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* * % < Thereare 124 pages on Ordinary Bridge and Roof Trusses, g9 on Draw-
Bridges, 50 on Arched Ribs, and 34 on Suspension Bridges. At the end is a chapter on the
details of construction. * # * Both algebraic and graphic methods are presented, while
the prominence is given to the Yormer. A single algebraic method is not rigidly followed,
but often two or more are given, so that one may serve as a check on the other. Methods
are everywhere made subordinate to principles, and for a student no better plan can be fol-
lowed. * * % The section on Draw-Bridges will prove of especial value to advanced
students and bridge engineers. It is, indeed, the only presentation of that important subject
which is at all suitable to put before a class. There are doubtless many instructors of cngi-
neering who will =2lcome such a carefully prepared and exhaustive book on the determination
of stresses,.— KNailioad Gazetle,

This work has been carefully prepared with two objects in view;
one, to meet the wants of the practicing engineer and bridge builder,
and the other, to provide students who intend pursuing an advanced
course of study in civil engineering, such a course of instruction in the
determination of stresses in structures of iron, steel and wood, as will
fit them to discharge, in a practical and efficient manner, professional
duties connected with such work.

During the past few years, the science of iron and steel construction
has made rapid progress, and the loose, “rule of thumb " methods,
which were formerly permissible, no longer find place among advanced
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This work has been the outgrowth of lectures on the elasticity and
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in the department of Civil Engineering at the Rensselaer Polytechnic Insti-
tute. Although those lectures form the basis of the work, they have
been considerably elaborated and extended so as to include many ad-
ditional details of importance to the practical engineer.

It is believed that the author’s practical experience as an engineer,
and familiarity with the methods and needs of advanced technical instruc-
tion, has enabled him to satisfactorily comprehend in this book those
things which are essential both to the technical student and engineer.

The rational or theoretical part covers less than one-third the
volume. In this part the student or investigator will find a concise treat-
ment of the philosophical basis, so to speak, of the resistance of materials.
Instead of making the theories of torsion, flexure, etc., pure assumptions,
as is usually done, those theories are shown to be simply logical expres-
sions of Hooke's law, combined with the elementary principles of statics,
applied to the particular manifestations of external forces or loads. The
subject is thus put upon a common sense foundation and not started on
a mere cmpiricism or conventionality,
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PREFACE.

THIS work has been the outgrowth of lectures on the
elasticity and resistance of materials, given by the author to
succeeding classes of students in the department of civil engi-
neering at the Rensselaer Polytechnic Institute. Although
those lectures, as given, form the basis of the work, they have,
of course, been considerably elaborated and extended, so as to
cover many details of the subject which it would be impossible
to include in any ordinary technical course of study, but which,
at the same time, are necessary to a complete and philosoph-
ical treatment.

The first, or “ Rational,” part of this work, is intended to
furnish an analytical or rational basis for the “ Technical” or
practical development contained in Part II. It will undoubt-
edly impress a great number, and perhaps all enginecers in
active practice, that it is unnecessary to the proper treatment
of such a subject. Indeed, a very considerably extended
experience in iron and steel constructions places the author
himself in position to fully appreciate the weight of such a
criticism at the first glance. But it may be contended, and he
thinks must be admitted, that the present advanced state of
engineering as a profession implies the existence of something
that may be called the “natural philosophy " of engineering.
In other words, the engineer of the present time must meet
the increased and increasing demands upon him in some
one or more specialty, not only by the aid of sound common
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sense and a well-trained judgment, but also by a systematic
knowledge of so much of natural philosophy as is involved
in practical engineering operations. The ideal simplicity of
stresses and strains in a perfectly isotropic body, and the clear-
ness of action of * external forces” applied at any “ point ™ or
distributed over any *“surface” according to some known and
well-defined law, are not, it is evident, the things the technical
student will encounter in his practice as an engineer. He will
find few, if any, of the ideal conditions realized, and the diffi-
culties constantly confronting him will be those involving
modifications of the analytical or mathematical results based
upon ideal quantities and conditions. Nevertheless, it is cer-
tainly true that in engineering practice he deals with precisely
the same guantities as in the natural philosophy of engineering,
but in different amounts and with far different and vastly more
complicated conditions. And it is equally true that a correct
knowledge of the consequent modifications, both in kind and
amount must be based not only upon a correct recognition of
the actual circumstances into which the ideal conditions trans-
mute themselves in engineering works, 7.¢.; upon sound prac-
tical knowledge, but also upon a thorough comprehension of
the things involved, in the abstract, and the laws governing
their actions and relations. In other words, but in essentials
the same, an engineer’s preparation for active practice must
consist both of that philosophical training in what is largely
ideal, and which he acquires in the technical school, and of the
purely practical training of the first few years of his profes-
sional life.

The first, or “ Rational,” part of this work is, then, designed
for few others than technical students, although there are
engineers whose tastes induce or circumstances require inves-
tigations in connection with the elasticity and resistance of
materials. The writer would esteem himself fortunate if the
mathematical portion of the book should find favor with such
individuals and be useful to them,
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In Part II. the mathematical results obtained in Part I. are
subjected to the test of experiment. By the aid of experi-
mental results in a great variety of material, empirical coeffi-
cients are established which involve the varied and complicated
circumstances of material in actual use. The formula, which
otherwise express ideal conditions only, are thus rendered of
the greatest practical value; in fact they constitute the only
reliable practical formula in use by engineers.

All the experimental results are, of course, compilations
only, but they have been taken in all cases from what are
believed to be trustworthy sources, and it has been the inten-
tion to give credit to the experimenter in cvery case. It may
appear that too great a profusion of experimental results has
been introduced. But it has been the aim of the author, even
at the risk of being tedious, to represent truly and completely
the great variety of both quantitative and qualitative phenom-
ena exhibited by material under test; to show not only the
variation in products of different mills but the wvariation in
different products of the same mill; to exhibit the variations
due to difference in size, shape, relative dimensions and condi-
tion of specimens; to show that specimens apparently identi-
cally the same may even give considerable diversity in results
and to prove the difference between the finished member and
its component parts, as well as to indicate the direction in
which further investigations may most profitably be prose-
cuted. A few groups of tests are not sufficient to the attain-
ment of such a series of results.

In the course of the preparation of the MSS. the author
found it necessary to reduce a very great amount of experi-
mental quantities from the crude shape of a mere record of
tests to a useful condition, and to change many others from
one unit to another. These numerical operations involved
much labor, and although they were performed with great care
and repeated in almost every instance, it is very probable that
errors have crept in, though it is believed that there are few,
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if any, of importance. The writer will feel indebted to any
one who will discover them. In all cases, unless otherwise
specifically stated, the ultimate resistance, elastic limit and
coefficient of elasticity are expressed in pounds per square
inch of original area of section.

In a few of the tables of Art. 32 the “strains,” 7 ¢., amounts
of stretch, are given as decimal fractions (hundredths) of orig-
inal length, while the otherwise uniform method of expression
is by means of whole numbers giving per cents. of original
dimensions. This diversity is unintentional and due to the
fact that a part of the MSS. was a portion of that used in
lectures.

The distinction between “stress’ and *“strain’ conflicts,
so far as the latter word is concerned, with ordinary usage.
But some distinction is absolutely necessary, and that used has
had a long existence, and is at least consistent with the ety-
mology of the words. There certainly can be no way of
filling the hiatus caused by the absence of a word to concisely
express changes of shape or dimensions, without some incon-
venience, and that followed will probably cause as little as
any.

W. H. B.

RENSSELAER POLYTECHNIC INSTITUTE,
1883.



PREFACE TO SECOND EDITION.

THE present edition of this work is the result of a careful
revision and extension of the first edition. Since the issue of
the latter, very considerable developments have been made in
constructions of iron and steel, particularly in those of steel;
civil engineers are also pushing their investigations in timber,
cement, cement mortar, building stones, bricks, etc., with
energy and corresponding success. Abstract results in pure
engineering science are constantly finding their applications in
the practical operations of the engineer; while experimental
results with members built for actual use in structures are con-
tinually furnishing bases for new inductions of the greatest
practical or technical value. It has been the design to bring
the present volume into such a condition as to be quite abreast
of these material advances. Considerable old matter has
been canceled and new matter supplied, and Addenda to many
Articles have been written. For convenience of reference it is
believed well to state that new matter and Addenda will be
found in or added to Arts. 20, 21, 24, 32, 34, 42, 45, 40. 51, 57,
6s, 66, 67, 70, 73, 76, 78, 84, 85. 86, 87, 89, 90, 91 and Addenda
at the end of the book. These additions are entirely in the
domain of engineering practice and contain valuable practical
data.

W. H. B.

PHENIXVILLE, PA.,
Sept., 1887.
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PREFACE TO FOURTH EDITION.

THI1s fourth edition contains new matter replacing the old
on pages 296 to 298, 303 to 305, and 325 to 329, together with
such typographical corrections as have escaped notice in the
previous editions. The new matter relates entirely to the
latest advances in the manufacture and treatment of structural

steel members.
W. H. B.

CoLumBIA COLLEGE IN THE CITY OF NEW YORK,
January, 1894.
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ELASTICITY AND RESISTANCE OF
MATERIALS.

PART I.—RATIONAL.

CHAPTER L

GENERAL THEORY OF ELASTICITY IN AMORPHOUS SOLID
Bob1Es.

Art. 1.—General Statements.

THE molecules of all solid bodies known in nature are more
or less free to move toward, or from, or among each other.
Resistances are offered to such motions, which vary according
to the circumstances under which they take place, and the
nature of the body. This property of resistance is termed the
“ elasticity ” of the body.

The summation of the displacements of the molecules of a
body, for a given point, is called the “ distortion” or “ strain™
at the point considered. The force by which the molecules of
a body resist a strain, at any point, is called the “stress” at
that point. This distinction between stress and strain is fun-
damental and important.

Stresses are developed, and strains caused, by the applica-
tion of force to the exterior surface of the material. These
stresses and strains vary in character according to the method



2 ELASTICITY IN AMORPHOUS SOLID BODIES. [AI‘t. I.

of application of the external forces. Each stress, however, is
accompanied by its own characteristic strain and no other.
Thus, there are shearing stresses and shearing strains, tensile
stresses and tensile strains, compressive stresses and compres-
sive strains. Usually a number of different stresses with their
corresponding strains are coexistent at any point in a body
subjected to the action of external forces,

It is a matter of experience that strains always vary con-
tinuously and in the same direction with the corresponding
stresses. Consequently the stresses are continuously increasing
functions of the strains, and any stress may be represented
by a series composed of the ascending powers (commencing
with the first) of the strains multiplied by proper coefficients.
When, as is usually the case, the displacements are very small,
the terms of the series whose indices are greater than unity
are exceedingly small compared with the first term, whose
index is unity. Those terms may consequently be omitted
without essentially changing the value of the expression.
Hence follows what is ordinarily termed Hooke’s law :

The ratio between stresses and corresponding strains, for a
given material, is constant.

This law is susceptible of very simple algebraic representa-
tion. As the generality of the equation will not be affected,
tntensities of stresses and distortions or strains per linear unit,
only, will be considered.

Let 2’ represent the intensity of any stress, and /' the strain
per unit of length, or, in other words, the rate of strain. If
E'is a constant coefficient, Hooke’s law will be given by the
following equation :

=ty O PRERE R b B U BRE LLE ((
If the intensity of stress varies from point to point of a body,

Hooke’s law may be expressed by the following differential
equation :
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I i,
—(?2—, == E q . o d . = . . (2)

If " and /' are rectangular co-ordinates, Eqs. (1) and (2) are
evidently the equations of a straight line passing through the
origin of co-ordinates. It will hereafter be seen that the line
under consideration is essentially straight for very small strains
only.

Art. 2.—Coefficients of Elasticity.

In general, the coefficient £' in Eq. (1) of the preceding
Art., is called the * coefficient of elasticity,” or, sometimes,
“modulus of elasticity.” The coefficient of elasticity varies
both with the kind of material and kind of stress. It simply
expresses e ratio between stress and strain.

The characteristic strain of a tensile stress is ev1dently an
increase of the linear dimensions of the body in the direction
of action of the external forces.

Let this increase per unit of length be represented by /
while p and £ represent, respectively, the corresponding in-
tensity and coefficient. Eq. (1) of the preceding Art. then
becomes :

p=ﬂ;m,E=§.. B el il

E is then the coefficient of elasticity for tension.

The characteristic strain for a compressive stress is evi-
dently a decrease in the linear dimensions of the body in the
direction of action of the external forces. Let / represent this
decrease per unit of length, p, the intensity of compressive
stress, and £, the corresponding coefficient. Hence:

BB BB U (6
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£, consequently, is the coefficient of elasticity for compres-
sion.

The characteristic strain for a shearing stress may be deter-
mined by considering the effect which it produces on the layers
of the body parallel to its plane of action.

In Fig. 1 let ABCD represent one face of a cube, another
of whose faces is fixed along AD. If a shear acts in the face
5 BC, whose plane is normal to the plane of the
---—-B paper, all layers of the cube parallel to the
,\;p\ plane of the shearing stress, i.c., BC, will slide
g E over each other, so that the faces AB and DC
2 will take the positions AE£ and DF. The
5 amount of distortion or strain per unit of length
will be represented by the angle £4AB = @. If
¢ the strain is small there may be written ¢, siz @

or fan @ indifferently.

Representing, therefore, the intensity of shear, coefficient
and strain by S, G and ¢, respectively, Eq. (1) of Art. 1 be-
comes:

A\
e}

Fig.1

95

S__—_Gq)’ ory 4Gl= = aifioiy Eng (3)
/p:/::s

8

It will be seen hereafter that there are certain limits of
stress within which Egs. (1), (2) and (3) are essentially true,
but beyond which they do not hold; this limit is called the
«“limit of elasticity,” and is not in general a well defined
point. " :

Art. 3.—Lateral Strains,

If a body, like that shown in Fig. 1, be subjected to ten-
sion, all of its oblique cross sections, such as FZ£ and GH, will
sustain shearing stresses in consequence of the components
of the tension tangential to those oblique sections. These
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tangential stresses will cause the oblique sections, in both
directions, to slide over each other. Consequently ke normal
cross sections of the body will be decreased; and if the normal

A G E c
N i G
NN s S,
N ’;:”
= >y~ -
/
SN
t’,r'///"\\\\ \\\
B F 4 D
Fig.l

cross sections of the body are made less, its capacity of resist-
ance to the external forces acting on A5 and CD will be cor-
respondingly diminished.

If the body is subjected to compression, oblique sections of
the body will be subjected to shears, but in directions opposite
to those existing in the previous case. The effect of such
shears will be an zucrease of the lateral dimensions of the body
and a corresponding increase in its capacity of resistance.

These changes in the lateral dimensions of the body are
termed “lateral strains’; they always accompany direct strains
of tension and compression.

It is to be observed that lateral strains decreese a body’s
resistance to tension, but zncrease its resistance to compression.
Also, that if they are prevented, both kinds of resistance are
increased.

Consider a cube, each of whose edges is @, in a body sub-
jected to tension. Let 7 represent the ratio between the
lateral and direct strains, and let it be supposed to be the same
in all directions. If /, as in Art. 2, represents the direct §train,
the edges of the cube will become, by the tension: a(1 4 /),
a(1 — r/) and a(1 — /). Consequently the volume of the re-
sulting parallelopiped will be :

a1+ —rip=a(14+/(1—2r)] . . . (1)
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if powers of / higher than the first be omitted. Witk r be-
tween O and Y, there will be an increase of wvolume, but not
otherwise.

If the body is subjected to compression, the edges of the
cube become: a(1 —4), a(1 + »,4) and a(1 4 »,/4,); while the
volume of the parallelopiped takes the value:

1= L) (1 rdf = @1 her— D] . . . (2)

As before, the higher powers of /, are omitted. If the vol-
ume of the cube is decreased, », must be found between o
and %.

Art. 4.—Relation between the Coefficients of Elasticity for Shearing and
Direct Stress in a Homogeneous Body.

A body is said to be homogeneous when its elasticity, of a
given kind, is the same in all directions.”

Let Fig. 1 represent a body subjected to tension parallel to
CD. That oblique section on which the shear has the greatest

A £ g intensity will make an angle of
274 45° with either of those faces
SRR whose traces are CD or BD ; for

if a is the angle which any
oblique section makes with BD,
% p £ the total tension on B0, and
Fig.1 A’ the area of the latter surface,
the total shear on any section whose area is A' sec o, will be
P sin . Hence the intensity of shear is:

O

VR T ot 2

A—,a—(;:‘?,sma TR SN T,

The second member of Eq. (1) evidently has its greatest
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value for @ = 45°. 'Hence, if the tensile intensity on BD is

represented by %: 2, the greatest intensity of shear will be:

e "
S= b (2)
Then by Eq. (3) of Art. 2:
: =2
IS Ea Rl - (3)

In Fig.1 £EX and KG are perpendicular to each other, while
they make angles of 45° with either AB or CD. After stress,
the cube £EKGH is distorted to the oblique parallelopiped
E'KG'H'. Consequently EKGH and E'KG'H' correspond to
ABCD and AEFD, respectively, of Fig. 1, Art. 2. The angu-
lar difference EXG — E'KG' is then equal to @; and EKE’

=GKG =2. Also E'KF =45° — 2.
2 2

Using, then, the notation of the preceding Arts., there will
result, nearly :

& -7l
tan (45 —%):%-:I—Z(I-{—r); i (D

remembering that /"X = FK(1 4 /); and that
E'F =FK(1 — 7).

From a trigonometrical formula, there is obtained, very
nearly :
~ tan 45° — tan —? I —%
tan (45°—-2—)= = " =1—¢. . (5)

tan 45° 4 tan %’- I 4 -Z—')-
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From Egs. (4) and (5): -

EEESAT Yy N T e, A LT
Substituting from Eq. (3), as well as from Eq. (1) of Art. 2:

E

G:m(ﬂ

It has already been seen in the preceding Art. that » must
be found between o and 5, consequently e coefficient of elas-
ticity for shearing lics between the values of V4 and Y4 of that of
the coefficient of elasticity for tension.

This result is approximately verified by experiment.

Since precisely the same form of result is obtained by
treating compressive stress, instead of tensile, there will be
found, by equating the two values of G':

E V.08 E _1+n

do s Maliies e fard 34 or j* 7O
1+7 147 L

o e

It is clear, from the conditions assumed and operations
involved, that the relations shown by Egs. (7) and (8) can only
be approximate. %

Art. 5.—Expressions for Tangential and Direct Stresses in Terms of the
Rates of Stirains at any point of a Homogeneous Body.

Let any portion of material, perfectly -homogeneous, be
subjected to any state of stress whatever. At any point as O,
Fig. 1, let there be assumed any three rectangular co-ordinate
planes; then consider any small rectangular parallelopiped
whose faces are parallel to those planes. Finally let the
stresses on the three faces nearest the origin be resolved into
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components normal and .parallel to their planes of action,
whose directions are parallel to the co-ordinate axis.

The intensities of these tangential and normal components
will be represented in the usual manner, Ze., p,, signifies a
tangential intensity on
a plane normal to the
axis of X (plane ZY),
whose direction is paral-
lel to the axis of Y,
while p.. signifies the
intensity of a normal
stress on a plane nor-
mal to the axis of X
(plane ZY) and in the
direction of the axis of
X. Two unlike sub- o - 3
scripts, therefore, indi- Fig.1
cate a tangential stress, while two of the same kind signify a
normal stress.

From Eq.(3) of Art. 2 and Eq. (7) of Art. 4, there is at
once deduced :

X

E
° S:z(l—_*_r)q)::G(p o B (l)

Now when the material is subjected to stress the lines
bounding the faces of the parallelopiped will no longer be at
right angles to each other. It has already been shown in Art.
2 that the angular changes of the lines, from right angles, are
the characteristic shearing strains, which, multiplied by G, give
the shearing intensities.

Let @, be the change of angle of the boundary lines
parallel to X and Y.

Let @, be the change of angle of the boundary lines
parallel to Y and Z.
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Let @, be the change of angle of the boundary lines
parallel to Z and X,
Eq. (1) will then give the following three equations:

L ]

£ ‘

pz’ = m @y O Pl Bl a0, IS (2)
E

Dy = 5(¢;) A R T BT
E

p"zz_(l-}-—r)% ETRET RSt £

In Fig. 1 let the rectangle agf% represent the right pro-
jection of the indefinitely small parallelopiped dr dy dz. If
#, v and w are the strains, parallel to the axis of #, y and 2, of
du dv dw
dr' dy dz’
etc.,, may be considered constant throughout this parallelo-
piped ; consequently the rectangular faces will change to
oblique parallelograms. The oblique parallelogram d/ck, whose
diagonals may or may not coincide with those of agf7%, there-
fore, may represent the strained condition of the latter figure. ®

Then, by Art. 2, the difference between &% and the right
angle at /% will represent the strain ¢,. But, from Fig. 1, ¢,
has the following value:

the original point %, the rates of variation of strain

@ = dhe + Olic VS i S e S (5)

But the limiting values of the angles in the second member
are coincident with their tangents; hence:

de bec
QI—-Z’}—}-ZZ. . -....(6)
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But, again, de is the distortion parallel to OX found by
moving parallel to OY, only ; hence it is a partial differential of
u, or, it has the value:

au
a'e:-‘—{}d}'.......-(7)

.

In precisely the same manner éc is the partial differential
of v in respect to x, or:

dv
be = N dx.

By the aid of these considerations, Eq. (6) takes the form:
du £/
qll_z}-’—{-a S O SRS PR I -

If XY be changed to VZ, and then to ZX, there may be
at once written by the aid of Eq. (8):

dv dw ;
([, = ZE—'—@ 3 . . . 3 5 . (9)
a’w du
b o A (10)

Egs. (2), (3) and (4) now take the following form :

d d
P 2 31;+£) (11)

,0,.=G’( d‘v e 2. LN (1)

dw |, du
/),,—G +ds ey » e iy (O

Digitize
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The direct stresses are next to be given in terms of the
displacements #, v and w. Again, let the rectangular parallelo-
piped dx dy dz be considered. Eq. (1), of Art. 1, shows that
the strain per unit of length is found by dividing the intensity
of stress by the coefficient of elasticity, 7f a single stress only
exists. But in the present instance, any state of stress what-
ever is supposed. Consequently the strain caused by p.., for
example, acting alone must be combined with the lateral
strains induced by p,, and p,. Denoting the actual rates of
strain along the axes of X, Y and Z by /, /, and /, therefore,
the following equations may be at once written by the aid of
the principles given in Art. 3:

s /1+<py,+p,,>z§. o

by

Lo = bt (putra ) oo o 9)

%L__/"I‘(.pﬂ’—i-pxx)E S L s R

Eliminating between these three equations:

ﬁxx I+7’[ + (1+Z+ )_‘ S8 (17)
”_x+r[1 AR
o= (bt TG0+ D] - (9)

But if %, v and w are the actual strains at the point where
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these stresses exist, the rates of strain /, /, and 4 will evi-
au du dw b
dently be equal tod & dE’ respectively. The volume

of the parallelopiped will be changed by-those strains to

da(1 4 L)dy(1 + L)dx(1 + L) = dr dy ds(r + 1, + I, + 1),

if powers of /, /, and /, above the first be omitted. The
quantity (/, 4 4, + 4) is, then, the rate of variation of volume, or
the amount of variation of volume for a cubic unit. 1f there be

put

nd

e
Er5tE ™ C=giry

Egs. (17), (18) and (19) will take the forms:

2Gr du
p“_1—2r0+262r' AU L
_ 267 dv 3
p”_l_zrﬂ-}-szy (. ke S it B
2Gr dw
= Sl el N 4
pu 1 — 27 0 + G (2 3

The form in which Egs. (14), (15) and (16) are written,
shows that if g, g, or 2, is positive, the stress is tension,
and compression if it is negative. Consequently a positive
value for any of the intensities in Eqs. (20), (21) or (22) will in-
dicate a tensile stress, while a negative value will show the
stress to be compressive.

The Egs. (14) to (19), together with the climination in-
volved, also show that the coefficients of elasticity for tension
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and compression have been taken equal to each other, and that
the ratio 7 is the same for tensile and compressive strains.

Further, in Eqs. (11), (12) and (13), it has been assumed
that G is the same for all planes.

Hence Egs. (11), (12), (13), (20), (21) and (22) apply only to
bodies perfectly homogencous in all directions.

It is to be observed that the co-ordinate axes have been
taken perfectly arbitrarily.

Art. 6.—General Equations of Internal Motion and Equilibrium.

In establishing the general equations of motion and equi-
librium, the principles of dynamics and statics are to be applied
to the forces which act upon the parallelopiped represented in
Fig. 1, the edges of which are dx, dy and dz. The notation to
be used for the intensities of the stresses acting on the dif-
ferent faces will be the same as that used in the preceding
Article.

Let the stresses which act on the faces nearest the origin
be considered negative, while those which act on the other
three faces are taken as positive. '

The stresses which act in the direction of the axis of X are
the following :

On the face normal to X, nearest to  O; —p,, dy d=.

« «“ ¢« farthest from O; (1&, il dﬁ;"d;:)dy dz.
& “ dy dx nearest to O; — pudy dx.
. ¥ ‘“ farthest from 0; <]5,, 2y %’fdz)dydx.
s “  dzdr nearest to O; —p.dzdx.
« “« “ farthest from o; (p,, + dgydy>dz dx.
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The differential coefficients of the intensities are the rates
of variation of those intensities for each unit of the variable,
which, multiplied by the dif-
ferentials of the variables,
give the amounts of varia-
tion for the different edges dz
of the parallelopiped. dy

Let X, be the external dr dz
force acting in the direction -
of X on a unit of volume at
the point considered; then
X, dv dy dz will be the
amount of external force
acting on the parallelopiped.

These constitute all the forces acting on the parallelo-
piped inthe direction of the axis of X, and their sum, if un.

Figd

balanced, must be equal to ggdx dydz; in which » is the

mass or inertia of a unit of volume, and 47 the differential of
the time. Forming such an equation, therefore, and dropping
the common factor dx dy &z, there will result :

du

D . """+ DBee - X, = m D%

(1)

Changing r to 7, y to 2, and 2z to x; Eq. (1) will become :

dp., | dp, . d e
5x’4_”’+”"+y mor . @)

Again, in Eq. (1), changing x to 2, s to , and y to x':
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dp,, dpy, dp,, L d’w
dx+ 4+ A= L Z =m el P oden (3)

The line of action of the resultant of all the forces which
act on the indefinitely small parallelopiped, at its limit, passes
through its centre of gravity, consequently it is subjected to the
action of no unbalanced moment. The parallelopiped, therefore,
can have no rotation about an axis passing through its centre
of gravity, whether it be in motion or equilibrium. Hence, let
an axis passing through its centre of gravity and parallel to the
axis of X, be considered. The only stresses, which, from theii
direction can possibly have moments about that axis, are those
with the subscripts (72), (29), (1), or (25). But those with the
last two subscripts act directly through the centre of the paral-
lelopiped, consequently their moments are zero. The stresses

dp, dp,, ¢ )
—‘—z,jl-dy. dx dz and 75 dz . dx dy are two of six forces whose

resultant is directly opposed to the resultant of those three
forces which represent the increase of the intensities of the
normal, or direct, stresses on three of the faces of the parallelo-
piped; these, therefore, have no moments about the assumed
axis. The only stresses remaining are those whose intensities
are p,, and p,,. The resultant moment, which must be equal
to zero, then, has the following value:

Pdxds . dy+pdxrdy.dz=0 . . . . (4

o D= P b o e

Hence the two intensities are equal to each other.

The negative sign in Eq. (5) simply indicates that their
moments have opposite signs or directions; consequently, that
the shears themselves, on adjacent faces, act toward or from
the edge between those faces. In Egs. (1), (2) and (3), the
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tangential stresses, or shears, are all to be affected by the same
sign, since direct, or normal stresses only can have different
signs.

The Eq. (5) is perfectly general, hence there may be
written :

;g 5 B T e IS S
Adopting the notation of Lamé, there may be written :
pxs=Nn P’y =Nm pu =N3v
. 2w =Ty, pa=1, p,=1,

by which Egs. (1), (2) and (3) take the following forms :

d*u

'+ X°=ma’t’ ¢ e e WY

+ ’+~—'+Y th’ et

a’T d*w
& d+a’~3+z o i hegts.

The equations (11), (12), (13), (20), (21) and (22) of the pre-
ceding Art. are really kinematical in nature; in order that the
principles of dynamics may hold, they must satisfy Eqgs. (7), (8)
and (9). As the latter stand, by themselves, they are applica-
ble to rigid bodies as well as elastic ones; but when the values
of N and 7, in terms of the strains #, ¥ and <, have been in-
serted they are restricted, in their use, to elastic bodies only.
With those values so inserted, they form the equations on
which are based the mathematical theory of sound and light
vibrations, as well as those of elastic rods, membranes, ctc.

2
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In general, they are the equations of motion which the dif-
ferent parts of the body can have in reference to each other,
in consequence of the elastic nature of the material of which
the body is composed.

If all parts of the body are in equilibrium under the action
of the internal stresses, the rates of variation of the strains
%’:—, g:i: and ‘:;,;—:j, will each be equal to zero. Hence, Egs. (%),
(8) and (g) will take the forms:

dN, | dT, | 4T,

<t balird. 2 =
7 a’y+a’z+X° R . L
a8y AdT; 56
7;-1- dy-{-—d;-i— Yot o T, I
a7, dan,

a7, 3 A
dx+_d_7 E+Z"_O SRR (1

These are the general equations of equilibrium. As they
stand, they apply to a rigid body. For an elastic body, the
values of NV and 7 from the preceding Art., in terms of the
strains #, v and w, must satisfy these equations.

The Egs. (10), (11) and (12) express the threc conditions of
equilibrium that the sums of the forces acting on the small
parallelopiped, taken in three rectangular co-ordinate direc-
tions, must each be equal to zero. The other three conditions,
indicating that the three component moments about the same
co-ordinate axes must each be equal to zero, are fulfilled by
Egs. (5) and (6). The latter conditions really eliminate three
of the nine unknown stresses. The remaining six conse-
quently appear in both the equations of motion and equilib-
rium.

The equations (7) to (12), inclusive, belong to the interior
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of the body. At the extericr surface, only a portion of the
small parallelopiped will exist, and that portion will be a
tetrahedron, the base of which forms a part of the exterior
surface of the body, and is acted upon by external forces. Let

‘iz-a be the area of the base of this tetrahedron,and let p, ¢ and

7 be the angles which a normal to it forms with the three axes
of X, YV and Z, respectively. Then will

da cos p = dy ds, da cos ¢ = dz dx, and da cosr = dx djy.
Let P be the known intensity of the external force acting on

da, and let 7, y and p be the angles which its direction makes
with the co-ordinate axes. Then there will result :

X,=Pda.cosmw, Y,= Pda.cosy and Z,= Pda . cos p.

The origin is now supposed to be so taken that the apex of
the tetrahedron is located between it and the base; hence that
part of the parallelopiped in which acted the stresses involving
the derivatives, or differential coefficients, is wanting; con-
sequently those stresses arc also wanting.

The sums of the forces, then, which act on the tetrahedron,
in the co-ordinate directions, are the following :

— (Mydy dz 4 T,dsdx + T,dy dx) 4 Pda cos # = o,

— (Tyds dy + N,ds dx + T,dy dx) + Pda cos x = o,

~(7,dzdy + T,dzdx + Nydydx) + Pdacosp = o.
Substituting from above :

Nycosp+ T,cos g+ T,cosr=Pcosn . . (13)
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Tycosp4 Nycos g+ Tyecosr = Peosy . . (14)
T,cosp+ T,c08 g4 Nycosr=~Pcosp - . . (16)

These equations must always be satisfied at the exterior
surface of the body; and since the external forces must always
be known, in order that a problem may be determinate, they
will serve to determine constants which arise from the in-
tegration of the general equations of motion and equilibrium.

Art. 7.—Equations of Motion and Equilibrium in Semi-Polar
Co-ordinates.

For many purposes it is convenient to have the conditions
of motion and equilibrium expressed in either semi-polar or
polar co-ordinates; the first form of such expression will be
given in this Article.

The general analytical method of transformation of co-
ordinates may be applied to the equations of the preceding
Article, but the direct treatment of an indefinitely small por-
tion of the material, limited by co-ordinate surfaces, possesses
many advantages. In Fig. 1 are shown both the small portion
of material and the co-ordinates, semi-polar as well as rectangu-
lar. The angle made by a plane normal to ZY, and containing
OX, with the plane XV is represented by ¢; the distance of
any point from OX, measured parallel to 27, is called 7; the
third co-ordinate, normal to » and ¢, is the co-ordinate x, as
before. It is important to observe that the co-ordinates z, 7
and ¢, at any point, are rectangular.

The indefinitely small portion of material to be considered
will, as shown in Fig. 1, be limited by the edges dx, dr and
r dp. The faces dx dr are inclined to each other at the angle
dep.
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The intensities of the normal stresses in the directions of
X and 7 will be indicated by N, and R, respectively. The
remainder of the notation
will be of the same gen-
eral character as that in
the preceding Article;
te., 7, will represent a
shear on the face dr.» dop
in the direction of 7, while
Ny is a normal stress, in |
the direction of @, on the l:
face dx dr. =7

The strains or dis- i ‘:t
placements, in the direc- N
tions of x, » and @, will | N,
be represented by #, p figl N
and w; consequently the
unbalanced forces in those directions, per unit of mass, will be:

,
/
et
&-—_——_ =

L R
N

o

/

d*u dp d*w
mﬁ,m—;ﬁ,—andm-z; R NPT & )

Those forces acting on the faces 4f, fe, and /e, will be con-
sidered negative ; those acting on the other faces, positive.

Forces acting tn the direction of r.
— R.rdpdx,and ;

dRr) , __dR )
;s = r-‘-{—;dr + Rdr |dpdx.

+ Rrdp dr +

~ Ty dr dx, and ;
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+ Ty, drdx + - T *"'

do.drdx.
—~ 7, .rdpdr, and;
+7;,.ra’rpa'r+ a’x 7 do dr.

On the face 47 dx, nearest to ZOX, there acts the normal

] dop.drdx)= N'. Now N'hasa com-
ap

stress <1V¢¢a’r dx +
ponent acting parallel to the face fe and toward OX, equal to
N sin(dp) = N't—i—q) = N'dp. But the second term of this

product will hold (d9)? hence it will disappear, at the limit, in
the first derivative of N'dep .. N'dp = Nyydp drdx. Since
this force must be taken as acting toward OJ, it acts with the
normal forces on /%f, and, consequently, must be given the
negative sign.

If R, is the external force acting on a unit of volume,
another force (external) acting along » will be &, . 7 do dr dx.

The sum of all these forces will be equal to

d*p

m.rdpdrdr . T

Forces acting in the direction of @.

— Nyg dr dz, and ;
N¢¢
+ Ngg drdx + - dq) dr dz.

=7, .7dp dx,and;
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7 T,¢.rdcpdx-f-(d(r Tr) gy = dT;'_'*dr Tt .
— T .rdp dr, and;
3, T,,.rdcpdr+‘%*dx.rdcpdr.

As in the case of Ny, in connection with the forces along
7, so the force 7y, dr dx has a component along ¢ (normal to
fe)equal to 7y, dr dx . sin (dp) = Ty, dpdrdz. It will have
a positive sign, because it acts from OX.

The external force is, ¢, . 7 dop dr dx.

Forces acting in the direction of x.

— N,.rdep dr, and ;
+ N,rd¢dr+%dx.rd¢dn
— 7,..dr rdp, and

Ar7T,,

+T,,.dxra’<p+( )d—rdr"

oG o a’r) dz dg.
— T4.dx dr, and;
+ Ty dx dr + 7% drp. dx dr.

The external force is, X, . r dp dx dr.

Putting cach of these three sums equal to the proper rates
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of variation of momentum, and dropping the common factor,
rdo dx dr:

B T R AT T L
AR B0 g 7 do T = i dar @)
(75T dR adTy, R — Ngy Ll d*p
‘dx*‘i"zj +7‘d(p+ T AP o—m—dzr (3)
dT . ar,. dNgg Tro + 7Tho B st d*w

dx + dr =y r dp o % Eakad Db 4 drr @)

These are the general equations of motion (vibration) in
terms of semi-polar co-ordinates; if the second members are
made equal to zero, they become equations of equilibrium.
Egs. (2), (3), and (4) are not dependent upon the nature of the
body.

Since z, 7, and @ are rectangular, it at once follows that :

T,xz Tx,., T,-¢‘:- T¢,.,and Tx¢: T¢x. o el (5)

In order that Egs. (2), (3), and (4) may be restricted to
elastic bodies, it is necessary to express the six intensities of
stresses involved, in terms of the rates of variation of the strains
in the rectangular co-ordinate directions of x, 7, and @. Since
these co-ordinates are rectangular, the Eqgs. (11), (12), (13),(20),
(21), and (22) of Article 5, may be made applicable to the pres-
ent case by some very simple changes dependent upon the
nature of semi-polar co-ordinates.

For the present purpose the strains in the co-ordinate direc-
tions of #, y, and z will be represented by #', 2/, and @/. Since
the axis of x remains the same in the two systems, evidently :

du'  du

dv ~ dr
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From Fig. 1 it is clear that the axis of y corresponds exactly
to the co-ordinate direction »; hence:

dr _ dp
dy — ar

From the same Fig. it is seen that the axis of z corresponds
to @, or 7. But the total differential, @2, must be considered
as made up of two parts; consequently the rate of variation
dw'’

dz
the direction of 7, or if the distance of a molecule from the
oy Lo
Arg) = rdg "
however, a unit’s length of material be removed from the dis-
tance r to 7 + p from the centre O, Fig. 1, while ¢ remains

will consist of two parts also. If there is no distortion in

origin remains the same, one part will be

constant, its length will be changed from 1 to 1. (1 + ;p), in

which p may be implicitly positive or negative. Consequently
there will result :

dw'

d rd<p + 7

For the reasons already given, there follow :
d_dv A do
dy — dr dr ~— dr

In Fig. 2 let dc be the side of a distorted small portion of
the material, the original position of

which was @’¢. Od is the distance 7 % ——4
from the origin, ad = dr and ac = dw, \\\f .,:
while dd" = w. The angular change dw"'
in position of dr is 25 = d—'—” but an Fig:2 i

ad  dr’
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ahy e ! g
amount equal to =8 due to the movement of », and is
a r

not a movement of dc relatively to the material immediately
adjacent to 4.
Hence:

dw' dw w ‘_"ﬂ' bk _@g
dz ~ rdeg

There only remain the following two, which may be at once
written :

dw'_a’iv o a’u_a’u
dx ~ dx rdg

The rate of variation of volume takes the following form in
terms of the new co-ordinates:

du  dv  dw'

dw
~Z vt &2

rdg r ©)

ap
+a’r bl
Accenting the intensities which belong to the rectangular

system =z, y, z, the Egs. (11), (12), (13), (20), (21) and (22), of
Art. 5, take the following form:

e [0 NOEE du

N, =N, _sz_rﬁq-zG;,} SRR T Sl 28 (50
2Gr ap

- ’:' L 2 . . . . . . 8

R N, 1—2r0+26a’r 8)

e s LG _,3)
My = Trot o <ra’(p r
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T,,=T,'=G(d” o SR

0kl w
B (ra'q) & 7) ¢ Jaapy 9

dw du >

Lin=T7/ = ;5;‘*‘%

(12)

If these values are introduced in Egs. (2), (3) and (4), those
equations will be restricted in application to bodies of homo-
geneous elasticity only.

The notation r is used to indicate that the » involved is the
ratio of lateral to direct strain, and that it has no relation
whatever to the co-ordinate 7.

The limiting equations of condition, (13), (14) and (15) of
Art. 6, remain the same, except for the changes of notation,
shown in Egs. (7) to (12), for the intensities V and 7.

Art. 8.—Equations of Motion and Equilibrium in Polar Co-ordinates.

The relation, in space, existing between the polar and
rectangular systems of co-ordinates is shown in Fig. 1. The
angle @ is measured in the plane ZV and from that of X'¥;
while # is measured normal to ZV in a plane which contains
OX. The analytical relation existing between the two systems
is, then, the following :

=7 siny =rcosypcosp, and z=r cosy sinp.
T4

The indefinitely small portion of material to be considered
isaked It islimited by the co-ordinate planes located by
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@ and ¢, and concentric spherical surfaces with radii' » and
r + dr. The directions 7, ¢ and ¢, at any point, are rectangu-
lar; hence, the sums of the forces acting on the small portion
of the material, taken in these directions, must be found and
put equal to

2 2 2
m Zz‘f ¢ m%:’, and m‘i,—t?,

in which expressions, p, # and @ represent the strains in the
direction of 7, @ and % respectively.

Those forces which act on the faces a%, bd and cd will be
considered negative, and those which act on the other faces
positive.

The notation will remain the same as in the preceding Ar-
ticles, except that the three normal stresses will be indicated
by N,, N, and N,
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Forces acting along r.

— N, .rdy rcosyp dop.

+ N, . cosyp dp dop + d(!‘;,’r’a)dr=r"ijK )

o dr +2r N, dr
cosp dip do.
— T4p. r ¢ dr.

+T‘,.rd¢dr+ "’d(p rdyj dr.

— Ty, .7 cosip do dr.

T,,,

2 ap

+ Ty,.7rcosp dp dr + (‘lm’—gﬂ) dp = costp —-**

— Ty sinp dl/)>7‘ dodr.

— Ny .rdpdr.sinaOc= — Ny .rdpdr.cosp do;
on face ce.

—Ny.rcospdpdr.sinaOb= — Ny .rcosy dpdr.ap;
on face be.

Forces acting along .

— Ty . rcost dop r dyp.

+ Ty cosyp dp dp + (‘i—y{‘g—")dr_ r'-- T"‘ dr+2r T,.‘dr)
cos i ap dop.

Digitized by Microsoft®
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— Ny . rdp dr.
+ Ny . ra’z/;a’r-{— "’ do rdp dr.
— T4y . 7 cosp dop dr.

+ Twcasz,b rdo dr -+ <‘M dip = cosip _ﬂa',/,

— Ty Stn2ep dz/)>r do dr.

+ Ty, rdip dr. cosip do; on face ce.

[

7 cosp a’go)__ s .
7 27 de Toy 7 dp dr . sinp dp;

on face ce.

— Ty rdyp dr <sz'7z akc =

The lines a% and ¢£ are drawn normal to Oc and Oa.

Forces acting along .
— Tpy.7costp dop . v dip.

a’T,\,,

+ Ty 72cost) dop d{)-}-(g(—y;’:—r’) dr = ar 4 2r T,y a’r)

cosp dip de.
=2 T’bl"' ra’l,b ar.

+ T4y v dp dr + —=* de’"‘ dp . rdp dr.

— Ny .rcosth do dr.
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+ Ny . rcos¢d¢dr+(Mdt/}_cos:p "‘a’«/:

Wy smxpdzp)rdq) dr.
+ Ty,.rcostp dp dr . dp; on face be.
+ Ny .rdp dr. sinakc =+ Ny rdp dr . sinp do ; on face ce.

The volume of the indefinitely small portion of the ma-
terial is (omitting second powers of indefinitely small quan-
tities): g

reospdp.rdp.dr=4dV;

and its mass is 7. multiplied by this small volume. The latter
may be made a common factor in each of the three sums to be
taken.

The external forces acting in the directions R, @ and @ will
be represented by :

RAV, 4V and W4V,

respectively.
Taking each of the three sums, already mentioned, and
dropping the common factor 4V, there will result:

dNr dT¢' dT.p' ?N,- —N¢ —‘N* = T*'_fa”'/‘

dr +rcosz/).d<p+ra’¢ b 4
dz
+R'_’”d:°'°°"°(')
dT .4 dNg d7ys
+rcos:/'.d(p +rdl/)

+ 2T+ T4y — Twrtam/w— Ty tarz¢+ B < o Zl,;? (2)
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a7, dT4y dN,
&r + 7 cos a’(])+ rdip

ELJ/ + Tyr — N.,,rta;z 4+ Ny tanp X a;toj (3)

+

Since 7, @ and % are rectangular at any point:
T¢,=’,¢, T,q,: T.J,r and T‘P‘b: T‘#'ﬁ'
Hence :

2T + Loy — tani(Tys + Toy) _ 37rp — 22anp . Ty

7 W

2Ty + Ty — tanp(Vy — Ny) _ 3T,y — tan Y(Vy — Ny)
7 7 ¥

These relations somewhat simplify the first members of
Egs. (2) and (3). :

Egs. (1), (2) and (3) are entirely independent of the nature
of the material ; also, they apply to the case of equilibrium, if
the second members are made equal to zero.

The rectangular rates of strain, at any point, in terms of
r, @ and ¢ are next to be found. As in the preceding Art.,
the rates of strain in the rectangular directions of 7, ¢ and ¢
will be indicated by :

d;’Zi’ élﬁ .J_ZZ{_I_ ‘_ZZ’: 6{2’ etc
Oy e N e ;

Remembering the reasoning in connection with the value of

w’
dzx’
there may at once be written :

in the preceding Art., and attentively considering Fig. 1,
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di _ dw P
dx'~ rdy + N
In Fig. 1,if ac=1 and ab = @, while ak = r cot . ¢ (ak is

perpendicular to @0), the difference in length between ac and
ok will be :

@ _ @lany
rcot p r

This expression is negative because a decrease in length takes
place in consequence of a movement in the positive direction
of rp.

Again, a consideration of Fig. 1, and the reasoning con-
nected with the equation above, will give:

d _
dz ~ rcosyp dp

p _ wtany
r r

Without explanation there may at once be written :

doi _ dp
dy  dr’

Fig. 1 of this, and Fig. 2 of the preceding Art. give :

di'’ do o dv _ dp
i e S, L iy

These are to be used in the expression for 7y,. Precisely
the same Figs. and method give:

av dp

dv _ dp dw _dn _n,
ds ~ reosyde’

) dy dr r’

which are to be used in finding 74,
3
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The expression for —— - will be composed of the sum of two

d !
parts. In Fig. 2, @b is the original position of 7 i, and after
the strain # exists it takes the position ec. Consequently ac
(equal and parallel to éd and perpendicular
to ak) represents the strain 7, while ¢Z rep-
resents &n. Since, also, f¢ is perpendicu-
lar to ¢k, the strains of the kind » change
the right angle fc& to the angle fre; or
the angle ec# is equal to

k

4

dw ed
ZF—ecd-}-de—z—f—

ca
ak

_ dn U
_rd¢+ reotd

i it In Fig. 2, the points @, 4 and £ are iden-

tical with the points similarly lettered in Fig. 1. The expres-

’

sion forz - may be at once written from Fig. 1. There may,
then, finally be written:
dw' ntanyp 1/) du' _ doo

;Z’;’T_?’dl/)_*— r Fd ds ~ rcospde’

These equations will give the expression for Zgy.
The value of

au’ dv | dw
=ty T @

now takes the following form:

dap dan

de 20 wtanp -
Z;'+rcosz/)d¢ + ;

b r dip 7. 7

o . (@



Art. 8.)  EQUATIONS IN POLAR CO-ORDINATES. 35

The last two terms are characteristic of the spherical co-
ordinates, .

The equations (20), (21), (22), (11), (12) and (13), of Art.(5),
take the forms: .

N,:lz_cirﬁ-*-ng—f - N Tk, 1 &
= 2 4 (B 2y
N, =:1%f2r9\+.26 ;%%4-§5 e w Eoald Ay
A R
; T,,,:G(‘%—%—{-%). . LR

o dp dy 7
T,,-G(r———ms'pd(p-i-‘-z,—r——) VR AN

If these values are inserted in Eqs. (1), (2) and (3), the
resulting equations will be applicable to isotropic material
only.

As in the preceding Art., v is used to express the ratio
between direct and lateral strains, and has no relation what-
ever to the co-ordinate .

It is interesting and important to observe that the equa-
tions of motion and equilibrium for elastic bodies, are only
special cases of equations which are entirely independent of
the nature of the material, of equations, in fact, which express
the most general conditions of motion or equilibrium.



CHAPTER 1II.

THICK, HOLLOW CYLINDERS AND SPHERES, AND TORSION.
Art, 9.—Thick, Hollow Cylinders,

IN Fig. 1 is represented a section, taken normal to its axis,
of a circular cylinder whose walls are of the appreciable thick-
ness 2. Let p and p, represent the interior and exterior inten-
sities of pressures, respectively. The material will not be
stressed with uniform intensity throughout the thickness #. Yet
if that thickness, comparatively speak-
ing, is small, the variation will also be
small ; or, in other words, the intensity
of stress throughout the thickness ¢
may be considered constant. This
approximate case will first be con-
sidered.

The interior intensity p will be
1 considered greater than the exterior
/. consequently the tendency will
be toward rupture along a diametral
plane. If, at the same time, the ends of the cylinder are taken
as closed, as will be done, a tendency to rupture through the
section shown in the Fig. will exist.

The force tending to produce rupture of the latter kind
will be :

Fig.1

F= a pr —ppey W F 2 0 T
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If WV, represents the intensity of stress developed by this
force,

4 PR i o . (2)

e a(r? — r?) r2—r? -

If the exterior pressure is zero, and if 7' is nearly equal to

7
e T
T - ol ik 4
Nl—z(rx—_’r’)— zt . . . . . . (3)

In this same approximate case, the tendency to split the
cylinder along a diametral plane, for unit of length, will be:

F'=pr' — pr.
If V' is the intensity of stress developed by F':

t_F'_Prl_ern
N_T_——-—t—......(4)

N' is thus seen to be swice as great as V, when p,=o. If,
therefore, the material has the same ultimate resistance in both
directions the cylinder will fail longitudinally when the interior
intensity is only Aalf great enough to produce transverse rup-
ture ; the thickness being assumed to be very small and the cx-
terior pressure zcro.

N, and V' are tensile stresses, because the interior pressure
was assumed to be large compared with the exterior. If the
opposite assumption were made, they would be found to be
compression, while the general forms would remain exactly the
same.
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The preceding formulas are too loosely approximate for
many cases. The exact treatment requires the use of the
general equations of equilibrium, and the forms which they take
in Art. 7 are particularly convenient. As in that Art., the axis
of x will be taken as the axis of the cylinder.

Since all external pressure is uniform in intensity and nor-
mal in direction, no shearing stresses will exist in the material
of the cylinder. This condition is expressed in the notation
of Art. 7 by putting :

Td:x: rx:Tr¢=O-

Again the cylinder will be considered closed at the ends,
and the force 7, Eq. (1), will be assumed to develop a stress
of uniform intensity throughout the transverse section shown
in Fig. 1. This condition, in fact, is involved in that of making
all the tangential stresses equal to zero.

Since this case is that of equilibrium, the equations (2), (3)
and (4) of Art. 7 take the following form, after neglecting X,
R,and @,:

dN,
ek AL NCRESHNENES o (5)
dkR R— Ny
= it vl R ARSOIACNS ( (6)
ANy _
o5t o B &

These equations are next to be expressed in terms of the
strains #, p and w.

In consequence of the manner of application of the external
forces, all movements of indefinitely small portions of the
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material will be along the radii and axis of the cylinder.
Hence:

« will be independent of » and ¢;

p [ i o “ q, [ .t;
w = O.

The rate of change, therefore, of volume will be (Eq. (6) of
Art. 7):

_du [ dp  p
0 — d_x- + 2_7" + ;' . . - . - . (8)
By a6 d*u ;
As p is independent of x, EH i hence if the value of

N, be taken from Eq. (7) of Art. 7 and put in Eq. (5) of this
Airt.:

aN; . 2Gr du aw

7 et ey Rk~ B g
d*u ;
2;’_0’ and u# = axr + a'.

But the transverse section in which the origin is located
may be considered fixed. Consequently if ¥ =0, # =0 and
thus @' = 0. The expression for # is then: x = ax.

The ratio # + x is the /' of Eq. (1), Art. 1; while the p'
of the same equation is simply A, of Eq. (2), given above.
Hence :

a= =

Nl o P"" _flrl’
’1::' — E(rl' L r") . . . - (9)

RIR

Again, Eq. (8), of Art. 7, in connection with Egs. (8) and (6)
of this, gives:
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2Gr /d*p dp P a*p dp P
1—2t\ar* +r_a'r_7°>+263;?+,7r—,a>—0-

43) _

S ERBNG P P A 1 TAT
e rdr 7 dr dr

. @ P e
oo ;—}—;_c‘,or.

rdp -+ p dr = d(pr) = cr dr.

cr? cr b
pr'—'?+b9 Oryp_?—*'-; v S (IO)

This value of p in Eqgs. (8) and (9) of Art. 7 will give:

-t tla+4¢), ¢ b
R_zG{—I—_—Zr—-}-;—F} R (1)
NwzzG{r—Ea_—_f_z—;—)—{—%—i-%} R, ()

At the interior surface R must be equal to the internal
pressure, and at the exterior surface to the external pressure.
Or, since negative signs indicate compression ;

1617 B AR S T MR S =

If »

T e LT s St R LA

Either of these equations is the simple result of applying
Eqgs. (13), (14) and (15) to the present case, for which,

1
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CﬂSp:COS?’:L’OS?T:COSp:O,

cosg=cosy =1, and P= —p or —p. -

Applying Eq. (11) to the two surfaces:
Ja Al e e té) , ¢ .8
P_26{1—2r+2 7’}

Soagaite i s 1)

R R 2 re

~ Subtracting (14) from (13):

266 = LD

1"’—1" N

Inserting this value in Eq. (13):

tat+c) ¢ _ prl—pr
fteta, ) o top

(13)

(14)

The general expressions of R and Ny, freed from the arbi-
trary constants of integration, can now be easily written by
inserting these last two values in Eqgs. (11) and (12). By making

the insertions there will result :

R = /’lrn e /)f’ (px i | f) r‘:r':

1
rn— r? r — 72 T

ﬁlrl e P’J’ + (ﬁl : ﬁ) 7‘,'_7:'?

1
7"—7' r* — 7} toogmit

Ny

(15)

(16)

The stress N, is a tension directed around the cylinder, and

Digitized by Microsoft®
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has been called “ hoop tension.” Eq. (16) shows that the hoop
tension will be greatest at the interior of the cylinder. An ex-
pression for the thickness, #, of the annulus in terms of the
greatest hoop tension (which will be called %) can easily be
obtained from Egq. (16).

If » = 7' in that equation :

&= 207 — (" + )

r? — 7?2

o B

1

a4 i < P, A k+p o)
""’""’{<5;7,_—7+_/z>' } -,

Eq. (17) will enable the thickness to be so determined that
the hoop tension shall not exceed any assigned limit 4 If g,
is so small in comparison with p that it may be neglected, ¢

will become:
i f <% B
t=r{</ji_ﬁ>_!} G b e e

If p, is greater than p, Ny becomes compression, but the
equations are in no manner changed.

The values of the constants & and ¢ may easily be found
from the two equations immediately preceding Eq. (15).

It is interesting to notice that the rate of change of volume,
6, is equal to (@ + ¢) and, therefore, constant for all points.
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Art. 10.—Torsion in Equilibrium.

The formulas to be deduced in this Article are those first
given by Saint-Venant, but, with one or two exceptions, es-
tablished in a different manner.

It will in all cases, except that of the final result for a rec-
tangular cross section, be convenient to use those equations of
Art. 7 which are given in terms of semi-polar co-ordinates.

Let Fig. 1 represent a cylindrical piece of material, with
any cross section, fixed in the plane ZY, and let the origin of

co-ordinates be taken at O. Let

it be twisted, also, by a couple i Pr
P b = U, i’ : cee R

the plane of which is parallel to P —

ZY. The material will thus be

subjected to no bending, but to

pure torsion.

The axis of the piece is sup- ¥ it v
posed to be parallel to the axis of 7 e ¥
X as well as the axis of the couple, N/ P
Normal sections of the piece, orig- 2 \<\
inally parallel to ZOY, will not re- Fig.1 iy

main plane after torsion takes place. But the tendency to
twist any elementary portion of the piece about an axis pass-
ing through its centre and parallel to the axis of X will be very
small compared with the tendency to twist it about either the
axis of 7 or ¢ ; consequently the first will be neglected. In
the notation of Art. 7, this condition is equivalent to making
T,,‘ = O}

As the piece is acted upon by a couple only, all normal
stresses will be zero,
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Egs. (7), (8), (9) and (11), of Art. 7, then become :

N, =12_G”259+ Gd”—o R T
R=I—2r +2Gd—o Do v Dokl
M= 20 0426(2 + 2 =0 . . (3)
T,¢=G<rii‘%p+§r—”;i—y>=o L

After introducing the values of 7, and 7y,, from Egs. (10)
and (12) of Art. 7, in Egs. (2), (3) and (4) of the same Article,
at the same time making the external forces and second mem-
bers of those equations equal to zero, and bearing in mind the
conditions given above, there will result :

., ATy 7RE <_d’u a%p d*w d*u
Z Trd VT T @t rat rhn T
aun ap \ _

+ 7—"[5‘ + ;_CE' SSedhl L0 L os et and i (5)
FT, TRy SO
A n=utiher dx’>_o ©)
il <d’w d*u > . @)
der. ~ \dv* ' rdpdx)

Also by Eq. (6) of Art. 7:
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_ du dp dw p
6_5’;+Z'+r_a'_(p+;—' 2iEu el e (8)

The cylindrical piece of material is supposed to be of such
length, that the portion to which these equations apply is not
affected by the manner of application of the couple. This
portion is, therefore, twisted uniformly from end to end ; con-
sequently the strain # will not vary with any.change in z.
Hence:

du
Z’-r_o........(g)

Eq. (1) then shows that # =o. This was to be anticipated,
since a pure shear cannot change the volume or density. Be-
cause # = 0, Eqgs. (2) and (3) at once give:

dp _ dw o
L St SRS IR S (10)

As the torsion is uniform throughout the portion con-
sidered :

— O, , s 2 s e (11)

S B L e s e e s (39)

Eqs. (11) and (12), in connection with Eq. (10), reduce Eq.
(5) to the following form:
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d*u d?u du d ’u . (

rdp T T T T T a4yt

\i&]&

(13)

Both terms of the second member of Eq. (6) reduce to zero
by Egs. (9) and (11), and give no new condition. The second
term of the second member of Eq. (7) is zero by Eq. (9): the
remaining term therefore gives:

d*w
dx’—o""""(M)

As the stress is all shearing, p will not vary with ¢.
Hence :

ap

;2520.05)

Egs. (10), (11) and (15) show that p =o0, and reduce Eq.
(4) to:

dw w
7_o.......(16)

e

Eq. (10) now becomes % = 0, and shows that w does not

contain @ ; while Eq. (14) shows that w does not contain 2? or

any higher power of . The strain w, in connection with

these conditions, is to be so determined as to satisfy Eq. (16).
If « is a constant, the following form fulfills all conditions :

W =EIRrEN 3 bRl s s o

Eq. (17) shows that tke strain w, in the direction of @, i.e.,
the angular strain at any point, varies directly as the distance
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Srom the axis of X, and, as the distance from the origin measured
along that axis. This is a direct consequence of making 7,y
= O

The quantity a is evidently the angle of torsion, or the
angle through which one end of a unit of fibre, situated at
unit’s distance from the axis, is twisted ; for if ;

e AR et 3

An equation of condition relative to the exterior surface of
the twisted piece yet remains to be determined; and that is
to be based on the supposition that no external force whatever
acts on the outer surface of the piece. In Egs. (13), (14) and
(15) of Art. 6, consequently, = o0. The conditions of the
problem also make all the stresses except:

s Tacaad «Tiwmi T

equal to zero, while the cylindrical character of the piece
makes :

== O~ e = O
- If cos ¢ be written for cos r :
cost = sin q.
Eq. (13), just cited, then gives:
T, 0504 Toug =0 . « & « « (18)

But since p = 0 and w = arxr:

T,,=(:J-g........(|9)
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and T,¢=G<r—d‘;‘5+ar> e et SIS

Eq. (18) now becomes:

adun

dr dr,
%———;———tﬂﬂqz—;o—‘ia. b v SR (21)
rdo *

in which 7, is the value of » for the perimeter of any normal
section.

Eqgs. (13) and (21) are all that are necessary and all that
exist, for the determination of the strain z. Eq. (13) must be
fulfilled at all points in the interior of the twisted piece, while
Eq. (21) must, at the same time, hold true at all points of the
exterior surface.

After # is determined, 7, and 7,4 at once result from Eqgs.
(19) and (20). The resisting moment of torsion then becomes:

du

M:”T,,d, A ar G”dgv.rdra%p—l— Gal, . (22)

In this equation /, = ”r’ . 7d® dr is the polar moment of

inertia of the normal section of the piece about the axis of
X, and the double integral is to be extended over the whole
section.

According to the old, or common, theory of torsion :

M = Gal,.

The third member of Eq. (22), shows, however, that suck an
expression is not correct unless # is equal to zero, z.e., unless
all normal sections remain plane while the piece is subjected
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to torsion. It will be seen that this is true for a circular sec-
tion only.

It may sometimes be convenient to put Eq.(22) in the
following form :

M = G||rar.

du
2 49 + Gal, = Glu.rdr+ Gaty. (23)

In this equation « is to be considered as :

o(?; do s,

J“’du
while the remaining integration in 7 is to be so made that the
whole section shall be covered.

It is very important to observe that the equations of con-
dition for the determination of %, and consequently the general
values of 7, and 7.4, are wholly independent of any consider-
ations regarding the position of the axis of torsion, or the axis
of X. It follows from this, that the resistance of pure torsion is
precisely the same wherever may be the axis about whick the
prece is twisted. It is to be borne in mind, however, that, if
the axis of the twisting is not the axis of the cylindrical piece,
the latter will be subjected to combined bending and torsion ;
the bending being produced by a force sufficient to cause the

piece to take the helical position ne-
cessitated by the torsion. The cylin- -
drical axis is the straight line locus of
the centres of gravity of all the normal 4 )
sections. “ c

If, as in Fig. 2, there are # cylinders
whose centres ¢ are all at the same /
distance Cc =/ from the centre C of _@
Fig.2

O7H

twisting, or motion; and if M is the
total moment of torsion of the system,
4
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while 72 is the moment of torsion of each cylinder about its
own axis or centre ¢, then will A/ = »m ; and each cylinder
will be subject to a bending moment whose amount can be
determined from the condition that the diameter of each piece
lying along Cc before torsion, must pass through C after, and
during, torsion, also.

Since 7., and 7.4 act at right angles to each other, the re-
sultant intensity of shear at any point in an originally normal
section of the twisted piece will be:

P T2y o0 o L S

According to the ordinary methods of the calculus, the co-
ordinates of the point at which 7 has its greatest value must
satisfy the equations:

OB b S SO SR

15
I
IR

d=T< , d’T< _ (d*T b T D
dg? ' drr N \dgdr dg? ~ dr T

After the solution of Egs. (23), it will usually be necessary
only to inspect the resulting value of 7, in order to determine
whether it is a maximum or minimum, without applying the
tests which follow those equations.

Equations of Condition in Rectangular Co-ordinates.

In the case of a rectangular normal section, the analysis is
somewhat simplified by taking some of the quantities used in
terms of rectangular co-ordinates.

In the notation of Art. 6, all stresses will be zero except
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7, and 7, Hence Egs. (10), (11) and (12) of that Article re
duce to:

4T, ar, _
dy o T

a7,
dx

a7,

p 2) = 0.

The strains in the directions of x, y and z are, respectively,
x, v and w. Introducing the values of 7, and 7, in the equa-
tions above, in terms of these strains, from Eqs, (11) and (13)
of Art. 5; and then doing the same in reference to the con-

ditions
Nx=Na=N3= 7;:0:

the following equations will result :
e

d*u du
W + ZZT =0 . } e (26)
dv | dw
Z’ 5,7 = NERU I o T 1o T (27)

The operations by which these results are reached are iden-.
tical with those used above in connection with semi-polar co-
ordinates, and need not be repeated.

Eq. (27) is satisfied by taking :

v=  axs;

W= — ary;

in which a is the angle of torsion, as before.

Digitized b
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Egs. (11) and (13) of Art. 5 then give:
du sy e <V
G( )-G(ZJ’-{—az) L. (29)
_ fde | dw\ _ du
T,_G<‘—Z,}+dx/ G(z} &y - oo

The element of a normal section is dz &y. Hence the mo-
ment of torsion is

= “(Tsz— T.y) dy d.

M

G” )dydz—{— Gz, <
M= Gj(zudz—yudyprcal, I

5= [+ @ as

is the polar moment of inertia of any section about the axis
of X.

The integrals are to be extended over the whole section;
hence, in Eq. (31), 2% dz is to be taken as:

Y% du

1 Zy dy’

zdz.J'

and yu dy as:

% du
y a’yf_‘ 7 az;
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in which expressions, 3, and 2, are general co-ordinates of the
perimeter of the normal section.

Eq. (26) is identical with Eq. (13), and can be derived from
it, through a change in the independent variables, by the aid
of the relations:

z=rcos@; and y = r sin .

Solutions of Egs. (13) and (21).

It has been shown that the function %, which represents the
strain parallel to the axis of the piece, must satisfy Eq. (13) [or
Eq. (26)] for all points of any normal section, and Eq. (21) (or
a corresponding one in rectangular co-ordinates) at all points
of the perimeter; and those two are the only conditions to be
satisfied. ]

It is shown by the ordinary operations of the calculus that
an indefinite number of functions #, of 7 and @, will satisfy Eq.
(13); and, of these, that some are algebraic and some tran-
scendental.

It is further shown that the various functions # which
satisfy both Eqs. (13) and (21) differ only by constants.

If # is first supposed to be algebraic in characte<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>