be

The origin of x and w is taken at A.

Remembering that :

dw
,

/
-= = o for x =

,dx 2

and integrating between the limits x and :

Again integrating :

\ \R (# .. ^-N / (* ..

-I/IT vj T/ 5VT

The greatest deflection zi/, occurs at the centre of the span,

for which :

Hence :
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The greatest moment, also, is found by putting :

It has the value :

/ / A/\

(22)

These formulae are made applicable to a non-continuous

beam carrying a uniform load only, by putting W = o. They
then become :

(23 )

:S"*VT 7 F).- . .

P7)

The formulae for a beam of the same kind carrying a single

weight at the centre, are obtained by putting/ = o in the first
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set of equations. Those for the greatest deflection and great-

est moment, only, however, will be given. They are :

(28>

The general values of the shear and intensity of loading
are :

R-f, (JO)

Case III.

The general treatment of continuous beams requires the

use of the theorem of three moments. The particular case to

-f
Fig. 3

be treated is shown in Fig. 3. The beam covers the three

spans, DA, AB and BC, and is continuous over the two points
of support A and B.

12
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Let DA =
/, 1

AB =
/, Let /3 = nl, = n'ly

Let the intensity of the uniform load on AB be represented

by/ and let the two single forces/3 and P' only, act in the

spans DA and BC respectively. Also let the two distances :

DE = ^ = ali and CF = dl
z

be given. It is required to find the magnitudes of the forces P
and P', if the beam is horizontal at A and B.

Since the beam is horizontal at A and B, the bending mo-

ments over those two points of support will be equal to each

other, for the load on AB is both uniform and symmetrical.
Let this bending moment, common to A and B, be represented

by My As the ends of the beam simply rest at D and C, the

moments at those two points reduce to zero.

Because the four points D, A, B and C are in the same

level, the first member of Eq. (14), of Art. 23, becomes equal

to zero.

If that equation be applied to the three points D, A and B,

the conditions of the present problem produce the following

results :

Ma = o, Mb
= Mc

= M2

and

Hence the equation itself will become :
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+ 34) + -f (4
1 - Vfc + / ^ - o . (32^

*i 4

_

. JT - /
" , .

4(2 + 3)

.'. Reaction at D = R, = P 1*
~

*' + ^ . ... (34)
* *

As the origin of ^, is at A JT will be measured from the

same point.

Separate expressions for moments must be obtained for the

two portions, DE and EA, of /,, because the law of loading in

that span is not continuous.

Taking moments about any point of EA :

Remembering that :

dw __

for x = / and integrating between the limits x and /, :

El *?- = **
(x* - /) .. L (# - />) j. pz (x -

dx 2 2
V ' ; IV

Again, remembering that w = o for x = / and integrating

between the limits x and /, :
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2 \3 3 / 2 3 3 /

+ A, (f
- 4* +

)
..... (37)

Taking moments about any point in DE :

....... (38)

(39)

Making x = *, in Eqs. (36) and (39), then subtracting :

C = -
/,'
-

(*,'
-

/,*) + A, (*,
-

A) -

1 -=(*- If)
- (^ ~

If) + A, (*,
-

/,) (40)

Remembering that w = o for ^r = o, and integrating be-

tween the limits x and o :

EIw = -' (- - /,'*)
- - (^ -

',*)
2 \ ' ^

Making jr ==
.;-,

in Eqs. (37) and (41), then subtracting :

- -

y (If
-

,*) +^ (/,' -*,') = O . . (42)
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Putting the value of Ma from Eq. (33) in Eq. (34), then in-

serting the value of Rv thus obtained, in Eq. (42), after

making z
l
= #/, :

*( l - **) 3

2 + 3 2

4(2 + 3)
'

Pnl*
6a(i

- a3

) 6a(i
- a3

}

This is the desired value of P, which will cause the beam to

be horizontal over the two points of support A and B when
the span AB carries a uniform load of the intensity/.

By the aid of Eq. (43), Eq. (33) now gives :

._
/2 (2n* + 3

3
) _ prtl? _ pi?

1

12(2 -|- 3)
"

12 12

It is to be noticed that M3 is entirely independent of/,

or ly Eq. (43) also gives :

Hence :

M, = -
(i
- *V (46)

Thus any of the preceding equations may be expressed in

terms of/ or P.
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RV also, becomes :

_
1
"

6a(i +a) 12

or :

-)i -
(I +) . . . (48)

It is clear that there cannot be a point of no bending in

DE. Hence, the point of contra-flexure must lie between E
and A, Fig. 3. In order to locate this point, according to the

principles already established, the second member of Eq. (35)

must be put equal to zero. Doing so and solving for x :

Since P is always greater than Rv there will always be a

point of contra-flexure.

Ail these equations will be made applicable to the span BC,

by simply writing a' for a, /
3
for / and ri for n.

As an example, let :

a and n = I.

2

Eqs. (43), (44) and (47) then give :

..

12 16
'
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after writing :

/,
= /,= /

3
= /.

In general, the span /, is called " a beam fixed at one end,

simply supported at the other and loaded at any point with

the single weight, /V*

Let it, again, be required to find an intensity,
"
p'" of a uni-

form load, resting on the span /,, which will cause the beam to be

horizontal at the points A and B.

Since the load is continuous, only one set of equations will

be required for the span. The equation of moments will be :

Integrating between the limits x and /, :

Integrating between the limits x and o :

-(?-)-$(?-) w>

But, also, w o when x = /,. Hence ;

,

'
- . .: Rt

= //,. (53)
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This equation gives the value Rt
when /' is known. Making

x = /, in Eq. (50) and using the value of R
t
from Eq. (53) :

Adapting Eq. (32) to the present case :

f (2l, + 34) + (p'l? +X3
)
= o.

4(2 + 3)

Equating these two values of M2 :

P' = \t*
....... (56)

Thus is found the desired value of /'. In this case the

span /, is called " a beam fixed at one end, simply supported
at the other and uniformly loaded."

The points of contra-flexure are found by putting the

second member of Eq. (50) equal to zero and solving for ;r,

after introducing the value of R^ from Eq. (53). Hence :

l
T
x - x3 = O.

4

or :

x = o and x = -/,.
4

Between the simply supported end and point of contra-
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flexure the beam is evidently convex downward, and convex

upward in the other portion of the spans /, and ly whether the

load is single or continuous. Moments of different signs will,

then, be found in these two portions, and there will be a maxi-

mum for each sign. The location of the sections in which

these greatest moments act may be made in the ordinary man-

ner by the use of the differential calculus ; but the negative

maximum is evidently Mv given by Eqs. (44) and (55). On the

other hand Vhz positive maximum is clearly found at the point

of application of P in the case of a single load, and at the

point

in the case of a continuous load. These conclusions will at

once be evident if it be remembered that the portion of the

beam between the supported end and point of contra-flexure

is, in reality, a beam simply supported at each end. These mo-

ments will have the values :

.. (37)

<*>

In case of a single load if P \s given, and not /, Eq. (45)

shows :

The points of greatest deflection arc found by putting
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second members of Eqs. (36), (40) and (51) each equal to zero,

and then solving for x. They are not points of great impor-

tance, and the solutions will not be made.

The following are the general values of the shears for a

single load on /
t

:

In AE; S := EI == R, - P\ [from Eq. (35)].

In ED; S, = EI^ -.-- R,; [from Eq. (38)].

The shear in /
t
for the uniform load/' is :

S' ~EI^'.~ Rw
-

p'x\ [from Eq. (50)].

Also:

Intensity of load El -^ =
/'.

As has already been observed, all the equations relating to

the span /, may be made applicable to the span /
3 by changing

a to a and n to n '.

The span 4 remains to be considered.

Since the bending moments at A and B are equal to each

other, and since the loading is uniformly continuous, half of it

(the load//2) will be supported at A and the other half at B.

In other words, the vertical shear at an indefinitely short dis-

tance to the right of A, also to the left of B, will be equal to

. Let x be measured to the right and from A. The bend-

ing moment at any section x will be :



Art. 24.] THE NEUTRAL CURVE. I87

or :

- (59)

Integrating between the limits x and o

-
. . (60)

Again integrating between the same limits :

EIw = . . (61)

Since :

dw
o

for /2 , Eq. (60) will give Mt independently of preceding equa-
tions. Following this method, therefore :

12

This is the same value which has already been obtained.

Introducing the value of Af, :
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. . . (63)
2 \ 2 3

Elw = '-=- 4r - -.).... (64)

The points of contra-flexurc are found by putting the

ncl member of Eq. (62) equal to zero. Hence :

i /r i \ 0.7894
' *-4( "A/i-'-ffl

=
/ 0.2 I I/,

The moment at the centre of the span is found by putting,

x = 4
2

in Eq. (62) :

This is the greatest positive moment.
The general value of the shear is :

And the intensity of load :
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The span /, is generally called
" a beam fixed at both ends

and uniformly loaded."

It is sometimes convenient to consider a single load at the

centre of the span /, while the beam remains horizontal at A
and B

;
in other words, to consider " a beam fixed at each end

and supporting a weight at the centre."

Let W represent this weight : then a half of it will be the

shear at an indefinitely short distance to the right of A and

left of B. As before, let x be measured from A, and positive

to the right. The moment at any point will be :

(65)

Integrating between x and o :

If* =
|,

then will

dw

hence :

The general value of the moment then becomes :

--*
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If x = in this equation, the bending moment at the centre

(where W is applied) has the value :

Wl,
Centre moment =

8

Hence, the bending moments at the centre and ends are each

equal to the product of the load by one eighth the span, but Iwve

opposite signs.

A second integration between x and o gives :

zr\ .6 I2 i

Hence, the deflection at the centre has the value :

Wl z

Centre deflection

By placingM o, the points of contra-flexure are found at

the distance from each end :



Addendum to Art. 24.

The formulae of this Art. furnish the solutions of many
practical questions of maxima deflections and moments. The
latter tor several ordinary cases are given in the following
tabulation.

Pis the weight in pounds at end of beam or centre of span.

p is the load in pounds per tin. ft. of beam.

II

III

IV

V

VI

VII

VIII

of length.

MAX. MOMENT.

\Pl at centre.

at centre.

ft PI at centre.

l/Yat/f.

\Pl at centre.

at centre.

MAX. DEFLECTION. POINT OF CONTRAPLKXURK.

576 -gj
at A.

J-KA.

-gj at centre.

22.5 >yat centre.

, _ at 0.447/
El from B.

Pi* at 0.42157
9 ' 35 ^/ from/?.

9 -rry
at centre.

t centre.

/ from B.

Reaction at B =
,

a
,,/'.

5/ from A
Reaction at B = IpL

i/from each end.

0.21 1/ from each mil.
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/ is the length of beam or of span in feet.

E is the coefficient of elasticity in pounds per sq. inch.

/is the moment of inertia of the normal section of the beam
with all dimensions of section in inches.

The " Max. Moments" will be in foot pounds ; and the
" Max. Deflections

"
will be in inches.

In the use of Eq. (2), Art. 62, in its many practical appli-

cations, it is best to have the moment M in inch pounds, which
will result from simply multiplying the " Max. Moments "

of

the preceding Table by 12.

Case I results from Eqs. (14) and (15) ;
Case II, from Eqs.

(9) and (10) ; Case III, from Eqs. (28) and (29) ;
Case IV, from

Eqs. (26) and (27). In Case V the reaction is found by putting
a = J in Eq. (48) ;

the point of " Max. Deflection
"

is found by

placing 2
l
= / in Eq. (40), and the resulting value of .- equal

to zero and solving for x, which latter value in Eq. (41) will give
" Max Deflection." Case VI results from treating Eqs. (53),

(51) and (52) in precisely the same manner. Case VII results

directly from the formulae on pages 189 and 190. Case VIII
results directly from the equations on pages 187 and 188.

The preceding cases are those which commonly occur

with constant values of E and /. Other cases, such as a single

load at any point, or partial uniform load over any part of

span, are to be treated by the same general principles.

Art. 25. The Flexure of Long Columns.

A "
long column

"
is a piece of material whose length is a

number of times its breadth or width, and which is subjected
to a compressive force exerted in the direction of its length.

Such a piece of material will not be strained, or compressed,

directly back into itself, but will yield laterally as a whole,

thus causing flexure. If the length of a long column is many
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times the width or breadth, the failure in consequence of flex-

ure will take place while the pure compression is very small.

As with beams, so with columns, the ends may be "
fixed,"

so that the end surfaces do not change their position however

great the compression or flexure. Such a column is frequently,

perhaps usually, said to have "
flat

"
ends. If the ends of the

column are free to turn in any direction, being, simply sup-

ported, as flexure takes place, the column is said to have
" round

"
ends. It is clear that if the column has freedom in

one or several directions, only, it will be a -
l round

"
end col-

umn in that one direction, or those several directions, only. It

is also evident that a column may have one end " round
"
and

one end "
flat

"
or " fixed."

In Fig. i let there be represented a column with flat ends,

vertical and originally straight. After external pressure is

imposed at A, the column will take a shape similar

to that represented. Consequently the load P, at

A, will act with a lever arm at any section equal
to the deflection of that section from its original

position. Let y be the general value of that de-

flection, and at B let y=-yv Let x be measured

from A, as an origin, along the original axis of

the column. In accordance with principles already

established, the condition of fixedness at each of

the ends A and C is secured by the application of

a negative moment M. Now it is known from

the general condition of the column that the curve

of its axis will be convex toward the axis of x at

and near A, while it will be concave at and near B
(the middle point of the column). Hence, since y
is positive toward the left, and since the ordinatc and its second

derivative must have the same sign when the curve is convex

toward the axis of the abscissas, the general equation of mo-
ments must be written as follows :

Fig.1
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(i)

Multiplying by 2dy :

.-. El (2)

c = o because the column has flat ends, and,

when y = o. Also :

when y = yr

(3)

Eq. (2) now becomes :

IE .
l 2y

.'. x = A I ver sm~ ]

y*
(4)
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(5)

In this equation / is the length of the column. From Eq.

(5) there may be deduced :

(6)

It is to be observed that Pis wholly independent of the de-

flection, i. ^., it remains the same, whatever may be the amount
of deflection, after the column begins to bend. Consequently,
if the elasticity of the material were perfect, the weight P
would hold the column in any position in which it might be

placed, after bending begins.

Eq. (6) forms the basis of "
Hodgkinson's Formula "

for

the resistance of long columns, of which more will be given
hereafter. It was first established by Euler.

Some very important results flow from the consideration of

Fig. i in connection with the preceding equations.

The bending moment at the centre, B, of the column is ob-

tained by placing y =. yl in Eq. (i) ; its value is, consequently:

(7)

Hence the bending at the centre of the column is exactly the

same (but of opposite sign) as that at either end. Between A
and B, then, there must be a point of contra-flexure.

Putting the second member of Eq. (i) equal to zero, and

introducing the value of M from Eq. (3) :

-*
13
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Introducing this value of y in Eq. (4), and bearing in mind

Eq. (5) :

_ / Z? T 7

-- - (8)

The points of contra-flexure, then, are at H and D, I and
4

3- / from A.
4

Hence, the middle half of the column (HD) is actually a

column with round ends, and it is equal in resistance to a fixed-

end column of double its length.

Hence writing /' for - and putting 2/' for /in Eq. (6) :

Eq. (9) gives the value of P for a round-end column.

Again, either the upper three quarters (AD) or the lower

three quarters (CH) of the column is very nearly equivalent to

a column with one end flat and one end round, and its resist-

ance is equal to that of a fixed-end column whose length is -
j

its own. Putting, therefore :

and introducing :

in Eq. (6) :
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(.o)

The last case is not quite accurate, because the ends of the

columns HC and AD are not exactly in a vertical line.

In reality, the column under compression may be composed
of any number of such parts as HD, with the portions//^ and

CD at the ends, thus taking a serpentine shape, so far as pure

equilibrium is concerned. In such a condition the column

would be subjected to considerably less bending than in that

shown in the figure. In ordinary experience, however, the

serpentine shape is impossible, because the slightest jar or

tremor would cause the column to take the shape shown in

Fig. I. Hence, the latter case only has been considered.

If r is the radius of gyration and 5 the area of normal sec-

tion of the column, Eqs. (6) and (9) will take the forms :

P n'Er*
and

5
: T

Eq. (10) will, of course, take a corresponding form.

p
These equations evidently become inapplicable when -=r

o

approaches C, the ultimate compressive resistance of the ma-

terial in short blocks. The corresponding values of
f-j

at

the limit, are :

l E l fE
; and - -A/ - 00

for fixed and round ends respectively ; other conditions of

ends will be included between those two.
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If, for wrought iron :

E 28,000,000 and C 60,000,

the above values become 136 and 68, nearly.

Euler's formula, therefore, is strictly applicable only to

wrought-iron columns, with ends fixed or rounded, for which

/-H r exceeds 136 and 68, respectively.

If, for cast iron :

E 14,000,000 and C = 100,000,

Eqs. (i i) give :

/ /- == 74, and -~ = 37, nearly.

Euler's formula evidently becomes inapplicable consider-

ably above the limits indicated, since columns in which has

those values will not nearly sustain the intensity C.

The analytical basis of " Gordon's Formula "
for the re-

sistance of long columns is so closely associated with the

empirical, that both will be treated together, hereafter.

Art. 26. Graphical Determination of the Resistance of a Beam.

The graphical method is well adapted to the treatment of

beams whose normal sections are limited either wholly or in

part by irregular curves. In Fig. i is represented the normal

section of such a beam, the centre of gravity of the section

being situated at C. The lines HL, AB and DF are parallel.

As is known by the common theory of flexure, the neutral axis

will pass through C.
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Let aa be any line on either side of AB, then draw the lines

ad normal to AB, having made MN and HL equidistant from

AB. From the points a', thus determined, draw straight lines

to C. These last lines will include intercepts, bb, on the orig-

inal lines aa. Let every linear element parallel to AB, on each

M

Fig.1

side of Ct be similarly treated. All the intercepts found in this

manner will compose the shaded figure.

This operation, in reality, and only, determines an amount
of stress with a uniform intensity identical with that developed
in the layer of fibres farthest from the neutral axis, and equal
to the total bending stress existing in the section

;
this latter

stress, of course, having a variable intensity. HL represents
the layer of fibres farthest from the neutral surface, conse-

quently MN was taken at the same distance from AB. Any
other dist. inc.- mi.;ht have been taken, but the intensity of the

uniform stress would then have had a value equal to that

which exists at that distance from the neutral axis. Again, a
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different intensity might have been chosen for the stress on

each side of AB. It is most convenient, however, to use the

greatest intensity in the section for the stress on both sides of

the neutral axis ;
this intensity, which is the modulus of rupt-

ure by bending, will be represented, as heretofore, by K.

Let c and c be the centres of gravity of the two shaded

figures. These centres can readily and accurately be found by

cutting the figures out of stiff manilla paper and then balanc-

ing on a knife edge. Let s represent the area of the shaded

surface below AB, and s' the area of that above AB.

Because this is a case of pure bending, the stresses of ten-

sion must be equal to those of compression. Hence :

Ks = Ks' ; or, s = s'

The moment of the compression stresses about AB will

be :

Ks X c'C.

The moment of the tensile stresses about the same line

will be :

Ks X cC.

Consequently the resisting moment of the whole section

will be :

M = Ks(c'C + cC) = Ks X cc . . . . (2)

Thus, the total resisting moment is completely determined.

In some cases of irregular section the method becomes ab-

solutely necessary.

It is to be observed that the centre of gravity, c or c'
t
is at
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the same normal distance from AB as the centre of the actual

stress on the same side of AB with c or c.

Art. 27. The Common Theory of Flexure with Unequal Values of

Coefficients of Elasticity.

In all cases it has hitherto been assumed that the coeffi-

cient of elasticity for tension is equal to the same quantity for

compression. In reality, this is exactly true for probably no

material whatever, though the error, fortunately, is not serious

for the greater portion of the material used by the engineer.

By the aid of the assumptions used in the common theory of

flexure, formulae involving this difference of coefficients may
be deduced. As these are of little real value, however, a few

general results, only, will be obtained.

Let E represent the coefficient of elasticity ror tension.

Let E' represent the coefficient of elasticity for compres-
sion.

As has before been assumed, the normal sections of the

beam, which are plane before flexure, will be taken as plane
and normal to the neutral surface after flexure. Also, as be-

fore (Art. 1 8), let u represent the rate of strain (strain for unit

of length of fibre) at unit's distance from the neutral surface ;

let the variable width of the section be represented by b, while

y represents the variable normal distance of the element bdy
from the neutral axis of the section. The element of the ten-

tress in the section will be :

Euy . b dy.

The elementary moment of the same will br :

Euy* b dy.
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In precisely the same manner, the elementary compressixv
moment will be :

E 'ufb dy.

Consequently, the total resisting moment will have the

value :

M =
u\ E\ y*b dy + E'\ rb

The ordinates y and yr
are those belonging to the extreme

fibres of the section, while A" and K' represent stress intensi-

ties in those fibres. The general value of y is also affected

wi$h the negative sign on the compression side of the beam.

It has been shown in Art. 18 that :

...I.,

also, in the case of straight beams, that :

I d*w

~p

~~

~d*
'

w being the deflection and x the abscissa measured along the

axis of the beam. For the sake of brevity, let the quantity in

the brackets in the second member of Eq. (i) be represented

by EJ, in which, consequently, E '

will be displaced by nE, n

being the ratio between E and E'. Eq. (i) may then take the

form :
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or :

M
EJ dx* (3)

If M and J are expressed in terms of xt w may at once be

found. If, as is usual, the section is uniform, then will /be
constant and M, only, will be a function of x.

If the section is rectangular, b will be constant and/ will

take the following value :

J = (yf + /') (4)

Because the internal tensile stress in any section must equal
the internal compressive stress in the same section :

Eu [

'

by dy = E 'u \ by dy (5)
Jo Jo

Eq. (5) will enable the neutral axis of any section to be

located. If the section is symmetrical, the neutral axis will

evidently be situated on that side of the centre of gravity of

the section on which is found the greatest coefficient of elas-

ticity.
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Art. 28. Greatest Stresses at any Point in a Beam.

If the approximate conditions on which are based the

formulae found in the latter part of Art. 17 are assumed, some

interesting and important results may be very easily obtained.

The Eqs. (13), (14) and (15) of Art. 6 are those which lead

to the ellipsoid of stress, and hence to all of its special cases

and consequences. The equation representing the ellipsoid of

stress might first be found, and then the special form relating
to the case considered. It will be more simple and direct,

however, to use those equations immediately.

If, as in Art. 17, a rectangular beam carrying a load at its

end be assumed, in which :

T, = T
3
= N3

= N
3
= o,

Eqs. (13), (14) and (15) of Art. 6 reduce to :

JV
t
cosp -f T2 cos r = P cos n

;

Ta cos p = P cos p.

But since all stress is assumed to be found in planes paral-

lel to ZX :

cos r sin /, and cos p = sin n.

Hence :

N
t
cos p -f T^sinp = Pcos n (i)

Ta cos p = P sin TT
(2)

in which P is the intensity of the resultant stress on any plane
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at any point ; / the angle which the normal to that plane
makes with the axis of ^(the axis of the beam); and TT the

angle which the direction of P makes with the same axis.

Let it first be required to find the plane, at any point, on

iLhic/t the normal or direct stress is the greatest.

It is known from the theory of internal stress that this

greatest normal stress will be the resultant and, hence, a prin-

cipal stress. Hence the relation : n = p ;
or:

JV.+ T,tanp = P (3)

T; = Ptan p (41

If F is the weight carried by the beam at its end
;
/ the

moment of inertia of the beam's cross section
;
and d its half

depth, or greatest value of z, it has been shown in Arts. 17

and 1 8 that :

JV
t
=
^s,

and 7; = ^ (</>-*) . . . (5)

Inserting the value of P from Eq. (4) in Eq. (3) :

7; T; tan* p = Nt tan p.

N
.-. tan* p + =' tanp = I.

*

Solving this quadratic equation and then inserting the

values of 1\ and N
t
from Eq. (5) :

tanp =
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This value of tan p put in Eq. (3), or Eq. (4), will give the

greatest value of the direct or normal stress (also resultant) at

any point in the beam.

At the exterior surface, dz\ hence :

tanp o or -co.

Since for this point Tz
= o, the first value gives, by Eq. (3),

P= Nr The second value, by Eq. (4), gives, P= o. These

results might have been anticipated.
At the neutral surface, # = o; hence :

tanp -- I == tan 45.

Hence, at the neutral surface there are two planes on which the

stress is wholly normal, and these planes make angles of 45 with

the neutral surface, or 90 with each other (i.e., they are prin-

cipal planes).

Since N^ = O at the neutral surface, either of the Eqs. (3)

or (4) gives :

/> = 7;= ~ (7)

Hence each of these normal or principal stresses equals in inten-

sity that of the transverse or longitudinal shear at the neutral

surface ; also, one of these principal stresses is a tension and the

other a compression.

is the equation of the locus of the point of constant greatest
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normal intensity of stress, if P be taken constant and equal to

any possible value.

Let it next be required to find tfie plane of greatest shear at

any point in tJie beam, and the value of tltat shear.

The shear on any plane will be :

P sin (n p) = T (8)

Multiplying Eq. (i) by ( sin f) and Eq. (2) by cos /, then

adding :

TV, cos p sin p -f T3 (cos
3
p sin*p) = P(sin n cos p

cos n sin f) = P sin (n p) = T.

.'. T = -- '
sin 2p + Ta cos 2p . ... (9)

It is now required to find what value of p will make the

general value of T [given by Eq. (9)] a maximum. Hence :

-.-. = NI cos 2p 2 7*a sin 2p = o.

yv, xz
... ,,2,= - ^ =-_ .;'

.'. COS 2P =

. . . (10)

Eqs. (10) give the value of/ which is to be placed in Eq.

(9), in order to obtain the greatest value of T at any point of

cam
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From Eq. (9) :

T = T3 cos 2p
|

-
-^JL.

tan 2.p + i

j-

T= V**2* + (d*-z*)> .... (ii)

At the exterior surfaces of the beam

2 d.

Hence :

For this case, also :

cos 2p = of or / = 45.

Hence, at the exterior surfaces of the beam the planes of

greatest shear make angles of 45 with the axis of the beam,

and the intensity of the shear is half that of the direct stress at

the same place.

At the neutral surface -.2 = 0. Hence :

Fd*
T =

j
= T, ; and cos 2p = I.

Hence, 2/> o or 180 ; or/ = o or 90 ; i.e., the planes of

greatest shear are the transverse and longitudinal planes, and

the greatest shear itself is, consequently, the transverse or lon-

gitudinal shear.
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If Misgiven any possible value and considered constant,

Eq. (n) will give the locus of the point of constant greatest

shear.

The result expressed in Eq. (7) is of great value in deter-

mining the thickness of the web of flanged beams, as will be

seen hereafter.



PART II. TECHNICAL.

CHAPTER V.

TENSION.

Art. 29. General Observations. Limit of Elasticity.

HITHERTO, certain conditions affecting the nature of elastic

bodies and the mode of applying external forces to them, have

been assumed as the basis of mathematical operations, and

from these last have been deduced the formulae to be adapted
to the use of the engineer. These conditions, in nature, are

never realized, but they are approached so closely, that, by the

introduction of empirical quantities, the formulae give results

of sufficient accuracy for all engineering purposes ;
at any rate,

they are the only ones available in the study of the resistance

of materials.

In determining the quantity called the "
coefficient of elas-

ticity," it is supposed that the body is perfectly elastic, i.e., that

it will return to its original form and volume when relieved of

the action of external forces, also, that this "
coefficient

"
is

constant. There is reason to believe that no body known to

the engineer is either perfectly elastic or, possesses a perfectly
constant coefficient of elasticity. Yet, within certain not well

defined limits the deviations from these assumptions are not

sufficiently great to vitiate their great practical usefulness.
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The " not well defined
"

limit for any one given material is

called its
" limit of elasticity," or " elastic limit." The 4t

limit

of elasticity," then, may be defined as tliat degree of stress

within which the coefficient of elasticity is essentially constant

and equal to the stress divided by the strain.

In some materials, like many grades of wrought iron and

steel, the limit of elasticity approximates, to a greater or less

degree, to the condition of a well defined point. If a piece of

such a material is subjected to stress in a testing machine, at

the elastic limit, the amount of strain caused by a given incre-

ment of stress will be observed, comparatively speaking, to

rapidly increase. This increase may be uniform for a consider-

able range of stress, but it finally becomes irregular, after

which failure takes place.

In other materials, there seems to be no simple relation

between stress and strain for any condition of stress whatever.

For such a material it obviously is impossible to assign either

any definite elastic limit or coefficient of elasticity.

Between these limits, of course, all grades of material are

found.

It should be stated that some authorities have given arbi-

trary definitions of the elastic limit, and that these definitions

have been very much used. Wertheim and others have con-

sidered the clastic limit to be that force which produces a per-

manent elongation of 0.00005 of the length of a bar. Again,

Styffe defines, as the limit of elasticity, a much more compli-
cated quantity. He considers the external load to be gradu-

ally increased by increments, which may be constant, and that

each load, thus attained, is allowed to act during a number of

minutes given by taking 100 times the quotient of the incre-

ment divided by the load. Then the " limit of elasticity
"

is

"
that load by which, when it has been operating by successive

.11 increments as above described, there is produced an in-

sc in the permanent elongation which bears a ratio to the

length of the bar equal to o.oi (or approximates most nearly
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to o.oi) of the ratio which the increment of weight bears to

the total load." (Iron and Steel, p. 30.)

The most natural value, however, seems to be that stress

which exists at the point where the ratio between stress and
strain ceases to be essentially constant, though the assignment
of the precise point be difficult in many cases and impossible
in some

;
and in that sense it is here used, though seldom in

ordinary testing.

Again, in the common theory of flexure, modes of appli-

cation of external forces and a constitution of material are

assumed, which are never realized
; yet the resulting formulae

are of inestimable value to the engineer.

Finally, it will be shown in the first section of Art. 32 that

it is in general impossible to produce a uniform intensity of

stress in a normal cross section of a body subjected to pure

tension, and, consequently, that the ultimate resistance, as

experimentally determined, is a mean intensity which may be,

and usually is, considerably less than the maximum sustained

by the test piece.

These general observations are to be carefully borne in

mind in connection with all that follows.

Art. 30. Ultimate Resistance.

After a piece of material, subjected to stress, has passed its

elastic limit, the strains increase until failure takes place. If

the piece is subjected to tensile stress, there will be some de-

gree of strain, either at the instant of rupture or somewhat

before, accompanied by an intensity of stress greater than that

existing in the piece in any other condition. This greatest in-

tensity of internal resistance is called the " Ultimate Resist-

ance."

In very ductile materials this point of greatest resistance is

found considerably before rupture ;
the strains beyond it in-
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creasing very rapidly while the resistance decreases until sepa-
ration takes place.

The ultimate resistances of different materials used in en-

gineering constructions can only be determined by actual tests,

and have been the objects of many experiments.
It has been observed in these experiments that many in-

fluences affect the ultimate resistance of any given material,

such as mode of manufacture, condition (annealed or unan-

nealed, etc.), size of normal cross section, form of normal cross

section, relative dimensions of test piece, shape of test piece,

etc. In making new experiments or drawing deductions from

those already made, these and similar circumstances should all

be carefully considered.

Art. 3 1. Ductility. Permanent Set.

One of the most important and valuable characteristics of

any solid material is its
"
ductility," or that property by which

it is enabled to change its form, beyond the limit of elasticity,

before failure takes place. It is measured by the permanent
"
set," or stretch, in the case of a tensile stress, which the test

piece possesses after fracture ; also, by the decrease of cross

section which the piece suffers at the place of fracture.

In general terms, *>., for any degree of strain at which it

occurs,
"
permanent set

"
is the strain which remains in the

piece when the external forces cease their action. It will be

seen hereafter that in many cases, and perhaps all, permanent
set decreases during a period of time immediately subsequent
to the removal of stress. Indeed, in some cases of small strains

it is observed to disappear entirely.

Some experimenters, with the aid of very delicate meas-

uring apparatus, have observed permanent set even within what

is ordinarily termed the limit of elasticity, and have been led

to believe that a very small permanent set exists with any de-
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gree of stress whatever. In such cases, however, it is probable
that the greater part or all of the permanent set disappears
after the lapse of a few hours.

Art. 32. Wrought Iron. Coefficient of Elasticity.

Before considering the experimental results which are to

follow, it will be interesting as well as important to examine

some of the circumstances which attend the experimental de-

termination of the coefficient of elasticity.

If tensile stress is uniformly distributed over each end of

a test piece, it will not be so distributed over any other normal

section. For since lateral contraction takes place, the exterioi

molecules of the piece must move towards the centre. But if

this motion takes place, the molecules in the vicinity of the

centre must be drawn farther apart, or suffer greater strains,

than those near the surface.

Hence the stress will no longer be uniformly distributed,

but the greatest intensity will exist at the centre and the least

at the surface of the piece. These effects will evidently in-

crease, for a given kind of cross section, with its area. But the

stretch, or strain, from which the coefficient of elasticity is

computed, is measured on the surface of the piece, and corre-

sponds, as has just been shown, to an intensity of stress less

than the mean, while the latter is actually used in the compu-
tation. In the notation of Eq. (i), Art. 2, / is too great and /

too small
;
hence E will be too large.

As these effects increase with the area of the cross section,

while other things are the same, larger bars shouldgive greater

coefficients of elasticity than smaller ones.

These effects will evidently be intensified, also, if the ex-

ternal force is applied with its greatest intensity near, or at,

the centre of the bar, as is the case in testing eye-bars.

Again, on the other hand, if the ends of the test piece are
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gripped on the surface, or skin, as is usually the case with

small pieces, these effects will be very much modified, and

possibly entirely counteracted, so that the greatest intensity
will exist at the surface. In the latter case, the resulting co-

efficient would be too small.

Between these extreme cases, all grades will be found.

From these considerations, it is clear that the manner of

gripping the test piece, length, character and area of cross sec-

tion all affect the value of the coefficient of elasticity, and

should be given in connection with the latter.

These conclusions apply to any other material, as well as

to wrought iron.

Table I. gives the results of some experiments made by the

Phoenix Iron Co., of Phcenixville, Penn., on some flats and

rounds of the dimensions shown in the column headed " Size
'

TABLE I.

HO. OF BARS.
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In this case, for any individual bar :

_ Stretch

Length
'

remembering that the stretch and length must be reduced to

the same unit.

Let the above formulae be applied to the twenty-four bars

3 x y inches x (35 ft. = 420 ins.) long.

~ 20000 x 420 ,E = - = 31,902,000.00 pounds.

The other values are found in precisely the same way.
The quantities in the column E are the averages of the num-
ber of experiments given in the extreme left hand column.

The fact that the results are the averages of a great number
of experiments gives the table peculiar value. This table

is taken from " Useful Information for Architects and En-

gineers," published by the Phoenix Iron Co. The following

reference to the table is taken from the same source :

" The
annexed table gives the results attained in testing with the

proof load of 20,000 pounds per square inch, a number of bars

for the International Bridge over the Niagara River, near

Buffalo, N. Y. The recovery of each bar, after the removal of

the load, was perfect, no permanent set occurring at less than

25,000 pounds. It will be observed that the stretch per foot of

the flat bars is less than that of the rounds, giving them higher
moduli of elasticity." It is interesting and important to ob-

serve this last point.
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It is to be observed, finally, that these coefficients of elas-

ticity are determined for one intensity of stress, only, i.e.,

20,000.00 pounds per square inch. It is probable that values a

little different might be given by other intensities.

Table II. contains coefficients of elasticity for tension in

TABLE II.

NUMBER.
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the fact that they belong to full size bars and such as are ordi-

narily used in engineering practice.

Those bars whose numbers are preceded by an " S
"
are of

single rolled material, while those preceded by a " D "
are

double rolled. A portion of the bars given in Table II. are

those on which the subsequent tests shown in Table Xllltf.

were made.

The values of " E" the coefficient of elasticity, were com-

puted by Eq. (i), /representing the stretch in 80 inches divided

by 80. The stretch in every case was measured at a stress of

10,000 pounds per square inch, which is the limit quite gener-

ally specified as a maximum in railway bridges of ordinary

length. It is seen that the values thus determined are not on

the whole very different from those shown in table I. for double

this intensity of stress.

Bar No. 9 was slightly warped and No. 25 not originally

straight, but the coefficients do not seem to be appreciably
affected.

A comparison between the results for single and double

rolled iron shows that there is no appreciable difference be-

tween them either in uniformity or magnitude. In the aggre-

gate, the values run from 25,000,000 to 37,209,300 pounds;

giving a variation of fifty per cent, of the lowest amount.

This fact has a most important bearing on those theories of

continuous girders which assume E to be constant.

Double rolling, which materially increases the cost of the

metal, is thus seen to give it no elastic advantage.
Prof. Woodward, in

" The Saint Louis Bridge," gives the

results of 67 experiments on specimens varying from 6 to 18

inches long and from 0.45 inch to 1.13 inches in diameter, from

17 different producers. In these results the range of variation

was very great ;
in fact the coefficient of tensile elasticity varied

from 9,500,000 Ibs. per sq. in. to 65,500,000, and some of the

widest variations were in specimens of the same brand.

Table III. gives the resultsof the experiments of Mr. Faton
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TABLE III.

Tensile Experiments on two Annealed "Best" Wrought Iron Bars
ten feet long and one inch square.

/.
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TABLE III. Continued.

BAR NO. I.

p.
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These experiments show some very interesting results.

In the first place permanent sets were observed with the

low intensities of stress of 8,003 and 3,786 pounds, and it be-

comes a question whether permanent sets would not have been

observed with lower intensities and more delicate apparatus,
at least for a short time after the material is subjected to

stress.

In both bars the largest value of E is found for the smallest

intensity of stress. In bar No. I, the values of E decrease,

with one exception, regularly from the greatest. In bar No.

2, however, greater irregularity is observed
;

there are two

maxima, one for the intensity 1,262 pounds, and the other for

about 12,000 with nearly regular gradations from these values.

Considering the whole range in both bars, E may be con-

sidered nearly constant until an intensity of about 24,000

pounds per square inch is reached in each case; it then begins
to fall off very rapidly. 24,000 pounds per square inch, then,

may be considered about the limit of elasticity for both bars.

It is very important to observe the increase of strain with

the lapse of time after the limit of elasticity has been consider-

ably passed.
Values of the coefficient of elasticity, therefore, mean little

after that limit is exceeded.

The results of the experiments on bar No. I are shown

graphically in Fig. i. The values of "/" are laid off vertically

through O to a scale of 20,000 pounds to the inch ; the tensile

strains are the horizontal co-ordinates of the curve laid down
at full size. The essentially straight portion of the cur\v

between O and a is within what is ordinarily known as the
" elastic limit."

The equation for this portion of the line is :

/ = /;

E being assumed constant if Oa is considered straight
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2 in he 3 in hes 4 in hes

Fig.1

The point a is at a vertical distance above O indicating
about 24,000 pounds per square inch, z>., about the elastic limit.

Above this point the curvature of the line is very sharp, indicat-

ing a rapid fall in the value of E and a rapid rise in the values

of the strains /or LI. For "/
" = 27,000 (nearly) the table shows

E 23,000,000 (nearly) and LI 0.12 inch
;
while for "/" =

37,000, E 4,100,000 and LI = 1.095 inches (nearly). These

phenomena are always characteristic of the limit of elasticity.

Above the point b the curvature is slight, indicating (what
the table shows) a comparatively slow change in the values of E.

The table shows that bar No. 2 would exhibit a curve of

precisely the same character but with a more rapid decrease to

E above the elastic limit. The tests of this bar were not car-

ried to failure on account of the breaking of one of the holding
details.
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Within the elastic limit, the mean values of E may be taken

about as follows :

For bar No. I :

E = 28,000,000 pounds.

For bar No. 2 :

= 27,500,000 pounds.

The next, Table IV., contains values of the coefficient of

tensile elasticity () determined by Knut Styffe (" The Elas-

ticity, Extensibility and Tensile Strength of Iron and Steel,"

translated from the Swedish by Christer P. Sandberg).

TABLE IV.

KIND OP IRON.
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As a result of his experiments in regard to the effect of a

change of temperature on the coefficient of tensile elasticity,

he states (page 1 12 of the work above cited) :

" That the modulus (coefficient) of elasticity in both iron

and steel is increased on reduction of temperature and dimin-

ished on elevation of temperature ; but that these variations

never exceed .05 per cent, for a change of temperature of 1.8

Fahr., and therefore such variations, at least for ordinary pur-

poses, are of no special importance."
In his "

Physique Me"canique," page 58 of the " Premier

Mmoire," M. G. Wertheim gives three coefficients of tensile

elasticity for wrought iron, each having about the value of

29,680,000 pounds per square inch, and one for iron wire of

about 26,474,000 pounds per square inch.

Redtenbacher (Resultate fur den Maschinenbau, Zweite

Auflage, page 36) gives as the limits of the values of the co-

efficient of elasticity, expressed in pounds per sq. in., about

21,330,000 and 35,550,000.

Reviewing the preceding values, therefore, it would appear
that the coefficient of tensile elasticity for good wrought iron

may be ordinarily taken to lie between 25,000,000 to 30,000,000

pounds per square inch, with extreme values arising from vari-

ation of mode of manufacture, chemical constitution, size of

bar, etc., lying some distance either side of those limits.

Since E = ^- f
if /= I, I -jr will be the elongation or

/ L

tensile strain for each unit of stress
; hence, the coefficient of

elasticity is the reciprocal of the strain for a unit of stress. For

an intensity of stress of 20,000 pounds, for example, then :

20,000 20,000
/ to

25,000,000 30,000,000

to
1250 1500
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or a bar of wrought iron will be stretched :

1

th to th
1250 1503

of its length.

The coefficient of elasticity is thus seen to be a measure of

the stiffness of the material.

Ultimate Resistance and Elastic Limit.

It has been found by experiment that bars of wrought iron

which are apparently precisely alike, in every respect, except
in area of normal section, do not give the same ultimate tensile

resistance per square inch. Other things being the same, bars

of the smallest cross section give the greatest intensity of ultimate

tensile resistance.

Aside from the absence of uniform distribution of stress in

the interior of the bar, as was shown in the section "
coefficient

of elasticity" and the intensified effects of the processes of

production on pieces with comparatively small cross sections,

this result is to be expected from the circumstances which

attend fracture. When a piece of material is subjected to

tension to the point of rupture, not only a tensile strain of

essentially uniform character, from end to end, takes place, but

also a very considerable local transverse strain, or contraction,

at the place of fracture. This latter manifests itself only

shortly before rupture as a short " neck
"

in the piece. Now a

given percentage of "
local

"
contraction in the case of a large

section involves a much larger absolute lateral movement of

the molecules than in the case of a small section. But it is

lent that this absolute lateral movement will exert a much
more potent influence toward severing the molecules suffi-

ciently for rupture, than the percentage of contraction. Hence
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the degree of local and lateral movement, required by rupture,
will be reached with a less mean intensity of stress in the cases

of large section than in those of small ones. But this is equiv-
alent to a greater intensity of ultimate resistance for the small

sections, and, as has been indicated, this conclusion is verified

by experiment.
The same considerations result in the additional conclusion

that, other things being equal, the smaller sections will give the

greater final contraction. But a greater intensity of ultimate

resistance with greater final contraction involves a greater final

stretch, for the same length of piece.

These last two conclusions will also be found to be here-

after verified by experiment.

Again, it is found independently of the effects of the pro-
cesses of production, as might be anticipated, that the length
in terms of the lateral dimensions of the test piece, within cer-

tain limits, affects very perceptibly the ultimate resistance.

If a specimen of the shape shown in Fig. 2 be broken by a

tensile stress, it will, of course, fail in the reduced section MN.
But before failure takes place, the reduced portion will be con-

D siderably elongated and the

normal section correspond-

ingly reduced, in conse-

quence of the shearing

~E strains in the oblique planes
shown by the dotted lines.

(See Arts. 3 and 4.) When the reduced portion in the vicinity

of MN is very short in comparison with its lateral dimensions,

it includes the whole of very few of these oblique planes, if any
at all, consequently very little movement of these oblique

layers over each other can take place ;
in other words little

or no reduction of section can take place before rupture. In

this latter case, then, a greater area of metal section will offer

its resistance to the external tensile force, at the instant of

failure, than in the former, and a correspondingly greater in-
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tensity of ultimate resistance will be found. Thus the shape
and dimensions of the test piece will considerably influencethe

ultimate resistance and strains, as will soon be shown by ex-

perimental results.

All the preceding conclusions, though given in connection

with wrought iron, are independent of the nature of the ma-

terial, and apply equally to steel and cast iron.

Since the reduction of area of the fractured section and the

elongation of the bar are true measures of the ductility of the

iron, these are or should be always measured with care.

Table V. exhibits in a very plain manner the decrease of

ultimate tensile resistance with the increase of sectional area

of round bars; it is taken from the "Report of the Committees

of the U. S. Board appointed to test Iron, Steel and other

Metals, etc.," by Commander L. A. Beardslee, U.S.N.

This decrease is probably partly due to the effect produced

upon the iron by the rolls as it passes through them
;
the

bars of smaller sections being more "
drawn," and at a lower

temperature in consequence of the lesser mass cooling more

quickly.

The notation of the table is the following :

" Dial* = diameter of the round bar in inches
;

" 71" = ultimate tensile resistance
;

" E. L" = elastic limit.

It will be observed that the ultimate resistance per square
inch varies between widely separated limits, in some cases, for

the same diameter of bar. This is due to the fact that the

different bars, even of the same diameter, were from a number
of different mills, and consequently involved different treat-

ment in manufacture, chemical constitution, etc. A general
view of the table, however, shows in a marked and satisfactory

manner the decrease of 7* with the increase of the diameter or

area of normal section. The last fourteen bars of the table
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are of the same manufacture, and show a decrease in T as

nearly uniform as could be expected.

TABLE V.

Ultimate Resistance and Elastic Limit in Pounds per square inch oj

Original Normal Section.

DlA.
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the abridgment,
" The elastic limit as given is not from per-

fectly accurate data
;

it is simply the amount of stress which

produced the first perceptible change of form, divided by the

bar's area."

TABLE Va.

Rectangular Bars.
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given in pounds per square inch of original sectional area. On
account of the reduction of the fractured section, the ultimate

resistance should be specifically referred either to its own sec-

tion (to be noticed hereafter) or to the original section. The

customary reference is to the latter, though it is frequently

interesting and important to make an accompanying reference

to the former.

The influence of the reduction of the piles between the rolh

was next examined by the same committee. It was found that

the additional working involved in the increased reduction of

the pile, as it passes through the successive rolls, in the process

of manufacture, considerably increases both the ultimate re-

sistance and elastic limit. Tables VI. and VII., condensed

from those containing the results of the committee's experi-

ments, show this effect in a very satisfactory manner. The
notation is as follows :

D = diameter of bar in inches
;

A area of normal section of original pile in square
inches ;

Per cents. = area of bar in per cent, of area of pile ;

T ultimate tensile resistance in pounds per square
inch of entire bar ;

T' = ultimate tensile resistance in pounds per square
inch of core of bar

;

E. L. = elastic limit in pounds per square inch of entire

bar
;

E'. L'. = elastic limit in pounds per square inch of core

of bar.

As is to be anticipated in such cases, some irregularities

are exhibited in the tables, but they are very few, while the

general result is unmistakable. On the whole, a considerable

increase in the values of T is observed in connection with
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a decrease in the values of " Per cents." Values of the elastic

limit show greater irregularities.

TABLE VI.

Comparison of the Reductions by the Rolls, with the Effects upon
Tenacity, and Elastic Limit of Round Bars.

D.
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or overheating is thus given in the abridgment of their report

by Wm. Kent, M.E. :

" The indications are that if a bar is

underheated it will have an unduly high tenacity and elastic

limit, and that if overheated the reverse will be the case."

In the words of the report :
" The evidence submitted is of

sufficient value to justify us in asserting that variations in the

amount of reduction by the rolls of different bars from the

same material produce fully as much difference in their physi-
cal characteristics as is produced by differences in their chemi-

cal constitution."

The committee also made some valuable experimental in-

vestigations with the object of ascertaining the influence of the
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of area at the section of failure must necessarily be much less

than in those like Fig. 3 ; hence, the ultimate resistance will be

correspondingly greater.

Table VIII. is taken from the report already cited, and

contains the results of the experiments on the eighteen speci-

mens prepared in the manner indicated above.

L = original length in inches ;

/ = per cent, of elongation ;

a per cent, of contraction of fractured area ;

/ = stress in pounds per square inch at first stretch
;

T = ultimate tensile resistance in pounds per square
inch of original section.

TABLE VIII.

NO.
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The values of /, a and T are as nearly uniform as could be

expected until the length decreases to about 4 diameters

(2 inches).

For the grooved specimen / and T are very large, and a

very small.

Other experiments on a still softer iron were made with

the same general results.

" In conclusion," states the committee,
" our results lead

us to the decision that, in testing iron, no test piece should be

less than one half inch in diameter, as inaccuracy is more prob-
able with a small than with a large piece, and the errors are

more increased by reduction to the square inch ; that the

length should not be less than four times the diameter in any
case

;
and that, with soft, ductile metal, five or six diameters

would be preferable."

In Vol. II. of the "Transactions of the American Society of

Civil Engineers," Mr. C. B. Richards has given a paper in

which are recorded the results of some experiments exhibiting
the influence of the relative dimensions of the specimens. The

average of eight tests of Burden's "best" iron, with "long"

specimens (similar to Fig. 3) varying from 5 to 5^ inches in

length and 0.62 to i.oo inch in diameter, gave :

T = 49,588 pounds ;
a = 46.7 per cent. ;

/ = 30.4 per cent.

With " short
"
specimens (like Fig. 4) of the same iron, the

average of six tests gave :

T 62,089 pounds ;
a 29.5 per cent.

The large value of T and small value of #, for the " short
"

specimens, are thus seen to be very marked in contrast with

the same quantities for the "long" specimens.
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Other experiments of Mr. Richards, showing the same re-

sults, will be given in connection with the resistance of boiler

plates.

It has long been the impression that there exists a consid-

erable difference between the ultimate tensile resistance of the
" skin

"
of a bar of iron and that of the portion of the bar un-

derneath the skin. The U. S. committees, therefore, broke a

number of bars first with the skin on, or " in the rough," and

then with the skin turned off. In a large majority of the cases,

the rough bars gave the highest ultimate resistance per square

inch, by a small amount, while in a few cases the results were

of the opposite character. On the whole, however,
" the ac-

cumulated evidence indicates that the strength of the skin of

the bar is greater in proportion to its area than that of the rest

of the bar."

All the tests, of which the results have hitherto been given,

were made on round bars, or on specimens turned from them.

Results of tests on other iron will now be detailed, and it will

be convenient to use the following and customary symbols for

the various kinds of "
shape

"
irons :

L ,
for angle irons :

i ,
for tee irons

;

C for channel bars ;

I , for eye beams ;

n ,
for rectangular bars or "

flats
"

;

O ,
for rounds ;

+., for star sections ;

hort, any shape iron, or steel, is represented by a skeleton

of its section.

Table IX. contains the results of tests of a wide range of full

(1 eye bars as ordinarily manufactured for bridge building

purposes. Some were made and tested in 1887.
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TABLE IX.

SECTION.

Inches.
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Considered as a comparison between single and double

rolled bars, the table possesses both interest and importance.
The first three of the bars b show unusually high elastic limits,

which may have been the result of the approximate methods
used in the observation. On the whole, however, the elastic

limits of the single rolled bars are not essentially different from

those determined for the double rolled material.

With the exception of the last two ultimate resistances,

which are very low, even for large bars, that column shows

much more nearly uniform results for the two grades of bars

than found among the elastic limits, and the values for the

single rolled metal are fully equal to the best of the double

rolled. As was to be expected, the smaller bars gave results

appreciably in excess of those belonging to the larger ones.

The percentages of contraction for the single rolled bars

are seen to be on the whole somewhat smaller than those be-

longing to the others, although the advantage is not maintained

by the latter throughout the entire Table. The last preceding
observation holds, but less markedly, in the column of ultimate

stretch or "
strains." While the decision of such questions

should be made only on a far greater number of tests than given
in the table, it is proper to say that the latter shows precisely
what is found in extended experience, i.e., that double rolled

iron, as produced by the most reputable iron companies, pos-
sesses only a possible small and unimportant advantage in

ductility and uniformity, but with less welding properties. Its

cost is from twenty to twenty-five per cent, over that of single

rolled iron ; which is out of all proportion to the very small

advantage gained.
Two kinds of tests are usually required by engineers in de-

termining the suitability for a given purpose, of the finished

nber and the material of which it is fabricated. Those tests

which determine the character of the finished tension member
(/>., eye bar) have been exemplified by Table IX.; such tests

fix the character of the finished member by showing the effect
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of the mode of manufacture. The other class of tests is

made on specimens cut from the bar as it comes from the roll-

ing mill and before it is manufactured into the bridge member;
such tests simply fix the quality of the material.

Table X. shows the results of specimen tests from the full

size bars given in the first column on the left. The material

of these specimens was double rolled iron produced by The

TABLE X.

Double Rolled Iron.

ORIGINAL



Art. 32.] ROUND BARS. 237

rough surfaces of the original bar, while the other two sides were

the machine-finished surfaces along which the cutting was

done. The two machine-finished surfaces, moreover, should be

smoothly cut. If all these precautions are not taken, the speci-

mens may resist unequally on opposite sides, and fail in detail

by pulling apart gradually from one surface
;
or by rough cut-

ting, the material in the vicinity of the machine surfaces may
be so injured as to lose a large portion of its resistance.

The variety in the sizes of the bars shown in Table X. is not

nearly so great as that given in Table IX., but for the same

sizes the elastic limits as a whole run a little lower for the

specimens than for the full size bars. While the ultimate re-

sistances in the two tables are not very different, the general

TABLE XI.

Double Rolled Iron.

DIAMETER
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form in character than those given for the full size bars in

Table IX.

No class of materials used by engineers possesses more

widely varying characteristics of a physical nature than plates
used in bridge construction. The very wide plates forming
the webs of large plate girders give a high elastic limit, com-

paratively low ultimate resistance, final stretch and contrac-

tion
;
these are always sheared plates. Narrow plates, either

rolled in grooves or universal mill, approximate more nearly in

character to bars in all respects of elastic and ultimate resist-

ances and final stretch and elongation.

TABLE XII.

Bridge Plate Specimens.

ORIGINAL

PLATE.

INCHES.
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Table XII. gives results for bridge plates throughout a great

range of width. All the specimens were of the same thickness

as the original plates ;
hence two sides were as they came from

the rolls and two were machine finished. Although these re-

TABLE XIII.

Angle Iron Specimens.

SIZE OF

ORIGINAL ANCLE.

INCHES.
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the piles from which the plates were rolled. This practice
has of late obtained some footing in order to meet the ex-

treme requirements of some very exacting specifications based

upon insufficient knowledge regarding the actual capacities of

plate iron in great widths.

Table XIII. gives the results of tests of specimens cut from

all sizes of angles used in ordinary bridge work. These angles
were all produced by the Phoenix Iron Company, and the tests

were made at the works of that company in 1887. The re-

sults are most excellent, as well as being typical for the shapes
tested. Although the results at one or two points are a

little irregular, on the whole the elastic and ultimate resistances,

as well as the final contraction and elongation, increase with

considerable uniformity from the heaviest sections to the light-

est, showing clearly the improved qualities in the smaller

angle bars. The Table demonstrates in a very marked manner
the varying characteristics which always accompany varying
dimensions of bars of the same kind, even when produced of

absolutely uniform material in the original piles.

Table XIV. exhibits some very interesting results ob-

tained by testing full size bars to destruction, then allowing
the portions to rest during the periods given, and finally re-

testing those portions. Some of the latter were heated pre-

vious to testing and allowed to cool in the air.

Those bars whose numbers are preceded by D were of

double rolled iron and the others of single rolled material.

The tests were made in the government machine at Water-

town, Mass., and are reported at page 205 of " Ex. Doc. No. I,

4/th Congress, 2d Session."

This subject of the effect of repeated stress separated by
intervals of rest will again receive attention in a later section

of this article
;

it is sufficient here to observe the influence on

the elastic limit and ultimate resistance of these full size bars.

The intervals of rest after the first test varied from four to ten

months, and in all these instances the elastic limit was raised to
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about nine-tenths the ultimate resistance found subsequently

by the same test, and in every instance it had a value higher

than the ultimate resistance found in the original test. The

original ultimate resistance is, also, but about five-sixths of

that found after a period of rest. It is a singular fact that the

general effect of the different periods of rest is to reduce the

final contraction about one-third of its original value, but to

increase the final stretch from about fifteen to about forty per

TABLE XIV.

NO.
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and has less capacity to resist a repetition of large stresses

than before.

In all the preceding tables the length for which the " Strain
"

is given should be carefully borne in mind. A considerable
" local

"
strain takes place at the section of fracture, which

causes the per cent, of elongation, or strain, to be much greater
for a very short length than for a longer one.

Wrought-Iron Boiler Plate.

A committee of the Franklin Institute made a very exten-

sive series of tests of boiler plate, and reported the results of

their investigations to that body in 1837. The Report of that

committee can be found complete in the " Franklin Institute

Journal
"

for that year. The sectional area of the test speci-

mens varied from o.io to 0.2*0 square inch. This fact, coupled
with the hardness of much of the iron which they tested, ren-

dered many of their ultimate resistances very high and ex-

tremely irregular.

These considerations deprive the results which they give
in the many

" Tables
"
of their Report of the greater part of

their value for present practical purposes. They are therefore

not given.

This committee made numerous experiments to determine

the resistance of boiler plate in different directions in reference

to the fibre of the iron. The results were by no means of a

uniform character. In one set of forty strips cut in each direc-

tion (along the fibre and across it), the length strips showed an

excess of resistance varying from one per cent, to twenty. This

comparison was made principally on the minimum resistance

of each bar, but the committee state that the result would not

have been much different if the mean had been taken.

On reviewing all their experiments, the committee con-

cluded that lengthwise of the fibre, the boiler iron which they

tested was about six per cent, stronger than across the fibre.
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They also determined that the weakest direction of all was

diagonally across the fibres, but their experiments did not en-

able them to determine quantitative results.

Table XIVa. is taken from the " Transactions of the Ameri-

can Society of Civil Engineers/' Vol. II. It contains the re-

sults of some experiments on several different kinds of plate
iron by C. B. Richards, M.E., and among other things it reveals

the difference between "
long

"
and " short

"
specimens.

Column "Nc." shows the number of tests, of which T is

the average ultimate tensile resistance in pounds

per square inch, T' the highest and 7", the lowest,

all being referred to the original section.

Column " Cont." shows per cent, (of original section) of

contraction at section of failure.

Column " Strain
"
shows per cent, (of original length) of

elongation.

Column "Spec" shows kind of specimen, i.e., "long" or
"
short," also direction of stress in reference to fibre

;

" LL" signifies "long and along fibre;"
" LC"

"long and across fibre;" while " SL " and "SC"
signify

" short and along
"
or " across fibre," respect-

ively.

In column " Brand" " B. S." signifies "Bay State;"
"B. S. H" "

Bay State Homogeneous Metal
;

"

" T." "Thorneycroft," English; "Pcnn" "Pennsyl-
vania

;

" "
S. F" "

Sligo Fire Box.'

Different brands of the same make, though given by Mr.

Richards, have been neglected.
The lengths for which the " Strains

"
existed are not given,

although they should be. The long specimens were three or

four inches between the shoulders.

In his " Treatise on the Resistance of Materials," Prof. De
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Volson Wood gives the following results of some boiler-plate

tests at the shops of the Camden and Amboy R. R. by Mr. F.

B. Stevens.

" Av. breaking weight in pounds per square inch. . . . 54,123.00

Highest
" " " " " "

57,012.00

Lowest" " " " " " "
51,813.00"

The experiments of Sir Wm. Fairbairn on English boiler

plate (" Useful Information for Engineers, First Series," p. 259)

along and across the fibres, gave irregular results, but other

English experiments of Easton and Anderson would seem to

make the resistance across the fibres from 5 to 15 per cent, less

than that along the fibres.

Effect of Annealing.

The Franklin Institute Committee determined the effect of

annealing, at different temperatures, on about 56 specimens of

boiler plate and wire iron. Table XV. is condensed from that

giving their results on boiler plate.

The mean value of T for five specimens of iron wire 0.19

inch in diameter, before annealing, was :

T = 73,83o.

After annealing by heating to redness and cooling in dry

ashes, the mean of five specimens was :

T' = 58,101.

After annealing at red heat and quenching in water, the

mean of another five specimens was :

T' = 53,578.
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TABLE XV.

NO.
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loading, a very stiff, hard iron, originally utterly unfit for the

purpose, after being annealed might be used in its construc-

tion with safety.

Effect of Hardening on the Tensile Resistance of Iron and
Steel.

It has been seen that annealing reduces the ultimate resist-

ance of wrought iron. Experiments have shown that harden-

ing, on the other hand, increases the resistance of both iron

and steel, provided the hardening is done in a proper manner.

If the hardening is accomplished by heating and sudden cool-

ing in water, without subsequent tempering, the resistance of

hard steel is very much diminished. This is probably due to

the internal stresses induced by the sudden cooling.

Knut Styffe (" Iron and Steel ") concluded from his experi-

ments that "
by heating and sudden cooling (hardening), the

limit of elasticity is raised while the extensibility is diminished,

not only in steel but also in iron." This results of the experi-

ments by David Kirkaldy will be given hereafter.

Variation of Tensile Resistance with Increase of Temperature.

Table XVI. has again been condensed from a similar one

given in the Report of the Franklin Institute Committee.

The third column gives the temperatures at which the ulti-

mate tensile resistances in the fourth column were observed.

The committee observed that the resistance of many irons

increased with the temperature, to nearly the boiling point of

mercury in some cases, while others remained unchanged until

a temperature of 572 was reached. Above this point, how-

ever, as a rule, they found the decrease of resistance, below the

greatest, to vary about as the 2.6 power of (Temp. 80).
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TABLE XVI.
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TABLE XVII.

TEMPERATURE.
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TABLE XVIII.

TEMP., FAHR.
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TABLE XIX

TEMPERATURE,

FAHR.
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ground in the winter is unquestionably a very potent factor in

failures or tires and axles of railway rolling stock, but it is at

least an open question whether it is the sole cause.

A number of investigators have made numerous experi-

ments with the object of determining the effect of low tem-

peratures on the resistance of wrought iron in different forms.

From the results of these experiments, however, they have

drawn the most discordant conclusions. In some cases this

arises from the fact that the tests have not been made under

the same circumstances, or have not been of the same kind.

Knut Styffe (" Iron and Steel ") made the following
" Re-

sume of Results of Experiments on Tension at different Tem-

peratures :

"

I.
" That the absolute strength of iron and steel is not dimin-

ished by cold, but that even at the lowest temperature
which ever occurs in Sweden it is at least as great as

at the ordinary temperature (about 60 Fa/ir.). . . .

3.
" That neither in steel nor in iron is the extensibility less in

severe cold than at the ordinary temperature ; . . .

4.
" That the limit of elasticity in both steel and iron lies higher

in severe cold
;

He concluded from his experiments that the common im-

pression of increased weakness and brittleness with a low de-

gree of temperature is entirely erroneous. His tests, however,
were wholly with tension gradually applied, and could support
no conclusion in regard to other conditions.

The translator of Styffe's work, Christer P. Sandberg, made
some experiments in order to determine the effect of shocks at

different temperatures, i.e., ordinary and low. These were also

made in Sweden, and by dropping heavy weights, from differ-

ent heights, on rails supported at each extremity. The records

of these tests may be found in the translator's Appendix to

Styffe's work.
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The following are Sandberg's conclusions, and they will be

observed to be directly opposed to those of Styffe :

1.
" That for such iron as is usually employed for rails in the

three principal rail-making countries (Wales, France

and Belgium), the breaking strain, as tested by sudden

blows or shocks, is considerably influenced by cold
;

such iron exhibiting at 10 Fahr. only one-third to

one-fourth of the strength which it possess at 84
Fahr.

2.
" That the ductility and flexibility of such iron is also much

affected by cold
;

rails broken at 10 Fahr. showing
on an average a permanent deflection of less than one

inch, whilst the other halves of the same rails, broken

at 84 Fahr., showed a set of more than four inches

before fracture.

3.
" That at summer heat the strength of the Aberdare rails

was 20 per cent, greater than that of the Creusot rails;

but that in winter the latter were 30 per cent, stronger
than the former."

All these experiments were made previous to 1869, and
with iron rails.

Prof. Thurston, from his own experiments and those of

others, concludes (Trans. Am. Soc. of Civ. Engrs., Vol. III., p.

30),
" That with good materials, cold does not produce injury,

but actually improves their power of resisting stress and in-

creases their resilience.
" That the influence of impurities, of various methods of

manufacture, of changes of density with temperature, and of

the causes which produce a concentration of the action of

rapidly produced distortion and of quick blows, are subjects
which still require careful investigation."

H considers it probable that the cold-shortening effect of

phosphorus is intensified at low temperatures.
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After observing the failures on the railroads coming under

their observation, the Railroad Commissioners of Massachu-

setts reported in 1874 that, in their opinion, neither iron nor

steel attained any greater degree of brittleness, or became any
more "unreliable for mechanical purposes "at low tempera-
tures than at ordinary. They did not observe as a " rule that

the most breakages
"
occurred *' on the coldest days."

They further stated that " the introduction of steel in place
of iron rails, has caused an almost complete cessation of the

breakage of rails."

Thus it is seen that the subject is most thoroughly involved

in confusion. It seems, however, to be established that the

resistance of iron, at a low temperature, to a steady strain, is

not diminished, while it may, perhaps, be increased.

Its resistance to shocks, at low temperatures, is probably

very much affected by its quality, mode of manufacture or

chemical composition, and these should always be taken into

consideration when experiments are made.

The Report of the Mass. Railroad Commissioners would

indicate that steel rails resist shocks at low temperatures better

than iron ones.

Iron Wire.

Mr. John A. Roebling found by his tests that the English
wire used in the Niagara Falls Suspension Bridge gave an ulti-

mate tensile resistance of about 98,500.00 pounds per square
inch (" Papers and Practice Illustrative of Public Works." John
Weale, London, 1856). This wire was about 0.145 inch in

diameter.

The Committee of the Franklin Institute made thirteen

tests of some iron wire one-third of an inch in diameter, of

which the highest, lowest and mean ultimate resistances in

pounds per square inch of original section were as follows :
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Highest 88,354.00 pounds.
Mean 84, 186.00 pounds.
Lowest 72,325.00 pounds.

The results of other tests by the same committee have

already been given under "
Effect of annealing."

TABLE XX.
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of diameter at fracture shows the iron to have been not very
ductile. It will also be noticed that the smaller diameters give
much the highest resistances.

TABLE XXI.

ORIGINAL DIAMETER.
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ments on various kinds of English iron wire. These experi-

ments resulted from investigations relating to the fabrication

of a submarine Atlantic cable.

KIND OP WIRE.
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flanges. In such cases, specimens cut from the web will fre-

quently, if not usually, show a high intensity of ultimate resist-

ance, but very little ductility, while those cut from the flanges
will give good records of both kinds.

In general, shapes will offer less tensile resistance than

either bars or rods, yet small specimens cut from good shape
iron will give values ranging from 48,000 to 52,000 pounds per

square inch, with ductility little less than that of Qs and O s-

English Wrought Iron.

A great number of experiments on English wrought iron

have been made by Sir Wm. Fairbairn, David Kirkaldy, and

others. A record of Fairbairn's experiments may be found in

his " Useful Information for Engineers," while an account of

those of the latter is given in
"
Experiments on Wrought Iron

and Steel," by David Kirkaldy, Glasgow, 1863.

B. B. Stoney, in his "Theory of Strains in Girders and Simi-

lar Structures," summarizes Kirkaldy's results, in pounds per

square inch, as follows :

Mean of 188 rolled bars 57,555-oo

Mean of 72 angle irons and straps 54,729.00

Mean of 167 plates, lengthwise 50,737.00

Mean of 160 plates, crosswise 46,171.00

It should be stated that these means include some Russian

and Swedish irons, also that the bars were small ones.

These results do not differ much from quantities for cor-

responding grades of American iron.

Fracture of Wrought Iron.

The characteristic fracture of wrought iron broken in ten-

sion, either directly or transversely, is rather coarsely fibrous,
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not unfrequently exhibiting a few bright granular spots which.

in rare cases, may possibly be crystalline. This characteristic

(fibrous) fracture is always produced by the steady application
of an external force, under the influence of which the piece is

drawn out in jagged points at the place of failure.

The best of fibrous wrought iron, however, will exhibit a

granular fracture if broken suddenly. In making tests, there-

fore, it is of the greatest importance to 'observe and direct the

mode of application of the external forces producing fracture.

When some grades of iron in bars are broken transversely

by shocks (such as are produced by falling weights), a phenome-
non known as "

barking
"

is produced. A skin of metal from

a sixteenth to an eighth of an inch in thickness, on the tension

side of the bent piece, tears apart and separates from the core

of the bar. At the place of fracture and on each side of it,

this skin or " bark
"
remains essentially straight. This kind of

fracture shows remarkably well the fibrous character of wrought
iron

; it is simply the separation of the fibres near the outside

of the bar from those within.

Crystallization of Wrought Iron.

The subject of crystallization of wrought iron is one about

which there is much dispute. In "
Strength of Wrought Iron

and Chain Cables," by Beardslee, as abridged by Kent, p. 36,

the following is given as the opinion or view of the United

States Testing Commission :
" The question as to whether

crystallization can be produced in iron by stress, or by repeti-

tion of stress with alternations of rest, or by vibration, has

n much discussed, and very opposite views are entertained

by experts.
" We have met with but one unmistakable instance of crystal-

lization which was probably produced by alternations of severe

stress, sudden strains, recoils and rest."

The committee then state the case of a connecting-rod,
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carefully made of the best quality of wrought-iron scrap, which

had been used in a testing machine for forty years, in the

Navy Yard at Washington. It was five inches in diameter,
but one day, while in use it suddenly broke under a stress

(total) of less than 200,000 pounds.
" The surface of the fract-

ured ends showed well-defined crystallization, the facets being

large and bright as mica."

The data at hand, at present, are not sufficient for a decision

of the question, but it may be confidently stated that in many
cases granulation has been mistaken for crystallization.

*

Elevation of Ultimate Resistance and Elastic Limit.

It was first observed by Prof. R. H. Thurston and Com-
mander L. A. Beardslee, U. S. N., independently, in this coun-

try, that if wrought iron be subjected to a stress beyond its

elastic limit, but not beyond its ultimate resistance, and then

allowed to " rest
"

for a definite interval of time, a considerable

increase of elastic limit and ultimate resistance may be expe-

rienced. In other words, the application of stress and subse-

quent
" rest

"
increases the resistance of wrought iron.

This " rest
"
may be an entire release from stress or a sim-

ple holding the test piece at a given intensity.

Prof. Thurston's investigations were on torsion, while those

of the United States Commission were on tension, and will be

given here.

The Commission prepared twelve specimens and subjected
them to an intensity of stress equal to the ultimate resistance

of the material, without breaking the specimens. These were

then allowed to rest, entirely free from stress, from twenty-four
to thirty hours, after which period they were again stressed

until broken.

The gain in ultimate resistance by the rest was found to

vary from 4.4 to 17 per cent.
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These tests, remark the committee, seem to indicate that

the tough fibrous irons gained the most, while those which

broke with a steel-like fracture gained the least.

Before the rest, the stress which produced the first perma-
nent elongation was about 65 per cent, of the ultimate resist-

ance, but after the rest the two were nearly identical.

The committee then took forty-two other specimens and

subjected them to precisely the same operations, except that

the rest periods varied from one minute to six months.

The gains were as follows :

In less than I hour 1. 1 per cent., mean of 5 tests.

In less than 8 and over I hour 3.8 per cent., mean of 8 tests.

In 3 days 16.2 per cent., mean of 10 tests.

In 8 days 17.8 per cent., mean of 2 tests.

Between 8 and 43 days 15.3 per cent., mean of 5 tests.

In 6 months 17.9 per cent., mean of 12 tests.

After seven other experiments involving a rest of 24 hours,

with an average gain of 15.4 per cent., the committee con-

cluded " that at the end of one day the result is, with very
ductile irons, practically accomplished."

The manifestation of this phenomenon in different grades
of iron was then investigated.

" Thirteen pieces were prepared, five of which were of soft

charcoal bloom boiler iron, five of coarse contract chain iron,

and three of a fine-grained bar of ... very pure iron with

high tenacity."

After testing these specimens subsequent to an eighteen
hours' rest, the committee state (Kent's abridgment):

"These experiments confirmed the opinion already formed,

and indicate that a bridge, cable, or other structure, composed
<>f iron of either of the latter two varieties, will receive com-

paratively slight benefit from the operation of this law ; while

ductile fib/ous metal . . . gains . . . to a giv.it rxtrnt

by the effect of strains already withstood." The gain in these
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specimens varied from about 3 per cent, (for the coarse iron)
to about 1 8 per cent, (for the soft iron).

Again, two sets of specimens were prepared : one from the

two portions of fractured bars after having been pulled asunder,

the other from the bars in their normal condition. After a rest

of several days the first set showed a gain over the second in

ultimate resistance, varying from about 8 to 39 per cent., the

higher values belonging to the more ductile irons.

BauscJlinger s Experiments on the Change of Elastic Limit and

Coefficient of Elasticity.

In " Der Civilingenieur," Heft 5, for 1881, are contained the

results of the experiments of Prof. Bauschinger, of Munich.

The observations in these experiments were made by the aid

of a piece of apparatus which gave the elongations (all experi-

ments were tensile) in ten-millionths of a metre, or approxi-

mately in ^STunnr f an inch. An extraordinarily high degree
of accuracy was therefore attained.

Prof. Bauschinger's elastic limit was strictly a proportion-

ality limit between stresses and strains. He also observed

what may be called the "stretch-limit
"

(Ger., Streckgrenze), at

which point the stretching or elongation suddenly increases and

continues to increase for more than a minute after the appli-

cation of the stress. In ordinary experimenting this point has

probably frequently been considered the elastic limit.

The test pieces were subjected to loads which gradually
increased from zero by an increment a little less than 3,000

pounds per square inch, each load having been allowed to act

one minute before adding the succeeding increment. At inter-

vals of the loading separated by about 11,500 or 12,000 pounds

per square inch, each piece was entirely unloaded and allowed

to remain so for 15 or 20 minutes. After the " stretch-limit"

was found the piece was subjected to a final load ,somewhat

greater than the "
stretch-limit," and then entirely unloaded.
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In some cases the piece was immediately put through the

same process of testing either once or a number of times, and

the results of such tests will be found in the columns of the

following tables, indicated by the contraction "
/;;/'Y."

In the remaining cases intervals of time, shown at the tops
of the columns, were allowed to elapse between any one test

and the succeeding one.

The tables, Nos. I to 7 inclusive, give the results of the

experiments on seven specimens of a grade of iron called
" Schweisseisen

"
(weld iron). These specimens were a very

little less than I inch (25 millimetres) in diameter. Nos. I and

2 were about 32 inches long, and the others about 16 inches

long.

Tables No. 8 to 13, inclusive, give the results obtained with

Krupps
" Flusseisen." These specimens were about one inch

in diameter and sixteen inches long.

The tables have been condensed from those given by Bau-

schinger and reduced to English measures.

The following is the notation :

E. L. = elastic limit in pounds per square inch.

S.-L. = stretch limit in pounds per square inch.

F. L. final load in pounds per square inch.

E. = coefficient of elasticity in pounds per sq. in.

Weld Iron.

NO. 1.
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Weld Iron.

NO. 2.
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Weld Iron.
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Melted M'rou^Jit Iron.

NO. 8.
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Melted Wrought Iron.
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During the progress of the various tests, the bars Nos. 6, 7,

9, ii and 12 were subjected to shocks in addition to the static

tests. These shocks were produced by striking the test piece

on its end by a hammer. It does not appear that these blows

of the hammer perceptibly influenced the results.

The ultimate resistance of the weld iron was found to vary
from 55>3 to 58,870 pounds per square inch. That of the

melted wrought iron was about 65,000 pounds per square inch.

Although there are some irregularities, the following gen-
eral conclusions may be drawn from the tables:

By
" immediate

"
testing the elastic limit of weld iron is

very much decreased.

With a rest (entirely free from load) between the tests, the

elastic limit of weld iron is very much increased.

The greatest proportional gain, except in the case of previ-

ous immediate testing, seems to be acquired after a rest no

greater than twenty hours.

Bar No. 6 is seen to give anomalous results.

In all cases of the weld iron the stretch-limit is considerably
raised by repeated testihg.

In no case is the coefficient of elasticity, after once testing,

equal to its original value
;
as a rule, a steady decrease is seen

to take place by repeated testing, but there are some ex-

ceptions.

The elastic limit of "
Flusseisen," after repeated testing, is

found to be much less than its original value until the length
of rest becomes about fifty hours.

The stretch-limit of the same metal is invariably raised by

repeated testing, either with or without " rests."

In nearly all the cases of Nos. 8 to 13, the coefficient of

elasticity is found to be slightly decreased by repeated testing.

For a very clear and detailed account of these experiments
reference must be made to the "

Civilingenieur.'
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Resistance of Bar Iron to Suddenly Applied Stress.

If tensile stress is suddenly applied to a bar of wrought iron,

both its ultimate resistance and elongation will be very materi-

ally decreased

As a mean of a number of tests, Mr. David Kirkaldy

(' Experiments on Wrought Iron and Steel ") found with sud-

denly applied stress an ultimate resistance of 46,500 pounds

per square inch, while with stress gradually applied it rose to

57,200 pounds.
In the former case the elongation was about 20 per cent.,

and as high as 24.6 per cent, in the latter.

It is thus seen that the mode of application of external

force not only affects the character of the fracture of the iron,

but also its ultimate resistance and elongation.

It will hereafter be seen that similar observations apply to

other metals than wrought iron.

Reduction of Resistance Between the Ultimate and Breaking
Point.

It has already been observed that the ultimate tensile re-

sistance of wrought iron is the greatest tensile resistance which

it offers to being pulled asunder, and that a test specimen

finally parts at much less than the ultimate resistance. This is

clue to the ductility of the iron, which allows it to "
pull out

"

or stretch, thus decreasing the cross section as well as the

actual resisting capacity of the metal.

The ultimate resistance, therefore, is not exerted on the final

section offracture, but on a section somewhat greater ; referring

he ultimate resistance) to the section of fracture, then, may
mean little or nothing.

The United States Commission made six tests, for the pur-

pose of determining this reduction, on some specimens which
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had previously been stressed with a subsequent rest. The

highest, lowest, and mean losses were as follows :

Highest 14. 5 per cent.

Mean 13.8 per cent.

Lowest 12.9 per cent.

It was observed from a number of specimens, by the same

commission, that the reduction of area at the instant of ulti-

mate resistance (or greatest resistance) was about one-half, and

the elongation or strain a little over three-quarters, of the cor-

responding quantities at the instant of fracture, supposing
failure to be produced by a steady strain.

Some further observations seemed to show that if failure

were produced by shock, the final contraction would be nearly
the same as at the instant of greatest resistance in the case of

a steady failure.

Effects of Chemical Constitution.

While it is well known that the resistance of wrought iron

to tension varies greatly with the chemical composition, it is

yet uncertain just what influence most of the foreign elements,

found in iron exert, either individually or collectively. This

will be apparent on examining Table XXII., taken from the

report of the three committees of the United States Commis-

sion, to which allusion has here been so frequently made
before.

The first part of the table represents the relative values of

sixteen different irons in reference to their physical character-

istics, one being the highest. The second part shows the

amount of the various elements named in the left-hand lower

column, found in the corresponding irons, i. e.
y
each vertical

column belongs to one iron.

An inspection of the table will make very evident the diffi-
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culty of drawing definite conclusions in regard to any one

element.

For a detailed discussion of these results reference must be

made to the report.

Kirkaldy s Conclusions.

The following conclusions were deduced by Mr. Kirkaldy
from the results of his experiments. As will be seen, they

belong to both wrought iron and steel in tension, and are

taken from his
"
Experiments on Wrought Iron and Steel,"

1861 :

1. The breaking strain does not indicate the quality, as hitherto assumed.

2. A high breaking strain may be due to the iron being of superior quality,

dense, fine, and moderately soft, or simply to its being very hard and unyielding.

3. A low breaking strain may be due to looseness and coarseness in the texture,

or to extreme softness, although very close and fine in quality.

4. The contraction of area at fracture, previously overlooked, forms an essential

element in estimating the quality of specimens.

5. The respective merits of various specimens can be correctly ascertained by

comparing the breaking strain jointly with the contraction of area.

6. Inferior qualities show a much greater variation in the breaking strain than

superior.

7. Greater differences exist between small and large bars in coarse than in fine

varieties.

8. The prevailing opinion of a rough bar being stronger than a turned one is

erroneous.

9. Rolled bars are slightly hardened by being forged down.

10. The breaking strain and contraction of area of iron plates are greater in the

direction in which they are rolled than in a transverse direction.

11. A very slight difference exists between specimens from the centre and speci-

mens from the outside of crank shafts.

12. The breaking strain and contraction of area are greater in those specimens

cut lengthways out of crank shafts than in those cut crossways.

13. The breaking strain of steel, when taken alone, gives no clue to the real

qualities of various kinds of that metal.

14. The contraction of area at fracture of specimens of steel must be ascertained

as well as in those of iron.

15. The breaking strain, jointly with the contraction of area, affords the means

of comparing the peculiarities in various lots of specimens.
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16. Some descriptions of steel are found to be very hard, and, consequently,
suitable for some purposes ;

whilst others are extremely soft, and equally suitable

for other uses.

17. The breaking strain and contraction of area ofpuddled steel plates, as in iron

plates, are greater in the direction in which they are rolled
; whereas in cast steel

they are K

1 8. Iron, when fractured suddenly, presents invariably a crystalline appearance ;

when fractured slowly, its appearance is invariably fibrous.

19. The appearance may be changed from fibrous to crystalline by merely al-

tering the shape of specimen, so as to render it more liable to snap.

20. The appearance may be changed by varying the treatment, so as to render

the iron harder and more liable to snap.

21. The appearance may be changed by applying the strain so suddenly as to

render the specimen more liable to snap, from having less time to stretch.

22. Iron is less liable to snap the more it is worked and rolled.

23. The " skin
"
or outer part of the iron is somewhat harder than the inner

part, as shown by appearance of fracture in rough and turned bars.

24. The mixed character of the scrap iron used in large forgings is proved by
the singularly varied appearance of the fractures of specimens cut out of crank

shafts.

25. The texture of various kinds of wrought iron is beautifully developed by
immersion in dilute hydrochloric acid, which, acting on the surrounding impurities,

exposes the metallic portion alone for examination.

26. In the fibrous fractures the threads are drawn out, and are viewed externally,

whilst in the crystalline fractures the threads are snapped across in clusters, and are

viewed internally or sectionally. In the latter cases the fracture of the specimen is

always at right angles to the length ;
in the former it is more or less irregular.

27. Steel invariably presents, when fractured slowly, a silky fibrous appearance ;

when fractured suddenly, the appearance is invariably granular, in which case also

the fracture is always at right angles to the length ;
when the fracture is fibrous, the

angle diverges always more or less from 90.
28. The granular appearance presented by steel suddenly fractured is nearly

free of lustre, and unlike the brilliant crystalline appearance of iron suddenly fract-

ured
; the two combined in the same specimen are shown in iron bolts partly con-

verted into steel.

which previously broke with a silky fibrous appearance, is changed
into granular by being hardened.

30. The little additional time required in testing those specimens, whose rate of

elongation was noted, had no injurious effect in lessening the amount of breaking

strain, as imagined by some.

31. The rate of elongation varies not only extremely in different qualities, bat

also to a considerable extent in specimens of the same brand.

32. The specimens were generally found to stretch equally throughout tin ir

18
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length until close upon rupture, when they more or less suddenly drew out, usually
at one part only, sometimes at two, and, in a few exceptional cases, at three differ-

ent places.

33. The ratio of ultimate elongation may be greater in short than in long bars

in some descriptions of iron, whilst in others the ratio is not affected by difference

in the length.

34. The lateral dimensions of specimens forms an important element in com-

paring either the rate of, or the ultimate, elongation a circumstance which has

been hitherto overlooked.

35. Steel is reduced in strength by being hardened in water, while the strength
is vastly increased by being hardened in oil.

36. The higher steel is heated (without, of course, running the risk of being

burned) the greater is the increase of strength by being plunged into oil.

37. In a highly converted or hard steel the increase in strength and in hardness

is greater than in a less converted or soft steel.

38. Heated steel, by being plunged into oil instead of water is not only consid-

erably hardened, but toughened by the treatment.

39. Steel plates hardened in oil, and joined together with rivets, are fully equal
in strength to an unjointed soft plate, or the loss of strength by riveting is more
than counterbalanced by the increase in strength by hardening in oil.

40. Steel rivets, fully larger in diameter than those used in riveting iron plates

of the same thickness, being found to be greatly too small for riveting steel plates,

the probability is suggested that the proper proportion for iron rivets is not, as

generally assumed, a diameter equal to the thickness of the two plates to be joined.

41. The shearing strain of steel rivets is found to be about a fourth less than

the tensile strain.

42. Iron bolts, case-hardened, bore a less breaking strain than when wholly

iron, owing to the superior tenacity of the small proportion of steel being more than

counterbalanced by the greater ductility of the remaining portion of iron.

43. Iron highly heated and suddenly cooled in water is hardened, and the break-

ing strain, when gradually applied, increased, but at the same time it is rendered

more liable to snap.

44. Iron, like steel, is softened, and the breaking strain reduced, by being
heated and allowed to cool slowly.

45. Iron subject to the cold-rolling process has its breaking strain greatly in-

creased by being made extremely hard, and not by being
"
consolidated/' as pre-

viously supposed.

46. Specimens cut out of crank-shafts are improved by additional hammering.
47. The galvanizing or tinning of iron plates produces no sensible effects on

plates of the thickness experimented on. The result, however, may be different,

should the plates be extremely thin.

48. The breaking strain is materially affected by the shape of the specimen.
Thus the amount borne was much less when the diameter was uniform for some
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inches of the length than when confined to a small portion a peculiarity previously

unascertained, and not even suspected.

49. It is necessary to know correctly the exact conditions under which any
tests are made before we can equitably compare results obtained from different

quarters.

50. The startling discrepancy between experiments made at the Royal Arsenal,

and by the writer, is due to the difference in the shape of the respective specimens,
and not to the difference in the two testing machines.

51. In screwed bolts the breaking strain is found to be greater when old dies

are used in their formation than when the dies are new, owing to the iron becoming
harder by the greater pressure required in forming the screw thread when the dies

are old and blunt than when new and sharp.

52. The strength of screw-bolts is found to be in proportion to their relative

areas, there being only a slight difference in favor of the smaller compared with the

larger sizes, instead of the very material difference previously imagined.

53. Screwed bolts are not necessarily injured, although strained nearly to their

breaking point.

54. A great variation exists in the strength of iron bars which have been cut and

welded
;
whilst some bear almost as much as the uncut bar, the strength of others is

reduced fully a third.

55. The welding of steel bars, owing to their being so easily burned by slightly

overheating, is a difficult and uncertain operation.

56. Iron is injured by being brought to a white or welding heat, if not at the

same time hammered or rolled.

57. The breaking strain is considerably less when the strain is applied suddenly
instead of gradually, though some have imagined that the reverse is the case.

58. The contraction of area is also less when the strain is suddenly applied.

59. The breaking strain is reduced when the iron is frozen
;
with the strain

gradually applied, the difference between a frozen and unfrozen bolt is lessened, as

the iron is warmed by the drawing out of the specimen.

60. The amount of heat developed is considerable \\hcn the specimen is sud-

denly stretched, as shown in the formation of vapor from the melting of the layer

of ice on one of the specimens, and also by the surface of others assuming tints of

\.iriou> sb.a K ^ of blue and orange, not only in steel, but also, although in a less

marked degree, in iron.

61. The specific gravity is found generally to indicate pretty correctly the

quality of specimens.
62. The density of iron is decreased by the process of wire-drawing, and by the

similar process of cold rolling, instead of increased* as previously imagined.

63. The density in some descriptions of iron is also decreased by additional hot-

rolling in the ordinary way : in others the density is very slightly increased.

64. The density of iron is decreased by being drawn out under a tensile strain,

instead of increased, as believed by some.
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65. The most highly converted steel does not, as some may suppose, possess the

greatest density.

66. In cast steel the density is much greater than in puddled steel, which is

even less than in some of the superior descriptions of wrought iron.

Art. 33. Cast Iron.

Coefficient of Elasticity and Elastic Limit.

Cast iron is a material of much less value to the engineer
than wrought iron, and consequently has been the subject of

much less experimental investigation.

The following table (Table I.) contains values of the co-

efficient of tensile elasticity for three (Nos. I, 2 and 3) differ-

ent irons used in the fabrication of cast-iron cannon. They
are computed by the aid of Eq. (i) t Art. 2, from data con-

tained in
"
Reports of Experiments on the Properties of

Metals for Cannon," etc., by the late Captain T. J. Rodman,

TABLE I.
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212 and 228 of the work cited) from the large amount accumu-

lated by Captain Rodman.
Column No. 4 contains values of E given by Wm. Kent,

M. E. (Van Nostrand's Magazine, Vol. 20) ; they belong to a

piece of cast iron i inches in diameter and 5 inches long.

The left-hand column, headed " W" gives the stress per

square inch, while the three columns " E" give the correspond-

ing ratios between stress and strain for the three different

irons. Such ratios are the " coefficients of elasticity," properly

speaking, below the elastic limit only. It will be observed,

however, that none of these specimens can really be con-

sidered to possess an elastic limit, unless possibly No. I,

whose elastic limit may be taken at, or a very little above

2,ooo pounds per square inch.

In No. I first permanent set was observed at 4,000 pounds per square inch.

In No. 2 first permanent set was observed at 4,000 pounds per square inch.

In No. 3 first permanent set was observed at 8,000 pounds per square inch.

FJg.1

Fig. i represents graphically the results of the experiments
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on specimen No. 2. The constantly varying value of the ratio

between stress and strain is shown in a very evident manner

by the continually varying inclination of the curve. The
strains (stretches) are laid down as if belonging to a bar 1,000

inches long.

The following results are deduced by B. B. Stoney (Theory
of Strains in Girders and similar Structures, p. 369) from ex-

periments by Eaton Hodgkinson on a bar of English cast iron

10 feet long.

W = 2,240 pounds per square inch E = 13,603,520 pounds per square inch.

W'= 4,480
" " " "

=13,260,800
IV . 6,720

" " " "
=12,382,720

W'=: 8,960
" " " "

=11,596,480
W= 11,200

" " " "
=10,843,840

Jf= 13,440
" " " " E = 9,856,000

W = 14,560
" " " " E 9,549,120

These results show a limit of elasticity at about 6,000

pounds per square inch
; they also show much smaller values

of E than those given in Table I. This last disagreement is

undoubtedly due, to a great extent, to the fact that the values

of E in Table I. probably all belong to fine charcoal iron fabri-

cated for a special purpose, while the others do not.

If A = extension, or stretch in inches of a cast-iron bar

when acted upon by a force W (in pounds), and if / represents

the length of the bar in inches, Mr. Hodgkinson deduced the

following formulae from his experiments :

\ = 1 5.00239628 A/.OOOO05742I5 .000000000343946^^ . (i)

For bars 10 feet long:

Permanent set, in inches = .0193A + .64/1* (2)

Although the preceding results are only a few of a great
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many similar results that may be computed in the same man-

ner, yet they give a fair representation of the general character

of the elastic properties of cast iron. The metal is seen to be

very irregular and unreliable in its elastic behavior. A large

portion of the material can scarcely be said to have an elastic

limit, although no apparent permanent set takes place under a

considerable intensity of stress ;
in other words, although per-

haps all tested specimens resume their original shape and

dimensions for small intensities of stress, yet the ratio between

stress and strain is seldom constant for essentially any range
of stress.

Ultimate Resistance.

On page 5 of Captain Rodman's "
Reports

"
are given the

following densities and ultimate tensile resistances, expressed
in pounds per square inch, of 16 specimens of warm-blast,

charcoal Greenwood and Salisbury iron, taken from preliminary

castings of second and third fusion pigs:

DENSITY. ULT. RESIST. DENSITY. ULT. RESIST.

7-184 33,079 7-2io 22,547

7-I9S 31,384 7-I72 28,518
7-307 35,486 7.159 36,373
7.099 23,776 7.137 33,268
7.304 31,317 7.106 22,290
7-273 42,884 7.JOO 22,179
7.272 38,993 7.109 22,888

7-219 25,372 7.191 23,873

Again, Table II. is taken from page 261 of the same " Re-

ports." The results are for specimens from trial castings of

second-fusion pigs. The ultimate resistance is in pounds per

square inch, while the strains are for an inch of length.
"

Ult. 1 the ultimate extension, or stretch, just be-

fr.icture, for one lineal inch. The specimens were 30
itu lies long and 1.382 inches in diameter.
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TABLE II.

SPECIMEN.
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Three specimens, turned down to a diameter of about

0.625 inch, taken from the iron used in the Boston water

mains, and broken at the Warren Foundry, Phillipsburg, N. J.,

gave the following ultimate resistances in pounds per square
inch:

13.070 15,470 18,300

As with all material, the character of cast iron affects, to a

great extent, its resistance ; *'. c.
y whether it is fine or coarse

grained, gray or white, etc. It (the resistance) also depends

upon the character of the ore from which it is produced.

Major Wade (" Reports," pages 378 and 388) shows that

the cold-blast iron which he tested gave much higher resist-

ance than the hot-blast metal.

It is to be remembered that all the specimens from which

the preceding results were deduced were what may be called
" small specimens." Specimens with several square inches in

area of normal section would probably give somewhat different

results.

It is interesting to observe that, in experimenting upon
cast-iron cannon, Major Wade (" Reports," pages 77 and 78)

found that water was forced through the "
pores

"
of the

metal of one cannon at a pressure of 7,000 pounds per square

inch, and through those of another with thicker metal (thick-

ness equal to radius of bore) at a pressure of 9,000 pounds per

square inch.

Capt. Rodman (" Reports," page 262) forced water through
the pores of the metal of cylinders 5 inches long, I inch thick,

and i inch bore, at pressures ranging from 15,276 to 25,464

pounds per square inch.

The experiments of Eaton Hodgkinson (" Experimental
Researches on the Strength and Other Properties of Cast

Iron "), on English metal gave the following resistances in

pounds per square inch :
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Cannon iron No. 2, hot blast 13.505 pounds.
Cannon iron No. 2, cold blast 16,683

"

Cannon iron No. 3, hot blast 17.755
"

Cannon iron No. 3, cold blast 14,200
"

Devon (Scotland) iron No. 3, hot blast 21,907
"

Buffery iron No. I, hot blast 13,434

Buffery iron No. I, cold blast 17,466
"

Coed-Talon iron No. 2, hot blast 16,676
"

Coed-Talon iron No. 2, cold blast 18,855
"

Low Moor iron No. 3 14, 535
"

Mixture 16,542
"

Several of these results are the means of those of a number
of tests. The areas of the normal sections of the test speci-

mens varied from 1.54 inches to 4.27 inches, being considerably

larger than those of the specimens tested by Major Wade and

Captain Rodman.
The characteristic fracture of cast iron is granular and crys-

talline, with very little (scarcely perceptible by the unaided

eye) reduction of area or elongation. Fracture takes place

suddenly and without warning, and its ultimate resistance is

influenced by many causes whose action may not be observed

by any ordinary means
;
for these reasons, it is a treacherous

and unreliable material in tension, as indeed any brittle ma-

terial must be.

Effect of Remelting.

Crude pigs are said to be "first-fusion
"
metal.

Once remelted pigs produce "second-fusion" iron.

Twice remelted pigs produce
"
third-fusion

"
iron.

etc., etc., etc.

On page 237 of Major Wade's "
Reports," the following

values are given for Greenwood first-fusion iron (iron in orig-

inal pigs) :
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ULT. RESIST. IN POUNDS
PER SO.. IN.

No. i iron ............................ 15.129 (mean of 3 tests).

No. 2 iron ............................ 27,153 (mean of 2 tests).

No. 3 iron ............................ 34,923 (mean of 4 tests).

" No. I is the softest gray iron,
" No. 2 is intermediate,
" No. 3 is the hardest gray iron."

Again on page 240 :

ULT. RESIST.

Greenwood, Nc. i, 1st fusion ............ 20,900 pounds per sq. in.

Greenwood, No. i, 2d fusion ............ 30,229 pounds per sq. in.

Greenwood, No. i, 3d fusion ............ 35,?36 pounds per sq. in.

Guns cast from 3d fusion ............... 338i5 pounds per sq. in.

The last result is a mean of four tests,

Finally on page 242 :

Nos. i and 2 mixed..... \

2d fusion ...... 2 ?'588 Pounds ^r ** in

( d fusion ...... 0,8 ounds er s. in3d fusion ...... 40,987 pounds per sq. in.

fusion ...... 37 ' 789 Pounds **r **' in '

fusion ...... 32,485 pounds per sq. in.
Nos. i, 2, and 3 mixed.

\

2d fusion ...... 37 ' 789 Pounds **r **' in '

( 3d

It is seen that " the softest kinds of iron will endure a

greater number of meltings with advantage, than the higher

grades." The greatest ultimate resistance, in pounds per

square inch, is obtained with :

No. i iron at the 4th fusion,

Nos. I and 2 mixed at the 3d fusion,

Nos. I, 2 and 3 mixed at the 2d fusion.

These results probably indicate about the limits to which

the rcmelting of this iron could be advantageously carried.

On page 279 of the same "
Reports," is given the result of

the ' cimen of third-fusion iron, of a mixture of Nos.

I,
j and 3, taken from a gun. The ultimate resistance found
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was 45,970 pounds per square inch
;
a most remarkable speci-

men of cast iron.

Effect of Continued Fusion.

Major Wade (" Reports," pp. 38-41) tested the effects of

continued fusion on different grades of iron, both in relation to

transverse and tensile resistance.

The general result was an increase of tensile resistance up
to 3^ hours in fusion, which was the longest period tried.

The following results are taken from pp. 40 and 41 of the
"
Reports."

TIME IN FUSION. ULT. RESIST.

0.5 hour 17,843 pounds per square inch.

Stockbridge.
i.o

Proof bars.

ro-inch Howitzer, 2d
fusion from pigs.

t 2.0

(
No. 5..- 0.5

I No. 6. ..i. 5

]
No. 7. ..3.0

[No. 8... 3. 75
f 0.00

1. 00
2.OO

. 24,387
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The repetition of the letters representing the specimen
indicates that duplicates were tested.

A reference to Table II. will show what single loads per

square inch broke the same irons, and a comparison of the two
will exhibit the "

fatigue
"

of the metal.

On pages 166 and 167 he also gives some very interesting
results of intermittent repetitions of stresses. He subjected a

cylinder of cast iron, 1.382 inches in diameter and 35 inches

long to intermittent repetitions of 15,000 pounds per square
inch (about three-quarters of its ultimate resistance) as follows:

250 repetitions, then a rest of 40 hours
; next, 375 additional

repetitions, then a rest of 30 days; next, 155 additional repe-

titions, then a rest of 29 days; next, 1,020 additional repe-

titions, then a rest of 26 days; finally, 156 additional repe-

titions followed by breakage at the i,Q56th repetition. In

every case "
rest

"
signifies entire freedom from load. Capt.

Rodman's table gives a detailed account of these experiments.
He remarks upon them as follows :

" The most interesting

point ... is the fact that at every interval of rest, of any
considerable time, the permanent set, and the extension due to

the last previous application of the force, diminished. And in

some instances it required some fifty repetitions to bring up
the extension and set to the same points where they had been

at the beginning of the period of rest : thus indicating clearly

that the specimen was partially restored, by the interval of

rest, from the injury which it had received
;
and that it endured

a greater number of repetitions, owing to the intervals of rest,

than it would have done had the repetitions succeeded each

other continuously, and at short intervals of time."

These experiments show the "
fatigue

"
of cast iron and

the increase of the ratio of stress over strain produced by
"
rest

"
so far as tensile stress is concern i-tl.

An examination of the tables also shows that in any scries

of repetitions, between any two consecutive rests, both the

extension and set were constantly increasing, consequently,
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that the ratio of stress over strain was constantly decreas-

ing.

Effect of High Temperatures.

A few experimental results bearing on this point will be

found in Table IX. of Article 35.

Art. 84. Steel.

Coefficient of Elasticity.

The great number of the varieties and grades of "
steel

"

renders possible the existence of a correspondingly great num-
ber of the mechanical quantities and coefficients used in its

consideration in connection with the " Resistance of Mate-

rials." In every case, therefore, the kind and character of the

steel on which experiments are made, should be stated. In

some cases, however, this is impossible.
In 1 Table I. are contained the coefficients of elasticity of

the hardened and tempered steel wire (see Table XXII.), sup-

plied by the different makers named, in response to the call

for bids for the steel cable wire for the New York and Brook-

lyn suspension bridge. (Washington A. Roebling's
"
Report,"

ist Jan., 1877).

In the same "
Report," page 72, the specifications state :

" The elastic limit must be no less than T
4^ of the breaking

strength. . . . Within this limit of elasticity, it must

stretch at a uniform rate corresponding to a modulus of elas-

ticity of not less than 27,000,000 nor exceeding 29,000,000."



Art. 34.] COEFFICIENT OF ELASTICITY. 287

TABLE I.

PRODUCER.
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TABLE II.
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TABLE II. Continued.

COMPRESSION.
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pieces were uniformly about three-quarters of an inch in diam-

eter, and the stretch was in all cases measured on eight inches.

The elongations given are per cents of the original length of

eight inches.

The reductions of area are the per cents of original sections

of the test pieces which indicate the differences between the

original and fractured areas.

As indicated, the first half of the Table belongs to speci-

mens of open hearth rivet steel from Steelton, Pa., while the

second half contains results drawn from tests on a compara-

tively wide range of metal from the Bessemer process of the

Troy Steel and Iron Co. of Troy, N. Y. The open hearth

rivet steel is all seen to contain only .09 per cent, of carbon,

while the Bessemer metal had carbon varying from o.ii per
cent, to 0.39 per cent, with a wide gap between 0.17 and 0.36

per cent.

The specimens I,, I 2 and I
3
were cut from the two ends

and centre of bar I, and those subjected to tension were located

adjacent to specimens of the same name subjected to com-

pression. Similar observations apply to other sets of speci-

mens affected by the same figure or same letter. Hence there

is shown in this Table, the relation of different physical quan-

tities belonging to as nearly identically the same material as

the possibilities of the case admit.

The coefficients of tensile elasticity exhibit unusual uni-

formity. Those for the open hearth steel show no variation

with the small variation in carbon. Although the tensile co-

efficients for the Bessemer steel are slightly lower for the low-

est per cents of carbon than for the highest, yet some of the

lowest coefficients are found for the highest carbons, and it is

difficult to determine any essential variation with varying pro-

portions of that element.

While the average of the tensile coefficients is a very little

more for the open hearth than for the Bessemer steel, there is

really no sensible difference between them. The average ten-



Art. 34.] COEFFICIENT OF ELASTICITY. 289

sile coefficient may be taken at 30,000,000 pounds per square
inch.

Too much importance should not be attached to the per-

centage of carbon alone in these specimens, as the presence of

other elements not given, such as manganese, phosphorus, etc.,

exert marked influences on the physical characteristics of steel.

The "
Report of the Naval Advisory Board

"
prepared by

Asst. Naval Constructor R. Gatewood, U. S. N., contains on

pages 71 to 75, a large number of tensile tests.

The least coefficient of tensile elasticity given by Lieut.

Gatewood is 24,360,000 pounds per square inch, while the

greatest value is 30,890,000 pounds per square inch, and the

mean 27,720,000 pounds. These values belong to 42 tests of

accepted material, and were distributed about continuously

over the range covered by the limiting values. The carbon

varied from o. 1 1 per cent, to 0.24 per cent., and these extreme

values belonged to about average values of the coefficient of

elasticity.

Table III. has been computed from data obtained by
David Kirkaldy during his experiments on Fagersta steel

plates (" Experimental Inquiry into the Properties of Fagersta

Steel," scries D, Part i). The test specimens were, in the

clear, 2J^ inches wide and 100 inches long. The thickness is

given in the horizontal row, as shown. The values of the co-

efficient of elasticity (E) are the greatest and least, in pounds

per square inch, for the various intensities "/," for five unan-

nealed
J^j, J^, J^j, y2 and 5^-inch (nominally) plates and five

similar annealed ones.

These show very irregular elastic behavior. The % inch

annealed specimen is the only one which can properly be con-

sidered as possessing a true " coefficient of elasticity
"

(about

29,000,000 pounds per square inch) above the stress intensity
of 10,000 pounds, the ratios of stress to strain arc so very
variable. Prof. Bauschinger's "stretch-limit

"
is clearly shown,

for the different specimens, at that point of stress where the
19
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TABLE III.

p.
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Gatewood, with much lower percentages of carbon. The

phosphorus was determined for these bars, although it is not

given in Table I Ha. ; it varied from about 0.06 to 0.2 of one

per cent, with an average of about 0.09. It is a significant fact

that two of the bars which broke in the head contained the

the highest phosphorus.
Table VII. contains other coefficients of tensile elasticity

for full size bars.

TABLE Ilia.

Full Size Stfel Bars.
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Eight other specimens of the same plates gave :

GREATEST. MEAN. LEAST.

3I,94O,OOO 29,001,000 26,IIO,OOO

all in pounds per square inch.

As a rule, the thinner plates gave the Jiighcr values of E.

There were, however, some marked exceptions.
Eleven specimens of \ I inch round rivet steel, turned to about

inch diameter ; two each of \\ and \^ inch round, turned to \
and 3 inch diameter, respectively, gave :

GREATEST. MEAN. LEAST.

31,750,000 30,670,000 29,790,000

all in pounds per square inch.

Hay Steel.

Some experiments on three different bars of the Hay steel

used in the bridge at Glasgow, Missouri, by Gen. Wm. Sooy
Smith, gave the following results (" Annales des Fonts et

Chaussees," Feb., 1881) :

Experiment No. I .

A bar of rectangular section 2.09 x i.i inches, reduced by
hammering from a bar 2.6 inches square, was subjected to dif-

ferent intensities of stress varying from about 20,500 to 54,000

pounds per square inch, at which the following values of the

coefficients of elasticity (in pounds per square inch) were
found :

32,900,000 28,824,000 26,094,000

At 54,000 pounds per square inch there was a " trace
"
only



Art. 34.] COEFFICIENT OF ELASTICITY. 293

of permanent elongation or set. The length of this bar, be-

tween the observation marks, was about 38.5 inches.

Experiment No. 2.

A round bar 1.04 inches in diameter was subjected to a

stress of about 51,200 pounds per square inch, with a stretch 6f

1.66 millimetres per metre, at which a "trace
"
only of perma-

nent set was observed. The resulting coefficient of elasticity

was:

E 30,857,000 pounds per square inch.

The distance between observation marks was about 18.7

inches.

Experiment No. 3.

A bar 5.2 x 1.34 inches was subjected to a stress of about

49,200 pounds per square inch, with a trace only of permanent
set and a strain of 0.00171 metre per metre. Consequently
the resulting coefficient of elasticity was:

E = 28,772,000 pounds per square inch.

These experiments show that the coefficient of elasticity of

Hay steel is not essentially different from that of other mate-

rial nf the same class.

In his "Report on the Renewal of Niagara Suspension

Bridge," Mr. Leffert L. Buck, C. E., gives the following values

for the Hay steel used in that work :

GREATEST. MBAN. LKA&T.

30,830,OOO 28,000,000 26,400,000

all in pounds per square inch. These results arc for eight

experiments on small specimens.
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Ultimate Resistance and Elastic Limit.

In this section, it is to be observed, the "
elastic limit

"
is

seldom that point at which the coefficient of elasticity (stress

over strain) ceases to be essentially constant, but more nearly

Prof. Bauschinger's
"
stretch-limit," at which the increment of

strain, due to a constant increment of stress, very suddenly

increases, involving a correspondingly great permanent set.

TABLE \\\b.



Art. 34.] RAIL STEEL. 295

Table \\\b is condensed from Prof. Woodbury's history of

the St. Louis arch. The last four results are from the experi-

ments of Chief Engineer Shock, U.S.N., while the " N. Y.

Chrome Steel Co." result is from Kirkaldy's tests.

The diameters of the (circular) specimens varied from 0.357

inch to i.oo inch, and their lengths from 3 to 12 inches. The
elastic limit varied from 45 to 55 (nearly) per cent, of the ulti-

mate resistance.

TABLE IV.

Rail Steel.

NO.
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Power," and published in the Journal of the Franklin Institute,

March, 1881.

The specimens were circular and turned to a diameter of

0.75 inch between shoulders five inches apart.

The following is the notation :

"No." is the number of specimens for which the other

quantities are the average.
" T" is the ultimate tensile resistance in pounds per

square inch.

"
. L." is the elastic limit in pounds per square inch.

" Str" is the per cent, of original length of ultimate

elongation or stretch (i. e., at instant of rupture).

Table V. exhibits the results of late tests of a large number
of full-size steel bars of various grades, in connection with

the results of tests of specimens in their natural condition, as

cut from the rolled bars from which the bars were forged,
and after being annealed. It was customary for a number of

years to test {-inch round specimens, rolled from small 4-inch

ingots cast from the same melt which produced the finished

bars, but this testing lately has been abandoned as being not

sufficiently relevant to the material actually used. Specimens
are now cut from the full-size rolled bars and tested, and

Table V. shows the results of such tests in connection with

those of the finished and annealed bars. These specimens are

not usually annealed, although the finished bars are always

subjected to that process, but the Table gives the results of

testing some annealed specimens, and thus exhibits the

relation existing between the physical properties of speci-

mens, annealed and unannealed, and those of the completed

(annealed) bars of the same melt, as closely as it can be

shown.

The process of annealing softens the metal and reduces

both the elastic limit and ultimate resistance, but it increases
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the ductility and largely eliminates the internal stresses. The
Table shows that the reductions of elastic limit and ultimate

resistance are greater for the bars than for the specimens.
Aside from the influence of the possible differences in the

annealing temperatures for the two cases, the general average
of the bar results should be the lowest, for the reason that the

whole mass of the bar includes incidental, but inevitable,

small variations of conditions in the metal, which are not

found in the small mass of the specimen, and which necessarily

lead to still wider variations in the full-size annealed member.
The differences due to the process of annealing will nat-

urally be materially greater in high steel than in low steel.

The wide range in grade of the metal tested gives special

value to the results shown in the Table.

Nos. i to 21, inclusive, were taken from u The Continuous

Superstructure of the Memphis Bridge," by Mr. George S.

Morison, M. Am. Soc. C. E., in Trans. Am. Soc. C. E. for

Sept., 1893; and the remainder, except the last, were taken

from a paper in the same Transactions, for Oct., 1892, by Mr.

F. H. Lewis, on '' The Results Obtained from the Tests of Full-

Sized Bars." The last results in the Table belong to a bar

manufactured and tested by the Phoenix Iron Co., of Phcenix-

ville, Penn.

The gauged lengths of Nos. I to 21, inclusive, in Table V.,

on which the final stretches were measured, varied from 8 feet

to 36 feet.

Table VI. shows the results obtained by testing to failure fif-

teen lo-inch bars among those forged for the 420 feet draw-

span of the Central Bridge across the Harlem River, in New
York city, Mr. Alfred P. Holler, consulting engineer. They
were manufactured and tested under his supervision. Nearly
all the bars are of the ordinary open hearth steel, although
No. 7 was of basic open hearth material. The gauged length
on which the final -tivteh was measured was 26 feet for Nos.

2 and 7 ;
20 feet for Nos. I, 3, 4, 10, and 15118 feet for No. 8;
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TABLE

All Full Size Bars

NO.



Art. 34.] FULL SIZE STEEL I BARS. 296*-

V.

Broke in the Body.

STRETCH AND CONTRACTION.
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17 feet for Nos. 5,6, II, 12, and 14; 15 feet for No. 13; and

12.7 feet for No. 9. The final stretch for the 12 inches which

included the section of fracture varied from 15 to 44.6 per

cent., although very nearly all those values were included

within the limits of 29 and 44.6 per cent.

Upon a general view of Tables V. and VI. there cannot be

TABLE VI.
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aggregate yield somewhat higher results both in elastic limit

and ultimate resistance than the thicker ones.

A similar result is much more marked in the case of the

steel angles, of which there are only two sizes, but with a wide

range of weights per yard for the 6 inches by 4 inches. These

results are due to the fact that the light sections are reduced

materially more between the rolls than the heavier sections,

and thus more work is impressed upon the material of the for-

mer. Indeed, it is a matter of serious doubt whether, with the

same percentage of reduction from the ingot to the finished

piece, the quality of the metal in the larger section would

equal that in the smaller; the metal in the interior of the

larger mass appearing to feel the pressure of the rolls less than

that in the interior of the smaller section.

The last seven results of the Table belong to specimens cut

from some unusually heavy plates that were employed as mas-

sive links, and which were at that time excessively difficult to

obtain of the desired quality. These plates were of irregular

shape, and varied from 2 l/2 to 2^ inches thick; such material

had not then generally been rolled, under the specifications
which governed this work. Repeated attempts secured only

plates which proved to be porous, but the most porous portions
could be worked under a steam hammer to perfectly satisfactory

material, which showed that the reduction between the rolls

had been insufficient. These difficulties were finally overcome.
Table Ilia, contains the results of Mr. Morison's tests, to

which reference has already been made on pages 290 and 291.
These bars are seen to be of high steel for tension members,
and as they were annealed it is important to observe that their

elastic limits average about half their ultimates, i.e., relatively
much lower than the unannealed test specimens. Lower steel

would be affected less.

Table VII. gives the results of tests of some full size eye
bars of Pernot open hearth steel. The latter was made by the

Cambria Iron Co., but the bars were formed by the Keystone
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Bridge Co. and tested in the gov't machine at Watertown,
Mass. The tests are reported on pages 194 to 207 of Ex. Doc.

TABLE VII.

6^ Inch x I Inch Full Size Bars.

LENGTH
OP
BAR.

INCHES.
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Mr. Leffert L. Buck, C.E., in his "
Report on the Renewal

of the Niagara Suspension Bridge," 1880, gives the results of

tests of plate specimens of Hay steel used in that work, seven

to ten inches long between clamps. These specimens were

subjected to various treatments, such as punching, annealing,

blows while under stress, nicking on edges, etc., etc., and gave
the following results under tension :

_, T . ( Greatest SQ'43 1 pounds per square inch.
Elastlchmit

JLeast 43,300
' <'

Greatest 97,600
" " " "

Least 59,370
Greatest J^-4 Per cent.

Least 7.0
Final contraction of ( Greatest 42.0

ruptured section. .
(
Least 13.0

" "

Ultimate resistance.

Final stretch.. .

The " stretch
"

and " contraction
"

are per cents of ten

inches and original section, respectively.

Table VIII. contains the results of the experiments of Sir

Wm. Fairbairn on the different varieties of English steel given
in the left-hand column. The specimens were one inch square,
and had previously been subjected to a transverse load. The per
cents of strain or elongation are for a length of eight inches,

which, it is presumed, included the section of fracture.

Table IX. contains the results of tensile experiments on

Bessemer and crucible steel specimen bars by Mr. Kirkaldy for

the " Steel Committee "
(English).

The first part of the table gives the results of experiments
on bars turned accurately to a diameter of 1.382 inches with a

length
"

in the clear
"

of 50 inches. It is presumed that the

per cents of elongation apply to that length.

The second part of the table gives the results of experi-

ments on bars "in their natural skins," with a diameter of 1.5

inches and length of 120 inches; to which length the per cents

of elongation apply.
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TABLE VIII.

Bar Specimens. 1867.

PRODUCERS.

Messrs. Brown <5r Co.

Best cast steel, for turning tools

Best cast steel, milder

Cast steel from Swedish iron for tools . .

Cast steel, milder, for chisels

Cast steel, mild, for welding
Bessemer steel

Double shear steel from Swedish iron. . .

Foreign bar, tilted direct

English tilted steel

C. Cammel &> Co.

Cast steel, termed " Diamond Steel "...

Cast steel, termed " Tool Steel
"

Cast steel, termed "
Chisel Steel

"

Cast steel, termed " Double Shear Steel"
Hard Bessemer steel

Soft Bessemer steel

Mtssrs. Naylor, Vicktrs & Co.

Cast steel, called
" Axle Steel

"

el, callc-1
"
Tire Steel"

"
Vickers Cast Steel, Special

"

"
Naylor & Vickers' Cast Steel

"

5. Osborne.

Best tool cast steel

Best chisel cast steel

Sates-cup, shear blades, etc

Tough' tori for shafts, etc. ...

Best double shear steel
' '

1

Boiler plate, cast steel

ULTIMATE RESISTANCE

PER SQ. INCH.

Pounds.

68,404

Q^SO
106,714

Il6,l83

"0,055
91,972
92,555
76,474

59.538

110,055

109,072
120,398

96,665
89,121
81,483

88,665

91,520
'34,145
118,066

123,686

115,849

98,790
103,116
87,93i
85,724
111,676

FINAL STRAIN OR

ELONGATION.

Per cent.

O 25

15
I.O

3.62
3-31

19.62
5-43
13-56
21.06

1-53
1.50
2.50
2-37

20.87
20.43

16.25
9.00
1. 00

1-75

o.93
3-18
2.12
1.68

5-25
2 43
0.43
13-50
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TABLE VIII. Continued.

PRODUCERS.
ULTIMATE RESISTANCE

PER SQ. INCH.

FINAL STRAIN OR

ELONGATION.

H. Bessemer. Pounds.

Hard Bessemer steel 103,085
Milder Bessemer steel 88,175
Soft Bessemer steel 78,606

Sanderson Brothers.

Cast steel from Russia iron for welding. . 83,484
Double shear steel . 107,940
Single shear steel 107, 182

Fagot steel, welded 75, 199
Drawn bar, not welded 103,960

Messrs. Turton &* Sons.

Steel for cups 100,155
drills 87,552
cutters 95,372
turning tools 80,273
machinery 102,91 5

punches 102,567
mint dies 106,237
dies 87,471

taps 97,994
Double shear steel 73,266

Per cent.

I.87
20.00

19.12

2.25
3-31
2.81

1-25
3-43

2-75
i. 06

i-37
0. 12

i-43
1.62

2.87
o 87

1.87
0.81

The " Area of Fracture Section
"
(Table IX.) is the/^r cent,

of original sectional area, which, multiplied by that original

area, will give the area of the fractured section. The per cent,

of contraction will then be given by taking the difference be-

tween 100 and the number expressing the "Area of Fracture

Section."

The various grades of steel in the bar specimens of Table

IX. exhibit, in the results, the great variations arising with

different qualities of that metal.
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TABLE IX.

Bar Specimens. 1868 and 1870.

NUMBER AND KIND OP SAMPLE
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C.E., before the Chicago Meeting of the Am. Inst. of Mining

Engineers, at the International Engineering Congress, August,

1893. The investigations relate to basic Bessemer steel plates

TABLE X.

FOR CARBON.
HUNDREDTHS PER CENT.
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of sulphur, and about 800 pounds for each .01 per cent, in-

crease of carbon. The effects of phosphorus and manganese
are more complicated, the former depending upon the amount
of carbon present, and the lattet upon the amount of man-

ganese, all in the manner clearly shown by Table X., without

further explanation.
Sir Joseph Whitworth manufactures his compressed steel

by subjecting the molten metal to an intensity of pressure of

13,000 to 14,000 pounds per square inch, immediately after it

is taken from the furnace*.

Table XI. contains the result of some tensile experiments
on some specimens of this steel. Each specimen is turned to

a diameter of 0.798 inch (0.5 square inch in normal section) for

a length of two inches, for which the per cent, of final elonga-
tion is expressed (see

" Proc. Inst. of Mech. Engrs.," 1875).

The specimens are thus seen to be so formed as to give very

high results, both for ultimate resistance and elongation.

TABLE XL

Whitworth's Compressed Steel.

DISTINGUISHING COLORS FOR

GROUPS.



306 STEEL JN TENSION. [Art. 34.

TABLE XII.

Plates. Unannealed.

a
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TABLE XIII.

Plates. Unannealed.

MEAN OF
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The first five groups were pulled from pins, and the next

four from wedge grips. The manner of holding the test

pieces, however, was not observed to have any influence on

the results.

Within the limits of these experiments, also, the ratio of

width to thickness of the specimen seemed to have no influ-

ence. It will be observed that Prof. Kennedy's specimens
were all (what may be called)

"
long

"
specimens.

His experiments on some annealed specimens of this steel

showed that the process of annealing reduced the ultimate

resistance only 3 or 4 per cent.

TABLE XIV.

Fagersta Plate.

THICKNESS,
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TABLE XV.

Fagersla Plate.

THICKNESS,
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Fig. i. The width BC or AD of the reduced portion was ten

inches for the "
Large

"
pieces, and one and one half inches

for the "Small" ones. For the "Large" specimens, the

length of the reduced portion (AB or CD) was ten inches

(
= width), and four and one half inches (

= 3 widths) for the

"Small" The "Long" specimens were 100 inches by 2j^
inches "

in the clear."

The results embodied in these two tables are of greater
interest and value in consequence of the variety in the relative

dimensions of the specimens. They show the important part

played by
" lateral strains

"
both in the ultimate resistance and

final strains, or elongations, of test specimens.
With very few exceptions the following general principle

may be deduced from Table XIV. :

Both the elastic limit and ultimate resistance increase with

the ratio of the width over the thickness of the plates.

Nearly all the exceptions are in the results which belong to

the y unannealed, and the "
Long" annealed, specimens. It

may be observed in connection with Table III., that the char-

acter of the former specimen (possessing a low and irregular

value of E) is decidedly abnormal, to which, undoubtedly, its

exceptions are due. Annealing the long specimens seems to

cause the disappearance of essentially all influence of the rela-

tive dimensions of the cross section, where the ratio of width

over thickness is, comparatively speaking, small.

One origin of the results above stated is plainly to be

found in the lack of lateral contraction in the plane of the

plate, in accordance with the principles shown in Article 32,
" Ultimate Resistance and Elastic Limit"

An examination of Table XV. shows the following general

result, which, however, has more exceptions than the pre-

ceding :

The final contraction and elongation increase as the ratio of

width over thickness decreases.

With the long specimens, this does not seem to hold for



Art. 34.] BOILER PLATE.

less values of the ratio than 2J^ -5- fo = 6. Whether these

principles may hold true, as general ones, or whether they may
hold within certain limits (a possibility indicated in the "Long"
specimens), the number and character of these experiments
does not permit to be decided. They show, however, that the

partial prevention of lateral strains in one direction, whatever

may be the cause, will affect, to a considerable extent, experi-
mental results ; also, that in testing plates the shape and rela-

tive dimensions of the test piece should be carefully noted.

TABLE XVI.

Open-Hearth Steel Plates 1880.

SPECIMEN,

INCHES.
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carbon (consistently with the results in Table XII.), yet, it is

very remarkable to observe that tJie ultimate resistance decreases

as the carbon increases, which is not consistent with the results

contained in Table XII.

TABLE XVII.

Siemens Steel Plate 1875.
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over thickness (Table XIV.) showed a regular increase, in

both elastic limit and ultimate resistance, with an increased

ratio of width over thickness. Agreeably to these results,

therefore, the increase of carbon, in Mr. Hill's experiments,
should have been accompanied by an increase in both elastic

limit and ultimate resistance, since an increased ratio of width

over thickness accompanied the increase of carbon. The dis-

agreement seems inexplicable, but was probably due to the

influence of some unnoticed peculiarity in the treatment of

the material in the original plate, or of the specimens them-

selves.

Table XVII. contains the results of some specimen tests of

Siemens steel plate, made by Mr. David Kirkaldy in 1875.

The per cents of final stretch are for a length of eight inches,

which contained the section of fracture.

Tables XIIL, XIV., and XVII. show that, as a general

rule, both the elastic limit and ultimate resistance, in mild steel

plates, increase as the thickness of the plate decreases.

It is also seen that the process of annealing decreases both

those quantities.

Although Table XVII. shows no very marked result in

regard to final stretch and contraction, yet when it is taken in

connection with Table XV., it is clear that the process of

annealing considerably increases both the final stretch and con-

traction ; in other words, increases the ductility of the ma-

terial.

Again, Table XVII. shows that the ultimate resistance of

steel plates is essentially the same, botji
in the direction of

rolling and across it. This result is in agreement with that of

Mr. Hill's experiments, as well as that of French experiments
on Bessemer and Martin steel plates (Barba, on the " Use of

Steel," translated by A. L. Holley, pages 26 and 29).
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Effects of Hardening and Tempering Steel Plates.

In connection with the results given in Table XVII.
, Mr.

Kirkaldy found the following quantities by testing the same
sized specimens of the same plates :

Annealed.

ULTIMATE FINAL FINAL
RESIST. STRETCH. CONTRACTION.

0.64 inch.... 57,100 pounds. ... 24.1 per cent. ... 52. 5 per cent.

0.62 inch. ... 60,500 pounds. ... 20.2 per cent. ... 48. 7 percent.

Hardened.

0.64 inch.... 64,700 pounds. ... 22.4 per cent. ... 49. 3 per cent.

0.62 inch. ... 65,050 pounds. ... iS.o per cent ... 45. 5 per cent.

The hardening was done by heating to a cherry-red and

cooling in water at a temperature of 82 Fahr.

Table XVIII. exhibits the effects of simply annealing, or

of first oil tempering and subsequent annealing, on specimens
of gun steel manufactured by the Midvale Steel Company of

Phila., for the Ordnance Dep't U. S. Army, 1884. The results

are taken from the Report of Chief of Ordnance for 1884.

Oil tempering, or hardening in oil, may be said to almost uni-

versally increase both the elastic limit and ultimate resist-

ance.

Annealing in all cases reduces the ultimate resistance and

increases the final stretch and final elongation, i. c., increases

the ductility. Oil tempering with subsequent annealing, how-

ever, is seen in Table XVIII. to produce a very irregular effect,

although on the whole it slightly reduces the final elongation,

except in the case of high steel, for which the opposite effect is

produced. In all cases the combined operations are seen to

produce a very material increase in the final contraction.

Tempering or hardening increases both the elastic limit and

ultimate resistance, but decreases the ductility.
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TABLE XVIII.

Specimen Tests.
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TABLE XIX.

Rivet Steel.
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TABLE XX.

Pagersta Steel. Unannealed.
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TABLE XXI.

Pagersta Steel. Annealed.
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If unannealed, the hammered specimens give the highest
elastic limit and ultimate resistance; if annealed, while this

holds true (essentially) for the elastic limit, the rolled specimens

give the highest ultimate resistance in four out of the six tests.

Annealing decreases both the elastic limit and ultimate re-

sistance ; this was also found to be the case for both higher and

milder Fagersta steel specimens, which were similarly tested.

In a set of 24 experiments (precisely the duplicates of

those whose results are given in Tables XX. and XXI.) with a

higher grade of steel, the greatest final stretch was found to

belong to the smaller cross sections; while in a similar set with

a milder grade of metal, the greatest final stretch was found

with the larger bars, whether the specimens were unannealed

or annealed.

Other relative effects of hammering and rolling were some-

what irregular, and seemed to depend on the grade of steel.

Effects of Annealing Steel.

It has not been convenient to separately classify the experi-

mental results showing the effects of annealing, but it has been

seen that the process, in general, decreases both the elastic

limit and ultimate resistance, and increases the ductility ; the

lower grades of steel being the least influenced.

Steel Wire.

Table XXII. contains the results of testing, to ultimate

resistance, the wire for which the coefficients of elasticity were

given in Table I., together with some belonging to the Chrome
Steel Co.'s wire, also tested by the engineers of the New York
and Brooklyn bridge. The diameter of this wire was about

0.165 inch (No. 8 Birmingham gauge). As will presently be

shown, some of the material was cast ited and other Bessemer

steel, all having been hardened and tempered.
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TABLE XXII.

Steel Wire.
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excess of resistance over that in larger masses, as bars ;
it thus

exhibits the same general phenomenon as wrought iron under

similar circumstances.

Shape Steel.

The results given in Table XXI la. belong to steel angles

and deck beams rolled by the Phoenix Iron Co. for cruisers

TABLE XXILz.

Steel Angles and Deck Beams.

ORIGINAL
ANGLE OR DECK

BEAM.
INCHES.
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built by the U. S. Gov't in 1887. The tests were made at the

works of the Phoenix Iron Co., and show excellent metal
;
the

carbon varied from about 0.15 to 0.20 per cent.

Steel Gun Wire.

In 1875, W. E. Woodbridge, M.D., made a large number of

tests on the mechanical properties of steel gun wires. The
" wires

"
were about 0.3 inch square, having been drawn down

from bars 0.375 incn square. The full, detailed account of

these experiments is given in
"
Report on the Mechanical

Properties of Steel, etc., by W. E. Woodbridge, M.D."

The results given in this section are abstracted from the
"
Report

"
mentioned.

TABLE XXIII.

Gun Wires Annealed.

KIND AND MANUFACTURER.
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Table XXIII. gives results for wires which were annealed at

bright red heat, without oxidation.

The per cents, of final stretch are for five inches of original

length, except in the case of specimens marked "(10)," which

indicates that the per cents, are for ten inches of original

length.

Other tests of wires about 0.3 inch square and unannealed,

gave the following ultimate resistances in pounds per square
inch of original section. The wires were of different varieties

of steel, including cast and Martin steel.

130,800. 84,400.

106,900. 58,700.

108,200. 59,200.

135,000.

The elastic limit varied from 35 to 92 per cent, of the ulti-

mate resistance
;
and the per cent, of final contraction varied

from 1 1 to 43. The effect of annealing, both on resistance and

ductility, is made very evident by comparing the two sets of

results.

Effect of Low and High Temperatures on Steel.

The results of some German experiments and the expe-
rience of the Massachusetts Railroad Commissioners with s

rails for one year, have already been given in connection with

wrought iron.

Table XXIV. contains the results of the experiments by
Mr. Chas. Huston, as given in the "

Journal of the Franklin

Institute
"

for Feb., 1878.
" U. R." is the ultimate resistance in pounds per square

inch, while " C." is the per cent, of contraction at the section

of fracture.

Each result is a mean of three experiments.



3 24 STEEL IN TENSION. [Art. 34.

TABLE XXIV.
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January 699

February 598
March 854

April 235

May 235

June 160

July 247

August 1 56

September 214

October 328

November 341

December 692

The greatest number is found in the coldest half of the

year, but the greatest number for any one month belongs to

March, which is not the coldest month. It is probable that

this is due to the effect of long wear on the frozen ground
of the entire winter in connection with the possible alternate

freezing and thawing of the ground in the month of March.

Effect of Manipulations common to Constructive .Processes ; a/so

Punched, Drilled, and Reamed Holes.

The shop treatment of steel must in some respects be

peculiar to that metal, and different from that which character-

izes the manufacture of iron bridge members. The processes
of punching and shearing have been considered very injurious

to steel and comparatively uninjurious to wrought iron. More
intimate acquaintance with steel, in the various shop processes

requisite for the production of finished members, has shown that

the idea is certainly erroneous for the milder grades of metal.

There is no question that punching and shearing are injurious,

but it is found that, for steel with a tensile resistance below

65,000 pounds per square inch, the injury may be even
'

than for iron. It is chiefly necessary that no crack, even the

most minute, should be started in any punched or sheared sur-

face, for the reason that such a minute fissure may, within a

short time, extend itself injuriously before it is discovered. If
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punches and dies are maintained in a sharp condition the metal

will be more cleanly severed and there will be less liability to

this peculiar injury. Table XXV. is taken from a paper

by Mr, i Christie, M. Am. Soc. C. E., on the Treatment

of Metals for Structural Purposes, in the Transactions of that

society for October, 1893. It will be observed that the effect

TABLE XXV.

Bars Rolled Three Inches Wide, with Holes through the Middle of the Bar, and

Treated as described.

\
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resistance is probably due to the violent disturbance of the

molecules, and the resulting minute fissures in the metal within

the same region. The prejudicial effect is therefore removed

by reaming from the punched hole a thin ring of metal about

one-sixteenth of an inch thick. It will be shown further on, by
reference to some French tests, that usually a thickness of one-

twenty-fifth of an inch at most is sufficient for the removal of

all injured metal, but as the die is usually about one-sixteenth

of an inch larger than the punch a little greater thickness must

be removed in order to cover the requirements of the die side

of the plate. It is probable that the metal on that side is less

injured than that on the punch side. In all cases in Table

XXV. the ultimate resistance is reduced from ten to twenty-
three per cent, with a very large elevation of the elastic limit.

The effects on the thinner plates are somewhat less than on the

thicker ones. Indeed, it is possible to take a plate so thin that

the prejudicial effects would disappear, and, as a general rule,

it may be stated that the injurious effects increase with the

thickness of the plate, as they also increase with the carbon,

i. r., as the steel becomes higher in grade. It will be seen that

reaming to the dimensions indicated removes essentially all

the injurious effects of the punch so far as elastic limit and

ultimate resistance are concerned, and the observation can be

extended to the final stretch and final reduction, although, ap-

parently, the Table does not justify it. This is due to the fact

that the reamed hole makes the specimen a short one at the

section of fracture, and, as usual in such cases, both percentages
of stretch and elongation are reduced. The same shortening
effect raises the ultimate resistance of the piece with the

reamed hole above that of the original specimen.
Table XXVI., also from Mr. Christie's paper, shows the re-

sult of testing strips of steel plates of each given thickness,

with widths varying from one and a half to three inches.

The general effects of the cutting edge of the shear are

precisely the same as those of the punch, as the operation in
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each case is a shear. Hence, if sheared edges are planed off to

a depth of one-sixteenth to one-eighth of an inch, the injured

metal will be entirely removed. The hardening effects of both

shearing and punching may also be removed by the process of

annealing, although less effectually than by reaming and plan-

ing. As naturally would be inferred from experience with

punching, higher steels and thicker plates are more injuriously

affected by shearing than low steels and thinner plates.

In consequence of the irregular edge of a large sheared

TABLE XXVI.

NO.
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sistance, and with a thickness not exceeding one-half inch,

the loss in such joints due to punched holes is less, and some-

times very materially less, for steel than for iron. Neverthe-

less, as there is a material gain in reaming, it is usual, as it is

certainly the best practice, to remove the injured material with

the reamer in all cases of steel plates, and if a thickness exceeds

about three-quarters of an inch it is not unusual to require

holes to be drilled. It is also good practice, although not

usually required, to remove the sharp corners of reamed and

drilled holes so as to form a little fillet. This removes all

liability of sharp shearing action on the shaft of the rivet,

and it makes the contact of adjacent plates perfectly satis-

factory.

Steel seems to be very sensitive to the effects of hammer-

ing or working at what is termed a " blue heat." Consequently,
it is necessary to heat the rivet to such a temperature as will

enable the operation of heading to be completed before the

rivet cools to the blue stage. A bright red or yellow heat is

requisite for good work, and the rivet should be held under a

pressure of fifty or sixty tons per square inch of the shaft section

until the metal has time to flow throughout the rivet length
and thus completely fill the hole, otherwise the upsetting will

be complete at and in the vicinity of the rivet heads only. An
additional advantage in holding the rivet under the greatest

pressure of the riveter for a short time is the fact that the

rivet becomes cool enough to prevent the separation of the

plates.

The forging of steel requires unusual skill and experience.
When a piece has been heated to a proper temperature it

should be kept under work until it has fallen in temperature to

a proper point to secure all the advantages of working, but, of

course, not below red heat. The forging should be done with

a hammer whose weight is suitably proportionate to the mass

to be forged. If the hammer is too light the roult will be a

surface effect only, with the interior but little changed. Pres-
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sure forging, with appropriate facilities for attaining great pres-

sures, is probably capable of producing the best results.

The operation of annealing, particularly as applied to full-

size bars, is one of great importance in the manufacture of

structural steel work. The metal is heated as uniformly as

possible, so that undue stresses will not be developed, to a

bright cherry red, corresponding probably to about I,IOO or

1,200 degrees Fahr., and then allowed to cool gradually. By
this means any internal stresses that may have been produced

TABLE XXVIfl.
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at 80 degrees Fahr. The specimens were then bent around a

curve whose radius was not greater than the thickness of the

piece.

This bending was accomplished with a light power hammer,
but there is less liability of cracking when it is done with pres-

sure. Table XXVI0 shows his complete results, with the per-

centage of carbon in each piece. No specimen containing less

than .13 percent, of carbon cracked, but all containing more
than .23 per cent, of carbon broke. The Table shows what

may be expected from this quenching test, with ordinary struc-

tural steel, as the latter usually will be found considerably
within the limits of carbon shown.

The experiments of Prof. Alex. B. W. Kennedy, on the

effect of punching and drilling

holes, in mild-steel boiler plate, f~

are well illustrated by Table 1

XXVII., which is condensed \

from one given in London )

"Engineering," 6th May, 1881. )

None of these plates were an- /_^
nealed, but all were drilled or Fig. 2

punched as received. 4

Within the limits of these experiments, Prof. Kennedy
observes, neither the width of the test piece nor the different

diameters of die, had any essential influence on the results.

The injurious effect of punching is shown by the fact that

the punched specimens gave only 92 to 98 per cent, of tile-

resistance of the drilled ones.

It will be noticed that both the drilled and punched speci-

mens gave higher resistances than the natural plate This is

due to the "
shortening" and other influence (/. r., tVie disturb-

ance of the lateral strains) of the rivet holes, as before ob-

served, and explained in Art. 32,
" Ultimate Resistance and

Elastic Limit'."
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TABLE XXVII.

Punched and Drilled Holes.

z
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of the original plate for the drilled holes, but considerably less

for the punched ones.

Mr. Kirkaldy states,
" the loss from punching is not con-

stant, but varies with the thickness, and also with the hardness

of the material." He also concluded that punching hardens

the material in the vicinity of the punch, and that the effect of

punching is counteracted " to a considerable extent
"

by an-

nealing.
At the commencement of the use of steel for structural pur-

poses the effects of punching and shearing were regarded with

much apprehension, and many tests were made to ascertain the

extent of the prejudicial influence. The preceding matter is

practically a rsum of American and English experience.

Experiments on French steel plates, produced by the Bes-

semer and Martin processes (mttalfondu), confirm this result

and form a basis for other conclusions, as follows (" The Use
of Steel," by J. Barba, A. L. Holley, translator, p. 40) :

"
1st. That the effects of punching and shearing are essen

tially local and spread only over a very restricted region, less

than 0.039 mcn on tne edges of the sheared or punched parts ;

"
2d. That no cracks exist in this altered region ;

"
3d. That tempering destroys the effects of shearing and

punching by bringing the metal back to the state it would be

in if drilling or planing had been substituted for punching or

shearing ;

"
4th. That annealing alone or after tempering destroys, as

tempering alone does, the alterations caused by shearing and

punching."
These conclusions relate to plates from 0.27 inch to 0.46

inch thick.

In first-class practice, holes in steel plates and shapes

frequently first punched and then reamed to a diameter 0.125
inch greater.

Experiments on some narrow specimens of steel plate seem
to indicate that conicil punching (the die 0.16 to a 20 inch
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greater in diameter than the punch) injures the material less

than cylindrical punching (with a clearance of perhaps -^ inch).

In the working of steel plates and- shapes, during ordinary

constructive processes, all local pressure of great intensity, and

hammering while cold or at a low temperature, tend to pro-

duce internal strains of great intensity or other changes in

molecular condition which cause the finished plate or shape to

be liable to great brittleness and unlooked-for failure of a local

character.

For these reasons M. Barba gives the following directions

in regard to the working of steel :

"
1st. Avoid any local pressure of whatever nature it may

be ; 2d. If local pressures have been produced by blows of a

hammer, the action of the punch, etc. (which may, as we have

seen, cause ruptures), heat the piece to a cherry-red in a very

regular manner and as much as possible in its entirety the

whole of it at once and let it cool in the open air on a homo-

geneous surface, which has all over equal conducting power.
This simple reheating, which may be considered as annealing
for plates and bars, on account of their slight thickness, restores

to the worked metal its original qualities, even if it was in a

very unstable state of equilibrium."

If a large amount of working (such as bending or curving)

of a single kind is to be done to a single piece, it is best, if

possible, to heat to a cherry-red and do the work by stages,

rather than all at once ; and then anneal after the working is

completed. If the working is local and the heating irregular,

it may be necessary to anneal once or more during the progress

of the work.

Local heating in the production of the ordinary steel eye-

bar head, for example, frequently gives much trouble, unless

resort is had to subsequent annealing.

These difficulties in the working of steel are found more

pronounced in the higher grades, and much experience is still

needed before they can be entirely overcome.
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On account of the homogeneous character of the metal,

upsetting processes, as in riveting, etc., seem to injure the

molecular condition of steel much less than that of iron.

Bauschingcrs Experiments on the Change of Elastic Limit and

Coefficient of Elasticity.

The details of these experiments are given in " Der Civil-

ingenieur," Part 5, 1881. The manner of application of the

tests, and remarks on the quantities, elastic limit, stretch limit,

and final load, will be found by referring to page 262. The

following is the notation :

E. L. = elastic limit in pounds per square inch.

S.-L. = stretch limit in pounds per square inch.

F. L. = final load in pounds per square inch.

E. = coefficient of elasticity in pounds per square
inch.

Bessemer Steel.



334 STEEL IN TENSION. [Art. 34.

The elastic limit rises twice after two long periods of rest,

and falls in a very marked manner after the short rest of 0.5

hour.

The stretch limit rises steadily while the coefficient of elas-

ticity falls twice and then rises above its original value.

Prof. Bauschinger was the first to determine, in regard to

Bessemer steel, that by stretching the metal beyond its elastic

limit its elasticity is elevated, not only during the time of

action of the load, but also during a longer period of rest, with-

out load, of one or more days ;
and that, in this manner, the

elastic limit may exceed the load which caused the stretching.

(Dingler's Journal, Band 224.)

Fracture of Steel.

The character of steel fractures has been incidentally

noticed, in some cases, in the different tables.

If the steel is low, or if some of the higher grades are

thoroughly annealed, the fracture is fine and silky, provided
the breakage is produced gradually. In other cases the fract-

ure is partly granular and partly silky, or wholly granular.

In any case a sudden breakage may produce a granular

fracture.

Effect of Chemical Composition.

The ten sets of results given in Table XXVIII. are taken

from a great number of similar ones established by the United

States Test Board,
" Ex. Doc. 23, House of Rep., 46th Con-

gress, 2d Session," but other later and much more satisfac-

tory results will be found in Table X., page 304, and in the

context.

The amount of final contraction of fractured section may
be accurately estimated by comparing the ultimate resistances

of the original and final sections.
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The specimens were circular in section and either 0.625 inch

or about 0.8 inch in diameter, while all possessed a length of 6

inches.

Art. 35. Copper, Tin and Zinc, and their Alloys. Phosphor Bronze.

Coefficients of Elasticity.

Table I. gives the coefficients of elasticity (E) of the various

metals and their alloys, according to the various authorities.

These coefficients were determined by experiments in tension,

and E is given in pounds per square inch.

TABLE I.

METAL.
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TABLE II.

Cast Jin.

>.
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TABLE IV.

Tobin's Alloy.

p.
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TABLE V.

PERCENTAGE OP
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TABLE V.- Continued.

PERCENTAGE OF
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Copper 55.0
Tin 0.5

Zinc 44. 5

100. o

This alloy possessed an ultimate tensile resistance of 68,900

pounds per square inch of original section, an elongation of 47
to 51 per cent, and a final contraction of fractured section of

47 to 52 per cent.

The first and sixth alloys of copper, tin and zinc, in Table

V., are called by Prof. Thurston " Tobin's alloy." "This

alloy, like the maximum metal, was capable of being forged
or rolled at a low red heat or worked cold. Rolled hot, its

tenacity rose to 79,000 pounds, and when moderately and care-

fully rolled, to 104,000 pounds. It could be bent double either

hot or cold, and was found to make excellent bolts and nuts."

As just indicated for the particular case of the Tobin alloy,

the manner of treating and working these alloys exerts great
influence on the tenacity and ductility.

Baudrimont found for a copper wire 0.0177 inch in diameter,
an ultimate resistance of about 45,000 pounds per square inch,

the wire being unannealed, while for a diameter of 0.064 inch,

Kirkaldy found about 63,000 pounds per square inch.

Prof. Thurston states :

"
brass, containing copper 62 to 70,

zinc 38 to 30, attains a strength in the wire mill of 90,000

pounds per square inch, and sometimes of 100,000 pounds."
All of Prof. Thurston's specimens were what may be called

"long" ones, i.e., they were turned down to a diameter of 0.798
inch for a length of five inches, giving an area of cross section

of 0.5 square inch.

Gun Metal.

Major Wade (" Reports of Experiments on Metals for Can-

non," 1856) made many experiments on a gun metal composed
of copper 89 and tin 1 1 (very nearly), called gun bronze.
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He found that different methods of manipulation of the

molten metal and of treatment, as in cooling, affected to a great
extent its resistance.

TABLE VI.

Gun Bronze.
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TABLE VII.
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PJwsphor Bronze, and Brass and Copper Wire.

Table VIII. contains the results of the experiments of Mr.

Kirkaldy on phosphor bronze, with two results each for brass

and copper wire.

TABLE VIII.

Phosphor Bronze.

METAL.
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The first five results belong to metal of the same composi-
tion but subjected to different treatment.

Some specimens tested by Mr. Kirkaldy gave as low as

about 21,700 pounds per square inch.

Experiments on Rolled Copper by the " Franklin Institute

Committee"

The results of these experiments are contained in the

"Journal of the Franklin Institute," for 1837.

That committee found, as a mean of 66 experiments, the

ultimate resistance of rolled copper to be 32,826 pounds per

square inch. The temperature of the copper varied from 62

to 82 Fahr. " The irregularities of strength in the different

specimens varied from 1.9 to 4.8 per cent, of the mean te-

nacity."

The resistance was found to be the greatest at ordinary

temperatures, and to decrease with acceleration as the tempera-
ture increased.

Variation of Ultimate Resistance and Stretch at High
Temperatures.

The results contained in Table IX. were obtained at Ports-

mouth (England) Dockyard, and were published in the Engi*
mer, $th Oct., 1877.

" R "
is the ultimate tensile resistance in

pounds per square inch, and "
/." is the per cent, of stretch

for a length of 10 inches in all except the last (steel) specimen.
At 250 to 350 the gun-metal specimens lose about half

their ultimate resistance and nearly all their ductility. Phos-

phor bronze loses about one-third of its resistance and two-

thirds of its ductility at 300 to 400. Muntz metal and copper
are not much affected, nor is cast iron. Wrought iron and

steel gain in ultimate resistance but lose in ductility. These
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results would probably be somewhat varied by different pro-

cesses of, and treatment in, manufacture and construction.

The Muntz metal and copper specimens were rolled.

Bauschingers Experiments with Copper and Red Brass.

Prof. Bauschinger extended his experiments on the repeated

application of stress so as to cover not only wrought iron and

steel, the results of which have already been given, but also

copper and red brass.

The notation is that already used :

E. L. = elastic limit in pounds per square inch.

S.-L. = stretch limit in pounds per square inch.

F. L. = final load in pounds per square inch.

E. = coefficient of elasticity in pounds per sq. inch.

Imy = "
immediately."

The copper specimens were of rolled material about 16

inches long with a cross section about 2.4 inches by 0.64 inch.

These specimens gave an ultimate tensile resistance, per square

inch, of 28,900 to 32,000 pounds and a final contraction of 27

to 46 per cent.

The red brass specimens were turned to about one inch in

diameter and 16 inches long. They gave ultimate tensile re-

sistances, in pounds per square inch, varying from 19,600 to

23,460.

With one exception, in the second case of red brass, the

elastic limit and stretch limit were elevated by repeated ap-

plication of stress, whether immediately or at the end of fol-

lowing periods of rest.

The effects on the coefficient of elasticity are seen to be

somewhat irregular.
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Copper.
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Red Brass.
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The explanation of the method of applying these repeated
stresses will be found in connection with the results for

wrought iron on page 262.

Art. 36. Various Metals and Glass.

Coefficients of Elasticity.

The following values of the coefficients of elasticity, in

pounds per square inch, contained in Table I. are taken from

Wertheim's "
Physique Mtcanique" pages 57 and 58. The co-

TABLE I.
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Mirror glass E = 8,792,000 pounds per square inch.

Goblet (common) = 9,559,000
" " " "

Goblet (fine) = 8,589,000

Goblet (violet) =7,110,000
" " " "

"Crystal" =5,830,000

Ultimate Resistance and Elastic Limit.

Wertheim determined the elastic limit of many of the

more rare metals, such as those named in Table I., and they
are here given in pounds per square inch :

ANNEALED. DRAWN.

Lead 284 to 355

Cadmium 142 to 171

Gold 4,266 to 19,200

Silver 4,266 to 16,350

Palladium 7,no to 25,600

Platinum 20,600 to 37,000

His " limit of elasticity
"

is that force which will perma-

nently elongate the metal 0.000,05 f its original length, and

all his experiments were made on wires of very small di-

ameters.

The following ultimate resistances were found for wires

about -g^th inch in diameter by Baudrimont (" Annales de

Chimie," 1850) :

Gold 17,100 to 26,200 pounds per square inch.

Silver 40,3001040,550
" " "

Platinum 32,3001032,700
" " "

Palladium 51,7501052,640
" " " "

The ultimate resistances of some other metals are :

METAL. EXPERIMENTER. ULT. RESIST.

Cast lead Rennie 1,824 pounds per square inch.

Sheet lead Navier 1,926
" " " "

Pipe lead Jardine 2,240
" " "

Soft solder Q tin, -Head) . Rankine 7,500
" " " "
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Sir Wm. Fairbairn (" Useful Information for Engineers,"
second series, pages 226 and 267) found the following ultimate

resistances in pounds per square inch by direct pull on straight

tensile specimens :

Flint glass 2,413 pounds.
Green glass 2,896

"

Crown glass 2,546
"

The specimens were of circular section and about 0.53 inch

in diameter.

By subjecting spherical glass shells to internal pressure he

found the following ultimate resistances in pounds per square
inch :

Flint glass 4,200 pounds.
Green glass 4,800

"

Crown glass 6,000

The thickness of these shells varied from about 0.02 (crown
and green glass) to 0.08 (flint glass) inch.

Art. 37. Cement, Cement Mortars, etc. Brick.

The ultimate tensile resistance of cements and cement

mortars depends upon many conditions. The two great divi-

sions of cements, i. e. natural and Portland, possess very dif-

ferent ultimate resistances whether neat or mixed with sand,

the latter being much the stronger. With given proportions
of sand or neat, the ultimate resistances of cement mortar or

cement will vary with the amount of water used in tempering
and with the pressure under which the moulds are filled.

Again, the character of the sand used will obviously influence

largely the tensile resistance of the mortar produced ;
not only

the degree of cleanliness but the size of grain and the variety
of sizes arc elements which must be considered. It has also

been maintained by some that silica-sand will give better

results, other things being equal, than other sand. Finally,

23
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the shape of briquette used will affect the results to some

extent. Fig. 3 shows the form of briquette recommended by
the Committee of the American Society of Civil Engineers,

and it is the form generally used in American practice. It is

foreign to the purpose of this work to enter into the con-

sideration of all these influences
; they are only mentioned so

as to enable the few typical experimental results which follow

to be interpreted properly.

As the fineness of grinding is an important quality of a

cement, it is usually noted by stating the percentage of weight
of the cement which either passes through or is retained upon
a sieve having a stated number of meshes per lineal inch,

which number squared gives the number of meshes per square
inch. The sizes of the grains of sand used are graded in the

same way. The " No." of a sieve to which reference may be

made in what follows indicates, therefore, the number of

meshes per lineal inch.

Table I. exhibits the results of tests of a number of Ger-

man Portland cements, with those of two natural (Louisville)

cements, for the Water Commissioners of St. Louis, Mo.,

during 1893. All these specimens were twenty-four hours in

TABLE I.

Pounds per Square Inch,

CEMENT.
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air and six days in water before testing, except the Louisville

Lion, which were two hours in air and one day in water, and

Louisville Speed Mills, which were two hours in air and two

days in water.

Table II. shows the results-of testing both mortar briquettes

one part cement to three parts sand and those of the neat

cement at the ends of the periods named, extending to two

years. All cements are Portland, and the tests were also

made for the Water Commissioners of St. Louis. The figures

for both Tables I. and II. were taken from the annual report

of the Water Commissioners for the year ending April, 1894.

TABLE II.

Average of ten Briquettes in each case. Sand between No. 20 and No. 30 Sieve,

one day in air, remaining time in water. Tensile Resistance, Pounds per

Square Inch.

TESTS OF ONE PART CEMENT TO THREE PARTS SAND.

SAND
TESTS
1x03.

Fineness
on No. too
Sieve.
i week .

j weeks. .

I
week .

.t week .

3 months.
6 months.

9 months.
1 year...
2 yr.ir.

91.7
i p

3

3

71.

.c, ,

38

3
-,:

335

81.5
2t8

240
230
9 42

306

3<>7

34*

250
261

'97
2I 5
910
200

309
324

88.6

223
239
25'

3
337
33-
347-6
371

1

82.7
195
212
266

35'

349

2

83.6
229
141

59
jg

3
Bi
147

411

87.6#'
Z
MO
'7
4' J

in
..."

496

91.7
180.2

284

996
3<>3

353
4ai

TESTS OF NEAT CEMENT.

! W.Tk

3 works. .

t wi < k ,

3 months
6 months
g months.
!

>
.ir

.- ><M: ,

35<> 4 438.
4'".-- M,

700.8723.
-

;

807.8693.
7SJ-

4 586.o'6o6.2 59o.4'6ga-6 54o.o 716.0
4687.3 671.4 f.38.o 701.4 633.6791.8
8,679.4 664.8 711.8 802. b 659.6818.4

'-
,..; ku.i

748.4 -46.8
MS! e 828.2

i

2,739.0742.2 7

,0.8 855- 8,817. 86f:

8 848.0o 740.4

376.2 663. 21741. 6Vqt.afw. 8(393.61675. 6

448.8 693.8 782.0 855.0 603.4 671

471.0709.4847.682' 47688
487.1 710.4 039.6 871. 6'62J.
513.8690.61832.2810.8
525.0657.8874.6819.8
562.4 795.2963.6825.282
583.9 7i5.o!9a4-o8o5.88ii
597-4 764-4

!

93o -o 7S1.8 751

2,728
a 7->
2 7,7
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Table III. shows the results of a large number of tests of the
" Giant

"
brand of American Portland cement made in con-

nection with the construction of the works named. These results

were compiled by Mr. R. W. Lesley from the official records

of the works named, and they are averages in each case from

3 to over 4,000 tests. The table is particularly interesting in

consequence of the long period (five years) which elapsed before

the oldest specimens were broken. The proportions
" 2 to i"

and "
3 to i" mean 2 volumes of sand and 3 volumes of sand

to I volume of cement.

TABLE III.

Average Tensile Resistance in Pounds per Square Inch.
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TABLE IV.

Average Tensile Resistance in Pounds per Square Inch.
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Table VI. contains the results of tests by Mr. Geo. W.
Rafter on domestic Portland cements as given in the report
of the State Engineer and Surveyor of the State of New York

TABLE VI.

Ultimate Tensile Resistances in Pounds per Square Inch at the Ages Shown.

CEMENT.
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TABLE VII.

Ultimate Tensile Resistance in Pounds per Square Inch at the Ages Shown.

CBMBXT.
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City, N. Y. One part, by weight, of Aalborg Portland cement

was ground together with six parts, by weight, of clean silicious

sand to such a degree of fineness that essentially all of the

product passed through a 32,ooo-mesh sieve. This finely

ground mixture of I cement to 6 sand, by weight, is called
" neat" in what follows, while "(i-6) s. c.-2 q." is I part, by

weight, of the " neat
"

silica-Portland cement to 2 parts, by

weight, of crushed quartz, or " standard
"

sand, all of which

passes a No. 20 sieve and is retained on a No. 30 sieve. The
results were obtained in the cement-testing laboratory of the

department of civil engineering of Columbia College. The

figures on the left of the brackets show the number of tests of

TABLE Vila. SILICA-PORTLAND CEMENT.

Ultimate Tensile Resistance in Pounds per Square Inch.
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Greatest.

594 Ibs. per sq. in.

Mean.

536 Ibs. per sq. in. 441 Ibs. per sq. in.

Four specimens of the neat silica-Portland cement (1-6), one

day in air and the remainder of the time in water, gave the fol-

lowing results :

Age.

308 Ibs. per sq. in. . . .199 days.

Neat (1-6)
294
260

"
....189

"
....185

The English authority, Mr. John Grant, in his "
Experi-

ments on the Strength of Cements," published in 1875, gives the

mean results of his tests of Keene's and Parian cements shown
in Table VIII.

TABLE VIII.

ACE AND TIME IM-

MERSED IN WATER.
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1. Portland cement, if it be preserved from moisture, does not, like Roman
cement, lose its strength by being kept in casks, or sacks, but rather improves by
age ;

a great advantage in the case of cement which has to be exported.
2. The longer it is in setting, the more its strength increases.

3. Cement mixed with an equal quantity of sand is at the end of a year ap-

proximately three-fourths of the strength of neat cement.

4. Mixed with two parts of sand, it is half the strength of neat cement.

5. With three parts of sand, the strength is a third of neat cement.

6. With four parts of sand, the strength is a fourth of neat cement.

7. With five parts of sand, the strength is about a sixth of neat cement.

8. The cleaner and sharper the sand, the greater the strength.

9. Very strong Portland cement is heavy, of a blue-gray color, and sets slowly.

Quick setting cement has, generally, too large a proportion of clay in its composi-

tion, is brownish in color, and turns out weak, if not useless.

TO. The stiffer the cement is gauged, that is, the less the amount of water used

in working it up, the better.

11. It is of the greatest importance that the bricks, or stone, with which Port-

land cement is used, should be thoroughly soaked with water. If under water, in

a quiescent state, the cement will be stronger than out of water.

12. Blocks of brick-work, or concrete, made with Portland cement, if kept
under water till required for use, would be much stronger than if kept dry.

13. Salt water is as good for mixing Portland cement as fresh water.

14. Bricks made with neat Portland cement are as strong at from six to nine

months as the best quality of Staffordshire blue brick, or similar blocks of Bramley
Fall stone, or Yorkshire landings.

15. Bricks made of four parts or five parts of sand to one part of Portland

cement will bear a pressure equal to the best picked stocks.

16. Wherever concrete is used under water, care must be taken that the water

is still. Otherwise, a current, whether natural or caused by pumping, will carry

away the cement, and leave only the clean ballast.

17. Roman cement, though about two-thirds the cost of Portland, is only about

one-third its strength, and is therefore double the cost, measured by strength.

18. Roman cement is very ill adapted for being mixed with sand.

Mr. Don J. Whittemore has proposed the following formula

for the ultimate tensile resistance of cements :

in which T is the ultimate tensile resistance in pounds per

square inch
; A, an empirical coefficient, and N the age of the
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cement in days. For Portland cement (up to two years old)

he gives x 10, and A =
267 to 356, by the aid of

Mr. Grant's experiments.

(See Trans. Amer. Soc. of

Civ. Engrs., Vol. VII., Sept.

1878).

Fig. I shows the bri-

quette used by Mr. Maclay;

Fig. 2, that used by Mr.

Grant, while that shown in

Fig. 3 is the one generally

used at the present time.

Each briquette is I*/ inches

thick, giving a breaking sec-

Fig.l

Fig.2

iion of \y2 X i l
/2

= 2.2$

square inches. In such test-

ing it is very necessary that the pull should be central.

Artificial Stones.

The tensile resistances of many artificial stones and some
natural British ones, can be found in " A Practical Treatise on

Natural and Artificial Concrete," by Henry Reid, London,

1879.

On page 198 he gives the following results of Professor

Ansted's experiments, T being the ultimate resistance per

square inch :

Ransomc stone (artificial) T = 360 pounds.
Portland stone T 201 "

Bath stone 7^=145
"

Caen stone T = 140
"

He also gives for
" Victoria

"
(artificial) stone, three months

old,
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T = 740 pounds per square inch.

From 35 experiments on " rock concrete
"

pipe two years

old, for drainage and sewage purposes, Mr. Reid found :

HIGHEST. MEAN. LOWEST.

T =; 700 444 213 pounds per square inch.

Bricks.
\

Mr. Francis Collingwood, C. E. (Trans. Amer. Soc. of Civ.

Engrs., Vol. VII., Sept., 1878), found, as a result of twelve

experiments on "
good Haverstraw stock brick," the following

values :

T = 358 169 90 pounds per square inch.

Adhesion between Bricks and Cement Mortar.

General Q. A. Gillmore (" On Limes, Hydraulic Cements
and Mortars ") cemented Croton bricks together crosswise and

then separated them by a pull. He used pure cement paste
and mortars of various proportions, by volume, of cement to

sand, but never more sand than I volume of cement to 2 vol-

umes of sand. Nearly all the cement was Rosendale, although
some specimens were prepared with Hancock (Maryland) or

James River cement. Bricks so cemented in pairs were kept

320 days and then separated. Reviewing the results, Gen.

Gillmore says,
" In. tearing the bricks apart, at the expiration

of the time specified, in a majority of cases the surface of con-

tact of the brick and mortar remained intact, the adhesion to

the brick overcoming the cohesive strength either of the bricks

themselves, or of the mortar composing the joint between
them. The results, therefore, although interesting for other

reasons, furnish no entirely satisfactory measure of the power
of adhesion."
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Also,
" At the age of 320 days (and perhaps considerably

within that period) the cohesive strength of pure cement mor-

tar exceeds that of Croton front bricks. The converse is true

when the mortar contains fifty per cent., or more, of sand."

TABLE IX.
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TABLE I.

KIND OF WOOD.
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TABLE II.

KIND OF TIMBER.
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fibre be taken as units, the coefficients of elasticity along the

radius and tangent to the tree, will be 0.165 and 0.091 respect-

ively, while the ultimate resistances in the same directions

will be respectively 0.163 and 0.159, these results being con-

sidered averages.
The ultimate tensile resistances of many woods, domestic

and foreign, are given in Table II., as well as the specific grav-

ities.

The column " B" will be explained hereafter, in the chap-

ter on transverse resistance or bending.

TABLE III.
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were 30 inches long, while those of Mr. Hatfield were about

0.35 inch round.

It will be observed that Mr. Hatfield reached far higher
results than Mr. Laslett. This disagreement may be due to

the larger cross-sectional area of the latter's specimens, which

certainly brings his (Mr. Laslett's) results more nearly in

accordance with what might be expected from such pieces as

are ordinarily used by engineers. Mr. Hatfield's specimens
were far too small for technical purposes.

Table III. is taken from a paper "On the Strength of

American Timber," by Prof. R. H. Thurston (Jour. Frank.

Inst., Oct., 1879). The specimens were turned down to about

0.5 inch diameter for a length of 4.00 inches.

The small values of the coefficient of elasticity, as compared
with those given in Table I., are probably due to the fact that

they were found at the elastic limit. Smaller intensities of

stress would probably give much larger values.

Prof. Thurston also states that timber in tension takes a

permanent set however small the intensity of stress.

The values given in Table IV. were found by Col. Laidley,
U. S. Army, in the Government machine at Watertown, Mass.

(Ex. Doc. No. 12; 4;th Congress, 2d Session). Two of the

specimens were about 0.63 inch in diameter, and one 1.25

inches. All the rest possessed diameters of about one inch

each.

Such small specimens as those of Hatfield, Thurston, and

Laidley, which were probably selected, give much larger results

than would be found for large pieces of ordinary lumber; these

considerations are highly prejudicial to the technical value of

the results.

more importance attaches to the matter of size and

character of timber specimens than to those of metallic ones.

In the latter there is at least an approach to homogeneity of

material, which the presence of knots, conditions of growth,

seasoning, and other influences effectually prevent in timber
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specimens. Hence it is the more necessary to test timber in

circumstances of condition and size as nearly identical as pos-

sible with those which attend its actual use.

TABLE iv.

Diameter of Test Specimens, \ inch.

NO.
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COMPRESSION.

Art. 39. Preliminary.

With the exception of material in the shape of long col-

umns, but few experiments, comparatively speaking, have been

made upon the compressive resistance of constructive materials.

Pieces of material subjected to compression are divided

into two general classes " short blocks
"
and "

long columns ;

"

the first of these, only, afford phenomena of pure compression.

A " short block
"

is such a piece of material, that if it be

subjected to compressive load it will fail by pure compression.
On the other hand, a long column (as has been indicated in

Art. 25) fails by combined compression and bending.
Short blocks, only, will be considered in the articles imme-

diately succeeding, while long columns will be separately con-

sidered further on.

The length of a short block is usually about three times its

least lateral dimension.

It has already been shown in Art. 4 that the greatest
shear in a short block subjected to compression, will be found

in planes making an angle of 45 with the surfaces of the

block on which the comprcssive force acts, t. r., with its ends.

If the material is not ductile, this shear will frequently cause

wedge-shaped portions to separate from the block. But the

friction at these end surfaces, and in the surfaces of failure

will prevent those wedge portions shearing off at that angle.
In fact the friction will cause the angle of separation to be
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considerably larger than 45 ;
let it be called a. Then, in

order that there may be perfect freedom in failure, the length
of the block must not be less than its least width or breadth

multiplied by 2 tan a. In some cases, a has been found to be

about 55, for which value

2 tan a 2 X 1.43 2.86.

It was shown in the first section of Art. 32, that the
" ultimate resistance

"
to tension is in reality a mean, and not

the greatest intensity which the material exerts. The same

course of reasoning will show that it is, also, in general, im-

possible to subject a short block to a uniform intensity of

compression throughout its mass, and that the " ultimate re-

sistance to compression
"

is a mean, usually considerably less

than the greatest intensity which exists at the centre of a

normal section. As the inner portion will be supported later-

ally by that outside of it, large blocks of brittle material may
give greater intensities of ultimate resistance than small ones.

Art. 40. Wrought Iron.

It is difficult to fix the point of failure of a short block of

wrought iron or other ductile material. An excessive compres-
sive force causes the material to increase very considerably

in lateral dimensions, or to "
bulge

"
out, so that every in-

crease of compressive force simply produces an increased area

of resistance, while the material never truly fails by crumbling
or shearing off in wedges.
A short block of wrought iron is usually considered to fail

when its length is shortened by five to ten per cent.

If /, is any intensity of stress while /
x

is the compressive

strain, or shortening per unit of length caused by / then

according to Eq. (2) of Art. 2, the coefficient of elasticity for

compression at the intensity/ will be
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E -
1
""

/,

(I)

This ratio is not constant for all degrees of stress and strain,

though for wrought iron, within the elastic limit, the diver-

gences from a mean value are not great. Table I. contains

coefficients of elasticity calculated by Prof. De Volson Wood,
in the manner shown by Eq. (i), from the data determined by
Mr. Eaton Hodgkinson and given in his work before cited.

(See Prof. Wood's " Treatise on the Resistance of Materials ").

TABLE I.

Apr
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30,000.00 pounds per square inch (nearly). Hence, it is seen

that the greatest value of E^ is found for /, equal to one-half

to two-thirds the elastic limit.

The same general remarks in regard to the elastic limit,

which were made in connection with tension, may be also ap-

plied to the compressive elastic limit.

The " Steel Committee "
of British civil engineers, in 1870,

made some experiments on twelve bars of Lowmoor wrought

TABLE II.

POUNDS PER SQUARE INCH FOR
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2,000

28,OOO,OOO 14,000
of its length.

Table III. contains the results of some experiments made

by Mr. Kirkaldy on some specimens of Swedish iron, in 1866.

The last column gives the per cent, of compression of original

length which the piece suffered at the point called the "
ulti-

mate compressive resistance." The results show well the great
increase of resistance which a short block of ductile material

offers with the increase of compression.

TABLE III.

SECTION OP

SPECIMEN.
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TABLE IV.



Art. 41.] COEFFICIENTS OF ELASTICITY. 377

TABLE I.

INTENSITY OP STRESS.
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2,000 I

of its length.
12,000,000 6,000

If / is the length of a bar in inches, W the compressive
stress in pounds per square inch, then Hodgkinson found the

total decrement in inches for lo-feet Low Moor cast-iron bars

to be

V l (0.0123633 59 A/o.oooi52853 0.00000000191212 W). (i)

and the permanent set, in inches :

0.543^ + 0.0013 (2)

Major Wade tested a number of specimens of cast iron of

different numbers of fusions, in order to determine the ultimate

compressive resistance. His specimens were from 0.5 to 0.6

inch in diameter, and from 1.25 to 1.5 inches (nearly). The
results were as follows :

NO. OF EXPS. GREATEST.

2d 4 H4,504 99,770 84,529
3d 2 140,415 139,540 138,666

2dand3d... 2 169,427 168,589 167.752
2d 2 140,415 136,868 133,321
3d i 168,251 168,251 168,251
2d 5 163,528 154,576 I44.I4I
3d 4 174,120 167,030 156,863

All results are in pounds per square inch.

As the specimens gave way, portions sheared Off along

planes making angles with the normal sections of specimens

varying from 46 to 62.5. This is the characteristic compres-
sive fracture of cast iron.

The 3d fusion iron gave the highest resistance.

Mr. Hodgkinson (" Report of the Commissioners appointed
to Inquire into the Application of Iron to Railway Purposes,"

1849) took specimens of 16 different kinds of British irons, 0.75
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inch in diameter and 0.75 and 1.5 inches long, with the follow-

ing results :

117,605 86,284 56,445 pounds per square inch.

As a rule, the short specimens gave from 5 to 10 per cent,

greater resistance than the longer ones. From another set of

experiments with 22 different kinds of iron (specimens 0.75

inch in diameter and 1.5 inches long) he found :

GREATEST.

"5,995-

MEAN.

,84,200

LEAST.

.54,761 pounds per square inch.

Mr. Hodgkinson found that the hardness and ultimate

crushing resistance of thin castings were greatest near the

surface, but that in thick castings the surface and heart gave

essentially the same results. He also found that thin castings

gave considerably greater ultimate resistance to crushing than

thick ones.

Sir Wm. Fairbairn tested the effect of remelting on "
Eg-

linton
"
No. 3, hot-blast iron with the following results :

:CS. ULT. RESIST.

1 98,560
2 97,660
3 92,060
4 91.170

92,060
92,060

7 91,620
8 92,060
9 123,420

REMBLTINGS. ULT. RESIST.

10 129,250
II 156,350
12 163,740
13 147,840 defec.

14 214,820
15 171,810
16 157,920
17
18 197,190

All results are in pounds per square inch. It is observed

that the I4th remelting gives the highest resistance.

From what precedes, it is seen that the ultimate compres-

sive resistance of cast iron, in good ordinary castings, may
safely be taken from 85,000 to 100,000 pounds per square inch.
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Art. 42. Steel.

Table II. of Art. 34 contains the results found by Prof.

Ricketts in testing cylindrical specimens of mild steel in com-

pression. These specimens were six inches long between care-

fully faced ends, and, as the table shows, their diameters were

about 0.75 inch. The coefficients of elasticity for compression
were found by measurements very carefully made with a microm-

eter on a length of four inches. The elastic limits, however, were

determined by operating with a cylinder two inches long, and

were taken at those points where the material of the specimens
ceased to hold up the scale beam, and may have been some-

what above that point where the ratio between stress and strain

ceases to be essentially constant.

The coefficients of elasticity are seen to be quite uniform*

irrespective of the per cents of carbon, within the limits of the

Table, and they are seen to be a very little less than the coeffi-

cients for tension. Yet the difference is so small that no essen-

tial error will arise if, for all engineering purposes, they are

assumed the same.

A comparison of the elastic limits for tension and compres-
sion presents some irregularities ; yet with the exception of the

high percentages of carbon in the last two grades of Bessemer

metal, the two sets of elastic limits as wholes are not very dif-

ferent from each other. In the Bessemer steel with the two

high per cents of carbon, the tensile elastic limits are materially

higher thin those for compression. The following very impor-
tant conclusion results from this comparison of the elastic limits

for the mild structural steels : since these elastic limits are es-

sentially equal, it is not only permissible but wholly rational to

increase the working resistances of mild steel bridge columns

over those for iron in at least the same proportion that the

tensile working stress of the same steel is increased over that

of iron in tension. Experiments on a sufficient number of rull

size steel columns are yet lacking to verify this conclusion.
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Chief engineer Wm. H. Shock, U. S. N., 1868, gives the follow-

ing results for Parker Bros. " Black Diamond "
steel :

Normal untempered steel: Ult. Resist, from 100,100 to

112,400 pounds per square inch.

Heated to light cherry-red and plunged in oil at 82 Fahr.\

Ult. Resist, from 173,200 to 199,200 pounds per square inch.

Heated as before, and plunged in water at 79 Fa/ir., with

final temper (plum-blue) drawn on heated plate : Ult. Resist.

from 325,400 to 340,800 pounds per square inch.

Heated as before and plunged in water at 79 Fa/ir., and

tested at maximum hardness: Ult. Resist, from 275,640 to

400,000 pounds per square inch. In each of these cases there

were three tests.

The following values (each is a mean of 8 tests) were found

by the United States Test Board,
" Ex. Doc. 23, House of

Rep., 46th Congress, second Session,'* for small annealed speci-

mens of tool steel, of about one inch in length and 0.715 inch

in diameter :

Ult. comp. per sq. in. ) 175,992 ; 174,586; 183,938; 193,413; 193,197 ', 174,586;
of original section. ) 193,517 J 174,895 pounds per square inch.

Final comp. per sq. ) 134,717 ; 127,579; i498Si ; 139,196; 145,751 ; 128,834;
in. of final section. ) 125,126 ; 140,489 pounds per square inch.

The final lengths varied from 56 to 89 per cent, of the

originals.

Kirkaldy's
"
Experimental Inquiry into the Mechanical

Properties of Fagersta Steel," 1873, furnish data from which

may be computed a series of values of the ratio (,) of stress

over strain, or coefficient of elasticity, for different intensities

of stress.

All the specimens were cut from plates of mild steel of the

thickness shown in the table, and were loo inches long and

2.25 inches wide. They were laterally supported in a trough

arrangement designed by Mr. Kirkaldy.
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TABLE I.
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TABLE II.



384 STEEL IN COMPRESSION. [Art. 42.

lower for a set of 1 1 tests
; the upper crucible results are for a

set of 1 1, and the lower for a set of 20 (?) tests.

The " limits of elasticity
"

of specimens of the same steels

to which the upper portion of Table II. belongs (and for the

same number of experiments) are shown in Table III.

The following
" limits of elasticity," in pounds per square

inch, correspond to the lower portion of Table II. :

GREATEST.

Bessemer 47,490
Crucible 60,480

MEAN.

39,870.

52,190.

LEAST.

35,840 pounds.

36,290 pounds.

TABLE IV.

ELASTIC LIMIT IN POUNDS PER SQUARE INCH.
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specimens were turned to 1.128 inches (i square inch area) in

diameter, and were of the lengths shown.

The numbers 1.2, 0.9, O.6 and 0.3 were used to indicate the

different grades of steel, the larger numbers belonging to the

higher steels.

The specimens of one diameter in length shortened, under

a load of 200,000 pounds per square inch, 21, 22, 26 and 48 per

cent., respectively, for the marks 1.2, 0.9, 0.6 and 0.3. Three

of the " 2 diam." specimens failed by detrusion, or by portions

shearing off obliquely ; all the others either bulged or took a

skew form, though one of the " 8 diams." finally broke.

Table V. contains the results of Major Wade's experiments

TABLE V.
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Art. 43. Copper, Tin, Zinc, Lead and Alloys.

Table I. shows some coefficients of elasticity (i.e., ratios

between stress and strain), computed from data determined by
Prof. Thurston, and given by him in the " Trans. Amer. Soc.

of Civ. Engrs.," Sept., 1881. The gun bronze contained cop-

per, 89.97 ; tin, 10.00
; flux, 0.03. The cast copper was cast

very hot.

TABLE I.

STRESS IN POUNDS PER SQUARE
COEFFICIENTS OF ELASTICITY IN POUNDS PER SQUARE INCH.

INCH.
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TABLE II.
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The series of alloys presents some interesting results.

About the middle third of the series are seen to be brittle

compounds giving (as a rule) high ultimate compressive resist-

ances, while the other two-thirds are ductile, and give at the

copper end high results, and low ones at the tin end.

It will be observed that Prof. Thurston took the load per

square inch which gave a shortening of 10 per cent, of the

original length as the ultimate resistance to crushing of the

ductile alloys and metals, since such materials cannot be said

to completely fail under any pressure, but spread laterally and

offer increased resistance.

TABLE III.

PER CENT. OF
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The values of Zf, (ratios of stress over strain) are computed
for about one-quarter the ultimate resistance. This ratio is so

very variable for different intensities of stress that these alloys
can scarcely be said to have a proper

"
elastic limit."

In the "Philosophical Transactions" for 1818, Rennie gives
the following as the results of his experiments on 0.25 inch

cubes :

Fine yellow brass (10 per cent, shortening). . . 12,852 pounds per square inch.

Fine yellow brass (50 per cent, shortening). . . 41,216 pounds per square inch.

Cast lead (50 per cent, shortening). . . 1,932 pounds per square inch.

Art. 44. Glass.

The following results are taken from Sir Wm. Fairbairn's
" Useful Information for Engineers," second series. The

cylinders were about 0.75 inch in diameter and annealed.

TABLE I.

KIND OF CLASS.
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It will be observed that the cubes give considerably less

resistance than the cylinders.

All the glass was annealed, but Fairbairn remarks that the

cubes may have been only imperfectly so, since they were cut

out of the interior of larger masses, while the cylinders were

cut from rods as they were drawn. The latter, also, thus re-

tained their natural skins, which may have increased their

resistances.

At the instant of failure the specimens were shattered into

a great number of small pieces.

Art. 45. Cement Cement Mortar Concrete Artificial Stones.

Table I. of Article 37 contains the ultimate compressive
resistances of a great number of pure cements, as tested by
General Gillmore under the circumstances related in connec-

tion with the table. The results are given in pounds per

square inch.

TABLE I.
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struction of the St. Louis bridge.
" E. L." is the elastic limit ;

" R." the ultimate resistance to compression ; and "
E," the co-

efficient of compressive elasticity, all in pounds per square
inch.

The following results are from the same source :

Akron Cement.

4



392 CEMENT, ETC., IN COMPRESSION. [Art. 45.

TABLE la.

DESCRIPTION
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TABLE II.

s e ij

<
1

s i

I

I
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ULTIMATE COMPRESSIVE RESISTANCE IN POUNDS PER SQUARE FOOT.

H
U
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TABLE 1 1^.

6" x 6" x 6" Concrete Blocks.

I
X
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No. 1 4.237 pounds per square inch.

No. 2 5,650 pounds per square inch.
"

Four "granitic breccia" cubes, 3" x 3", about 25 years old,

gave the following results :

GREATEST. MEAN. LEAST.

8,886 8,028 7,533 pounds per square inch.

Seven blocks of Sorel stone, varying from ij^ x i* x i

inch to 2 x 2}i x i^j inches gave:

AGE. INERT MATERIAL. ULT. RESIST.

I year Coral sand 6,240 Ibs. per sq. in.

1
" Pulverized quartz 7>27O

" " "

2 years Washed flour of emery 19,640
" " "

3
' Fine marble 11,560

" " "

9 months Mill sweepings 6,130
" " "

2 years Marble and sand 4,920
"

Not known Marble with colored veneer 7,680
" " "

The weight of the oxide of magnesium varied from 12 to

15 per cent, of the whole.

The results of a series of tests, by Gen. Gillmore, in 1870
and 1871, on coignet be"ton blocks, 3.5 x 5.5 x 3 inches, are

given in Table III. Two blocks of each kind were tested. All

the blocks were two months old. The results are in pounds

per square inch.

With four 2-inch cubes of Frear stone, Gen. Gillmore ob-

tained the following results :

Four weeks old 4,500 pounds per square inch.

Four weeks old 4,626
" " " "

Three weeks old 2,250
" " " "

Six months old 2,000
" " " "

These blocks were composed of one measure of hydraulic

cement, two and a half of sand, moistened with an alkaline

solution of gum shellac of sufficient strength to furnish one
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TABLE III.

PROPORTIONS BY VOLUME, LOOSELY MEASURED.



Addendum to Article 45.

The following Table exhibits results taken from " Ex. Doc.

No. 35, 49th Congress, 1st Session." The compression tests

Compression of Cubes of Cement, Cement Mortar and Concrete.
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true in the original molds, or else were trued with plaster of

paris. The ages of the cubes, and cushions between which

they were crushed were as follows :

Dyckerhoff's Portland,

National,
"

Newark Co.'s Rosendale,

Norton's Cement,

age 22 months cushion steel.

"46 " " - "

22

46

and pine.

Pyramidal or approximately pyramidal failure along planes
of greatest shear took place very generally.

Each result for the Dyckerhoff Portland cement is a mean of

six tests
;
each of all the others is a mean of two tests.

The results are somewhat irregular, although the smallest

cubes generally give the greatest. Those for the 8, 12 and 16

inch cubes run comparatively uniform for any given mixture.

The following table shows the mean results of a great num-
ber of tensile tests of Portland and Rosendale cements by Eliot

Ultimate Tensile Resistance in Pounds per Square Inch.

AGE.
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Nos. I, 2 and 4 cracked, but did not crush to pieces, as the

others did.

NO. S12B OF BRICK. SURFACE. COMP. RESIST.

Inches. Sq. ins. Lbs. per sq. in.

1 2.3 x 3.52 x 4.4 15.5 3,230

2 2.24 x 3.5 x 4.46 15.6 3,360

3 2.34 x 3.5 x 4.52 15.8 2,750

4- 2.34 x 3.46 x 4.46 15.4 1,994

5 2.30 x 3.46 x 4.50 15.6 2,050

6 2.28 x 3.46 x 4.60 15.9 2,920

The pressure was applied on the two opposite largest faces

of the bricks, giving blocks whose heights were only 0.7 their

least widths.

In Vol. VII. of the " Trans. Am. Soc. of Civ. Engrs." Mr.

Francis Collingwood, C. E., gives the following as the results

of compressing ten whole bricks on end :

GREATEST. MEAN. LEAST.

3,060 2,065 i>524 pounds per square inch.

For ten half bricks on small side :

6,400 4,610 2,900 pounds per square inch.

For ten half bricks on flat side :

4, 1 50 3,37<> 2,670 pounds per square inch.

In regard to these tests Mr. Collingwood says,
" The

bricks were selected to give a fair average of *

good Haver-

straw stock brick/ not the hardest burned. No packing was

inserted in the machine between the bricks and the com-

pressing surfaces ; so that the strength in compression repre-

sents the case of imperfect beds, etc., although it was found

that it made but little difference." He attributes the higher

values for the " ten half bricks on small sides," over those be-
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longing to the half bricks on flat side, to the imperfect bearing
surfaces of the latter.

Table I. exhibits the results of testing piers of brick masonry
in the Gov't testing machine at Watertown, Mass. ; it is taken

from " Ex. Doc. No. 35, 49th Congress, 1st Session." The

TABLE I.

Crushing Strength of Brick Piers,

NO.
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Mass. The other bricks were from the Bay State Brick Co., of

Boston and Cambridge, Mass., and were medium burnt.

The crushing strength of three bricks of each kind, between

steel compression platforms were first determined as follows :

BRICKS.
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tested and to the great care exercised to have even bearings on
the compressed beds.

Art. 47. Natural Building Stones.

The ultimate resistances and coefficients of elasticity given
in Table I. were determined in connection with the construc-

TABLE I.

MATERIAL.
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TABLE II.

Two-inch Cubes.

KIND.



400 NATURAL STONES IN COMPRESSION. [Art. 47.

TABLE \\.-Continucrf.
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The specimens, whose tests are given in Table II., were 2-inch

cubes. " Each cube was placed between two cushion blocks of

soft pine wood, 2 inches by 2 inches square, and slightly more
than 0.2$ inch in thickness ; one on the top and the other

under the bottom ;
the grain of the wood being parallel in each

to the other though no difference was observed when this

was changed, as regards amount of record." . . .
" The

cubes were brought to a true, smooth and regu-

lar, but not a polished surface." The third column shows

whether the specimen was crushed " on bed
"
or " on edge."

TABLE III.

Berea Sandstone Cubes.

EDGE OF CUBE.
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thickness. The general result is very marked in spite of two

or three irregularities.

These results are natural consequences of the character of

stone and the cubical form of the specimens. A few of Gen-

eral Gillmore's experiments showed that such results would

probably not appear if the length of the specimens had been

two or three times the width or breadth.

The effect of different bearing surfaces on the ultimate

compressive resistance of stone cubes is well shown by the

results given in Table IV. All the results are in pounds per

square inch, and belong to two-inch cubes, with the exception
of the "Sandstone, drab" specimens, which were 1.5 inch

cubes. Each result is a mean of two to five tests.

TABLE IV.

ULT. COMP. RESIST., POUNDS I'ER SQUARE INCH.
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Again, polished and unpolished cubes give different resist-

ances per square inch, as shown in Table V. The results there

given are for two-inch cubes pressed upon by wooden cushions.

It is at once evident that the polished cubes gave consid-

erably the highest resistances. This is probably due to the

fact that the splitting action of the wooden cushions was re-

duced to a minimum on the polished surfaces.

TABLE V.
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TABLE I.

WOOD.
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diameter with a length of 2.25 inches
; they were compressed

in the direction of the fibre. The coefficients of elasticity were

computed at the "
elastic limit," i. e., at the point at which

permanent set began.
Table II. contains the results of experiments made by

R. G. Hatfield ("Transverse Strains," 1877). The specimens
were from one to two diameters high, and were compressed in

the direction of the fibres.

The mean results of numerous English experiments by
Thomas Laslett (" Timber and Timber Trees, Native and

Foreign," 1875) are given in Table III. He found very little

difference in the results for i-inch, 2-inch, 3-inch and 4-inch

cubes ; those for the smaller cubes, as a rule, gave a slight

excess over the others. The cubes were crushed in the direc-

tion of the fibre.

TABLE III.

Tl M BER.

i, 2, 3 and 4-inch Cubes.
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consequence of the large size of the blocks and the fact that

the pressure was applied with and across the fibre.

The blocks are seen to be from two to eight times as strong
with the fibre as across it.

TABLE IV.
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the block in one direction but not in the other. In all such
instances the ultimate resistance was a little less than in those

in which the area of compression was supported on all its

sides.

TABLE V.

p
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TABLE V. Continued.



CHAPTER VII.

COMPRESSION. LONG COLUMNS.

Art. 49. Preliminary Matter.

THERE is a class of members in structures which is subjected
to compressive stress, and yet those members do not fail en-

tirely by compression. The axes of these pieces coincide, as

nearly as possible, with the line of action of the resultant of

the external forces, yet their lengths are so great, compared
with their lateral dimensions, that they 'deflect laterally, and

failure finally takes place by combined compression and bend-

ing. Such pieces are called "
long columns,'* and the applica-

tion to them, of the common theory of flexure, has been made
in Art. 25.

Two different formulae were first established for use in

estimating the resistance of long columns ; they are known as
" Gordon's Formula

' ; and "
Hodgkinson's Formula." Neither

Gordon nor Hodgkinson, however, gave the original demon-

stration of either formula.

The form known as Gordon's formula was originally dem-

onstrated and established by Thomas Tredgold (" Strength of

Cast Iron and other Metals," etc.), for rectangular and round

columns, while that known as Hodgkinson's formula (demon-
strated in Art. 25) was first given by EuK r.

In 1840, however, Eaton Hodgkinson, F.R.S., published the

results of some most valuable experiments made by himself, on

cast and wrought iron columns (Experimental Researches on

the Strength of Pillars of Cast Iron and other Materials; PhiL
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Trans, of the Royal Society, Part II., 1840; and from these

experiments he determined empirical coefficients applicable to

Ruler's formula, on which account it has since been called

Hodgkinson's formula.

Mr. Lewis Gordon deduced from the same experiments
some empirical coefficients for Tredgold's formula, since which

time, Gordon's formula has been known.

The latter has been quite generally used, but K has lately

been displaced by the straight-line formula to br given later.

Hodgkinson's coefficients and formula will be given farther

on.

Before taking up either, however, it will be useful and con-

venient to determine the moments of inertia and squares of

the radii of gyration of the various forms of cross sections of

the columns now in common use.

It will also be both convenient

and important to determine the con-

ditions which exist with an isotropic

character of section in respect to

the moment of inertia.

In Fig. la let BC be any figure

whose area is A, and and whose

centre of gravity is at O. In the

plane of that figure let any arbitrary

system of rectangular co-ordinates
Fig.l.a

X', Y be chosen and let XY be any other system having the

same origin ; also, let x', y and x, y be the co-ordinates of the

element D of the surface A, in the two systems. There will

then result :

x = x cos a -j- y sin a.

y y COS a X SIH a.

The moments of inertia of the surface about the axes y and x

will then be:
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[x*dA = co? a\x*dA + 2 sin a cos cAx'y'dA + sit? a(y'*dA.

(y*dA = co? a(y*dA 2 sin a cos a(x'y'dA -f sin3 a(x'*dA.

If x and y are to be so chosen that they are principal axes,

then must \xydA = o, or :

O =
I

xy dA = sin a cos a \y!*dA + (cos* a sin* a) \x'y'dA

sin a tos a\x'*dA

2 \xydA
.'. tan 2 a =

\x'*dA - (y'dA

Hence, since tan 2a = tan (180 -f- 2a), there will always be

two principal axes 90 apart.

Now, if \x'ydA o, while no other condition is imposed,

tan 2 a This makes a o or 90 ; *>., X1

K' are the prin-

cipal axes.

If, however, \x'y'dA = o, while a is neither o nor 90, Eq.

irf become

=o;

or:
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tan 2a =
,

i.e.. indeterminate,
o

This shows that any axis is a. principal axis
; also, that :

\x*dA
= f^ = [x*dA =

\y'*dA.

Hence the surface is completely isotropic in reference to its

moment of inertia
; or, its moment of inertia is the same about

every axis lying in it andpassing through its centre ofgravity.
It has been seen that this condition exists where there are

two different rectangular systems, for which

\xydA = \xydA =

but the first of these holds true if either x or y is an axis of

symmetry, and the latter, if either x or y is an axis of sym-

metry.

Hence, if the surface has two axes of symmetry not at rigJit

angles to each other, its moment of inertia is the same about all

axes passing tlirougJi its centre ofgravity and lying in it.

Eqs. (la) and the two preceding it also show that the same

condition obtains, if the moments of inertia about four axes at

right angles to eacJi otJicr, in pairs, are equal.

In the case of such a surface, therefore, it will only be nec-

essary to compute the moment of inertia about such an axis

as will make the simplest operation.
Since a column fails partly by flexure, it is manifest that the

moment of inertia of its cross section should be the largest possible

about an axis passing through its centre of gravity, and normal

to the plane offlexure.
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Box Column of Plates and Angles.

Fig. i shows the cross section of ~T~

a box column composed of 4 plates

and 4 or 8 equal legged LS. FB
and CD intersect at the centre of F

~[

gravity of the cross_section.

If the 4 Ls shown in dotted lines _j
are omitted, the moment of inertia

about FB will be :

1
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If the dotted angles are not omitted :

(w_ t'fc a~~ 2t 4-

(sa)[(w + 2t (w2aY\ (d2s) [( ,

If latticing is used instead of the two plates bt'
,

t' becomes

equal to zero, and the first term in the sec9nd member of each

of the above equations disappears.
If A represents the area of the cross section, and r the

radius of gyration:

r* =
A (5)

r
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If latticing takes the place of the two plates bt ', all terms

in the second members of Eqs. (6) and (7) involving /' will dis-

appear. The moment of inertia about FB then becomes :

r (s -f /) d3 s (d 20?
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If the two plates bt
1 are omitted, the terms involving /' in

Eqs. (10) and (11) reduce to zero.

(Radius ofgyration}* = r3 =
;

in which A is area of sec-
jfl.

tion.

& False Channel Section.

Let FB and CD intersect in the centre of

gravity, G, of the section. The distance XT of

1 _LB G from the back of the channel, is :

---""
!(.___L-6- >l

(;#, >j
In which A is area of the cross section of

Fig. 4. the channel. This is usually found by taking

one-tenth of the weight, in pounds, per yard
of the channel. Analytically :

A = 2bf + t(d - 2?) (13)

The moment of inertia about CD then becomes :

,, __ 2t' (b x^ + dx* (d 2/') (X /)
3

3

About FB, it has the value :

(Radius ofgyration)
3 = r3 = -r- .A

The line CD can be very quickly and accurately located by

balancing the section, cut out of manilla paper, on a knife

edge.
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Eqs. (7) and (9) may now take the forms :

(16)

In Eqs. (15) and (16) A represents the area of one channel

section.

Angle Iron Section.

'

Fig. 5 represents this section

with the two axes taken parallel

to the legs, passing through the

centre of gravity G. The area

of cross section is usually found

from the weight per yard. Ana-

lytically :

H

Fig. 5.

A =

Again :

. . . (17)

(18)

,_

The moment of inertia about CD is

. . (20)
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About FB :

i = t(i-^ + t*>-v -<)(*-<)>
_ _ (2i)

If the angle iron is equal legged, / becomes equal to /'.

(Radius ofgyration)* r2 = r- .A
As in the case of the C> ^i and x' may easily and ac-

curately be found by balancing a model of the L section on a

knife edge.

Latticed Column of Four Angles.

rThe four L s are held in the relative

positions shown in Fig. 6 by latticing,
* the latter being riveted to the legs of

the L s
>

but n t shown in the Fig.

The L s are equal legged.

From either Eq. (20) or (21), the
it

_&
jj moment of inertia of the section of any

one L> about an axis passing through
its centre of gravity and parallel to b, is :

Hence the moment of inertia of the column section of Fig.

6, about FJ3, is :

/' = 4A + A ~ -
x,)

..... (22)

A is the area of the column section, or four times the area

of one L section.

If b is different from b'
,
the moment of inertia of the col-

umn section about an axis passing through its centre and par-

allel to b' will be found by simply changing b' to b in Eq. (22).
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(Radius ofgyration)* = r3 = .A

Latticed Columns of Plates and A ngles.

Fig. 7 represents a normal section

T~ I ! j^i I of one of these columns. By the aid of

Eq. (22), the moment of inertia of the

i' section about FB may be written :

1
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In the /' in Eq. 26, b' is to be changed to b. Ordinarily,

b = b' and t = f.

(Radius of gyration)
3 = r3 = -

,
A being area of cross-

section.

A

Tec Section.

The axis FB is taken parallel to the head of the tee section,

and CD perpendicular to it,

i

6 9
jj

while G is its centre of gravity.

Analytically, the area of the

section is :

Fig',9

A = bt + dt' . . . (27)

The area may also be taken

from the weight in the usual

manner.

r + (d+tjt-\
^ ^ ^ ^2g)

The moment of inertia about FB is :

bx* + ?(d + / - x$ -(b-
. . (29)

The moment of inertia about CD is:

/ =
12

(30)

(Radius ofgyration)* = r3 -, .

v4

As in the other cases, ^!5 may be located by balancing on a

knife edge.
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False I Section.

If the area is not taken from the weight per yard, it may be

written :

A = bd (b /') (d 2t) . . (31)

The moment of inertia about CD is :

(32)12

About FD it has the value :

I

|c

r &+ >

._!
B

^^
Fig.10

12 (33;

(Radius ofgyration)* = r* = .A

Star Section.

Fig. II shows this section with the different dimensions.

The area of cross section is :

A = bt + b't' - tt' . . . (34)

The moment of inertia about

FBis:

(35)

F"
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12 (36)

Ordinarily, / = f.

(Radius ofgyration)* = r* = .A

Solid Rectangular Section.

\

1

1
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/ =
- Kb'*

12 (40)

(Radius ofgyration)* r3 = : .

All the equations of this case (except Eq. (40)), just as they

stand, apply directly to the rect-

angular cellular section of Fig. 14,

considered in reference to the axis

FB. If there were n cells instead

of 3, the space between any adja-

cent two would have the width

_. _ 8.

Fig.H

Solid and Hollow Circular Sections.

First consider a solid cylindrical column whose cross section

has the radius ra ,
as shown in Fig. 15.

The moment of inertia about any di-

ameter is :

(40

(Radius ofgyration)* = ^

Fig. 15. 4

Next consider a hollow circular column whose interior and

exterior radii are r
t
and rt respectively. The moment of iner-

tia about any diameter i

(Radius ofgyrationj = ~ -,.
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As tables of circular areas are very accessible, it may be

convenient to write :

-_
12.566'

or ,- =
12.566

Phoenix Section.

Fig. 16 shows the section of a 4 segment Phoenix column.

Let CD represent any axis

taken through the centre of the

column. The moments of iner-

tia of the rectangles bl about

axes through their centres of

gravity and parallel to CD will

be very small indeed compared
with the moment of inertia of

the whole section. The mo-

ment of inertia of any one

of these rectangles, therefore,

about CD, will be taken as

equal to the product of its area

by the square of the normal

distance from its centre of gravity to the axis CD. The mo-
ment of inertia of the section about CD will then be :

/c

a + 0'
eol

/ = (43)

The moment of inertia is thus seen to be the same about

all axes, a result of the general principle established in the first

part of this Article.

The area of the cross section is :



Art. 49.] TRUE I SECTION. 425

A = (43*)

(Radius of gyration)* = r* = -r

The moments of inertia of six and eight segment columns

may be found in precisely the same manner. The moments of

inertia of the rectangular sections of the flanges about axes

passing through their centres of gravity, being very small indeed

when compared with the moment of inertia of the whole sec-

tion, may be neglected without sensible error.

Let r =

True I Section.

r is then the
b - /,

batter, or slope, of the under side

of each flange to the top or bot-

tom of the beam ; it ranges from

about one-third to essentially noth-

ing.

If the area of the cross section

is not deduced from the weight :

Area of section

= A = 2bt + ///, + s(b
-

/,)

The moment of inertia about '

CD is:

Fig.17

(45)
12 48

If /, is very small as compared with b, remembering that

- r is then essentially equal to s, there will result :
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(2/ :

IJ (46)

This formula is sufficiently accurate for all wrought-iron
and steel beams.

The moment of inertia about FB is:

12

In any of these three cases :

{Radius of gyration]
1 =

.

(47)

(48)

True Channel Section.

4+H
(

In Fig. 1 8 let r y -
;
as before,

b /
x

-^ it is the batter or slope of the under side

of the flange.

If the area of the section is not de-

B duced from the weight :

Area of section

= A = 2bt + ///, + s(b
-

/,) . . . . (49)

The centre of gravity, G, can be found

by balancing a manilla, or other, pattern
on a knife edge ; or, analytically :

ht?
(50)

The moment of inertia about ^7Z? is :
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If /, is very small compared with b, and remembering that

br is then essentially equal to s
; this last equation will become :

3

The moment of inertia about FB is :

bd* - --
(fr

-
//,)

_ Ajf ,. . . . (52)

In any of these three cases :

(Radius of gyration)* = (54)A

Deck Section.

The head of this section will be considered circular in out-

line, as shown in Fig. 19. Let a be the area of the circle C.

If the area of the section is not deduced from the weight :

Area of section

= A=a + (<t-A)t, + (l>-e,)(e+Xs). . (55)

If the centre of gravity, (7, is not found by balancing a

pattern on a knife edge, there will result, analytically :

2A
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-D-f -+G-~-ft--

|B

Fig,19

The moment of inertia about FB is :

(57)

in which equation r = -r

The moment of inertia about CD is :

/=
12

-(58)

If /. is small as compared with b, so that essentially
-- = s :

f = ? (d- h- t -s)

48

In all cases :
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(Radius ofgyration)* = r
A (60)

Angle Section about Oblique Axis.

The angle iron is here supposed to be equal legged, and the

axis about which the moment of inertia is taken, passes through
the centre of gravity (before found in this Art.) and cuts the

sides / at an angle of 45. In Fig. 20, G is the centre of grav-

ity and HK the axis.

The moment of inertia about HK is :

2}*,'
-

(*,
-

//} + t\l
-

(24T,
-

If A is the area of cross section :

(Radius of gyration^ r
A

If a long column has the same degree of fixedness or free-

dom in all directions, the least value of the square of the ra-

dius of gyration must be taken for insertion in Gordon's for-

mula, because in the plane of that radius the column will offer

the least resistance to flexure.
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Art. 50. Gordon's Formula for Long Columns.

Since flexure takes place, if a long column is subjected to a

thrust in the direction of its length, the greatest intensity of

stress in a normal section of the column may be considered as

composed of two parts. In fact, the condition of stress in any
normal section of a long column is that of a uniformly varying

system composed of a uniform stress and a stress couple. In

order to determine these two parts let 5 represent the area of

the normal cross section
; /, its moment of inertia about an

axis normal to the plane in which flexure takes place ; r, its

radius of gyration in reference to the same axis
; P, the magni-

tude of the imposed thrust
; /, the greatest intensity of stress

allowable in the column, and A, the deflection corresponding

to/. Let/' be that part of /caused by the direct effect of P,

and /" that part due to flexure alone. Then, if h is the greatest

normal distance of any element of the column from the axis

about which the moment of inertia is taken, by the " common

theory of flexure :"

'-'
If the column ends are round, c' = I

;
but if the ends are

fixed, the value of c' will depend upon the degree of fixedness.

Also,

Hence,

P= ^ (3)
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Eq. (3) may be considered one form of Gordon's formula.

Before deducing the more common and useful form, it will

/
2

be necessary to show that A = a
-j-

;
in which expression a is

considered constant.

Let p be the greatest intensity of bending stress in any

section, whose greatest value in the column is /". By the
** common theory

"
(taking the origin of co-ordinates at the

centre of gravity of the cross section at one end of the column,

and the axis of x along the centre line before flexure) :

dx*

Also,

Mk
(4)

in which equations E is the coefficient of elasticity M the

bending moment for any section, and J/ the value ofM cor-

responding to/".

Hence,

Consequently,

-p-- and --f M,' dS~ Eh M,-

.
(' r fL *.
)'.A'M.

dx> (5)

The section located by / is that at which the deflection is

greatest, and for which - - = o, while ~j is considered con-
ax /://

stant. The ratio ~j-f is numerical, though variable, being one be-
-0/0
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tween quantities of the same degree. M is exactly the same
as My except that ;r, in the latter, is displaced by /

;
there are

the same number of terms in each, and those terms are multi-

plied by the same coefficients. Now
[

M'

dx* may be so ar-

Jo J/o

ranged as to have the same number of terms as Mw but the co-

efficients of those terms will be different, and the exponents of 1

in the former ivill be greater by 2 than the exponents of / in Mv
Hence /

2 = r
2
/
2
(c being some constant) will be a factor in all

the terms of the definite double integral. From these con-

siderations it follows that,

CTJo J'o

in which a' is some constant. Consequently,

It is seen therefore that the quantity a
l depends upon both

p" and E, and it is ordinarily considered constant.

Since / = Sr2
, Eqs. (i) and (7) give :

Eq. (8) shows that a^c' a.

Hence,

(9)
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The integration by which Eq. (7) is obtained, being taken

between limits, causes everything to disappear which

depends upon the condition of the ends of the col-

umn. Consequently Eq. (9) applies to all columns,

whether the ends are rounded or fixed. Let the lat-

ter condition be assumed, and let it be represented in

the adjoining figure. Since the column must be bent

symmetrically, there must be at least two points of

contraflexure. Two such points, only, may be sup-

posed, since such a supposition makes the distance

between any two adjacent points the greatest possible

and induces the most unfavorable condition of bend-

ing for the column.

If B and C are the points of contraflexure sup-

posed, then DC will be equal to a half of AD, for each

half of DC must be in the same condition, so far as flexure is

concerned, as either AB or CD. Also, the bending moment at

the section midway between B and C must be equal to that at

A or D. Consequently, the free or round end column BC
must possess the same resistance as the fixed or flat end col-

umn AD. In Eq. (9), therefore, let / = 2BC = 2/, :

P=
+ 4"

(10)

Eq. (10) is, consequently, the formula for free or round end

columns with length /,.

The flat, or fixed end column AD, is also of the same re-

sistance as the column AC, with one end flat and one end free

or round. Hence in Eq. (9) let there be put / = J AC =
J/',

and there will result, nearly,

/*
1.8*--

. . . (n)
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Eq. (11) is, then, the formula for a column with one end

flat and the other round. A slight element of approximation
will ordinarily enter Eq. (u) on account of the fact that C is

not found in the tangent at A just as Eqs. (9) and (10) are

based on the supposition that A and D lie exactly in the line

of action of the imposed load.

If the column is swelled, as shown in Fig. 2, the

the moment of inertia /, and distance, k
y become vari.

able. Hence:

Consequently,

/ Mh
.

and,

Fig.2

^

M
If, in the reasoning applied to Eq. (5), there be written

M
for M, and =? for M

, it will at once be seen that Eq. (12) will

give precisely the same general form of result as Eq. (5), but

the coefficient a will have a different value. Farther, since

7 -T- /can never be less than unity, but is in general greater, it

follows that, for swelled columns, a is greater than for columns

that are not swelled. Although these considerations show that

the value of a will be different in the two classes of columns,

yet they also show that the general form for the breaking

weight Pj whatever may be the condition of the ends, will be

precisely the same whether the columns are swelled or straight.

Since the swelling of a column will give it a greater resist-

ance to bending, /" will take a correspondingly less value, while
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Pand 5 remain the same. Eq. (8), then, shows that if /and S
are unchanged, P must be increased. In other words, a swelled

column will sustain a greater load than one not swelled but

possessing the same kind and area of cross section. This is

indeed true of solid columns, but may not be, and usually is

not, for reasons to be assigned hereafter, true for built columns

of shape iron. These reasons are not introduced in the hy-

pothesis on which the formulae are based.

Although the quantities /and a, in Eqs. (9), (10) and (11),

are usually considered constant, they arc strictly variable. Eq.

(7) shows that a is a function of /" -=- E. It is by no means
certain that/" is the same for different forms of cross section,

or even for different sections of the same form, and the coeffi-

cient of elasticity is known not to be perfectly constant. It

(the latter) is known not only to vary with the products of

different iron mills, but even with the different products of the

same mill.

Again, the greatest intensity of stress,/ which can exist in

the column varies not only with different grades of material,

but there is some reason to believe that it must also be consid-

ered as varying with the length of the column. The law gov-

erning this last kind of variation, for many sections, still needs

empirical determination. It is clear, therefore, that both/ and

a must be considered empirical variables.

The expense necessarily attending experimental researches

on the ultimate resistance of long columns built of American

material, has prevented the attainment of many desirable re-

sults. Yet much very valuable work of this kind has been

done.

In the "
Report of Progress of Work," etc., made by Thomas

D. Lovctt, consulting and principal rniHmvr to the trustees of

the Cincinnati Southern Railway, Nov. I, 1875, arc found the

records of some valuable cxpi -rinn nts on wrought-iron long col-

umns. The results of these experiments will be used in fixing

values of a and/.
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If the number of experiments were sufficiently great, the

results should be combined by the " Method of Least Squares."
In the present instance, however, the use of the method is al-

together impracticable in consequence of the small number of

experiments of any given class. It will be seen, however, that

the combination of the experimental results is not altogether of

a random nature.

Since /and a are to be considered variable quantities, let y
p

take the place of f and x that of a
; also, let p represent

wj

the mean intensity of stress. Eq. (9) then takes the form :

in which c = /
2 ~

?'
2

. For round or free end columns x will

take the place of 4*7, and of i.Sa for columns with one end round

and one end flat.

In Eq. (13) there are two unknown quantities,/ and X, con-

sequently two equations are required for their determination.

If two columns of different ultimate resistances per unit of

section, and with different values of c, are broken in a testing

machine, and the two sets of data thus established separately

inserted in Eq. (13), two equations will result which will be suf-

ficient to completely give y and x. Those two equations may
be written as follows :

y = p' (i +c*x) (14)

y=p"(i+c"x) (15)

The simple elimination of/ gives:

*-= (I6)
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Either Eq. (14) or (15) will then give y.
In selecting experimental results for insertion in Eq. (16),

care should be taken to make the differences/"
- / and c c"

as large numerically as possible, in order that the errors of ex-

periment may form the smallest possible proportion of the

first.

Before applying Eq. (16) it would be well to recognize the

condition of the end of a column resting on a pin, as in pin
connection trusses. The end of a column resting on a pin

might, at first sight, be considered round or free in a plane
normal to the axis of the pin. The compressive strains exist-

ing in the vicinity of the surface of contact between the pin
and soffit of the pin hole, produce a considerable surface on

which the frictional resistance to any relative movement is very

great. This resistance to movement is not sufficient to pro-
duce a "

flat
"
or " fixed

"
condition of the column end, but

causes a degree of constraint intermediate between the flat and

round condition
; so that a column with two "

pin ends
"
gives

an ultimate resistance approximating to that of a column with

one round end and one fixed end. The following two cases

will then hereafter be recognized :

Two Pin Ends,
One Pin End and one Flat End.

All the necessary data for the treatment of the experiments

given in the report of Mr. Lovett, are found in the following
table. The column " Area

"
gives the areas of normal cross sec-

tions in square inches. The column r3 gives the squares of the

radii of gyration, in inches, about axes normal to the plane of

bending. It is inferred from the table and the report under

consideration that the radii of gyration for swelled columns

belong to sections at middle of columns. The c column con-

tains the squares of / divided by r, both bcini^ taken in the

same unit ; it is a matter of indifference what that unit may be.



43$ GORDON'S FORMULA. [Art. 50,

The quantities x, y and/ are found by the formula (16), (15) or

(14) and (13). The column headed Exp. contains the ultimate

resistances in pounds per square inch, determined by experiment.

Keystone

Closed
Qpcn Square Phoenix

An "
open

" column is one in which the flanges of the seg-
ments that compose it are separated by an open space; a

closed column is one in which no such spaces are found. All

the columns treated in the table are closed except Nos. 2, 3, 4,

8, 25,31, 24, 26, 30, and 5.

The columns 13 and 19 failed about axes giving t\iz greatest
moments of inertia or radii of gyration. This was probably
due to some cause equivalent to a less degree of constraint at

the ends than was intended. For this reason those two results

are not used in determining x andj. They will be noticed

again.

An examination of the table shows that the flat end swelled

and open straight Keystone columns give about the same ulti-

mate resistance, by experiment, per square inch, so long as c

remains the same, though the straight columns give the largest
results by a little. Hence p' was taken as an arithmetical

mean of the experimental results of Nos. 4, 25, 31, 24, 26, and

30, and c' at 9,208. In the same manner/" was taken a mean
of the experimental results for Nos. 3 and 8, and c" at 3,060.

The arithmetical means mentioned are/' = 25,517 pounds, and

/" = 32,850 pounds. Substitutions in Eqs. (16) and (15) or

(14), then give:

x = 0.00005455 and y = 38,300.00 pounds.
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y is taken at the nearest hundred. These values of x and y,

placed in Eq. (13), give the values in column "/."

Since, however, the resulting values of "p" were a little too

large for the swelled columns, and a little too small for the

straight open ones, x was allowed to remain as determined,

and y was made 36,000.00 for swelled, and 39,500.00 for

straight open columns. The resulting values of "/>" are given
in the table.

The differences between the results in the columns "/"
and "

Exp" are not greater than experimental differences.

Since x depends on the condition of the ends of the col-

umns, as well as on the character of the iron, it is reasonable to

give it the same value for all flat end Keystone columns. Then

taking jj/
at 39,500.00 pounds, it will be seen that Eq. (13) gives

results agreeing, as nearly as could be expected, with those of

experiment for straight closed Keystone columns with flat

ends.

No. 5 is the only experiment with a pin end Keystone col-

umn. As it was also swelled, y has been taken at 36,000.00

and x at TTO o~u> so tnat p would be a little less than the result

of experiment. As these values depend on one pin end ex-

periment only, they should not be considered very satisfactory.

At the same time corresponding values for other columns show

that they cannot be very erroneous.

Precisely the same general principles and considerations

governed the selection of x and y for the several remaining
classes of columns shown in the table. The agreement be-

tween the columns/ and Exp. is as close as could be expected.

The extraordinary character of Nos. 13 and 19 has already

been noticed. No. 13 was intended to be a pin end column,

but the plane of flexure contained the axis of the pin. Now
if it be considered a round end column in the plane of failure,

x will have the value 4 X ^nroirzr
= TTiiro> and tne resulting

value of p will be 24,600.00 pounds. The result of experi-

ment was 24,000.00 pounds. Again, No. 19 was intended to
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be a flat end column, but it failed in the direction of its great-

est radius of gyration. Using the values of x and y for pin

ends, there will result / = 26,400.00 pounds. The result of

experiment was 27,800.00. The effect of defective fitting, etc.,

would therefore seem to be the lessening of the end constraint

by what may be termed one degree.

Expressing all the results in concise formulae, they may be

written :

Keystone Columns.

Flat Ends Swelled / = -
-ya ;

. . . (17)

I +
18300 r*

I +
15000 r*

Flat Ends
j Open. ) 395QQ

Straight.. (Closed}
*>

'

"T^/*"

18300 r*

Pin Ends Swelled / = -
, ;

. . . (19)

Square Columns.

Flat Ends /= ^ ;
. . . (20)

"

350007*

Pin Ends />=- ;
. . . (21)

I -4-

17000 r*
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Phcenix Columns.

Flat Ends / = 42C

^ /a
;

. . . (22)

50000 r3

Round Ends p= - 42QO
;

. . . (23)

12500 7*~

Pin Ends (hypothetical) ..../= ;
. . . (24)

j
i

22700 r3

American Bridge Co. Columns.

Flat Ends ................./ = - 36
;

. . . (25)

j
I _ _
40000 7^

Round Ends .............../ = - 36o -
;

. . . (26)
T I _ _

11500 r2

PinEnds ................../==

21500 T2

The pin end formula for the Phoenix column is based on

the hypothesis that the relation between the values of % for

flat and pin ends is the same as that existing in the American

Bridge Co. columns, which last is shown by experiment. This

is a very unsatisfactory method, and should not be implicitly

relied upon.
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All values of x for round end columns are found by multi-

plying the corresponding flat end quantities by 4, according to

Eq. (10).

Eqs. (17) to (28), inclusive, give the ultimate resistances of

the various classes of columns. With great variations of stress

a safety factor as high as six or eight may be used, or it may
be as low as three or four if the condition of stress is uniform

or essentially so.

For a complete account of the details of the foregoing ex-

periments, the original
"
Report

"
must be consulted. The

consideration of the shades of influence exerted by the differ-

ent devices to produce a given end condition have here been

neglected on the ground that such degrees of influence are too

small to be involved in a practical formula.

Some important deductions bearing on built columns of all

forms of cross section may be drawn from the results of these

experiments. It has already been noticed that the swelled

columns Nos. 2, 3, 4, 8, 25, 31, do not give as great ultimate re-

mces as similar straight ones; a result perhaps not to be

expected, though the explanation is simple. Both internal

tensile and compressive stresses are induced in the originally

ight segments when they are sprung to their proper curva-

ture in the swelled column. Consequently this internal com-

pressive stress causes a portion of the material to reach its

ultimate resistance much sooner than would be the case if the

columns were straight. Again, a slight increase of direct com-

pressive stress is caused by the inclination of the segments of

the column to its axis. If the segments could be prepared for

the column without initial internal stress, the ultimate resist-

ance would probably be considerably increased.

A consideration of tin-sir experiments would also seem to

indicate that a closed column is somewhat stronger than an

open one. This is undoubtedly due to the fact that the edges
of the segments are mutually supporting if they are brought in

contact and held so by complete closure, but not otherwise.



444 GORDON'S FORMULA. [Art. 50.

Thus the crippling or buckling of the individual parts of the

column is delayed, and the ultimate resistance increased.

The general principles which govern the resistance of built

columns may, then, be summed up as follows:

The material should be disposed as far as possible from the

neutral axis of the cross section, thereby increasing r ;

There should be no initial internal stress ;

The individualportions of the column should be mutually sup-

porting ;

The individual portions of the column should be so firmly
secured to each other that no relative motion can take place, in

order that the column may fail as a whole, thus maintaining the

original value of r.

These considerations, it is to be borne in mind, affect the

resistance of the column only ;
it may be advisable to sacrifice

some elements of resistance in order to attain accessibility to

the interior of the compression member, for the purpose of

painting. This point may be a very important one, and should

never be neglected in designing compression members. It

may be observed, however, that the sole object is to prevent
oxidation in the interior of the column, and if the column is

perfectly closed this object is attained. Phcenix columns

which have been in the most exposed situations (in one case

submerged in water at one time for several hours) during

periods varying from twelve to twenty years, without the

slightest oxidation in the interior of the columns, have come
within the observation of the writer. Different results, how-

ever, in other cases have been found.

In the experiments detailed in Mr. Lovett's report it is to

be noticed that all deduced values of/ are less than the ulti-

mate resistance of wrought iron in short blocks, and some,

though not nearly all, would seem to indicate that this differ-

ence increased slightly with the length of the column. Fur-

ther experiments, therefore, may show that the quantity /has
some such value as the following :
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f-c,.

C being a constant quantity, and /a furiction of the reciprocal
of the length.

In connection with the experiments already detailed, Mr.

G. Bouscaren, C. E., has given an account, in the Trans, of the

Am. Soc. of Civ. Engs. for Dec., 1880, of other experiments,
the results of which are given in the table below.

Column No. 33 was composed of four angle irons,

" X 2^" X *",

arranged as shown in the figure. It was swelled

from 8X" X 8^" at the ends to 10" X 10" at

the centre. There was only one experiment
with this form of column, consequently the val-

ues of x and y in Eq. (13) could not be- deter-

mined. The angle irons, however, were of the

same manufacture as the iron of which the Am. Br. Co.'s col-

umns were built. As a mere matter of trial, therefore, y is

taken at 36,000.00 pounds, and x is then found to be -

This result seems to indicate considerable advantage in such

a form of column, but one experiment alone furnishes insuf-

cient basis for such a deduction.

The columns 35 and 36 illustrate the effect of repeated stress.

The columns 37 to 43, inclusive, were intended to furnish

information in regard to the distance between the rivets in the

zigzag bracing and the thickness of the metal, in order that

the column may fail as a whole and not by
" local buckling."

Columns 39 and 40 were each composed of a single short

piece of channel bar ; the others were composed of two chan-

nel bars held together by zigzag bracing.
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NO.
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No. 41. Column same as No. 37 with riv- -^^
ets spaced 20", in same flange, instead of 24". w'

Failed b bucklin of web and bendin inby buckling of web and bending ...
(

both directions, simultaneously. ^
No. 42. Failed by buckling in plane of lat-

j
!* r. j-tf ticing, without buckling of metal,

ij
From these experiments Mr. Bouscaren

|
!. ft'

3" LJ concluded that, for the ratio of length to diam-

eter used,
" the thickness of metal should not

be less than of the distance between supports transversely,

. . . . and that the distance between rivets longitudinally
should be such that the length of channel spanning it, con-

sidered as a column, .... shall give the same resistance

per square inch of area as the column itself, treated in the

same manner with the same constant V"," (y).

These conclusions are agreeable to that reached by Mr. B.

B. Stoney :
" When the length of a rectangular wrought-iron

tubular column does not exceed 30 times its least breadth, it

fails by the bulging or buckling of a short portion of the plates,

not by the flexure of the pillar as a whole." (Theory of Strains,

2d Kdit., Art. 334.)

It should be stated that the experiments whose results have

been given were made in hydraulic machines in which the

forces were not weighed, consequently the results involve the

"packing" friction, which was probably not great, however.

In applying Eqs. (9), (10), and (n) to solid cast-iron col-

umns, there may be taken, approximately:

/ = 80000.00 pounds, and a ==

For solid wrought-iron columns, approximately :

f = 36000.00 pounds, and a = y* J 5 .
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Experiments on steel columns are still lacking. Mr. B.

Baker, in his "
Beams, Columns, and Arches," gives for

Mild Steel, / = 67000.00 pounds, and a =
Strong Steel,f 114000.00 pounds, and a =

These, however, must be considered only loose approxima-
tions for the ultimate resistance.

In the " Trans, of Am. Soc. Civ. Engrs.," for Oct. 1880, are

given the following formulae for ultimate resistance of wrought-
iron columns, designed several years since by C. Shaler Smith,
C.E.:

Square Column.

FLAT ENDS.

38500
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/ =

Common Column.

Lattice

.
~

. __
1500^

36500
~

The formula for "
square columns

"
may be used, without

much error, for the common chord section composed of two

channel bars and plates, with ,the axis of the pin passing

through the centre of gravity of the cross section.

Compression members composed of two channels connected

by zigzag bracing, may be treated by the same formula after

putting 36,000.00 for 39,000.00 in Eqs. (21) and (22).

Art. 51. Experiments on Phoenix Columns,* Latticed Channel Columns
and Channels.

In May and July, 1873, some experiments were made at

Phcenixville, Penn., on full sized Phoenix columns, by the

Phcenix Iron Co. The results of these experiments are given
in column headed "

Experiment" while the column headed

"/>" contains the results of the application of the formula

established in the preceding Article:
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according as the ends are "
flat

"
or " round." All columns are

"4 segment
"
ones.

TABLE I.

DATE.
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U. S. arsenal at Watertown, Mass., under the direction of

Messrs. Clark, Reeves & Co., the results of which were pre-

sented to the American Society of Civil Engineers at the I3th

annual convention, June 15, iSSi. The value of these experi-

ments is enhanced by the fact that they were made on full

sized columns, such in reality as are used in ordinary bridge

construction.

In the following table are given the results of these experi-

ments, as well as those of several formulae presently to be ex-

plained.
The following is a portion of the notation :

/ = length in inches
;

r radius of gyration in inches
;

E. L. = elastic limit in pounds per square inch
;

Exp. = ultimate resistance in pounds per square inch.

TABLE II.

NO.
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area of cross section was 12.23 square inches was taken. The
areas of the actual cross sections varied so little from this quan-

tity, that the resulting value of r3 was assumed to belong to all

of the first 20 columns. All the columns were tested with flat

ends.

An application of Eq. (i) to these columns reveals consid-

erable discrepancies between the results of that formula and

the quantities given in the column "
Exp" of the table, when

the values of / -r- r become comparatively small, as was antici-

pated in the preceding article. Instead of the constant 42,000

in the numerator of Gordon's formula, these experiments show

that a variable quantity must be used, which shall increase as

/ -4- r decreases, or as r ~- I increases.

After several trials it was found that the following modified

form of Gordon's formula would give tolerable results through-
out the entire range of the experiments :

f i

2r
40000 ( I + -r

50000

The results of Eq. (2) are given in the column of the table

headed pr The agreement between the two columns is not as

close as could be desired, yet the discrepancies are not suffi-

ciently great to vitiate the safe use of the formula.

In the following figure, the Watert'own experiments, as well

as those of Mr. Bouscaren and the Phoenix Iron Co. (given in

this and the preceding Article), are shown by diagram. The

different classes of experiments are indicated as shown. The

experimental curve is drawn with particular reference to the

Watertown experiments, for it is then found to be properly

located in reference to the others. The other curve expresses

Gordon's formula according to Eq. (2). It would not be diffi-

cult to find an equation which would fit the experimental
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curve very closely throughout the range of the experiments,
but it would not be as simple as Eq. (2), or as two others to be

shortly given.
It is interesting and important to observe that each experi-

mental value in the diagram (which is a mean of two, belong-

ing to columns of the same length, in the table), lies on or

exceedingly close to the curve, with the exceptions of those

shown at a and b. a corresponds to a mean of Nos. 17 and 1 8,

and is abnormally high ; b shows the mean of Nos. 13 and 14,

and is abnormally low.

723C3

60000

140 120 100 80 60 40

It may be observed that the experimental curve is nearly a

straight line from a point just above b to the extreme left of

the diagram. For that portion of the curve, therefore, the

following formula applies very closely :

= 39 64Q - 46 -
(3)

The results of this formula are given in the column headed

'/'." The table, in connection with the diagram, shows that
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this formula may be used with accuracy for values of / -=- r

lying between 30 and 140, and further experiments may pos,

sibly show that it is applicable above the latter limit.

For values of / -r- r less than 30, the following formula will

be found to give results approximating very closely to the ex-

perimental curve :

/' = 64,700 - 4,600 . /- (4)

The results of the application of this formula are given in

the column headed "/"."
The extreme simplicity of Eqs. (3) and (4) makes it a mat-

ter of great interest and importance to determine, by other

experiments covering extended ranges of / -^- r, whether those

forms, with different constants, may not apply to shapes other

than that of the Phoenix column.

The inapplicability of the true long column formulae, when

is found below certain limits, which is shown in Art. 25, fur-
r

nishes a proper foundation for thoroughly empirical formulae,

such as those expressed in Eqs. (3) and (4).

By Eq. (4), the ultimate resistance of Phoenix wrought
iron to pure compression would be about 60,000 pounds per

square inch.

The results of the application of Eqs. (3) and (4) to Bou-

scaren's and the Phoenix experiments are not given, but the

diagram shows clearly that they would be satisfactory. Data

sufficient for the application are given in this and the preced-

ing article.

The following is the record of the Phoenix tests of the very
short columns shown at c, d and e in the diagram. It is a ques-

tion whether the degree of distortion which accompanied the

extremely high result of 65,867 pounds per square inch, was

not considerably greater than that which would characterize
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NO.
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All the posts were single latticed, and the pitch of the

latticing (the distance apart of rivets in the same flange of a C)
was 1 8 inches for the 6 and 8-inch channels, and 22 inches for

the 10 and 12-inch. 2" x %" latticing was used for the 6-inch

Cs; 2" x ^" for the 8 and lo-inch, and 2%" x #" for the

12-inch.

The area of cross section for the ES of the same depth in

different columns varied slightly, consequently about an av-

erage area was taken.

TABLE III.

Pin Ends.^y2
"

Pin.

NO.
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a mean of two. Other

columns of the same set,

and tested at the same

time, failed by buckling
of the channels

; they

cannot, consequently, be

classed among long col-

umns which are so con-

structed as to fail as

wholes.

The values of p in

Table III. are shown

graphically in Plate I.

The ratio / ~- r is laid

off along the horizontal

line and the ultimate in-

tensity/ on the vertical

line, as shown. The full

curved line is then the

experimental curve and

possesses great value of

a practical nature.

Within the limits of the

diagram, when the ratio

is known, the ultimate

resistance of the column

per square inch (p) can

be at once accurately
read from the plate
without calculation or

scale.

The following equa-
tion :
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39000
(5)

30000 r2

probably gives as accurate results as any form of Gordon's

formula. The dotted curve is constructed from it. Its re-

sults are seen to be only tolerably approximate between the

limits 50 and 135. It possesses little value when com-

pared with the plate.

Table IV. contains results for columns of the same set

which failed by buckling of the individual channels of which

they were composed.

TABLE IV.

NO.

I
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6
"

|
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Nos. I and 2 of Table IV. show that if the ends possess a

greater degree of fixedness, the value of / -~ r is much greater
when buckling begins to take place, but the number of experi-
ments is not sufficient to indicate the exact amount.

As would be anticipated under the circumstances,/ main-

tains about the same value for all the columns in Table IV.

Hence when / -?- r becomes so small that buckling takes place,

the ultimate resistance of the column is independent of the

length.

The graphical representations of the results given in this

Article show that the curve of ultimate resistances has a very

sharp declivity for small values of / -f- r, but that it becomes

nearly straight and horizontal for larger values, and that it

again increases in declivity with a still father increase in that

ratio. These phenomena seem to be much more pronounced
in the tubular variety of columns. They find a simple and

obvious explanation in the fact that in columns of moderate

length the deflection at the centre of the column about keeps

pace (in the same direction) with the movement of the centre

of pressure at the ends.

Plate I. shows (what was to be anticipated) that this effect

is also much less pronounced with pin ends than with flat

ones, it being borne in mind that the phenomena here consid-

ered do not produce the horizontal straight line which would
be seen if Plate I. included less values of / -4- r than 50. The
latter represents the buckling of the individual parts of the

column, and not the failure of the column as a whole.

A few experiments by Col. Laidley with columns of the

same Cs as the above, but with pins only three inches in diam-

eter, gave uniformly less ultimate resistance than those with

three and a half inch pins. Although this result was to be

expected, the number of experiments was not sufficient to

justify any quantitative conclusions ; it can only be stated

that the smaller the pin the less will be the ultimate resist-

ance.
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TABLE V.

Flat End C-f.

NO.
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pounds per square
inch are laid off ver-

tically from O, as

shown. The full

curve then repre-

sents with great ac-

curacy the experi-

mental results.

The dotted curve

represents the fol-

lowing form of Gor-

don's formula for

the ultimate resist-

ance in pounds per

square inch :

36000
(6)

p_

63000 r'
a

This formula is

sufficiently accurate

for all ordinary pur-

poses, between the

limits

and

Hh r' = IS

^. r = 90,

but does not com-

pare in value with

the experimental

(full) curve.



Addendum to Art. 51.

Since the issue of the first edition of this book, the series of

tests of full sized columns, of which Table III. gives the re-

sults of the first 20, has been continued at Watertown, Mass.,

and the test records are given in
" Ex. Doc. No. 5, Senate, 48th

Congress, 1st Session," and u Ex. Doc. No. 35, Senate, 49th

Congress, 1st Session." Table VI. shows the digested records

put in shape to be of some value to engineers. These columns

had 3} inch pin ends, and the results belong to failures in the

plane normal to the pin axes.

Columns 21, 22, 23, 24, 25, 26 and 37 to 48 inclusive were

closed box columns composed of two channels and two plates ;

the remaining columns, except those of the Wilson section,

were composed of two channels latticed together in the usual

manner. The word " built
"

in the Table indicates that the

channels were built of plates and angles ;
otherwise they

were rolled. The Wilson column is that used so frequently

by Jas. M. Wilson, C.E., formerly Eng'r Bridges and

Buildings Penna. R. R. It has the section shown by
the sketch in the margin. In these columns the pin
was always placed parallel to the plate between the

channels, i.e., normal to the webs of the channels and

as shown by the broken lines.

In columns 25, 26, 39, 40, 41, 42, 47 and 48, the pins were

placed through (i. e., normal to) the webs of the channels, as

shown in the Fig. on page 455 ; in all the other channel columns

the pins were placed parallel to the webs of the channels.

The results given in Tables III., and VI. are shown graphi-

cally on Plate A. All results are brought together on one



462^ LATTICED COLUMNS. [Art. 51.

plate in order to obtain the most probable curve for ordinary

wrought iron columns with 3^ inch pin ends.

TABLE VI.

3!, Inch Pin End Columns.

NO.
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TABLE Via.

Flat End Channel Columns.

NO.
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used in columns of the dimen-

sions of those tested, usually

considerably exceed 3j inches,

the mean value of these tests

may probably be a little too

low for ordinary bridge prac-

tice.

Tables VII. and VIII. con-

tain the mean of a large num-

ber of most valuable tests of

full size iron and steel angle,

tee, channel and beam struts

with the various end conditions

indicated, by James Christie

Esq., Supt. of the Pencoyd Iron

Co. The detailed account of

this complete series of tests

should be carefully consulted ;

it may be found in the " Trans,

of The Am. Soc. of C E.," Vol.

XIII., 1884. All sizes of angles

and tees up to 4 inches by 4
inches by -f inch and over 15

feet in length were used in these

tests. The "hinged ends"

were either one inch or two

inch pins in semi-cylindrical

bearings or one inch or two

inch balls in sockets. The
" round ends

"
were the above

described balls resting on flat

or plane surfaces.

The "flat ends'' were se-

cured by simply resting the

carefully faced ends of the struts
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III little
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on the plane bearing surfaces of the testing machine, while the
" fixed

"
strut

" ends
"
were obtained by clamping the ends of

the struts rigidly to those bearing surfaces.

Every imaginable means was taken by Mr. Christie to se-

cure the utmost accuracy in all details of these tests.

In Tables VII. and VIII., / is the length of strut and r the

TABLE VII.

Mean Results of Wrought Iron Strut Tests.

I
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of the cross section and parallel to a line through the extremi-

ties of the legs.

All results in Table VII. belong to wrought iron struts,

while Table VIII. belongs to struts of Bessemer steel. The
"mild" steel contained from o.n to 0.15 per cent, carbon,

but 0.36 per cent, carbon was found in the "
high steel." The

ultimate tensile resistance of the former varied from 60,000 to

66,000 pounds per square inch with 26 to 24 per cent, stretch

TABLE VIII.

Flat End Steel Angle Struts.



Art. 51.] GRAPHICAL REPRESENTATION. 462*

them both until it reaches

over double their values

at and about 400 radii of

gyration.
The flat and hinged

end conditions approach
each other in their resist-

ances until they become

nearly equal at the high-

est values oi /-r- r.

Plates B and D repre-

sent graphically the re-

sults given in Tables VII.,

VIII. and IX.; Plate D
being devoted wholly to

Table VIII. The curve

for flat end channels and

beams has been moved
to the right in order

to separate it from the

others. This curve in-

cludes not only Mr. Chris-

tie's data, but that of

Table V. and results of

later tests found in
" Sen-

ate Ex. Doc No. i, 47th

Congress, 2d Session,"

and given in Table IX.

Plates B and D and

the preceding Tables show
that at and above 200

radii of gyration the iron

and mild steel angle struts

possess the same ultimate

resistance per square inch.

The iron and high steel

^: :

Ess i II?

SKVHI ::s:n

Cj

I

I
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continually approach each other, and undoubtedly become

equal in unit resistance at a length a little above 300 .radii of

gyration. This is due to the fact that the coefficients of elas-

ticity for the three metals are essentially identical, since it has

been shown in Art. 25 that long column resistance varies di-

rectly with the coefficient of elasticity.

TABLE IX.

Flat End Eye Beam Struts.

NO.



Art. 51.] ANGLE IRON STRUT FORMULA.

structures, hence a formula is given for pin or hinged end

angles and tees. If round end members should be used, the

table and plate will show how much the pin end resistance

must be reduced for a given value of / -f- r, in order to get the

round end resistance.

The straight broken lines on plates B and D represent the

following formulae :
*

Flat andfixed end iron angles and tees.

p = 44060 - 140 - ............ (7)

Hinged end iron angles and tees.

p = 46000- 175
- ............. (8)

Eqs. (7) and (8) are to be used only between the limits of

/ -f- r = 40 and / -r- r 200.

\

*
Although the above formulae possess great advantages, both in accuracy and

simplicity, over the old Gordon or Tredgold forms, it is not amiss to state that the

curved broken lines on plate B represent the following formulx :

Flat andfixed end iron angles and tees.

p- 4000Q ......... (a )

Hinged end iron angles and tees.

20000

These formulae can be used with fairly good results between the limits of

/- r = 40 and /+ r= 180. They arc given simply in deference to an old usage,

with the decided opinion that they should be abandoned.
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Flat end iron channels and eye beams.

p = 40000 1 10 -
(9)

Eq. (9) is to be used only between the limits of / -r- r = 20

and / r = 240.

Flat end mild steel angles.

p = 52000 180-

Flat end high steel angles,

p 76000 290 -

(10)

Eqs. (10) and (n) are to be used only between the limits of

-T- r 40 and / -=- r = 200.

TABLE X.

Solid ^-Inch Square Columns i| Inch Pin Ends.

LENGTH.
INCHES.
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Plate E shows the results of tests of solid 3 inch square

wrought iron columns with ends bearing on pins 1.5 inches in

diameter, as given in Table X., which has been digested from

the records of tests found in
" Senate Ex. Doc. No. 5, 48th

Congress, 1st Session." According to the usual notation, / in

the Table is the length in inches; r, the radius of gyration (in

inches) of a normal section, and d the length of a side (3 inches).

As all bars are here 3 inches square, there is a constant ratio

between d and r.

The formula shown by the broken line on Plate E is as

follows : for pin end solid wrought iron columns :

/ = 32000 -

/ = 32OOO

80 -

(12)

Eq. (12) is to be used only between the limits of / r 20

and / -r- r = 220, or / -r- d = 6 and / -r- d = 65.

TABLE XI.

Three-inch Square Solid Columns.

PIN D1AM.
INCHES.
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the resistance of the latter end condition is essentially a mean
between those for pin and flat ends.

Table XL, taken from the same source as Table X., also

possesses no little importance as showing the influence of pin
diameter. An increase of f inch in pin diameter below i4-

inches increases the column resistance over 2,000 pounds per

sq. in. Above that limit the increment of resistance for the

same increase in pin diameter is continually less, although very
material. As a general principle, it may be said that an increase

in pin diameter will produce a corresponding increase in column

resistance.

Formula for Engineering Practice.

If the greatest allowed working stresses in columns be taken

at one one-fifth the ultimate resistance, as is usual for railway

structures, the following formulae will result:

Flat end latticed channel columns.

P=
I +

40000 r~

Pin end latticed channel columns.

7800 f ,

(I4)

30000 r2

Or, / = 8500 -28- ........... (15)

Eqs. (13), (14) and (15) should be used only between the

limits of /-f- r 40 and/-?- r 140; and Eq. (13) is given only
as a formula which is quite generally used among engineers,

but which, as yet, has no foundation on a series of tests of
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full sized columns ;
it gives results which are probably too

high.

Flat andfixed end iron angles and tees.

p = 8800 -28- (16)

Hinged end iron angles and tees.

p = 9200 -35- (17)

Eqs. (16) and (17) are to be used only between the limits of

/ -r- r = 40 and / -f- r = 200.

Flat end iron channels and eye beams.

p = 8000 - 22 -
(18)

Eq. (18) is to be used only between the limits of / -f- r = 20

and / -r- r = 240.

Pin end solid wrought iron square columns.

(19)

/ = 6400 16 -

/ = 64oo-
55-^

Eq.(i9) is to be used only between the limits of / -f- r 20

and / -r- r = 220, or / -7- d 6 and / -=- d = 65.

r//</ mild steel angles.

p = 10400 - 36 *-
(20)

Flat end high steel angles.

p- 15200- 58- (21)
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Eqs. (20) and (21) are to be used only between the limits of

/ -f- r = 40 and / -=- r = 200.

For columns with one flat and one pin end, in all cases use a

mean of two pin ends and two flat ends.

For hinged end angles of steel, in the absence of experi-

mental data, the proper reduction from flat end angles of the

same material may be assumed to be the same percentage, or

ratio, as that between flat and hinged end iron angle columns

with an equal value of -.

It is important to observe that the new form of column

formula (Eqs. (15) to (21) inclusive) is better adapted to forms

of section in which the metal is near the neutral axis, than to

those in which the metal is placed at the greatest possible dis-

tance from that axis. It is yet a question whether the old

Tredgold form (Eqs. (13) and (14) ) is not the best for channel

columns and those of similar section. The new form, on the

other hand, is much the best for angles, tees, eye beams, solid

sections, etc. No formula, however, which can be devised, is

to be compared in value with the experimental diagram, like

Plates A to E.

Steel Latticed Channel Columns.

Although some interesting tests of full sized pin end chan-

nel columns of Bessemer steel have been published by Mr. James

Dagron in the Trans, of the Am. Soc. of C. E. for 1887, yet the

number was only 8, and the range of too limited for the de-

duction of any law or formula, had the design of the columns

been satisfactory. Again, it is not stated whether the rivet

holes were drilled, or punched, or punched and reamed, while

the resistance of the columns would probably be materially
affected by those processes. Tests of full sized steel latticed
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columns are therefore still needed in order to positively fix

their resistance.

Such tests as have been made, however, indicate that prop-

erly designed and fabricated steel columns, of metal ranging in

tensile strength, in specimens, from 65,000 to 73,000 pounds

per sq. in., will give a resistance from 20 to 25 per cent, in

excess of that of wrought iron columns with the same value

of -, provided that ratio does not exceed 135 to 40. The

working stresses for such columns, therefore, can be found by

increasing those given for wrought iron 25 percent, for ordinary

railway practice and usual lengths of span, or 33 per cent, for

spans of, say, 300 feet and over. These limits represent about

the general engineering practice of the present time (1887).

Details of Columns.

In addition to the data already given in another portion of

this article, the tests cited in this Addendum show that the

unsupported width of no plate in a compression member should

exceed 30 to 35 times its thickness. These tests have usually
been made with plates or metal k to inch in thickness, and

it is altogether probable that the above ratio of width over

thickness would be increased with greater thicknesses.

In built columns, however, ike transverse distance between

centre lines of rivets securing plates to angles or channels, etc.,

should not exceed 35 times the plate thickness. If this width is

exceeded, longitudinal buckling of the plate takes place, and

the column ceases to fail as a whole, but yields in detail.

The same tests show that the thickness of the leg of an angle

to which latticing is riveted slwuld not be less than $ of the length

of that leg or side, if the column is purely and wholly a com-

pression member. The above limit may be passed, somewhat,
in stiff ties and compression members designed to cany trans-

verse loads.
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The panel points of latticing should not be separated by a

greater distance than 60 times the thickness of the angle leg to

which the latticing is riveted, if the column is wholly a com-

pression member.

The rivet pitch should never exceed 16 times the thickness of
the thinnest metal pierced by the rivet, and if the plates are very
thick it should never nearly equal that value.
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Art. 52. Euler's and Tredgold's Forms of Long Column Formulae.

The form of the general formula given in the preceding Ar-

ticle, as will presently be shown, does not seem to be as well

adapted to the expression of accurate results as that of Euler,

given in Art. 25.

It has already been observed that the coefficient a (Eq. (9)

of Art. 50), contains ^ as a factor, in which /" is the great-

est intensity of bending stress, />., a part of the quantity "/
"

which is sought. The possible use of the formula is based on

the fact that E is very large in respect to/".
The existence of/" in a is due to the redundant form of Eq.

(8) of the Article cited.

Since, in that Article,/' = and a = a^ = J (see Eq.
j 1 '-

(7)), Eq. (8) gives:

k
,, _ PI* __ a'Jp" /Y*

"5r ;

S~~W

This is Euler's formula as given in Eq. (6) of Art. 25. In

this equation b has the analytical values 4n*E, n*E and 2.25 TT*/:

for ends fixed, rounded and one fixed one rounded, respect-

ively, as shown in Art. 25.

It would seem, therefore, that, since Eq. (i) involves noth-

ing variable in the second member but r -r /, it ought to give
more accurate results than Tredgold's form of Art. 50.

It was shown, however, in Art. 25 that the common tlu-

ory of flexure is analytically applicable only to fixed end col-

umns of wrought iron, in which the ratio of length over radius
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of gyration is somewhat greater than 140; and to round

end columns in which that ratio is somewhat greater than

70. Since the implicit assumption of an indefinitely small cross

section underlies the analytical treatment of long columns, it is

possible that the analytical coefficients and exponent may not

obtain far above the limits indicated in Art. 25. Now, since

other conditions of ends will lie between these limits, it is seen

that both long column formulae are strictly inapplicable to a

large portion of the columns designed by engineers.

Fortunately, a sufficient number of experiments have been

made with full sized columns to show that either form of for-

mula, when holding empirical quantities properly determined,

will give excellent results. This has already been shown for

Tredgold's form, and it will now be seen that Euler's form may
be expected to give still better results.

If, as is usual, r is the radius of gyration and / the length

(both in the same unit), and if both the coefficient and exponent

of -
,
in Euler's general formula, be considered variable, the

following equation (see Art. 25), may be written :

p / r\ x

sr.'V ....... (2)

For other values (r' and /') of r and /, the mean intensity

becomes :

(3)

Dividing Eq. (3) by Eq. (2), then taking logarithms and

solving for x :

*=**- W
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Subtracting Eq. (3) from Eq. (2) and solving for^y:

(5)

These formulae will first be applied to results of the experi-

ments made on Phoenix columns at Watertown, Mass. These

results are contained in Table II. of the preceding Article, and
.. /

the columns - - and " Exp" are reproduced in Table I. of this

Article. In the latter, however, the column "
Exp" contains

the means of the various pairs of experiments whose results

are given in the former.

TABLE I.

Phoenix Columns.

I
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/'

p
=-- ll2 ............ / == 34,650.

Inserting these values in Eqs. (4) and (5), there will result :

x = O.I 17 and y = $9,723.

Then let there be written :

/r \ 0.117

/ = 60,000
(j)

...... (6)

The various values of I } in Table I., inserted in Eq. (6),

give the results shown in columns "/
"
of that Table. They

are seen to be much more satisfactory, as a whole, than those

given by any form of Tredgold's formula in the preceding
Articles

; although Eq. (2) of Art. 5 1 is a little closer to the

experimental results for values of less than 24.

So much of the curve represented by Eq. (6) as does not

coincide with the experimental curve, is shown by the dotted

line in the Fig. of the preceding Article.

That curve, together with the results given in Table I.,

shows the close agreement of Eq. (6) with experiment for all

values of from I to .

/ 112

It is interesting and important to observe that when =
i,

Eq. (6) gives :

/ = 60,000 ;

or about the ultimate compressive resistance of wrought iron

in cubes.

An application of Eqs. (4) and (5), in the manner already
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shown, to the results of Bouscaren's* experiments on Keystone
columns, given in the large table of Art. 50, gave the following

results for swelled Keystone columns :

x 6.25 and y 78,000 ; or :

= 78,000

TABLE II.

Keystone Columns.

(7)

c.
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perimental results, are grven in Table II. The lengths and
other data can be found in the table just cited.

By the same operations with the square column results

(Bouscaren's) of the same table, there were found :

x = 0.5, and y = 303,000; or:

/ = 303,000 ('-) (9)

The following columns,
"
Exp" and "/

"
contain the ex-

perimental square column results and those computed from

Eq. (9).

c. EXp. p.

10,414 30,000 30,000

7,133 33,200 33,000

9,623 30,200 30,600

Only
"

flat end "
experiments have been treated, for the

others are utterly insufficient in number for the determination

of the empirical quantities.

In fact, with the exception of the Watertown experiments
on the Phcenix columns, the number of those with "flat ends"
is not sufficiently great, nor the range of / -7- r sufficiently ex-

tended, to establish reliable formulae.

In all cases, however, it is to be observed that the formulae

of this Article give results more nearly agreeing with the ex-

perimental ones than those computed from any form of Tred-

gold's or Gordon's formula. It would seem that this form of

formula has not heretofore received the attention to which its

importance and value entitle it.

Each of the three Eqs. (7), (8) and (9), become inapplicable

when the value of is such that "/" approaches the ultimate
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compressive resistance per square inch of wrought iron in

short blocks.

These empirical results tend to give experimental confirma-

tion to Euler's formula, for the exponent and coefficient of
(-j\

are seen to increase very much as the lowest value of c, in the

different sets of experiments, increases.

Art. 53. Hodgkinson's Formulae.

The detailed account of the experiments on which Eaton

Hodgkinson based his various formulae is given in the Phil.

Trans, of the Royal Society of London, for 1840. His cast-iron

columns were small ones, the greatest length of which was 60.5

inches. The greatest value of the length divided by the radius

of gyration was :

0.25

while the least value of the same ratio was

~ = 4 x = 3 ' 2

The greatest diameter was about two inches.

Let d = diameter of column in inches.

Let / = length of column in feet.

Then for the breaking weight (P) of solid cylindrical c

iron columns, when expressed in pounds, Hodgkinson's for

mulae take the shape :
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^3.76P = 33,379 777
; (for rounded ends) . . . (i)

P = 98,922 -y^- ; (for fixed ends) .... (2)

For hollow cylindrical columns of cast iron :

Z^-76 ^3.76
/>
=29,I2O- -^

--
; (for rounded ends) . . (3)

P = 99,320
--

-j^
-

; (for fixed ends) ... (4)

In Eqs. (3) and (4), D is the greater, or exterior, diameter

of the column, while d is the interior diameter. It is to be

observed that P is the total breaking weight in pounds.
The longest wrought-iron solid cylindrical column tested

by Hodgkinson had a length of 90.75 inches and a diameter of

about i.02 inches. Hence the greatest ratio of length over

radius of gyration was about 90.75 x 4 = 363.

His formulae for the total breaking weight of solid cylindri-

cal wrought-iron columns, in pounds, are :

/73-T6P = 95,848 -^- ; (for rounded ends) ... (5)

P = 299,617 \ (for fixed ends) .... (6)

In his experiments on square pillars of Dantzic oak, the

greatest dimensions were : length = 60.5 inches, and side of

square section = 1.75 inches.

His longest red deal pillar was 58 inches in length, and the

cross sections were I x I, i X 2 and I X 3 ;
all in inches.
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Hodgkinson used Lamand's experiments on French oak

in establishing a formula for that material. In those experi-

ments, the longest pillar had a length of 76.5 inches and a

normal section of 2.13 inches by 2.13 inches.

Retaining the same notation, the following are the total

breaking weights, in pounds, of solid square timber pillars with

flat ends :

d4

Dantzic oak (dry) ;
P = 24,542 . . . (7)

Red deal (dry) ;
P= 17,511 . (8)

French oak (dry) ;
P = 15,455 . . . (9)

In Eqs. (7), (8) and (9),
" d" is the side of the square sec-

tion of the column in inches, while / is the length in feet.

Ail the preceding formulae are to be used only in those

cases in which the length exceeds 30 times the diameter or

side of square, if the ends are fixed
;
or 15 times the length, if

the ends are rounded. Between these limits and a short block,

in which the length is 4 or 5 times the diameter or less, the

following formula is to be used : Let C be the ultimate com-

presstve resistance of the material, per unit of area, in short

blocks, and let A be the area of the normal section of the col-

umn ; then Hodgkinson's formula for these columns of inter-

mediate lengths is :

The small size of the columns experimented upon by

Hodgkinson militates very strongly against the practical value

of his formulae, unless it should be shown experimentally that
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the same formulae may be equally applicable to large and small

columns.

With the greatest ratio of / over r, the ratio of the resist-

ance of a fixed end pillar over that of one of the same length

and with rounded ends was about 3.34. With the lowest value

of / over r, the same ratio was about 1.63. According to Eu-

ler's formula, that ratio should have been 4. It is seen, there-

fore, that with these columns the common theory of flexure

failed far above the limit given in Art. 25.

From his experiments Hodgkinson drew the following con-

clusions :

The strength of a pillar with one end round and the other

flat, is the arithmetical mean between that of a pillar of the

same dimensions with both ends rounded, and with both ends

flat.

A long uniform pillar, with its ends firmly fixed, whether

by disks or otherwise, has the same power to resist breaking as

a pillar of the same diameter and half the length, with the

ends rounded or turned so that the force would pass through
the axis.

Long uniform cast-iron pillars with both ends round break

in one place only the middle
;
those with both ends flat, near

each end and at the middle
;
those with one end round and

one end flat, about one-third the length from the round end.

The resistance of solid pillars with round ends was increased

about one-seventh by increasing the diameter at the middle.

Flat-end pillars (solid) had their resistances increased very

slightly by the same means, but hollpw pillars seemed to derive

no benefit at all by enlargement at tlie middle.

The resistance of flat-end pillars was increased slightly by
the application of disks to their ends.

Irregular and imperfect fixedness of the ends may cause a

loss of two-thirds, or more, of the resistance with ends per-

fectly fixed.

Solid square cast-iron pillars failed in diagonal planes.
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The relative resistances of columns of the same length and
area of cross section were about as follows :

Long, solid, round pillar 100
" "

square pillar 93
" "

triangular pillar no

Art. 54. Graphical Representation of Results of Long Column

Experiments.

If the values of / over r (length over radius of gyration), for

TABLE L

Tubes. Flat Ends.

NO.
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a series of columns which have been tested to breaking, be

accurately laid off on a horizontal scale, and if the breaking

weights per square inch be laid off with equal accuracy on a

vertical scale, the resulting curve will represent the resistances

of all columns for which / over r lies within the limits of the

experiments, with far more accuracy than any simple and prac-
ticable formula that can be devised. Such a curve for the

Watertown experiments on Phoenix columns has already been

incidentally constructed in Art. 51.

TABLE II.

Solid Rectangular Pillars. Flat Ends.

NO.
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.2 O
0. Z

E

2

All these experiments were on small cross sections. In reality the columns

Were little more than models.
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forms of cross section. These results are taken from the " Pro-

ceedings of the Institution of Civil Engineers," of London, Vol.

XXX. The experiments on tubular and angle-iron columns

(Tables I. and III.) were made by Mr. Davies, while those on

solid rectangular columns (Table II.) were made by Mr. Hodg-
kinson. The graphical representation of these results is shown

by a very accurate construction in Plate III. Fig. I belongs
to Table I.

; Fig. 2 to Table II.
;
and Fig. 3 to Table III. The

result shown at a (No. I of Table II.), Fig. 2, is most anoma-

lously high, as is very evident, and has been neglected.
The horizontal scale shows the ratio of / over r, while the

vertical scale shows pounds per square inch, to a scale of

30,000.00 pounds to the inch.

TABLE III.

3" x 3" x -flr L-r- Ft** Ends.
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These results, in connection with those of Art. 51, show

very clearly that an empirical curve (or formula) may be con-

structed to cover, with sufficient accuracy for practical pur-

poses, columns of different forms of cross section, provided they
are so built ttiat ttieir component parts are mutually supporting.

As compression members of single angle irons with fixed

ends are quite common in some riveted bridge and roof trusses,

it would be desirable to frame a formula on an extended series

of numerous experiments. In the present instance this is im-

possible, but the following formula may be used with safety

for equal legged angle iron columns with flat or fixed ends, so

long as t -i- r lies between 20 and 100:

/ = 200,000 A -, (i)

in which/ is the ultimate resistance per square inch. An ap-

plication to the columns of Table III. gives the following re-

sults :

No. l+r p.

1 71 23,740 Ibs. per square inch.

2 56 26, 760 Ibs. per square inch.

3 42 30,860 Ibs. per square inch.

4 21 43,600 Ibs. per square inch.

By comparison with the results in Table III., the deviations

from the actual resistances given by experiment may be seen

at a glance.

Art. 55. Limit of Applicability of Euler's Formula.

The great range of / -:- r in the experimental results of

Tables I. and II. of the preceding Article, furnishes nu-ans of

testing the applicability of Euler's formula with high values of

tli at ratio.
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Mr. Hodgkinson determined the mean value of the com-

pressive coefficient of elasticity for some wrought iron of pre-

sumably the same grade as that to which Table II. belongs, at

about 23,250,000 pounds per square inch. That value gives :

47r
2 = 917,920,000.

Taking / -^ r from No. I, Table I. :

/ = ^n
2E(-\ = 16,000 (nearly)

''

;

. . .
(
2

)

Experiment gave 14,670

Taking / -=- r from No. 7, Table II. :

,^/7-Y , x 1
p ^7i

2h( } = 10,200 (nearly)V// -.. (3)

Experiment gave 9,750

Taking / -f- r from No. 5, Table II. :

/ = 4^* = 5,740 (nearly)

Experiment gave 5,630

Taking / ~ r from No. 3, Table II. :

p = 4*
2 = 3,150 (nearly)

Experiment gave 3,380 J
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Taking / r from No. 2, Table II. :

p = 4n*E(-\ = 2,220 (nearly) 1W I . . . . (6)

Experiment gave 2,410

In Eq. (2), / -f- r is 240, yet the result by formula is

only a little too large. With / -r r ranging from 300 to 643,

the formula gives very satisfactory results. These tests would

seem to show, therefore, that only when / -f- r becomes equal

to about 250 for flat-end columns, does Euler's formula become

applicable to wrought-iron compression members, but that

above that limit it gives very satisfactory results.

This is an interesting and striking confirmation of the cor-

rectness of the formula, which, as was stated in Art. 25, is

based on the supposition that the lateral dimensions are very
small compared with the length.

Art. 56. Reduction of Columns at Ends.

When columns are built of angle irons, channel bars, or I

oeams, it is frequently the practice to cut off, for some distance

back from the ends, the flanges of bars or beams, or one of the

legs of angle irons, in order to give clearance for other mem-
bers of the structure. In such cases the whole compression to

which the column is subjected is carried, at the ends, by the

webs of the bars or beams, or legs of the angles, which are thus

solid rectangular columns of great comparative breadth and

little thickness, even win n reinforced by plates of the same
thickness as the webs or legs. In such cases, the angle iron

experiments of Mr. Davies (a part of which are given in Art.

54), and a most valuable set of full sized, latticed, channel-

bar column tests, made at the works of the Keystone Bridge

Co., Pittsburgh, IVnn. (" The American Engineer," 4th F<
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1882), show that the full resistance of the column is not devel-

oped, but that they fail at the ends where the cutting away of

the flanges and legs reduces the column to two thin, weak, rect-

angular columns. Columns, therefore, should never be cut

away in the manner indicated unless the circumstances render

it absolutely necessary,, and then the ends should be reinforced

by extraordinarily heavy thickening plates, so that the sum of

the resistances of these rectangular columns, at each end, shall

be equal to that of the column as a whole.

Art. 57. Timber Columns.

Tests of this class of members, the results of which have

been published, although of great value, have not been made
with sufficiently large ratios of length to radius of gyration to

produce true "
long column "

failures. This renders impos-
sible the establishment of a long column formula or diagram
for practical use in connection with the use of long timber

columns.

Some very valuable experiments, however, have been made
with full sized columns having lengths as great as fourteen

feet. The first results to be given are those of a large number
of tests by Prof. Lanza, of Boston, in which he used the United

States testing machine at Watertown, Mass. These tests were
made during 1881, on such members as are commonly used in

the construction of cotton and woollen mills.

Table I. contains the results of Prof. Lanza's tests. A large

majority of the columns had cores bored out of the centre,

which varied in diameter from 1.5 to 2.0 inches. The ab-

sence of material did not affect, in any way, so far as could be

observed, the resistance per square inch.

Column 20 had the force applied 2^ inches out of centre at

one end, and column 35, 1.9 inches. These tests were made in

order to observe the effect of eccentricity in the application of

loads. They show a marked decrease in ultimate resistance.



Art. 57.] LANZA'S EXPERIMENTS. 481

TABLE I.

Timber Mill Columns.

NO.
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TABLE I. Continued.
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that, whether knotty or straight grained, failure took place in

the tapered columns at the small ends. Tapering a column,

therefore, to the extent shown in these cases, is a source of

weakness.

TABLE II.

Yellow Pine.

NO.
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TABLE III.

Spruce, thoroughly seasoned.

NO.
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The slow growth specimens (13, 14 and 15, of Table II.),

gave much the highest results, while the wet and unseasoned

ones (16, 17 and 1 8) gave the lowest of all.

Hence, the ultimate resistance of timber columns will de-

pend upon quality and condition of material, mode of growth,

degree of seasoning, etc., etc.

Table II. also shows, what has been observed elsewhere,

that smaller specimens give higher results than larger ones.

Formula of C. Shaler Smith, C. E.

During the winter of 1861-62, Mr. C. Shaler Smith con-

ducted a series of over 1,200 tests of full size yellow pine

square and rectangular columns for the Ordnance Dept. of the

Confederate Government. The results of these tests have

never been published, but Mr. Smith has kindly furnished the

writer with the following summary :

The tests were grouped as follows :

"
1st. Green, half-seasoned sticks answering to the specifi-

cation,
'

good merchantable lumber.'
" 2d. Selected sticks reasonably straight, and air-seasoned

under cover for two years and over.
"

3d. Average sticks cut from lumber which had been in

open air service for four years and over."

If / = length of column in inches ;

d = least side of column section in inches
;

and / = Ult. Comp. resistance in Ibs. per sq. in. ;

tlu.-n the formulae found for these three groups were:

ForNo.,: / =
1 +

250
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ForNo.2: p =
1 +

300 d*

For No. 3 : / = -

JL *__h
250 ~d*

But in order to provide against ordinary deterioration while

in use, as well as the devices of unscrupulous builders, Mr.

Smith recommends the formula for group No. 3 as the proper
one for general application. He also recommends that the

factor of safety shall be A /- until 25 diameters are reached,V d

and five thenceforward up to 60 diameters. This last limit he

regards as the extreme for good practice.

Mr. Trautwine computed his tables from tests of group
No. 3.

Addendum to Article 57.

Tables IV. and V. have been formed by digesting the re-

sults of tests of timber columns made at Watertown, Mass.,

and found in " Ex. Doc. No. i, 47th Congress, 2d Session."

Each result in both tables is usually a mean of from two to

four tests, although a few belong to one test only. All timber,

both of yellow and white pine, was ordinary merchantable

material, with about the usual defects, knots, etc., and failure

frequently took place at the latter; it was all well seasoned,

and all columns were tested with flat ends.

Flat end yellow pine columns were observed to begin to fail

with deflection at a length of about 22 d, d being the width or

least dimension of the normal cross section. All columns were

of rectangular section, and / in the following table is the length.
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TABLE IV.

Yellow Pine Columns -with Flat Ends.
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32.1

Number of Tests.

..18..
(maximum 4,559 Ibs. per sq. in

Kmean = 3,841

(minimum = 2,756

36.

(maximum ~
3-357

,18
-jmean =3,122
(minimum 2,942

Table V. gives the results for white pine columns, and cor-

responds with Table IV. in that it shows only the failures with

deflection, which was observed to begin with those columns at

a length of 32 d. I and d possess the same signification as

in Table IV., the column / -f- d, showing the ratios between

the lengths and least widths.

Thirty columns with lengths less than 32 ^were tested to

destruction. These sticks failed generally at knots by direct

compression and without deflection. The results of these thirty

tests were as follows :

Short white pine columns ; j
maximum = 3,7> Ibs. per sq. in.

< mean = 2,414

| minimum = i ;js7
" " "

t 1below 32.

All the preceding white pine columns were single sticks,

but a large number of built posts composed of two to four

white pine sticks bolted together, with spacing blocks at the

two ends and at the centre, were also tested with the results

shown below. / -f- d is the ratio of length over least width of

a single stick of the set forming the composite column.

/ + d.

32.1.

Number of Tests.

15

maximum = 2,273 Ibs. per sq. in.

mean 1,980
< <

minimum = 1,661

(maximum = 2,255

36 9 -< mean 1,999

(minimum = 1,804

40'

(maximum = 2,021
6

-j

mean = 1,830

(minimum = 1,419

A comparison of these results with those given in Table V.

shows that these composite or built columns were the same in
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TABLE V.

White Pine Columns with Flat Ends.
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ends and were built up with the greatest widths of individual

sticks adjacent to each other.

The results in Tables IV. and V. are shown graphically in

Plate F. One ordinate gives the values of / -+- d, and the

other the ultimate resistance in pounds per sq. in.

The full curved lines running into horizontal tangents at

the left represent about mean lines through the points indi-

cating the actual column tests.

The broken lines represent the following empirical for-

mulae
;
in which / is either the ultimate resistance or working

stress in pounds per sq. in.

For yellow pine ..../= 5800 70 (/
-=- d)

" white " .... p= 3800-47 (/-f- d)

For wooden railway structures there may be used :

For yellow pine / = 750 9 (/ -f- d)
" white " / = 500 - 6 (/ -h d)

For temporary structures, such as bridge false works carry-

ing no traffic :

For yellow pine .... / = 1500 18 (/ -^ d)
" white " ..:./= looo- I2(l+d)

The preceding formula are to be used only between the limits

of 20 rand 60-7 for yellow pine and yzand 60-7- for whitead a a

pine.
I I

For short columns below 20 -=- and 30 -3 there are to be
d a

used for yellow and white pine respectively :

Temporary
Ultimate. Railway Bridges. Structures.

Yellow pine / = 4400 550 noo Ibs. per sq. in.

White " / = 2400 300 600 " " " "

All the preceding values are applicable to good average

lumber for the engineering purposes indicated.



CHAPTER VIII.

SHEARING AND TORSION.

Art. 58. Coefficient of Elasticity.

It has already been shown in some of the Articles of the

first portion of this book, on shearing and torsion, that the co-

efficients of elasticity for those two stresses are the same
; and,

indeed, that those two stresses are identical in character. The
coefficients of elasticity, given in this Article, are then derived

chiefly from experiments in torsion.

In his "
Lemons de Mcanique Pratique," 1853, Gen. Arthur

Morin gives the following rtsumt of the results of experiments

up to that time, in which G is the coefficient of elasticity, for

shearing, in pounds per square inch.

MATERIAL. G., Ibs.

Soft wrought iron 8,571.000

Iron bars 9,523,000

German steel 8,571,000

Fine cast steel 14,300,000

Cast iron 2.857,000

Copper 6,237,000

Bronze 1,523,000

Oak 571,400

Pine 618,600

The above value for cast iron must, however, be much too

small, as will presently be seen.

In " Der Civilingenicur," Heft 2, 1881, the results of some

very interesting and important experiments on cast-iron rods

or prisms of various cross sections, by Prof. Bauschinger, are
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given in full detail. The rods or prisms were about 40 inches

long, and were subjected to torsion, while the twisting of two

sections about 20 inches apart, in reference to each other, was

carefully observed. The results for four different cross sections

will be given /. e., circular, square, elliptical (the greater axis

was twice the less) and rectangular (the greater side was twice

the less). In each case the area of cross section was about

7.75 square inches. The angle a is the angle of torsion i. e.,

the angle twisted or turned through by a longitudinal fibre,

whose length is unity, and which is at unit's distance from the

axis of the bar.

SECTION. a. G.

Circular



Art. 58.] COEFFICIENTS OF ELASTICITY.

shearing elasticity for cast iron may be taken from 6,000,000 to

7,000,000 pounds per square inch ; also, that it varies for differ-

ent ratios between stress and strain.

It has been shown in Art. 4, that if E is the coefficient of

elasticity for direct stress, and r the ratio between direct and

lateral strains, for tension and compression, that G may have

the following value :

Prof. Bauschinger, in the experiments just mentioned,
measured the direct strain for a length of about 4.00 inches,

and the accompanying lateral strain along the greater axis of

the elliptical and rectangular cross sections, and thus deter-

mined the ratio r between the direct and lateral strains per

unit, in each direction. The following were the results :

Compression.

SECTION. r. G.

Circular.......... o. 22 .......... 6,541,000 Ibs. per sq. in.

Elliptical......... 0.23 .......... 6,541,000
" " " "

Square........... 0.24 .......... 6,442,000
" " " "

Rectangular...... 0.24 .......... 6,499,000
" 4< " "

Tension*

Circular.......... o. 23 .......... 6,570,000 Ibs. per sq. in.

Elliptical......... o.2i .......... 6,811,000
" " " "

Square........... 0.26 .......... 6,399,000
" " " "

Rectangular ...... 0.22 .......... 6,527,000
" " " "

The values of E are not reproduced, but they can be calcu-

lated indirectly from Eq. (2) if desired.

It is seen that the values of G, as determined by the differ-

ent methods, agree in a very satisfactory manner, and thus fur-

nish experimental confirmation of the fundamental equations
of the mathematical theory of elasticity in solid bodies.
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The fact that G is essentially the same for all sections is also

strongly confirmatory of the theory of torsion, in particular.
These experiments show that, for cast iron, the lateral strains

are a little less than one quarter of the direct strains. If r were
one quarter, then G = f E ;

or E = f G.

In the "
Journal of the Franklin Institute," for 1873, Prof.

Thurston gives the following values of G, as determined from

experiments with his torsion machine.

White Pine G = 220,000 pounds per sq. in.

Yellow Pine, sap G =. 495,000
" " " "

Yellow Pine, heart G= 495,000
" " " "

Spruce G 211,000
" " " "

Ash G = 410,000
" " " "

Black Walnut G 582,000
" " " "

Red Cedar G= 890,000
" " " "

Spanish Mahogany G 660,000
" " " "

Oak G = 570,000
" " " "

Hickory G 910,000
" " " "

Locust (7 = 1,225,000
" " " "

Chestnut.... G = 355,ooo
" " " "

The specimens were small ones, and the timber was sea-

soned.

Art. 59. Ultimate Resistance.

Before considering the ultimate shearing resistance of spe-
cial materials it will be well to notice the two different methods
in which a piece may be ruptured by shearing.

If the dimensions of the piece in which the shearing force

or stress acts are very small, i.e., if the piece is very thin, the

case is said to be that of " simultaneous
"

shearing. If the

piece is thick, so that those portions near the jaws of the shear

begin to be separated before those at some distance from it,

the case is said to be that of "
shearing in detail." In the lat-

ter case failure extends gradually, and in the former takes place

simultaneously over the surface of separation. Other things
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being the same, the latter case (shearing in detail), will give
the least ultimate shearing resistance per unit of the whole

surface.

In reality no plate used by the engineer is so thin that the

shearing is absolutely simultaneous, though in many cases it

may be essentially so.

Wrought Iron.

The following averages (each result being an average of

six tests), are from Chief Engineer Shock's experiments, in

1868, on ordinary commercial " rounds
"

(" Steam- Boilers," by
William H. Shock, Chief Engineer, U. S. N.), in which 5 is the

ultimate shearing resistance in pounds per square inch :

DIAM. OF ROUND. SINGLE SHEAR. DOUBLE SHEAR.

0.5 inch 44,150 Ibs 41,090 Ibs.

0.625 inch 39,250 Ibs 38,670 Ibs.

0.75 inch 39,550 Ibs 39,770 Ibs.

0.875 inch 41, 500 Ibs 37,890 Ibs.

i. oo inch 40,700 Ibs 37,650 Ibs.

Although these figures show some irregularities, the general
result is unmistakable, and shows a decrease of S with an in-

crease of diameter.

The results of experiments at Bristol, England, by Mr.

Jones ("Proc. Inst. Mcch. Engrs.," 1858), on punching plate

iron, arc as follows :

THICKNESS OF PLATE. DIAM. OF HOLE. S.

0.437 inch.. .0.250.. . 54,700 Ibs. per sq. in.

0.625
"

0.500 60,900
" " " '

0.625
'

0-75" 52,900
"

0.875
'

.. 0.875.. 5L700
I. ooo "

i. ooo 55,io
"



492 SHEARING AND TORSION. [Art. 59.

Mr. C. Little found the following for English
" hammered

scrap bars and rolled iron," with parallel cutters or shears :

AREA CUT. DIRECTION. SI

0.50 x 3.00 ins Flat 49,950 Ibs. per sq. in.

0.50 x 3. oo ins Edge 5i,75O
" " " '*

i.oo x 3. coins Flat 5i,75O
" " " "

I. oo x 3. oo ins Edge 50,850
" " " '*

i.oo x 3.02 ins Flat 44,350
" " " "

I.oo x 3.02 ins Edge 46,150
" " " "

1. 80 x 5. oo ins Edge 46,150
" " " "

In these experiments the edges of the shears were always

parallel to each other, thus tending to produce simultaneous

shearing. In ordinary workshop practice, however, the jaws of

the shears make a constant angle with each other, thus shear-

ing successive portions of the material as the jaws approach,
whatever may be the dimensions of the piece, and conse-

quently always producing shearing in detail. In the experi-

ments (by the same authority, i. e., Mr. C. Little,
" Proc. Inst.

Mech. Engrs.," 1858) from which the following results were

deduced, the angle between the jaws of the shears was an incli-

nation of i in 8 :

EDGEWAYS.

45,ooo Ibs. per sq. in.

40,100
" " " "

47,300
'

50,600
"

. 41,200
'

As was to be expected, the "Edgeways" results are much
the largest, as with that position of the bar the shearing ap-

proached more nearly the simultaneous condition. These

results show that it is much more economical to shear a bar

flatways than edgeways.
Mr. Edwin Clark (" On the Tubular Bridges ") found the

resistance of ^6-inch rivet iron, in single and double shear, to

BA
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vary from 49,500 to 54,100 pounds per square inch. The ten-

sile resistance of the same iron was about 53,800 pounds per

square inch.

Reviewing all these results, the ultimate shearing resistance

of wrought iron may safely be taken at 0.8 of its tensile resist-

ance, as stated by Mr. D. K. Clark.

Cast Iron.

Very few experiments on the resistance of cast iron to

shearing have been made, as this metal is seldom or never used

to resist such a stress.

Mr. Bindon B. Stoney ("Theory of Strains in Girders and

Similar Structures," p. 357 of 2d Edit.) has found, by experi-

ment, that the ultimate shearing resistance of the cast iron

with which he experimented varied from about 17,900 to

20,200 pounds per square inch. He concluded that the shear-

ing and tensile resistances might be taken the same.

Steel.

The results of Prof. Ricketts' shearing tests on both open
hearth and Bessemer steel rounds with different grades of

carbon are given in Table II. of Art. 34. The elastic limit is

the point at which the metal first fails to sustain the scale

beam. The double shear resistance in one case exceeds the

single by over six per cent. According to these tests, the

ultimate shearing resistance of mild steel may be taken at

three-quarters of its ultimate tensile resistance. Each shear

result is a mean of three tests.

Mr. Kirkaldy investigated the ultimate shearing re-

sistance of four grades of Fagersta steel, and the following
results are taken from "

Experimental Enquiry into the Me
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chanical Properties of Fagersta Steel," by David Kirkaldy,

1873. The test-piece, in each case, was turned from a 2-inch

square bar, to a diameter of 1.128 inches, and each result is a

mean of three experiments. 5 is the ultimate resistance to

shearing, in pounds per square inch
;
r is the ratio of ultimate

shearing over ultimate tensile resistance of the same steel
;

while "d" is the detrusion or relative movement of one part of

the specimen in respect to the other at the instant of separa-

tion over the entire surface.

MARK. S. r. J.

1.2 , 61,400.00 Ibs -73 0.19 inch.

0.9 79,740.00
"

0.75 0.25
"

o.C 71,650.00
"

0.70 0.28 "

0.3 45,410.00
"

0.74 0.32
ll

As is evident, the lower "Mark" numbers belong to the

softer steels.

In each case two surfaces were sheared, as the "round"

was a pin for three links, two of which pulled one way, and

one the other.

All of Mr. Kirkaldy's experiments seem to show that the

ultimate shearing resistance of steel is about three-quarters the

tensile.

Table I. contains the results of the experiments of Prof. A.

B. W. Kennedy, as given in "Engineering" for May 6, 1881.

The tensile resistance of the same steel was given in the chap-

ter on " Tension."

The specimens were round and of mild rivet steel. The
ratio of the ultimate resistance to shearing over that to tension

varied from 0.80 to 0.89.

In the "
Journal of the Franklin Institute," for March, 1881,

Charles B. Dudley, Ph.D., gives the results of 192 tests of rail

steel, the specimens, 0.625 inch round, having been taken from

rails which had been subjected to service for considerable pe-
riods of time on the Penn. R. R. 'The tests were made by
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TABLE I.

Rivet Steel.

DIAMETER IN INCHES.
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Timber.

In treating the shearing resistance of timber, it is very nec-

essary to consider whether the shearing takes place along the

fibres, or in a direction normal to them.

TABLE I.

Along Fibres.

KIND OF WOOD.
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Table I. contains the results of experiments on the shearing
of small specimens along the fibres, by the late Mr. R. G. Hat-
field (" Transverse Strains," 1877). 5 is the ultimate shearing
resistance in pounds per square inch. There were about nine

experiments for each kind of timber.

Table II. contains the results of experiments by Mr. John
C. Trautwine on round specimens 0.625 inch in diameter, and

across the fibres ("Journal of the Franklin Institute," Feb.

TABLE III.

Along Fibres.

NO.
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1880). As before, 5 is the ultimate shearing resistance in

pounds per square inch.

Table III. has been condensed from the results of Col.

Laidley's tests at the Watertown Arsenal (Ex. Doc. No. 12,

47th Congress, 1st Session). Usually, two such results have

been selected as will give a correct idea of the resistance. In

all cases except Nos. 19, 20, 23 and 33, the smaller resistance

belongs to the larger shearing surface. In No. 33 the smaller

resistance belongs to an unsatisfactory experiment.

Art. 60. Torsion.

Coefficients of Elasticity.

The coefficients of elasticity for torsion or shearing have

been given in Art. 58, and need not be repeated here.

Ultimate Resistance and Elastic Limit.

WROUGHT IRON.

In 1866 Mr. Kirkaldy tested four hammered Swedish iron

bars turned to a diameter of 1.5 inches for a length of seven

diameters. The average ultimate moment of torsion was pro-

duced by a weight of 2,677 pounds with a leverage of 12

inches; hence, in Eq. (83) of Art. 10
;
M 2,677 X 12 =

32,124. Putting 2rQ d 1.5 inches in that equation, there

will result :

MTm = 5.1 -j- 48,540 pounds per square inch.

This is the greatest intensity of torsional shear in the sec-

tion.
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If Tm be taken at 48,000 the diameter of a wrought-iron
shaft required to resist an ultimate moment M, will be :

d = 0.047 v-M (0

If the working moment be taken at one-eighth the ulti-

mate, then the diameter required will be :

d = 0.047 V^ ^x = 0.094 <\/JfT ... (2)

in which Ml is the working moment.
If H is the number of horse powers per minute to be trans-

mitted by the shafting, and n the number of revolutions which
it is to make :

M - 12 * 33,000

Putting this value in Eq. (2) :

This value of d will be much too small in the case of long

shafting required in the distribution of power, in consequence
of the bending caused by the belting.

The mean torsional moment at the elastic limit, in Mr.

Kirkaldy's four experiments, was about 0.4 the ultimate.

In 1846 Major Wade (" Experiments on Metals for Can-

non ") tested three wrought-iron circular cylinders about 1.9

inches in diameter and 15 inches long, with the following re-

sults :
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T = = 28,325 Ibs. per sq. in.

= 27,525
= 27,800

" .. ..

83,650

Mean = 27,900 (nearly).

If the mean be taken at 28,000 :

d = 0.056 (5)

It is seen that Major Wade found Tm much less than Kirk-

aldy's value for Swedish iron, and d in Eq. (5) is correspond-

ingly greater. If H and n carry the same signification as

before, and if 8 is the safety factor :

(6)

In all these results, the moments are supposed to be given

in inch-pounds, and the resulting values of d are consequently
in inches.

CAST IRON.

Major Wade also made tests on circular cylinders of cast

iron about 1.9 inches in diameter and 15 inches long.

If d is the diameter = 2rQ in Eq. (83) of Art. 10, he found

the following results with the grades of iron shown :

31,500 pounds per square inch.

= 44,775
= 49*735

2d fusion T,

3d fusion Tt

2d and 3d fusion T,
2d fusion T,n = 40,020
3d fusion T,n 53,380
2d fusion Tm 49,526
3d fusion T,n 46,230

Mean = 45,000 (nearly).
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Hence the diameter in inches, for the ultimate moment M
in inch-pounds is:

y
(7)

These values of Tm are very high, because the iron with

which Major Wade experimented was evidently of a special

character and extraordinarily strong.

The same experimenter tested some square sections, for

which, by Eq. (73) of Art. 10 :

T = 5
--

; (b = side of square) .... (8)

The following are from Major Wade's results :

b = i. oo inches
;
M 8,750 inch-pounds ;

Tm = 43,750 pounds.
b = 1.42 inches ; M = 23,000 inch-pounds ;

Tm = 40,210 pounds.
b = 1.75 inches

;
M = 54,000 inch-pounds ;

Tm = 50,370 pounds.

The mean of these results is : T = 44,800 (nearly).

Hence for the ultimate moment in inch-pounds :

(9)

It is to be observed that, according to these experiments,

Tm is the same for circular and square sections ; a result very

different from that of Prof. Bauschinger's experiments, as will

presently be seen.

Four of Major Wade's experiments on hollow circular cyl-

inders are next to be give M.

Since T*,. = o, in Eq. (78) of Art. 10, the resisting moment
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of such a cylinder, if d is the external and */, the internal di-

ameter, will be :

M =

For the first case :

d = 3.25 ins.
;
dt
= 2.61 ins.; M = 95,000 in.-lbs.

Substituting in Eq. (11) :

Tm = 24,170 Ibs. per sq. in. (nearly).

For the second case :

d = 2.21 ins.
; d^ = 1.54 ins.

;
M = 49,500 in.-lbs.

Substituting in Eq. (11) :

Tm = 30,610 Ibs. per sq. in. (nearly).

For the third case :

d i.8 1 ins.
; d^ = 0.91 in.

;
M = 37,250 in.-lbs.

Substituting in Eq. (11) :

Tm = 34,220 Ibs. per sq. in. (nearly).

For the fourth case :

d = 1.30 ins.
;
d

l
= 0.65 in.

;
M = 13,000 in.-lbs.
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Substituting in Eq. (i i) :

Tm = 32,180 Ibs. per sq. in. (nearly).

These results indicate that Tm decreases as the thickness of

the wall of the hollow cylinder decreases and as the exterior

diameter increases.

Professor Bauschinger (Der Civilingenieur, 1881, heft 2)

tested cylinders about 40 inches long, and with the following
cross sections and approximate dimensions :

Circle
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STEEL.

In connection with the torsional resistance of steel, tests of

circular cylinders only are to be considered. Those to first re-

ceive attention were made by Mr. Kirkaldy on English steel,

in 1866-1870, and the results have been deduced from his data.

As the sections are all circular, Eq. (83) of Art. 10 is the

only one needed :

In this equation Tm is the greatest intensity of torsional

shear, in any section, in pounds per square inch;
" d" the di-

ameter of the shaft or cylinder in inches
;
and M the twisting

moment in inch-pounds.

In all the following experiments the lever arm of the twist-

ing couple was 12 inches; hence, if P is the twisting force,

M = \2P, and Eq. (12) becomes

_6i.2/>
m

d*

The mean of four experiments with Bessemer steel gave
for the ultimate resistance

P = 2,307 Ibs., with d 1.25 inches;

/. Tm = 72,298 Ibs. per sq. in..... (14)

The length was 10 inches.

The mean of some results with Krupp's cast steel in speci-

mens 1.25 inches in diameter, and 2.5 inches for torsion length,

gave:

P = 2,867 Ibs. .-. Tm = 89,847 Ibs. . . (15)



Art. 60.] STEF.L. 505

The following set of results were obtained from 2-inch

square bars turned down to 1.382 inches in diameter for a

length of 1 1 inches, and gives the means of the number of tests

indicated.

SPECIMENS.

5 Hammered tires,

5
' '

axles,

4 rails,

4 Rolled tires, axles

and rails.

5 Hammered tires,

4 axles,

I rail,

I Rolled rail.

.P (ULTIMATE). Tm (ULTIMATE). STRAIN.
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Hence the diameter (in inches) of the shaft which will just sus-

tain the breaking moment M, in inch-pounds, is :

d A/ Qs~rZ^ = 0.0387v/J/ .... (19)\l fS<S I AO \j i * \ sj

Or, if n is the safety factor, and M
l
the greatest working

moment :

d 0.0387y/nMt (20)

In all the preceding experiments the elastic limit varied

from 40 to 47 per cent, of Tm (ultimate) as given in (14), (15)

and (16).

In 1873 Mr. Kirkaldy made some experiments on specimens
of Fagersta steel which possessed a length of about 9 inches

and a diameter of 1.128 inches, the length of the twisting lever

being still 12 inches. Eq. (13) then gives the following results,

each being a mean of three tests :

MARK. P (ULTIMATE). Tm (ULTIMATK). STRAIN.

1.2 2,120 Ibs 90,397 Ibs 0.29

0.9 2,336
"

99,607
"

0.79

0.6 2,261
"

96,409
" 1.02

0.3 1,520
"

64,813
"

3.22

The " strain
"

is the number of complete turns made by the

specimen at the place and instant of rupture.

The specimens with the higher "mark" numbers were the

higher steels.

The elastic limit varied from 46 to 58 per cent, of the ulti-

mate Tm .

The diameter of a shaft for any of these grades may readily

be computed by the use of these values of Tm in equations
similar to Eqs. (17) to (20).
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The following values were determined by the Committee
on Chemical Research of the U. S. Board,

" Ex. Doc. 23,

House of Rep., 46th Congress, 2d Session," with specimens I

inch long turned to diameters of 0.625 and 0.565 inch, and

tested in a Thurston machine:

ELAS. LIMIT IN PER CENT. ULT. ANGLE OF
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tension and compression. The test specimens were 0.625 inch

in diameter, with a torsion length of i.oo inch, and were tested

in his torsion machine. The ultimate shearing resistances of

these alloys in torsion are thus seen to vary as widely as their

tensile resistances.

TABLE I.

COMPOSITION.
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TABLE II.

PERCENTAGE OP
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Tm (per sq. in.).

Red cedar 1,958 pounds.

Spanish mahogany 3>9?8
"

Oak 3,244
"

Hickory. . 5, 202
"

Locust 4,896
"

Chestnut 2,142

It is presumed that the axis of torsion was parallel to the

fibres, which would cause the shear to take place across the

latter.

It is interesting to observe that Tm is generally considerably
less than the ultimate resistance to simple shear as given in

Table II. of Art. 59.

If d is in inches and Mm inch-pounds, there may again be

written :

_ 3/^iM _ T ^ T JM_
71

If M is given in foot-pounds, 12M is to be written for M.
If MI is the greatest working moment, and n the safety factor,

nM
T

is to be written for M.

Relation between Ultimate Resistances to Tension and Torsion.

In the " Trans. Am. Soc. of Civ. Engrs.," Vol. VII., 1878,

Prof. Thurston gave the results of some of his experiments
which were made with a view to the determination of this re-

lation. If Mis the ultimate torsional moment in foot-pounds
of specimens one inch long and 0.625 inch in diameter

;
6 the

angle of torsion corresponding to this greatest moment M',

and T the ultimate tensile resistance in pounds per square
inch

;
he deduced from a large number of steel specimens of

wide range in grades the following formula :
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3

No experiments were made in which 6 was greater than

300.
T is thus seen to increase asM increases and as 6 decreases.



CHAPTER IX,

BENDING OR FLEXURE.

Art. 61. Coefficient of Elasticity.

The coefficient of elasticity, as determined by experiments
in flexure, can scarcely be considered other than a conven-

tional quantity. If the coefficients of elasticity for pure ten-

sion and compression were exactly equal to each other, and if

all the hypotheses involved in the common theory of flexure

were true, then, indeed, the coefficient of elasticity for flexure

would possess actual existence, and be the same as that for

either tension or compression.
These conditions, however, never exist, and the quantities

found in this chapter under the name " coefficient of elasticity"

possess value chiefly as empirical factors which enable the

deflections in the different cases to be estimated with sufficient

accuracy for all ordinary purposes.
The formulae to be used in the determination of the co-

efficients of elasticity for flexure have already been established,

and their use will be shown in succeeding Articles.

Art. 62. Formulae for Rupture.

As with the formulae for the coefficient of elasticity, so with

the formulae for rupture in bending ; they are all deductions

from the common theory of flexure, and, strictly speaking, are

subject to all the limitations involved in it.

If K and K' are the greatest intensities of stress in the sec-



Art. 62.] FORMULA FOR RUPTURE. 513

tion of rupture and at the instant of rupture ; y the variable

normal distance of any fibre from the neutral surface
; y\ and

y the greatest values of y ;
b the variable width of the section

(normal to y)\ and M the resisting moment at the instant of

rupture ;
then the general formula for rupture by bending, as

given by Eq. (i) of Art. 27, is:

y\ Jo y j -y

This equation is based on the supposition that the coeffi-

cients of elasticity for tension and compression are not equal.

Although this supposition is strictly true, yet equality is al-

most invariably assumed
; particularly in the treatment of

solid beams. Fortunately, this assumption is not far wrong in

those materials which are most valuable to the engineer.

Eq. ( i
), however, will hereafter be applied to some cast-iron

flanged beams.

If the tensile and compressive coefficients of elasticity are

K K'
equal,

-- = r . Or, if K is the greatest intensity of stress in

the section which exists in the fibre at the greatest normal

K K
distance, d from the neutral surface, then -- = 7, and Eq. (i)

}\ <*i

becomes :

This is Eq. (14) of Art. 18, and is the one almost invariably

used in engineering practice.

In Eq. (2) / is the moment of inertia of the cross section of

the beam about its neutral axis. By introducing the value of

/ for each particular shape of section, simple working forms of

Eq. (2) may easily be obtained. This will be done for two

sections in the following Article.

33
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Art. 63. Solid Rectangular and Circular Beams.

While the rectangular form of cross section almost invari-

ably characterizes timber beams, similar ones of iron, steel and

other metals are only occasionally seen. Beams of iron and

steel with circular cross sections, however, are quite common
as pins in pin connection bridges.

If ^Px represents the moment of the external forces about

the neutral axis of any section, Eq. (2) of the preceding Article

becomes :

The following are the values of / and dT for rectangular and

circular sections, h being the side of the rectangle normal, and

b that parallel to the neutral axis, while r is the radius of the

circular section, and A the area in each case :

Rectangular:
-

12 12

Circular :

If the beams are supported at each end and loaded by a

weight Fat the centre of the span (or distance between sup-

ports), which may be represented by /, then the moment at the

centre of the beam becomes :
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2Px = M= ...... (2)

There will then result from Eq. (i) :

For rectangular sections :

Wl Kbh* KAh

For circular sections :

Wl nKr* KArM = - - = - - = -- ..... (4)444
The quantity K is called the modulus of rupture for bending,

and if experiments have been made, so that W is known, Eq.

(3) g

2 Ah
'

2 b&

And Eq. (4) :

K= Wl
_

Wl~

Ar
"

nr*
'

If the rectangular section is square, bh* fr = //*.

Wrought Iron.

If the beam is simply supported at each end and carries a

load Wat the centre, while E is the coefficient of elasticity and
w the deflection at the centre, Eq. (28) of Art. 24 gives :



FLEXURE OF SOLID BEAMS. [Art. 63.

If, in any given experiment, w is measured, E may then be

found by the following form of Eq. (7) :

If the section is rectangular:

Mr. Edwin Clark tested a one-inch square wrought-iron bar

with the following results at the "
elastic limit :

"

l \2 inches. W 2,636.00 Ibs.

w 0.09 inch. b = h I inch.

Eq. (9) then gives :

E 12,652,809.00 pounds per square inch.

The mean for 2 one and a half inches square bars was as

follows :

1^6 inches. W 2,766.00 Ibs.

w = 0.305 inch. b h = 1.5 inches.

.-. E = 20,894,600.00 pounds per square inch.

A mean of 4 two inches square bars of Swedish iron, tested

by Mr. Kirkaldy, in 1866, gave the following results at the
"

elastic limit:
"

/ 25 inches. W 6,625.00 Ibs.

w 0.082 inch. b = h 2 inches.

E = 19,725,000.00 pounds per square inch.
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By
"
weighting

"
these results in proportion to the number

of tests of which each is a mean, the mean of all becomes:

E 19,049,000.00 pounds per square inch,

It is very probable that if w had been measured for smaller

loads, E would have been materially increased.

Mr. Kirkaldy tested the same four square Swedish iron bars

to rupture. By the aid of Eq. (5), and the data given above,

the greatest, mean, and least results were as follows :

W. K, FINAL DEFLECTION.

Greatest 15,885 Ibs 74,475 Ibs. per sq. in 5.85 ins.

Mean 14,516 Ibs 68,044 Ibs. per sq. in 5.35 ins.

Least 13,338 Ibs 62,522 Ibs. per sq. in 4.98 ins.

The ultimate tensile resistance of the same iron was about

45,000 pounds per square inch. These experiments would seem

to show that K, for square bars under similar circumstances

of span and depth, may be taken about 1.5 times the ultimate

resistance to tension.

The results in the following table were computed by the aid

of Eq. (6), for some circular beams of " Burden's Best
"

iron,

which were tested at the Rensselaer Polytechnic Institute in

November, 1882. As beams cannot be actually broken under

such circumstances, the " ultimate
"
value of K was taken with

a final deflection of one to one and quarter the diameter.

The "
elastic limit

"
is taken at that point beyond which the

metal "
flows," and is indicated by the incapability of the spec-

imen to hold up the scale beam beyond it, under a small in-

crease of stress ; in other words, it is that point at which the

specimen
" breaks down."

These experiments show conclusively that "ultimate" K
decreases as the ratio of span over diameter increases, but they
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Circular Beams of
" Burderis Best "

Wrought Iron.
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Bars with square section, Eq. (5).

KIND OP IRON.
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resistance for square bars, and two and a quarter times the same

quantity for bars with circular section.

Whether these ratios will hold for iron of inferior quality to

that used by Major Wade, can only be determined by farther

experimenting.

Steel.

Some circular Bessemer steel beams with 12 and 8-inch

spans were tested at the Rensselaer Polytechnic Institute in

Nov., 1882, with the results which are given in the next table.

The "
elastic limit

"
is that point at which the specimen

" breaks down." The " ultimate
"

value was that for which

the deflection was equal to one or one and a quarter the

diameter.

Circidar Bessemer steel beams, Eq. (6).
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The bars were 1.9 inches square in section, and the distance

between supports was twenty inches.

Bessemer Steel, Eq. (5).
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results of the 18 means of the groups shown in Table IV., Art.

34, are the following :

w. K.

Greatest 3,349 Ibs 133,960 Ibs. per sq. in .

Mean 3,026 Ibs 121,040 Ibs. per sq. in.

Least 2,765 Ibs 110,600 Ibs. per sq. in.

With these rectangular specimens of Bessemer rail steel,

supported flatwise, therefore, K may be taken about 1.6 the

ultimate tensile resistance.

The following table contains the results of Mr. Kirkaldy's

experiments on square bars of Fagersta steel. These bars

were 1.9 inches square in section, and rested on supports 20

inches apart. W is the breaking weight at centre, and K is

Fagersta Steel Square Bars.
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computed by the aid of Eq. (5). The column "Elastic over

ultimate" contains the ratios of the values of A" at the "elastic

limit
"
divided by the ultimate values given in the table.

The "Mark" shows the character of the steel; 1.2 is the

hardest, and 0.3 the softest.

K is about 1.6 times the ultimate tensile resistance for the

grades 1.2 and 0.6, and 1.8 times the same quantity for the

grades 0.9 and 0.3.

Combined Steel and Iron.

In Sept., 1 88 1, some interesting and valuable experiments
on the transverse resistance of pins (solid circular beams) were

made at Phoenixville, Pa., by the Phoenix Iron Co.

The pins were of combined iron and steel, the core of the

pin being of steel, and the outside of iron. In such a pin the

iron seems to change gradually to the steel, but the shell of

iron may perhaps be considered one quarter to one half an inch

thick.

These pins are supported a-t each end and loaded in the

centre. The results of the experiments are given in the fol-

lowing table :

D = diameter of pin.

/ = length in inches between supports.

W = weight (pounds) at centre.

K' intensity of stress per sq. in. on extreme fibre, in

general.

K intensity of stress per sq. in. on extreme fibre, at

rupture.

K is the greatest value of K' for any one pin. Either K or

K', by Eq. (6), has the value :

.

Ar
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PIN.
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E
y
for any particular bar, has a varying value for different

degrees of stress and strain. Those given in the table may
be considered average values within the elastic limit.

As usual,
"
elastic oi'cr ultimate

"
is the ratio of K at the

elastic limit over its ultimate value.

An examination of the ultimate tensile and compressive
resistances of these same alloys, as given in preceding pages,
shows that the ratio of K over either of those resistances is

very variable. It is usually found between them, but occasion-

ally it exceeds both.

Square Bars.

PERCENTAGE OP
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Square Bars. Continued.

PERCENTAGE OF
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As K is supposed to be expressed in pounds per square

inch, all dimensions in Eqs. (10) and (u) must be expressed in

inches.

In the use of timber beams it is usually convenient to take

the span / in feet, and the breadth (b) and depth (//)
in inches.

Placing 12/for /, therefore, in Eqs. (10) and (n);

KAh KA/i
W. -

T ; and, W = 2 -^ . . . (,2)

in which formulae / must be taken in feet and A and // in

inches.

jr
If B be put for , Eq. 12 becomes :

Io

Alt AltW=B\ and, W = *B . . . (13)

Hence, when W and W have been determined by experi-
ment :

For single load W at centre :

Wl Wl

For total load W uniformly distributed :

Wl

If the beam has a section one inch square and is one foot

W
long, B = W = --

. B, therefore, may be considered the

unit of transverse rupture ; it is sometimes called the coefficient

for centre breaking loads.
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Table I. is a condensed statement of the result of experi-
ments by the late R. G. Hatfield, a complete account of which

may be found in his " Transverse Strains," 1877. All the test

TABLE I.

MATERIAL.
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TABLE II.

Specimens 3 ins. x 3 ins. x 4-5//.
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Coefficient of elasticity.

K.
B. .,

Yellow Pine.

GREATEST.

1,926,160 Ibs.

14,654 Ibs. . . .

813 Ibs. . . .

White Pine.

MEAN.

1,821,630 Ibs..,

13,048 Ibs. .

725 Ibs. .

Coefficient of elasticity ... 1,461,728 Ibs 1,388,497^5...
K. 9,440 Ibs 8, 297 Ibs...

B 524 Ibs 461 Ibs. ..

LEAST.

1,707,282 Ibs.

12,280 Ibs.

682 Ibs.

1,251,252 Ibs.

7,578 Ibs.

421 Ibs.

Table III. contains values of B which have been computed
from data determined by MM. Chevandier and Wertheim

(" Memoire sur les Proprietes Mecaniques du Bois," 1848). The
timber was from the Vosges. The great variations in the

length of span and dimensions of beam render these especially

valuable.

TABLE III.

Vosges Timber.

BREADTH.
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The weights of the beams were allowed for in the manner

already shown in that section of this Art. which is headed "
Cop-

per, Tin, Zinc, and their Alloys."

TABLE IV.

LasletCs Tests.

Sections 2x2 inches with span of 6 feet.

KIND OF TIMBER.
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In the cases of the fir specimens, B increases very con-

siderably as the depth of the beam decreases, and with little

irregularity. The same general result seems to hold with the

oak specimens, although there are very marked irregularities-

On the whole, therefore, these experiments would seem to

show unmistakably that B or K has much larger values for

small depths of beam than large.

The modulus of rupture, K, may of course be found by tak-

ing I &#, but its values are not given in the table.

Tables IV., V., VI. and VII. contain values of B and E
which have been computed from data determined by the

English experiments of Messrs. Laslett, Maclure, Fincham,
Edwin Clark and G. Graham Smith. These experiments are

among the latest and most valuable ever made.

In all these tables Wis the total load applied, including the

weight of the beam, wherever that correction is made.

In Table IV. the coefficient of elasticity is computed, in all

cases, for a centre load of 390 pounds. In Table V. the centre

load for the same computation is 1,680 pounds ;
and in Table

VII. the elastic load had different values for different beams.

In all cases, except the four noted in Table VII., the ap-

plied loads were placed at the centre of the span.

Although these experiments do not embrace a great variety

of cross section for all kinds of timber, yet Tables IV., VI. and

VII. give much larger values of B for small depths of pine and

fir beams than for large ones. This is a very important con-

sideration in connection with the ultimate resistance of beams,
and probably obtains for all kinds of timber. In fact, Table

III., as has been observed, indicates the same results for

Vosges fir and oak.

These experiments also showed that the coefficient of elas-

ticity, E, varied materially in the same specimen for different

deflections, and that values among the greatest may be found

with large deflections
;
also that the " elastic limit

"
for flexure

in timber beams is more conventional than real, since with
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TABLE V.

Finchatns Tests.

3x3 inches, section ; 4 feet span ; very dry timber.

KIND OP TIMBER.
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TABLE VII.

Tests by Edwin Clark and G. Graham Smith.

TIMBER.
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TABLE Vila.

Seasoned Sticks, Loaded at Centre.

NO.
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ations in view, Prof. Lanza's results for large spruce beams,

which are given in Table VI \b., possess great value.

With the exception of Nos. 11 and 12 the material was

common merchantable lumber.

Timber Beams of Natural and Prepared Wood.

Table Vile, contains the results of some experiments by
A. M. Wellington, C.E. (" R. R. Gazette," Dec. 17, 1880) on

small specimens ij^ inches square and 15 inches between sup-

ports.
" All the woods, except as specified, had been cut six

to eight months and were partially seasoned."

TABLE VIL-.

Specimens 1.25 inches square, 15 inches long.
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Cement, Mortar and Concrete.

Table VIII. and Table IX. contain values of K computed
from data given by Gen'l Gillmore in his 4<

Limes, Hydraulic
Cements and Mortars," 1872. All the prisms were 2 inches

square in cross section and 8 inches long, and were broken by
the weight W%

which was applied at the centre of a 4-inch

span. K is computed by Eq. (5), all dimensions being in

inches. The composition is shown in the tables. The pure
mortars of Table VIII. were kept 24 hours in a damp place,

and then immersed in salt water until broken. Nos. I, 2, 3

and 4 were 59 days old ; the others, 320. As a rule, those

which set under pressure were considerably stronger than the

others.

In Table IX., all the prisms set under a pressure of 32

pounds per square inch, and were kept in sea water, after the

first 24 hours, until broken.

Many reliable experiments, such as those which follow,

show that when masonry is built in a strictly first-class manner,
its transverse resistance is very considerable.

Table X. is taken from a paper entitled " Notes and Ex-

periments on the Use and Testing of Portland Cement," by
Wm. W. Maclay, C.E., in the " Trans. Am. Soc. of Civ. Engrs.,"

1877.

The concrete prisms were six inches square in cross section

and two feet long, and rested on supports one foot apart. W
was applied at the centre of the span. If W

l
\s the weight of

the prism whose length is equal to the span, Eq. (5) becomes :

in which b, h and / are to be taken in inches.
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TABLE IX.

Section of Prisms 2 inches square. Supports 4 inches apart.

KIND OP CEMENT.
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TABLE X.

Concrete Prisms 6'' x 6" x. 2'. Supports \ foot apart.
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Stone Beams.

But few experiments have been made on the transverse re-

sistance of the different kinds of stone. The following values

of K have been computed from the experiments of R. G. Hat-

field (" Transverse Strains ") and Gen. Gillmore (" Building

Stones").
B. K= x&ff.

Blue Stone Flagging 200 Ibs 3,600 Ibs.

Sandstone 59 Ibs 1,062 Ibs.

Brick, common 33 Ibs 594 Ibs.

Brick, pressed 37 Ibs 666 Ibs.

Marble, Eastchester 147 Ibs 2,646 Ibs.

Granite, Millstone Point (doubtful) 133 Ibs 2,390 Ibs.

Marble, Eastchester 128 Ibs 2,300 Ibs.

Granite, Keene, N. H 103 Ibs 1,860 Ibs.

Hatfield.

Gillmore.

All beams were broken by centre weights. The last three

tests were with prisms 2 ins. x 2 ins. X 6 ins., over a span
which was taken at 3 inches.

Practical Formula for Solid Beams.

The quantities B, K and E, which have been established,

form a practical basis on which the deflection and ultimate

resistance of solid beams are to be computed.

Breaking weight (in pounds) at centre of circular beam, Eq.

(6):

If Wis a uniform load :

In Eqs. (18) and (19), A (the area), r (the radius) and / (the

span) are to be taken in inches.
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Breaking weight (in pounds) at centre of rectangular beams,

y.(S):

W=l = 2*** (20)

If W\s a uniform load :

W -I- ^
f2T"i"

3 /
"

3 /

In Eqs. (20) and (21), A (the area), b (the breadth), d (the

depth) and / (the span), are to be taken in inches.

If /is expressed in feet, and all other dimensions in inches,

Eq. (20) becomes :

W= ^ = B b

-^ (22)

and Eq. (21):

7 7 \ w/

Deflection (in inches) at centre of circular beams :

_ __

\2EAr*

Deflection (in inches) at the centre of rectangular beams :

_ (w+%piy* _ (w+#piy*

In Eqs. (24) and (25), W is the centre load, and // the total

uniform load, expressed in pounds ;
while A (area), /3 (cube of

span), r (radius), b (breadth), and d (depth), are to be taken in

inches. If there is no uniform load,// is zero
;
and if there is

no centre load, W"\s zero.
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Comparison of Modulus of Rupture for Bending with Ultimate

Resistances.

The experiments on solid beams which have been cited,

show the somewhat remarkable result that, in general, K has

neither the value of the ultimate resistance to tension nor of

that to compression ; nor, indeed, in some cases, is there any-

thing like a well defined relation between those quantities. If

those ultimate resistances have widely different values, K may
be found between them

;
in other cases it may considerably

exceed either. In no case, however, it may safely be asserted,

will it be found less than both. These investigations show that

K varies with the kind of cross section, and it is altogether

probable that it also varies with varying proportions of the same
kind of cross section. Experimental data for the determina-

tion of this point, however, are still lacking.
In the absence of experiments conducted in a manner proper

to the solution of this problem, it is difficult to assign confi-

dently the reason for the facts as they appear.
The explanation will probably be found in the effects of the

following causes, while it is borne in mind that with the small

ratios of span to depth usually found in connection with solid

beams, the common theory of flexure is only loosely approxi-

mate, and hence, that the greatest intensity shown by the

common formulae is probably considerably different from the

actual.

The varying intensity in adjacent fibres prevents perfect
'lorn in lateral strains, and causes a corresponding increase

in resistance. In the experiments which have been made, tin-

place of greatest intensity of stress is exceedingly small, thus

placing the part first ruptured somewhat in the condition of a

very short specimen. Again, afu r the elastic limit is passed,
in consequence of the flow of the material, it is highly proba-
ble that the law of the variation of stress intensity changes and

35
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becomes such that, with the same greatest intensity at the sur-

face of the solid beam, the resisting moment is considerably
increased.

Finally, it has been shown that the experimentally deter-

mined ultimate resistances to tension and compression are,

in reality, mean intensities, and not the greatest which the

material is capable of exerting at any one point, or along any
one line, as in the extreme fibres of a bent beam. On this

ground alone, K ought to be considerably greater than either

T or C, as determined from the usual cross sections.

Art. 64. Flanged Beams with Unequal Flanges.

In the beams which are to follow, the material is distributed

in a much more advantageous manner, in respect of its resist-

ing moment, than in the solid beams which have been hereto-

fore treated. In these beams, it will be found, in almost all

cases, that the ultimate intensity of bending stress, at the point
which first ruptures, is equal either to the ultimate resistance

to tension or compression. In this respect, at least, therefore,

the ultimate load for flanged beams is more easily and exactly
determined than for solid ones.

In Fig. i is shown a "
flanged beam." The "

flanges
"

are

the two horizontal parts above and

below; the "web" is the vertical part

uniting the two flanges so as to form

the perfect beam.

In order that there may be economy
of material in the beam, neither flange

must begin to fail before the other
;

in

other words, the two exterior layers of

fibres, above and below, must begin to

fail at the same time.

The intensities, then, in these two

&

&'

h i^r*--

1J.
I F
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layers must, at the instant of rupture, equal the ultimate re-

sistances to tension and compression in bending.

Equal Coefficients of Elasticity.

By the common theory of flexure, if the two coefficients of

elasticity are equal, it has been shown that if C is the centre of

gravity of the cross section, the neutral axis of the section will

pass through that point. Let it now be supposed that the

lower flange is in tension while the upper is in compression.
Also let T represent the ultimate resistance to tension in bend-

ing, and let C represent the same quantity for compression in

bending. Then, since intensities vary directly as distances

from the neutral axis,

xv
(I)

The ratio between ultimate intensities is represented by
n. If d = h + //, is the total depth of the beam, and hence

t-t
1 ' / J 7 \ dft C- xv
|

- ft \& ~" 'I
i } .

,
=-

rf^
. . \*J

* + c

If, as an example, for mild steel there be taken :

The relation between h and //, shown in Eq. (2) is entirely

independent of the form of cross section. But according to

the principles just given, in order that economy of material
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shall obtain, the cross section should be so designed that h and Ju

shall represent the distances of the centre ofgravity from tlie ex-

terior fibres.

The analytical expression for the distance of the centre of

gravity from DF is :

,

b'd+(b-by + (*,- *'x.

The meaning of the letters used is fully shown in the figure.

In order that the beam shall be equally strong in the two

flanges, the various dimensions of the beam must be so de-

signed that

*i = /*x ........ (4)

It would probably be found far more convenient to cut sec-

tions out of stiff manilla paper and balance them upon a knife

edge.
The moment of inertia about the axis AB, thus deter-

mined, is :

This value is to be substituted in Eq. (2) of Art. 62, now

changed to

CI TIM = = -=- .

h /r,

For various beams whose lengths are / and total load W,
the greatest value of M becomes :

Cantilever uniformly loaded :

WlM = .
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Cantilever loaded at end:

M= Wl.

Beam supported at each end and uniformly loaded:

M= wi = p_iL
8 8

Beam supported at each end and loaded at centre :

WlM= .

4

The last two cases combined :

Sometimes the resistance of the web is omitted from con-

sideration. In such a case the intensity of stress in each flange

is assumed to be uniform and equal to either T or C. At the

same time the lever arms of the different fibres are taken to be

uniform, and equal to h for one flange and //, for the other, //

and /*, now representing the vertical distances from the neutral

axis to the centres ofgravity of the flange's, while d =// + //,.

On these assumptions, if / is the area of the upper flange,

and/' that of the lower, there will result:

M = fC.k+fT.k (5)

But since the case is one of pure flexur

(6)

f'T<i ... (7)
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Also, from Eq. (6) :

Or, the areas of the flanges are inversely as the ultimate re-

sistances.

Unequal Coefficients of Elasticity.

All these results presuppose equality between the coeffi-

cients of elasticity for tension and compression. In some cases

this presumption is not permissible. To the formulae of Art.

27 resort must then be made.

The neutral surface must first be located. If d is the total

depth of the beam, /*,
= d h

; //, then, must be found. Eq.

(5) of Art. 27, when applied to Fig. i; becomes :

-Tbfr (b
- d'} (h - tj~\ rTbAd - Jif

j~t
' _ ^

%_,
' ^

- I

* M I *_2 i^.

L 2 2 J L 2

(b,
-

b')(d
- h - /

x)
a

~|

~J ;

E representing -the coefficient of elasticity for compression, and

E that quantity for tension.

Performing the operations indicated and reducing, writing

n for E -^ E :

(n
-

i)b'h* + 2\nt'(b
-

b') + /,(,
-

b')

= nt\b
-

b') + (2d
-

/,) (b,
- b% + b'd* . . (9)

h is to be measured on the compression side of the beam.

This is a quadratic equation of condition for the determina-

tion of h. It is best to leave it as it is until the numerical sub-
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stitutions are made and then to solve it. //, immediately results

from the equation /*,
= d h.

Frequently there is no compression flange, the section being
like that shown in Fig. 2. In such a case b is

equal to b', or /' is equal to zero
;
hence the two

terms nt\b b) and nt'\b b) in Eq. (9) disap-

pear. No other change occurs. ,

Eq. (i) of Art. 27 then gives the following

resisting moment of the section :

(*. -y) (*.-/.)

Fig,2

. . . (10)

C is the greatest intensity of stress in the section of the

same kind as E '.

If the section is like Fig. 2, b again equals b' and the term

(b b') (k t'Y in Eq. (10) disappears, but nothing else is

changed.
If T is the greatest stress on the other side of the neutral

surface from C\

M = -
n(b

-
b) (//

-
/')* -f bjt*

-(b,- b) (//,-/,)>] (II)

In order that the beam may be equally strong in the two

flanges, the ratio between // and // as determined by Eq. (9),

should be the same as that determined by the following proc-
ess. If u is the rate of strain at units' distance from the neu-

tral surface :
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If there is no waste of material, the cross section must be
so designed that the ratios given by Eqs. (9) and (12) will be

the same.

If the thicknesses of the flanges t' and t
t are small com-

pared with the depth d of the beam, and if b' also is small, i. c.,

if the flanges are assumed to give the whole resistance to bend-

ing while the web takes up the shear, Eqs. (10) and (11) may
be much simplified.

C T
Making, therefore, b' = o in Eq. (10), putting - and

/ 72 ft
j

then expanding the quantities (h /')
3 and

(/&,
/
z)

3
:

Under the conditions taken, Cbt' Tb,t.
; also, *-? and~

$h 3^
are very small and may be neglected. Hence,

M=Cbt'(d-t' -t^=Tb^(d-t' -t^ . (13)

But both of these approximations have made M too small.

As an approximate compensation, therefore, (-
i
) may

be written for (f -f- /,).
The moment then becomes :

M =

The quantity within the parenthesis of the second member
of this equation is evidently the distance between the centres
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of gravity of the flanges, while the quantity Cbt' = TbJ is

simply the flange stress. Eq. (14) is, then, identical with Eq.

(7), as was to be anticipated. The equality of flange stresses

gives :

*

a relation identical with Eq. (8).

If desirable, an approximate correction for the neglect of

the web may be introduced in Eq. (14). It has been seen that

that equation is precisely the same as if E' were equal to E,

i.e., as if the two coefficients of elasticity were equal. Now,
it will be shown in the next Article that if E' = E, the re-

sistance of the web to bending is equal to that of one-sixth of

its area of normal section concentrated in each flange. Hence,
if a is the area of the normal section of the web, since bt' and b

l
tl

are areas of the normal sections of the upper and lower flanges,

there may be approximately written :

Values of C and T may be determined by experiment.
In the case of solid beams, it has been seen that if r and r

1

are certain ratios, K = rTor r'C. Hence, since the web of a

flanged beam is really a solid beam subjected to flexure, Eq.

(15) may be written :

M= TD(a' + *)
= CD

(a" +
r

-f)
. . . (16)

In which,
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t' 4- /D = d - - = depth between flange centres
;

a' = b
1
t

l
= area f bottom flange ;

a" = bt' = area of top flange.

Cast-Iron Flanged Beams.

In the preceding Article it has been seen that r is equal to

about 2 for a solid bar with square cross section. This would

make r H- 6 %. A few imperfect experimental indications,

however, seem to indicate a decrease of r for a greater ratio of

depth to breadth. Let, therefore, r -+ 6 = 0.25. Eq. (16)

then becomes:

(17)

If W centre breaking load in pounds ;

W
l
= total uniform breaking load in pounds ;

/ span in feet
;

12 / = span in inches :

W -

TD (a
1 +

/. W-.
X

/

*'
(18)

In the same manner

TD (a + -

^ = 2 -

lp- (I 9)

Or, if //is the weight of the beam, supposed uniformly dis-

tributed,
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TD
(a' +

"

It has been shown under the head of " Tension
"

that T
varies from 15,000 pounds per square inch, for ordinary cast-

ings, to 30,000 for those of extra quality. In Eqs. (18), (19)

and (20),

D must be taken in inches ;

a and a in square inches
;
and

/ in feet.

Those equations have been verified in a most satisfactory

manner by the numerous English experiments of Hodgkinson
and Cubitt (" Experimental Researches," etc., by Eaton Hodg-
kinson, F.R.S., 1846). and Berkley (" Proc. Inst. of Civil

Engineers," Vol. XXX.), as is shown by the following table.

This table gives the actual centre breaking weights Wt
of the

different beams, together with the values of W computed by the

formula of Mr. D. K. Clark (" Rules, Tables and Data"), which

is essentially identical with Eq. (18); Mr. Clark taking the

total depth minus the depth of the lower flange instead of

"/V* and "0.280," or "
0.20x7," instead of "

0.250."

As the results are given to confirm the accuracy of the for-

mulae under consideration, they are stated in tons of 2,240

pounds. Nos. 17, 27 and 34 were of the form shown in Fig.

2 ; the others had sections like Fig. i. The results for those

three beams are not satisfactory, and Eq. (10) should therefore

be used in all such cases where anything more than a very
loose approximation is desired. In that Eq. n may be taken

equal to unity, on account of the great irregularities in the

ratio of the two coefficients of elasticity. Since, in this case

(see Fig. i), b = b' Eq. (10) becomes:

M = \* + *A -
(*.

-
*') (/',

- /,W . . (21)
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Cast-Iron Flanged Beams.

NO.
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A mean of three of Mr. Hodgkinson's beams of 4.5 feet

span, 5.125 inches depth, gave:

W+ P = 8,766 Ibs., and C = 45,700 Ibs.

One of Mr. Cubitt's beams of 15 feet span and 14 inches

depth, gave :

P = 28,100 Ibs., and C = 30,850 Ibs.

The bottom flange of this beam was unsound :

C must necessarily depend upon the span, since that portion
of the web which is subjected to compression is somewhat in

the condition of a long column. This, indeed, is true of the

compression flange of any flanged beam, but the effects result-

ing from such a condition are much more marked in the class

of beams shown in Fig. 2.

If, then, W is the centre breaking weight and W
l
the total

uniform breaking load (not including the weight of the beam),

Eq. (21) becomes:

w = T = [Mt +w ~
(*-
" 6

'

} (/'-
~ 'iV]

" -

(22)

In this equation, / must be taken in feet and other dimen-

sions in inches.

For 5 feet span C may be taken at 45,000 Ibs.

For 15 feet span C may be taken at 35,000 Ibs.
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In order that a beam with top and bottom flanges may give
the best result, />., reach its ultimate resistance in each flange

at the same time, Mr. Hodgkinson found that the area of the

lower flange section should equal about six times that of the

upper. That relation has been anticipated in Eq. (8).

Deflection of Cast-Iron Flanged Beams.

If W \s the centre load in pounds, / and w the span and

centre deflection, respectively, in inches, and / the moment of

inertia of the cross section, Eq. (8) of Art. 24 gives :

WP
= .......

Or, if / is in feet, which is more convenient :

A mean of two of Mr. Berkley's beams gave :

/ = 4.5 feet
;
w = 0.284 inch

;
W 20,160 Ibs. :

/ == 18.74. Hence: E = 12,424,600 Ibs.

A mean of two of Mr. Cubitt's beams gave :

/== 15 feet; w 0.465 inch; W 11,200 Ibs.;

/= 227.03. Hence: E = 12,886,720 Ibs.

The four preceding beams had top and bottom flanges, as

in Fig. i. Another of Mr. Cubitt's beams,' without top flange,

as in Fig 2, gave :
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/ = 15 feet
;
w 0.41 inch

;
W = 13440 Ibs. ;

/= 373. Hence: E = 10,679,400 Ibs.

This last beam had a defective bottom flange, hence there

maybe taken without essential error:

E = 12,000,000 Ibs.

Taking I in feet, Eq. (24) now gives for the centre deflection :

w = -
, (25)

I,OOO,000/

in which W is either the centre load, or five-eighths (^ths) the

total uniform load, as the case may be.

The formula by which / is to be computed is the one which

immediately follows Eq. (4).

Wrought-Iron T Beams.

The wrought-iron T beam is the most important beam of

that material with unequal flanges. In the case of wrought
iron the two coefficients of elasticity are A ^ B ^ D

essentially equal to each other
; conse-

quently the axis about which the moment V^y \
( ^J

of inertia of the section is to be taken n K
passes through the centre of gravity of the H _y
latt '

Fi*.3
All the experiments cited in this sec-

tion are those of Sir William Fairbairn, given in his " Useful

Information for Engineers," first scries.
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Experiment 7.

A section of the beam is shown in Fig. 3. It was composed
of two 2^-inch LS riveted to a 5 x J^-

^ inch plate. AD was horizontal, and the

flange, BF, downward ; hence F was in

tension.

W = centre breaking weight = 3,409

Ibs.

7, by Eq. (29) of Art. 49, = 1.738.

x, = distance of centre of gravity from
Fig,4 _ . ,F = 1.91 inches.

Span = / 7 ft. = 84 inches.

K T' = apparent intensity of tensile stress at F.

Hence :

K = r = = 78,400
4^

Experiment II.

Beam and data the same as before, except:

W 7,750 Ibs.

/ = 27 inches.

Hence:

/T= r =
-^p

= 57,344 Ibs,

Experiment III.

Beam and data the same as before, except :

BF was upward, causing compression at F.

W 10,777 lbs

/ = 27 inches.
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K = C' = apparent intensity of compressive stress at F.

Hence:

K = C = 78,400 Ibs.

Experiments II. and III. were made by testing portions of

the same beam used in Experiment I.

Experiment IV.

A section of the beam is shown in Fig. 4., but it was

tested with the rib or web upward, as shown in Fig. 2.

AD = 2.85 inches. BF = 2.5 inches.

Thickness of rib = 0.29 inch.

Thickness of flange = 0.375 inch.

W = 3,019 Ibs. / = 48 inches.

*, distance of centre of gravity from F = 1.86 inches.

/ = 0.989.

Hence :

K = C' = p = 68,100 Ibs.

Experiment V.

Beam and data same as for IV., except
Rib was downward, as shown in Fig. 4 :

W= 3,1 53 Ibs.
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Hence :

K= T' = 71,000 Ibs.

In all these experiments half the weight of the beam was

included in W.

These results show that the apparent ultimate intensities of

resistance to compression and tension in bending of T beams

may be taken equal to each other; also that there may be

taken :

K = C = T = 70,000 Ibs. per sq. in.

The ultimate tensile resistance (T) of this iron probably

ranged from 45,000 to 50,000 pounds per square inch. Hence,

nearly :

From the equality of C' and T', it follows that the beam is

equally strong whether the web or rib is up or down.

Deflection of Wrought-Iron T Beams.

If w is the centre deflection of a beam loaded with the

centre weight W, E the coefficient of transverse elasticity, and

/ the span, then, as has been seen :

or,

A mean of the experiments II. and III. gave
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W = 4,040 Ibs., w = =0.175 inches.

/=i.738.

Hence:

This is a small value for E, but is due to the fact that the

beam was a built one.*

A mean of the experiments IV. and V. give:

*F= 1,400 Ibs., w = . = 0.15025 in., /= 0.989.

Hence:

= 21,706,000.

This last value of E is about four times as large as the

other. Hence the rolled beam would deflect only one-quarter
as much as the built one. All values of W were within the

elastic limit.

These values of E, inserted in Eq. (26), will give the deflec-

tion for a load W (including five-eighths the weight of the

beam) at the centre. If W, is the total uniform load, %WV is

to be put for W in the equation. Eq. (26) requires /, w and /
to be in inches.

If, however, / is in feet and other dimensions in inches :

The foregoing formulae, both for breaking weight and deflec-

*
It is probable that the riveting was done by hand. The improved modern

machine riveting would make a much stiflcr beam.
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tion, may be used for the bending of angle irons with sufficient

accuracy for all ordinary purposes.

Art. 65. Flanged Beams with Equal Flanges.

Nearly all the flanged beams used in engineering practice
are composed of a web and two equal flanges. It has already
been seen that the ultimate resistances, T and C, of wrought
iron, to tension and compression are essentially equal to each

other; the same may be said also of its coefficients of elastic-

ity. While these observations may not be applied with pre-

cisely equal force or truth to the milder forms of steel now

working their way, to a considerable extent, into engineering

construction, they certainly hold without essential error.

In Fig. i is represented the normal cross section of an equal-

flanged beam. It also represents what may
be taken as the section of any wrought
iron or steel I beam. Although the thick-

ness /' of the flanges of such beams is not

uniform, such a mean value may be taken

as will cause the transformed section of

Fig. i to be of the same area as the orig-

inal section.

Unless in very exceptional cases where

local circumstances compel otherwise, the

beam is always placed with the web ver-

tical, since the resistance to bending is

much greater in that position. The neu-

tral axis HBw\\\ then be at half the depth of the beam. Tak-

ing the dimensions as shown in Fig. i, the moment of inertia

of the cross section about the axis HB
t
is :

1 1
'

J, 1 SI
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while the moment of inertia about CD has the value :

= .......
12

With these values of the moment of inertia, the general
Jf

'

T fl h

formula, M =
j- , becomes (remembering that d, = - or -) :

_A- \LL. . (V)
6d

Or;

C is written for K, since K T = C.

Eq. (3) is the only formula of much real value. It will be
found very useful in making comparisons with the results of a

simpler formula to be immediately developed.

Let */,
= y2 (d -f //).

Since /' is small, compared with -
,

the intensity of stress may be considered constant in each

flange without much error. In such a case the total stress in

each flange will be : Cbt' Tbt', and each of those forces will

act with the lever arm ^</z
. Hence the moment of resistance

of both flanges will be :

Cbt' . d, .

tk*The moment of inertia of the web will be :
-

. Conse-
12

quently, its moment of resistance will have very nearly the

value :

CM
~"3T'
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The resisting moment of the whole beam will then be :

...... (5)

A still further approximation is frequently made by writing

djt for If ; then if each flange area bt' fy Eq. (5) takes the

form:

(C\
6J

Eq. (6) shows that the resistance of the web is equivalent to

that of one-sixth the same amount concentrated in each flange.

If the web is very thin, so that its resistance may be neg-

lected :

M = Cfd, = Cbtd, (;)

Or:

M
(7a)

Cases in which these ^formula? are admissible will be given
hereafter. It virtually involves the assumption that the web
is used wholly in resisting the shear, while the flanges resist the

whole bending and nothing else. In other words, the web is

assumed to take the place of the neutral surface in the solid

beam, v/hile the direct resistance to tension and compression
of the longitudinal fibres of the latter is entirely supplied by
the flanges.

Again recapitulating the greatest moments in the more

commonly occurring cases :

Cantilever uniformly loaded :

Wl pi*M -- J -
.

2 2
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Cantilever loaded at the end:

M = Wl.

Beam supported at each end and uniformly loaded

Beam supported at each end and loaded at centre :

Beam supported at each end and loaded both uniformly and

at centre :

In all cases W is the total load or single load, while /, as

usual, is the intensity of uniform load, and / the length of the

beam.

In " Useful Information for Architects, Engineers and

Workers in Wrought Iron," issued by the Phoenix Iron Co. of

Phcenixville, Penn., are the record of some experiments by
which the value of C or T may be determined. These will now
be used.

Example /.

A 7-inch I was subjected to successive loads at the centre

of the span, the ends being simply supported. The beam

weighed 60 pounds per yard; consequently the area of the

cross section was 6 square inches. The span was 21 feet, or

252 inches. The dimensions represented in Fig. i arc the fol-

lowing:
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// =
d
b =

(b
-

/)
=

j'

/ =
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But = 20 X 21 -T- 2 = 210; W = io,ocx>, and / = 252.

/ is taken in inches because the dimensions of the cross section

are in the same unit. These values give :

M = 643,230.

Also the data given above, placed in Eq. (3), give :

M C x 13.37.

Equating these values :

C = 643,230 -4- 13.37 = 48,110 pounds ... (8)

Again, the proper data inserted in Eq. (6), the approximate

formula, give:

M = C x 14.79.

Hence :

C = 643,230 -s- 1479 = 43490 pounds .... (9)

The first permanent set was observed with a centre load of

5,000 pounds. This gives a bending moment at centre of

M=-( 5,000+^) =328,230.
4 \ 2 '

Hence :

C := 328,230 + 13.37 = 24,550 pounds.

As the perman< .vith this load was very small, and as
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there was none at all observed with a centre load of 4,00x3

pounds (nearly corresponding to C = 20,000 pounds), the limit

of elasticity may be taken at about :

20,000 + 24,000

In the right hand column of the table are calculated the

deflections by Eq. (21) of Art. 24, the coefficient of elasticity

being taken at 30,000,000 pounds. By Eq. (i), using the data

already given :

/ = 46.795.

Hence :

/3 -v- 4&5Y 0.0002375.

Also:

|//
= 262.5.

These values inserted in the formula give the results shown in

the table. The experimental quantities are seen to increase

much more rapidly than the results given by the formula. The

agreement, however, is sufficiently close for ordinary purposes.

Example II.

The second example, derived from the same source as the

first, is that of a 9-inch I, 87 pounds per yard. The data to be

used in connection with Fig. I are as follows :

/' = 0.72 inches.

b = 4.00
"

.'. /
'

: = bt' := 2.88.

/ = 0.39
"

d = 9.00
"

/. d z = 729.000.

// = 7.56
"

.-. h* = 432.581.

(b-t) = 3.61
"
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I =21 feet =252 inches
; / 29 pounds per foot.

di = 8.28 inches, W = 17,500 pounds.

The bending moment at centre, as before, is :

= 1,121,683.5.
2 /

The above data inserted in Eq. (3) give :

M= C x 25.08.

Hence :

C - 1,121,683.5 -=- 25.08 = 44,724 pounds. . . (10)

Again the approximate formula Eq. (6) gives :

M = C x 27.92.

Hence :

C = 1,121,683.5 -v- 27.92 = 40,175 pounds. . . (n)

The results of this experiment are given in the following

table, exactly as in Ex. I.

CENTRE
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The beam may be considered as having yielded, in failure,

with a centre load of 17,500 pounds. That number was conse-

quently taken above in the greatest value of M.
If it be assumed that permanent set was just at the point

of beginning with the centre load of 9,000 pounds, which can-

not be far wrong, the corresponding moment will be :

=.-
("9,000 + ^} =586,152;
\ 2 /

M
4

.*. C = 586,152 -r- 25.08 = 23,370 pounds (limit of elas.).

Taking a mean of the results of the two examples :

By exact formula [Eq. (3)] :

C = 46,417 pounds.

By app. formula [Eq. (6)] :

Ci = 41,833 pounds.

For the limit of elasticity:

Ce 22,700 pounds (nearly).

These results may be considered accurate for the Phcenix

Iron Co.'s beams. These experiments were made in 1858.

It is interesting to notice that these beams failed in the

compression flanges.

It is also important to observe that the ultimate resistance,

C, is fully equal to the ultimate tensile resistance of good

wrought iron in large bars. This serves to confirm the opin-
ion that the ultimate tensile and compressive resistances of

wrought iron are not far, at most, from being equal to each

other, and that these quantities may be used for C or K in the
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formulae for flanged beams. If the approximate formula, Eq.

(6), is used, however, according to these results C or K should

be taken about 0.90 (nine-tenths) of the value used in the

exact formula, Eq. (3).

The last column of the second table is calculated by the

formula, as shown, taking E at 30,000,000 pounds. The same

general observations apply to these results as in the preceding

example.

Example III.

The data for this example are taken from the hand-book

for 1 88 1 published by the N. J. Steel and Iron Co., Trenton,
N. J., where the beams were broken. The breaking weight is

the mean of two results for light 6-inch wrought iron Is.

d = 6.00 ins. / = 0.25 in. /' = 0.456 in.

/ = 12 ft. == 144 ins. / =-23.815, by Eq. (i).

Since the beam weighed 40 pounds per yard :

W = 14,000 -f 80 = 14,080 Ibs. (centre breaking load).

Hence :

C = j
= 63,840 Ibs. per square inch.

By approximate formula :

^ --' /=1.368 .-. (*+/= 1.578.

- 5.544 ins. M = 506,880.
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Hence, by Eq. (6) :

i
=

57>93 Ibs. per square inch.

Example IV.

A 9-inch heavy Trenton beam, 85 pounds per yard. The
data are taken from the same source as were those in Ex.

III.

d = 9.00 ins. t = 0.38 in. t' = 0.68 in.

/ = 15 ft. = 180 ins. / = 108.47, by Eq- (0-

W = 32,000 -f 212 = 32,212 Ibs. (at centre).

Hence :

r . uC Y
~

6o> 12 Ibs. per square inch.

By approximate formula :

^ = 0.484. /= 2.72 /. ^ +/= 3204<,

d, = 8.32 ins. M = 1,449,540.

Hence by Eq. (6) :

C = 54>37 IDS - Per square inch.

Taking the means of these two sets of results :
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By exact formula [Eq. (3)] :

C = 61,980.

By app. formula [Eq. (6)] :

Ct
= 56,150.

All the conclusions reached in connection with Exs. I. and

II. are confirmed by the results of Exs. III. and IV.

C and Ct
are much larger, however, for the Trenton than for

the Phoenix beams, and both are very high for beams of such

length of span with no lateral support for the compression

flange.

In calculating the deflection of rolled wrought-iron beams
E may be taken from 28,000,000 to 30,000,000.

The exact formulae of this Article are strictly applicable to

rolled beams only, but the approximate formula finds exten-

sive application in cases of built beams.

Experiments by U. S. Test Board.

Table I. contains the results of a valuable series of tests by
the U. S. Board,

" Ex. Doc. 23, House of Rep., 46th Congress,
2d Session."

The values of AT and E at elastic limit are computed from

data contained in that document in the manner already shown

in detail, and which it is not necessary to repeat. It is both

interesting and important to observe ilu considerable, though

irregular, increase of the intensity of stress in the exterior fibre,

at the elastic limit, with the decrease of depth. E is seen to

vary from 26,099400 to 36,664,400, with a mean value of

31,128,260. As a general result, /:' is slightly larger for the

smaller beams than for the larger.
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A chemical analysis of six specimens from these beams

gave the following results.

These experiments were conducted by Gen'l Wm. Sooy
Smith, who kindly gave to the writer the final centre loads and

deflections.

PERCENTAGES OF

Sulphur.
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means of brick masonry arches, which thus also gave to them
a uniform lateral support. This lateral support produced a

very high value of K, i.e., 54,260 pounds, which fell to 25,890
with no lateral support. In the latter case nothing prevented
the compression flange yielding laterally like a column. The

io.5-inch beams were much shorter, and the long column influ-

ence less marked
; consequently the values of K are correspond-

ingly higher. The tests are not sufficiently numerous to fix

the law of the decrease of A^with the increase of span.
Beams Nos. I and 2 weighed 200 pounds per yard, with a

moment of inertia (7) equal to 706.6. Beam No. 3 weighed

105 pounds per yard, and gave / = 174.75; while No. 4

weighed 92 pounds per yard, with / = 154.9.

Art. 66. Built Flange Beams with Equal Flanges. Cover Plates.

A " built beam "
is a beam built up of plates and angles

like that shown in Fig. I. As shown in that figure the web is

composed of a single plate, called the " web plate," supported

by
'

stiffeners," if necessary, as is usually the case. These stiff-

eners are vertical pieces of LS or J,s riveted to the web plate,

in accordance with principles to be shown hereafter. The

flanges, as shown by the heavy lines, are composed of LS and

plates so arranged as to give the requisite area of cross section

at any point.

The method of designing such a beam, and the calculation

of the elements of its resistance, will be given in detail. The
beam is supposed to be of wrought iron, and one of a system
for a double track railway bridge ;

the stringers under the two

tracks, which rest on the beam, are placed at A and B, and D
and H. The weight of the beam, taken uniformly distributed,

is 5,600 pounds. The concentrated load at each of the points

A, B, D and H, composed of the train weight added to that of

the stringers, is 42,000 pounds.
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The following are some of the dimensions of the beam:

Span RR = 28.0 feet. Depth of web plate = 48 inches.

RH = RA = 4.50 feet. DH = AB = 6.00 feet. BD = 7
feet.

The web plate will be taken T\ inch thick. The method of

determining this thickness will be shown hereafter.

In this case resistance to flexure of the web will be neg-
lected

;
the web will be assumed to resist the shear onfy, as is

assumed in Eqs. (7) and (?a) of Art. 65. The "depth," */ of

Fig. 1.

beam will then be the vertical distance between the centres of

gravity of the sections of the flanges, and each flange is to be

considered as composed of two LS and the " cover
"
plate or

plates only ;
no part of the web is to be included. Strictly speak-

ing, then, the depth is variable ; but this variation is so slight

that no essential error will be committed if it be considered

constant and equal to the depth of web plate, or 48 inches.

This procedure, which saves much labor and time, is always
nissible where cover plates are used, and the bending re-

sistance of the web plate neglected. The next example will

exhibit a case in which they are not used.

The direct stresses of tension and compression existing in tlte

flanges must be carried through the rivets which unite the flanges
to the web ; hence the necessary number of those rivets will

first be determined.

The reaction at R, using the data already given, will be :

R = 2 x 42,000 + = 86,800 pounds.
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The weight per lineal foot of floor beam is :

5,600
=-5

= 200 pounds = w.
2o.O

The bending moments for the two sections A and B will

next be found.

Moment at

A = (86,800
- loo x 4.50) 4.50 = 388,600 nearly.

Moment at

B = 86,800 x 10.5 42,000 x 6 100 (io.s)
2 = 648,375.

Since the depth of the beam is 4 feet :

Flange stress at

A 388,600 -f- 4 = 97,100 pounds.

Flange stress at

B = 648,375 4- 4 = 162,100 pounds.

The allowable intensity of pressure between the rivet and

its hole (see Art. 73) will be taken at 10,000 pounds. The
diameter of rivets is a matter of judgment ;

it will be taken at

-J
inch. Rivets for built beams usually range from f to I inch

in diameter.

The selection of the LS for the flanges is also, to some ex-

tent, a matter of judgment. In the present instance, 5" x 4"

LS, 60 pounds per yard, will be taken. These will be found to

answer the purpose.
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The effective bearing surface between each rivet and the

web plate will then be :

:
1- = 0.383 square inch.

Hence each rivet may carry :

0.383 x 10,000 = 3,830 pounds.

Consequently the number of rivets between R and A should be :

97,100 -4- 3,830 = 26 (nearly).

The increase of flange stress between A and B is :

162,100 97,100 = 65,000 pounds.

Hence the number of rivets required between A and B is :

65,000 -r 3,830 = 17 (nearly).

Since 26 rivets are required between R and A, the corre-

sponding pitch would be but a little more than two and one-

tenth inches, which is somewhat too small. With a 3-inch

rivet, a three-inch pitch is about the least advisable. If the

rivets be placed at a pitch of three inches between R and B,

forty-two will thus be located, and this is sufficiently near the

desired number. The four-inch leg of the angle is placed

against the web plate, but if necessary the five-inch leg could

be so placed and still more rivets staggered in. In such

methods as these, nearly the full number of rivets required be-

tween R and A may be supplied, while the two or three lack-

ing will be found, without danger to the beam, adjacent to A
on the side towards B. Three or four in excess of the number

required will be found between A and B.
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No central bending moment at C has been computed, be-

cause the only difference between such a one and that at either

B or D is due to the weight of the beam only. This difference

is essentially nothing. The proper support of the LS in com-

pression, however, requires that the rivets be pitched at about

six inches between B and D. In ordinary floor beams a proper
bond between the flanges and web requires that the pitch should

never be greater than about six or eight inches.

The shearing of the rivets is not considered, because they
sustain double shear in the flanges, and their bearing capacity
is by far the least of the two.

The rivets, of course, should be pitched alike in both top
and bottom flanges.

The greatest allowable intensity of tensile stress in the bot-

tom flange will be taken at 8,000 pounds per square inch, and

an equal intensity will be taken for the compressive stress in

the upper flange. The area required in the bottom flange at

A is:

07,100 = 1 2. 1 sq. ms. (nearly).
8,000

That required at B is :

162,100 . V- = 20.3 sq. ms. (nearly).
8,000

The area of the two 5" x 4" LS, 60 pounds per yard, is 12.00

square inches. The thickness of the angle iron where it is

pierced by the rivets binding it to the web is about O.6 incho

Hence the area of metal taken out by one rivet is :

0.875 x 0.6 x 2 = 1.05 sq. in.

Or, the effective area of the LS at A is :

12.00 1.05
=

10.95 square inches.
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Now, since the weight of the beam itself is small, compared
with the weight of the train, the flange stress, or moment,
varies almost uniformly from R to A. Hence, an increased

section is first needed at

(10.95 -r- 1 2.1) x 4.50 4.1 feet (nearly),

from R. Since, however, the cover plate to be added must

take its stress through the rivets which bind it to the LS, it

should overlap the necessary distance by one and a half to

twice its width. In the present case, then, instead of begin-

ning the cover plate at just 4.1 feet from R, a 12" x -fo" cover

plate will begin at 30 inches from R and extend along the beam
to a point at the same distance from R''. The length of this

cover plate will then be 28.0 5.0 = 23 feet. This cover plate
will be bound to the angle irons by -J" rivets, which should, so

far as possible, be pitched half way between the "
rivets in

the other legs of the angle irons. The effective area of this

cover plate, for tensile stress, will then be :

(12 2 x i) x -fa
= 5.6 sq. in. (nearly).

The available area of two Ls and one cover plate is, since

two rivets now pierce each angle :

9.90 + 5.6 = 15.50 sq. ins.

For the reason already given, the moment, or flange stress,

varies nearly uniformly between A and B, but at a different rate

than between R and A. Since AD is 6.00 feet, the point it

which another increase of section must begin is at the distance

[(15.50 1 2.1) -r- (20.3 1 2.1)] x 6.00 = 2.5 feet (nearly)

from A. Again, as in the previous instance, a second cover

plate, 12" x $", will be put on, and it will begin, not at 2.5
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feet from A, but at one foot from that point. The available

area of this plate will be :

(12 2.0) x = 5.00 sq. ins.

The total area at the centre of the beam available for ten-

sion will then be :

15.50 4- 5.00 20.50 sq. ins.

It is to be observed that in deducting metal taken out by a

rivet in a tension flange, a diameter greater by an eighth of an

inch than that of the rivet has been assumed. This should

always be done, for the punch is always larger than the rivet,

and the punched hole is still larger on the die side of the plate,

and for the further reason that the metal is injured for somt

distance around the hole. In the compression flange no de-

duction need be made for rivets, as the latter completely fill

the holes. Otherwise the method of designing the compres-
sion flange is precisely that just followed, and the two flanges

will be taken alike.

The number of rivets required in a cover plate is yet an

important question. Since all stress carried by the cover plates

must be given to them by the rivets, the number of rivets be-

tween the end of any cover plate and that point at which a fur-

ther increase of flange section is necessary, must be sufficient to

carry all the stress in the cover plate itself.

Applying this principle to the first cover plate found neces-

sary : The load which each -J" rivet in the 12" x Ty' cover may
carry is :

-875 x A x 10,000 = 5,000 pounds.

The total tensile stress carried by the 12" x -fa cover is:

5.6 x 8,000 = 45,000 pounds. Hence the number of rivets

required is :
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45,000 -f- 5,000 = 9.

According to the design :"t is 4.5 feet from the end of this

cover to a point 2.5 feet from A toward B, where the next in-

crease in section is required ; and over this 4.5 feet these 9
rivets must be distributed. But in order that a proper bond
between the component parts of the flange may be obtained, it

is seldom advisable to make the pitch over 6'', and at the end

of the cover plate this pitch should be halved for about three

rivets. Proceeding in this manner, that part of the bottom of

the beam at the end nearest R in Fig. I, which includes the 4.5

feet of cover under consideration, will present the appearance
of the sketch in Fig. 2. RG is 2.5 feet and GF 4.5 feet. In
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5.00 x 8,000 = 40,000 pounds.

Hence, the number of rivets required is :

40,000 -r 4,375 = 9 (nearly).

The end of the cover plate, as designed, is one foot from A
towards B\ and the nine rivets are nearly all required be-

tween that end and B, a distance of 5 feet. Hence, if the

rivets are pitched in this cover plate, near the ends, as shown

in Fig. 2 for the other cover, and at six inches over the inter-

vening space, more than the number just determined will be

introduced. For the reasons already given, however, the num-

ber will really be not too great.

In each flange, then, there will be found the following

pieces properly joined:

x 4" LS, 60 pounds per yard,
x -f$" plate, 23 feet long.

"
plate, 17 feet long.

At the ends of the beams R and R, Fig. I, provision must

be made for the reaction. In this example the reaction is

86,800 pounds. The transverse shearing resistance of the web
should at least equal this at the ends. The area of a trans-

verse section of the web is :

48 x -^ = 21.00 sq. ins.

If the greatest allowable shearing intensity in the web be

taken at 5,000 pounds, its shearing resistance will be :

21.00 x 5,000 = 105,000 pounds.

This result is about 20 per cent, greater than is required.
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Hence safety, so far as shearing is concerned, is amply secured.

But the end of the beam is also subject to an upward pressure
of 86,800 pounds, which must also be provided for. Two
6" x 4" X " L s wiH Dc riveted to the ends as shown in Fig.

I, one on each side of the web, and the 6/;

legs lying against
it. By pitching

"
rivets at 3" (nearly), in a zigzag manner, 20

rivets can be introduced to hold these 4'' X 6''x i" LS to the

web. The carrying capacity of each j" rivet against the web

plate has already been found to be 3,830 pounds. These 20

rivets therefore will carry 3,830 X 20 = 76,600 pounds. Since

the area of the cross section of two 4" X 6" X '' L s is about

10 sq. ins., the bearing of the rivets against the web plate is all

that need be considered in this connection.

A proper bearing for the difference 86,800 76,600 = 10,-

200 pounds remains to be found. As each rivet will carry

3,830 Ibs., three only are required to take up the 10,200 pounds

remaining. For some distance in the vicinity of R, Fig. I, in

the lower flange of the girder, the rivets will be pitched at three

inches. Since some portion of these ends must rest on shoes or

brackets, three of the rivets near the ends may be utilized to

carry the 10.200 pounds in question. It is to be remembered

that in such an instance as this, the lower ends of the 4'' X 6"

LS must bear fairly and truly against the angle irons composing
the lower flange, in order that they may take up their proper
amount of the reaction.

In some cases the ends of the beam are to be secured to

vertical surfaces without any supporting shoe or bracket. The

entire reaction of such a beam must be carried by the vertical

angles at the ends. The number of j'' rivets required to hold

these angle irons to the web would then be 86,800 -f- 3,830 =
23 (nearly). By simply making two rows, these could easily be

worked into the longer legs of the 6'' x 4" X J" L s- I2 rivets

would then be put through each of the two 4" legs and the

vertical surface to which the beam is secured.

No account has heretofore been taken of the shearing re-
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sistance of the rivets, because that has been much greater than

their bearing capacity, but instances may occur in which such

a condition of things does not exist. Hence the shearing and

bearing capacities should always be estimated, and security

taken in reference to that which is least. As an example : at

7,500 pounds per sq. in. the shearing resistance of a -J" rivet is

(p.875)
2 x 0.7854 x 7,500 = 4,600 pounds (nearly) ;

while the

bearing capacity of the same rivet in the 6" x 4" X I" L *s

only :

0.875 x 0.5 X 10,000 = 4,375 pounds.

Precisely the same operations are required in determining
the number of rivets in the vertical Ls at A and B, Fig. i, as

in those at the ends of the beam
; consequently it is not neces-

sary to repeat them.

Thus, there is completed the operation of designing the

beam, with the exception of finding the thickness of the web,

which will be given hereafter.

In general two or three things are to be observed. The

number of rivets actually required by tJiese calculations should al-

ways be, as they just have been, somewhat exceeded. In the best

of riveted work the rivets will not exactly fill the holes, arid

the beam will not act perfectly as one continuous whole.

Again, stress is given to the flanges along the line of the

rivet holes, which is some distance from the centre of gravity

of the cross section of the flange. Consequently, some bend-

ing will be induced in both flanges, and this necessitates some
extra material. This excess may be estimated if desirable, but

ordinarily it is entirely unnecessary. The existence of this

bending demonstrates the advisability of putting on as few

cover plates as possible. It is far better to use heavier L s with

a little waste of material at the ends.

It is also better to use one heavy cover plate than two thin

ones having an equal combined thickness, even though the use
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of the former entails a little waste ; for the heavy plate be-

tween two consecutive rivets will resist far more bending as a

column than the two others each of half the thickness.

If the end of the beam were made as shown in Fig. 3, no

web plate would be re-

quired between R and

A, for all shear would

be carried by the in-

clined flange.

The upper flange, Fig.3

being in compression,
would require riveting, but none would be needed in the

lower, except in the immediate vicinity of R. The flange

stresses between A and R would also be uniform, instead of

uniformly varying as in Fig. I .

Art. 67. Built Flanged Beams with Equal Flanges. No Cover Plates.

The flanged beam represented in Fig. I is supposed to carry

a portion of the floor of a highway bridge. In this case, also,

the bending resistance of the web plate will be neglected. The
beam proper is the portion RR' R'R, supported at RR and

R'R ; while the portions ARR and HR'R form cantilevers for

the support of the sidewalks.

The following are the dimensions :

AR = ///?'= 6 feet. RR = 28 feet.

AH = 40 feet. RR R'R' = 31 inches.

RB = BM = MF = FR = 7 feet.

The depth RR has been taken at 31 inches, so that the

effective depth to be used in finding the flange stresses will

be about
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The weight of the beam proper, RR'R'R, added to the

flooring which it supports, is taken at

14,650 pounds.

The greatest uniform load between R and R' will be taken

at

37,440 pounds.

c i o

Fig,1

Hence the total uniform load to which the beam is sub-

jected is :

37,440 + 14,650 = 52,090 pounds.

The weight of one cantilever, with the flooring which it

supports, will be taken at

3,100 pounds

The total moving load on AR, or HR ', will be taken at

8,640 pounds.

The total load, therefore, carried by one cantilever is:

3,100 -f 8,640 = 11,740 pounds.

The beam proper, RR, may sustain its greatest load when
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the sidewalks carry nothing but their fixed weight. This con-

dition of things will cause the greatest compression in the

upper flange and tension in the lower, and will be assumed in

designing the beam.

The fixed weight of a cantilever will cause stresses in the

flanges of opposite kinds to those produced in the beam, but

of such small amount that they wilUbe neglected ; the neglect

originating a very small error on the side of safety.

The total load per linear foot of RR is :

52,090 -r- 28 = 1,860 pounds.

The flange stress in the beam at R will be nothing ;
it will

be found at the two points B and M. Strictly, the "
depth

"

to be used should be the vertical distance between the centres

of gravity of the flanges. It Will not be far wrong to take this

depth at 2.5 feet, since the web plate is 31 inches deep. The
reaction at R is :

52,090
-- 2 = 26,045 pounds.

The flange stress at B is :

(26,045 * 7
" 1,860 X (7)

5
-r- 2) -T- 2.5 = 54,700 pounds.

The flange stress at the centre M is :

(52,090 X 28 -r- 8) -r 2.5 = 72,926 pounds.

If, as in the preceding Article, the greatest allowable stress

in the flanges is 8,000 pounds per square inch, a flange area of

9.115 square inches is required in the present case. If each

flange is composed of 2 4' x 6" x J" Ls 5 1 pounds per

yard, there will be a very little excess of flange area, as there
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should be
; these LS will then be taken for the flange, the 4"

legs being riveted to the web plate ; -J" rivets will be used in

riveting the flanges to the web. Where pierced by the rivets,

the legs of the Ls are about -J" thick. Hence a rivet hole will

cut out 2 X J X i .00 -- i.oo sqare inch. There will then still

remain 10.2 i.oo = 9.20 square inches of effective area,

which is a little in excess o/ the 9.115 required.
A web plate $" thick will be assumed. Taking 10,000

pounds per square inch as the greatest allowable intensity of

pressure between shaft of rivet and plate, the bearing capacity
of each rivet will be :

0.875 x 0.375 X 10,000 3,280 pounds.

In this case all the moving load rests upon the top of the

beam, and since the edge of the web plate is only 0.375" wide,
that moving load must be taken as resting on the LS of the

upper flange, and hence indirectly on the rivets. Also, since

nearly the whole of the fixed load rests upon the upper flange,

the entire load of the beam will be taken as resting on that flange.

Consequently, between R and B the rivets will be subjected to

the action of a vertical force equal to 1,860 X 7 = 13,020

pounds, and a horizontal one equal to 54,700 pounds. The
resultant force will then be :

A/(i302o)
2 + (54,7oo)

2 = 56,230 pounds.

Between B and M the vertical force will then be the same,
but the horizontal one will be

72,926 54,700 = 18,226 pounds.

The resultant, therefore, is :

A/(i3,02o)
2 + (i8,226)

2 = 22,400 pounds.
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Hence the number of rivets required between R and B is:

56,230 -T- 3,280 = 18 (nearly).

The number between B and M is :

22400 -r- 3,280 = 7 (nearly).

If, therefore, commencing at R or R\ the rivets be pitched
at 3 inches for a distance of 4.5 feet, then at 6 inches to the

centre J/, about 36 or 37 rivets will be found in each half of

each flange. This number is in excess of that required, but

for the reasons given in the preceding Article, it is probably
not too many. Thus the flanges are designed without the use

of cover plates.

In this case the beam will be suspended from hanger loops
at R and R, which carry resting plates or shoes for the beam
at their lower extremities.

The total reactions at the lower R and R will be half the

total weight of the entire beam with the moving load, or :

Reaction = (52,090 + 23480) -f- 2 = 37,785 pounds.

At R and R 2 4" x 4" x J" LS will be riveted to the beam
as shown. The lower ends of these angles should abut firmly
and squarely against the angles of the lower flange.

Since the greatest allowable pressure between a rivet and

the web plate is 3,280 pounds, the number of rivets required
at each end of the beam in each pair of vertical L s is:

37i785 + 3,280 = 12 (nearly).

If, consequently, these rivets be pitched at 3 inches, a

sufficient number will be obtained, if it be remembered th.it
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three or four of the lower flange rivets near R or R may be

available for bearing.

The pitch in the stiffners (3" x 3" x
-f$'' LS) at C and D

may be taken at 6", with an extra rivet at each end.

The horizontal flange stress for the cantilevers at R and R'

is:

(11,740 x 3) -T- 2.5 = 14,088 pounds.

The secant of the angle which the inclined flange makes
with the horizontal is about 1.05. Hence the inclined flange
stress is :

14,088 x 1.05 = 14,800 pounds.

Hence, if in each flange at A there are

14,800 -^ 3,280 = 5 (nearly)

rivets, securing the flanges to the piece of plate shown, ample

security will be obtained.

The cantilever flanges possess a large excess of material.

Calculations on the shearing of the rivets between the web
and flange have not been made, because the resistance of a

rivet to double shear is much in excess of its bearing capacity.

The excess of material in the LS of the flanges is not as

much as it really should be, because the line of horizontal

stress along the rivet holes is somewhat below or above the

centre of gravity of the flange, and some bending is conse-

quently induced. This bending, however, is not as great as if

cover plates had been used, and the neglect of the bending
resistance of the web plate is somewhat of an offset. Besides,

as has already been stated* in this particular case, the fixed

weight of the cantilevers relieves a little of the flange stress of

the beam as actually found.

Since the transverse section of the web plate has an area of
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-375 X 30 = 11.25 square inches, transverse shearing at the

points of support is more than provided for.

If either a railway or highway floor beam has a variable

depth, the operations are in no manner changed. The depth,

however, to be used in finding the flange stress at any point

must be the vertical depth at that point. The stress thus

determined must be multiplied by the secant of the inclination

to the horizontal at the same point for the inclined flange.

Art. 68. Box Beams.

The class of beams known as box beams in engineering

practice are represented in Figs. I and 2. In Fig. I the upper
and lower flanges are each composed of a plate whose thick-

ness is /' and two Ls whose lengths of legs and thickness are

s and a, respectively. If it be assumed that the web plates,

'L
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in which C = K intensity of stress at the distance */^/z from

the neutral surface. If the flange area is desired :

In other words, the methods and all the operations regard-

ing rivets, etc., as well as the values of C and 7", or K, are

precisely the same for the box beams as for the other built

beams of the preceding Articles.

If each flange is composed of several plates and 4 Ls
(
as

shown by one in dotted lines), then /' is to be taken as the

combined thickness of all the plates, while f will be the com-

bined area of the several plates and 4 LS.

Fig. 2 shows a box beam composed of two channels and

one or more plates in each flange. The general observations

applied to Fig. i apply with equal force to Fig. 2. The bend-

ing resistance of the webs of the channels may be neglected if

very thin, or when desired in any case, but the exact formula

to be given in the next Article is well adapted to this beam.

Art. 69. Exact Formulae for Built Beams.

The exact formulae for the built sections already given are

simply the special forms of the general formula :

The moment of inertia, /, is to be taken about a horizontal

line through the centre of gravity of the normal section, i.e.,

about a line parallel to the side b in the three Figs, of the pre-

ceding Article.



Art. 69.] FORMULAE. 597

In Fig. i of that Article the moment of inertia of the cross

section about AB is:

- 4 if .~ ~

>n

If there are four Ls in each flange, one only of which is

shown in dotted lines:

f = *i*
- #(*+'? ,626

_ rO - g) (</
-

2*)3 + g(^ - ^yn
(3)

The moment of inertia of the cross section shown in Fig. 2,

about AB, is:

The moment of inertia of the cross section shown in Fig.

3, about Afi, can be either directly written from an examina-

tion of that Fig., or derived from Eq. (2) by simply writing

- for /. It has the value :

g(d - 2J)n
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If the plates are omitted from the flanges in Fig. 3, as in

the Article on built beams without cover plates, /' = o, and

_ (s + #/>/* r(s -a)(d- 20? + a(d -
6

~r(s -a)(d- 20? + a(d - 2s)^
~6~

In all these cases d^ = y^d -f- /' or l/2 d, according as there

are or are not cover plates.

These several values of / and </ substituted in Eq. (i), will

give the resisting moments for the various sections. It is an

open question, however, what degree of accuracy may be ex-

pected to result in the application of these formulae. It is to

be remembered that the very best of riveted work does not se-

cure that degree of continuity presupposed by the Eq. (i). It

may be stated, however, that Eq. (4) is better applicable to its

cross section than the others, for there is perfect continuity be-

tween the web and a part of the flange.

Art. 70. Examples of Built Beams Broken by Centre Weight.

Example I. Wrought Iron Beam.

This beam was tested by Sir William Fairbairn (" Useful

Information for Engineers," first series), and was composed of

four 2-inch Ls riveted to a 7 by J^-inch web plate. The dis-

tance between supports was 7 feet or 84 inches.

A section of the beam is shown by the section, only, of Fig.
i in Art. 67 ;

there were no cover plates.

The Ls m the bottom flange were a very little heavier than

those in the upper, but the difference was so small that it has

been neglected ; or, rather, the small excess has been assumed

to supply the loss caused by the rivet holes.

Centre breaking weight = 24,380 + 80 = 24,460 Ibs.
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Wl
1=7 feet = 84 inches. /. M = - - = 513,660.

4

Referring to Eq. (6) of Art. 65 :

d = 6.5 ins. / = 2.083. = 0.30.

~ 513,660
... c 2 - = 33,140 Ibs. per sq. in.

</, was taken as the depth (nearly) between the roots of the LS.

The beam gave way in the top, or compression, flange by
the twisting of the LS at a comparatively low compressive in-

tensity. This indicates that the discontinuous riveted connec-

tion between the web and flange, although the pitch of the

rivets was only 4.5 inches, fails to give such perfect support to

the top flange, as a column, as the perfect continuity of the

connection in a rolled beam.

The condition of the top flange, as a column, in a built

beam, therefore, exercises a very important influence on the

ultimate resistance of the beam, and should not be neglected.
It is probable, however, that the high compressive resist-

ance of American wrought iron of the present day would give
a much higher value of C under the same circumstances.

When the centre load added to five-eighths the weight of

the beam was 8,400 pounds, the centre deflection, or w, was
0.18 inch. Hence the coefficient of elasticity was:

= ,2.3^,000

/s must be taken in inches. / was computed by Fairbairn

at 46.77.
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Example II. Steel Beam.

The data for this beam were given by Albert F. Hill, C. E.,

in
" Steel in Construction," Engineers' Soc. of West. Penn.,

April, 1880. Each flange was composed of two 2-} X 2j X $

steel angles, and one 54- X fV cover plate. The web was a

12 X T
3
F "o.5oC" rolled steel plate. The clear span was 5

feet; pitch of rivet, 4.5 inches; total effective area of section,

8.51 square inches. The rivet holes were drilled -fv inch in

diameter.

Referring to Eq. (6) of Art. 65 :

th
a 1 - 12 ins., / = 3.13 sq. ms., -^

= 0.375 sc
l-
ms -

W = centre weight = 130,000 + 70 = 130,070 pounds.

M= 3 #7 (/in feet)= 1,951,050.

Hence :

= 46,387 pound,

The centre load did not break the beam, but caused a

deflection of 0.9375 inch, and permanent set of 0.50 inch, with

beginning of side deflection.

Very closely approximate, / = 252. Hence, with / in feet

and a centre load of 70,000 pounds with the corresponding de-

flection of 0.25 inch :

36 x 70,000 x 125 = ^ ds .

0.25 x 252

This low value of E is undoubtedly due to the fact that

the beam was a built one.
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The results of all the tests of built beams given in this

chapter show that they are much less stiff than rolled ones of

the same section. In fact, in computing deflections with the

best designs and best quality of riveted work, E should prob-

ably never be taken at more than about half its value for

similar rolled sections, or say at 12,000,000 to 15,000,000.

After E is determined, the deflection at once results from

the usual formula :

.

/3 is here in feet. W is the load at centre, and // the uni-

form load (i. e. weight) of or on the beam.

Art. 71. Loss of Metal at Rivet Holes.

As has been indicated in all examples, the metal punched
or drilled from parts of beams in tension should always be

deducted from the total tension area in order to obtain the

effective area for computation of the ultimate resistance. In

estimating this loss the actual diameter, as punched or drilled,

should be taken, and not that of the cold rivet before driving,

since the latter is always at least one sixteenth inch less than

the former.

In the compression portions of the beam, if the work is

done in a first-class manner, no deduction need be made.

Art. 72. Thickness of Web Plate.

The following approximate method of determining the

thickness of tin- web plate in a flanged beam is based upon the

principles established in Art. 28.

It was shown in that Article that on two planes which
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make angles of 90 with each other and 45 with the neutral

surface, and whose intersection forms the neutral axis at the

section considered, there exists on one a tension and on the

other a compression, each of whose intensities is equal to that

of the longitudinal and transverse shear at the same point. It

was also shown in Art. 17 (see Eq. (38)) that the intensity of

these shears is f the mean intensity of shear of the whole

section.

No essential error is committed (especially in built beams)
if it be assumed that the whole shear is taken up by the web.

In the Article just cited it was shown that the intensity of

shear at the top and bottom surfaces of the beam is zero, as

well as I the mean at the neutral surface. Now, if this shear

be assumed uniform in intensity throughout the transverse sec-

tion of the web, the shear will be made much too large at the

top and bottom surfaces, and only two-thirds its proper value

at the centre or neutral axis.

In accordance with these assumptions on one hand, and the

established principles on the other, the web may be considered

as composed of small columns with ends fixed (at the flanges),

and with sections rectangular, whose axes lie at 45 with the

neutral surface.

The assumption of the uniformity of shear in respect to

these elementary columns causes two errors in opposite direc-

tions, with the resultant error, in most cases at least, on the

side of safety.

In rolled beams, if /' is the mean thickness of a flange, and

d the total depth, then the length of these elementary columns

may be taken as :

/= (d
- 2t')sec4$.

or :

/= I.4 I 4(d?- 2t') (I)

In built beams, if d' is the depth from centre to centre of

rivet holes, there may be taken :
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/= I.4I4*'........ (2)

If 5 is the total shear at any transverse section, A the area

of that section of the web, taking the depth at d 2t' or d't

and s the mean shear, or :

~
A ;

then these elementary columns will be subjected to an inten-

sity of compression equal to s. Hence if /, the thickness of a

wrought-iron web, is sufficiently great, there may be taken, by
Gordon's formula :

* = - -Ai- (3)

i 4

Solving this equation for / :

(4)

For the ultimate resistance of wrought-iron rectangular col-

umns, / may be taken at 40,000. If a safety factor of 5 be

taken, the value of / becomes:

/ = 0.0 1 83/

Eq. (5) is for wrought iron only. The empirical constants

for steel yet remain to be determined.

These formulae show that / decreases with the depth of tin-

beam, and that it also varies in the same direction with s. If,

therefore, the depth of the beam is constant, Eq. (5) need only
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be applied at the section where s is the greatest, i. c., at or near

the points of support.

If, however, the depth is variable, it may be necessary to

apply the formula at a number of sections in order to find the

greatest value of /.

Eq. (5) frequently gives much larger values of / than are re-

quired. It could be made an accurate and valuable formula if

the empirical quantities which enter it were determined by ex-

periments on flanged beams.

The data of Art. 66 give :

d' = 48 ins., / = ~ in., A = d't = 21 sq. ins.

5
5 = 86,800 Ibs., /. s = -j

- = 4,130 (nearly).

I d' x 1.414 = 67.9.

Hence :

/ = 1.2 inches (nearly).

This value with a safety factor of five is evidently excessive,

though it applies only to the portions RA and HR of Fig. I in

Art. 66. Yet the result may be accepted as indicating that

the web needs support for those portions, and the necessity of

the stiffening pieces shown.

The data of Art. 67 give :

d' = 27 inches, t = $& inch, A = d't = 10.1 sq. ins.

5 = 26,000 pounds. .-. .$== 2,600 (nearly).A

I = d' x 1.414 = 38.2.
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Hence :

/ = 049 inch (nearly).

The thickness taken, therefore, is probably ample, even

without the aid of stiffening pieces.

The amount of assistance to be derived from stiffeners

cannot be computed with any certainty. They are very essen-

tial however, and should be introduced in all large beams.

However small the built beam, or light its load, the web

plate should never be less than 0.25 inch in thickness.

Before leaving this subject it may be well to observe that

the excessive thickness given by Eq. (5) was, in some measure

at least, to be anticipated. It has already been stated that the

assumption of uniform compression throughout the length of

the elementary column leads to an error on the side of safety.

Again, the equal tension at right angles to the greatest com-

pression in the material of the web, as well as the decreasing

compression toward the centre of the beam, gives support to

the elementary columns throughout their entire lengths.

These causes give rise to an excess of safety, in the formula,

whose amount can only be determined by experiment. Three-

quarters of the thickness given by the formula would probably
be ample.

The experiments of the late Baron von Weber showed that

a very thin web will give a remarkably large supporting power.



CHAPTER X.

CONNECTIONS.

Art. 73. Riveted Joints.

ALTHOUGH riveted joints possess certain characteristics

under all circumstances, yet those adapted to boiler and simi-

lar work differ to some extent from those found in the best

riveted trusses. The former must be steam and water tight,

while such considerations do not influence the design of the

latter, consequently far greater pitch may be found in riveted

truss work than in boilers. Again, the peculiar requirements
of bridge and roof work frequently demand a greater overlap
at joints and different distribution of rivets than would be

permissible in boilers.

Kinds of Joints.

Some of the principal kinds of joints are shown in Figs. I

to 6. Fig. i is a "
lap joint," single riveted ; Fig. 2 is a "

lap

joint," double riveted
; Fig. 3 is a " butt joint

"
with a single

butt strap and single riveted
;
while Figs. 4, 5 and 6 are " butt

joints with double butt straps, Fig. 4 being single riveted

while the others are double riveted. Fig. 5 shows zigzag

riveting and Fig. 6 chain riveting. All these joints are de-

signed to resist tension and to convey stress from one single

thickness of plate to another. Two or three other joints

peculiar to bridge and roof work will hereafter be shown.
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essarily be more or less imperfect, and the requisite condition

can never be maintained during and after construction. Hence
the amount of stress carried by each rivet, or each cover plate,
and hence each portion of the main plate at the joint, cannot

be found.

In the cases of lap joints with three or more rows of rivets

(frequently found in truss- work), or in similar work when two

rows of rivets join a small plate to a much larger one, the out-

side rows, or rgw, in consequence of the stretching of the ma-

terial at the joint, must take far more than their portion of

stress, if, indeed, they do not carry nearly all. The same con-

dition of things will exist in butt joints if two or more rows

are found, under similar circumstances, on the same side of

the joint.

If a strip of plate in which the ratio of width over thickness

is very considerable, be so gripped in a testing machine that

the applied stress be approximately uniformly distributed over

its ends, and if it be tested to breaking, it will be found, if the

broken pieces be joined at the place of breaking, that the cen-

tral portions of the fracture are widely separated, while the

edges are in contact. This is due to the cause explained in Art.

32,
" Coefficient of Elasticity." Now if a hole or holes be

made in or near the centre of the specimen, a portion of the

material in the front and rear of these holes will be relieved

from stress, and the total stress in the central section of the

specimen will be more nearly uniformly distributed in the re-

maining material. And again, these holes will
" neck

"
the

specimen down to a short one. The influences noticed in Art.

32,
" Ultimate Resistance and Elastic Limit" will thus be called

into action. For both these reasons the existence of the hole,

or holes, /;/ itself, will increase the intensity of the ultimate

resistance of the plate.

On the other hand, the effect of the punch, if the hole is

punched, as will presently be shown, is to decrease the resist-

ance of the metal about the hole. If the hole is in a joint, also,
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the bearing pressure between the rivet and plate is very great,
and as this pressure must be carried as tension to the material

adjacent to the rivet hole, and through that in its immediate

vicinity, the latter (i.e., the material at the extremities of diam-
ters parallel to the joint) will receive much greater tension than

that in the central portion between the holes.

These last two influences tend to reduce the mean intensity
of ultimate resistance of the material of the joint, and some-

times more than counterbalance the increase caused by the

existence of the holes simply as such. In other cases the re-

sultant effect can only be determined by experiment.
In Figs. I and 2 it will be observed that the stresses in the

plates of a lap joint act excentrically, and, let it first be as-

sumed, with a lever arm equal to half the sum of the thickness

of the two plates. If, however, a specimen joint is put in a

testing machine, the resultant stress may be made to pass

through the centre of the joint, thus making the lever arm

for each plate about half its thickness.

If, therefore, / is the thickness of one plate and /' that of

the other, while T and T' are the mean intensities of tension in

the plates, / the pitch of the rivets and d the diameter ; in the

first case each plate will be subjected to the bending moment :

M = Tt(p - d) = 7YC, -

And in the second :

= TV --; or. T'f . . . (2)

If K is the greatest intensity of tensile bending stress, then :

tM I'MK=
21

' or' 17 ...... <3)
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The greatest intensity of tension in the plate will therefore

be:

7-+ AT, or, r + AT ...... (4)

The moment of inertia / will have the value :

(P
- *Y (P

-
12 12

If each plate has the same thickness, t t' and T = T' ;

hence :

ByEq.(i) K=6T...... (5)

ByEq.(2) AT= 3 r...... (6)

These values of ./Tare very large and appear excessive. It

is to be remembered, however, that the formula used Eq. (3) is

strictly applicable only within the elastic limit.

There is no reason to doubt, therefore, that within that

limit the greatest intensity of tension in the plates of the joint

may reach from 4T to 7 T.

From these considerations it is to be expected that the true

elastic limit of the joint, as a whole, would be very low.

The preceding investigations in the flexure of the joint are

based upon the virtual assumption that the plates remain

straight after the application of external stress. In reality
such a condition of things does not obtain. Even below the

elastic limit the plates begin to take positions which are

shown in an exaggerated manner in Fig. 7. On account of the

bending, the material at the_ - Pomts ^^ stretches much
- ^

p more than that at the points

Fig. 7 BB (with low values of T
that at the latter points may

be in compression), so that the centre lines of the plates P and
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P' are brought more nearly into coincidence, thus lessening
the bending moment to which the joint is subjected. After the

elastic limit of the material at AA is passed, a considerable in-

crease of strain or stretch takes place at those points for the

same increment of stress. Two important results follow this

increase of strain between the elastic limit and failure : the

joint becomes very markedly distorted, so that the plates P and
P 1

become much more nearly in line, and the stress becomes
much more nearly uniformly distributed in the sections A&,
AB. This is equivalent to saying that the joint is subject to a

greatly decreased bending moment.
If the plates are thin, the excess of strain at AA over that

at BB, requisite to bring the plates PP' essentially into line,

may easily be within the stretching capacity of the material.

If, however, the plates are thick, that condition will not hold,

and the material at AA will begin to fail before PP' are

nearly in line. Hence, the mean intensity of stress in a thick

plate, other things being equal at the instant of rupture, will

be considerably less than that in a thin one. It might thus

happen that a lap joint with thin plates would be found

stronger, even, than one with thicker plates.

Reference will hereafter be made to experiments which

verjfy these conclusions.

It will now be well to turn back a moment to the consider-

ation of Eqs. (5) and (6). Those equations show the effect of

bending to be dependent on T only, and entirely independent of
//// thickness of the plates, which apparently contradicts the

conclusion just drawn. But, as has already been intimated,
those equations involve the virtual assumption that the plates
remain continually straight, and do not contemplate the altered

conditions of the joint which exist just at ,md before rupture.

Again, they presuppose no passage of the elastic limit. There
is thus no real contradiction.

Although a single riveted lap joint only has been treated,

precisely the same considerations apply to a double riveted lap
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joint, a butt joint with single butt strap or cover plate, and all

butt straps or cover plates of butt joints. The main plates
of butt joints with double cover plates are not subjected to

flexure.

The rivets of all riveted joints are subjected to heavy flex-

ure, the greatest of which usually occurs in single lap and butt

joints like Figs. I and 3. An approximate value of the bend-

ing moment, in any case, may be found as follows :

Let n be the number of rows of rivets in one plate. In

Figs, i, 3, 4, is i
;
and 2 in Figs. 2, 5 and 6. Then if t and /'

are the thickness of the two plates or of one plate and one

cover, T and T' the mean intensities of tension in the same

pieces, and if M be taken from Eq. (i), the approximate bend-

ing moment will be:

M KAd /tr

-g
; (From Art. 63); .... (7)

in which A is the area of the cross section of one rivet,

greatest intensity of tension or compression due to bending, and

*/the rivet diameter, as before. From Eqs. (7) and (i):

lit = /':

This equation is approximate because it is virtually assumed

that the pressure on the rivet is uniformly distributed along its

axis.* This is a considerable deviation from the truth, particu-

* In accordance with this assumption, strictly speaking, -/ (thickness of main

plate) should be taken instead of / in the sum (/ + /') in the above formulae foi

bending, when applied to the double butt joints, Figs. 5 and 6.
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larly as failure is approached. The true bending moment is

much less than that given by Eq. (7) after the rivet has

deflected a little.

When the joint takes the position shown in Fig. 7, it is clear

that the rivet is also subject to some direct tension.

There is a very high intensity of pressure between the shaft

of the rivet and the wall of the hole. This intensity is not

uniform over the surface of contact, but has its greatest value

at, or in the vicinity of, the extremities of that diameter lying

in the direction of the stress exerted in the plate. At and

near failure this intensity may be equal to the crushing resist-

ance of the material over a considerable portion of the surface

of contact.

The intricate character of the conditions involved renders it

quite impossible to determine the law of the distribution of

this pressure. The bending of the rivets under stress tends to

a concentration of the pressure near the surface of contact of

the joined plates, while the unavoidably varying "fit" of the

rivet in its hole, even in the best of work, throws the pressure

towards the front portion of the surface of the rivet shaft. The

intensity thus varies both along the axis and around the cir-

cumference of the rivet.

If any arbitrary law is assumed, the greatest intensity of

pressur- ly determined. Such laws, however, are mere

hypotheses and possess no real value. All that can be done is

to determine, by experiment, the mean safe working intensity

on the diametral plane of the rivet which is equivalent to a

fluid pressure of the same intensity against its shaft.

Thus, if f is this mean (empirically determined) intensity,

d the diameter of the riv.t, and / the thickness of the pi

total pressure carried by one rivet pressing against one

plate is:

R=f<tt (10)

There yet remains to be considered the condition of that
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portion of the plate on which the pressure R = fdt is applied,
and which is situated immediately in front of the rivet.

This portion of the plate is really in the condition of a beam
fixed at each end, with a span equal to the diameter of the

rivet. The beam, however, is not a straight one. At each end

of the diameter the direct bending stress will be tension
; and,

on account of the position of the material, its direction will be

approximately, at least, that of the proper tension of the plate.

At those points, therefore, the proper and bending tension will

act to some extent together, and the metal will usually be

more highly stressed than anywhere else. This accounts for

the usual manner of tensile fracture of a joint, in which the

metal begins to tear on each side of the rivets, the metal

between (generally in a diagonal direction in zigzag riveting)

being the last to give way.
In the interior of the joint it is quite impossible to deter-

mine the value of this tensile bending stress on each side of

the rivet. On the exterior of the joint, however, an approxi-
mate result may be reached ; and hence, the depth //, Fig. 2,

from the centre of the outside row of rivets to the edge of the

plate. The depth of the beam will be taken as (h 1
,
and

the pressure or load will be considered concentrated at the

middle of the diameter or span. If / is thickness of the plate,

p the pitch of the rivets and T the mean intensity of tension

between the rivets, the load on the beam will be (/ d)Tt,
and the moment of inertia of the cross section will be :

tk -

12

From what has been shown in the chapter on bending,
the modulus of rupture in the present case may be safely

taken at -
2
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In Art. 24, the moment at the centre and end of a span
fixed at each end and loaded in the centre was shown to be

equal to one-eighth the load into the span.

Hence, by the usual formulae :

/ _ <L\
2Kf 3 r _\L

~

2/
_ jf

. -_ -

9

.-. // = 0.71 V(/ - d
)
d + o.5</. . . . (i i)

Reviewing the results of this section, it may be concluded

that the bending of the plates about axes parallel to them, or

normal to them in the interior of the joint, and the bending of

the rivets, as well as the law of the distribution of pressure

against them, cannot be expressed by formula with any useful

degree of accuracy ;
but that such influences must be recog-

nized in the empirical determination of the shearing and tear-

ing resistances of the joint and the mean intensity of pressure

against the diametral plane of the rivet.

Effect of ranching.

The effect of punching wrought-iron plates has been found

to be injurious. The tensile resistance of the remaining mate-

rial will be considerably less than that of the plate before

punching. Yet the injurious effect of the punch docs not ex-

tend far into the plate. If the punched hole is reamed, so that

the diameter is increased an eighth of an inch, the remaining

plate will usually give the normal resistance per unit of section,

or essentially so.

It has been found by experiment that effect of the punch is

less injurious as the die hole is increased in diameter, although
there is probably a limit to the application of this principle.*
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The diameter of the die hole is usually from \ to larger

than that of the punch. This excess should depend upon the

thickness (/) of the plate, and it is sometimes taken as o.2/.

s Numerous foreign experiments (chiefly English) by Barna-

by, Stoney, Fletcher, etc., show that the loss of tensile resist-

ance due to punching wrought-iron plates runs usually from

10 to 15, and may vary from 5 to 33 per cent, of the original

resistance.

The loss of resistance due to punching and its remedy, in

steel plates, have already been treated in Art. 34.

Wrougkt-Iron Lap Joints, and Butt Joints with Single Butt

Strap.

A butt joint with single butt strap, similar to that shown
in Fig. 3, is really composed of two lap joints in contact

;
since

each half of the butt strap or cover plate with its underlying
main plate forms a lap joint. It is unnecessary therefore to

give it separate treatment.

From these considerations it is clear that the thickness of

the butt strap or cover plate should be the same as that of the

main plate.

Let / = thickness of plates.
" d = diameter .of rivets.
"
p = pitch of rivets

(/. e., distance between centres

in the same row).
" T mean intensity of tension in plates between

rivets.
" T = mean intensity of tension in main plates.
" f mean intensity of pressure on diametral plane

of rivet.
" S = mean intensity of shear in rivets.
" n number of rivets in one main plate.
"
q = number of rows in one main plate.

"
// = amount of extreme lap as shown in Fig. 2.
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If all the dimensions are in inches, then 7", T^/and 5 are

in pounds per square inch.

The starting point in the design of a joint is the thickness

/ of the plate. The rivet diameter is then expressed in terms

of /, and the pitch in terms of the diameter.

The thickness / of boiler plate depends upon the internal

pressure, and is to be determined in accordance with the prin-

ciples laid down in Art. 9, after having made allowance for the

metal punched out at the holes and the deterioration or other

effect caused by the punch.
In truss work the thickness depends upon the amount of

stress to be carried, and the same allowances are to be made
for punching and deterioration.

The relation existing between T and T' is shown by the

following equations:

-<) T=tpT .: =

or,

In order that the joint may be equally strong in reference

to all methods of failure, the following series of equalities must
hold:

- tpT = -t(p- J} T = nfdt = 0.7854*^.

'

=
t(t>

-
<*} T - qfdt = 0.7854^5. . (13)

It is probably impossible to cause these equalities to exist

in any actual joint, but none of the intensities T\ T, /or .S'

should exceed a safe working value.

In ordinary American boiler practice d varies from !.$/ to



618 LAP JOINTS. [Art. 73.

2t\ the latter for thin plates and the former for thicker ones,

the extreme limits being about - inch and \\ inches.

The following are some rules given by the best foreign

authorities for wrought iron :

Browne d 2t (or 1.25^ with double covers), . . . (14)

Fairbairn d 2t for plates less than | in (15)

Fairbairn d 1.5^ for plates greater than f in . . . . (16)

Lemaitre d = i.$t + 0.16 (17)

Antoine d i.i\/t (18)

Pohlig d = 2t for boiler riveting (19)

Pohlig d y for extra strength , (20)

Redtenbacher . . d \.^t to 2t (21)

Unwin d= o.75/ + -^ to
-J

/ + -5 (22)

Unwin d = \.2\/~i (23)

As the results of some of his experiments on ^-inch steel

plate joints, Prof. A. B. W. Kennedy gives in
"
Engineering,"

10th June, 1881, the following rules for rivet diameter :

Single riveted lap joint .... d = 2.2 5 / )

> - (
24)

Double riveted lap joint. . . d = 2.2I/ }

These rules are for mild steel plates and for greatest

strength, but are not to be applied to plates over y2 in. thick ;

as the diameters would then become excessive. He therefore
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DIAMETER OP RIVETS.

nHWUWM

OF

PLATE.
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TABLE I.

Wrought Iron.

EXPERIMENTER. FORM OF JOINT.
/, IN LRS. PER

SQUARE INCH.

7", IN LBS. PER

SQUARE INCH.

Lap, single riveted 83,776

Lap, single riveted 66,860

Lap, double riveted 78,290

Lap, double riveted 76,830
Fairbairn \ Lap, double riveted 58,460

Lap, double riveted 51,300
Butt, double riveted, one cover 58,020
Butt, single riveted, two covers ... 04,210
Butt, single riveted, two covers 65,180
Lap, single riveted 58,580
Lap, double riveted 36,740

v . . , Butt, double riveted 74,700Kirkaldy 1 Butt, double riveted 71,750
Butt, double rjveted 63,170
Butt, double riveted .... 62,610
Lap, single riveted 93,640
Lap, single riveted 86,950

Browne <!
Lap, single riveted 84,980Qe 1 Butt, single riveted 101,150
Butt, single riveted 94.240
Butt, single riveted 92,840
Lap, single riveted, punched 66,210
Lap, single riveted, punched 55,660
Lap, single riveted, punched 49,460
Lap, single riveted, punched 47,260
Lap, single riveted, punched 43,680
Lap, single riveted, punched 42,110

j Lap, single riveted, punched 38770Stoney 1 Lap! single riveted; drilled g'lJo
Lap, single riveted, drilled 59^020
Lap, single riveted, drilled 54,650
Lap, single riveted, drilled 48.370
Lap, single riveted, drilled 47^520
Lap, single riveted, drilled 46,140
Lap, single riveted, drilled

45,920

39,650
44,58o

52,190

55-330
53-98o
53' 540
60,700
47-260
57,340

45-570
45,020

39^200
29,120
27,100
26,300
31-360

,120

31,910
32,930

35-840
45,920
44,350
40,770
46,820
34,940
41,440
36,740
47,490
48,380
48,270

Reviewing all the results, it would seem that the following
values niay safely be given single riveted lap joints with

punched holes in first-class work :

/ == 55,000 to 60,000 T -- 45,000 to 40,000.

f 55,000 to 50,000 T = 45,000 to 50,000.

The following values of/, T and 5, at the instant of failure,
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are from the experiments (English) of Messrs. Greig and Eyth
and the Master Mechanics' Association.

/", IN LBS. PER r, IN LBS. PER .S, IN LBS PER

SQ. INCH. SQ. INCH. SQ. INCH.

64,4OO ................ 46,820................ 40,990'

Single riveted 59,490 ................ 43,650................ 41,300

lap joints.. . 59.960................ 43,9?o ................ 41,680
j-

. .(A)

62,400............... 45,76o................ 43,340
66,280................ 47,690............... 38,770,

All the holes in these joints were drilled, consequently, as

will hereafter be shown, S is a little low. Further, all the joints

broke by simultaneous shearing of the rivets and tearing of the

plates : they may therefore be considered well designed.

Now, if/= T= 50,000, which is experimentally shown to

be correct in single riveted lap joints, for which q = I, the

second and third members of Eq. (13) give :

p - 2d.

But this pitch would scarcely give sufficient room for heading
the rivets. It has just been seen that the results in group (A)

belong to well proportioned joints. An examination of those

results will show that f varies from i.33/^0 1.47", nearly;

which is not an essential .disagreement with the results of

Table I. Hence, putting these values in Eq. (13) :

/ = 2.33^ to 2.4^ ...... (25)

This agrees with good ordinary practice in boiler making,
which make

p = 2.3</ to 2.7 5^/, nearly.

The preceding results are for single riveted lapjoints in wrought
iron.
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TABLE IL

Wrought Iron Double Riveted Lap Joints.

EXPERIMENTER OR AUTHORITY.
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per square inch. This will reduce somewhat the allowable

ratio between /and 71

A careful examination of the results given in the tables

seems to make it perfectly safe to take/ from I.i7to 1.257".

These values in the second and third members of Eq. (13) give

(remembering that q is here equal to 2) for double riveted lap

joints :

p= 3.2 to
3.5^)

Or, say: V (26)

/ = 3.25 to 4.0^)

The smaller values of / belong to thick plates and the

larger values to thin ones, both because the increased thick-

ness brings a greater proportional load on the rivet and be-

cause the lever arm of the bending moment is greater.

It should be stated that in some apparently good boiler

practice/ is sometimes taken as high even as $d. The ease

with which a double riveted lap joint is made steam tight may
tempt a decrease in expense of riveting. It is probable that

the rivets*of joints in which the pitch exceeds about qd carry
an excessive compression and a corresponding liability to

weakness.

In Table II. the experiments of Mr. Knight were made on

plates one inch thick, which are excessively heavy, and the val-

ues of/and T are remarkably small. It has already been dem-

onstrated that great thickness of plates would produce results

of such a character, although the sufficiency of such an expla-

nation has been doubted. There seems little reason to doubt,

however, that the cause just cited, together with the normal

decrease of resistance with an increase of thickness, is a com-

plete explanation.
It is to be observed that in the preceding deduced values of

/ and 7*, the bending of the plates about axes both parallel

and normal to their surfaces, have been recognized and pro-

vided for.
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If the accuracy of the experiments cited be assumed, and

they are the most reliable and valuable that have ever been

made, there may be taken :

For i -inch plates, T = 30,000 to 35,000 Ibs. per sq. in.

For ^-inch plates, T = 50,000 to 55,000 Ibs. per sq. in.

And for intermediate plates proportional values.

For single riveted lap joints,f= 1.33 to 1.4 7".

For double riveted lap joints, f = i.i to 1.25 T.

As /"and T^have been found to be dependent on the pecu-
iar circumstances attending the use of the material in the

joint, so, in the same general manner, the determination of the

ultimate shearing resistance of the rivets must involve a similar

recognition of environment.

It has been found by experiment, as might have been an-

ticipated, that rivets in drilled holes offer less resistance to

shearing than those in punched holes. This arises from the

fact that the edges of drilled holes are much sharper than those

formed by a punch.
Table III. gives the mean results of a large number of ex-

periments by the authorities named. It has been condensed,

and the results converted to pounds per square inch, from a

similar one given by Prof. Unwin, in
"
Engineering" for 26th

March, 1880.

These results are for single riveted lap joints, and therefore

for single shear. They are only a very little larger than the

values determined by Chief Engineer Schock for single shear,

as the apparatus of the latter was essentially equivalent to a

drilled hole.

For plates 0.25 inch to 0.375 mc^ thick, there may be

taken, as is usually done, 5 = 0.8 T. It has been seen (Table

II.) that a plate an inch thick can be expected, in lap joints, to
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TABLE III.

Shearing of Wrought Iron Rivets.

EXPERIMENTER OR AUTHORITY.
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riveted lap joint, as a whole, for plates not over 0.5 inch thick,

may vary from 44 to 58 per cent, of the solid plate in its nor-

mal condition, and that the mean value may be taken from 50
to 52 per cent.

In a double riveted lap joint this mean may be taken at 60

per cent, of the resistance of the original plate, for moderate

thicknesses. In Mr. Knight's experiments with inch plates

(double riveted), the resistance of the joint, as a whole, ranged
from 33 to 36 per cent, of that of the plate.

It is clear, from the preceding investigations, that this
"
efficiency

"
of the joint must decrease as the thickness of

the plate increases. In fact, Mr. Bertram found, in 1860, that

some joints in ^-inch plates were stronger than those in either

iV or /4-inch plates. Although such results do not involve im-

possibilities, they are certainly remarkable, and have not since

been obtained.

As has before been observed, all the preceding results apply

directly to buttjoints, in wrought iron, with single butt strap or

cover plate.

The width of overlap (Jt) from the centre of the outside line

of rivets to the edge of the plate (see Fig. 2) may now be deter-

mined in terms of d, by the aid of Eq. (i i).
Since the load on

the rivet is represented by (/ d)Tt, p must be taken in

terms of d for a single riveted joint, in which/ = 2^/to 2^d.
As a margin of safety, and as it will, at the same time, simplify

the resulting expression, let/ = $d.

Eq. (11) then gives:

h = i.$d. (28)

Experience has shown that this rule gives ample strength,

and is about right for caulking, in boiler joints.

The distance between the rows of riveting \s not susceptible

of accurate expression by formulae, although the considerations

involved in the establishment of Eq. (11) would lead to an ap-
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proximate value. It is evident, however, that this distance

should never be as small as //. Apparently, in more than

double riveted joints, this distance should increase as the centre

line of the joint is receded from, in consequence of the bending
action of the rivet. There are other reasons, however, besides

that of inconvenience, why such a practice is not advisable.

/;/ chain riveting the distance between tJic centre lines of the

rows of rivets may be taken equal to the pitch in a single riveted

joint, or, as a mean, at 2.5 the diameter of a rivet.

In zigzag riveting (Fig. 5) this distance may be taken at

three-quarters its value for chain riveting.

Steel Lap Joints and Butt Joints with One Cover.

The general phenomena attending the tests of steel joints

are precisely the same in kind with those observed in connec-

tion with riveted iron plates ; they do not, therefore, need par-

ticular consideration in this section.

Table IV. contains results communicated to the " Commit-
tee of the Institution of Mechanical Engineers" by Messrs.

Parker and Sharp ("Engineering," i6th April, 1880). The

joints failed by tearing, and gave the values of T shown in the

table. The intensity of pressure,/", existed at rupture.

The following values of T and/" under precisely the same

circumstances, i.e., failure, were found by Prof. A. B. W. Ken-

nedy (" Engineering," 2Oth May and loth June, 1881,) for single

riveted lap joints.

T. /.

i-inch 67,060 Ibs. per sq. In 42,980 Ibs. per sq. in.
1

65,310 57,6oo
" '

i
"

70,850

70,520
"

t
"

$0,920
"

73,420
'
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TABLE IV.

Steel Joints.

JOINT.
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Or, Say, (29)

for single riveted lap joints. It will probably be best to allow

this pitch to stand for thick plates also, although experiments
to verify such a conclusion are yet lacking. For very thick

plates in single riveting, however, T should not be taken over

50,000 to 55,000 pounds at the highest.

Experiments on double riveted lap joints by Martell, Kir-

kaldy and Easton and Anderson, show that it will be essentially

correct, and certainly safe, to take f and T as in the single

riveted joints. With q equal to 2, Eq. (13) will then give for

double riveted steel lapjoints :

Or, say, } (30)

Although relating to treble and quadruple riveted joints,

Table IV. shows in a marked manner the decrease of T with

the increase of thickness, and verifies the conclusion drawn in

the preceding section in regard to that phenomenon.
The results cited by Prof. Unwin, in the report so fre-

quently referred to heretofore, indicate that for treble riveted

joints f may be taken essentially equal to T for thin plates,

and 0.9T for thick ones. Hence, using Eq. (13) as before:

TRF.m.E RIVETING.

Thin plates (0.25 and 0.375 m -) P = 4^ )

\
- - (30

Thick plates (0.875 and i-oo in.),/ = 3.7^)

Some experiments of Mr. Kirkaldy on joints with %-inch
Siemens steel plates quadruple riveted, seem to show that the

pitch should be about the same as in treble riveted. This is
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undoubtedly due to the fact that with such a great number of

rivets it becomes impossible to obtain even an approximately

proper distribution of load among them.

In treble and quadruple riveting the tests cited show that

7" may be taken at 70,000 to 75,000 for thin plates, and 55,000

to 60,000 for thick ones.

In all the preceding investigations it is supposed that the

holes are drilled, or that the plates are subsequently annealed

if punched.
In nearly all the experiments cited by Prof. Unwin, the

value of T, as found in the actual joint, exceeded the ultimate

resistance of the original plate ;
a result which finds its ex-

planation in the drilling of the holes and the "
shortening

"

effect produced by their presence, aided by their equalizing

effect.

Table V. gives the ultimate shearing resistance of steel

rivets as determined by Sharp, Martell, Kirkaldy and Greig
and Eyth. A very considerable reduction is noticed with the

increase in plate thickness, due probably to increased bending
and size of rivet.

Prof. Kennedy found the following values in single riveted

lap joints :

RIVET DIAM.

o . 75 in 54,460 Ibs. per sq. in.

1. 00

1. 00

0-75

0-75

0-75

0.75

37,240

38,720
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TABLE V.

Shearing of Steel Rivets.

JOINT.
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For thick plates in treble and quadruple riveting, for which

/= 0.9 T, and S = 0.7 T:

d= i.6t (nearly) (33)

The rivet pitch, therefore, for steel plates, may be said to

vary from 2t for thin plates to i.6t for thick ones, with a

maximum diameter of i to i^ inches.

Prof. Kennedy's best designed single riveted lap joints

gave from 55 to 64 per cent, the strength of the solid plates.

Well designed double riveted lap joints should give from

65 to 75 per cent, the resistance of the solid plate.

Equally well constructed treble and quadruple riveted

joints should have an efficiency of 70 to 80 per cent, of the

solid plate.

It is therefore seen that there is little economy in more

than double riveting ordinary joints.

The distance between the centre lines of the rows of rivets,

and the distance from the edge of the lap to the outside centre

line of holes, may be taken the same as for wrought-iron

joints, according to the rules given in the last part of the pre-

ceding section.

All rivets haVe heretofore been supposed to be steel. In

the case of steel plates and iron rivets, there may be taken, at

least approximately, o.gS for S, and f = T for thin plates, or

O.87" for very thick ones. These values are to be inserted in

the preceding formulae for all steel joints, and the results for

/ and d taken.

Wrought-iron Butt Joints with Double Covers.

Butt joints with double butt straps or covers differ in two

respects, and advantageously, from lap joints and butt joints

with a single cover
;

/. e., in the former the rivets are in double

shear and the main plates are subjected to no bending. The
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cover plates, however, are subjected to greater flexure than the

plates of a lap joint, for there is no opportunity to decrease

the leverage by stretching. As the covers form only a small

portion of the total material, these, with economy, may be

made sufficiently thick to resist this tendency to failure.

Let /' = thickness of each cover plate.

And let the remaining notation be the same as in the pre-

ceding section. The intensity of compression between the

walls of the holes in the cover plates and the rivets, and the

tension in the former, will be ignored on account of the excess

in thickness of the two cover plates combined over that of the

main plate. This excess in thickness is required on account of

the bending in the covers noticed above.

The thickness of each cover should be from Y to fa the thick-

ness of tlie main plates, or /' = 0.75^ to O.875/.

The combined thickness of the covers will thus be from

1.50 to 1.75 that of the main plates.

The four principal methods of rupture in the main plate

will then lead to the following equations, corresponding to

Eq. (I 3):

- tpT = -t(p-d) T= nfdt = i.57o8>/</'S.

' = t (p - d) T = qfdt = 1.5708^'S . (34)

The experiments of Kirkaldy, Fairbairn, Greig and Eyth
and Knight, show that in well proportioned joints/ = 1.25 to

/'(the higher values belonging to the thinner plates), with

a mean value of about 1.47! As no bending exists in tin-

main plates, this value holds in single or double riveting.

Hence for single riveting* the second and third members of

Eq. (34) give

/=2.4//; or, say, p = 2.5^ . . . . (35)
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In double riveting, for which q 2 :

/=3.&/; or, say, / = 4.a/ .... (36)

On account of the essential impossibility of even an ap-

proximately proper distribution of the load among the rivets,

and the consequent liability of failure of the joint in detail, in

treble riveting the pitch should probably not exceed 4.5^, nor

$d in quadruple riveting.

There may be taken, according to the experiments just

cited :

For punched inch plates :

T 40,000 Ibs. per square inch.

For drilled ^-inch plates :

T = 55,000 Ibs. per square inch.

Other thicknesses and conditions give approximately pro-

portional values, allowing about 10 per cent, for the deteriora-

tion of the punch ; z>., 7", for a
fy& punched plate, may be taken

at 45,000 pounds.
It has already been observed that the value of 5 may be

taken at 0.8 T for lap joints, but the few experiments that have

been made on shearing in butt joints with double covers, show

that the ratio must be taken somewhat less, in consequence

probably of the double shearing which takes place.

Hence, let 5 be taken at 0.75 T.

Using the third and fourth members of Eq. (34), therefore,

and making 5 = 0.75 T :

For thin plates in which f i.$T:

<*--= 1.3*........ (37)



Art. 73.] STEEL BUTT JOINTS. 635

For thick plates in whichf= i.2$T:

d = i.i/ (38)

It is hardly worth while, however, to make any rivet less

than ^ inch in diameter. Hence there may be taken the

limits :

For }^-inch plate ;
d = 0.375 inch.

For i-inch plate ; d = 1.125 inch.

These results are verified by good boiler practice.

The distance from the centre line of outside row of rivets

to the edge of the cover plate, or from the edge of the main

plate to the centre line of the first row of rivets in the same,

may be taken at \d as in lap joints, since the calculation is

precisely the same. This rule frequently gives a considerable

margin of safety over that of any other portion of the joint.

The distance between the centre lines of the rows of rivets

may be taken at 2.5 to $.od for chain riveting, and j that dis-

tance for zigzag riveting.

Steel Butt Joints with Double Cover Plates.

For the same reasons stated in the preceding section, con-

siderations touching the stress in the cover plates will be

omitted. And also, for the reasons there given, these cover

plates should each possess from ^ to ]& the thickness of the

main plate ; or :

/' = 0.75 to 0.875/.

Table VI. gives the results of a large number of test in

which the joint failed by the tearing of the plates. The in-

tensities of tension and compression, T and/", existed at failure.



636 STEEL BUTT JOINTS. [Art. 73.

TABLE VI.

Double Riveted Butt Joints.

KXPERIMENTER OR AUTHORITY.
t
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With this value of f, and q 2, the second and third mem-
bers of Eq. (34) give for double riveted butt joints with two

covers :

P = 3-5^- (39)

If the same value of f be preserved, there will result for

single riveted butt joints with two covers :

P = 2.5^- (40)

Experiments on treble and quadruple riveting are yet lack-

ing.

But few experiments on the shearing of rivets in butt

joints with double covers have yet been made. Four tests by
Messrs. Sharp and Kirkaldy give :

THICKNESS
OF PLATE. S.

Single riveted -
42,000 Ibs. per sq. in.

Double '

0.875 in 44, 55
" " " "

"
53,370

"

0.55 in 42,700
" " " "

0.875 in 44,420
'

All the holes were drilled.

These values of 5 range about 0.77*. Putting this ratio,

therefore, in Eq. (34), and taking /= 1.257; the third and
fourth members of that equation give :

<*= 1. 14' (40

It is probable that this is a little too small for thin plates,
and a little too large for thick ones. Hence there may be
taken :

For thin plates, d =

For thick plates, d =

i*O

!#/)
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Double riveted butt joints designed in accordance with the

foregoing deductions should give a resistance ranging from 65
to 75 per cent, of that of the solid plate.

Single riveted joints will give an efficiency somewhat less
;

perhaps from 60 to 65 per cent.

It is to be supposed, in applying the rules just established,

that all steel plates are drilled, or subsequently annealed if

punched.
As in the preceding cases, the distance between the centre

lines of the rows of rivets may be taken at 2.5 to ^d for chain

riveting, and three-quarters that distance for zigzag.

Efficiencies.

The values of the quantity which has been termed the

"efficiency" of the joint, i.e., the ratio of the resistance of a

given width of joint over that of an equal width of solid plate,

in the preceding investigations, are those actually determined

by experiments with the joints themselves. They may, there-

fore, be relied upon. Some values which have for many years
been considered as standard, but which, in reality, are of a

TABLE VII.

Butt Joints with Two Covers 1877.

NO. OF

TESTS.
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somewhat arbitrary nature, and at best belonging to a limited

class of joints, have been disregarded.

Table VII. gives the results of Mr. Kirkaldy's experiments
in reference to the comparative resistance of chain and zigzag

riveting. The difference is not great, but what there is is in

favor of the chain riveting.

TABLE VIII.

Kirkaldys Tests 1872.

JOINT.
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Riveted Truss Joints.

The circumstances in which riveted joints are used in truss

work, render permissible many special forms which can find no

place in boiler riveting. If joints are found under the same

circumstances, so far as' the transference of stress is concerned,

precisely the same forms would be used, except that caulking

is, of course, only required in boiler work. .

Fig. 9 shows a common form of chord construction in riv-

OOJO
oxoo o

A
Fig, 9

eted truss work, with the relative proportions
A

exaggerated.
c

The lower portion of the figure shows a

section of the chord, in which the cover

plates are shaded. The joint is supposed to

be in tension.

AB is a horizontal cover plate, under

which the horizontal component plates form

lap joints at C, D and E. As the distance

MN must necessarily be much greater than the allowable pitch
in boiler work, these lap joints, considered in themselves,

should be at least treble riveted. On the other hand, the pre-

ceding investigations show that even with treble riveting there

is great disparity in the loads carried by the different rivets

and consequent tendency to detailed rupture ;
there would
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seem, therefore, to be little or no benefit in more than treble

riveting.

The distance between the centres of rivets along the line of

the chord />., along AB in the upper figure may be taken at

throe diameters. The overlap CD = DE (upper Fig.) would
then be taken at 9 diameters, and from A, C, D or E to the

centre of the first hole, at \
l/2 diameters. The cover AB

should extend 9 diameters also on either side of C and E.

In this work the diameter of the rivet may usually be taken

about the same as for boiler work. In estimating the resist-

ance of the whole joint, however, it is to be borne in mind

that the rivet holes take metal out of all the plates, and that

they are usually punched.
It is impossible to follow the stresses in such a joint or to

compute its efficiency. If tested to failure, the latter would

probably be found pretty low.

The joint in the vertical plate should be formed as at FG
/>., it should be a double cover butt joint. The principles al-

ly established in a preceding section, in regard to the thick-

ness of covers and diameter of rivets, should be observed here.

The two rows of rivets on either side of the joint may as

well be chain riveted with a pitch $y2 to 4 diameters. Other

rivets should then be staggered in until the group of rivet a n-

on each side is brought to a point, as shown in the up-

part of Fig. 9. In this manner the available section of a width

of plate equal to that of the cover, becomes approximately

equal to the total, less the material from one rivet hole. Hence

the efficiency of the joint becomes correspondingly increased.

If the joint is in compression the preceding observations

hold without change, except that all covers should have tlu

same thickness as the plates covered.

Even if the joints C, D, /: and H are of planed cd^c-s, little or

no reliance should be placed upon their bearing on each otli

since the operation of riveting will draw them apart more or

less, ho -ell the work may be done. Melted zinc, or

41
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other similar metal, has been poured into compression joints

with the intention of insuring good bearings, but the results

are not satisfactory.

In the case of very wide chords, four longitudinal rows of

rivets should be used in such joints as are exemplified in

Fig. 9.

Unless great caution is observed and excellence of design

secured, there will frequently be excessive bending in the

riveted joints of trusswork, on account of the great variety of

connections required.

Diagonal Joints.

It has been proposed to form riveted joints, the edges of

whose plates are neither perpendicular nor parallel to the

stress transferred. In this manner a greater number of rivets

and a greater section of metal will resist the stress exerted in

the body of the plate.

Mr. Kirkaldy made some tests on such lap joints, single

riveted, with J^-inch plates, the joints of which lay at 45 with

the applied force, with the following results :

Entire plate 100

Square joint 59-4

Diagonal joint 87.2

The diagonal joints are thus seen to give by far the best

results. They are, however, much the most expensive also.

Friction of RivetedJoints.

There are not lacking experiments to show that the friction

between the plates of a riveted joint is very great. This, how-

ever, cannot be relied upon to give additional resistance to the

joint, since a sensible relative movement of the plates takes
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place in advance of its greatest resistance and essentially de-

stroys the friction.

The experiments of Edwin Clarke, Harkort and Lavelley
show that this friction may range from 8,330 to 22,400 Ibs.

per sq. in. of rivet section.

The specimens were prepared with one slotted plate, so

that friction was the only resistance to the parting of the

plates.

Hand and Machine Riveting.

Pneumatic, steam and hydraulic riveting machines have

lately been brought to such a degree of perfection, that ma-

chine work is now very generally preferred to hand riveting.

The resistances of joints will vary to some extent with the

method of riveting. Usually, however, the variation will not

be greater than may be found for the same kind of riveting in

different places and under different circumstances.

As a rule, machine riveting is much more reliable than

hand, in that the hole is better filled and the rivet more

quickly headed, in consequence of the great excess of pressure
exerted. There is thus much less liability of loose rivets.

Many of the preceding experimental results were obtained

from machine work.

Addendum to Art. 73.

The following series of valuable tests of riveted joints of

both iron and steel were made in the government machine at

Watertown, Mass. The results in Table IX. were taken from

"Senate Ex. Doc. No. i, 4/th Cong., 2d Session," while those

in Table X. are found in "Scnat. K\. Doc. No. 5, 48th Cong.,
1st Session." The character of plates, rivets, and holes is

shown in the tables, and the intensities of tension in net sec-
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TABLE IX.

Riveted Joints Iron and Steel.
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TABLE IX. Continual.
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TABLE IX. Continued.
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TABLE X.

Riveted Joints Iron and SUtl.
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found with the thin plates, and that those quantities diminish

appreciably as the thickness of plate increases, both for iron

and steel. This law is not so well defined in reference to the

diameter of rivet, if indeed these tests show it at all, except
for steel.

The length of these test joints varied from 9.75 to 13

inches.

Although the results of these Tables are somewhat irregular,

they confirm the general accuracy of the relations established

between the values of Z", y, and S in the preceding portion of

this Article, as well as other general rules and conclusions for

boiler work.

Some efficiencies are much lower than given for similar

joints on pages 638 and 639, but such instances can, by the aid

of the Tables, be traced either to indifferent design or a phe-

nominally low value of some one of the three resistances. In

general, the results compare well with those given on the pages
named.

The pitches of rivets are seen to be adapted to boiler work,

and much less than are ordinarily used in bridge work
; yet

the corresponding resistances show what may legitimately be

done and expected when rare and extraordinary conditions

demand a departure from usual rules.

Before deducing from the preceding results of this Adden-

dum working intensities for bridge construction, it is to be

first explained that those results are as given in the govern-

ment reports, and that the net section used is the gross section

of the plate, less the actual metal removed by the punch or

drill, with no allowance for deterioration by the former in the

immediate vicinity of the hole. Again, in the Tables IX. and

X. the diametral bearing surface and the shearing area of the

rivet are taken to be those of the drill, or a mean between the

punch and die in case of punched holes. In bridge work, in

determining the net section, metal is deducted for a diameter

equal to that of the cold rivet before driving plus one-eighth
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of an inch
;
and the shearing and bearing are computed for the

section and diameter of the cold rivet before driving.

With these explanations in view, the preceding tests justify

the following working stresses for the plate girder floor beams
and stringers of railway bridges with machine driven rivets.

Rivet
bearig\

"- s '

Tension in net section ofplate
\ *%

l^ ?f
r ^ ^

The apparently low bearing resistances, especially for steel,

are taken for the reason that very thick plates are frequently
used in bridge construction, and the ultimate bearing resist-

ance for them is appreciably less than for the thin plates used

in most of the preceding tests.

The preceding working stresses are based on steel for rivets

giving from 56,000 to 64,000 pounds per square inch tensile

resistance, while the steel for plates, in test specimens, should

offer from 58,000 to 66,000 pounds per square inch ultimate

tensile resistance.

In the government report from which Table IX. is ab-

stracted, can be found a large number of tests made for the

purpose of determining the proper minimum distance from the

centres of rivet holes to the edge of plates. As a result of

those tests and other experience on the same subject, it may
be stated th.it tli least distance from the centre of a rivet

hole to the edge of a plate may be taken at one and oiu-h.ilf

the diameter of the hole for steel and one and five-eighths the

diameter of the hole for iron, in cases where it is important to

secure the maximum resistance of the joint.
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Art. 74. Welded Joints.

At the present time the process of welding can, with proper
care and material, be made to give excellent results.

Scarf welds give much better results than lap welds, on

account of the bending to which the latter are subjected.

Mr. Kirtley (Institute of Mechanical engineers of Great

Britain) made some experiments with small strips, 7.5 inches

long and -fo inch thick, cut across welded joints. These strips

were taken out of boilers whose longitudinal joints had been

welded. Twenty-three experiments with strips varying from

one to one and a half inches wide, gave the following results

per square inch of plate section :

SOLID PLATE.

Greatest 53,310 Ibs 57,790^5.

Mean 46,140
"

52,860
"

Least 36,960
"

46,370
"

Art. 75. Pin Connection.

A pin connection consists of two sets of eye bars or links,

through the heads at one end of each of which a single pin

passes. Fig. I shows a pin connection; A, A, B, B, are eye
bars or links, and P is the pin.

n

rr

Fig. 1

The head of the eye bar (one is shown in elevation in Fig.

2) requires the greatest care in its formation. It is imperfect
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unless it be so proportioned that when the eye bar is tested to

failure, fracture will be as likely to take place in the body ot

the bar as in the head in other words, unless its efficiency is

unity.

In Fig. 2 the head of the eye bar, or link, is supposed to be

of the same thickness as that of the body of the bar whose

width is w.

F N D

I

>J
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in which the results agree essentially with those of experi-

ment.

Before taking a general view of the stresses which may
arise in an eye bar head, it must be premised that a difference

of -^ to ffa" between the diameter of the pin and that of the

pin-hole is exceptionally good practice. Before the eye bar is

strained, therefore, there is a line of contact only between the

pin and eye bar head, but on account of the elasticity of the

material, this line changes to a surface when the bar is under

stress, and increases with the degree of stress to which the bar

is subjected. The line and surface of contact is, of course, in

the vicinity of (2 Fig. 2, z>., on that side of the pin toward

the nearest end of the bar. The consequence of this is, that

when the bar is strained, the portion about QBy Fig. 2, is sub-

ject to direct compression and extension
; that about RL, NE

and GS to direct tension and bending, while in the vicinity of

T there is a point of contra-flexure, and the stress in the direc-

tion of the circumference changes from compression to tension

as E is approached from Q.

As a result of many of the experiments which have been

made, the following mode of proportioning the head has here-

tofore been very extensively used : Let r represent the radius

of the pin, while reference is made to Fig. 2. Then take

EN = o.66w. The curve DRBK is a semicircle with a radius

equal to r -f- o.66w, with a centre, A, so taken on the centre

line of the bar that QB = o.Sfw. GF is a portion of the same

curve, with A '

as the centre (A'C = AC)] GH is any curve

with a long radius joining GF gradually with the body of the

bar. HG should be very gradual in order that there may be a

large amount of metal in the vicinity of CG, for there the

metal is subjected to flexure as well as direct tension. FD
is a straight line parallel to the centre line of the bar.

As the preceding rule gives a head whose outline causes a

more expensive die than a simple circle, at the present day

eye bar heads are usually formed as shown in Fig. 3.
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Fig.3

ABD is a semicircle with a radius equal to r -j- o.Sw to

r -f 0.920, and whose centre C is the centre of the pin-hole.

The portions FA and HD are formed as before.

There should be no weld across the bar in the vicinity

of FH. Consequently, heads are usually formed by placing

proper sized pieces upon the upset ends of the plain bars, and

then, after insertion in a heating furnace, forcing the head to

the desired shape in a die under hydraulic or steam pressure.

The intensity of this pressure will affect, to a considerable

extent, the permissible dimensions of the head. The greater
the pressure, the better will be the results.

The unfinished head is sometimes rolled on the bar, as by
the Kloman process.

The thickness of the head is sometimes made greater than

that of the body of the bar. If the head is circular, as in Fig.

3, the section of metal on each side of the pin (through AC or

CD) should be not far from eight-tenths that in the body of

tli- bar.

This thickening of the eye bar head is an excellent thing
for the bar, but subjects the pin to a great increase of bending,

and, hence, requires increased pin diameter.

In pin connections, the pin is subjected to very heavy
bending*

41

* For a detailed treatment of this subject, the author's "Bridge and Roof

Trusses
"
may be consulted.
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If M is the bending moment to which the pin is subjected,

A" the greatest intensity of bending stress developed, and A
the area of the normal section of the pin, Eq. (4) of Art. 63

gives :

Or:

M= K = o.\Kd* (nearly) . . . . (i)
o

JM
^-. 2.16y jf (2)

Values of K, for circular sections, may be found in Art. 63.

Art. 76. Iron, Steel and Hemp Cables or Ropes. Wrought-Iron Chain

Cables.

The following tables of resistance and other properties of

cables are those published by John A. Roebling's Sons Co.

It will be observed that the figures for hemp ropes are

given in comparison with either iron or steel in each of the

tables.

In considering the resistance of iron and steel cables com-

posed of wire twisted into strands, it is of the highest impor-

tance to keep clearly in view the circumstances or conditions

produced by the manner of fabrication, as they are peculiar to

all classes of ropes, whether of hemp or wire.

In this class of material the fibres or strands no longer lie

parallel to the direction of the stress which they carry, but the

process of twisting causes each fibre or wire to take a helical

form, the pitch of which is not constant for the different por-
tions of the rope. The consequence is that if the process of

fabrication were absolutely perfect, so that each wire or fibre

could take its proper portion of load, the stress in that wire or

fibre would be its portion of load multiplied by the secant of
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its inclination to the axis of the rope. As a matter of fact,

however, each wire does not take its proper portion of load
;

the imperfections unavoidably incident to the processes of

manufacture render such a result impossible. Hence the in-

creased necessity of experimental determination of the ulti-

mate resistances of metallic and hemp ropes.

The same composite character of these productions renders

anything like an approximately elastic character, even, an

essential impossibility. It is true that any rope will yield to a

considerable extent while under stress, and then return nearly
to its original condition, but this behavior is only apparently
elastic

;
it is almost entirely due to the increase of helical pitch

of the strands caused by the external loading. During this

Standard Hoisting Ropes with 19 Wires to the Strand.
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Standard Hoisting Ropes 'with 19 Wires to the Strand.

CAST STEEL.
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Galvanized Steel Cables for Suspension Bridges.
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Transmission and Standing Ropes with 7 Wires to the Strand.

CAST STEEL.
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The following conclusions and table are taken from the

report of that committee: "... that beyond doubt, when

made of American bar iron, with cast-iron studs, the studded

link is inferior in strength to the unstudded one.

Ultimate Resistance and P*roof Tests of Chain Cables.
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of unity to the secant of half the inclination of the sides of the

former to each other.

From a great number of tests of bars and finished cables,

the committee considered that the average ultimate resistance,

and proof tests of chain cables made of the bars, whose diam-

eters are given, should be such as are shown in the accompany-
ing table.

Manila and Hemp Rope.

The results given below were obtained in the Govt. machine
at Watertown, Mass., and are found in

" Ex. Doc. No. 35, 49th

Congress, 1st Session." ''The rope was secured in the testing
machine either with a hitch made by taking a round turn over

a 4j inch pin held from turning, and then making fast the end

to a smaller pin, or by passing the ends over 3^ inch thimbles,

and securing to the standing part by means of seizing."



CHAPTER XI.

MISCELLANEOUS PROBLEMS.

Art. 77. Resistance of Flues to Collapse.

IF a circular tube or flue be subjected to external normal

pressure, such as that of steam or water, the material of which

it is made will be subjected to compression around the tube, in

a plane normal to its axis. If the following notation be

adopted :

/ = length of tube ;

d = diameter of tube ;

/ = thickness of wall of the tube ;

/ = intensity of excess of external pressure over internal,

then will any longitudinal section //, of one side of the tube, be

subjected to the pressure . But let a unit only of length

of tube be considered. This portion of the tube is approxi-

mately in the condition of a column whose length and cross

section, respectively, are nd and /.

The ultimate resistance of such a column is, Art. 25 :

P =

As this ideal column is of rectangular section :
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and

P- ?
I2d'

'

But P = pd, hence :

... (i)

is the greatest intensity of external pressure which the tube

can carry. But the formulae of Art. 25 are not strictly applicable

to this ideal column. The curvature on the one hand and the

pressure on the other tend to keep it in position long after it

would fail as a column without lateral support. Hence, p will

vary inversely as some power of d much less than the third.

Again, it is clear that a very long tube will be much more

apt to collapse at its middle portion than a short one, as the latter

will derive more support from the end attachments ;
and this

result has been established by many experiments. Hence,/
must be considered as some inverse function of the length /.

Eq. (i), therefore, can only be taken as typical in form, and

as showing in a general way, only, how the variable elements

enter the value of/. If x, y and z, therefore, are variable ex-

ponents to be determined by experiment, there may be written :

in which c is an empirical coefficient.

Sir Wm. Fairbairn (" Useful -Information for Engineers,

Second Series ") made many experiments on wrought-iron tubes

with lap and butt joints single riveted. He inferred from his
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tests that y = z = i. Two different experiments would then

give :

cf ....... (3)

P'Pd'=ct* ....... (4)

Hence,

log (pld) = log c + x log t ;

log (p'l'd
1

)
= log c + x log t'

;

in which "log" means "
logarithm." Subtracting one of these

last equations from the other, the value of x becomes :

/ pld \
g

\'l'd'P'l'd'

As /, /, dt /, /', /', d and /' are known numerical quantities

in every pair of tests, x can at once be computed by Eq. (5) ;

c then immediately results from either Eq. (3) or Eq. (4). By
the application of these equations to his experimental data,

Fairbairn found for wrought-iron tubes :

ft. 19

/ = 9,675,600
- ...... (6)

in which / is in pounds per square inch, while f, /and </are in

inclu-s. Eq. (6) is only to be applied to lengths between 18 and
120 inches.

He also found that the following formula gave results agree-

ing more nearly with those of experiment, though it is less

simple :

43
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/2>19 d
p = 9,675,600 -^

- 0.002 - ..... (7)

Fairbairn found that by encircling the tubes with stiff rings

he increased their resistance to collapse. In cases where suck

rings exist, it is only necessary to take for I the distance between

/:.w adjacent ones.

In 1875 Prof. Unwin, who was Fairbairn's assistant in his

experimental work, established formulae with other exponents
and coefficients (" Proc. Inst. of Civ. Engrs.," Vol. XLVL).
He considered x, y and z variable, and found for tubes with a

longitudinal lapjoint :

P = 7,363,000 oI I6
...... (8)

From one tube with a longitudinal buttjoint, he deduced :

/ = 9,614,000 ^17x6
...... (9)

For five tubes with longitudinal and circumferential joints,

he found :

/
2 - 35

, N/= 15,547,000^^5 (10)

By using these same experiments of Fairbairn, other writers

have deduced other formulae, which, however, are of the same

general form as those given above. It is probable that the

following, which was deduced by J. W. Nystrom, will give

more satisfactory results than any other :

p = 692,800 -/-=, (ii)
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At the same time, it has the great merit of more simple

application.

From one experiment on an elliptical tube, by Fairbairn, it

would appear that the formulae just given can be approximately

applied to such tubes by substituting for d, twice the radius of

curvature of the elliptical section at either extremity of the

smaller axis. If the greater diameter or axis of the ellipse is a,

a 2

and the less b ; then, for d, there is to be substituted -=- .

Art. 78. Approximate Treatment of Solid Metallic Rollers.

An approximate expression for the resistance of a roller

may easily be written. The approximation may be considered

a loose one, but it furnishes a basis for an accurate empirical

formula.

The following investigation contains the improvements by

Prof. J. B. Johnson and Prof. H. T. Eddy on the method

originally given by the author.

The roller will be assumed

to be composed of indefi-

nitely thin vertical slices par-

allel to its axis. It will also

be assumed that the layers

or slices act independently
of each other.

Let E be the coefficient

of elasticity of the metal over

the roll

Let E be the coefficient

of elasticity of the metal

of the roller. Fie. i.

Let A' be the radius of the

roller ami A" the thickness of the metal above it
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Let w = intensity of pressure at A.
" p = "

any other point.
" P = total weight which the roller sustains per unit of

length.
" x be measured horizontally from A as the origin.
" d = AC.
"

e = DC.

From Fig. I :

,

Jb.

wR'

. . . (I).
\^- *-" /

And

Dividing Eq. (2) by Eq. (i):

But

If the curve DAH be assumed to be a parabola, as may be

done without essential error, there will result :

r*A'Cdx = T
4

3

Hence:
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P
=\ <

i

But:

e V 2Rd d* V 2Rd nearly.

By inserting the value of d from Eq. (i) in the value of e,

just determined, then placing the result in Eq. (7) :

If R = R'-.

The preceding expressions are for one unit of length. If

the length of the roller is /, its total resistance is

In ordinary bridge practice Eq. (7) is sufficiently near for

all cases.

A simple expression for conical rollers may be obtained by

using Eqs. (4) or (5).

As shown in Fig. 2, let x be the distance, parallel to the

axis, of any section from the apex of the cone; then consider
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FIG. 2.

a portion of the conical roller whose length is dz. Let R\ be

the radius of the base. The radius of the section under con-

sideration will then be

and the weight it will sustain, if Rt
= R'

= ^A/ 2W*
E + E'

EE'
'

Hence :

P' = E+ E'

EE 1 (8).

Eqs. (6), (7), and (8) give ultimate resistances if w is the
ultimate intensity ot resistance for the roller.

It is to be observed that the main assumptions on which
the investigation is based lead to an error on the sid^ o/

safety.

If for wrought iron, w = 12,000 pounds per* square inch,
and = E' = 28,000,000 pounds, Eq. (5) gives :



Art. 79.] SPIKE DRIVING AND DRAWING.

Art. 79. Resistance to Driving and Drawing Spikes.

Some very interesting experiments on driving and drawing
rail spikes were made by Mr. A. M. Wellington, C. E., and re-

ported by him in the " R. R. Gazette," Dec. 17, 1880. He ex-

perimented with wood both in the natural state and after it

had been treated by the Thilmeny (sulphate of baryta) pre-

serving process.
" The test blocks were reduced to a uniform thickness of 4.5

inches ; this thickness being just sufficient to give a full bear-

ing surface to the parallel sides of the spikes when driven to

the usual depth, and to allow the point of the spike to project

outwards. It was considered that the beveled point could add

Spikes were Standard : 5.5 inches x

KIND OF WOOD.

NATURAL WOOD.

To driving

spike, pounds.

To pulling

spike, pounds.

PREPARED WOOD.

To driving

spike, pounds.

To pulling

spike, pounds.

Beech

White oak, green

Pinoak

White ash

White oak, well seasoned

Black ash .

Elm....

Chestnut, green

Soft maple .

Mean.

Sf-
5,970

5068

5,953

J 3,996 I

I 4,202 J

liSJ

1 1. -Hi eft

3,538

J 4, 103
1 3,493

4,606

3,9

3,843

3,798

,9o

3,536
3,843

( 790

3,88

3,69

3,260

3,188

1.996

Mom,

5,978
**

4,453*1

3

%

,38/

^[3,645
&{}*

Mean.

6,4*>

(Split.)

3.493

$,<**
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very little to the holding power of the spike, and it was desired

to press the spike out again by direct pressure after turning the

block over. . . ."

The forces exerted in pulling and driving the spikes were

produced by a lever. A few tests with a hydraulic press

showed that the friction of the plunger varied from about 6 to

1 8 per cent. The experimental results are given in the pre-

ceding Table.

Some very excellent tests of the holding power of railroad

TABLE II.

Resistance of Railroad Spikes to Pulling out and Pressing in.
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spikes and lag screws were made by Mr. A. J. Cox, of the

University of Iowa, during 1891, in the engineering laboratory

of that institution, the results of which were published in the

technical journal (" The Transit ") of the university for Septem-
ber, 1891 ; they will be found somewhat rearranged in Tables

II. and III. Three kinds of spikes were used; viz., the com-
mon spike (length 5.5 ins., 0.5625 in. square, weight 8.3 oz.),

Hill's curved spike (length 5.875 ins., weight 9.25 oz.), and

the bayonet or grooved spike (length 5.5 ins., weight 6.8 oz.).

The timber of the ties is shown in the two Tables. The

TABLE III.

Resistance of Lag Screws to Pulling out.*

KIND OF WOOD.
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was 4.375 inches in a seasoned white oak tie. Similar results

were reached with other timbers.

When spikes were pressed into the ties the timber offered

an increasing resistance to penetration, but at a rate less rapid

than that of the decrease in pulling out. A J-inch penetra-

tion in a seasoned white oak tie gave a resistance to a common

spike of 2,320 pounds, which increased to 3,340 pounds for I

inch penetration, to 4,550 pounds for 2 inches, to 5, 580 pounds
for 3.5 inches, and to 6,555 pounds for 4.5 inches.

Art. 80. Shearing Resistance of Timber behind Bolt or Mortise

Holes.

Col. T. T. S. Laidley, U.S.A., made some tests during 1881

at the United States Arsenal, Watertown, Mass., on the resist-

ance offered by timber to the shearing out of bolts or keys,

when the force is exerted parallel to the fibres.

Fig,2

The test specimens are shown in Figs. I and 2. Wrought-
iron bolts and square wrought-iron keys were used. All the

timber specimens were six inches wide and two inches thick.

The diameter of the bolts used (Fig. i) was one inch for all the

specimens. The keys were i" x 1.5" and 1.125" x 1.5" as

shown in Fig. 2. In all the latter specimens, failure took place
in front of the smaller key where the pressure was greatest.

In many cases the specimen sheared and split simultane-

ously in front of the hole. By putting bolts through the

pieces in a direction normal to the force exerted, so as to pre-
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vent splitting, the resistance was found (in most cases) to be

considerably, though irregularly increased.
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from those accompanying the initial loading, give to the prob-
lem a character of unusual intricacy, and, indeed, preclude a

solution possessing a degree of approximation commonly ob-

tained in questions relating to the elasticity and resistance of

materials.

An elegant analysis of the problem, considered as one of

pure elasticity, may be found in
" Die Theorie der Elasticitat

Fester Korper," by Clebsch. It is, however, of little value in

connection with questions of ultimate resistance.

The following roughly approximate, but simple, analysis may
be used to suggest the form of an empirical formula which can

be completed by the aid of experiments.
Let the length, breadth and thickness of a* rectangular

plate simply supported around its edges, be represented by a,

b and /, respectively, and let it first be loaded by a uniformly
distributed pressure whose intensity (per unit of ab) is w.

If the plate is supposed to consist of two sets of small

strips or beams parallel to a and 3, those crossing each other

at the centre must have the same deflection at middle. If,

further, the uniform load w be supposed to be so divided into

two parts, wl
and w', that they would cause two rectangular

beams whose spans are a and b to have the same centre deflec-

tion, the following equation (see Eq. (26) of Art. 24) must

obtain :

Then, since w' -f- wv
= w> there must result

a4ww = - -
;

and w
l

.-=

The bending moments at the centres of such beams would

be (Eq. (27), Art. 24, and Eq. (14), Art. 18) :



Art. 8 1.] FORMULA. 66;

w^ _ 2KJ w'b* _ 2ICI

~8~ ~7~ ;
and

~8~
~ ~T '

Since the beams are rectangular in section, / = .

Hence :

According to these hypothetical conditions the greatest in-

tensity of stress at the centre of the plate will have the value :

4/V2

Hence :

For square plates, a b.

Hence

;
and / = 0.615* ./ . . . (3)

If the edges are fixed, the greatest bending will occur along
those lines

;
and for K

l
and AT' then are to be put

2/^Kl
and

Hence :

is ctffiw ..,

Since the greatest bending occurs along the edges, these
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are the expressions for the greatest intensities of stress. If ab*

is greater than a*b, then is K^ greater than K'
;
and vice versa.

In the first case the expression for / is :

/ = o. 7o7ab* A / , ^ .... (5)

But if 7T > AT
X , or, ^ > ^ :

/ = 0.707^
\J(p + ^jc

' ' C6
'

If the plate is square :

~
-.

', and, /--

If a plate is loaded with a single weight P, it may be sup

posed to be divided in the same manner as w
;
so that

P
i 4. p' = R

The equation of middle deflections for ends simply sup-

ported then becomes :

P'b*

4%EI
Z

Hence :

P' ~ and P -*' "
a* + ^

Proceeding in precisely the same manner as before ;
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abP _K= i.o6
/a(^ + ^ V^-h^ .... (8)

and

/ abP
,
_\*

/ = I '3
VAT (*' + *)

V*4 + *V (9)

If the plate is square :

^ =
0.75^; and, /=a87y^ . . (10)

If the edges arc fixed in position^ the hypothetical beams
are fixed at each end and loaded at the centre, and the greatest

bending moments (at centre and ends alike) are thereby re-

duced to one-half their preceding values, ork what is the same

thing, 2/* is to take the place of / in Eqs. (8), (9) and (10).

Hence :

abP _
t>* ..... (n)

If the plate is square :

= 0.375 ~: and / = 0.613 . . (13)

These equations arc of little value as they stand, except as

indicating a form of formula to which empirical coefficients are

to be fitted. The hypothetical division of the plate into small

beams is very far indeed from being correct. In the empirical
determinations which follow, therefore, AT will not be the
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greatest intensity of stress in the plate, but a coefficient or

quantity partly analytical and partly experimental.
Circular plates have not been considered, because square

ones furnish the requisite type of formula.

Experiments have thus far been made on square and circu-

lar plates only ; hence, oblong rectangular plates will not again
be noticed.

Kirkaldy's experiments on Fagersta steel plates and Fair-

bairn's on wrought-iron ones would seem to indicate that the

thickness t varies about as (z>)-
8 or (P)-

8
;
but the variation in

diameter or side of square was not sufficient to establish any
relation between / and <?, while other elements remain the

same. Regarding, therefore, K as an empirical quantity which

may have different values for square and circular plates, Eqs.

(3), (7), (10) and (13), may be written as follows :

K =
~-^ w1 -6

;
and t o.6i$a = . . (14)

<

, and t=o.87^- . . . (16)
41

=P,*. and / = 0.613 . . (17)

Kirkaldy made twenty experiments with mild Fagersta
steel circular plates, 12 inches in diameter. He forced these

through an aperture 10 inches in diameter by the pressure of a

very blunt point. The edge of the aperture on which the

plate rested was rounded
;
hence the initial diameter of aper-
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ture was somewhat more than 10 inches. Eqs. (16) are the

ones to be used in connection with these experiments.
From the first member of that equation, K was computed

for a number of different experiments, by substituting the

numerical values of /*, t and a. In this manner the following
values were found to give good results :

For unannealed mild Fagcrsta steel circular plates :

K = 6,760,000,000.

Hence :

/ = 0,000,010,6 VaP"B ..... (18)

For annealed mild Pagersfa steel circular plates ;

K = 5,710,000,000.

Hence :

/ = 0.000,011,52 y

Eq. (16) gives :

Table I. contains the results of computation by this formula

and those obtained in the tests. On account of the rounded

edge of the supporting ring, K was so taken that P, as com-

puted, is a little larger than its experimental value. None
of these plates were cracked, but they were bulged at the cen-

tre from 3.00 to 3.45 inches.

In "
Engineering" for Sept. 28, 1877, Robert Wilson de-

scribes four experiments on unstayed flat boiler heads sub-

jected to hydraulic pressure. These flat circular plates were



67 2 BULGING OF PLATES. [Art. 8 1,

TABLE I.

Circular Plates simply Supported.

UNANNEALED. ANNKALEI).
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The results of the experiments, and of this formula, are :

DIAMETER, A /-W, IN POUNDS PER SQ. IN. N

INCHES. INCH. Experimental. Byformula-

34-5 ft 280 349

34-5 S 200 211

26.25 if 371 296

28.25 I 300 270

The agreement, in this case, is not satisfactory. It is prob-

ably due to the lack of a proper exponent of a. These plates

were fractured along the lines of rivet holes in the edges.
Two means of four experiments by Fairbairn remain to be

considered. His plates were square ones of wrought iron,

firmly fixed to a square frame 12 inches by 12 inches in the

aperture. The force was applied by a blunt point at the

centre, consequently Eqs. (17) are to be used.

By precisely the same method already used, the following
results were established :

For wrought-iron \2-inch square plates, with edges firmly

fixed :

K = 390,000,000.

t 0.000,031 Va P B
(21)

The expression for the indenting force is :

P
/ /STY

-('v^j- .

The experiments and computations are :

12. .

,
....... 16,780............ 16,350

12. . 37.720............ 38,890

The plates gave way at the centre, under the blunt point
43
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Some experiments by Kirkaldy, in 1875, on wrought-iron
circular plates simply supported around the edge, show that for

12-inch plates forced through a loinch aperture with rounded

edge, there may be safely taken :

/ O.OOOOI3 Va P-s

(22)

In all the preceding formulae, a and / are to be taken in

inches
;
w in pounds per square inch, and P in pounds.

The investigations can only be considered provisional. Al-

though they give, as a whole, tolerably satisfactory results, the

range of the experiments is far too small for the establishment

of thoroughly reliable formulae. Experiments on which a

proper exponent of a can be based, are yet wholly lacking ;
and

as the only resort, that found in the rough analysis has been

retained.

Art. 82. Special Cases of Flexure.

There are a few cases of flexure which, while not frequently
found in engineering experience, are of some practical impor-

tance, and are occasionally required. The two or three which

follow involve the integration of some linear differential equa-
tions that are treated in all the advanced works on the integral

calculus
; consequently the operations of integration will not

be given here, but the general integrals will be assumed.

Flexure by Oblique Forces

In Fig. i let OX represent a beam acted upon by the

oblique forces P, which

make angles a with the

axis of X. The origin O
is supposed to be taken

anywhere on the axis of

the beam. If right-hand
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moments are positive and left-hand negative, the component
P sin a will have the negative moment P sin ax about O.

The lever arm of P cos a, if the deflection w is positive, is

-h w, and its moment P cos a. w is positive. Hence the result-

ant moment of any force, Pt
in reference to the origin O is :

El -
r-r

tur
<* x P cos a (0

If a is greater than 90, cos a is negative, so that if

P cos a r , P sin a . xA =
f- and V =- -Er-'

the two cases may be expressed by the equation :

-~
(2)

If a = -f V~ A
y
and b = \/~ A

y
the general integral

of Eq. (2) is :

--
a o a o

\ (3)

in which C and C' arc arbitrary constants to be determined by
the special conditions of any given problem, and e = 2.71828.

When a is less than 90 and

Eq. (3) becom

w = -f x tan a (4)



676 SPECIAL CASES OF FLEX I*RE. [Art. 82.

C and C yet remain to be determined by the particular cir-

cumstances of a given case.

The conditions on which the determination of these con-

stants rest are expressed by giving known values to w and

for values of ;r, also known.

If a is greater than 90 :

a i , , /r cos a j

. V- I, and b=A =-r . V I
,

and Eq. (3)
* becomes :

P cos a %
,

. P cos aw =

x tan a . x ........ (5)

As before, C and C' are to be determined by the cir-

cumstances of each case to which the equation is applied ;
and

the value of cos a, it is to be remembered, is to be substituted

with the positive sign.

Let a column with one fixed and one free end, and with the

force P acting parallel to its original axis, be considered. Since

<x= 180:

With the origin of co-ordinates at the free end w must equal
zero for x = o; hence C = o.

* The symbolical method by which Eq. (3) was established shows that if a =
- \ B + ^/A i B* and b - B y'A i ?, the complete integral of

the equation -vV+ &
~J~

+ Aw ~ ^ l* given b7 Eq. (3).
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The value of w then becomes :

W=C'sin( \/~ x\ (7)

dw x- . / .. i . /
-

x \ . . > (a)
dx

But if / is the length of the column, - o for x = L

Hence :

cos

or if n is any whole number from o to infinity

If the value of . /__ be taken from Eq. (9) and inserted

in Eq. (8), there will result :

dw -, I~P f x(2n + i)\

\ITI
COS

\- ~>

Eq. (10) shows that for values of x equal to I, 3, 5, 7 . . .

times -
,

- j- = o. The most dangerous supposition,
2/1 -f~ I <**

., that which requires the greatest value of P
t is n = o.
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This value of n in Eq. (9) gives :

The ultimate resistance of the column is thus seen to be

independent of the deflection, as was found for a different case

in Art. 25. The end of the column, in this case, which carries

the load is free to deflect laterally, but in Art. 25 both ends

were supposed to be fixed in a lateral direction in reference to

each other. In the latter case the resistance is seen to be nine

times as great as in the present.
Since :

cos - '
l = o sin

Hence, if ;, is the deflection of the free end from a vertical

tangent to the fixed, Eq. (7) becomes, for x = I :

w, = C.

In general, therefore :

. . . . (12)

For the same value of x, therefore, w varies directly as wv

and the relative deflections may be computed by the equa-
tion :

w = w, sn '
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or in the ordinary case :

W . TtX

Eq. (i) was written for one force only. If any number of

forces act :

El = 2( Psin a . x + P cos a . w) ;

ax*

and in place of w there is to be put 2w.

General Flexure by Continuous Normal Load.

The most general case of flexure by a continuous normal

load, is that in which the intensity (load per unit of length of

beam) is a variable quantity. Let x be an abscissa measured

along the original axis of the beam, and let w represent the

deflection. Then the intensity of the load may be represented

by/(;r, w). It was shown in Art. 20 that :

The integration of the equation :

f/4 tf f(jc, w)
~2*<~ El '

will depend upon the form of the function f(x, w).

Let it be supposed that f(x, w) = ex, c being a constant.

Then if A, A A t and A
3
are constants of integration, there

will result :
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A,x*

120 hi O 2

Again, if f(x, tv)
= cw, c, as before, being a constant :

d*w cw

For simplicity of notation, let :

(17)

then the general integral of Eq. (17) becomes :

'w = Ac** -f A^-"* + A 2 cos ax + A
3
sin ax . . (18)

In Eq. (18) <?= 2.71828 is the base of the Naperian log-
arithms

; while in both Eqs. (16) and (18) A, A iy A 2 and A 3
are

arbitrary constants to be determined by the circumstances of

each individual case.



CHAPTER XII.

WORKING STRESSES AND SAFETY FACTORS.

Art. 83 Definitions.

IN all metallic and timber constructions the greatest (sup-

posed) possible loads are determined from the attendant cir-

cumstances of the different cases, and then the stresses induced

by these greatest loads are computed. These stresses are

called the "
working stresses"

The ultimate resistance of any piece in a structure divided

by the working stress gives a number called the "
safetyfactor

"

Occasionally the reciprocal of this number is called the safety

factor, though but seldom.

The intensity of the ultimate resistance of any piece in a

structure divided by the intensity of the working stress, will also

give the safety factor. This is the more usual and convenient

form, since it does not involve the cross section of the piece.
The values of safety factors depend upon many circum-

stances, such as kind and character of material, kind of stress,

circumstances in which material is used and the amount of

variation of stress in the piece, or the fatigue of the material.

The safety factor is intended, also, to cover both computed
stresses and others which arc recognized, but arc not within the

h of exact analysis. The latest practice among American

engineers will be illustrated in the following Articles by
tracts from specifications drawn for some first-class construc-

tions.
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Art. 84. Specifications for the Cincinnati and Covington Bridge, 1887.

The following clauses are from specifications prepared by
the Phoenix Bridge Co., and accompanied their design for the

river spans of the Cincinnati and Covington bridge. Both spe-

cifications and design were adopted, and the unprecedentedly

long and heavy spans were constructed in accordance therewith.

"All parts of the structure shall be so proportioned that the

combined effects of temperature and all the specified loads, ex-

cept the wind pressure, shall not cause the stress per square
inch to exceed the following limits :

For Iron. In tension, ten thousand (10,000) pounds. In compression, for

lengths less than fifty (50) times the least radius gyration, eight thousand (8,000)

pounds. In shearing across fibres, seven thousand five hundred (7,500) pounds.
In bending on the extreme fibres of pins fifteen thousand (15,000) pounds. On
bearing surfaces, twelve thousand (12,000) pounds. The bearing surfaces of pins
and rivets shall be reckoned from the diameter and not from the semi-circle. The
stress per square inch in compression for members whose length exceeds fifty (50)

times their least radii of gyration, shall be reduced according to the following
formulae :

For square bearings, R =
i //\

a

i + ( I

)000 \rf

For pin bearings, R

36000

8000

i +

For the flanges of rolled beams, 1?

i8ooo

lOOOO

"

For top flanges of built beams, R =
I +

5000

where R is intensity of working stress, / length in inches of member between supports,
r least radius of gyration of cross section, b breadth of top flange of girder in inches.

For Steel. In tension on chord bars and end main diagonals, sixteen thousand

(16,000) pounds. On main diagonals nearest the middle of the spans, thirteen thou-

sand (13,000) pounds tension. For intermediate main diagonals the tensile intensi-

ties are to be directly interpolated. In shearing on rivets and pins, ten thousand

(10,000) pounds. In bending on the extreme fibres of pins, twenty thousand (20,000)
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pounds. On bearing surfaces, fifteen thousand (15 ,000) pounds for rivets and eighteen

thousand (18,000) pounds for pins. In compression on top chords and inclined end

posts, provided that the ratio of length to least radius of gyration does not exceed

fifty (50), fourteen thousand (14,000) pounds. For all other steel struts the inten-

sities are to be found by the following formula :

R = 142

I+ l^
where R is the intensity, / the length of column in inches, and r the least radius

of gyration in inches. Steel struts subject to alternating stresses of compression
and tension shall be proportioned by the following formula :

(,
min. stress\

I i
max. stress/

I +
2(XXK)

where R, I and r have the same signification as in the last clause.

An addition of fifty (50) per cent, to all specified intensities of working stresses

shall be allowed for all wind stresses and for all combinations of wind stresses and

other stresses.

The thickness of metal in compression shall not be less than

one-sixteenth (1-16) of the distance between supports in line

of stress, or less than one-thirtieth (1-30) of the distance be-

tween supports at right angles to the line of stress, or less than

one-eighth (1-8) of the distance from the edge of plate of flange

to line of support, or less than one-quarter (1-4) inch when
both faces are accessible for painting, or less than five-sixteenths

(5-16) of an inch when only one face is accessible for painting.
The ratio of length of strut between supporting points to

its least diameter shall not exceed forty-five (45).

The limits of stress specified for shearing and for the press-

ure on bearing surface of holes shall determine the number
and the size of the rivets.

Bed plates and bearing plates shall be truly planed on all

sliding and rolling surfaces, and shall be so proportioned that

the maximum pressure per square foot on masonry will not ex-

ceed thirty-six thousand (36,000) pounds. They will be se-

curely anchored against upward and sideways motion.
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The rollers shall be of steel
;
the pressure per lineal inch on

same shall not exceed V54O,ooo x d, where d is the diameter

of the roller in inches. ... All wrought iron must be

tough, ductile, fibrous, and of a uniform quality for each class,

straight, smooth, free from cinder pockets or injurious flaws,

buckles, blisters and cracks.

As the thickness of the bar approaches the maximum that

the rolls will produce, the same perfection of finish will not be

required as in the thinner ones. No specific process or pro.
vision of manufacture will be demanded, provided the material

fulfills the requirements of this specification.

3. The tensile strength, limit of elasticity and ductility shall

be determined from a standard test piece, not less than one-

quarter inch in thickness, cut from the full sized bar, and planed
and turned parallel ;

if the cross section is reduced, the tangent
between shoulders shall be at least twelve times its shortest

dimensions, and the area of the minimum cross section in either

case shall not be less than one quarter of an inch and not more
than one square inch. Whenever practicable, two opposite
sides of a piece are to be left as they come from the rolls, but

the finish of opposite sides must be the same in this respect.

A full sized bar, when not exceeding the above limitations, may
be used as its own test piece. In determining the ductility, the

elongation shall be measured, after breaking, on an original

length the nearest multiple of a quarter inch to ten times the

shortest dimension of the test piece, in which length must occur

the curve of reduction from stretch on both sides of the point
of fracture, but in no case on a shorter length than five inches.

4. All iron to be used in the tensile members of open trusses,

laterals, pins and bolts, except plate iron over eight inches

wide and shaped iron, must show by the standard test pieces a

tensile strength in pounds per square inch of :

7,ooo x area of original bar .

52,000
-~-

7 7 T-S nr" (all m niches),circumference of original bar v
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with an elastic limit not less than one-half the strength given

by this formula, and the elongation of 20 per cent.

Plate iron 24 inches wide and under, and more than 8 inches

wide, must show by the standard test pieces a tensile strength
of 48,000 pounds per square inch, with an elastic limit not less

than 26,000 pounds per square inch, and an elongation of not

less than 12 per cent. All plates over 24 inches in width must

have a tensile strength not less than 46,000 pounds per square

inch, with an elastic limit not less than 26,000 pounds per

square inch.

. Plates from 24 to 36 inches in width must have an elonga-
tion of not less than 10 per cent. ; those from 36 to 48 inches

in width, 8 per cent. ; over 48 inches in width, 5 per cent.

All shaped iron and other iron not hereinbefore specified

must show by the standard test pieces a tensile strength in

pounds per square inch of:

7,000 area of original bar

circumference of original bar*

with an elastic limit of not less than one-half the strength given

by this formula, and an elongation of 15 per cent, for bars five-

hths of an inch and less in thickness, and of 12 per cent, for

bars of greater thickness.

All plates, angles, etc., which are to be bent hot, in the

manufacture must, in addition to the above requirements, be

capable of bending sharply to a right angle at a working heat

without a sign of fracture.

All rivet iron must be tough and soft, and pieces of the full

diameter of the rivet must be capable of bending cold until the

sides are in close contact, without sign of fracture on the con-

vex side of the curve.

All iron specified in clause 4 must bend cold 180 de^i

without sign of fracture, to a curve the inner radius of which

equals the thickness of the piece tested.

Specimens of full thickness cut from plate iron or from the
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flanges or webs of shaped iron, must stand bending cold through

90 degrees, to a curve, the inner radius of which is one and a

half times its thickness, without sign of fracture.

A variation in cross section or weight of rolled material of

more than 2^ per cent, from that specified may be cause for

rejection.

Steel.

No specific process or provision of manufacture will be de-

manded, provided the material fulfills the requirements of this

specification. The ultimate tensile resistance of the steel to be

used in tension shall be 62,500 pounds per square inch, and the

ultimate tensile resistance of the steel to be used in compres-
sion shall be 68,000 pounds per square inch, the tests to be

made in the following manner:

16. From one among the ingots of each cast a round sample
bar, not less than three-quarters of an inch in diameter, and

having a length not less than twelve diameters between jaws
of testing machine, shall be furnished and tested by the manu-

facturer without charge. These bars are to be truly round,

and shall be finished at a uniform heat and arranged to cool

uniformly, and from these test pieces alone the quality and

material shall be determined as follows:

17. All the above-described test bars must have a tensile

strength within 4,000 pounds per square inch of that specified,

an elastic limit not less than one-half of the tensile strength of

the test bar, a percentage of elongation not less than 1,200,000

-f- the tensile strength in pounds per square inch, and a per-

centage of reduction of area not less than 2,400,000 -^- the

tensile strength in pounds per square inch. In determining
the ductility, the elongation shall be measured after breaking
on an original length of ten times the shortest dimension of the

test piece, in which length must occur the curve of reduction

from stretch on both sides of the point of fracture.
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Finished bars must be free from injurious flaws or cracks,

and must have a workman-like finish, and round or square test

pieces cut therefrom when pulled asunder shall have a reduc-

tion of area at the point of fracture as above specified.

Rivet steel shall have a specified tensile strength of 60,000

pounds per square inch, and test bars must have a tensile

strength within 4,000 pounds per square inch of that specified,

and an elastic limit, elongation and reduction of area at the

point of fracture, as stated in clause 17, and be capable of

bending double, flat, without sign of fracture on its convex

surface of the bend.

A variation in cross section or weight of rolled material of

more than 2j per cent, from that specified may be cause for

rejection.

Cast Iron.

Except where chilled iron is specified, all castings shall be

tough gray iron, free from injurious cold shuts or blow holes,

true to pattern and of a workman-like finish. Sample pieces one

inch square, cast from the same heat of metal in sand moulds,

shall be capable of sustaining on a clear span of 4 feet 6 inches

a central load of 500 pounds when tested in the rough bar.

To determine the strength of eyes,, full size eye bars or

rods with eyes may be tested to destruction, provided notice is

given in advance of the number and size required for the pur-

pose, so that the material can be rolled at the same time as

that re-quired for the structure, and any lot of iron bars from

which full size samples are tested shall be accepted :

. If not more than one-third of the bars tested break in

the eye ; or,

2d. If more than one-third do break in the eye and the

average of the tests of those which so break shows a tensile
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strength in pounds per square inch of original bar, given by
the formula

7,ooo x area of original bar
52,000

- r-
p- r. -

500 x width of bar
circumference ot original bar

(all in inches), and not more than one-half of those which break

in the eye fail at more than 5 per cent, below the strength

given by the formula. Any lot of steel bars from which full

sized samples are tested shall be accepted if the average of the

tests shows a strength per square inch of original bar, in those

which do break in the eye, within 4,000 pounds of that speci-

fied in Clause 17 ; but if one-half the full sized samples break

in the eye, it shall be cause for rejecting the lot from which

the sample bars were taken.

In all cases where a steel piece in which the full strength is

required has been partially heated, the whole piece must be

subsequently annealed.

All bends in steel must be made cold, or if the degree of

curvature is so great as to require heating, the whole piece
must subsequently be annealed.

Art. 85. Specifications for the Blair Crossing Bridge.

The following specifications for this bridge are taken from

the report of Geo. S. Morison, Chief Engineer, 1886.

The steel shall be manufactured by the open hearth proc-

ess
;
Bessemer steel will not be accepted. A small ingot shall

be cast from every charge, and from this ingot a sample bar 3-4

of an inch in diameter shall be rolled
;

if this bar fails to meet

the requirements of the laboratory tests, the whole charge will

be rejected.

Steel used in the compression members, bolsters, bearing

plates, pins, and rollers shall contain not less than 34-100 nor
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more than 42-100 of one per cent, of carbon, and not more than

i- 10 of one per cent, of phosphorus. A sample test bar 3-4 of

an inch in diameter shall bend 180 degrees around its own di-

ameter without sign of crack or flaw. The same bar tested in a

lever machine shall show an elastic limit of not less than 50,000

pounds, and an ultimate strength of not less than 80,000

pounds per square inch ;
it shall elongate at least 15 per cent,

in a length of 8 inches before breaking, and shall have a reduced

area of 35 per cent, at the point of fracture. It shall be inca-

pable of tempering.
Steel for rivets and eye bars shall contain not more than 25-

100 of one per cent, of carbon, and less than i-io of one per
cent, of phosphorus. A sample bar 3-4 of an inch in diameter

shall bend 130 degrees and be set back upon itself without

showing crack or flaw
;
when tested in a lever machine it shall

have an elastic limit of not less than 40,000 pounds, and an ul-

timate strength of not less than 70,000 pounds per square inch ;

it shall elongate at least 18 per cent, in a length of 8 inches, and

shall show a reduction of at least 45 per cent, at the point of

fracture. In full sized bars this steel shall have an elastic limit

of at least 35,000 pounds, and an ultimate strength of at least

65,000 pounds per square inch
;

it shall elongate 10 per cent,

before breaking, and for strains less than 30,000 pounds pel

square inch shall show a modulus of elasticity between 28,000,-

ooo and 30,000,000 pounds.

The steel plates for the chords and end posts shall be rolled

in universal mill.

Steel for pins shall not be hammered, but rolled between

gothic rolls.

The iron used in tension members shall be double refined

iron, rolled twice from the puddled bar. Small samples having
a minimum length of 8 inches shall be furnished by the con-

tractor for testing as directed by the engineer ;
these samples

shall show an clastic limit of at least 26,000 pounds, and an ul-
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timate strength of at least 50,000 pounds per square inch
; shall

elongate at least 15 per cent., and shall show a reduced area of

at least 25 per cent, at the point of fracture. The fracture

shall be of uniform fibrous character free from crystalline ap-

pearance. When tests are made of full sized bars, a reduction

of from 5 to 10 per cent., according to size of bar, from these

requirements will be allowed, provided the iron is of uniform

and fibrous character.

Small samples having a minimum length of 8 inches shall

be furnished by the contractor from the iron used in shapes,

plates, and other miscellaneous forms, as directed by the engi-

neer
;
these samples shall show an elastic limit of at least 24,-

ooo pounds, and an ultimate strength of at least 47,000 pounds

per square inch
;

shall elongate at least 10 per cent, before

breaking, and show a reduction of area of at least 15 per cent,

at the point of fracture. In plates more than 30 inches wide,

an elongation of 8 per cent, and a reduction of 12 per cent, at

the point of fracture will be considered satisfactory.

Cast iron shall be of the best quality of tough, gray iron.

The heads of iron eye bars, and the enlarged ends of screws

in laterals and counters shall be formed by upsetting, or by die-

forging with a plate welded on the side
;
welds in the body of

the bar will not be allowed. Six extra iron eye bars, of such

size as the engineer shall direct, shall be furnished by the con-

tractor to be tested
;
these test bars shall meet the requirements

above specified for strength of material, and at least four of

them shall break in the body of the bar. Should these test

bars fail to meet the requirements of the specifications, the

whole lot of bars may be rejected.

The heads of steel eye bars shall be formed by upsetting

and forging into shape, or by such other process as may be ac-

cepted by the engineer ;
no welds will be allowed. After the

working is completed, the bars shall be annealed by heating

them to a uniform dark red heat throughout their entire length,
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and allow them to cool slowly. Four sample bars of sizes re-

quired in the work shall first be manufactured by the contrac-

tor, and tested under the direction of the engineer ;
these bars

shall meet the requirements above specified, and at least three

of them shall break in the body of the bar. If the tests of

these four bars are satisfactory, the contractor shall proceed
with the manufacture of the full order of steel bars for the

work, and from the bars so manufactured the inspector shall

from time to time select six bars to be tested to breaking,

which bars shall also conform to the requirements of the speci-

fications. Should these test bars fail to meet the requirements
of the specifications, the whole lot of bars may be rejected.

All steel bars shall be tested to a strain of 20,000 pounds per

square inch before shipment.

Art. 86. General Specifications for Iron Railroad Bridges and Viaducts,

by Theodore Cooper, C. E., 1887.

The excerpts given in this article are from the general speci-

fications of Mr. Theodore Cooper, C. E., consulting engineer,

which have secured a wide adoption in American railway

practice.

Proportion of Parts.

30. All parts of the structure shall be so proportioned that

the maximum loads shall in no case cause a greater tension

than the following (except as per 36) :

Pounds per
Square Inch.

On lateral bracing 15,000

On solid rolled beams, used as cross floor beams and stringers. . . . 9.000

On bottom chords and main diagonals (forged eye bars) 10,000

On bottom chords and main diagonals (plates or shapes), net section. 8,000

On counter rods and long verticals (forged eye bars) 8,000

On counters and long verticals (plates or shapes), net section 6,500

On bottom flange of riveted cross girders, net section 8,000

On bottom flange of riveted longitudinal plate girders, over 20 ft.

long, net section. . 8.000
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Pounds per
Square Inch.

On bottom flange of riveted longitudinal plate girders, under 20 ft.

long, net section 7,000

On floor beam hangers, and other similar members liable to sudden

loading (bar iron with forged ends) 6,000

On floor beam hangers and other similar members liable to sudden

loading (plates or shapes), net section 5,ooo

Angles subject to direct tension must be connected by both legs, or the section

of one leg only will be considered as effective.

31. Compression members shall be so proportioned that the maximum load shall

in no case cause a greater strain than that determined by the following formula (ex-

cept as per 36) :

for square end compression members.

for compression members with one pin and one square end.

40,000
*

8,000
7*

i 4-

30,000 fi*

P = for compression members with pin bearings.

I 4-

2O.OOO tf*

P = the allowed compression per square inch of cross section.

L = the length of compression member, in inches.

R = the least radius of gyration of the section in inches.

No compression member, however, shall have a length exceeding 45 times its

least width.

32. The lateral struts shall be proportioned by the above formula to resist the

resultant due to an assumed initial strain of 10 ooo pounds per square inch upon the

rods attaching to them, produced by adjusting the bridge or towers.

33. In beams and girders compression shall be limited, as follows :

In rolled beams, used as cross floor beams and stringers 8,000

In riveted plate girders used as cross floor beams, gross section. . . . 7,000

In riveted longitudinal plate girders, over 20 ft. long, gross section 7,000

In riveted longitudinal plate girders, under 20 ft. long, gross section 6,000

In riveted lattice girders, gross section 7,000
\

34. Riveted longitudinal girders shall have, preferably, a

depth not less than i-io of the span.

Rolled beams used as longitudinal girders shall have, prefer-

ably, a depth not less than 1-12 of the span.
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35. Members subject to alternate strains of tension and

compression shall be proportioned to resist each kind of strain.

Both of the strains shall, however, be considered as increased

by an amount equal to 8-10 of the least of the two strains, for

determining the sectional area by the above allowed strains

(30, 30-

36. For spans exceeding 150 feet, the above allowed tension

(30) on bottom chords and main diagonals, and the compres-
sion on top chord sections (31) may be increased for each

member by the following amount :

150 x its strain from dead load
: ? TT- i j 5 Per cent.

Its strain from dead and live loads

The strains in the chords from the assumed wind forces

need not be considered, except as follows :

1st. When the wind strains on any member exceed one-

quarter of the maximum strains due to the dead and live loads

upon the same member. The section shall then be increased

until the total strain per square inch will not exceed by more
than one-quarter the maximum fixed for dead and live loads

only.

2d. When the wind strain alone, or in combination with a

possible temperature strain, can neutralize or reverse the ten-

sion in the end panels of the lower chord.

38. The rivets and bolts connecting the parts of any mem-
ber must be so spaced that the shearing strain per square inch

shall not exceed 7,500 pounds, or three-fourths of the allowed

tension per square inch upon that member; nor the pressure

upon the bearing surface per square inch of the projected scmi-

intrados (diameter x thickness of piece) of the rivet or bolt

hole exceed 12,000 pounds, or one and a half times the allowed

tension per square inch upon that member. In the case of

field riveting the above limits of shearing strain and pressure

shall be reduced one-third part. Rivets must not be used in

direct tension.



694 SPECIFICATIONS. [Art. 86.

39. Pins shall be so proportioned that the shearing strain

shall not exceed 7,500 pounds per square inch
;
nor the crush-

ing strain upon the projected area of the semi-intrados of any
member (other than forged eye bars, see article 69) connected

to the pin be greater per square inch than 12,000 pounds, or

one and a half times the allowed tension per square inch
;
nor

the bending strain exceed 15,000 pounds per square inch when
the centres of bearings of the strained members are taken as

the points of application of the strains.

40. In case any member is subjected to a bending strain

from its own weight or from local loadings, such as distributed

floors on deck bridges, in addition to the strain produced by its

position as a member of the structure, it must be proportioned
to resist the combined strains.

41. Plate girders shall be proportioned upon the supposition
that the bending or chord strains are resisted entirely by the

upper and lower flanges, and that the shearing or web strains

are resisted entirely by the web plate ;
no part of the web plate

shall be estimated as flange area.

42. The iron in the web plates shall not be subjected to a

shearing strain greater than 4,000 pounds per square inch
;
but

no web plate shall be less than three-eighths of an inch in

thickness.

43. The webs of plate girders must be stiffened at intervals,

about the depth of the girders, whenever the shearing strain per

square inch exceeds the strain allowed by the following for-

mula :

12,000
Allowed shearing strain = - ~r*

I 4-

3,000

where H ratio of depth of web to its thickness.

44. No wrought iron shall be used less than 1-4 inch thick,

except for lining or filling vacant spaces.

45. The compression flanges of beams and girders shall be
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stayed against transverse crippling when their length is more

than thirty times their width.

46. The unsupported width of any plate subjected to com-

presssion shall never exceed thirty times its thickness.

47. The flange plates of all girders must be limited in width

so as not to extend beyond the outer lines of rivets connecting
them with the angles, more than five inches or more than eight

times the thickness of the first plate. Where two or more

plates are used on the flanges, they shall either be of equal
thickness or shall decrease in thickness outward from the

angles.

48. In members subject to tensile strains full allowance

shall be made for reduction of section by rivet holes, screw

threads, etc.

Quality of Material.

101. All wrought iron must be tough, fibrous and uniform

in character. It shall have a limit of elasticity of not less than

26,000 pounds per square inch.

Finished bars must be thoroughly welded during the roll-

ing, and be free from injurious seams, blisters, buckles, cinder

spots, or imperfect edges.

102. For all tension members double rolled bars must be

used. They shall stand the following tests:

103. Full sized pieces of flat, round or square iron, not over

4 1-2 inches in sectional area, shall have an ultimate strength of

50,000 pounds per square inch, and stretch 121-2 per cent, in

their whole length.

Bars of a larger sectional area than 4 1-2 square inches, when
tested in the usual way, will be allowed a reduction of 1,000

pounds per square inch for each additional square inch of sec-

tion, down to a minimum of 46,000 pounds per square inch.

104. When tested in specimens of uniform sectional area of

at least 1-2 square inch for a distance of 10 inches taken from

tension members which have been rolled to a section not more
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than 4 1-2 square inches, the iron shall show an ultimate

strength of 52,000 pounds per square inch, and stretch 18 per
cent, in a distance of eight inches.

Specimens taken from bars of a larger cross section than 4
1-2 inches will be allowed a reduction of 500 pounds for each

additional square inch of section, down to a minimum of 50,000

pounds.

105. The same sized specimens taken from angle and other

shaped iron shall have an ultimate strength of 48,000 pounds

per square inch, and elongate 15 per cent, in 8 inches.

106. The same sized specimens taken from plates less than

24 inches in width shall have an ultimate strength of 48,000

pounds, and elongate 15 per cent, in 8 inches.

107. The same sized specimens taken from plates exceeding

24 inches in width shall have an ultimate strength of 46,000

pounds, and elongate 10 per cent.

108. All iron for tension members must bend cold, for about

90 degrees, to a curve whose diameter is not over twice the

thickness of the piece, without cracking. At least one sample
in three must bend 180 degrees to this curve without cracking.

When nicked on one side, and bent by a blow from a sledge,

the fracture must be nearly all fibrous, showing but few crys-

talline specks.

109. Specimens from angle, plate (106) and shaped iron

must stand bending cold through 90 degrees, and to a curve

whose diameter is not over three times its thickness, without

cracking.

When nicked and bent, its fracture must be mostly fibrous.

no. Rivets and pins shall be made from the best double-

refined iron.

in. The cast iron must be of the quality of soft gray iron.

115. The timber shall be strictly first class white pine,

southern yellow pine or white oak bridge timber
;
sawed true,

and out of wind, full size, free from wind shakes, large or loose

knots, decayed or sap wood, worm holes, or other defects im-
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pairing its strength or durability. It will be subject to the in-

spection and acceptance of the Chief Engineer.

Art. 87. Standard Specifications for Iron and Steel Railway Structures

by the Phoenix Bridge Co.

The following clauses are from the standard specifications
of the Phoenix Bridge Co. for iron and steel railway structures.

Working Stresses for Iron.

The greatest working stresses in all wrought iron tensile

members of railway spans 1 50 feet in length and under, shall

be as follows :

In counter web members 8,000 Ibs. per sq. in.

In long verticals 8,000
" "

In main web and lower chord members (eye bars) 10,000
In suspension loops 7,000

" "

In suspension plates (net section) 7,000
" "

In tension members of lateral and transverse bracing 15,000
"

In counter rods and long verticals of lattice girders (net sect.) 7,000
"

In lower chords and main tension members of lattice girders

(net sect.) 8,000
In bottom flange of plate girders (net sect.) 8,000
In bottom flange of rolled beams 8,000
In angle iron lateral ties (net sect.) 12,000

The greatest working stresses in wrought iron compression
members of spans 150 feet in length and under, shall be the

following, in which "/>" is in pounds per square inch:

r.nds. Pin Ends.

Phoenix column ..
" 8>4 ~ 8 '4

Latticed or common column P

Angle iron struts / = 9,000 30 ; P = 9,000 34
-
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14 /" is the length of column, and " r
"
the radius of gyration

of section, in direction of failure
; both are to be taken in feet

or both in inches.

Upper chords shall be proportioned by the flat end formula.

A mean between flat end and pin end results shall be used

for one pin end and one flat end.

Lateral and transverse struts shall be designed by taking

working stresses, equal to one and four-tenths those given by
the preceding formulae.

In spans over 150 feet in length, the greatest working ten.

sile stresses per square inch of wrought iron, lower chord and

end main web eye bars shall be :

/ min. total stressX
8,000 ( i + 0.9 x -

j ),
\ max. total stress/

whenever this quantity exceeds 10,000.

In such spans the main web eye bars nearest the centre

shall be proportioned for 10,000 pounds per square inch
;
and

the web eye bars between the end and centre shall be found

by direct interpolation between the above values.

The greatest working stresses on the upper chords and end

posts of spans exceeding 150 feet in length, shall be determined

by increasing the results of the above column formulae by the

same proportion that the preceding process gives to the lower

chord eye bars of the same span. The proportionate increase

of working stresses for the intermediate posts, shall be the

same as that of the web eye bars, meeting their upper ends in

through spans, and lower ends in deck spans.

In the compression flange of plate girders and rolled beams,

the working stress shall not exceed 8,000 pounds per square

inch of gross section. The greatest shearing stress due to

combined dead and moving loads, shall not exceed 7,500

pounds per square inch, in any rivet or pin ;
or 10,000 pounds

per square inch for wind stresses
;
or 9,000 pounds per square

inch for wind stresses in combination with those due to mov-
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ing load. A deduction of 20 per cent, from these values shall

be made for field-driven rivets.

The greatest bearing stress on any rivet or pin due to com-

bined dead and moving loads shall be taken at 12,000 pounds
per square inch of diametral surface; or 17,000 pounds per

square inch of diametral surface for wind stresses: or 15,000

pounds for wind stresses in combination with those due to

moving load. A deduction of 20 per cent, from these values

shall be made for field-driven rivets.

The bending stress of tension or compression on the ex-

treme fibres of pins shall not exceed 15,000 pounds per square
inch for combined dead and moving loads; or 20,000 pounds
for wind stresses ;

or 18,000 pounds for wind stresses combined

with those due to moving load.

Working Stresses for Steel.

The greatest allowed working stresses in steel tension mem-
bers, for spans of 200 feet in length and less, shall be as follows:

In counter web members 10, 500 Ibs. per sq. in.

In long verticals 10,000
'* "

In all main web and lower chord eye bars 13,200
" "

In plate hangers (net section) 9,000
" "

In tension members of lateral and transverse bracing. 19,000
" "

In steel angle lateral ties (net sect.) 15,000
" "

For spans over 200 feet in length, the greatest allowed

working stresses per square inch, in lower chord and end main

web eye bars, shall be taken at

min. total stress^+
max. total stress>

whenever this quantity exceeds 13,200.

The greatest allowable stress in the main web eye bars

nearest the centre of such spans, shall be taken at 13,200

pounds per square inch ; and those for the intermediate eye
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bars shall be found by direct interpolation between the pre-

ceding values.

The greatest allowable working stresses in steel plate and

lattice girders and rolled beams, shall be taken as follows :

Upper flange of plate girders (gross section) 10,000 Ibs. per sq. in.

Lower flange of plate girders (net section) 10,000
"

In counters and long verticals of lattice girders (net sect.) 9,000

In lower chords and main diagonals of lattice girders (net

section) 10,000
" "

In bottom flanges of rolled beams 10,000
"

In top flanges of rolled beams 10,000
"

The greatest allowable working stresses in steel latticed or

common columns, or steel Phoenix columns, for spans of 200

feet in length and less, shall be determined by taking four-

thirds the values given by the formula for iron columns, on

page 697.

The greatest allowable working stresses for the same kind

of columns, in spans over 200 feet in length, shall be found by

increasing the values established by the preceding paragraph

by the same proportion, for the upper chord and end posts, as

the lower chord eye bar stresses are increased for the same

length of spans.

The greatest allowable working stresses in the columns

nearest the centre shall remain unchanged ;
and those for the

intermediate columns shall be found by direct interpolation.

The greatest working stresses, in pounds per square inch,

allowed in steel angle struts, shall be as follows :

Flat end steel angles P= 12,500 44-

Pin end steel angles P 12,500 50

44 /"is the length of the column, and " r
"
the radius of

gyration of section, in direction of failure
;
both are to be

taken in feet, or both in inches.

Upper chords shall be proportioned by the "
flat end

"

formulae, in all cases.
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A mean between flat end and pin end results shall be used

for one pin and one flat end.

Lateral and transverse struts shall be designed by taking

working stresses equal to 1.4 those given by the preceding
formulae for both 200 feet pin spans and angle struts.

The greatest shearing stress on any rivet or pin, due to

combined dead and moving loads, shall not exceed 10,000

pounds per square inch
;
or 13,000 pounds per square inch for

wind stresses; or 12,000 pounds for wind stresses in combina-

tion with those due to moving load. A deduction of 20 per

cent, from these values shall be made for field-driven rivets.

The greatest bearing stress on any rivet or pin, due to

combined dead and moving loads, shall be taken at 16,000

pounds per square inch of diametral surface
;
or 22,000 pounds

per square inch of the same surface for wind stresses
;
or 20,000

pounds for wind stresses in combination with those due to

moving load. A deduction of 20 per cent, shall be made from

these values for field-driven rivets.

The bending stress of tension or compression on the ex-

treme fibres of pins shall not exceed 20,000 pounds per square
inch for combined dead and moving loads

;
or 26,000 pounds

for wind stresses ; or 24,000 pounds for wind stresses com-

bined with those due to moving loads.

General Clauses.

In case wind stresses combine with those due to dead and

moving loads, no increase of section will be required, unless

the wind stresses exceed one-third the sum of those caused by
the dead and moving loads, in which case provision will be

made for the excess, at a unit stress equal to four-thirds that

allowed in the same member for the combined dead and mov-

ing loads; but, in no case, shall that unit stress exceed 15,000

pounds for iron, or 18,500 pounds for steel for tension; or

10,500 pounds for iron, or 14,500 pounds for steel for compres-
sion ;

or 10,000 pounds for iron, or 12,000 pounds for steel for
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shear; or 19,000 pounds for iron, or 25,000 pounds for steel for

extreme fibre stress in pin bending.

Art. 88. Niagara Suspension Bridge.

In his "
Report on the Renewal of the Niagara Suspension

Bridge," Mr. LefTert L. Buck, C. E., has given some data and

calculations, from which he deduces that the safety factor for

the cables is :

11,000 +- (1,400 x 1.78)
= 4.41,

the total load between the towers being 1,400 tons, and the

ultimate resistance of the four wrought-iron cables 11,000 tons,

while 1.78 is the ratio between the cable tension at the top of

the towers and the vertical load between the towers.

The new iron and steel stiffening truss is designed for a

safety factor of 5.

Art. 89. Specifications for Boiler and Fire Box Steel, Penn. RR.
Co., 1883.

1. A careful examination will be made of every sheet, and

none will be received that show mechanical defects.

2. A test strip from each sheet, taken lengthwise of the

sheet, and without annealing, should have a tensile strength of

55,000 Ibs. per square inch, and an elongation of 30 per cent, in

section, originally 2 inches long.

3. Sheets will not be accepted if the test shows a tensile

strength less than 50,000 Ibs., or greater than 65,000 Ibs. per

square inch, nor if the elongation falls below 25 per cent.

4. Should any sheets develop defects in working, they will

be rejected.

5. Manufacturers must send one test strip for each sheet

(this strip must accompany the sheet in every case) ;
both sheet

and strip being properly stamped with the marks designated by
this company, and also lettered with white lead to facilitate

matching.
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Art. 90. The St. John Cantilever, St. John, N. B., 1885.

The general dimensions of the river spans are as follows :

Total length of structure on centres of end pins 812 ft. 6
'

Length of centre opening from centre to centre of the piers 477 ft. o"

Length of centre span 143 ft. 6"

Length of east cantilever 287 ft. o"

Length of west cantilever 382 ft. o"

(The two arms of each cantilever being of equal length)

Length of panels from centre to centre of pins, about 24 ft. o"

Depth of cantilever trusses, 27 ft. at the ends, 80 ft. at the centre

for the west cantilever, and 65 ft. for the east cantilever.

Depth of centre span 27 ft. o"

Under the maximum strains produced by any condition of

the loads and wind pressures jointly, the strain on the steel

composing the structure was limited to the following amounts

per square inch :

For the upper chords 14,000 Ib. tension.

Diagonal ties 13,000 Ib.
"

Centre and counter ties 12,000 Ib.
"

Suspension ties 10,000 Ib.
"

\Vind ties 20,000 Ib.
"

Floor beam or stringer flanges 12,000 Ib.
"

For the lower chords and central posts 12,000 Ib. compression.

Intermediate posts 10,000 Ib.
"

Wind struts 14,000 Ib.
"

Floor beam or stringer flanges 1 2,000 Ib.

The above values for compression being used for the value

of Fin Gordon's formula, the value of A in said formula being
taken as i -450x5 for the lower chords and central posts, and as

1-1500 for the intermediate posts and wind struts. The tensile

strains in riveted connections were to be taken ten per cent,

less than the above amounts, and the shearing strains were

limited to 10,000 Ibs. ; the bearing pressure on rivets or pin-holes

not 'exceeding the diameter of rivet or pin multiplied by the

thickness of bearing multiplied by 16,000 Ibs., and the strains

on the extreme fibres in pins from bending not exceeding 20,-
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400 Ibs. No steel of a less thickness than 5-16 indi was allowed

to be used, and no rods of a less diameter than I inch.

Art. 91. Perm. RR. Specifications, 1887.

The following clauses are from the standard specifications

of the Penn. RR. Co.

21. The maximum and minimum stresses in tension and

compression, as found for the before-mentioned loads, are to be

used in determining the permissible working stress in each

piece of the structure according to following formulae :

For pieces subject to one kind of stress only (all compres-
sion or all tension) :

a = u (i + r).

For pieces subject to stresses acting in opposite direc-

tions :

a = u (i
-

rj.

In the above formulae :

a = Permissible stress per sq. in., either tension or compression.
/ 7,500 Ibs. per sq. inch, for double rolled iron in tension (links or rods).

u = -< 7,000
" " "

rolled iron in tension (plates or shapes).

(6,500
" " " " "

compression.

Minimum stress in piece
~~
Maximum stress in piece

Maximum stress of lesser kind
r\ =

2 x Maximum stress of greater kind

22. The permissible stress "a" for members in compression
is to be reduced in proportion to the ratio of the length to the

least radius of gyration of the section, by the following formulae :

For both ends fixed. . , . b = r
+

36ooq
a

For one end hinged b =
j,

i + 3
24000,^

For both ends hinged b =
-^

1 +
I8o^b?
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Where "a" = Permissible stress already found.
" b

" = Allowable working stress per sq. in.

" /" = Length of piece in inches, centre to centre of connections.
'*" = Least radius of gyration of section in inches.

Art. 92. Specifications for Steel Cable Wire for the East River

Suspension Bridge.

3. The general character of the wire is as follows : it must
be made of steel

;
it must be hardened and tempered ; and,

lastly, it must all be galvanized.

4. The size of the wire shall be No. 8 full, Birmingham
gauge. .......

5. Each wire must have a breaking strength of no less than

3,400 pounds. This corresponds in wire weighing 14 feet to

the pound, to a rate of 160,000 pounds per square inch of solid

section. The elastic limit must be no less than -^- of the
100

breaking strength, or, 1,600 pounds. Within this limit of elas-

ticity, it must stretch at a uniform rate corresponding to a

modulus of elasticity of not less than 27,000,000 nor exceed

29,000,000. .......
Mode of Testing.

There will be four kinds of tests.

Firstly. One ring in every forty (40) will be tested as fol-

lows : a piece of wire sixty (60) feet"long, will be cut off from

cither end of the ring, and it will then be placed in a vertical

testing machine. An initial strain of 400 pounds is now ap-

plied, which should take out every crook and bend. A vernier

gauge, capable of being read to - of one foot, is so at-
10,000
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tached as to indicate the stretch of 50 feet of the wire. Suc-

cessive increments of 400 pounds strain are then applied, and

the vernier read each time, until a strain of 1,600 pounds is

reached.

The conditions now are as follows : that the amount of

stretch for each of these increments shall be the same, and that

the total stretch between the initial and terminal strains shall

not be less than *'
of one foot, equal to of the 50

1,000 100,000

feet. And furthermore, on reducing the strain to 1,200

pounds there shall be a permanent elongation not exceeding

- of its length.
100,000

The same wire will then be subjected to a breaking strain,

and the total amount of stretch noted. The minimum strength

required is 3,400 pounds, equal to an ultimate strength of

160,000 pounds per square inch. The minimum stretch, when

broken, shall have been 2 per cent, in 50 feet, and the diameter

of the wire at the point of fracture shall not exceed of one
100

inch.

Fourthly. Every ring will be subjected to a bending test

by cutting off from each ring a piece of wire one foot long, and

coiling it closely and continuously around a rod one half inch

in diameter, when, if it breaks it will be rejected.

Straight Wire.

9. All the wire . . . must be "
straight

"
wire

;
that is

to say, when a ring is unrolled upon the floor the wire behind

must lie perfectly straight and neutral, without any tendency
to spring back in the coiled form, as is usually the case. This
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straight condition must not be produced by the use of straight-

ening machines of any kind, as they only injure the strength
and elasticity of the wire. ....."
Art. 93. Specifications for Steel Wire Ropes for the Over-Floor Stays

and Storm Cables of the East River Suspension Bridge.

3. The steel from which the wire for these ropes is made
must be of a uniform and suitable quality, and after drawn
must be thoroughly and evenly galvanized throughout.

4. The galvanized wire must have an ultimate strength of

1 50,000 pounds per square inch of full section. When tested

in lengths of five feet it must stretch no less than three and

one-half per cent, of its length, and in lengths of one foot it

must stretch no less than four per cent.

5. It must be capable of being bent continuously around a

rod of three times the diameter of the wire, without fracture.

6. The modulus of elasticity must not vary more than

2,000,000 pounds, nor exceed 30,000,000 pounds.

7. It must have a limit of elasticity of not less than 70,000

pounds per square inch.

Art. 94. Specifications for Steel Suspenders, Connecting Rods, Stirrups
and Pins, for the East River Suspension Bridge.

All of the steel used must be of a uniform and suitable

quality, known as " Mild Steel." It must have an ultimate

ilc strength of 75,000 pounds per square inch of full

tion, and an ultimate stretch of no less than 15 per cent, in one

foot of length, including the fractured section ; and a reduc-

tion of no less than 25 per cent, of an-.i at the point of fractinv.

It must have an elastic limit of no less than 45,000 pounds per

square inch, and a modulus of elasticity between 26,000,000

45



CHAPTER XIII.

THE FATIGUE OF METALS.

Art. 96. Woehler's Law.

IN all the preceding pages, that force or stress, which, by a

single or gradual application, will cause the failure or rupture
of a piece of material, has been called its

" ultimate resistance."

It has long been known, however, that a stress less than the

ultimate resistance may cause rupture if its application be re-

peated (without shock) a sufficient number of times. Preced-

ing 1859 no experiments had been made for the purpose of

establishing any law connecting the number of applications
with the stress requisite for rupture, or, with the variation

between the greatest and least values of the applied stress.

During the interval between 1859 an<^ l &7> A. Wohler,
under the auspices of the Prussian Government, undertook the

execution of some experiments, at the completion of which he

had established the following law :

Rupture may be caused not only by a force which exceeds the

ultimate resistance, but by the repeated action offorces alternately

rising andfalling between certain limits, the greater of which is

less than the ultimate resistance ; the number of repetitions re-

quisite for rupture being an inverse function both of this vari-

ation of the appliedforce and its upper limit.

This phenomenon of the decrease in value of the breaking
load with an increase of repetitions, is known as "the fatigue

of materials."

Although the experimental work requisite to give Wohler's
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law complete quantitative expression in the various conditions

of engineering constructions can scarcely be considered more
than begun, yet enough has been done by Wohler and Span-

genberg to establish the fact of metallic fatigue, and a few

simple formulae, provisional though they may be. The im-

portance of the subject in its relation to the durability of all

iron and steel structures is of such a high character that a

synopsis of some of the experimental results of Wohler and

Spangenberg will be given in the next Article.

Art. 97. Experimental Results.

The experiments of Wohler are given in "
Zeitschrift fur

Bauwesen," Vols. X., XIII., XVI. and XX., and those of Span-

genberg may be consulted in
"
Fatigue of Metals," translated

from the German of Prof. Ludwig Spangenberg, 1876.

These results show in a very marked manner the effect of

repeated vibrations on the intensity of stress required to pro-

duce rupture.

Spangenberg states that " the experiments show that vibra-

tions may take place between the following limits with equal

security against rupture by tearing or crushing :

4- 17,600 and 17,600 Ibs. per sq. in

4- 33,000 and o

-f- 48,400 and -f- 26,400

-f- 30,800 and 30,800

4- 52,800 and o

-}- 88,000 and -|- 38,500

55,000 and o
-- 77.000 and -f 27,500

-j- 88,000 and 4- 44tOoo

-f- 99,000 and + 66,000

Spring steel not hardened..

And for axle cast steel in shearing :

24,200 and - 24.200 lb*. per sq. In.

41,800 and o ..... * "
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Phoenix Iron in Tension.

POUNDS STRESS PER

SQUARE INCH.
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Phosphor Bronze (unworkea) in Tension.

POUNDS STRESS PER

SQUARE INCH.
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Homogeneous Iron in Flexure (one direction only}.

POUNDS STRESS PER

SQUARE INCH.
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Phosphor Bronze in Flexure (one direction only).

POUNDS STRESS PER

SQUARE INCH.
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Krupp's Axle Steel in Torsion (both directions}.

POUNDS STRESS PER
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finally with 6,643 pounds enough times to make a total of

3,150,000.

In these experiments the load was completely removed

each time.

It is thus seen that vibrations (without shock) with one-

fourth the calculated breaking centre load produced no appar-

ent effect on the resistance of the beam, but that two-fifths of

that load caused failure after a comparatively small number of

repetitions.

It is probable that the breaking centre load was calculated

too high, in which case the ratios J and should be somewhat
increased.

Art. 98. Formulae of Launhardt and Weyrauch.

Let R represent the intensity (stress per square unit of sec-

tion) of ultimate resistance for any material in tension, com-

pression, shearing, torsion or bending ;
R will cause rupture at

a single, gradual application. But the material may also be

ruptured if it is subjected a sufficient number of times, and

alternately, to the intensities Pand Q, Q being less than P and

both less than R, while all arc of the same kind. When Q = o

let P = W, and let D = P -
Q. ,W is called the "

primitive

safe resistance," since the bar returns to its primitive unstressed

condition at each application. In the general case Pis called

the "
working ultimate resistance."

By the notation adopted :

P=Q+D
But by Wflhlcr's law, /' i, ;i function of D\ or,

/> = /(/>) (2)

A sufficient number of experiments have not yet been made
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in order to completely determine the form of the function

f(D\
It is known, however, that :

For Q = o ; P = D == W\
and for

J9 = o
;
P= Q = R.

Provisionally, Launhardt satisfies these two extreme con-

ditions by taking :

Even at these limits this is not thoroughly satisfactory, for

By solving Eq. (3) :

when D o, P = (R W), or, indeterminate.

But if the least value of the total stress to which any mem-
ber of a structure is subjected is represented by min B, and its

r> 4.u MI
'

i^ win B Q
greatest value by max B, there will result--= = ~ .

Hence:

which is Launhardt's formula. In the preceding Article some
values of W are shown. In applying Eq. (5) it is only neces-

sary to take the primitive safe resistance, W, for the total

number of times which the structure will be subjected to loads.
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Since bridges are expected to possess an indefinite duration of

life, in such structures that number should be indefinitely

large.

Eq. (5), it is to be borne in mind, is to be applied when the

piece is always subjected to stress of one kind, or in one direction

only. It agrees well with some experiments by Wohler on

Krupp's untempered cast spring steel.

If the stress in any piece varies from one kind to another,

as from tension to compression, or vice versa ; or from one

direction to another, as in torsion on each side of a state of no

stress, Weyrauch has established the following formula by a

course of reasoning similar to that used by Launhardt.

If the opposite stresses, which will cause rupture by a cer-

tain number of applications, are equal in intensity, and if that

intensity is represented by 5, then will S be called the " vibra-

tion resistance
"

; this was established by Wohler for some

cases, and some of its values are given in the preceding
Article.

Let -f- P and P' represent two intensities of opposite
kinds or in opposite directions, of which P is numerically the

greater. Then if D = P -f- P' :

P = D - P 1

.

The two following limiting conditions will hold :

For P' = o
;
P =. D = W\

For/'' = 5; P = 5 =

But by WOhler's law, P - f(D\ and the two limiting con-

ditions just given will be found to be satisfied by the pro-
visional formula :

P = - D =
" ^

(P 4. P'\2W-S-P" ( h '
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By the solution of Eq. (6) :

W- SP = W ( i
- W '

If, without regard to kind or direction, max B is numerically
the greatest total stress which the piece has to carry, while

max B' is the greatest total stress of the other kind or direc-

tion, then will -=- = max
.L

. Hence, there will result the fol-P max B
lowing, which is the formula of Weyrauch :

max B '

P -
W maxB

Eqs. (5) and (8) give values of the intensity P which are to

be used in determining the cross section of pieces designed to

carry given amounts of stress. If n is the safety factor and F
the total stress to be carried, the area of section desired will be :

nF

P
in which is the greatest working stress permitted.

If for wrought iron in tension W = 30,000 and R 50,000,

Eq- (5) gives:

/ 2 min BP 30,000 (
i + -

5
\ 3 max B

Hence, if the total stress due to fixed and moving loads in

the web member of a truss is max B 8o,coo pounds, while

that due to the fixed load alone is min J> 40,000, there will

result :

= 30,00* , + . = 40,000
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In such a case the greatest permissible working stress with

a safety factor of 3 would be about 13,300 pounds.
For steel in tension, if W = 50,000 and R = 75,000:

i min Bp=
50,000(1 + 1^,).\ 2 max B)

For wrought iron in torsion, \( S 18,000 and W = 24,000,

Eq. (8) will give :

/ i max B\P = 24,000 (I ^ )
.

\ 4 max B J

Other methods based on Wohler's experiments have been

deduced by Muller, Gerber and Schaffer, of which synopses

may be found in Du Bois' translation of Weyrauch's
" Struct-

ures of Iron and Steel."

Art. 99. Influence of Time on Strains.

In the section "elevation of ultimate resistance and elastic

limit" in Art. 32, the effect of prolonged tensile stress and

subsequent rest between the elastic limit and ultimate resist-

ance, was shown to be the elevation of both those quantities.

It is a matter of common observation, however, that if a piece
of wrought iron be subjected to a tensile stress nearly equal to

its ultimate resistance, and held in that condition, that the

stretch will increase as the time clap-

Experiments are still lacking which may show that a piece
of metal can be ruptured by a tensile stress much below its

ultimate resistance. It may be indirectly inferred, however,

from experiments on f that such failure may be pro-

duced, as the following by Prof. Thurston will show.

A bar 10 parts tin and 90 parts copper, 1x1x2
and supported at each end, sustained about 65 per cent, of its
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breaking load at the centre for five minutes. During that time

its deflection increased 0.021 inch. The same bar sustained

1,485 pounds at centre for 13 minutes and then failed.

A second bar of the same size, but 90 parts tin and 10 parts

copper, was loaded at the centre with 160 pounds, causing a

deflection of 1.294 inches. After 10 minutes the deflection

had increased 0.025 inch; after one day, i.ooinch; after two

days, 2.00 inches
; and after three days, 3.00 inches, when the

bar failed under the load of 160 pounds.
Another bar of the same size showed remarkable results

;
it

was composed of 90 parts zinc and 10 parts copper. It gave
the same general increase of deflection with time, but eventually
broke under a centre load which ran down from 1,233 to 9 11

pounds, after holding the latter about three minutes.

A bar of the same size and 96 parts copper with 4 parts tin,

after it had carried 700 pounds at centre for sixty minutes was
loaded with 1,000 pounds, with the following results :

AFTER DEFLECTION.

o minute 3.118 inches.

5 minutes 3-54
"

15 minutes 3.660
"

45 minutes 4. 102 "

75 minutes 7-634
"

Broke under 1,000 pounds.

A wrought-iron bar of the same size gave, under a centre

load of i,600 pounds :

AFTER DEFLECTION.

o minute 0.489 inch.

3 minutes 0.632
"

6 minutes 0.650
"

16 minutes o. 660 "

344 minutes 0.660 "

It subsequently carried 2,589 pounds with a deflection of

4.67 inches.
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During 1875 and 1876 Prof. Thurston made a number of

other similar experiments with the same general results.

Metals like tin and many of its alloys showed an increasing
rate of deflection and final failure, far below the so-called
" ultimate resistance." The wrought-iron bars, however, showed
a decreasing increment of deflection, which finally became zero,

leaving the deflection constant.

Whether there may be a point for every metal, beyond
which, with a given load, the increment of deflection may
retain its value or go on increasing until failure, and below

which this increment decreases as the time elapses, and finally

becomes zero, is yet undetermined, but seems probable.
It does not follow, therefore, that the principle enunciated

in the section named at the beginning of this Article, is to be

taken without qualification. If
" rest

"
under stress, too near

the ultimate resistance, be sufficiently prolonged, it has been

seen that it is possible that failure may take place.

In verifying some experimental results by Herman Haupt,
determined over forty years ago, Prof. Thurston tested three

seasoned pine beams about ij6 inches square and 40 inclu -s

length of span, and found that 60 per cent, of the ordinary

"breaking load" caused failure at the end of 8, 12 and 15

months. In these cases the deflection slowly and steadily in-

creased during the periods named.

Two other sets of three pine beams each, broke under 80

and 95 per cent, of the usual "
breaking load," after much

shorter intervals of time.

In all these instances it is evident that the molecules under

the greatest stress " flow
"
over each other to a greater or less

extent. In the cases of decreasing increments of strain, tin

new positions afford capacity of increased resistance- ; in tlu-

others, those movements are so great that the cii

tween some of the molecules exceed the reach of molecular

action, and failure follows.

In many cases strained portions of material recover parti, illy

46
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or wholly from permanent set. In such cases a portion of the

material has been subjected to intensities of stress high enough
to produce true " flow

"
of the molecules, while the remaining

portion has not. The internal elastic stresses in the latter por-

tion, after the removal of the external forces, produce in time

a reverse flow in consequence of the elastic endeavor to resume

the original shape.
It is altogether probable that the phenomena of fatigue and

flow of metals are very intimately associated. Some of the

prominent characteristics of the latter will be given in the next

chapter.



CHAPTER XIV.

THE FLOW OF SOLIDS.

Art. 100. General Statements.

ALTHOUGH there is no reason to suppose that true solids

may not retain a definite shape for an indefinite length of time

if subjected to no external force other than gravity,* many
phenomena resulting both from direct experiment for the pur-

pose, and incidentally from other experiments involving the

application of external stress of considerable intensity, show
that a proper intensity of internal stress (in many cases com-

paratively low) will cause the molecules of a solid to flow, at

ordinary temperatures, like those of a liquid. And this flow,

moreover, is entirely different from, and independent of, the

tic properties of the material ;
for it arises from a perma-

nent and considerable relative displacement of the molecules.

Nor is it to be confounded with that internal " friction
"
which,

if an elastic body is subjected to oscillations, causes the ampli-
tudes to gradually decrease and finally disappear, even in

vacuo. This latter motion is typically clastic and the retarding
cause may be considered a kind of clastic friction.

It is evident that if a mass of material be enclosed on all its

faces, or outer surfaces, but one or a portion of one, and if

! pressure be brought to bear on those faces, the in

rial will be forced to move to and through the free surface ; in

*
This, perhaps, may be considered a definition of a true solid.
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Some experiments exhibiting in a remarkably clear manner
the flow of metals in cold punching were made by David
Townsend in 1878, and the results were given by him in the
"
Journal of the Franklin Institute

"
for March of that year.

If the dotted rectangle ABFG, Fig. 3, shows the original out,

line of the middle section of a nut before punching, he found

that the final outline of the same section would be represented

by the full lines. The top and bottom faces were depressed

by the punching, as shown
;
the upper width AB remained

about the same, but the lower, 67% was increased to CD. Al-

though the depth of the nut, AC, was 1.75 inches, the length
of the core punched out was only 1.063 inches. The density of

this core was then examined and found to be the same as that

of the original nut. Hence a portion of the core equal in

length to 1.75 1.063 = 0.687 inch was forced, or flowed, back

into the body of the nut. Subsequent experiments showed

that this flow did not take place at the immediate upper sur-

face AB, nor very much in the lower half of the nut, but that

it was chiefly confined to a zone equal in depth to about half

that of the nut, the upper surface of which lies a very short

distance below the upper face of the nut. The location of this

zone is shown by the lines HK and MN in Fig. 3.

Tresca's experiments on punching showed essentially the

same result.

Art. ioi. Tresca's Hypotheses.

The central cylinder FGKH, Fig. I of Art. 100 was called

by Tresca the "
primitive central cylinder." As the metal

flows, this cylinder will be drawn out into the volume of revo-

lution, \vh<> is that of the orifice and whose meridian

section is FGkKHh, Fig. 2, the diameter FG being gradually
decreased.

It was found by experiment that if the original mass AC,
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Fig. i, was composed of horizontal layers of uniform thickness,

the reduced mass in Fig. 2 was also composed of the same

number of layers of uniform thickness, except in the immediate

vicinity of the central cylinder.

Tresca then assumed these three hypotheses :

i. The density of the material remains the same whether in

the cylinder or in thejet ; in other words, the volume of the

material in the jet and in the cylinder remains constant.

Let R radius of the cylinder.

Let Rl
= radius of the orifice.

Let y variable length of the jet (i. e., hH\
Let D = original depth of material (BC = AD, Fig. i)

in the cylinder.

Let d = variable depth of material (BC AD, Fig. 2)

in the cylinder.

Then by the hypothesis just stated :

R*d = R2D - Rfy (i)

2. The rate of compression along any and all lines parallel

to the axis of the primitive central cylinder ,
and taken outside of

that limit, is constant.

If, then, the material lying outside of the central cylinder
be divided into horizontal layers of equal thickness, a very
small decrease in the variable depth equal to d(a) will cause

the same amount of material to move or flow from each of

these layers into the space originally occupied by the central

cylinder, thus causing a portion of the material previously

resting over the orifice to flow through the latter. If d(d) is

the indefinitely small change of depth, and dR
l
the indefinitely

small change in the radius of the cylindrical portion resting

over the orifice, then the equality of volumes expressing this

hypothesis is the following :
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- Rf) . d(d) = 27iR,d . dR, ;

or :

a\d)_ 2/^dR^
d

~

A* - R?
'

3. The rate of decrease of the radius of the primitive cen-

tral cylinder is constant throughout its length at any given instant

duringflow.
Let r be any radius less than R^ then if the latter is de-

creased by the very small amount dR the former will be
shortened by the amount dr

;
and by the last hypothesis there

must result :

This is a perfectly general equation, in which r may or may
not be the variable value of the radius of that portion of the

primitive central cylinder remaining above the orifice at any
instant during flow.

These are the three hypotheses on which Tresca based his

theory of the flow of solids. It is thus seen to be put upon a

purely geometrical basis, entirely independent of the elastic or

other properties of the material.

Art. 102. The Variable Meridian Section of the Primitive Central

Cylinder.

The meridian curve hall, or ///>A', I of Art. 100, may
now easily be determined.

Eq. (i) of Art. 101 may take the first of the following forms,
while its differentia!, couriering d and /variable, may t.ikc

the second :
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d(d) = - -
dy.

1\ 3

Dividing the second by the first :

d(d) dy 2R, dR,

The last member of this equation is simply Eq. (2) of Art.

101 ; and if the value of dRiy in Eq. (3) of the same Article,

be inserted in the third member of this equation, there will

result :

2R,
2 dr dy

R* - R*
'

r R*
y- -T.

Integrating between the limits of r and Rv and remember-

ing that r will be restricted to the representation of the radius

of that portion of the primitive central cylinder which remains,

at any instant, over the orifice, by taking y = o for r = R
t

:

"
log" indicates a Napierian logarithm.

Passing from logarithms to the quantities themselves, and

reducing :
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..#] ,
- (L\&F

A? I W J
' (I)

This is the desired equation of the line, in which r is meas-

ured normal to the axis of the cylinder or jet, while y is meas-

ured along that axis from the extremity of the jet. When the

material is wholly expelled :

R2

y =
-j^
A and r = o.

Eq. (2) is applicable to the jet only. For the line hF or Gk,

resort will had to the equation :

d(d) _ 2R? dr

d
~~

R* - R? r
'

Again integrating between the limits d and D, or r and Rv

and reducing :

This value of r is the radius of that portion of the primitive

central cylinder which remains over the orifice when D is re-

duced to d.

Art. 103. Positions in the Jet of Horizontal Sections of the Primitive

Central Cylinder.

That portion of the primitive central cylinder below ab in

Fig. i of Art. 100, will be changed to abKII in Fig. 2 of the

same Article.

If, in the latter Fig., / is the distance from HK to ab,
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measured along the axis, then the volume of HKab will have

the value

P XT* dy.
Jo

If d' is the distance aF = bG
y

in Fig. i, the equality of

volumes will give :

Eq. (i) of Art. 102 gives :

jr-

/ R*y'\~RS

IfN is the number of horizontal layers required to compose
the total thickness D, and n the number in the depth d' :

D~~~~ N'
Hence :

R>[ /.\S
-St.1 '- J^
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Tresca computed values of y for some of his experiments,
and compared the results with actual measurements. The

agreement, though not exact, was very satisfactory. Within
limits not extreme, the longer the jet the more satisfactory was
the agreement.

Art. 104. Final Radius of a Horizontal Section of the Primitive Central

Cylinder.

Let it be required to determine what radius the section

situated at the distance d' from the upper surface of the primi-
tive central cylinder will possess in the jet.

It will only be necessary to put for y in Eq. (i) of Art. 102,

the value ofy taken from Eq. (i) of Art. 103. This operation

gives :

(d\^ fr \ & -X'

Hence :

If /?, is small, as compared with /?, there will result ap-

proximately :

'-*()

Art. 105. Path of any Molecule.

The hypotheses on which the theory of flow i.'. based enable

the hypothetical path of any molecule to be easily establ;

In consequence of the nature of the motion there will be
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three portions of the path, each of which will be represented

by its characteristic equation, as follows :

First : let the molecule lie outside of the primitive central

cylinder.

Let R' and H be the original co-ordinates of the molecule

considered, measured normal to and along the axis of the

cylinder, respectively, from the centre of the orifice HK (Fig. I

Art. 100) as an origin, while r and // are the variable co-

ordinates.

The first hypothesis, by which the density remains con-

stant, then gives the following equation :

or :

/iR* - hr* = (R
2 - R*}H ..... (i)

This is the equation to the path of the molecule, in which

r must always exceed Rr

As this equation is of the third degree, the curve cannot be

one of the conic sections.

Second : let the molecule move in the space originally occupied

by the central cylinder.

While h and r now vary, the volume nrt

(D It)
must re-

main constant. When r R^ let h hr Hence :

r\D -
h} = R*(D-h l] ..... (2)

But if h = ^ and r R, in Eq. (i) :

Placing this value in Eq. (2) :

-H ~
. ... (3)
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Third : let the molecule move in thejet.

After the molecule passes the orifice, its path will evidently
be a straight line parallel to the axis of the jet. Its distance

r, from that axis will be found by putting h = o in Eq. (3).

Hence :



ADDENDA.
Addendum to Art. 34.

Both Tables in this Addendum show tests of steel used in

the St. John Cantilever covered by the specifications of Art.

90. It will be noticed that this steel is of a very mild charac-

ter, but very ductile, uniform and reliable. Table I. shows

tests of specimens from a great variety of bars and shapes,

while Table II. gives the results of tests of full size eye bars.

With one or two exceptions, the tests of the latter were sus-

pended before failure took place, which accounts for the incom-

plete record. Both tables are from London "
Engineering,"

of Oct., 1886.

TABLE I.

Test Specimens of Steel.
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TABLE I. Continued.
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Addendum to Art. 65.

In the autumn of 1883 an extensive series of tests of wrought
iron I beams, subjected to bending by centre loads, was made

by G. H. Elmore, C. E., and the writer, at the mechanical

laboratory of the Rens. Pol. Inst. The object of these tests

was to discover, if possible, the law connecting the value of K
for this class of beams with the length of span when the beam
is entirely without lateral support. The means by which the

latter end was accomplished, and a full detailed account of the

tests will be found in volume I., No. I,
" Selected Papers of

the Rensselaer Society of Engineers." The main results of the

tests are given in Table III. All the tests were made on 6

inch I beams with same area of normal cross section of 4.35

TABLE III.
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square inches. Actual measurement showed the depth*/ of the

beams to be 6.16 inches. The moment of inertia of the beam

Jon about a line through its centre and normal to the web

was /= 24.336. The radius of gyration of the same section in

reference to a line through its centre and parallel to the web
was r = 0.6 inches. / was the length of span in inches.

If M is the bending moment in inch-pounds, W the total

centre load (including weight of beam), and K the stress per

square inch in extreme fibre, the following formulae result :

Md .

,, WlK = r and M
2/ 4

Wld

(12)

03)

The experimental values of W, /, d and / inserted in the

above formula give the values of K shown in the table. The
coefficient of elasticity, E, was found by the usual formula :

= Wl*
04)

in which w is the deflection caused by W.

The full line is the graphical representation of the values of

AT given in Table III. Since K must clearly decrease with the

,
i

& *
b, -!

^r*,*;* ;

.. ..

!
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length of span, and increase with the radius of gyration of the

section about an axis through its centre and parallel to the web

(the latter, of course, being vertical), K has been plotted in ref-

erence to / -4- r as shown. No simple formula will closely rep-

resent this curve, but the broken line covers all lengths of span
used in ordinary engineering practice, and is represented by
the formula:

^=51,000-75 .......... (15)

For railway structures the greatest allowable stress per sq.

in. in the extreme fibres of rolled beams may be taken at :

k 10,000 15 .......... (16)

Values of k taken from a large scale plate, like Plate I., are,

however, far preferable to those given by any formula.

Rolled Steel Beams.

The researches of Mr. James Christie, Supt. of the Pencoyd
Iron Co., on the transverse or bending resistance of rolled deck

and eye beams, are given in great detail in the " Trans. Am.
Soc. C. E." for 1884, from which the results in Table IV. are

abstracted. All beams were rolled at the Pencoyd Iron Works.

The "mild steel" contained from o. n to 0.15 per cent, of

carbon, and the "
high steel

"
about 0.36 per cent, of carbon.

These steels are the same as those referred to in
" Addendum "

to Art. 51.

No. 14 is the only test of a "
high" steel beam

;
all the re-

maining tests being with mild steel shapes. Tests 3 to 9 in-

clusive were of deck beams, and the skeleton sections show

whether the bulbs were above or below in the experiment,
The values of K were computed by Eq. (13) in the manner al-

ready explained for the preceding iron beams, while E was

computed by Eq. (14).
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TABLE IV.

Transverse Tests of Steel Beams,

M
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The values of K, both for the elastic limit anc| ultimate, are

so erratic in relation to those of / -r r that no law such as is

revealed by Table III. and Plate I. for iron beams, can be dis

covered. The most marked feature of the Table IV. is the

very considerable excess of ultimate and elastic K for deck

beams over the same quantities for I beams. These tests,

however, show that for mild structural steel, containing 0.18 or

0.20 per cent, carbon, the working stress in the extreme fibres

of I beams may be taken at 10,000 pounds per sq. in. in rail-

way structures when the length of span does not exceed I5cr,

and when the resistance is computed by the exact formula

with the moment of inertia.

Addendum to Art. 70.

In "The American Engineer" for March I4th and 2ist,

1884, is given a detailed account of some valuable tests ot

wrought iron and steel built beams. These tests were made
under the supervision of Mr. C. L. Strobel, C. E., who gave the

data cited. All these girders had the same span of 12 feet, and

they were tested in a vertical or natural position. All web

plates were nominally 14 inches deep and J inch thick, and the

flange angles were all 3 inches by 3 inches by nominally ^V inch

thick. All these beams were broken by a load applied at the

centre, at which point vertical stiffening angles were riveted

to the web. Five beams were thus tested to destruction

with the results given in the following Table.
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TESTS OF PLATE GIRDERS BY C. L. STROBEL, C. E.

12 ft. span, 14 inches depth, 14" x \" web. 3" x 3" x ft" flange angles.
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These tests show that, for ordinary railway practice, wijh
such mild structural steel as is generally used for plates and

angles, the working stresses in plate girder stringers and floor

beams may be taken at 10,000 Ibs. per sq. in. gross section of

compression flange or net section of tension flange. For the

same members in wrought iron, the corresponding value would

be 8,000 pounds per sq. in.

Addendum to Art. 73.

A butt joint with a set of single or double cover plates or

butt straps may be formed in such a manner that the rivets

and cover plates will take very nearly or exactly their proper

proportional loads. Each set of cover plates is composed of

a series uniformly decreasing in length, the longest of the

series lying adjacent to the main plates or members joined.

One row of rivets parallel to the joint is then put through
each end of each cover plate, and, jof course, also through those

lying underneath. In this manner the number of rivets from

the end of the longest or lowest cover plate to any section

parallel to the joint is proportional to the sectional area "of the

covers against which they pull ;
the joint is consequently of

nearly uniform resistance.

The number of butt straps or cover plates in a set depends

upon the size of the members joined.

In most cases the rivets cannot take exactly their propor-
tional loads, for the reason that those portions of the members

joined which lie within the limits of the joint are not of uni-

form resistance, as the system of covers is.
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Specifications, Franklin Square bridge . . . 694-698

Specifications, (irccnhush bridge ... . 686-688

Specifications, Menomonee bridge. . . 689-694

Specifications, Niagara suspension bridgr 688

Specifications, Plaltsmouth bridge . . 701-703

Specifications, r . 699, 700

Specifications, Sabula bridge. . 682-686

Specifications, steel cable wire. East River bridge . . 703-705

Specifications, steel wire rope, East River bridge ... 705, 706

Specifications, steel work for East River bridge 706, 707

hick, hollow... 84

Spikes, driving and drawing . . 663, 664
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PACK

Square columns 438, 439, 441, 448
Steel columns 448

Steel in compression 380
Coefficient of elasticity 380, 382, 383

Elastic limit and ultimate resistance 380-385
Effect of tempering 381

Effect of annealing 382

(For various grades and varieties see text under preceding heads.)

Steel in shearing 487, 493-495
Steel in tension 286

Coefficient of elasticity 286

Ultimate resistance and elastic limit 294
Boiler plate 306

Hardening and tempering steel plate 314

Rivet steel 315

Reduction of section by hammering and rolling 315

Annealing steel 319
Steel wire 319

Shape steel 321

Gun wire 322

Effect of low and high temperature on steel 323

Constructive manipulations, such as punching, drilling and reaming. 325

Bauschinger's experiments 333

Fracture of steel 334

Effect of chemical composition 334

Steel in torsion 487, 5O4~57
Steel plate, coefficient of elasticity 290, 291, 292

Steel plate, ultimate tensile resistance 294, 306, 314, 326, 327

Sterro-metal in tension 343

Stones, natural building in compression 398-402

Strain I

Strains, influence of time on 719-722

Strains, lateral 4

Stress i

Stresses, expressions for tangential and direct 8

Stresses, greatest at any point in a beam 202

Stresses, plane of greatest normal in a beam 204

Stresses, plane of greatest shearing in a beam 206

Styffe's conclusions regarding low temperature 252

Suddenly applied forces or loads 98, loo

Suddenly applied stress, resistance of iron to 269

Swelled columns 434, 439, 44*
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Temperature, effect of increase on wrought iron 247-251, 324, 347

Temperature, effect of low on wrought iron. . . 251-254

Temperatures, effect of high and low on steel 323, 324

Tempering, effect on steel . 314

Tension, greatest in bent beam
. 204

Theorem of three moments 146

Theorem of three moments, common form . 154, 158

Theory of flexure, general formula 143

Thick, hollow cylinders . . 36, 38

Thin, hollow cylinders . . 36, 37
Thick, hollow spheres 84
Thickness of web plate in flanged beams . 601-603
Thurston's conclusions regarding low temperatures. 253

Thurston's relation between tension and torsion 510

Timber beams 526-536

Timber beams of natural and prepared woods . 536

Timber columns, C. Shaler Smith's formula: . . 485, 486
Timber columns or pillars .471, 480-486
Timber in compression -408

Timber in shearing 487, 488, 496-498

Timber in tension 365-370

Timber in torsion . . 487, 4S8, 5<>9i 5*<>

Tin in compression 387

Tin in tension. 336, 337. 339. 343

Tobin's alloy in tension . 336, 338, 339.

Tobin's alloy in flexure. . 525, 526

Torsion, coefficient of elasticity \ 487-49, 49**

Torsion, general observations. . 77

^t shear in circular sections 7$

Torsion, greatest shear in elliptical scctto; 56

,t shear in rcctanguL; I, 75

Torsion, greatest shear in triangular sections . 59

Torsion in equilibrium . . 43

Torsion, moment of circular sections 76

ion, moment of clhptu-.il scctio: . 55, 5&

ion, moment of rectangular sections .

Torsion, moment of triangular sections. . 5& 59

Torsion of circular section 75

ion of elliptical section. ... 54

Torsion of rectangular section 59

Torsion of triangular section -57
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PACE
Torsion pendulum 82, 83

Torsional oscillations 78

Townsend's experiments, flow of solids 725

Tresca's experiments, flow of solids 724

Tresca's hypotheses, flow of solids 7 25~727

Triangular cylinders, torsion of 57

Tubes as columns 473, 475

Tubes, collapse of 655-659

u.

Ultimate resistance . 210

Ultimate resistance, elevation of 260

Ultimate resistance of wrought iron along or across fibres 242, 243

Ultimate resistance, Phoenix iron specimens 240

Unequal coefficients of elasticity, flexure with 199

w.

Web plate of flanged beam, thickness of 601, 603

Welded joints 643, 644

Weyrauch's formulae 717, 718

Whitworth's compressed steel 305

Wire, brass '
341, 344

Wire, copper 341, 344

Wire, Fairbairn's tests 257

Wire, phosphor bronze 344

Wire, Roebling's tests on wrought iron 254

Wire ropes 648-652

Wire, steel 319, 320

Wire, steel gun 322

Wire, Thurston's tests on old wrought iron 255

Wochler's experiments 710-714

Woehler's law 708

Working stress 681

Wrought-iron chain cables 652-654

Wrought-iron columns, solid rectangular 447, 474, 475

Wrought-iron columns, solid round 447, 470

Wrought iron in compression 372

Coefficient of elasticity 373, 374

Elastic limit and ultimate resistance 374~37
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Wrought iron in shearing . 487, 491-493

Wrought iron in tension .212
Coefficient of elattidty . . . . 212-223
Effect of size 212

Rounds and flats 213
Plates by Franklin Institute committee 215

St. Louis bridge specimens . 216

Values of coefficient to ultimate resistance. ... 217

Graphical representation ... 220

Ultimate rfsis/ance and elastic limit 223

Influence of size and dimensions j-226

Values for large bars . 227

Reduction of piles 228, 229
Influence of length . 230, 231

Influence of skin of bar 233

Shapes 233

Large bars and rounds 234, 235

Specimens from bars, plates and angles 237-239
Boiler plate 24 1

Effect of annealing 245

Effect of hardening 247

Variation of resistance with increase of temperature ... 247

Effect of low temperature 251

Iron wire 254

Resistance of shape iron 257

English wrought iron 258

Fracture of wrought iron 258

Crystallization of wrought iron 259

Elevation of ultimate resistance and clastic limit . 260

Bauschinger's experiments on the change of clastic limit and coeffi-

cient of elasticity
262

Resistance of bar iron to suddenly applied stress. . . 269

Reduction of resistance between the ultimate and breaking point. . . 269

Effect of chemical constitution

Kirkaldy's conclusions. . 272

Wrought iron in torsion. 487* 49^~5<

Wrought iron in Ice beams 559~563

Zinc in compression 3W
Zinc in tension 336, 339, 343

48
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WOODEN TRESTLE BRIDGES.
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Drawings. By Wolcott C. Foster. C. K 4to, cloth, 5 00
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and which is often called for by practising engineers and also in technical
echools." Railroad Gazette.

GRAPHICS FOR ENGINEERS, ARCHITECTS, AND
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gineering, University of Michigan. In THREE PARTS.
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RETAINING WALLS FOR EARTH.
HOWE The Theory as Developed by Prof. Jacob J. Weyrauch.
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By Wm. Ripley Nichol*. With numerous j.lan^. Fourth
edit tl,. 2 50

book to all who dmfrr to hn
and readabk account of the many intarwtlnff qaeUon conn-

abject of water i"



PRACTICAL TREATISE ON FOUNDATIONS.
PATTON. By W. M. Patton. C.E. 21 full-page plates, illustrated. 400

pages 8vo. c-loth, $5.06
CONTENTS: Foundation Heds. Foundations, Building Stone, (^unrryinir,

Masonry, Arches, K, y-tonc. I'.rick. Boa Culverts, Cement, Mortar. Sand,
Stability of Pirrs. Arch Culvert*, Co-t of Work. DlmenOOlM '>f Piers.
Timber Foundations, Coffer Uains, Open Caisson, Sounding, Borings,
Frame Trestles, Timber I'iers. Means of Presrrvini,' Timber .Joints and
Fa-tri,iir_'s. Timber 1'iles, Cost of Timber Trestles, Embankment of Karth
on Swamps, Deep Foundations, The Open Crib, The rneumaiie Caisson.
Construction of Pneumatic Caissons, Caisson Sinking, Combined Open
('riband Pneumatic Caisson, All-iron Piers, Local ion of Piers. The Foetsch
Freezing Process, Quicksand, Foundations for High buildings.

A GUIDE TO SANITARY HOUSE INSPECTION ;

GERHARD. Or, Hints and Helps regarding the choice of a Healthful House
in City or Country. By Wm. P. Gerhard, C.E. Third
edition, revised Square 16mo, cloth, 100
"Mr. Gerhard is one of the best known of American writers on sanitary

subjects." London Sanitary Record,

THE WINDMILL AS A. PRIME MOVER.
WOLFF. Comprehending everything of value relating to Windmills,

their Use, Design, Construction, etc. With many fine illustra-

tions. By A. R. Wolff, M.E., Consulting Engineer. Second
edition 8vo, cloth, 3 00

" An excellent, practical treatise which fllls a void." Railroad Gazette.
" A work of undoubted value." American Machinist.

MUNICIPAL IMPROVEMENTS.
GOODHUE. By W. F. Goodhue, C.E. A Manual of the Methods, Utility,

and Cost of Public Improvements, revised and enlarged, for

the Municipal Officer 12m<>, cloth, 1 75

* THE WORLD'S COLUMBIAN EXPOSITION OP 1893.
Special Issue of London, Engineering.

This book is a reprint on heavy paper of the great Special
Columbian Exposition Number of London Engineering, pub-
lished April 21st, 1893. It consists of about 140 pages of text,
250 plates and engravings, and 12 folding plates. It contains
a full description of the history, organization and scope of the

exposition ; illustrations of all the buildings in Jackson Park,
etc., etc. It also contains an exhaustive illustrated description
of the new Cunard Steamer "

Campania," which started on her
first run on April 22d Bound in cloth, 2.50

A TREATISE ON CIVIL ENGINEERING.
PATTON. By W. M. Patton, C.E. 17CO pages 8vo, cloth, 7 50

A HANDBOOK FOR SURVEYORS.
MERRIMAN. By Prof. Mansfield Merriman and John P. Brooks.
BROOKS. 12mo, morocco flap, 2 00

ARCHITECTURAL ENGINEERING.
FREITAG. With special reference to High Building Construction, in-

cluding many examples of Chicago Office Buildings. By
Joseph K. Freitag 8vo, cloth, 2 50

HEATING AND VENTILATING OF BUILDINGS.
CARPENTER. An Elementary Treatise. By Prof. Rolla C. Carpenter,

Cornell University 8vo, cloth, 3 00

A TREATISE ON HYDRAULICS.
BOVEY. By Prof. Henry T. Bovey, McGill University, Montreal.

8vo, cloth, 1 00

DESCRIPTIVE GEOMETRY.
MACCORD. By Prof. C. W. MacCord, Stevens Institute 8vo, cloth, 3 00

THE FILTRATION OF PUBLIC WATER SUPPLY.

HAZEN. By Allen Ha/en 8vo, cloth, 2 00

PROBLEMS IN THE USE AND ADJUSTMENT OF
ENGINEERING INSTRUMENTS.

WEBB. By W. L. Webb 16mo, morocco, 1 00

6



THE UNITED STATES PUBLIC WORKS.
BLACK. .'uiniiii: a Summary of the Methods of Construction and

Character of Material and Plant used in the Public Works
under the charpre of the War and Treasury l>.p*r- incuts. By
I'aplaiu \V. M. Black. 40 photogravures. ..Oblong 4to, cloth, $5 00

IM in i-iii i. \M. Hilt - M > in

JOHN WILEY & S01SS
53 East lOth Street, New York.

% li i* of tk* price.
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