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PREFACE.

HESE chapters were originally written as a series of lectures

for students at the Royal Indian Engineering College,

Cooper’s Hill; so that the book may be looked upon as one
mainly for students of Engineering.

The aim has been to make the work as practical as possible;
and to keep the methods simple and concise, involving only a
fair knowledge of elementary mathematics. Numerous diagrams
and illustrations have been introduced, so as to enable the student
to obtain as clear an insight into the methods as possible.

Many of the proofs are of course similar to those ordinarily
used in other published works, and I have especially to acknowledge
the following books of reference :

Strength and Elasticity of Materials. Professor Ewing.
Theory of Structures and Strength of Materials. Professor Bovey.
Elements of Machine Design. Professor UNwiN.
Notes on Engineering Construction. Professor REILLY.

I have to thank Professor Minchin, F.R.S., for much advice
and assistance, and I am also indebted to Dr Brightmore, D.Sc.,
for his help.

A large number of Examples have been added as exercises for
the student on the application of the principles explained in each
chapter.

R. J. W.

CoorEr’s Hi1y,
Dec. 1903.
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CHAPTER 1.

GRAPHIC STATICS.

1. I~ order that a line may represent a force, it is necessary,
(@) that its length to a given scale should represent the magnitude of
the force, (b) its direction must correspond with the line of action of
the force, (c) the sense of the force must be indicated by an arrow.

2. Triangle of forces.

Let 0A and OB (Fig. 1) represent in magnitude and direction two
forces P and @ acting at a point O, then R the diagonal of the
parallelogram represents the resultant of 2 and @ in magnitude and

P
Fig. 1. Fig. 2.

direction ; and the force #' which, acting with 2 and @ will keep the
point O in equilibrium, must be equal and opposite to R, and in the
same straight line.

Thus, when three forces act at a point, they will be in equilibrium
if they are parallel and proportional to the sides of a triangle which
are marked with arrows all going round the triangle in the same sense
(Fig. 2).

w. 1
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3. Resultant of a number of forces acting at a point.

Let P, P,, Ps, P; be the forces acting at O (Fig. 3). Draw ab
(Fig. 4) parallel and proportional to P;, and from the extremity b

0

P

Fig. 3.

draw be parallel and proportional to /%, the resultant of 7 and P, is
represented by ac. Then draw ¢d parallel and proportional to P;, the
resultant of ac and P; is ad. Finally drawing de parallel and pro-
portional to P, and compounding it with ad, we get the resultant of
all the forces represented in magnitude and direction by ae, the closing
side of the polygon. Thus, if a polygon be drawn with its sides
successively parallel and proportional to the forces acting at the point,
then the s1de which is requlred to close the polygon, represents the
:resultanj,, of all the forces in magnitude and direction. In order that
the system of forces may be in equilibrium the resultant force must be
zero ; that is, the polygon of forces must close.

Hence, 'if any number of forces in one plane acting at a point are
in equilibrium, then lines drawn successively parallel to the forces, in
the same direction as the sense of the forces, and having lengths
proportional to the magnitudes of the forces, must form a closed
polygon—or, in short, the polygon of forces must close, the direction
arrows all pointing round the polygon in the same sense.

4. Forces acting in one plane which do not meet in a
point. Conditions of Equilibrium. Funicular Polygon.

If three forces are in equilibrium, their directions must pass through
a point, and the condition of equilibrium is that stated in Art. 3.

Let P,, P, P;, P, (Fig. 5) be a system of forces acting in one
plane on a body. From any point o (Fig. 6) draw lines ab, be, cd, de
successively parallel and proportional to the given forces. The figure
abede is the force polygon of the system. The closing line ae represents
the magnitude and direction of the resultant, its sense being opposite
to that of the other forces followed in circuit round the polygon.
Take any pole o, and from it draw lines oa, ob, oc, od, oe, to the
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vertices of the force polygon. From any point f on the line of action
of P, draw fg connecting /7, and P, parallel to the ray ob, which
comes between ab and be representing P, and P, ; also from f draw fm
parallel to the ray oa which is between £, and R. From ¢ the point

4
Fig. 5.

where fg meets P, draw gk parallel to oc, meeting P; in %; from %
draw k% parallel to od, meeting P, in % ; and lastly draw km parallel to
oe meeting, fm in m. Then m is a point on the resultant & ; through
this point draw a line parallel to ae, and we have the resultant fixed in
magnitude, position, and direction.

The lines fy, gk, kk, km, mf, parallel to the rays drawn from any
pole o to the vertices of the force polygon, form what is called the
Jumicular polygon or link polygon of the system of forces.

If in Fig. 5 we apply a force P; at m, equal and opposite to £,
then the forces P, ... P will be in equilibrium. The resultant must
always pass through the point of intersection of the extreme sides fmn
and km of the funicular. For each force can be resolved into its com-
ponents along the two sides of the funicular polygon which meet at
the vertex where the force ‘acts, these components will neutralize each
other, with the exception of those in the lines km and fm. Thus the
whole system is reduced to two forces in these lines, which are represented
in magnitude by oe and oa the components of R.

Since the pole o may be taken at any convenient point, either
inside or outside the force polygon, and as the point f where the two
components of P, are assumed to act, may be taken anywhere on the
line of action of P, we see that any number of funicular polygons may
be drawn for the system of forces.

5. Graphic conditions of Equilibrium.

As explained in Art. 4 the resultant of a system of forces in one
plane acting on a body is proportional to the line required to close the
force polygon, now for equilibrium this line must be zero; therefore

=
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the force polygon must close of itself. Again, the given system is
equivalent to forces represented in magnitude and direction by ao and
oe, their lines of action being in the first and last sides of any
funicular ; these lines must coincide, that is, the funicular polygon
must close. Thus, the conditions of equilibrium are :

(1)  The force polygon of the system must close.
(2) Any funicular polygon of the system must close.

6. Stress.

When a body is acted on by external forces which tend to deform
it, the force exerted in the interior of the body, which resists de-
formation, is called stress.

Consider a bar A B which is being pulled (Fig. 7), or pushed (Fig. 8),
by two equal and opposite forces P. p p
Conceive a section dividing the bar 4_I c <_.l_> D . }_>
into two portions ¢ and D. Consider-
ing the equilibrium of O it is seen that Fig. 7.
the force P to the left is balanced by
the force which D exerts on C at the E"‘L C —~|<—D ]“f
section. Similarly for the equilibrinm Fig. 8.
of D, the force exerted on D by C at
the section must be equal and opposite to . Thus on opposite sides
of any ideal section there exist two equal and opposite forces, each equal
to P.

This action is called stress. The effect of the load is to produce
stress on the section, and the ¢ofal stress on the section is equal to P.

The nature of the internal stress depends on the external forces.
If the forces tend to pull €' and D apart, the stress is tensile ; if the
forces push € and D together the stress is compressive. Ties are
members in tension. Struts are members in compression.

7. Stresses in a closed articulated polygonal frame.

A frame is a structure made up of straight rigid bars articulated

or hinged at the ends. The following conditions are assumed :

(1) The hinge-pins are without friction.

(2) All external forces acting on the frame are applied at and
on the joints.

Thus in the case of a frictionless pin-joint, the external force is
taken as acting through the centre of the pin, and the stress exerted
on the pin by a bar, which is equal and opposite to the reaction on the
bar by the pin, acts along the normal to the surface of contact; and
the stresses in the bars must have their lines of action coincident with
the straight lines joining the centres of the pins.
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If P and @ (Fig. 9) are two forces acting at the joints 4 and B
respectively of a jointed frame, £ can be resolved along the bars 04
and AB; and @ along the bars 4B and BD. These components are

SR
A X i / °
A? :

Fig. 9.

shown by dotted lines; the stresses in the bars will be equal and
opposite to the resolved components of the external forces P and .

The stresses in the two bars meeting at a joint, together with the
external force acting at that joint, must form a system of forces in
equilibrium.

Fig. 10. Fig. 1L

Notation. For finding the stresses in a frame the most convenient
method of lettering is that of Henrici and Bow, in which letters are
placed in the closed spaces between members, and in open spaces
separated by the lines of action of the external forces. Each member
and force is then designated by the letters of the spaces which it
separates. The joints are named by the letters round them.

Let Fig. 10 be a polygonal frame lettered in this manner; and in
equilibrium under the action of the external forces Py, P,, P, P, Ps.
Required to find the stresses S, (0b) in OB, S, (oc) in OC, S; (od) in
OD... in the bars of the frame.

As the external forces are in equilibrium, the force polygon must
close. Draw the force polygon abede (Fig. 11) ab being parallel and
proportional to AB; be parallel and proportional to BC.... Now the
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joint OBC is in equilibrium under the action of P,, and the stresses
S, and S, in OB and OC respectively. Draw from b and ¢ lines bo and
co parallel to BO and CO, these intersect in o, giving ob as the stress
S, in OB and co as the stress S, in CO. Similarly Ps, S,, S; form a
triangle cod which has one side co common to the triangle ¢bo. Thus
at each apex the external force may be resolved into components in the
two given directions, and the stresses S, S;, S;, S, S; found. To find
the sense of the stresses it is only necessary to follow round in circuit
the sides of the force triangle for each apex separately, starting with the
direction of the given force, and then transfer these directions to the
corresponding apex of the frame. 'I'hus at joint OBC, the direction of
P, is given, it acts in Fig. 11 from & to ¢, therefore following round
the triangle bco, the stress S, acts from ¢ to o, and the stress S; from
0 to b; these arrows being transferred to the frame diagram (Fig. 10), we
see that S, and 8, both act away from the joint BOC, that is both are
tensile. Again for the joint COD, we get from the force triangle edbo,
the stress S, in the direction do, and the stress .S, in the direction oc.
Similarly for the stresses in the other bars. It will be found that the
stress S; (oa) is compressive, the arrows pointing towards the joints.

Fig. 10 is called the frame diagram, and Fig. 11 the force or stress
diagram. 'To every side of one figure there is one corresponding side in
the other figure ; these corresponding sides are parallel to each other ;
and each_group of lines meeting in a point of one figure form a closed
polygon in the other. The two figures are therefore described as
“reciprocal” to each other. 2

Suppose that in Fig. 10, the magnitudes of P, and P;are unknown,
their lines of action being given. Beginning at 6 (Fig. 11) draw bede
the polygon for the known forces P,, Ps, Py; then lines drawn from
b and e parallel to P, and P intersect in « giving ab and ea the
magnitudes, directions, and sense of these forces. Draw a funicular
polygon with respect to any pole o, and produce the extreme sides
OB and OF to meet the lines of action of P, and P;. Draw the
closing line A0 ; then OA will be parallel to oa. This property is
important when we wish to find the reactions of supports in the case
of parallel forces. For in the case of parallel forces, the polygon of
forces is a straight line, consequently ba and e would not intersect ;
hence in order to determine ¢ we must draw a ray oa parallel to 04,
the closing line of the funicular polygon.

8. Dead loads. Reactions, Shearing forces, and Bending
Moments.

The shearing jforce at any section of a beam is the algebraic sum of
the external forces between the section and either end of the beam.
The bending moment at a section is the algebraic sum of the moments
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of the external forces, acting between the section and either support,
about an axis in the section.

Let Fig. 12 represent a horizontal girder supported at the ends,
and in equilibrium under the action of the fixed vertical loads
Wy, W, W, and the two upward reactions R, and £,.

Construct the force polygon (Fig. 15) by drawing the line of loads
ad to represent the sums of the loads on a suitable scale, and divide ad
into segments ab, bc, cd representing respectively the given loads
W;, W,, W,;. Choose a convenient pole o, such that the polar
distance ok = H represents on the same scale an even number of units
of force. Complete the force diagram and draw the corresponding
funicular (Fig. 138), its sides intersecting on the vertical lines of action
of the loads.

Wa W2 Wi
e 1 EEN

Fig. 15.

Reactions. Complete the funicular by drawing the closing line
between R, and R,, and draw og parallel to it in the force diagram,
thus determining the point ¢; then dg and ga are the two reactions
R, and R, respectively, which acting upwards close the force polygon.

Shearing force (Fig. 14). Between the right support and the first
load W,, the vertical shear is equal to the reaction ag; between
W, and W, the vertical shear is ga —ab=gb; between W, and W,
it is ga—ab—bc=gc; between W, and left support it is gd. The
ordinates of the stepped figure measured from the line drawn through
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¢ perpendicular to the load line ag, give the shearing force throughout
the span to the same scale as that used for the line of loads.

Bending moment (Fig: 18). Let the bending moment 2 be required
at any section of the beam, say, between W, and W,. Draw a vertical
through the section cutting two sides of the funicular, and let the
ordinate intercepted between them be called y. These sides if produced
give the point of application of the resultant of R, and W,, the
magnitude of which is represented by bg in the force polygon ; let this
resultant be R, and its horizontal distance from y=2. Then

' : M= Ra.
But since /o = H is the altitude of the triangle bgo on base bg
and o 9=l triangle on base v,
we have %= ‘g or Ra=Hy,
therefore the bending moment on the section is
M= Hy,:

and since H is constant, the bending moment at every point in the span
s proportional to the vertical ordinate of the funicular polygon at that
point. If the force represented by A is called unit of force, then
M=y

and the value of H determines the scale of bending moments on which
y represents M.

For example, if the scale of lengths be } inch = 1 foot, and Z7= 20 tons
on the scale of forces, then /7 x }inch = 20 ft.-tons, or,

1 foot-ton = ;%5 x 1+ = L inch;

that is each ¢ of an inch on a vertical ordinate of the funicular
polygon represents 1 foot-ton of bending moment.

9. Graphic construction for the centre of area of plane
figures.

Triangle. The centre of area is at the intersection of lines drawn .
from any two angles bisecting the opposite sides.

LParallelogram. The centre of area is at the intersection of the
two diagonals.

Any Plane Quadrilateral. Let ABCD (Fig. 16) be any quadri-
lateral figure ; draw the diagonals AC and BD. Measure DE=BF,
and CG = A F, then the centre of area O of the whole figure coincides
with the centre of area of the triangle FEG.

Centre of area of any two plane surfaces whose respective centres
of area are already known.

Let ¢, and C; (Fig. 17) be the known centres of area of the two
surfaces whose areas are 4, and A, respectively. Join O, and G, from
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O, set off a line 0, B, in any direction whose length represents on a
given scale the area 4,; and from O, set off a line C,B;, on the

Fig. 16.

opposite side of C,C;, parallel to C,B,, whose length on the same
scale represents the area 4,. Join B, B,, the intersection of B, B, and
C,C, is the centre of area O.

A repetition of this process applied to O, and the known centre of
area of a third surface, will give the common centre of area of the
three.

Fig. 17.

Polygons. The centre of area of a polygon can be found by
dividing it up into triangles or four-sided figures, and finding the
centre of area of each. At the known centres of areas suppose
vertical forces to act proportional to the areas. Draw the force
diagram and funicular, and find the line of action of the resultant R ;
the common centre of area must lie somewhere in this line. Again,
draw the lines of action of the parallel forces through the centres
of area in any other direction (say horizontal). Construct a new
force polygon and a new funicular, and find the line of action of the
resultant. The intersection of this latter resultant with the former
one gives the common centre of area. 1
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10. Roof trusses.

A roof truss consists of a frame supporting a covering. Roof
trusses are sometimes called principals, and are placed about 10
or 12 feet apart.

The simplest form of frame is a é#riangle ; its shape cannot be
changed without altering the lengths of the sides. For this reason,
all complex trusses for roofs or bridges are made up of triangular
frames.

Loaps ox Roors. The loads on a roof truss are (a) the dead load
due to the weight of the framing, covering and snow, (b) the live load
due to wind. The weight of the framing depends on the type and
design of the roof, and may vary from 5 to 20 lbs. per square foot of
area covered.

The following table gives the weight of various roof coverings in
lbs. per square foot.

Weight in lbs.

Description per square foot
Slates 5 to 11
Tiles 7 to 20
Timbering for tiled and
55 to 6
‘| slated roofs (a,dditional)} a3
Corrugated sheets 3%
Boarding £ inch 23
Boarding and sheet-iron
(20 gauge) 6%

The snow load is usually taken in England as 5 or 6 lbs. per square
foot. In colder latitudes this would have to be doubled.

Winp Pressure. In England the maximum pressure of wind is
usually taken to vary between 40 and 50 lbs. per square foot of surface
perpendicular to its direction, which may be taken as horizontal.

The pressure on an inclined surface can be got from the following
empirical formula deduced experimentally by Hutton,

. pl'8kcosf-1
Pu=psin 0

where p is the intensity of the horizontal wind pressure on a vertical
surface, and p, the normal intensity on a surface inclined at an angle
6 to the wind’s direction. For the inclined surface of a roof, if the
wind is taken as horizontal, 6 is the pitch of the roof.

The following table gives the value of p, for p equal to 40 Ibs. per
square foot, and for roofs of different pitch.

3
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Pitch of roof P
5° 50
10° 97
15° 142
20° 181
25° 226
30° 264
35° 300
40° 333
45° 360
50° ‘ 38°1
55° 394
60° 400

For other values of p, the corresponding values of p, will be
directly proportional to p.

The following formula is often used for determining p, the intensity
of the normal pressure on a surface inclined at an angle 6 to the
direction of the wind,

_ 2sind
Pu=P 1y 570’
where p is the intensity of the wind pressure on a surface perpendicular
to its direction.
If © be the velocity of the wind in feet per second, Al

W he > ¢4

v \? :

DistriutioN oF Loap. Reactions. The dead load and wind
load are usually taken as uniformly distributed. The rafters are
generally assumed to be divided up at the joints into short supported
beams, so that each joint carries one half the load between the two
adjacent supports.

In roofs of small span, the two ends of the roof truss are fized ;
and with vertical loading, the two reactions are vertical; but for
a wind load, which is assumed to act on one side of the roof only,
both reactions due to it are inclined, and parallel to the normal wind
pressure.

For roofs of large span, one end of the truss is bolted down, or
fixed to the support; and the other end is supported on expansion
rollers. In this case the reaction due to the wind at the fized end
will be inclined, and that at the free end will be vertical. The total
horizontal component of the wind pressure must be carried at the
fixed end.
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Frame AND StrEss Diagrams. NorarioN. The drawing of the
framework is called the frame diagram, and the reciprocal figure
the stress diagram.

The sides of the stress diagram are proportional to the external
forces, and to the stresses in the corresponding bars of the frame.
Having drawn lines on the frame diagram to represent the external
forces at the joints, a letter is given to each enclosed area of the
frame, also to each open space between the lines of action of the
external forces. Each bar of the frame is designated by the two
letters in the spaces separated by the bar. The line parallel to it
in the stress diagram is similarly lettered at its extremities.

Exampre I. A Kive Roor Truss.
Data. Span = 30 feet.
Distance between principals = 10 feet.
Pitch = 30°,
Dead load on roof per square foot of horizontal surface
covered = 15 1bs.
Horizontal wind pressure per square foot of vertical surface
=40 lbs.
In this first example we will take the vertical load and the wind
load separately.
Vertical load. Fig. 18 is the frame diagram, and Fig. 19 the
stress diagram. The fixed vertical load on one truss is
10 x 30 x 15=4500 lbs. =2 tons (app.)

OJ
Scale 1= 1tory
1 LB
L e T B
=
/ U3 9
// (o] B Ty D
/ N
s, LR
A // H
o ;
7 IR, G
Fig. 18. Fig. 19.

distributed as follows. Load at each of the joints 1 and 5=1 ton.
Load at each of the joints 2, 3, 4=1 ton. The loads being vertical
and symmetrical, the reactions will be vertical, and each reaction will
be equal to half the total load, that is 1 ton.

—g— =

L D—— > >

I9
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Stress diagram. To draw the stress diagram, the reactions of the
supports must first be found, and then the polygon of external forces,
including the reactions, must be drawn ; this polygon must close since
the system of external forces is in equilibrium. Commencing at a
draw the vertical line of loads af (Fig. 19), set off to any suitable scale
ab=AB=} ton, bc=BC=1% ton, ¢cd=CD=1% ton, de=DE=1 ton,
¢f=EF=1% ton. Bisect af in ¢, then fg=ga represent the equal
reactions R, and R,.

Again, the external load, acting at any one joint of the frame, must
be in equilibrium with the stresses in all the bars meeting at that joint.

Consider the equilibrium of joint 1. From b (Fig. 19) draw bk and {rsm s
gh respectively parallel to BH and GH (Fig. 18), then the figure
abhga is the stress diagram for joint 1, and bk and kg give the stresses
in BH and HG.

To determine the semse of the stresses in the bars BH and HG.
Since the joiut 1 is in equilibrium, the arrows must point the same
way round abhga. The direction arrow of ab is known, and this fixes
the other arrows. 'T'ransferring these arrows to the corresponding bars
of the frame diagram, we see that the arrow of BH points fowards the
joint 1, and that of GH away from it.

Hence BH is in compression and G/ in tension.

Next, consider the equilibriwm of joint 2. kb and bc are known
—ct and ¢k are unknown. Draw c¢i and /¢ respectively parallel to C1
and AJI. Then the figure beikb is the reciprocal of joint 2, and ci
and ki give the stresses in bars C7 and HI, and following the arrows
given by the known direction of b¢, we see that bars CI and /I are
both in compression.

Similarly for joint 3, we get the stress figure cdkic, the stress in
bar DK = dk being compressive, and that in bar K7=£%: being tensile.

If at any joint there is no external load, the direction of the
arrows passing round the corresponding polygon must be got from the
character of the stress already found in one of the members at the joint.

The complete stress diagram (Fig. 19), is thus obtained by con-
sidering each joint in succession, taking care to start from, and then
proceed to, a joint at which there are only fwo wnknown forces.

The stresses got by scale are :

In bar BH, bh=1'5 tons, compressive

9 EL: el=15 ” »
» 01; Cl.= 1.0 ”» »
o HCDT kA =150, o
” HI; hi=05 ) D)

KL K=05 2
» IK, ik=05 , tensile
Ll =180 7%, 5
o> Ll A=t 30, 5, e
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Winp Pressure. The surface of the roof being inclined at 30°
with the horizontal, and the intensity of the wind pressure on a
surface normal to its horizontal direction being given as 40 lbs. per
square foot, the intensity of the pressure normal to the surface of the
roof is from table Art. 10

Pn=264 1bs. per square foot of roof surface.

This normal pressure acts on one side only of the roof, and the

total pressure on one bay 10 feet long is
10 x 15 x sec 30° x 26°4 lbs. = 4573 Ibs. = 2°04 tons.

The load at joint 4 is 102 tons, that at joints 3 and 5 being each
equal to 0°51 tons.

Reactions. Assume the truss fized at both ends. As the sum of
the external forces in the direction of the wind loads must be zero, the
reactions are parallel to them and can be found by constructing the
funicular polygon, thus :

In Fig. 20 draw the inclined line of loads ¢/, and set off on it in
order

c¢d=CD =051 ton,
de=DE =102 tons,
of = EF = 0°51 ton.

The part of the reaction R, which is due to ¢f is fe equal and
opposite to ¢f. To find R/, and the remainder of R, take a pole o
and construct the force polygon by drawing oc, od, oe, and the
corresponding funicular aBy8 (Fig. 18). Then in the force diagram
(Fig. 20) draw og parallel to the closing line ad. The reactions are

at joint 1, g¢c =068 ton = R/,
2, fg =136 tons = Iy

» 2



1] GRAPHIC STATICS 15

The stress diagram is begun by considering joint 5. Draw el and
9! parallel to the bars KL and GL, then glefg is the reciprocal of the
joint 5, and g/, le represent the stresses due to wind pressure in bars
GL and LE. Following the sense of direction indicated by R, it is
seen that the stress g/ acts from the joint 5, and is therefore Zensile,
while le acts towards the joint and is compressive. Proceeding
similarly for all the other joints, the diagram finally closes without
a parallel to the bar 7. This means that for a wind blowing from
the right bar AT is superfluous. If the wind blew from the left HJ
would be the active bar and AL would be superfluous.

The stresses due to the wind blowing from the right are found
to be

In bars BH and C1, ¢, ki=118 tons compressive

Bar KL, el=148 ,, i
. KD, kd=090 ,, &
7 0
, KL, =N 230 .
IR k=060 ,, tensile
» HG, kg=068 oA
ARG lg=1175 ,, ’

By adding these with their proper sign to the stresses due to the
vertical loads we get the resultant stresses.

If the wind blows from the left, the corresponding stress diagram
will be similar to that in Fig. 20, but the stresses in those bars which
are counterparts in the two halves of the frame will be interchanged.
The two halves of the truss are usually symmetrical, the members
being designed to resist the maximum stresses to which they can be
subjected.

ExampLe II. ROOF TRUSS OF WHICH THE FRAME DIAGRAM IS SHOWN
IN Fre. 21, FIXED AT BOTH ENDS.

Data. Span between centres of bearings ... ... 40 feet.
Distance between principals . 12 feet.
Inclmatlop of rafters with honzonta] g 30;.0 2

Loads. Deaa load per square foot of horizontal area 22 Ibs.
Pressure of horizontal wind per square foot
of vertical surface ot S0 PLbEE

In the last example separate stress diagrams were drawn for the
fixed vertical loads and the wind loads. This was done to illustrate
the general principles, but the most usual and quickest method, as
adopted in this example, is to draw a single stress diagram to represent
the combined effects of the dead and live loads.
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Dead load. Total vertical load on one bay of roof
40 x 12 x 22 lbs. = 10560 1bs. = 4°72 tons.
Load at joints 1 and 5=14'72 =059 ton.
Load at joints 2, 8 and 4=1}4'72=1"18 tons.

Reactions. 'The reaction and load at each support have an effective
reaction equal to their difference. This effective reaction is that
due to the other loads on the truss, consequently the loads at the
supports may be entirely omitted from consideration. Thus the
reactions at 1 and 5=3%38'54=177 tons.

Live load. The intensity of normal wind pressure (see table
« Art 10) is .

; 39 x 26°4=19'8 Ibs. per square foot.
Total wind pressure acting on one principal is
12 x 20 sec 30° x 19°8 lbs. = 5488 lbs. =244 tons.
Assume the wind blows from the left, then
Load at joints 1 and 8 =061 ton.
% 5 2 =122 tons.
Reactions. The truss being fixed at the ends, the reactions are

parallel to the normal wind pressure.
Their values are found from a funicular polygon drawn exactly as

in last example (see Figs. 22 and 21).

Fig. 21.
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The values of the effective reactions are
at 1, 1'01 tons: at 5, 082 ton.

Now find the resultant loads acting at the joints 2 and 3 (Fig. 21)
by compounding the vertical and wind loads. Similarly at joints 1
and 5 find the resultant upward reactions. 5

Stress diagram (Fig. 23). First construct the polygon of loading
and supporting forces bedegh ; this must close.

Consider joint 1. Draw bk parallel to BH and gk parallel to GH.

Next for joint 2; draw c¢ and %é parallel respectively to CI and
HT; then beihb is the reciprocal for joint 2.

v

Fig. 23.

This process may be continued by passing to the remaining joints
in succession, in such order that at each joint only two forces remain
to be determined. 'The complete stress diagram is shown in Fig. 23.

w. 2
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Table of stresses. Wind from the left.

Stress Stress

Sl ke compressive Member tensile
BH 740 GH 690
cl 670 aJ 3:40
DK 6-10 GL 542
EL . 665 J 37t

HI 22T JK 2-28¢

KL 1-10°

As the wind may blow from the right, corresponding members must
be designed to resist the mazimum stress to which they can be subjected.

Exampre III. ROOF TRUSS FIXED AT ONE END, AND FREE AT THE
OTHER, STRESSES DUE TO WIND PRESSURE.

Let the roof truss (Fig. 24) be fixed at one end, and freely
supported on rollers at the other end.

Data. Span = 40 feet. \\\1.52 \
- Height of horizontal tie above supports b b
=4 feet. \\\\
Distance between principals = 12 feet. N
Slope of rafter with horizontal = 35°. 2% Ny
Pressure of horizontal wind per square 9

foot of vertical surface =50 lbs. Fig. 24.
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The intensity of normal wind pressure on roof surface (see table

Art. 10) is 28 % 30 = 37} lbs. per square foot.
Length of rafter = 25 feet. 244

Total wind pressure on one principal is 25x 12 x 374 = 11250 lbs.
=5 tons distributed as follows : 2} tons at joint 2, and 1} tons at joints
1 and 3.

Mo determine the stresses due to wind it is necessary to construct
two stress diagrams, one for the wind blowing on the free side, and the
other for the wind load on the fixed side. It will be convenient to
consider the wind as having the same sense in both cases, aiid the
truss as free alternately at 1 and 5.

Case I. Wind on the free side.

Reactions. (Fig. 24.) The end 1 of the roof truss being free, the
reaction there is vertical. Draw the vertical through 1 to meet the
resultant wind pressure normal to 13 at 8. Join 85, this gives the
direction of the reaction at 5. For two of the three forces in equi-
librium meet at 8, consequently the third force must pass through 8,
and also through 5 the fixed support. From 8 on the line 82 set off
to a convenient scale the resultant wind pressure equal to 5 tons, and
find its components along the directions of the reactions.

Vertical reaction at 1= R, =257 tons.
Inclined reaction at 5= R, =326 tons.
Stress diagram. Case 1. Fig. 25.

Seale %"= 1tow

9 Fig. 25.

Draw the inclined line ad =5 tons normal to the slope of the
rafter 13.
2—2
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Set off ab=1} tons, be=2% tons, ¢cd=1} tons; draw de parallel
and equal to R, i.e. 3'26 tons, then ¢a should be vertical and equal
to R,, t.e. 2°57 tons. The polygon abcdea is the polygon of loading
and supporting forces and must close. The stress diagram is completed
as in former examples. 'The points j, £, of stress diagram coincide as
there is no stress in bar JK ; which is evident if we consider the
equilibrium of joint 4, as there is no external load at this joint, and
the stresses in DJ and DK are equal and opposﬂce and in the same
straight line.

Case II. Wind on the fized side.

Keeping the wind on the same rafter, the end 1 of roof truss is
now fized, and the end 5 free.

- Reactions. (Fig. 24.) The reaction at 5 is vertical. Produce the
resultant normal wind pressure acting at centre of rafter 13 to meet
the vertical through 5 at 9. Then 91 is the direction of the other
reaction. 'The values of the reactions are found as in Case L. to be

R,/ =reaction at 1 =387 tons.
R, =1eaction at 5=1'52 tons.

Stress diagram. Case I1. TFig. 26.

First draw the polygon of loading and supporting forces abedea, in
which ab, be, cd are the wind loads as before ; de and e the reactions
in direction and magnitude. The stress diagram can now be completed
as explained before. That the points j and £ coincide is a check on
the accuracy of the work.

Scale &' -Tton

Fig. 26.

The following table gives the stresses in the members (by scale
measurement) for the two cases :



1] GRAPHIC STATICS 21

Case 1. Case II.
e Stress in | Compression || Stressin | Compression
tons or tension tons or tension
BF 432 (S 730 C
G 4:32 C 7-30 C
FE 2:96 T 855 7
aqH 378 i 600 T
HE 097 c- 310 T3
FG . 250 C 2:50 C
HJ 055 Gis 5T 7k
JD 192 C 580 C
DK 1-92 4 580 C
KE 1-36 (B 4:32 Ty
JK 0 0
Examere IV.

The roof truss in Fig. 27 presents a difficulty which it is well to
point out.
- Data. Span between bearings = 60 feet.
' Rise of horizontal tie above line of supports =4 feet.
Apex of roof above line of supports = 20 feet.
Dead load at joints 2, 3, 4, 5, ... =3 tons,
Vertical reaction at each abutment= 10} tons.

Scale 1" - 20 Feet.

Fig. 27.

Stress diagram. (Fig. 28.) Commencing as usual at the left
support,. the force polygons for joints 1, 2, and 6 are easily con-
structed, and the stresses @i, bj, i, @k, kj, ij obtained. Now at
each of the joints 3 and 7 there are three stresses unknown, and as
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the resultant of the known forces cannot be resolved in more than
two given directions, the problem would appear indeterminate. The
difficulty may be overcome by finding independently the stress in XU.
This can be got very simply by the method of sections. Take a section
of cutting the bars DN, NU, and UX. The portion of the truss to
the left of this section is acted upon by the three downward loads ; the
upward reaction ; and the stresses in the three bars cut by the section.
The sum of the moments of all these forces about any axis in their
plane must be zero. Take this axis at the intersection of DN and
NU, so that the moments of the forces acting in these lines must be
zero. 'Then calling wx the stress in U.X, we have

uwx 16 =10} x 30— 3 (7} + 15 + 22})
=315—135=180.
Therefore uz =11'25 tons.

Having found the stress in U.X], that in KL can be found from
the equilibrium of joint 7, and the stress diagram completed as in
Fig. 28.

RN

S Qe S

Seale 7~ 1 Ton.
Fig. 28.

Another method is to remove the members LM and MN tem-.
porarily, and substitute for them the dotted diagonal shown in
Fig. 27; then draw the stress diagram as usual till the stress in
UX is found. The original bracing is now restored, and the stress
diagram completed.

11. Method of Sections. :
Suppose a frame to be divided into two segments by a plane
section. 'Then, considering the separate equilibrium of each segment,
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we see that the stresses in the bars (or members) cut by the section
must be in equilibrium with the external forces acting on the segment
on either side of the section.

As the forces are supposed to act in one plane, the conditions of
equilibrium may be expressed analytically thus :

3(X)=0, 3(Y)=0, and S (M)=0

where

3 (X) is the algebraic sum of the horizontal components;

3 (Y) is the algebraic sum of the vertical components;

3 (M) is the algebraic sum of the moments of the forces with
respect to any axis.

The stresses can be determined by the solution of these three
equations, if not more than three bars are cut by the section.

EXAMPLES OF THE APPLICATION OF METHOD OF SECTIONS TO A ROOF
TRUSS.

Roof 30 ft. span (Fig. 29) carried on king trusses 10 feet apart, the
rafters and struts of which are inclined at 83° with the horizontal.
The vertical load is taken at 30 lbs. per square foot of horizontal surface
covered.

1
!
EIS
7 I 6 1
3 I
5
7 el 7
, / %
b4 33° / 8
2 a},’ F ’i
o e e S L 1 TR R e T R
2 Z
Fig. 29.

Determine the stresses in each bar of the truss.
The total vertical load
=380 x 10 x 30 = 9000 lbs.
= 4 tons nearly

of which } ton is carried at each of the points A and C, and 1 ton at
each of the points D, B, E.

Omitting the loads carried by the supports, the effective reactions
are each equal to 1°5 tons.

Let S, S;, S;, ... be the stresses in bars 1, 2, 3, ... of the frame.
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To find S; and S,. At a vertical section cutting bars 1 and 2,

we have, resolving vertically and horizontally,
1'50 =S, sin 33°,

S, =18, cos 33°.

1-50
= 0515
2= 275 x 0838 = 2'3 tons, tension.

To find S; and S,. Take a section cutting bars 3, 4, 2; then
the stresses S;, S, S; in the members 3, 4, 2 must balance the
external forces of 14 tons and 1 ton in order that equilibrium may
be preserved. Take moments about # where the bars 2 and 4 meet.

S3 X/58in 33" Syx BFcos33°=15x15—1 x 7'5 =15 ft. tons
but BF=15 xtan 83° =15 x 65 =975 feet.
Therefore

Therefore S, =275 tons, compression,

15
975 x 0838

Resolving horizontally,

S; cos 83° + S, cos 33° — S; = 0.

S; = 1'8 tons compression.

Therefore
- S, — S; cos 33° _23-18x0838
4 cos 33° 0838
=095 tons compression.
To find S;. Take an approximately vertical section aa, passing
to the right of B, and to the left of 7.
S; =85 from symmetry of roof and loading.
Resolving vertically,
S;sin83°+8,sin83°—8;-15—-1-1=0,
S5 = (S;+S,) sin 33°— 05
'=275%x0545 — 05
=10 ton tension.
The truss being loaded symmetrically, the stress in corresponding
bars of the two halves is the same.

12. Girders.

A girder consists of

(@) An upper member arranged in a straight or polygonal line,
and called the *“ fop boom” or top chord.

() A lower member similarly formed, and called the * bottom
boom ” or bottom chord.

(¢) A series of members, either all inclined, or some vertical
and others inclined, connecting the two chords, and forming with them
a series of triangles. These are called the “‘ web.”
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A girder of uniform depth has both chords straight and parallel.
A girder of variable depth has usually the top chord curved or
polygonal, and the bottom chord straight; the greatest depth being
at the centre.
Girders of uniform depth belong to two principal classes :
(@) That in which the web-bars make alternately equal and
opposite angles with the vertical, forming with the chords a system of
isosceles triangles (Fig. 80). This is called a Warren girder.

AT VTS VAVAN

Fig. 30.

(b)) That in which the web-bars are alternately vertical and
inclined, forming with the chords a system of right-angled triangles
(Fig. 31).

Fig. 81.

The portion of either chord comprised between two adjacent joints
is called a “bay” or “panel length”; each corresponding division of
the girder is called a “panel.”

Loads on girders. (a) The dead load due to the weight of the
flooring, trusses, and lateral bracing; it is usually taken as uniformly
distributed.

(b) The live loud which travels over the bridge, such as trains.

The live load is sometimes taken as uniformly distributed over the
span, but is now generally taken as consisting of two locomotives with
their tenders (the weight of these being coneentrated upon the wheels),
followed by a uniform train load.

The maximum chord stresses due to a live load occur when every
panel point is loaded. The maximum stress in a web member is
produced when the live load covers the longer segment of the span,
and the minimum stress when the smaller segment is loaded. The
maximum and minimum stresses in the web members due to both
dead and live loads are obtained by adding, with their proper signs,
the dead load stresses to each of the corresponding live load stresses.

13. Bridge Truss with Horizontal Chords. Dead load
stresses.

A Pratt truss of eight panels (Fig. 32). Span 168 feet. Length of
bay 21 feet. Depth 24 feet. Dead load at each panel point of the
lower chord 8 toms. :
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On the vertical line of loads (Fig. 83) set off &/ by scale equal to
8 x 7=156 tons, and divide into seven equal parts be, ¢d, ... hj. Bisect
bj in a, then_fcgand ab are the effective reactions.

Ja N
MAN 0 [\ QR /|T /| V A
K| LNINN\| P s| /ul /W|x
A}'B CIDVEVFV el R d}
Fig. 32.
b k

18 :
s N
5'\

PR :

Scale 35 - 1 Ton.

~»

8
<3
NG Sy7e )
RAS

J x
Fig. 33.

First, consider the equilibrium of joint ABK. The triangle of
forces for this joint is @bk, and as ab is upwards, the other forces must
act in the same direction round the triangle; therefore the stress in
BK acts from the joint and is tension ; the stress in A K acts towards
the joint and is compression. Similarly for the upper joint A MLK,
we get ak compression, %/ tension, /m tension, and ma compression.
The stress diagram is completed by considering the joints alternately
on the bottom and top chords. The upper and lower halves of the
stress diagram will be symmetrical about ag. This diagram (Fig. 33)
shows, that the tensile stress in the lower chord and the compressive
stress in upper chord increase from the end toward the centre of the
truss ; while the stresses in the web members increase from the middle
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towards the ends of the truss. The diagonals are all in tension except
AK and AX. 'The verticals are all in compression except KL and
WX, which merely transmit the loads BC and HJ to the top chord.
The stress in vertical QR is zero.

As the polygon adnm is a rectangle, the tension (dn) in DN is
equal to the compression (am) in AM. Also since ao is equal to am
plus mo, the stress in 4O = stress AM plus the horizontal component

of the stress in NVO. ,
The stresses in the different members of the truss can be got from

Fig. 33 by scale. The stresses due to live (moving) loads will be
considered later.

EXERCISES.

1. The derrick crane in Fig. 34 carries a load of 5 tons suspended
from A4, at a distance of 60 feet from the axis of the post BC. Find
the supporting forces at € and D, and the stress in each member.

Ans. Reaction at C=+ 1681 tons
RS e T e
Stress in A B =1366 tons tension
AC=16"13 ,, compression
BC= 498 ,, compression
BD=16"7 ,, tension
CD=11'81 ,, compression.

2

2

2

I /22l
be-——= 60'-———k— 2545 3Tons
Fig. 34. Fig. 35.

2. The framed cantilever in Fig. 35 is fixed at 4 and D, and
carries at C a vertical load of 3 tons. Find the stress in each member
of the truss; and determine the vertical and horizontal components of
the reactions at 4 and D.
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Ans. Stress in BC'=4"24 tons tension
by =OD=B ,, compression
» BD=127 , compression

, AB=47 , tension.
Vertical component at 4 =236 tons

o 2, e D=0564;
Horizontal 4 w A=41: ,,
9 ) ) B=41 2

3. The roof truss in Fig. 36 carries vertical loads as follows :

At A and C, 025 ton. At D and E, 0'84 ton. At B, 0°50 ton.

Find the angle F4J, and the stress in each bar of the truss by the
method of sections.

Fig. 36.

Nore. D and E are at the middle points of AB and BC respec-
tively and DFF is horizontal.

Ans. Angle FAJ =30°48".

Stresses are : Compressive, in 1 and 8, 284 tons; in 3 and 7,
1'74 tons; in 4 and 6, 0" 71 ton. Tensile, in 2 and 9, 2°12 tons ; in
5, 215 tons

4. TFig. 37 represents a portion of a bridge truss cut by a plane
aa,. The span of truss is 235

feet, divided into 10 bays, each D
224 ft. long. Dead load carried G A
at each panel point of lower chord
is 18 tons.
BG =19 ft.; CH=22"1 ft.; A B c | D
DI =242 ft. f l' : l
Find by method of sections 18 @ Yo
the stress in each of the three Fig. 37.

members cut by the section aq,.
Ans. HI=180 tons C.; HD =463 tons T.; CD= 146" 6 tons T.
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5. A roof truss 30 ft. span in Fig. 38 carries a vertical load of
4 tons, distributed as follows : at joints 1 and 2, 0'27 ton ; at joint 3,
0'53 ton; at each of the joints 4, 5, 6, 7, 078 ton. (¢) Find the

\\3
p/\E

Fig. 38.

stress in each member due to these vertical loads. The truss also
supports a normal wind load of 4 tons, distributed at joints 1 and 3,
0'54 ton ; at joints 4 and 5, 146 ton. (b) Find the stress in each
member due to the wind.

Ans. Nore. Compressive stress marked +
Tensile stress marked —

Vertical load Wind load
Member Stress in tons Member Stress in tons
BK, PG +30 Reaction at 2=4
CL, FO +2'16 Reaction at 1=0
DM, EN +1-74 BK —-095
KL OP +0°42 CL -179
LM, ON 4043 DM —095
KI, IP -173 MN +11

MN - 247 ML +1-68
LK +1-68
K1 +1-1
b

Combine the stresses so as to find the maximum stress in each
member due to both loads.
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6. An overhanging roof for a railway station platform, 50 ft.
span (Fig. 39), is supported on a wall at one end, and on an inter-
mediate column 30 ft. from the wall. It carries fixed vertical loads
distributed as follows :

At A, 0°16 ton; B, 044 ton; C, 044 ton; D, 0'32 ton; F, 0°46 ton;
F, 037 ton; H, 046 ton; L, 0°16 ton.

Find the reactions, and the stress in each member of truss.

Ans. Reaction at wall = 04 ton.

Reaction at column = 2°41 tons.

A M, N 0 P, ,Q K __r*

mm e = 2 = S e — = -

Verticals BM and HR are required only to prevent sagging of the
members AN and QL.

AB=-041; BC=—0'94; CD=-148; AN=+0'37; NO=+086;
BN=+054; ON=-022; CO=+068; DO=+133; DE=—110;
EF=-065; FH=+005; HF=+081; OP=+0'63; PQ=-004;
QL=078; EO=+095; FP=+078; HQ=+078.

7. In the last example, if the end L is firmly fixed to the wall,
and the column is fixed at the foot, find the stress in each member
due to normal wind loads at the joints as follows: at A and D),
021 ton; at B and C, 0-58 ton. '

Ans. Reaction at wall =043 ton.

Reaction at column = 2°01 tons.

AB=—047; BC=—098; CD=—15; AN=+052; NO=+122;
BN=4+0178; CN=-032; 00=+095; DO=+119; OL=+1'11;
DI =-185.

8. If, in the last example, the column is hinged at the foot so
that the reaction there is vertical, find the stress in each member due
to the wind loads.

Ans. Reaction at wall=0-75 ton.

Vertical reaction at column =183 tons.

AB=-047; BC=098; CD=151; AN=+052; NO=+122;
BN=+018; CO=+095; CN=-0'32; DO=+119; OL=+195;
DL =-135.
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9. A roof truss fixed at the ends 50 ft. span as in Fig. 40, the
rafters of which make an angle of 30° with the horizontal, carries vertical
loads of AB, BC, CD, DE, EF each equal to 14 tons, also wind loads

Fig. 40.

on the right, viz. CD =056 ton, DE =112 tons, £FF=1"12 tons,
FP =056 ton. Determine the stress in each member of the truss
due to both loads, having first found the reactions due to the wind
graphically.

Ans. AH=+94; BI=+80; CK=+62; DL=+6'1; EN=+82;
FO=+1020; GH=-14; GJ=-60; GM=-13; GO=-95;
HI=+15;1/=07; KJ=+2; KL=—42; LM=+35; MN=-125;
NO=+2°5.

10. Roof truss as in Fig. 41; span 77 ft.; slope of rafter 30°;
rise of roof 22-23 ft. Each rafter is divided into three equal parts, and

Fig. 41.

the main tie into five equal bays. The total vertical load on truss is
62 tons distributed at the joints as under :

At 1 and 2, 0'41 ton ; at 3, 0'83 ton ; at 4, 5, 6, and 7, 114 tons.

The resultant wind pressure is 7-15 tons assumed acting on the
left, divided between the joints thus :

At 1 and 3, 095 ton ; at 4 and 5, 2'62 tons.

The truss is Sized at 1, and free at 2.
Determine the maximum stress in each member due to both loads,
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remembering that counterparts in opposite halves of the truss must
each have the same strength, as the wind may blow from either side.
(Compressive stress +; Tensile —.)
Tons Tons

Ans. BK and GS +12-01 CL and FR+122
DN and EP + 88 KI and ST -136
MI and Qf — 995 o1 - 63
KL and RS + 87 LM and QR— 43
MN and PQ+ 56 NO and OP — 56

11. A Warren girder as in Fig. 42, of span 60 ft., carries a load of
20 tons at each joint of the bottom A
chord. Find the stress in each member CAE/NG
of the girder. B\/D\V/F
The bracing is inclined at 60° tothe AH 4 1y J) K| | *
horizontal. The lower chord is divided
into six equal bays of 10 ft. in length.
Ans. AB=+518; BC=-578; CD=+345; DE=-345;
EF=+115; FG=—11'5; AC=+518; AE=+92'4; AG=+1038;
HB=-289; IC=-1750; JF=-980.

12. A Fink truss as in Fig. 43, span 20 ft., divided into four
equal bays of 5 ft., depth 3 ft., carries loads AB=FEF=197 tons;

Fig. 42.

fp B g G §ED§ R
» J M F
6 G 7
Fig. 43.

BC=DE=57 tons; CD=46 tons. Find the stress in each member
graphically.
Nore. Member 16 is HK, and 57 is N.L ; as the truss consists of
a primary truss and two secondary trusses. Commence the stress
diagram at joint 6 where there are only two unknown stresses, as the
stress in HJ is equal to the vertical load BC.
Ans.
BH=CJ=DM=EN =+21'9 tons KG=LG=-179 tons
HK=JK=ML=NL=-55tomns HJ=MN=+57 tons
KL =+103 tons.

13. A girder 60 ft. span carries loads of 15 tons, 14 tons, 20 tons,
24 tons and 16 tons at points 17 ft., 25 ft., 32 ft., 47 ft., 56 ft.
respectively from the left support. Draw by means of the vector and
link polygons the bending moment diagram. Find the scale of this
diagram, and give the value of the maximum bending moment.



CHAPTER IL
STRESS AND STRAIN.

14. Ix designing a structure we must first determine the forces
which tend to produce deformation. These are called the external
loads, or loads simply. They are measured in force units; usually
Ibs. or tons. Knowing the loads, it is necessary to calculate the
stresses produced by them in the different parts of the structure.
Further, we must have an accurate knowledge of the properties of the
materials employed as to strength and elasticity.

StrEss AND STRAIN. A body which is acted on by external
forces is said to be strained or deformed. 'The force exerted in the
interior of the body, and which resists deformation, is called stress.

The state of strain is simple when the stress acts in one direction
only; it is compound when two or more stresses are acting in different
directions. There are five kinds of stresses, viz. :—

(@) A longitudinal pull or tension.

(b) A longitudinal push or compression.

(¢) Tangential or shearing stress, which tends to make the two
surfaces of a section slide on one another.

(@) Transverse stress.

(¢) Twisting or torsion.

Let 4B, Fig. 44, be a bar circular in cross-section acted on by two
equal and opposite axial forces #, both acting outwards, and con-
stituting a state of tension. Imagine AB divided into two parts, ¢
and /), by a plane at right angles to the axis. Then the force which

“1 «—t— 5t
FA ¢ <= o0 f—r
> 1>
Fig. 44.

C exerts on D must be in equilibrium with the force # on the end 5.
Similarly the force which D exerts on € must balance the force £ on

w. 3
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the end 4. Thus there exists at the section between € and D a stress,
the total amount of which balances /. So Fis the total stress on the
section.

INTENSITY OF STRESS. Stress is usually measured by its ¢ntensity
or stress per unit of area.

TensiLE STress. In Fig. 44 let A be the area of section of bar in
square inches, then if the stress of /' tons is uniformly distributed so
that each square inch of area bears the same amount of stress, the
intensity of tensile stress is

V= sz’ tons per square inch ;

or, intensity of stress is the force per unit of area.

ComprEssIVE StrEss. If, as in Fig. 45, the forces /' act inwards
towards the bar they constitute
compression, tending to cause Ak
failure by crushing, and either F >
force is called a compressive ' :
Dok Fig. 45.

In this case, also, the compressive stress is

________ _(_F

S :§ tons per square inch.

In both these cases of simple pull and push the following condition
must be fulfilled in order to ensure uniformly-distributed stress, i.e. the
line of action of the resultant load must lie in the axis of the bar,
the axis being the line joining the centres of gravity of all the normal
cross-sections.

SHEARING STRESS. If two equal and opposite forces @, @ act
parallel and tangential to a section ab, as in
Fig. 46, the two portions of the bar separated
by the section tend to slide past one another. +Q
The forces are called shearing forces, and pro- a
duce a shearing or tangential stress on the ]
section. If A4 is the area of the section the E

1
1

intensity of shearing stress is

b
o {o

Bending or transverse stress and torsion will
be considered later.

Fig. 46.

SrrAIN.  Strain is a change of shape produeed by stress. If a bar
is pulled by an axial load applied at the ends, the stress is tensile on
cross-sections normal to the axis, and the strain consists of an
elongation in length, accompanied by a diminution in section. If the
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stress is compressive the strain consists of a shortening in length,
accompanied by an increase in section. The strain in shear is simply
a distortion by the sliding of one section on another in the direction
of the shearing stresses.

15. Elasticity. Permanent set.—Elastic limit.

When a stress is applied to a body a deformation or strain is
produced. 'The strain is said to be elastic if it disappears when the
stress is removed. If, on the other hand, after the stress is removed
the deformation still remains, the strain is plastic, and is called
permanent set.

The limiting stress up to which the strain is elastic, and above
which a permanent set is produced, is called the elastic limit. For a
stress less than the elastic limit the strain is proportional to the
stress ; for a stress greater than the elastic limit the strain increases
much more rapidly than the stress. Experiment shows that the
limit of elasticity under repeated stresses of equal intensity, alternately
tensile and compressive, tends to rise. The same result is also found
when the stresses vary from a maximum stress to a minimum stress
of the same kind.

16. Relation between Stress and Strain.

Let a prism of length Z and cross-section A4 be stretched or com-
pressed longitudinally by a force F" applied at the ends, acting along
the axis (Fig. 47).

F F
- et vl i l
e
1 : | | | e —-B—— =] | : ]
Ao | : ks
SEpr: | g3 I g
R R R G
(|
S T e ; 1
e | | e A e A
i_i_ L -; T
A Fig. 47. K

Let 7 be the extension or compression, 4.e. the deformation.
The intensity of stress on cross-sections is

r=5.
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The strain is measured by the ratio

l
Z ’
that is the deformation per unit of original length.
Strain being a ratio of one length to another length is simply a
number. It is not expressed in any unit.
The relation between stress and strain known as Hooke’s law is,
that within the elastic limits the strain is proportional to the stress
producing it.

Thus

8

B S

[

P P

or

If the strain measured per unit of original length be denoted by A,
we have

S=E\, or ,\2%,

FE being a constant, which varies with different materials. It is
called Young’'s Modulus of Elasticity. Within the elastic limits %
has practically the same value for tension and compression. It is
expressed in the same units as the intensity of stress.

For wrought iron and steel this modulus is about 18,000 tons per
square inch ; for cast iron about 6,000 tons per square inch.

17. Poisson’s Ratio.

When a bar is extended by longitudinal pulling forces (Fig. 47) it
contracts laterally. The longitudinal strain is + X for extension, and

= T : s
the lateral strain is b | If the bar is compressed by pushing forces
(Fig. 47) it expands laterally. The longitudinal strain is — X for com-

pression, and the lateral strain is + ol

1 _  lateral strain
m~ longitudinal strain

The ratio

is called Poisson’s Ratio.
For metals 7 has a value between 3 and 4.

18. Stress due to change of temperature.

If the temperature of a bar of length L is raised #° its altered
length becomes L (1 +at), a being the coeflicient of linear expansion.
The elongation is Laf, and the strain is az. If a change of length is

| prevented the stress developed is Fat.
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19. Normal and tangential stress on an oblique plane.

Let BC (Fig. 48) be a bar acted on in the direction of its length by
a force F' uniformly distributed. Let 4 be the area of the normal
cross-section.

% TB'I[FT i

el a5t

e‘\ 7977_/"72

D 2
f"‘/~ \u?«
Jeos6 H

vF
Fig. 48.
The intensity of stress on a section /) normal to the axis is
2
f==.
Now take an oblique plane G'H, whose normal is inclined at an
angle 0 to the axis, and whose area =c—£—é. The total stress on

GH = F, and acts in the direction of the axis.

The intensity of this stress on GH = aren of Gl = 4 %% 6;
= fcos 6.

The intensity of the normal component on GH = f cos® 6.
The intensity of the tangential component or shearing stress on

GH
sin 20

=fcos0sin0=f—T.
The tangential or shearing stress is evidently a maximum when
sin 20 is a maximum, that is when 26=90°, or 6=45°, and the
intensity of maximum shearing stress will be

Max. ¢ =’g :
If we take a section at right angles to GH the intensity of the
normal component on it

=fsin® 6.
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> A

The tangential component or shearing stress on it (5 &
=fsin 6 cos 6
or, the shearing stresses on two planes at right angles are equal, and
the planes of maximum shear are inclined at an angle of 45° to the
| direction of the stress.

In practical tests of tension and compression it is found that
fracture does not take place on a surface inclined at an angle of 45°
to the axis. This may be due to the normal component of pull in
tension which diminishes the resistance to shearing, and the normal
component of push which increases the resistance to shearing. Ex-
periment shows that the inclination of the surfaces of shear to the axis
of the piece is about 35° for tension, and 55° for compression.

20. Shearing Strain.—Modulus of Rigidity.

To consider the deformation due to shear, imagine a small cubical
element of material (Fig. 19) to be fixed on the face 4 B, and acted on

[ '
C (1: D___I'J Q
[} )
I l
! l’
P! i
! i
/ !
II g
A< 8
,'r/ll _/‘/]
7l
///I // // /
t = /
/, )4 ,7 /
/ 1 / {
/ — St
/ o %
/ // /
!
/// 1
Fig. 49.

by a force € along the top face CD. The cube will become distorted,
being lengthened in one diagonal direction, and shortened equally in
the other. The sides remain parallel. <



11] STRESS AND STRAIN 39

The square face A BDC becomes distorted into a thombus ABD'C".
The strain is measured by the change of angle, i.e. ¢, expressed in
circular measure.

Within the limits of elasticity the deformatlon ¢ is proportional to
the intensity of shearing stress ¢, Q4 7

i.e. g=C.¢;
_ ¢ _ shearing stress
pad g= ¢ shearing strain’
where C is a constant called the Modulus of Rigidity. Its value for
wrought iron is about 5,000 tons per square inch, and for steel about

5,200 tons per square inch. For cast iron it is about 2,000 tons per
square inch.

21. Equality of Shearing Stress on planes at right angles.

Let ABCD (Fig. 50) be a small rectangular parallelopiped of unit
thickness, the stresses on which are tan-

gential stresses on two pairs of faces. : q,

The total stress on the face AB=¢,. AB, A <~— =<— =<— B
which is equal in magnitude but opposite in T l
direction to ¢,.DC, the total stress on DC.

The moment of this couple is g, 7,
¢.- AB. AD.

Similarly the total stresses on AD and T 1
BC form a couple of moment 'D = = — ¢

¢ . AD.AB. 9,

For equilibrium these two couples must Pig, 80,
balance.

Therefore G AB. AD=¢q, AD.AB;
that is =45

Hence, at any point in a strained body, whatever the normal
stresses may be, shearing stress in one direction is always accompanied
by a shearing stress of equal intensity in a direction at right angles to
the first. 'This proof is implied in ‘Art. 19.

Two EQUAL SHEARING STRESSES ON TWO PLANES AT RiGHT ANGLES
TO ONE ANOTHER ARE EQUIVALENT TO A 'TENSILE STRESS, AND A
COMPRESSIVE STRESS OF EQUAL INTENSITY TO THAT OF THE SHEARING
StrESS, ON PLANES AT 45° T0 THE DIRECTIONS OF THE SHEARING
STRESS.

- Imagine a small cubical element of side % of the material, subjected
to shearing stress of intensity ¢ on parallel faces AB, DC, and AD, BC
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(Fig. 51). Consider the equilibrium of the small right prism whose base
is ADB, cut off by the diagonal section DB..

Fig. 51.

The forces acting on AB and AD are each =gh?. ~ Their resultant

is gh* N2, acting in the direction OA. To balance this there must be
a normal pull or tension on the diagonal plane DB, acting in the
direction OC. Call this force #, then

F=qi*J2;
or R
Bowfg-is’
but 4 /2 is the area of the plane DB on which F acts.
Therefore f=q;

i.e. the intensity of the normal tensile stress on face DB is equal to
the intensity of the shearing stress on each of the other two faces.
Similarly, considering the equilibrium of the prism standing on the
base ACB, cut off the other diagonal AC, the resultant of the forces
on AB and BC, i.e. gh* /2, acts in the direction BO; consequently for
equilibrium there must be a normal pressure or compression acting in
the direction DO, and, as above, its intensity is
F
ol
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23. Relation between constants E, C, and m.

An enclosed square (Fig. 54), drawn on the side of the original
cube in Case II. of last article, will become distorted into a rhombus,
one diagonal being lengthened, and the other shortened. Let X be
the original length of the diagonal and « its extension ; let Y be the
length of the side of square and y the movement of the side.

From Fig. 54 the distortion can be most easily realised if we first
imagine A2 fixed, and CD moved to FG by the shear on €D ; then
consider AF fixed and BG moved to £H by the shear on BG, which
is the same as the shear on BD), as the angle DBG is very small.

Then from Fig. 54
y_¢

¥ 20

I% is the tensile strain along one diagonal ;

gois
X
&

¥ is the compressive strain along the other diagonal

(the total shortening is y~/2, the original length = ¥ ~/2);
¢, the change of angle, is the shearing strain.

=
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C/ 7 e I -7
A A ' A B el
e i G
P A BN g A ey
4
C., -2 ol e I
3 2, e >, 0y 1/
N ] ,"’t-/ / ,‘/
N i e / // - —
AKX B =2
¥ N .5_0 X / ¥
\ 2 / Y
N
Fig. 54. Fig. 55.

Thus o shearing strain is equivalent to o tensile strain in one
direction, accompanied by a compressive strain in the perpendicular
direction, these strains being each half the shear strain. Fig. 55
shows distortion due to shearing stresses.

In last article the strain in either direction has been shown to be

50
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stress be removed the bar returns to its original length. Between A
and B there is a slight curvature in the diagram, the proportionality
between stress and strain ceases, the strain increasing faster than the
stress, but the strain still continues very small. If during this time
the stress is removed the bar will not entirely return to its original
length ; there will be a small amount of permanent set. At B, the
yield point, the character of the material changes. There is a sudden
rapid extension BC, without increase of the load, which is very much
greater than the previous extension. After the yield point the plastic
stage is reached, and the strain increases much faster than the stress
until fracture occurs. The actual extension during this stage depends
partly on the time during which the load acts ; the extension increases
with time even when the load is not increased.

In tension tests a maximum stress is reached at some point D,
after which the extension continues with a reduced load. The specimen
breaks at /£ and the portion DE of the curve bends back.

In commercial testing the yield point is taken as the elastic limit,
and the ordinate BJF represents this stress limit in tons per square
inch. -

26. Ultimate or Breaking Stress.

When a ductile material such as wrought iron or steel is subjected
to a tension test we find that up to the yield point the
alteration in the length and cross-section of the specimen
is small, but after the yield point, when the loads become
large, the section decreases uniformly over the length.
When the maximum load is reached, and just before the
piece breaks, there occurs a large extension near the place
of rupture, and the section there becomes contracted as
in Fig. 58. It finally breaks with a load less than the
maximum.

The breaking stress is the mazimum load divided by the
original sectional area of the piece.

The breaking stress per square inch is represented in
diagram (Fig. 57), by the ordinate DG.

This breaking stress is got from a steadily-applied load.
Experiments by Wéhler and others show that pieces which
are subjected to a continually-varying stress break with a stress of
from one-third up to the full breaking stress for a steady pull, according
to the amount of variation. These experiments were carried out by
Wohler to determine the effects of repeated alternations of stress from
tension to compression, or between high and low values of the same
kind of stress. The breaking stress for an indefinite number of

Fig. 58.

3
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repetitions depends on the range through which the stress is varied.
It is lowered as the range is increased.

27. Plasticity.

When a structure is liable to live loads and shocks it is important
not only to ascertain the breaking strength of the material used, but
also to determine its power of resisting deformation without rupture.
The plasticity of a material is measured by its final elongation and
contraction of area.

In wrought iron and mild steel plasticity is combined with a high
tensile strength, but this property is absent in cast iron and hard steel.

In specifying for wrought iron and steel it is usual to require a
certain percentage of elongation and contraction of area, as well as a
certain breaking stress.

"The elongation is usually taken on a length of 10 inches.

28. Example of tension test.

Specimen of mild steel.

Original dimensions. Length, 10 inches ; diameter, 0°897 inches ;
area, 0632 inches. ,

Final dimensions. Length, 12658 inches ; diameter, 0°584 inches;
area, (0°2678 square inches.

Load Extension Remarks
Tons Inches
1 0:0011
2 00022
3 00031
4 00042
5 00055
6 0°0066
7 0-0086
8 0-0098
9 0-0100 -
10 0-0110
11 00121
12 00132
13 00144
14 00270 Yield point.
1986 =5 Maximum load.
17:25 — Breaking load.

Elastic limit :
The elastic limit is evidently reached for a load between 13 and
14 tons. The load is taken as 135 tons.
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Elastic limit in tons per square inch
_ load at elastic limit
~ original area
_13%
T 0632

Ultimate or breaking stress
_ maximum load
"~ original area
= 39—6% = 31°52 tons per square inch.

Percentage extension on 10 inches

ﬁnal length — original length
orlglnal length
12658 —
= —————»10 x 100
=26°58 per cent.
Contraction of area per cent.
_or original area — final area
~ original area
0632 — 0°2678
=V maan - 100
= 5762 per cent.

]l[odulus of elasticity :

Taking the extensions for loads up to 12 tons, the mean extension

per ton of load is

= 2143 tons per square inch.

x 100

x 100

0°001 inches.
Now Young’s modulus of elasticity
ot
l ’
where f is the stress producing the elongation /, and Z the original
length ;

JS= i {= 0001 inches ; L =10 inches.

Therefore

32’

10
B= 5632 % 0001
= 15824 tons per square inch.

29. Diagram for mild steel.
Fig. 59 shows a complete diagram of the test. The loads are
plotted vertically to a scale of 0°2 inch per ton, and the extensions

are plotted horizontally, full size.
The first portion of the diagram is straight up to 13 tons. At
14 tons load we get the very sudden and increased extemsion which
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marks the yield point ; after which the curve continues more or less
uniformly. The maximum load was 19'86 tons, from which point the
curve falls back to 17'25 tons, the load at which the specimen broke.
The total extension measured after fracture was 2'658 inches.

B

20

2t \

/8

4

/6

4

2

MILD STEEL| BAR. g

/0

MAXYMUM LOAD| =/9-86 TOns];

N

LOADS - SCALE 0-2 INCH PER TON.

A e 2 B D) EES

EXTENSIONS — rFute size.
Fig. 59.

30. Tension test and diagram for a wrought-iron bar.

Original dimensions. Length, 10 inches; diameter, 0'880 inches;
area, 0'608 square inches.

Final dimensions. Length, 1229 inches ; diameter, 0°742 inches ;
area, 0'433 square inches.

Load at elastic limit, 10°33 tons.

Mazimum load, 15°05 tons.

Stress at elastic limit =

10°33
0608
=17 tons per square inch.
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Ultimate or breaking stress

1505

T 0608

=24'7 tons per square inch.
Percentage elongation on 10 tnches

229 x 100

R o

= 229 per cent.
Percentage contraction of area

 0'608 —0°433

~ 0608

= 289 per cent.

x 100

[cHAP.

Fig. 60 gives the diagram, drawn to the same scales as the diagram

for mild steel (Fig. 59).
The total extension was 229 inches.

16

14

2

/0

WROUGHT| /RON |BAR

LOADS — SCALE 0-2 INCH PER TON.

o 2 4 6 8 /
EXTENSIONS -FULL SIZE.
; Fig. 60.

31l. Work done in fracturing a test bar got from the

diagram.

For explanation, reference is made to the diagram for a mild steel

bar (Fig. 59).
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Work is the product of a force into the linear distance through
which it acts. Ordinates on the diagram represent the loads in tons,
and the extensions are measured as abscisse. Draw BE and CD
verticals. Then the area OABCD of the diagram represents, to some
scale, the work done upon the bar in breaking it. If m inches=1 ton,
and » inches = 1 inch of extension, then
area of diagram in square inches

mn i

If we divide this by the volume of the bar we get the work done
per cubic inch.

The area of the diagram can be found by a planimeter. In the
case of mild steel bar (Fig. 59) this area is 10 square inches; m =02,
and n=1.

Work done in inch tons =

Therefore ;
10 3
Work done = [ soria 50 inch tons.
Work done per cubic inch is
50 e
0632 x10 79 inch tODS:

In the case of wrought-iron bar (Fig. 60) the area of diagram is
63 square inches; m=02; n=1.

Therefore
Work done = _6 A 31°5 inch tons.
02x1
Work done per cubic inch is
31°5 L\
Om =518 inch tons.

In order to compare results for the work done per cubic inch of
material in breaking a bar, the test specimens must be similar, for
the ultimate elongation depends for the same material on the original
length, and to some extent on the section. Again, the portion BC of
the diagram is seldom satisfactorily determined, and for purposes of
ccomparison it would be better not to include the work represented by
BCED, which is almost entirely work expended in local extension, and
to measure only the area OA BE, which represents the work done up
to the plastic limit, at which point the bar is for all practical purposes
destroyed.

32. Compression tests.

If the specimen is very short it will fail by crushing only ; if the
length is great it will fail by bending or buckling; for intermediate
lengths it will fail partly by crushing and partly by bending. In
compression tests, which are intended to cause failure by crushing

4—2
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only, the length of specimens should not be more than 1} to 3 times
the diameter. In the case of mild steel and other ductile metals, as
the load is increased the specimen diminishes in length, bulges out
laterally and assumes a barrel-shaped form (Fig. 61), and this bulging

Fig. 61. Fig. 62.

is accompanied by longitudinal cracks. Cast iron fails by sudden
rupture on a plane inclined at about 45° with the axis. The most
ordinary form of fracture is shearing along an oblique plane making
an angle of about 55° with the axis (Fig. 62).

N
i~
[
0w &
g
5e
“
R
/0
5
COMFPRESSIONS PER CENT. 0
-7 .6 5 .4 -3 .2 o/ Y oD
EXTENSIONS
/ S PER CENT.

,/ /0

/5
.
2 RN
[P
// 20@'&73
R '
25

Fig. 63.
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StrESS-STRAIN Diacram For Cast IroN. Fig. 63 gives a diagram
for cast iron under tension and compression. It is from experiments
by Hodgkinson. Cast metals are practically inelastic and take a set
even with small loads. They exhibit very little plasticity. Cast iron
is about six times stronger in compression than in tension.

33. Torsion Test.

Fig. 64 represents a spiral torsion test for a wrought-iron bar taken
in a Buckton’s torsion machine. The specimen was 10 inches long,
% inch diameter, cross-sectional area 0'442 square inches, and broke
with a weight of 166 lbs. at a leverage of 25°04 inches.

The twisting moment at fracture was

T =166 x 25°04 =4156°6 inch Ibs.

Y
(BROKE) K
0 Y
X 877 T [ 9"
N
Fig. 64.

To rIND THE WoRrk DoNE PER Cusic Inch. If the curve, Fig. 64,
be developed, we get a diagram, Fig. 65, in which the ordinates
represent twisting moments, and the abscissee angles of twist.
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The scale for twisting moments is got by dividing the maximum
twisting moment by the length OK (Fig. 64).

bhezoom s

gy

e .

K ' © |AreA =|8.33 SQUARE INCHES.

T 27 Ja7 7 S7 67 77 87
Fig. 65.
Vertical scale=4%ig =2000 in lbs. per inch.

The horizontal scale for twist has been taken as 1 inch =2,
The area of the diagram, Fig. 65, is 8°33 square inches.

8:33 x 2000 x 27 ,
N S inch tons
=467 inch tons.
Work done per cubic inch
46T 467
~vol. T 10 x 0442
=10°56 inch tons per cubic inch.
34. Dead load and live load.

A dead load is a constant or steady load which does not vary, and
produces a constant amount of straining action. Thus the weight of
a bridge which includes the weight of the main girders, cross girders,
and flooring is a dead load. A live load is a variable load, which
alternately comes on to and is removed from the structure, such as a
crowd of people or a railway train passing over a bridge. For live
loads an allowance is sometimes made for impact or dynamic action.

35. Factors of Safety. Working Stress.
In order to allow for possible inaccuracies in determining the loads
and stresses, imperfect workmanship, and deterioration of material by

exposure, it is necessary that the working stress, that is, the maximum
stress which a material will bear in actual practice, should be a fraction

Therefore work done =

S7
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only of the breaking strength. The factor by which the breaking
strength is divided to get the working stress is called the factor of

safety :
- . breaking stress
or, working stress = factor of safely”

TasLeE oF Facrors oF Sarery (UNWIN).

Factors of Safety for
A live or varying
Loéad producing Tin
Material Structures
: bject to
A dead Equal s:lm]rying
Load Stress of | alternate | T,0ads and
one kind | Stresses of Shocks
only different
kinds
Cast iron 4 6 10 15
Wrought iron and steel 3 5 8 12
Timber ... 7 10 15 20

This method of getting the working stress by dividing the breaking
stress by a factor of safety is an empirical one. Wéhler’s experiments
prove that the safety of a structure depends not on the maximum
intensity of stress to which it is exposed, but on the range of stress
and the number of repetitions of the change of stress. Thus, if a
structure is subjected to a steady load, the working stress may be
greater than when the structure is subject to a varying stress of one
kind (tensile or compressive), and when the structure is subjected to
alternate stress of opposite kinds (tensile and compressive) the working
stress must be still less.

The three cases are :

(@) Steady load.

(b) Load of one kind applied and removed, many times
repeated.

(c) 'Tension alternating with compression of the same mag-
nitude, many times repeated.

"The range of stress is given as below :

Max. Stress Min. Stress Range of Stress
() . i 0
() o 0 S

(c) - ~f 2f
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And the strength of the material in these three cases is approximately
in the ratio of 3:2:1.

Wohler considered that the greatest permissible working stresses
should be in the ratio of 1:2:8, according as the members are
exposed to tension alternating with compression; to tension alter-
nating with no stress; or to a steady load.

The weakening of material by repeated stresses is called futigue.

Professor Unwin has proposed a formula to include cases of
fluctuating stress,

fm,,x=€+ t(t—nD),

where f,, is the actual breaking strength when the piece is exposed
to stresses varying from fi.. to fum, alternately repeated a great
number of times.
D is the fluctuation or range of stress; ¢ the statical breaking
stress, and » a coefficient.
(¢) When D =0 the load is a steady one, and fi.. =¢.
(b) When D=f,,, the load alternates with no load, then
Snax =26 (N1 +02—n). = b/
(¢) When D =2f,,, the stresses are alternately tensile and com-
pressive of equal intensity. The stress fluctuates from f
to —f, then

B ¢ . 2 2
fms.x_2n- ¢ "

The mean value of » =-g for iron and steel, then

fmx=€+,\/t(t—§D>.

The working stress is fy,y, divided by the factor of safety.

Recent experiments made by Professor Osborne Reynolds and
Mr J. H. Smith show “that under a given range of stress the
number of reversals before rupture diminishes as the frequency in-
creases, and that hard steels will not sustain more reversals with the
same range of stress than mild steels when the frequency of the
reversals is great.” In the paper in which they describe these
experiments, they give the following concise résumé of the important
results deduced by Wohler :

1. That wrought iron and steel will rupture with stresses much
below the statical breaking stress, if such stress be repeated a sufficient
number of times.

2. That within certain limits, the range of stress, and not the

maximum stress, determines the number of reversals necessary for
rupture.
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3. That as the range of stress is diminished, the number of
repetitions for rupture increases.

4. That there is a limiting range of stress for which the number
of repetitions of stress for rupture becomes infinite.

5. That this limiting range of stress diminishes as the maximum
stress increases.

LaunaARDT’S AND WEYRAUCH'S FormMuLZE. Let ¢ be the statical
breaking strength, under a gradually-applied load ; w« the primitive
strength, that is, the breaking strength under repeated stresses of the
same kind, the stress varying alternately from » to 0; s the wvibration'
strength, that is, the breaking strength under many times repeated
alternating stresses of equal intensities, but opposite in sign (tension
and compression), that is, the stress varies alternately from s to —s.

(A) Suppose a bar of unit cross-sectional area is exposed to
stresses (f) of the same kind, which vary from a maximum f; to o
mintmum f.

Then the range of stress

M e RN A e Y (1).
e LA
Let £ max.f Q
By Wohler’s law LR TS IREE i T Y (2)

where A is an unknown coefficient.
From (1) and (2),
if D=0, then fi=f,=¢tand K= ;
Si=D=u,and K=1
f2=0.

t—u
hard d K=——,
Launhardt assume =7

if D=wu, then {

as agreeing with, these conditions, and giving results agreeing ap-
proximately with experiment.
Therefore we get from (2)

S D= TR i .

Thus, the breaking strength for a varying stress of the same sign

many times repeated is
o (1 . ‘-%-“-j;) ~u(1+ E22Q) wornrnii(8).

This is Launhardt’s formula for stresses of the same sign.

(B) If the bar be subjected to stresses which are alternately
different in kind and vary from a numerical maximum fi of ome
sign to fu of the opposite sign, then

Si+Sa=D.

L. 64
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Weyrauch found that K= =35 for stresses of different kinds
2u—s—f,

agreed approximately with experiment.
Hence by Wahler’s law

VAN iy ) (T A T

u—s—f;
= gy it )
=u(1_1f_3§i>= (1_LSQ) ............... )

This is Weyrauch’s formula for stresses of different sign.
Experiments on iron and steel give the following approximate
values of u:
For iron, 182 tons per square inch ;
For steel, 18 b
and the ratios 2= % =%—% _ 1, that is, N F
U u 2 3
Thus equations (3) and (4) give the breaking stress of a piece
exposed to repeated varying stress, as

For iron=132 (1 + g)

L Q
For steel =18 (1 + 2) .
With a factor of safety of 3 we get

For iron=4"4 (1 + (2—‘.’)> 1
Working stress

For steel=6 <1 = g)

The + or — sign for ¢ must be used according as the stresses are
of the same kind or of different kinds.
The sectional area of the bar or member
__ the maximum load
~  working stress
The working stress for shearing may be taken as $ths of its value
| for tension.
The following values of working stress may be adopted in tension
and compression :
(@) For a dead load only,
Wrought iron, 6} tons per square inch.
Mild steel, 9 % gl %
(b) For a varying load producing tensile or compressive stress
only,

Wrought iron, 4} tons per square inch.
Mild steel, 6

» ”

”» bR »
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(¢) For a varying load producing equal alternating stresses in
tension and compression,
Wrought iron, 2} tons per square inch.
Mild steel, 3 x 4 Y
In the case of cast iron in which the compressive strength is much
greater than the tensile strength :

Cade (o) {Tensmn, _ 1% tons per square inch.
Compression, 5% 5 o ”»

C&S@ (b) jTenSIOIl, 4 1% ’ %) ”»
{Compression, 4 o o »

Case (¢) Tension, ¥ 28 ” »

Dy~xamio MerHop. (This method is more fully treated in Bridge
Construction, by Prof. Claxton Fidler.) .
In Art. 37 it is shown that when a load is suddenly applied to a bar
the maximum momentary stress produced is double that of the load.
Now, if a bar or member of a structure is already strained by an
initial stress £, and an additional stress 7 be suddenly applied, which
produces an elongation or shortening /, we get a stress-strain diagram
as in Fig. 66, in which the energy of #'+ P is represented by the
area ABEH, and the work done on the bar is represented by the area
ABGC. As these two areas must be equal, we get
=ED=F,
and the dynamically increased stress
=BG
Y ARG = PSR e N R (1)
= statical stress + variation in stress ;

/ C
H 7 /g /
VE x5
A /f 8 ro i Q
T [ = e v 4
due toF
Fig. 66. Fig: 673

or, denoting the initial stress DB =/ by min. §, and BE=P+ F
by max. S, we have GE the variation in stress=max. S—min. §;
that is :—
The maximum dynamically increased stress
=max. S + (max. §'— min. S).
Nore. If the initial stress is negative (— @), and #'=2Q (Fig. 67),
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The dynamically increased stress, from (1)
=P+F+F
=-Q+2Q+2Q=30Q
=Q+{@—(— Q)
=max. §+ {max. §— min. S},
as in this case max. §= @, and min. S=— Q.
If, as before, #=statical breaking stress, and 3 =factor of safety,
then the area of cross-section of member
_ dynamically increased stress

t
3
_ statical stress + variation in stress
« t
3
= % {max. §+ (max. S —min. 8)} ...coieiiiil (2).

In applying this formula, as we shall see later on, the variation of
stress is more gradual in the flange members of a girder than in other
members, and for these we take kalf the variation only, thus

Flange area = ??) {max. S+ § (max. § - min. 8)}.

AxorHER RULE for determining the maximum stress in any member
is to add to the dead load stress, the maximum live load stress
multiplied by a coefficient. This coefficient is 2°0 in all cases, except
for the upper and lower flanges of triangulated girders, for which a
coefficient of 1°5 may be used.

Thus, cross-sectional area

2
dead load stress + Oi } live load stress
1
= ALl G 1(8).
3

It should be noted that equation (2) gives a rather greater area for

the braces near the middle of span where the variation in stress is

equal to

dead load stress + live load stress
than rule formula (3).

36. Strength of wrought iron—steel—ecast iron.

The strength of a material depends greatly on the mechanical
treatment during manufacture. Material that has been worked during
manufacture by rolling and forging is increased in strength. Wrought
iron exhibits greater temsile strength when tested in the direction of
rolling than when tested across the direction of rolling.
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Mild steel contains from ‘1 to ‘25 per cent. of carbon, and hard
steel from ‘25 to 1'4 per cent. of carbon. Mild steel, on account of
its greater tensile strength and plasticity, has practically superseded
wrought iron for constructional purposes.

The tensile strength and shearing strength of steel increase as the
percentage of carbon increases, but the plasticity, as measured by the
elongation and reduction of area, diminishes.

Cast iron is inelastic; there is practically no proportionality between
stress and strain, and consequently no elastic limit.

The properties of each of these three metals are shown in the
following statement :

WrouGHT 1RON Bars. Tensile strength, 21 to 24 tons per sq. inch.
o plates with grain, ,, 20 to 22
= plates across grain, ,, 18 to 20
Extension on an 8-inch length, 20 to 25 per cent.
Contraction of area, 40 to 45 per cent.
Crushing strength, 16 to 20 tons per square inch.
Shearing strength, 16 to 20 tons per square inch.
£ =Young’s modulus of elasticity, 12,500 tons per square inch.
C =modulus of rigidity, 5,000 tons per square inch.

1 bR4

bhl 2

Mirp SteeL (about 0°2 per cent. of carbon) :
Tensile strength, 28 to 30 tons per square inch.
Extension on an 8-inch length, 25 per cent.
Contraction of area, 45 to 55 per cent.
Shearing strength, 22 to 24 tons per square inch.
£ =Young’s modulus of elasticity, 13,000 to 13,500 tons per
square inch.
C = modulus of rigidity, 5,200 to 5,500 tons per square inch.

Casr IroN. 'Tensile strength, 8 to 12 tons per square inch.
Crushing strength, 40 to 50
Shearing strength, 6 to 12 o
E =Young’s modulus, 5,000 to 6,000 tons per square inch.
C = modulus of rigidity, 2,500 to 4,000 tons per square inch.

3 3

37. Work done in extending or compressing a bar within
the elastic limit. Resilience.

Let L be the length of the bar, / the elongation or compression,
A the area of cross-section.

Case 1. GRADUALLY-APPLIED LoOAD.
Let the load be gradually applied, increasing from 0 up to #'; its

mean value is 5 and the work done is therefore 5 J, represented by
the area OAB (Fig. 68).



62 RESILIENCE [cHAP.

But F'=f4 = EA ,J being the intensity of stress.
Therefore

E P F’AL AL
Workdone—~AL E< \ = f“ .
2
Work done per unit of yolume = ‘; 7
8
i
z
El:A
g
of A
RS -

As the material is elastic, this measures also the strain energy
stored in the piece.

If f=stress at the elastic limit, then the work done is called the
resilience of the bar.

Resilience is therefore the work done in deforming a piece up to
the elastic limit, or it may be defined as the energy stored up in the
piece in consequence of a strain up to the elastic limit.

Case 1I. LOAD SUDDENLY APPLIED WITHOUT VELOCITY.
If aload F be suddenly applied without velocity to a bar of length

L, let ! be the deformation (Fig. 69). Then the work done by the
external load must be equal to the energy stored in the bar.

Fig. 69.

Let 7" be the maximum stress produced in the bar. Its initial

value is nil, so the mean resistance is Tk
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The work done on bar = %1 = % %4 7*=area OAB.
Work done by external load = /= area 0ACD.
Tl 1FEA
Therefore R A =
. ALY
and T=2F; or EZ=ZZ.

Hence the maximum intensity of the stress caused by the sudden
application of a constant load, without initial velocity, is double the
intensity of the load itself.

Casg III. SuppeENLY-aPPLIED Loap witH VELOCITY.

Suppose a weight of W lbs. dropped from a height of 4 inches and
stopped by a bar (Fig. 70). P sy

Let 7" be the total stress produced, and ! the %
elongation or shortening. '

The work done by the falling weight = W (& + 1) ' AREA
inch-lbs., and this must be equal to the energy I =
stored. f A
Therefore L

¥

G 1 8 O R S
§l_§ —L—l =W (h+1)= Whkiflis very small. % %

1

If V' =velocity of W at the moment of impact
WV T
'2—9——?—W(}L+l). - - \_-TZ
Ezample 1. What should be the area of cross- "

section of a wrought-iron bar 20 feet long in order L_- et
that it may resist the energy of a load of } a ton pioall i
falling through a height of 3 inches, the resultant load being along the
axis? [F=13,000 tons per square inch; elastic limit, 94 tons per
square inch.

oy P~

W(k+l)=%l=§fAl ..................... @),

where /=95 tons per square inch, W =4 ton, 4= 3 inches = 025 foot,
! = deformation at the elastic limit.

5= B 13000 L
Now 9o—EL—1300020.
” : _20%95
Therefore { (in feet) =13000 = 001486,
and from (1)

2x}(025+0°0146) _ 02646 _ . A
95 < 00146 = 01387 1908 sq. inches.
05 ton

Thus a load having an ntensity of only ~—F§M=O‘26 ton per

A:
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square inch suddenly applied to this bar, with a velocity due to its
fall from a height of ouly 3 inches, produces momentarily the same
maximum intensity of stress as a gradually-applied load of 9} tons per
square inch.

Ezxample 2. What would be the elongation and consequent
intensity of stress produced in a wrought-iron bar 25 feet long and
1} inches diameter when extended longitudinally by a weight of
13 cwt. falling through a height of 7 inches? K =12,500 tons per
square inch.

1 E4

Formula is Wk+il)=5 T 1
If we neglect W1 as being comparatively small, we get
1 EA
Wi = 57T R Sl ST S S 1),

where W =13 cwt. =065 ton, ~="7 inches = 0'583 feet, L =25 feet,
E=12,500 tons per square inch, 4 = 1'25%x 0'7854 = 12272 square
inches.

Then

l_\/2x25x0‘65x{§_ 455
0 12500 x 12272 A/ 36816

= ,/0°01236 = 0°0352 feet.
Intensity of stress

U7 oo oNBegEe :
—EZ = 12500 x - aies 17°6 tons per square inch.
If the load were gradually applied the intensity of stress would be

065

only 19979~ 033 ton per square inch.
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Resolving perpendicular to BD for the normal stress
f,BD =f,AB cos 0 + f, BC sin 0.
Therefore S e ORE0 = 5 BIIO - o T Lo oo e (1).
To get the tangential stress resolve along BD
SfiBD =f,ABsin 6 — f, BC cos 6.
Therefore (s —RIRIMIOIeORIg. o o e s (2).

The tangential stress is a maximum when 6=45°.
Max. f,=‘/—.’_2_—f2.

The normal stress on the same surface inclined at 45° is

L)
Fy
T A
8 !
> ¢ <
Fi>————>— -<——————<—F2
SR
439
2 | s
|

A¢¢i¢¢3

-n

Fig. 72.
If the stresses £; and f; are of opposite sign, /; being a tension or
pull, and £, a thrust (Fig. 72), then the normal stress on BD
Su=/1c08 0 — f,5in% 6,
and the tangential stress on BD
Fim (fs+ £ sin b cos 0=T2 %2 in

If the two stresses are of equal intensity fi and of opposite sign,
then on a plane inclined at 45° there is no normal stress. There exists
only a tangential or shearing stress on the two planes at 45° to the
axes along which the stresses act. The intensity of this shearing

stress 1s 2‘5‘ =






68 COMPOUND STRESSES [cHAP.

On the perpendicular to the plane BD set off OQ to represent f;,
and OR to represent f,. Draw QM perpendicular to f;, and RP
parallel to £ to meet QM in P. Describe circles with radii £ and f,
from O as centre.

Then OPF represents the resultant stress on the plane BD in
magnitude and direction, and the locus of £ is an ellipse.

Now 0Q=/1; OR=/,,
and OM = 0@ cos 8= £, cos 0,
PM = OR sin 6 = £, sin 6.
Therefore OP = NfZcos* 6+ f2sin® 6
_PM_f,
and tana——o—ﬂ—[—?ltan(i.

Hence from equations (1) and (2) OP is the resultant stress in
magnitude and direction.
Let @, y be coordinates of P,

zi=PM=f8in0;
y=0M=fcos b,

d ZL-sin6, L =cosh;
an 7 in 7 cos 6 ;
. PRy
therefore Gt SH=1.

P e

Thus 2 lies on an ellipse of which £ and f; are the semi-axes.
If fi=/:, OP is at right angles to BD, and the ellipse becomes a
circle.

41. Principal stresses.

Planes on which the stresses are wholly normal are called planes of
principal stress, and the stresses themselves principal stresses.

A state of stress i two dimensions can always be represented by
an ellipse, the semi-axes of which are the principal stresses, and their
directions the axes of stress.

Suppose /; and f; of the preceding article to be replaced by stresses
of any magnitude and direction on two faces at right angles. Resolve
these stresses into normal and tangential components. The tangential
components must be equal. Let f, and £, be the intensities of normal
components, and ¢ the intensity of the equal tangential components on
the two planes at right angles (Fig. 74).

To determine the planes of principal stress, and the magnitude of
the principal stress on these planes.

It is required to find a plane DB such that the stress on it is
wholly normal, and to determine f, the intensity of that stress. Let 6
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be the angle which BD makes with DC. Consider the equilibrium of
the right prism DBC of unit thickness.

ASn
gl
D c
)
7
S
. B
Fig. 74.
Resolve parallel to BC
J.DB.cosb=gBC+f,DC,
or S ey T ) e e TRAE L I e (1).
Similarly, resolving parallel to DC,
=, COMORE s . S S S s eien o (2).
Subtracting,
Ju—Ju = ¢ (cot § — tan 6) = 2¢ cot 26,
tan 260 = /T?%-n—, ........................ (3).

Two values of 6 satisfy this equation, that is 6 and 90° +6.

Thus there are two planes at right angles to each other, on which
the stress is wholly normal. The
value of the principal stress on
these planes is got by multiplying
(1) and (2), Y

(=S (S-S =¢"
The roots of this quadratic are
the stresses required.

Let AB and CD (Fig. 75) be C
the pair of rectangular planes B X
through O upon which the stresses A 0
are wholly normal; they are the
planes of principal stress; the D
stresses themselves are called the Fig. 75.
principal stresses at O, and the
axes OX and OY the axes of principal stress at that point.
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42. Principal stresses in a beam.

In the case of a loaded beam we get a longitudinal stress combined
with shearing stress on longi-
tudinal and transverse planes 7
(Fig. 76). B c

Consider a small triangular
right prism of unit thickness BCD
bounded by a plane BD, inclined
at 6 to the vertical, the vertical
plane DC; on which there is both
a normal and a shearing stress, =i
and the horizontal plane BC, on Jn
which there is only shearing stress.
Let f, be the intensity of the v
normal stress on DC, and let ¢ o
be the intensity of the shearing
stress, which is the same on BC
and CD (see Art. 21). B s D

To find on what plane BD (as g
measured by 6) there is a normal stress only, and to find / the intensity
of that normal stress.

Resolving horizontally,

JBD cos 0=1,D0 + qBC,

)i

or (= ICORIEGISINN O, e et e ().
Resolving vertically, fBD sin 6= ¢qDC,
or A1 () = 7 TN e vt Sotiit o e A (2).

From (1) and (2) eliminating / we get
Ja=q (cot 8 — tan ) = 2¢ cot 26.

That is tan 20 = j# .............................. (3).
Also from (1) and (2) F(f-/Su)=¢
f:%t J§+q2 tesegrastatatiaateraaees (4).

Two values of 6 satisfy equation (3), that .is =0 and 6=90"+ 6.
Thus there are two planes of principal stress at right angles to one
another.

eyl -

The positive value /}=‘/—2;‘ + \/ ‘%+ ¢* i1s the greatest principal

stress of the same kind as f,. The lesser principal stress 1is
e o2

2 ='fé~' = \/ % + ¢* which occurs on a plane at right angles to the

former.
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The maximum intensity of shearing stress occurs on planes
inclined at 45° to the planes of principal stress, and by Art. 38

its value is
- 2
fi AL \/z,;_ e 'h

If the principal planes (or directions of axes of stress) be drawn by
short lines through a series of points taken very close together on
the elevation of a beam, then these lines will form two series of curves
intersecting each other at right angles, called the curves or lines of
principal stress, and the tangents to these curves at any point where
they intersect are the planes of principal stress (or the axes of stress)
at that point.

In the case of a beam supported at both ends the curves convex
upwards are curves of compression, and those convex downwards curves
of tension.

Again, when 6=90° or 0°, then ¢=0; and when 6=45°, then
f 2=0. ’

Thus the curves of principal stress cut the upper and lower surfaces
at right angles, and cut the neutral axis at an angle of 45°.

Curves of maximum shearing stress cut the upper and lower
surfaces at 45°, and touch the neutral axis.

Curves of principal stress are sketched in Fig. 77.

_____ cEtin,
s—.

— —— — —

Fig. 77.

43. General equations connecting stress and strain.

Suppose an isotropic body, that is, a body having the same
elastic properties in all directions, to be acted on by three principal
stresses fi, fu, s, the axes of reference coinciding with the principal
axes.

Let the strains be A;, A;, A; along these axes.

Now, by the Principle of Independence of Stresses, the resultant
effect of a compound stress can be found by calculating the system of
strain due to each stress taken separately.

Thus A, is the sum of the longitudinal strain 5 due to f3,

E
and the two lateral strains — ;7{_'}) and —sziE due to f; and f;.

e 3 s
pobl Poisson’s ratio.
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Thus
or

Similarly
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A S fothe

E mE’
Exl e f”f“
A, = i f1+fs

EA,,:ﬁ,—fl—;f?.

As a special case, suppose a bar pulled or pushed along the axis
of fi, left quite free along the axis of f;, and all lateral strain pre-
vented along the axis of f;.

[cHAP.

Then f2=0, and A;=0.
Thus By T S e (1),
+
B,=-fith
m
0=fs— 'é .............................. )
T s (3)
From = /i ;
3) A=t
f1 - 1
Andfrom (1) Eh=fi- Z=£(1-25),
or by __m__
£ A mi—1"
STRENGTHS AND WEIGHTS OF MATERIALS.
- Ultimate Strength.
. 65 T Modulus of Modulus of
ateris per Cubic Elasticity E. Rigidity C.
Koot Tension | Crushing | Shearing
Wrought-iron bars 480 |[21to24 18 18 to 20 | 12,500 to 13,000 | 5,000 to 5,500
‘Wrought-iron plates,
with fibre ... 480 |[20to24 18 10 - —
‘Wrought-iron pla.tes,
across the fibre ... 480 18 t0 20 — 16 to 20 -~ —
Mild steel 490 | 28t032 -— 22 to 24 | 13,000 to 13,500 5,500
Cast-iron ... 450 8 40t050 | 9to12 | 4,500 to 6,000 | 2,500 to 4,000
Copper, cast 550 10 - — 5,000 to 7,000 | 2,000 to 2,500
Copper, rolled ... ‘550 14 — — 5,500 to 7,500 | 2,100 to 2,900
Brass, cast 500 8to10 | 5to6 — 4,000 2,000
Hemp rope ... — — — — —
Leather beltmg — 2 —_ = = =
Oak . 43 to 62 43 3 — 500 to 700 —_
Red plne 35 4t06 23 — 650 —
Yellow pine 26 2 to 6 2to3 —_ 780 -
Pitch pine 40 to 45 4 3% — - —
White pine ... 25 |1} to3 2 — 480 —
ABRE =R s 47 4to 6 4 - 760 —
Teak... 41t055| 4to 6 5 — 1,000 -
(Hl M A% 34 6 4 - 600 —
Greenheart 58 to 72 3 5% — 750 —
Cement, set 1 week | 86to94| 016 % — — =
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STRENGTH OF STONES TO RESIST CRUSHING.
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s Crushing Weight
Material per Cuble Fooi | Jn Lb. per

Brick stocks ... 112 2,240

Do. Staffordshire blue 112 6,200
Concrete, ordinary 120 450 to 750

Do. cement 135 1,680
Limestone 130 to 160 7,500 to 9,000
Sandstone 135 5,700 to 10,000
Slate 175 10,800
Granite 170 10,800 to 20,000
Brickwork 112 600 to 1,200
Masonry 116 to 144 800

EXERCISES.

1. A bar of mild steel 10 feet long and 2 inches diameter is
stretched %th of an inch by a load of 7 tons acting along the axis of
the bar. Find the intensity of stress, the straiu, and the modulus of
elasticity.

Ans. 22 tons per square inch ; ¢4 ; 13,200 tons per square inch.

2. A wrought-iron tie-rod £ inch thick has to support a load of
20 tons. Determine its width, assuming a working stress of 8,000.1bs.
per square inch.

Ans.  7'46 inches.

3. A mild-steel tie-rod 26 feet long is made of an angle-iron
4" x 4" x §". If it is pulled by a force of 20 tons acting along its
axis, determine the intensity of tensile stress and the elongation.

Ans. .53 tons per square inch ; 0°127 inches.

4. What should be the diameter of the stay-bolts of a boiler in
which the pressure is 120 lbs. per square inch, allowing one stay-bolt
to each square foot of surface, and a stress of 5 tons per square inch of
section of the bolts ? :

Ans. - 13 inches.

5. A rectangular wooden post 8 inches broad rests on a masonry
wall, and is loaded with 6 tons. Determine the necessary width of the
post if the working stress of the masonry is 140 Ibs. per square inch.

Ans. 12 inches.

6. The rod of a hydraulic hoist is 40 feet long and 1} inches
diameter; it is attached to a plunger 5 inches diameter, working under
a pressure of 1,000 lbs. per square inch. Find the alteration in length
of the rod.

£ = 30,000,000 lbs. per square inch.

Ans. 0°18 inch.
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7. A brick wall 2 feet thick, 10 feet high, weighing 110 lbs. per
cubic foot, is supported on timber columns 8 inches square, 10 feet
long, placed 12 feet apart centre to centre. Find the compressive
stress in column. If the crushing stress of the timber is 5,000 lbs.
per square inch, find to what height the wall can be built, allowing a
factor of safety of 10.

Ans. 4128 lbs. per square inch ; 12°1 feet.

8. A bar of wrought-iron 20 feet long, 1} inches diameter, is
heated to 160° C.; while at this temperature it is made to connect two
walls of a house which have fallen outwards from the perpendicular, by
means of washers and nuts screwed on at the ends. If the walls do
not yield, find the pull exerted on them when the bar has cooled to
60° C.

Coefficient of expansion for wrought-iron = *0000124 for 1° C.

£ = 30,000,000 lbs. per square inch.

Ans. 65,844 lbs.

9. A wrought-iron bar 4 square inches in sectional area has its
ends fixed between two immoveable blocks when the temperature is
30° C. Find the pressure that will be exerted on the blocks when the
temperature is 100° C.

Coefticient of expansion = *0000125.

E = 30,000,000 lbs. per square inch.

Ans. 105,000 Ibs.

10. Determine the resilience of a steel tie-bar, 1} inches in
diameter and 5 feet long, if the elastic limit is reached under a load
of 20 tons.

Modulus of elasticity = 18,000 tons per square inch.

Ans. 1164°8 inch lbs.

11. (Calculate the resilience in foot lbs. of a bar of wrought-iron
6 inches diameter, 2 feet long.
Elastic limit = 10 tous per square inch.
E = 13,000 tons per square inch.
Ans. 4874 foot lbs.

12. Steam at a pressure of 220 lbs. per square inch is suddenly
admitted on to a piston at rest 15 inches diameter. If the piston-rod
'be 6 feet long and 3 inches diameter, find the maximum stress produced
in the rod, the amount of compression, and the work done on the rod
at the maximum compression.

Modalus of elasticity = 30,000,000 Ibs. per square inch.

Ans. 10,998 lbs. per square inch ; 0°026 inches; 84°2 foot lbs.
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13. Find the resilience of a bar of steel 10 feet long and half a
square inch in sectional area, stress limit of elasticity 50,000 Ibs. per
square inch.

Modulus of elasticity = 35,000,000 lbs. per square inch.

Ans. 178°6 foot lbs.

14. A bar of steel 10 feet long and 3 inches diameter is subjected
to a pulling force of 100 tons. If the modulus of elasticity = 13,000 tons
per square inch, determine the number of foot lbs. of energy stored in
the bar.

Ans. 1,220 foot lbs.

15. A round bar of wrought-iron is 30 feet long and 1} inches
diameter. Find the tensile load which, if suddenly applied, would
cause ah instantaneous elongation of the bar of 0°1 inch.

Ans. 3707 tons.

16. A waggon weighing 5 tons, attached to a rope, is travelling
down a slope at 4 miles an hour, when it is suddenly stopped. If the
rope is 2} inches diameter, and its length 600 feet at the moment the
waggon is stopped, determine the maximum tension in the rope.

FE = 30,000,000 lbs. per square inch.

Ans. 24 tous, nearly.

17. A bar of steel is 10 feet long and 1 inch diameter. Elastic
limit 18 tons per square inch. Modulus of elasticity 33,000,000 lbs.
per square inch. Determine the greatest weight that can be dropped
on to the bar from a height of 12 inches, and the alteration in length
of the bar.

Ans. 2145 lbs. ; 0°161 inches.

18. A wrought-iron bar } inch diameter has two marks made on
it 20 inches apart, and it is found that in the testing machine this
distance is increased by ‘00416, ‘00832, ‘01248, "01664, ‘031 inches,
when the pull is 0125, 0250, 0'375, 0500, 0°625 tons. Determine
the yield point and modulus of elasticity.

Ans. 12°5 tons per square inch ; 12,020 tons per square inch.

19. If the normal intensity of tensile stress on a transverse section
of a bar be 4 tons per square inch, determine the tangential stress on
a plane inclined to the normal section at an angle of 30° ; find also the
intensity of the resultant stress on that section.

Ans. /3 tons per square inch ; 2 x /3 tons per square inch.

20. A bar of wrought-iron, 5 feet long, has to transmit shocks of
100 foot Ibs. without injuring its elasticity. If the limit of elasticity
is 30,000 lbs. per square inch, and the modulus of elasticity is
25,000,000 lbs. per square inch, find the sectional area of the bar.

Ans.  1°1 square inches.
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21. A tie-bar of wrought-iron, 25 feet long, has to resist a shock
whose energy is 200 foot Ibs. If the modulus of elasticity and working
stress are respectively 28,000,000 lbs. per square inch and 10,000 Ibs.
per square inch, determine the sectional area of the bar.

Ans. 448 square inches.

22. Through what height must 1 ton fall to produce a stress
equal to } of the stress at elastic limit, supposing this latter stress is
produced by a shock whose energy is 1 foot-ton ?

Ans. % of a foot.

23. A cube of 6-inch side is fixed on one face, and a shearing
force of 150 tons acts on the opposite face. If the modulus of rigidity
equals 5,500 tons per square inch, find the strain, and the work done
in distorting the cube.

Ans. 1355 64 foot Ibs.

24. A bar of mild steel, 1 square inch in sectional area and
10 inches long, is extended by a pull by an amount 03 inch. Find
the lateral contraction.

E =13,600 tons per square inch.
(EE=2851200 1
K=11,900 > &
Lateral strain 3K —2(C
Lougitudinal strain ~ 6K + 2C"
Ans. 070092,

25. If two tensions of 8 tons per square inch act on a plane, and
two compressions of equal magnitude act on a plane perpendicular to
the first, find the strain in the direction of each stress. Take the
same values of constants as given in Exercise 24.

”

Ans. t1i%5%.

26. Stresses of 7 tons per square inch and 5 tons per square inch
respectively act normally on two planes at right angles to each other.
If both stresses are tensile, find the total strain in the direction of each
stress. Use same constants as in Exercise 24.

Ans. 0004 ; 0002.

27. A weight of 20 tons is attached to a bar 4 square inches in
sectional area. Find the intensity of stress on a plane making an
angle of 30° with the cross-section.

Ans. 433 tons per square inch.

28. A bar, 4 square inches in sectional area, carries a weight of
20 tons. Find the normal and tangential stresses on a plane whose
normal makes an angle of 60° with the axis of stress.
Ans. 125 tons per square inch.
2°165 9 ’
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29. Given that the principal stresses at a point are 6 and 5 tons
per square inch, both tensile, find the normal stress and tangential
stress on a plane whose normal makes an angle 30° with the first
stress. Determine also the resultant stress on this plane.

Ans.  5°75 tons per square inch.
0433 ,, 5
5.76 bh 2

30. If in last exercise the stress of 6 tons per square inch is
tensile, and the stress of 5 tons per square inch is compressive, find
the normal and tangential stresses on the plane.

Ans. 325 tons per square inch.
4763 5

31. Given that the principal stresses at a point are 6 tons per
square inch Zensile, and 6 tons per square inch compressive, find the
normal, tangential, and resultant stresses on a plane whose normal is
inclined at 60° to the first stress.

Ans. 3 tons per square inch.
5.1 » »”
6 » b

32. In last exercise (31) find the same stresses on a plane whose

normal makes an angle of 45° with the first stress.
Ans. 0; 6 tons per square inch.

33. At a point within a strained solid the stress on one plane is a
tension of 80 lbs. per square inch and inclined to the normal at 25° ;
the normal component of the stress on a second plane through it at
right angles to the first plane is 50 lbs. per square inch tensile. Find
the total stress on the second plane in magnitude and direction.

Ans. 6036 lbs. per square inch inclined at 34° 10" to the normal,

34. At a point within a solid in a state of strain the stresses on a
pair of rectangular planes through it are—on 4B a normal stress of
250 lbs. per square inch ; on €D a normal stress of 200 lbs. per square
inch. The tangential stresses on each plane are of intensity 31 Ibs.
per square inch. Find the planes of principal stress.

Ans. The inclinations of planes of principal stress to 4B =25 34'
and 115° 34", :

35. The stresses on a steel bar normal to its cross-section vary
from a maximum tension of 30 tons to a minimum tension of 12 tons.
Determine the working stress, and the necessary sectional area.

Ans. 72 tons per square inch ; 42 square inches.

36. The stresses on a wrought-iron bar normal to its eross-section

vary between a tension of 24 tons and a compression of 12 tons. Find

the sectional area. X
Ans. 7°3 square inches.



CHAPTER V.
BENDING. BENDING MOMENTS AND SHEARING FORCES.

44. Bending.

Beams. A beam is the name given to any member of a structure
which is exposed to transverse stresses. The term girder is usually
applied to beams made of iron or steel, of a flanged form—that is,
consisting of a top and bott ﬁange connected by a web.

A beam or girder is usu:f@ supported or fixed at the extremities
and loaded at points between them.

A cantilever is a beam or girder fixed or encastré at one end, and

free at the other.
% J

A continuous beam or girder is one supported at three or more

points. [T ? T
. R

When a beam rests on supports and is loaded with weights acting
vertically downwards, the upward or supportmg Jorces at the points
of support are called reactions.

Forces which act upwards are considered posmve and those which
act downwards negative,
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45. Loaded beams.

The following conditions are assumed :—(1) That the unstrained
beam is straight and has a longitudinal plane of symmetry.
(2) The bending forces are applied in that plane normally to the
axis. (3) That plane parallel normal sections of the unstrained
beamn remain plane and normal after bending, radiating to the centre
of curvature. ‘

When a beam is acted on by any load, the fibres on one side of the
beam are stretched, and those on the other compressed. If the beam
is supported at the ends, the lower fibres will be stretched and upper
fibres compressed. In a cantilever the upper fibres will be stretched
and the lower ones compressed. The surface which separates these
two portions of the beam, and which is neither extended nor com-
pressed, is called the neutral surface of the beam, and the line where
the neutral surface intersects any cross-section of the beam is called
the neutral axis of that cross-section.

In Fig. 78, A B is the neutral surface.

D
Fig. 78.

46. Stress at each point varies as its distance from the
neutral axis.

We shall assume that the strains lie within the elastic limit, and
consequently the strains and stresses follow Hooke’s law.

In Fig. 80, a longitudinal section of a small portion of beam, let
CD and EF be two plane cross-sections, taken very close together,
which are paralle]l before straining, and become inclined to one
another when the beam is strained, radiating towards the centre of
curvature 0. N is the portion of neutral surface between the two
cross-sections ; it remains unaltered in length, and the intersection
of this surface with cross-section of beam is called the neutral axis,
i.e. PQ of Fig. 79, which shows the cross-section of beam.

Let L (Fig. 80) be the original distance VM between the two cross-
sections ; £ the radius of curvature of the neutral surface.

Draw G'H through M, parallel to CD.
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Now if we consider any layer SJ, which is at a distance y from t}}e
neutral surface N, or the neutral axis P¢), this layer has altered in
length from NM = SK to SJ.

=0

-
~ -
-
-——
G
iy
-~

-

-

_*_ P ¥ Q
NEUTRAL

Lo AXIS

A% - b

GF
Fig. 79. - Fig. 80.

Calling this alteration of length (JK) /, the strain = é
This longitudinal strain must be accompanied by a-longitudinal

stress, and if f is the intensity of that stress, /=% é

Further :§= A by similar triangles.

I ‘
Hence S= Jor Y (1),

where £ is Young’s modulus of elasticity, which we suppose the same
for all fibres of the beam. ,
Thus, the stress at any point of the cross-section of the beam is
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proportional to its distance from the neutral axis—that is, a uniformly-
varying-stress.

47, Stress in beams.

Let Fig. 81 represent a beam supported at both ends, and loaded
with weights W,, W,, W,. Let R, and R, be the reactions at the
supports. Take £€) any normal cross-section and consider the separate
equilibrinm of the portion of the beam on either side of the cross-
section. Now, stress being the internal resistance to deformation,
there must be equilibrium between the internal stresses and the
external forces. Thus the portion B of the beam is held in equi-
librium by the external forces R, and W, and the stresses which
A exerts on B. Consider the equilibrium of the portion B, and for
clearness imagine the two portions of the beam A and B to be
separated at the section P, as shown enlarged in Fig. 82, and
replace A by the stresses which it exerts at the section.

W: W2 Wi
- ol A R
%’%‘““A ““““ 5% i - Sk
’/I‘Rz, : Q R:
\
Fig. 81. Fig. 82.

The three statical conditions of equilibrium are:

(1) The sum of the vertical components of stress must be equal to
the sum of the vertical components of the external forces.

(2) The sum of the horizontal components of stress must be equal
to the sum of the horizontal components of the external forces.

" (8) The sum of the moments of stress about any axis must be
equal to the sum of the moments of the external forces about the same
axis.

SHEARING Force. By condition (1), since the portion B is in
equilibrium, and the loads acting on it are all vertical, the sum of the
vertical components of stress in the downward direction is

=1 Sy Wla
which is called the shearing force. It tends to shear B from 4.
w. 6
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Similarly, by considering the equilibrium of the portion 4 we get

the shearing force
=Ry~ W,— W,.

These shearing forces, the one on the right-hand portion of the
beam, the other on the left-hand portion, are equal in magnitude
but opposite in sign. ;

Next, consider the horizontal equilibrium of the portion B. The
external forces being all vertical have no horizontal component. As
to the horizontal stresses above the neutral axis the portion A4 tends
to push B to the right, but below the neutral axis 4 tends to pull B
to the left. For equilibrium it is necessary that the total push should
be equal to the total pull, or the total horizontal force at the section be
zero. 'Thus the horizontal components of stress constitute a couple.

48. Position of the neutral axis.

Now if we consider a very small strip of the cross-section of
area “a,” distant y from the
neutral axis, Fig. 83, the total
push or pull on this small area

is
=fd,

where fis the intensity of stress AFUTRAL [

on the area “a.”

Summing up the forces on
all these elements of area com- Fig. 83.
posing the cross-section, we must
have according to the above condition of equilibrium

Ef(l . O’
d K
or, since S= fy:
E
ﬁ Eya =0 5
or, Sya =0,

as %‘ is constant for all such elements of area.

Thus, the sum of the products of each element of area into its
distance from the neutral axis is zero; and this can be true only ¢f
the neutral axis passes through the centre of gravity of the section.

49. Bending moment and Moment of resistance.

The third condition of equilibrium is that the sum of the moments
of all the internal stresses about any axis must balance the moments of
the external forces about the same axis.

Again, considering the equilibrium of either portion of the beam,
A or B, on one side of the section P@Q, Fig. 81, the bending moment is
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the algebraic sum of the moments about an axis in the section, of the
external forces on one side of the section. The moment of the re-
sisting stress couple may be taken about any axis; for convenience it
is taken about the neutral axis, and this moment is called the Moment
of Resistance, or, the Moment of the Elastic Forces, and is equal in
magnitude, but opposite in sign, to the corresponding bending moment
due to the external forces.

Let 4, &, be the perpendicular distances from the section P@ to
R, and R, respectively; and let @,, #,, 25, be the distances from P@
to Wi, W,, W respectively.

The bending moment with respect to PQ of all the forces on the
right of PQ 1s

Bl - W,
and this is equal to the moment of the stress couple exerted on the
portion B at the section PQ).

The bending moment with respect to P@ of all the forces on the
left of PQ is

Boly— Wazs— Wi ;
this is equal to the moment of the stress couple exerted on the portion
A at the section @ ; and hence is equal in magnitude to the moment
Rl — Wha,.

It should be noted that the shearing force and bending moment
change sign, according as we consider the equilibrium of one portion or
the other of the beam at the section P@Q.

In order to determine o relotion between the bending moment and the
stress produced by it, consider as before the elementary strip of area o
distant y from the neutral axis on which the intensity of stress is /.

The force on this element of area is fa.

Its moment about neutral axis is fuy =%agf.

The total moment of the stresses for whole area of section
: E
= 'R anz
The term Sag?, or the sum of all the small elements of area each
multiplied by the square of its distance from the neutral axis, is
termed the Moment of Inertia of the cross-section about that axis,

and is usually denoted by the symbol I. Let M = the bending
moment at the section.

For ethbnum we must therefore have

u-Z an? ........................ 2),

o il
or, since E-—-g by equation (1),



84 BENDING MOMENTS AND SHEARING FORCES [cHAP.

Thus, the bending moment produces a uniformly varying longi-
tudinal stress the intensity of which / at distance y from the neutral
axis is

My
b i

If 1, 9. be the extreme distances from the neutral axis to the top
and bottom edges of the cross-section, and £}, /; the maximum stresses
corresponding to 7, and 7,,

m=Sr-tg
K51 Y2

The .strength of the beam, or maximum moment of resistance to
bending, is determined from this equation.

R is the Radius of Curvature of the bent beam at the place under
consideration, and the curvature can be expressed as

430 1 M
E — E—‘,y or —R = 'E—,I

Jr F

S

e-— - R —— 0
O-—Q - — >

x
|
|
|

Je

[

I

l
B AU,
G G/‘{; D

Fig. 84. Fig. 85.

The stress due to bending may be graphically represented as in
Fig. 84, where 0D is the side elevation of the cross-section on which
the stress acts. The neutral axis is at right angles to CD through P,
the centre of gravity of the cross-section. The stress varies uniformly
from P in direction CD. The greatest intensity of compressive stress
fi (=OF) occurs at O, and the greatest intensity of tensile stress
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Jo(= GD) occurs at D, and the stress at any point of the section is
equal to the horizontal ordinate to the inclined line #G. Hence the
stresses may, as regards the whole cross-section of the beam, be
represented by a wedge-shaped figure (Fig. 85), where PQ represents
the width of the beam and CD the depth. The resultant stresses
above and below the neutral axis will be represented by the volume
of the wedge-shaped figures above and below that axis respectively,
and these resultants act at right angles to €D through the centres of
gravity of the triangles. To find the moment of resistance we can
either consider these forces with a leverage equal to the distance
between the two, or consider the effect of both round the neutral axis.
In either case we get for a rectangular cross-section

Moment of Resistance —'é X — >< bx = d— flbal2

where £ is the intensity of stress at € (-— CF), PQ =15, and
d

GP= 5

(GRAPHICAL REPRESENTATION IN THE CASE OF RECTANGULAR BEAMS.
It is evident that if we take the cross-section of a rectangular beam
and draw the diagonals CD' %
and C'D, we have a graphic C C v
representation of the stresses b
from the neutral axis to the a g
edges, and the shaded areas NEUTRAL »ﬁ:’% Y Axrs
COC" and DOD' represent Pl - Q ‘
the total tension and com-
pression. For if in Fig. 86,
COC’ represents on any scale D D'
the intensity of stress at the Fig. 86.
top edge, distant 7, inches
from the neutral axis, then stress intensity y inches from neutral axis is

00" x < = ab.
W

Hence the triangles COC’ and DOD' represent areas of equal
resistance above and below the neutral axis, and graphically represent
the quantity and distribution of the resistance.

The moment of resistance can be obtained from these triangles

as before. If CC'=b, CD=d, the area of the triangle COC'= bd
and the leverage of the My =2d.

Hence Ma=f, x z_}z 2 g g % fibdz.
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Beams oF RectaNGuLar aND I SecrioN. As the extreme fibres in
rectangular beams are the only parts of the beam exerting their full
working resistance, the rest of the beam might be proportionately
reduced in section: In timber beams this reduction of section is not
carried out in practice ; but in iron or steel beams this principle is
carried into effect, and beams of these metals are rolled in the shape of
letter I, or else built up of plates and angle-irons, concentratiug the
material at the top and bottom edges of the cross-section in honzontal
flanges, which latter are connected by a vertical part or web.

50. Case of Simple Bending.

In this simple case, as illustrated in Fig. 87, the beam is acted on
by two equal and opposite couples. 'The reaction at each support is

w w

1
6~ <y 6l el K--a -

>

Fig. 87.

equal to W, and there is no skearing force between B and C'; for on
any section P@ this force equals

wW—-Ww=o.
Again, between B and O the bending moment is constant, being

everywhere equal to Wa ; and the curvature is therefore circular.
The stress at any section is a couple whose moment is Wa.

51. Bending moments and shearing forces on cantilevers
and beams.

In the case of a beam supported at both ends and loaded the fibres
above the neutral axis are in compression and are shortened, while
those below are in tension and are lengthened; so that the centre
of curvature is abore the beam. In the cantilever the reverse takes
place.

We shall consider the bending moments in the first case positive,
while in the cantilever they are negative. In continuous beams, as
will be seen later on, the bending moments are partly positive and
partly negative.

A shearing force at a section is considered positive when it tends to
shear the right-hand portion of the beam upwards.
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When a beam is acted on by external loads, the bending moment
at a given section is equal to the algebraic sum of the moments about
the section of all the external forces acting on the portion of the
beam on either side of it; and the shearing force at any section is the
algebraic sum of all the external forces acting on either portion of
the beam into which the section divides it. We shall usually consider
the right-hand portion of the beam.

In a cantilever the bending moment at a given section is equal to
the sum of the moments about the section of all the loads between
the section and the free end of the cantilever ; and the shearing force
at any section is equal to the sum of the loads between the section
and the free end.

In representing bending moments and shearing forces graphically,
when positive they are measured upwards above a horizontal datum
line, and when negative they are measured downwards.

Casé 1. CANTILEVER LOADED WITH A SINGLE WEIGHT AT THE
FREE END.

Let Fig. 88 represent a cantilever of length [ fixed tangentially
at A and loaded with a weight W at the free end B.

Fig. 89.

Fig. 90.

At any section distant # from the free end the bending moment
M,=— Wz

and the shearing force
: F,=—-W.
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The bending moment evidently varies as @, and at the fixed end,

where z=1, its value is
Max. M=- Wi.

The diagram of bending moment is a triangle as shown in Fig. 89,
where ad=WI{. The moment at any section K is represented by the
ordinate Zg. :

The diagram of shearing force is a rectangle as in Fig. 90, all
ordinates being equal to W.

It is well to note that the ordinates in the bending-moment diagram
represent expressions such as inch-tons or foot-lbs., whereas the ordi-
nates in the shearing-force diagram represent simply Ibs. or tons.

CasE 2. CANTILEVER WITH SEVERAL L,0ADS.
Let AB, Fig. 91, be the cantilever fixed at A, and loaded with
weights W,, W,, W, applied at distances @,, ,, #; from the fixed

end.
The bending moment at any section K, distant # from the fixed

end, is equal to

ﬂ[m:—— Wl ($1 T w) 5y Wz (wz s w).
Fig. 91.

Fig. 92.

w,+ W, + Wy
e e ’\h o
=
S, m—
=

Fig. 93.
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The maximum bending moment occurs at the fixed end and is
equal to
My=— Wiz, + Wz, + Wias).
The shearing force at section X
F=—(W,+ W)).
The shearing force at the fixed end
=—(W,+ Wy+ W),

To draw the diagram of bending moments, Fig. 92, let ab represent
the cantilever ; draw ad at right angles to ab to represent on any scale
of moments the moment of W, about A4, 7.e. Wia, ; produce ad to f,
making de equal to W,a,, and, similarly, ¢f equal to Wsay, on the
same scale of moments. Let % be the point on &d vertically below
W,, and ¢ the point on ¢/ vertically below W ; the polygon abkef will
represent the diagram of moments for the whole cantilever, and the
bending moment at any section K will be, found by measuring the
ordinate kg of the polygon.

The shearing-force diagram is shown in Fig. 93.

The vertical ordinate at any section to the stepped figure gives the
value of the shearing force at that section.

CasE 3. CANTILEVER LOADED UNIFORMLY OVER ITS WHOLE LENGTH.

Let 7 be the length of the cantilever, and w the uniformly-distributed
load per unit of length. 'The total load W =1l

In the case of a uniform load its weight may be assumed as acting
at its centre of gravity.

The bending moment at a section X distant # from the free end is

wa’
M,=—wz xg=——§—.
The maximum bending moment occurs at the fixed end, where

2
=1 and ﬂ[A=—%l—.

As M, varies as the square of the distance, the successive moments
may be represented by the ordinates of a parabola, of which the free
end of the cantilever is the vertex.

The shearing force at section X is equal to

F,=-wa.

Its maximum value at the fixed end,

Fi=—wl=—W.

To draw the diagram of bending moments, Fig. 94, make ad on
wl* Wi
TR Ty
passing through d and touching ab at 5. The bending moment at any
section X is found by measuring the ordinate g to the parabola bd.

any scale of moments equal to From d draw a parabola
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The diagram of shearing force is a triangle as shown in Fig. 95.

#Z
éA K ¢wx

g “-——— X ———>
k b

a
ung /
2 |

J 4

Fig. 94.

s )

Fig. 95.

CasE 4. CANTILEVER LOADED UNIFORMLY OVER PART OF ITS LENGTﬁ.

Let @ be the length of the cantilever loaded with a uniform load w
per unit of length. Then, # being measured from the free end

For z>a, ﬂ[m=—wav( - %)
Maximum at z=l, M,=—wa (l— ﬁ)_
For z<a, M,=— %—li
Shearing force

For z>a, wx=a, Fy=-wa.
For - w<a, Fo=—wa.

To draw the diagram of bending moments, Fig. 96, consider the

«—-a ~-—»>

A )
;. ms

s MM

Ry

Fig. 96.
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load as concentrated at its centre of gravity and lay off ad as for a
2

single load wa at ¢, the ordinate e’ being equal to %a—. Draw the

straight line ce'd and the parabola be ; then b¢'d will be the curve of
moments. The shearing-force diagram is shown in Fig. 97.

|
|
|
|

|wa

Fig. 917.

CASE 5. CANTILEVER LOADED WITH A WEIGHT AT THE FREE END,
AND WITH A UNIFORM LoAD.
Let W be the weight at the free end, and w the uniform load
per unit of length. Then
w.z'“)
b

ﬂz=-(ww+ 2

and maximum bending moment

M= (W1+7). ot

The shearing force at any section,

F,=—(W+wa).

4 : erx ¢W
o’ 5
Cc———r— — —>

4 6

Fig. 98.

Fig. 99.
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The maximum value at fixed end,
Fi=—(W+uwl).

Diagrams. The curves of bending moment and shearing force
are shown in Figs. 98 and 99, the ordinates of which in each case
are equal to the sum of the ordinates of the diagrams for each load
taken separately.

CAsE 6. CANTILEVERS PROJECTING OVER ONE SUPPORT, LOADED WITH
A Weigat W ar oNe END, AND ANCHORED DOWN AT THE OTHER.
(Fig. 100.)

Let P be the force acting at C, R the reaction at 4. Then
PxCA4=Wx AB.

In Fig. 101 if ad is set down to represent the moment W x AB,
then edb is the diagram of bending moments ; or, for illustration, we
may consider the moment W x BC. Set down ce on the same scale as
before to represent W x BC'; this must also be equal to R xAC
and the triangle ced will be the diagram of moments for the reaction
B ; the ordinates fg, &c., being measured wpwards from ed, and the
bending moment at any section X (being the difference of the moments
of W and R) will be %g, the difference between the ordinates Zf
and fg.

AR
€ K ,
| J B
A s
7/<////// A QIW
P )
Fig. 100

g

|

|

I |
| S
|-="F

3 Fig. 101.

52. Beams supported at both ends.

To find the bending moment at any section :—Take the algebralc
sum of the moments (about the section) due to the reaction of either
support and to any loads between that support and the section in
question.

The shearing force at any section is equal to the algebraic sum of
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all the external forces (including the reaction) acting on either side of
the section.

The first thing to be done is to find the reactions. In symmetri-
cally-loaded beams each reaction is evidently equal to half the total
weight ; in other cases the reaction at either support is obtained by
taking moments round the opposite support. The sum of the reactions
must be equal to the total load on the beam.

CASE 7. BEAMS SUPPORTED AT BOTH ENDS AND LOADED WITH A
SINGLE WEIGHT.

Let AB (Fig. 102) be the beam loaded with a weight W at C.

Let BN A =l
Reaction at 4 = R= 'W' l—_l—a .
Reaction at B xR = %

.Rz—-_w (_é-_d)

Fig. 104.
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The bending moment at any section K between B and C is
s
M = = W—l—x.

The maximum bending moment occurs at C, where the load acts,
and here

M=Rix(l—a)= W% (- a).
For any section between A and C'the bending moment is
Riz— Wlz—(I-a)]= W%x— Wa + W (- a),
or it 1s R, (! — x), which

~WE=a) - Whae Was W(i-a).

Fig. 103 gives the graphical representation, where aeb is the
diagram of moments, ce representing on any scale the moment
Wa (I — a)

l

This diagram can also be got by considering the contrary moments
of R, and W about A. In figure ad represents the moment of R,
round 4, and also the moment of W round A, these moments being
equal. The bending moment at any point P is sg — sp = pg.

The shearing-force diagram is shown in Fig. 104, where the positive
shearing-force in the right-hand portion is equal to R, and the
negative shearing-force in the left-hand portion is equal to R, Z.e.
R,—W.

CasE 8. SineLE LoapD W ar THE CENTRE OF THE SPAN.

, and the moment at any section K is the ordinate £g.

The reactions are each=E and the bending moment at any

2 3
section distant @ from B is M= R,@, and the shearing force
w
F=R, = T

For any section between W and R., M =R, (l— ).
The maximum bending moment is at the centre, and its value is

=4
Tule -
The diagrams of bending moment and shearing force are sketched

in Figs. 105 and 106.
In Fig. 105 ad represents the moment of R, round A=—}g—l 3
then, completing the triangle, we see that
et _ W
iy
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(T3

|
NS

Fig. 106.
Case 9. BEAM SUPPORTED AT BOTH ENDS AND LOADED WITH TWO
OR MORE SEPARATE LoADs.

Let I be the length of the span, and W,, W,, W, the loads at
distances @, @,, @; respectively from the left support (Fig. 107).

Then R = Wia,+ I;’zaﬁ W,as 4
_Wi(l—a)+ Wy(l—a) + W (I-as)
oy = ] :

To find the bending moment at any section K distant # from the
right support, let @, @», #; represent the distances of the several
weights from this section. Then, considering the right-hand portion,
we get

M=Rz— Wya,— W,a,.

The diagram of bending moments may be drawn by drawing the
diagrams for each load separately, in the first instance, and then
combining them by adding the ordinates as in Fig. 107, where
ec' =ch +cqg+¢f; or, second method, by calculating the bending
moment at the point of application of each weight when all the
weights rest on the beam, and drawing the ordinates cc’, dd’, e¢’
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(Fig. 107), equal to the moments at C, D, and £ ; then ac'd'¢’d will
be the diagram for beam; or, the following purely graphic method
(Fig. 108).

From @ draw the ordinate aj =R/, / being the span, and join jb,
on the line @j mark off af= Wia,, fh= Waas, hj= Wea,. The sum
of these three ordinates must be equal to R/, since SWa= R, as
there is no bending moment at the pier A. Join £ with ¢, the point
where jb meets the line of Wy; f with &' the point where A¢' meets
the line of W,; let the line of W, meet fd’ in ¢/, then ac'd¢’d is the

- diagram of moments,

The bending moment at any section X is given by the ordinate g,

for at this section

M=Ryo— Wy, — Wy =kt —ts— sg = kg.
The shearing force diagram is shown in Fig. 109.

CasE 10. BeAM SUPPORTED AT BoTH ENDS, AND LOADED THROUGHOUT
IS LENGTH WITH A UNIFORMLY-DISTRIBUTED LOAD.

Let 7 be the length of the beam, w the uniform load per foot run
then, if W is the total weight, W =wl. The reaction at each support

is %J—l At any section distant # from the right-hand end the bending

moment
M=R,z—wz §=7—€.w(l—x) ............... (1).
SO
This is a maximum when .z'=é
dM !
(d.z' T es 5) ?
. w1
. Max. M= Sy -

Equation (1) is that of a parabola, the origin of coordinates being
at a point on the curve distant —é from the axis; hence to draw the
diagram of moments (Fig. 110), set up the ordinate cd from the centre
Sl , and draw a parabola passing through adb.

The bending moment at any section K is given by the ordinate £g.
The bending moment curve can also be drawn by setting up the

to represent

ordinate ae= 2o , that is the moment of R, about 4. Join be, then

for any value of # set down from this line be the ordinate fy= ~'—Z2,

then ¢ is a point on the bending moment curve, and any number of
points can be found by taking different values of z.

w. 7



98 BENDING MOMENTS AND SHEARING FORCES [cHAP.

The bending moment at A distant # from right-hand end is
Rao=" =k~ fy=

7777722277777

PAAAIAAAAA0 /0.

[ 4

i€ o i #e wZ K )
i
st
| /NN
“_’_Zz : u_@“’\ Ta
® ) 2 g
| | | d S &
| - S
! : —19 wl x
Y b ¢ st
a k c l/
Fig. 110
w/
2
wl
>3
Fig. 111.
The shearing force at any section distant 2 from the right-hand
end is F=R -wz=w (é SNt e @).
F is positive when @ is less than é , and negative when « is greater
than § :
At z=0; F= %’—l 5
z=1; F=- uél ;
T= % s — 0
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The diagram of shearing force is sketched in Fig. 111. It may be
noted here that the bending moment is & maximum where the shearing

force changes sign, since i F, and the value of # when M is a

dz
2 i . dM
maximum is got by equating - to zero.

For, as shown, M= ’g—) z (I — x), equation (1);

aul_

g <£ ) = F) equation (2).

5~ 47
CasE 11. BEAM SUPPORTED AT BOTH ENDS AND LOADED WITH A

UNIFORM LoAD OVER A PORTION OF ITS LENGTH NEXT TO ONE SUPPORT.

Let A B be the beam of span [ feet supporting a load of w per foot
distributed over a length @ next the support 4.

2
Then 1= % H
wa (l - g)
.R2 = 3

{

At any section distant # from the right support, which includes a
portion y of the uniform load, the bending moment is

To draw the bending moment diagram (Fig. 112), set up the

2
ordinate af to represent £/, which also represents z%ta; join /b, and

7—2
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\

let the vertical through € meet this line at d. From the line df set
A o]
down the ordinate kg to represent %7/ , then g is a point on the

bending moment diagram, and a series of points can be thus got for
different values of y. agdb is the bending moment diagram, of which
the portion agd is a parabola and db is a straight line.

2
Me&xi%=m—@=@.

Or, another method is to consider the length AC as if it were a
beam supported at 4 and €, and loaded uniformly. On ac draw the
parabola ame for the uniform load, make ¢d equal to the moment of
R, about C. Join ad, and draw the vertical ordinates above ad equal
to the ordinates of amc. agndb is the bending moment diagram.

The diagram of shearing force is sketched in Fig. 113.

Wil 3

Fig. 113.
Case 12. BEAM SUPPORTED AT BOTH ENDS AND LOADED UNIFORMLY
OVER A PORTION OF ITS LENGTH, NOT EXTENDING TO EITHER ABUTMENT.

Let AB be the beam of span /, loaded over the portion CD with a
weight w per unit of length.

Let CD=a, BD=z.
The total load on beam = wa.
The reactions are
a
I~ (s+3)
l 3

a
o

.R2 =wWa T
The bending moment at any section between B and D, where @ is
the distance of the section from right support, is
M= R x.
For any point between € and D

a2\
MeRw—wQEQ.

B, =wa
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For any point between €' and 4
M=E,(I—2)= Riz-wa {x = (z+g>} ,

Diagram of bending moments (Fig. 114).

-
/

/

I
[
]
2
& |
i
(|
l! |
a c e d 6
Fig. 114.
Z i
R
Fig. 115.

Let ab represent the beam, the load extending over the portion ¢d ;
e is the centre of cd. First consider the weight of the whole load as
if it were concentrated at X, the central point of CD. Draw the
diagram afb for this load as in Case 7. Then consider the length CD
as if it were a beam supported at C and D, loaded uniformly. Draw
the parabola e¢md for this load as in Case 10. From ¢ and & draw
verticals ¢g and dk meeting af and &f at g and % respectively. Join
gh and draw vertical ordinates above gk equal to the ordinates of cmd.
Then agnkb is the diagram of bending moments.

The diagram can also be got as in the previous case, by setting up
the ordinate ap to represent R,l. Join pb, then curved portion of
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. diagram can be got by setting down from ks ordinates at different
points to represent w@—;—z—)—z
The shearing force diagram is shown in Fig. 115.
CasE 13. BEAM LOADED WITH A UNIFORMLY DISTRIBUTED LOAD
AND A SINGLE CONCENTRATED LoAD.

Let 4B (Fig. 116) be the beam of length /, supported at 4 and B,

and carrying a uniformly distributed load of intensity w, together with
a weight W at the point C.

Let BC=a; CA=b.
N
s
(T e
L g
; N~ SR
I
Ril
Lo
1
i
|
!
U
N
A
A
‘I<
L
M
A‘ CI : Bl
N
0

Fig. 117.

In all cases such as this, where the loading is not continuous, but
changes abruptly at one or more points of the span, it is necessary to
consider separately each portion of the beam between the points of
discontinuity.

The reaction at B

=" w?.

The shearing force /" at any section between B and C distant 2 .

from B is
wl b

Rl—w.z"=?+ Wz—w.z.
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B, y ity W’Z

B
l

The shearing force, F', at any section between C and A4 distant z
from B is

At C, F=’—g§+ W

- W—wx=7—d+ WI—)— W - wx

% l
dh WS- wa
] l 3
At G, A=W,
wl a
At 4, F=- b A w e
F, at C is positive or negative according as 2 W ]+ wa.

To draw the shearing force diagram (Fig. 117). On the verticals
through B,, €}, A, set off

B, L to represent R, —-— + W—

e A L W’Z-wa.
2 l
wl a
C\N ,, = E—Wi—wa.
wl a
AIO IE) 2 _'?— W?'

Join LM and NO; this completes the diagram.
Bending moments. The bending moment at any section between

B oand O is
i 2 ()
W M <?+W> “;”

At any section between ¢ and A4
M=Ra—" ~ W(z-a).

The bending moment diagram is drawn as shown in Fig. 116.
First consider the weights of the uniform loads on the segments «
and b as concentrated at their centre points; then draw the diagram

" BDEFA as in Case 9; and draw parabolic ares ; one for the portion

@, tangential to D and DB at E and B ; the other, for the portion
b, tangential to FE and FA at E and 4.
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53. Relation between bending moment and shearing
force.

(@) Concentrated loads.

Let AB (Fig. 118) be a beam of length /, supported at 4 and B,
and loaded at C, D, E, ... with weights W, W,, W5, ....

Let a,, a,, as, ... be the lengths of the segments BC, CD, DE, ....

* 4 wz wl
4‘-0,5 pe—— a.4—— ——a,_;- a,z—a-—a,»,

Fig. 118
The reaction
Roe Will-a)+ Wy(l—a,~a) + ...
e l oSy o)
The shearing force ) between B and C = R,
..................... .F’g sesessoee 0 ces D=R1—W1,
..................... TN S Y IS e

The bending moment at € = My= R,a,= Fia,,
........................... D=M,= R, (a,+a,) - Wya,
: =R+ (R, — W) a,
- MC & F2a2;
........................... E=Mz=R,(a,+az+ as) - W, (as+ a) — Waa,
=M+ Fia,.

Thus, the difference between the bending moments at the beginning
and end of any segment between two consecutive weights, is equal to the
shearing force in that segment multiplied by the length of the segment.

(b) Distributed load of wuniform intensity, or of continuously
varying tntensity.

Consider two sections KK’ and LL' (Fig. 119) of a beam at a very
small distance dz apart.

Ll e o{K

A A
b D
Fig. 119.

Let M and F be the bending moment and shearing force at cross
section KK'; M' and F' the bending moment and shearing force
at LL'.
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Let w be the intensity of the load between the sections. Then
F-F' =wdz,
and taking moments about LZL/, ;
M= M+ Fila + 28

as dz is very small (dz)* may be neglected.
M’ - M= Fda.
Let dF represent the difference between the shearing forces, and
dM the difference between the bending moments; then

%—w ................................. (1),
SR AR IR AL . o @)

From (1) we see, that if a curve of loading be drawn, an ordinate
of which at any section gives the load per foot run at that section,

"L
then the shearing force <F = f wdz + c) at any section is equal to the
0

area of the load diagram between the end support and the section.
From (2) it follows, that the shearing force at any section is equal to
the rate of change, or increment per unit length of the bending moment ;

and since to find the section where M is a maximum, we equate %%[

to zero, we see that J/ is a maximum where the shearing force changes
sign, ¢.e. where #'=0.

Again (Fig. 120),

F= d—M— tan 6 ;

hence, in the diagrams of bendmg moment and shearing force, the
ordinate of the shearing force diagram at any point measures the
tangent of the slope at the corresponding point of the bending moment,
curve ; also, the difference between the bending moments at any two
sectzons of the span is equal to the area of the shearing force diagram
between the same two sections.

Thus, in the case of a uniformly distributed load (Fig. 120):

The bending moment at the centre of span =the area acd of the
shearing force diagram

21252 piB
and the ordinate £G' of the bending moment diagram is equal to the
area of the shaded portion of the shearing force diagram.
It is important to note that when the intensity of the load is
constant or varies continuously, the equations

aM dr
%—E and %=w
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can be readily integrated as w and F are functions of #; but in the
case of a girder loaded with a series of loads concentrated at different
points of the span ; or with a combined uniform load and concentrated
loads ; the loading becomes discontinuous, and the equations can only
be applied between any two consecutive points at which concentrated

loads act. .
/
G/ b
wl
8
N
A: £ :B
:“ X > B.M. 0/ACRAM. !
' ’ |
| { ] ;
» 2 “
! i
| |
i |
|
a c
wl .
2 S.F..DIACRAM.

Fig. 120.

54. To show the relation between the polygon formed
by a hanging chain, loaded with any system of weights, and
the bending moment diagram for a beam similarly loaded.

Let AB be the beam (Fig. 121), loaded with weights W,, W,
w;, W.. ‘

R, and R, the reactions at supports.

For any section C of the beam, the bending moment

M= RER= S5, e 5 degeni s (1).

The force polygon is a vertical line. Take any pole O, and
describe the funicular polygon A'C'B’ (Fig. 122), which is the form
a chain would assume if loaded similarly to the beam. Consider the
section of chain at C’ vertically below €. Resolve the stress at ¢’
into two components, one vertical, the other parallel to A'B’. 'The
component (H) parallel to 4'B’ is the same for all sections of the
chain. Also  resolve the force on the chain at B’ into a vertical com-
ponent, which must be equal to A,, and a component along A'B’
which is equal to .
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To consider the equilibrium of the portion of chain on right of ¢”,
take moments about £, and let the vertical ordinate

E'C’'=D.

Then —H.D-3Wz+R,0,=0;
G R S L @).

Ry e I Lp— — i ek
TA ;C 2 T
1 W, Wz YWs YW,
|
t
A

[N S ——

Ws
w, o P B b
Fig. 122.
Comparing (1) and (2), M= HD.

Since H s constant, D the ordinate of the funicular polygon is
proportional to M, the bending moment on the beam. Thus the
funicular polygon is a diagram of bending moments. If the scale be

chosen so that A = unity, then
M=D.

55. Examples on bending moments.

Ezample 1. A BeEAM SUPPORTED AT BOTH ENDS CARRIES A DIS-
TRIBUTED LOAD, VARYING IN INTENSITY AT A UNIFORM RATE FROM ZERO
AT ONE END TOo w PER FOOT AT THE OTHER. SKETCH THE CURVES OF
BexpiNg MoMENT AND SHEARING FORCE.

Let !=AB=1length of span. ABE represents the load.
Let W =total load (Fig. 123).

Then Ril= Wé,
1174
and e o
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Fig. 123.

Zim
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Fig. 125.
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Take any section D distant 2 from 4, then total load on AD =W '%z

acting at distance g from D ; and

War =z
M=Rz- _lgﬁ x5
_Wa. z k
e (1_-[2) ........................... (1).
y aM_ Wy . 32
To find max. A, do = 8 (1 ~ ) e A (2).

This is =0 when 2= %

Substituting this value of  in (1), ;
Max M= L (1—1>=2—W—Z

3 3 8/ 943
To trace the bending- moment curve.
When z=0, M=0;
Bi= bt M0
l oW1
=0 . oMet
57 93
Take AR (Fig. 124) =~/—l§ Il ot BhE ordinte RS:?%, ThdR
oW

S is a point on the curve of bending-moment, and tan€=—9~ 55l

therefore we bisect RS in L and produce RS to O making SO =SL,
then the mchna.tlon of the line 40
St Wiy BW CW
tan OAR = b 7 7. T W
which is the inclination of the bending moment curve at 4. If at @

(the centre of gravity of load) we erect a perpendicular to meet 40 at
X and join X'B we get the inclination at B.
Shearing force at D .

2

= B,- W35

w 32"
L A(TE - P —— 3)

(this equals % , see equation 2).
When e Rngl’;
z=l, F=-R,=—3}W;

4

=+, F=0
S0
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Shearing-force curve from equation (3) is evidently a parabola as
sketched in Fig. 125.

Extmple 1I.  BEAM HINGED AT ONE END AND OVERHANGING A PIER,
LOADED AT THE FREE END, AND BETWEEN THE SUPPORTS.
The reaction R is got by taking moments about 4.
RBxBA=WxAC+ W,x AD.
In Fig. 126 ae represents W x AC;
: af represents Wix AD; _
. ¢f represents B x AB.
Join fk and am, then amkc is the diagram of moments.
The bending moment at anf section K is given by the ordinate kg.
Mat K=RxBK-WxCK-W,xDK;
=rs—rk—gs;
=kyg.

W,

R
# c
_ B _
Y Y
|
|
|
A
|
l
1
|

§§
(w)

St :
hok RO ;
e I BT |
) RN |
- £ :
el
| ; |
é?\l I el
< | ! !
x | i%ﬂ 1)
t-,‘= *a; , d : c
i | T T
| oA
| ;l : /,/’ ﬁ
:?I W et
] -
YN 1—"T
2k
Fig. 126.

Fig. 127.
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If, as in figure, m is above ’l, the beag is sagglngjr‘
/ HV \

hogging from = to .

The point n where the
contrary flexure.

The shearing force dlagpla

The following numerwaKgxamples.tefkov‘anging beay
easily understood by the student without further explang
are worked on the prmuplesi,]ready fully explained
diagrams only are given.§ :

\\

Example 111" Beam AC or LEN&TH 50 FEET, SU
AND OVERHANGING THE PIER B, LoADED WwirH 10 T0
40 ToNs at D. . 3

'\ o

‘ % Y40T.

>
J

1 |
! |
I B | I, N
| N [ e &,
[ | » ! - ] . o |
N ) |
| | g 1 )
e Sy : ' |
1 |
| ol : \\\ ! % | |
| & [ L [
‘bl : 3 'd | I
) I o
IR , [ I
[ | | |
| | |
I | | |
al ! }
P .
! —
2k = e b
T e SCALES
[} // —
5 B i /2 FT =1INCH,
e BE5 e 400 FT TONS =1 INCH.
= .
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Erample 1IV. Beam AC, LENGTH 50 FEET, OVERHANGING THE
Pier B, LOADED WITH A WEIGHT OF 10 TONS AT C, AND A UNIFORM
LoAD OF 1 TON PER FOOT BETWEEN A AND B.

o
I
[
n
j-

W=7 TON PER FOOT RUN. B c
V772722 72777 7777777 2727 7 A 7 7 T2 P 7727 77 777

/300 FTTONS— — — — — — >

|

800— — ———>|

el

- —50x/0=500— >i€— — — #0X20

bl o A O

I

i

—————————— — 0 — — —— —— — — >~ /0=~ >
'YIOT‘

|
o s
t

A Scates
N_ /2FT=1INCH.
S £00 FT TONS =1/NCH .

X
I
]
|
I
Q ~
L)
-
I
1
|
)

PRI Y DR e

o

I
|
|
|
|
1
I
|
|
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|
|
1
1
|
[}
|
[}
|
|

Q \/

|
i
|
-
/’ 6
-
-

e 2
b= x=/a;%=50
Pass e o . WX
Ao X=20; == =200

2
x=30; ¥X =450
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Example VI. BeaM, LENGTH 90 FEET, OVERHANGING TWO PIERS,
LOADED WITH 20 TONS AT EACH END, AND A UNIFORM LOAD OF 1 TON
PER FOOT RUN BETWEEN THE PIERS.

W=7 TON PER FOOT RUN. A

A7 s, B
c
|
/207 Rl=45T | Rl=#5T Yzor
e
|
[€—-20-—d¢——————- 50——————— ~—20—-—>
o HERESS] LS50 SCALES
AN 20 FT =1INCH.
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EXERCISES.

1. A cantilever 20 feet long supports four loads of 5, 6, 7, 8 tons,
situated at distances from the fixed end of 20, 16, 10, 5 feet respec-
tively. Find the bending moments at the fixed end, and at a section
12 feet from the fixed end.

Ans. 306 foot-tons ; 64 foot-tons.

2. A cantilever 30 feet span carries a uniform load of 2 tons per
foot, and, in addition, has a concentrated load of 5 tons at the free
end. Find the maximum bending moment, and also that at the centre
of span. :
Ans. Max. M=1050 foot-tons ;M;entra = 300 foot-toms.

3. A beam 25 feet span supported at both ends carries a uniform
load of % ton per foot run distributed over its length ; also two con-
centrated loads of 2% tons at 15feet and 5 tons at 20 feet from the left
support. Draw the curves of shearing force and bending moment.
Find the section where bending moment is greatest and its value.

Ans. 55 foot-tons at the 2% tons weight.

4. A girder 60 feet span, supported at both ends, is loaded
uniformly for a distance of 25 feet from the left support, with 2 tons
per foot run. Find the bending moments at («) centre of span; (b) at
end of load ; (c) at centre of uniform load.

Draw curves of bending moments and shearing force.

Ans.  312°5 foot-tons ; 3646 foot-tons ; 3384 foot-tons.

5. A beam, length 40 feet, supported at both ends, is loaded
throughout its length with a uniform load of 1} tons per foot run.
Find the bending moment and shearing force at %, 1, and } the span
from left support.

Draw diagrams of bending moment and shearing force.

Ans. 131} foot-tons ; 225 foot-tons ; 300 foot-tons ; —22} tons;
—15 tons; 0.

6. A beam A D, 40 feet long, is supported at two points B and C,
so that A B =8 feet, BCO'=20 feet, CD=12 feet. Weights of 5 tons
and 6 tons rest on the extremities 4 and D, and a weight of 12 tons
at centre of CB. Find the bending moments at B and C, and at the
centre of CB.

7. If in last example the central portion BC is loaded with a

uniform load of 2 tons per foot run, find bending moments at same
places.

8. A beam 50 feet span, supported at both ends, carries con-
centrated loads of 15 tons, 85 tons, and 20 tons, situated at 5, 20, and
35 feet respectively from the left support. Find the bending moment

8—2

SRR

£y
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at the line of action of each of these weights, and draw curves of
bending moment and shearing force.
Ans. 2025 foot-tons ; 585 foot-tons; 442°5 foot-tons.

9. Draw the shearing-force diagram for a beam 24 feet long,
loaded with 1} tons per foot, and from it find the bending moment
at 6 feet and 12 feet from either support.

10. Two cantilevers, each 50 feet long, placed so that their free
ends abut, are loaded with two tons per foot; show that the bending
moment at any section equals 2,500 foot-tons, less the bending moment
at the same section for a beam the length of the two cantilevers,

loaded in the same way and supported where the cantilevers are
fixed.

11. A beam supported at both ends and 35 feet long, is loaded at
each intermediate 5 feet with a weight of 2 tons; draw the bending
moment diagram, showing the contribution of each load to the bending
moment at every point.

12. A straight prismatic balk of timber floats in a horizontal
position with a weight W at the centre. Draw curves of bending
moment and shearing force.

13." A girder, span 120 feet, carries a uniformly distributed load
of } ton per foot run, and a central load of 20 tons. Find the
bending moment and shearing force at a section 30 feet from either
support. ‘

Ans. 975 foot-tons ; 25 tons.

14. A beam is placed horizontally upon two supports 14 feet
apart, and projects at each end 5 feet beyond the support. A load of
2 tons is placed at the centre of the span, and a load of 3 tons is
placed at each of the projecting ends. Calculate the bending moment
at the centre and at each support, and sketch the diagram of bending
moments.

15. A beam ABCDE of length 32 feet is divided into 4 equal
parts of 8 feet each by the points BCD. Draw the diagram of bending
moments for the following cases :

(@) Beam supported at 4 and £, loaded at D with 10 tons.
() Beam supported at D and B, loaded with a uniform load of
14 tons per foot from B to D and 3 tons at 4 and /.

16. A girder, 30 feet span, supported at the ends, carries a uniform
load of 2 tons per foot run extending from one support to the centre of
span ; also two loads of 6 tons, one at 8 feet from the left support, the
other at 8 feet from the right support. Draw the bending moment and
shearing force diagrams.
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17. A girder, 40 feet span, supported at the ends, carries a uniform
load of 1} tons per foot run, which covers the whole span ; also two
concentrated loads of 6 tons and 10 tons at 8 feet and 24 feet respec-
tively from the right support. Draw the bending moment and shearing
force diagrams.

18. For a uniformly loaded beam, show that the area of the
load curve is proportional to the ordinate of the curve of shearing
force, and the area of the curve of shearing force proportional to the
ordinate of the curve of bending moment. Apply this to find the
curves of shearing force and bending moment in the case of a beam,
the load on which is zero at the ends and increases uniformly towards
the middle, proving that the maximum bending moment is + W.

56. Rolling loads.

A live or rolling load is one which travels over a beam or girder,
and occupies different positions at different times. A railway train or
traction engine passing over a bridge are examples of a live load.

Owing to the load being suddenly applied on a bridge by a train
coming on to it with high velocity, and the oscillations set up, and
the alterations of stress, which are produced, it is necessary to consider
the effect dynamically as well as statically. At present the static
effect only of moving loads will be considered.

CasE 1. BEAM SUPPORTED AT BOTH ENDS, WITH A SINGLE Loap W
ROLLING ACROSS.

Suppose the load to travel over the beam from 4 to B. Let ! be
the length of the span. Consider any section K distant # from left
support.

Bexpine MomeNT. As the load travels from A towards K the
bending moment at X is R, (I-«), and as R, keeps on increasing, the
bending moment increases. After the load passes K, the bending
moment at K diminishes since its value is now R,xz, and R,
diminishes as the load rolls on. Therefore the maximum value of the
bending moment at K occurs when the load is at K, and

Max. Mz= R, (I—x), or Rz

=W l——lﬁ' 2.
The diagram of maximum bending moments is therefore a parabola
the ordinate at the centre, where .fv=é , being —I/Zl (Fig. 128.)

SHEARING ForceE. The skearing jforce at K as the load moves
towards the section from the left is positive, and equal to £,. This
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positive shearing force at K increases with R, as the load moves

towards X, and when W is indefinitely near to K its value is

I/If

&
When the load just passes K the shearing force becomes negative,

and equal to

Z.

Yeo-w=-T4-)--n,
and as the load moves on towards B the shearing force at A~ diminishes

numerically as 2, diminishes.

:: A
/\Rz K Rl

1B

by

)
\
|
l
8
I
|
!
|
|
*
~
3
y

A\

Fig. 129.

Therefore the greatest positive shearing force at any section W lf

occurs when the load is infinitely near to the section on the left side,
and the greatest negative shearing force when the load is infinitely
near to the section on the right side, its value being

w
X —l—(l—d").

Hence, if W travels from A to B, the successive maximum shearing
forces at the several sections of the span are represented by the
ordinates of a triangle abc (Fig. 129), in which bc is equal to W, the
shearing forces being all positive. If W #ravels from B to A, the
maximum shearing forces are all negative, and are represented by the
ordinates of an equal triangle abd.
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Case 2. Two CONCENTRATED MOVING LOADS AT A CONSTANT
"DISTANCE APART.

Let A B represent the beam of span =4, W, and W, the two loads,
a the distance between them (Fig. 130).

Maxmium BENDING MOMENT AT A GIVEN SgcTioN. The maximum
bending moment on a given section occurs when one of the loads is at
the section.

First, suppose W, at the given section whose distance from 4 is 2.

ARA <h, .*.],2.: ARs

Fig. 131.

Then the reaction

W, (- 2) + Wy {l— (2 +a)}
_RA= l
e
=(Wi+ W) "2 =W, 5,
and the bending moment is
M,=R,.z=(W,+ W,)(l—x)%— W2a“’§ ......... ().

Next, suppose W, at the section, with W, on the left of it ; then
Wi{l—(z—-a)}+ Wo(l—2)
R o l

=(W,+ Wa)l%‘z"*‘ Wl%:
and the bending moment is
M,=R oz~ Wya, or Rg(l—-2)

= (W, + W) (l—x)%+ Wl?”lﬁ- Wa e (2).
=M, + Wgw%—- Wl(l-x)‘;.
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This last equation shows that A7, will be greater or less than 27;,
according as W, is greater or less than W, (I — ).
Let W, be > W,, and let A F be the value of # when

Wex= W, (l—2),

so that AF : FB :: W, : W,,
then when 2> AF, M,is>M,,
and when x<AF, M,is>M,.

To rIND THE POSITION OF THE SECTION WHERE THE GREATEST
Maximom BewpiNé MoMENT occurs. First consider the bending
moment on any section between A and #. When W, is at this
section, the bending moment is given by equation (1); and differ-
entiating for a maximum

an, IV,+W'2 Wea .
¥ T e e
; _l Wsa
- x_§_m2) ..................... (3).

Next consider the bending moment on any section #, between F'
and B, measured from 4. When W, comes on this section, the
bending moment is given by equation (2).

For a maximum differentiate, and
l Wia
2 W - -------------------- (4) ]

or, if the distances of the maxima bending moments be measured
el
2(Wy+ Wy)°

£ W,a
AR But the expressions W+ W, and

represent the distances of W, and W, respectively from

&, =

from the centre, they are, for the left portion, and for

Riced 4.
the nght portion, SOV, +
Wia
W+ W,
their common centre of gravity, which is in the line of action of their
resultant. The absolute maximum bending moment occurs under the
heavier load ; when this load and the resultant of the two loads are
equally distant on opposite sides from the centre of the span.

When the loads are equal
-l Wa I a

Bt e

Hence the position of maximum bending moment will be on either
side of the centre, and at a distance = }& from it.

The values of the greatest mazimum bending moments may be
found from equations (1) and (2), by substituting for # and 2, the
values given in equations (3) and (4). The diagram of bending
moments (Fig. 131) will consist of two parabolas intersecting vertically
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below ) one passing through A and Z, where BE is the distance of
W, from centre of gravity of W; and W,, and the other passing
through B and H, where A/ is the distance of W, from centre of
gravity of W, and W,.

Frample I. A truck with 3 tons on the left wheel and 7 tons
on the right, with wheels 10 feet apart, travels over a beam of
40 feet span. Find the section of the beam which has the greatest
maximum bending moment, and its amount.

Here W,=38, W,=1, =40, a=10.
From equation (3),

40 7x10

_—2—_2_(34'—7)_165 feet.
Substituting this value of  in (1)
M=10x16% x 232 3 [20>< 16§ _ 69-4 foot-tous.

From equation (4),

40 3x10 :

xl—? =% 5—(—3‘1—7)‘—-21 5 feet.

Substituting this value for # in equation (2),

21 3x10x18%
40 40

Hence, the absolute maximum bending moment occurs in the

right half of the beam, at a distance of 15 feet from the centre, and
its value is 83-2 foot-tons.

Erample I1. A truck with 8 tons on the léading wheel and 7 tons
on the back wheel, axles 8 feet apart, crosses a bridge 40 feet span.
Find the position and value of the greatest maximum bending moment.

Here Wa =50 T =3 ai="8;"1= 40!

From equation (4)

M=10x 18} x =832 foot-tons.

x 8 /
20+ 310" 228 feet.
Substituting this value of # in equation (2),
M= 22 228 179+ 56) — 56 = 7396 foot-tons.

From equation (3),

g gsd - 38

2(8+1)
Substituting this value of z in equation (1)
18 8

= 18°8 feet.

M={10%x212~(3 x 8)} = 8836 foot-tons.

The absolute maximum bending moment occurs in the left half of
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the span at a distance of 1'2 feet from the centre, and its value is
88:36 foot-tons.

Shearing Force. Consider the loads as in figure, W, being the
leading load, crossing from A to B (Fig. 132).

As the front load W, approaches any section K the positive
shearing force at K increases, since its value is R, and the maximum
positive shearing force occurs when W, is at an infinitely small distance
to the left of A

RAT Wz W| TRB
NS e oY K

N

Fig. 132.

When W, passes K this shearing force at A is diminished by the
amount W,; as W, moves on from K towards B the value of + Fly
increases, on account of the advance of W, towards B and the approach
towards K of the load W, but when W, just passes K there is another
diminution in the value of + F'g, followed by a gradual increase until
W, reaches B.

The maximum positive shearing force occurs when the front of W,
is at A, and the maximum negative shearing force when the back of W,
is at K.

Diagram of Shearing Force (Fig. 132). Draw the vertical be
equal to W, ; join dc; the ordinates to this line represent the greatest
positive shearing force due to W, alone.

Produce the vertical be¢ to g, making cg:ng_la, and join gf,

where f is a point in de distant ¢ from d.
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(OaSE 3. BEAM SUPPORTED AT BOTH ENDS, CARRYING A MOVING
LoAD OF UNIFORM INTENSITY, OF LENGTH GREATER THAN THE SPAN.

The greatest bending moment on a section occurs when the load
covers the entire span; for any load placed anywhere on a girder
increases the bending moment on any section, and the bending moment
is therefore greatest when the whole girder is covered.

The curve of bending moment is a parabola through 4 and B, the

2
ordinate at the centre being %W or z_gl_ (Fig. 133).

Shearing Force. Suppose the load to travel from left to right ;
the shearing force at any section K has its greatest positive value

\R2 ARI
Vs 7 1

A A ' B
//// vwx 1K

SERY ol .

e [——eee 3

A
2
wl
8
> y
Fig. 133.
c
fwl
| >
a : b
Tk
“Zwl !
d
Fig. 134.

when the load covers the portion of the beam lying to the left of the
section, and its greatest negative value when the load covers the
portion of the beam lying to the right of the section.

When the load occupies the position in figure the shearing force
at K is positive, and equal to B,. If the load move on a little so as
to pass K, then R, is increased by a portion only of the weight so
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added, but the downward force to be subtracted from R, is the whole
amount of that added weight, and the resultant, which is the shearing
force, is diminished.

When the train covers 4 K,

Fat K=R, - %"l” ........................ (1).
When the train covers KB
Ao
Fat K=-Bya 288 (@).

The shearing force diagram is shown in Fig. 134. The curves are
parabolic, the equations of which are given in (1) and (2) respectively.
When the train load travels from left to right, the shearing force at
the head of train is positive, and is represented by the ordinate from ab
to the parabola ac, having its vertex at ¢ and maximum ordinate
wl
bc =+ § .
If the load travels in the opposite direction (right to left), the shearing
force at the head of train is negative, and is represented by the ordi-
nates of the equal parabola bd, having its vertex at b and maximum
ordinate
ad = — —2— .
The mazimum shearing force at a given section for any position
of the load, occurs when the head of the train (leading axle) is at
the section, and the load covers the longer segment of the span.

CASE 4. BEAM SUPPORTED AT BOTH ENDS, LOADED WITH A MOVING
LoAD OF LENGTH LESS THAN THE SPAN.

Let {=1ength of the span ; @ be the length of the load ; b= distance
of any section A from the left abutment ; = distance from right-hand
end of load to section K ; w = unit of weight of the load (Fig. 185).

(Bas e e DR WRi
I,
7 ; LK . )
< — ——)fi——.x—-az .
RN i S L n T [ ———————— H%
W/ Wa
Al
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To find the Mazximum Bending Moment K.

M=, (1-b)- %2
wa a wat
=—l{<b+x—§>(l—b)}——2— .................. (1).
For a maximum d—g&{=0;
f
or w—;(l—b —wr=0;
2=7(-0);

substituting this value of z in (1),
Maximum bending moment at A

_”;“{ +30- b)__}(z b) -
wa
=T<1—2—Z>b(l—b).

To find the ordinate at centre put b =é and wa =W ;

F W o Wi Wa
M= @-a) =2 == s ().

The curve of maximum bending moment is a parabola with central
ordinate

wa? (l b)?

Wi Wa

TR
Maximum Shearing Force. The maximum positive shearing force
occurs when the front of the load is at X, and the maximum negative
shearing force when the rear of the train is at K (Fig. 136). While

the load is only partially on the girder,

wat
Max, F'=+ — 57

When the whole load has just come on, x=a, and the shearing

oy 2
force = “% | This is the equation to a arabola with vertex at the
9] q P

2
left end, and maximum ordinate:z;%, at a distance @ from the

vertex.
When the load comes wholly on the beam, for any position
measured from 4

Max, F=B,=% (x-g)

(-3
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which is the equation to a straight line of slope %7 , intersecting A B
at a distance g from A, and therefore tangential to the parabola.

AR, gD TRI
1B

Fig. 136.

A similar curve set out downwards from B gives the diagram of
maximum negative shearing force.

It should be noticed that %—xﬂ{ is not equal to # in the case of

moving loads, as is always the case when the load is stationary.

Case 5. CoMBINED DEAD LoAD AND LIVE LoAD BOTH UNIFORMLY
DISTRIBUTED. ;

A girder usually has to support a dead load due to the weight of
the structure, as well as a live load moving from one end of the girder
to the other; such as a passing train.

Shearing Force. The maximum positive and negative shearing
forces are got by combining the shearing forces due to each system
separately.

Let w, be the weight of the dead load per foot run.

Let w, be the weight of the live load per foot run.

Let 7 be the length of the girder.

In Fig. 137 ordinates to ED represent the dead load shears, and
ordinates to the parabolas AJF, BKH represent maximum live load
shears.

For a load travelling from left to right the ordinates of ZD (with
their proper sign) are added to the ordinates of AJF giving the curve
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of total shear DG. Similarly, for a load travelling from right to left
we get the curve K1

Fig. 138 shows a convenient graphical method of representing the
total shear due to dead and live loads, arranged so that the dead load
shear is added direct to the live load shear of the same sign.

?‘"Nli"*"&l )

Fig. 138.

In Fig. 187 it is seen that the curves DG and KT of total shear
cross AB at L and M, and for the distance LM near the centre the
shearing force changes sign, according as the train travels over the span
from the left, or from the right. This is an important consideration in
the case of girders with lattice bracing, as the braces in this central
portion LM of the girder would have to resist either tension or com-
pression. To avoid this reversal of stress in a diagonal brace, a second
diagonal brace called a counterbrace is introduced in the same panel ;
one of these only being in action when the shearing force is positive,
and the other only when the shearing force is negative.

Bending Moment. 'The maximum bending moment at any section
occurs when the girder is fully loaded with both dead and live loads.
The curve of maximum bending moment is therefore a parabola with
(w, + w,) P

central ordinate = g
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57. Bending moments and shearing forces under a
system of axle loads.

When the live load is taken as consisting of a series of loaded
axles, as in the case of two locomotives followed by a heavy goods
train, and it is necessary to find the exact position of the train that
will produce the greatest bending moment at any given point in the
girder, the simplest way is to solve it graphically. The process is
simply sketched out here; the method is fully treated in Bridge
Construction, by Professor Claxton Fidler, from which this is taken.

The girder over which the train moves is divided into a number of
equal parts called bays or panels, and we wish to find the maximum
bending moment at each panel point as the train moves. The panel
points are 1, 2, 3, 4, 5, 6. It will be seen that it is simpler, for
diagram purposes, to make the bridge move forward, the loads re-
maining stationary. '

In Fig. 139 the train is sketched as covering the whole span, the
leading axle being directly over the abutment €. Denote the suc-
cessive axle loads by W,, W,, ..., &e., and their respective distances
from the abutment 4 by @), s, ..., &c. The diagram of moments for
the downward forces will be the polygonal line dbep, which may be
constructed by setting down ae, ¢g, ..., &c. to represent the moments
Wiz, Wya,, ..., &c., as in Case 2, Cantilever with fixed loads. If
the bridge were a cantilever fixed at 4, the bending moments would
be represented on this diagram by the vertical ordinates measured
below ad; but as the girder is supported at A and C, we have only
to superpose the moments due to the supporting force at €, which
will be represented by the triangle dap, and the required moments
can be found by measuring the ordinates from the new base dp up
to the polygonal line.

The polygonal line of moments for the downward forces will serve
for any and every position of the train if we regard the absciss@ of the
diagram as measured from some point ¢z the train,-such as the leading
axle; for the moment W2, is simply proportional to z,; W,z, pro-
portional to s, ..., &c.

Begin, then, by drawing the polygonal line of moments for the
downward forces as shown in figure, in which #, is equal to the span;
and the diagram for any other position of the train will always consist
of a portion of the same polygonal line. For the leading axle at C,
the bending moment at each panel point is found by projecting down
the various panel points 1, 2, ..., &c., and measuring the ordinate
between pd and the polygonal line. Thus, at point 2, the bending
moment is 0s. Now move the bridge forward one panel length, so that
the span becomes @,d,, and leading axle is at 6; the bending moments
are then measured on the ordinates under the panel points from the
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line dyz. Thus, at panel point 3, leading axle at 6, the bending
moment is nf. 'Then, having measured all the ordinates, move the
bridge forward another panel length, so that the span is now dya,, and
the bending moments are measured from d,0, and so on. The results
can be tabulated in the form shown, and then the maximum moments
at each panel taken.

To find the shearing force at any given panel point when the
leading axle is any given position to the left of that point, say panel
point 6, then the end ordinate ,2, scaled off the diagram and divided
by the span, will give the shearing force at the point in question, for
the shearing force at any section between the leading axle and
abutment C is equal to the reaction at that abutment, and is therefore
equal to the moment a,2 (or W) divided by the span.

58. Shearing stress in beams.

In Fig. 140, let CD and C’ D’ be two vertical sections of the beam
separated by a very small distance dz. It has already been shown
that the shearing stress at any point in a vertical section of a beam is
accompanied by a shearing stress of equal intensity on a horizontal
plane through the point; so that the intensity of shearing stress in
the section CD at F is equal to the intensity of shearing stress in
plane £F.

Let M = bending moment at CD,

M + dM =bending moment at C' D',

€ mil*
| o
H |
T A
R 1 F o\
VEE! v v

G ‘. neutralk g \axds.
(alxa

0 0’

Fig. 140.

Consider the equilibrinm of piece of beam CEFC’; the forces.
acting on it are: the normal stresses on CE due to M, the normal
stresses on C'F due to M + dM, and the shearing stress on EF.

For equilibrium the total shearing stress on EF must be equal to.
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difference between the normal stresses on C'F, and CE. We have to
state this algebraically.
Let ¢ = intensity of shearing stress at £,
b =width of beam at a height y from the neutral axis,
7, = height of top of beam from neutral axis.

Then total shearing stress on EF =¢ x bdz ......ccouvveeeenennen (1).

The intensity of the normal stress at £ is f —'--7 , and the
difference between this and the corresponding intensity at # is
dM

df = -T y.
Hence the difference between the normal stresses on C'F and CE
v dM dM (%
. j ~F ybdy = o f bydy ......... o RN (2).
y v
Equating (1) and (2)
qbdw = d;” / bydy;
dM g
but — - = F), the shearing force at the section.
e F F
E2%
T _— i = =— R N s e Toh s
Therefore 9= .IJ;, bydy bIAy (3),

where A is the area of the section which extends from # to €, and
7 is the distance of its centre of gravity about the neutral axis. If b
varies we must get it as a function of y.

Where the lowest limit of the integral in equation (8) is zero, that
18, where y =0, the shearing stress is a maximum. Z7he intensity of
shearing stress is therefore greatest at the neutral axis, and diminishes
to zero at the top and bottom of the section.

Max. ¢= l% L 4 bydy, where B =width at neutral axis.

In a rectangular section let
b = breadth, which is constant,

3

d = depth; then 7= %

The maximum intensity of shearing stress
d

d
2 f BT
-7]/0 ydy_@{? 0
12

TR R G
" bd® 8 20bd 2 area of section’
that is, 1} times the mean intensity over the whole section.
9—2

(See next chapter.)
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The distribution of the shearing stress may be represented graphic-
ally, as in Fig. 141. The shear curve is a parabola as the ordinates
vary as y°. The intensity of shear at any point of the section OD is
represented by the ordinate at that point to the parabola. The
maximum ordinate @c represents the shearing stress at the neutral
axis.

In a circular section the maximum intensity of shearing stress is
4 of the mean intensity.

L
<\ WL NI /,:%6{5/

Bl ' v/

a Qi 2

<

< QY

< 2 o il

v t

L v

“~—— —R— ——
Fig. 141. Fig. 142.

Let R =radius of the circle, then,
aty=0, 6=2R,
aty=v, b =2~/R“’—y2.

4
Therefore, as I for a circle=7% (see next chapter), maximum

intensity of shearing stress

F (R gy _4_R LAY
=ﬁ7fo bydy—g——,,,x,,ﬁfoz(ﬁ* ) ydy

oF MR-y 4 F
TR 32 b 3xRT

In the case of beams of I section the above equations show that
the intensity of shearing stress is greater in the web than in the
flanges, and that the distribution over the web is nearly uniform,
and is much greater there than in the flanges, as the width & is so
much smaller. In this case a sufficiently accurate result is obtained
by assuming the web as bearing the whole shearing force, considered

uniform over the section of the web only.
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The diagram of shearing stress would be as sketched in Fig. 144,
the intengity of shear as shown in Fig. 143.

Fig. 143. Fig. 144.

When the top flanges are riveted on to the web the rivets and their
spacing must be designed to resist the equal‘intensity of korizontal
shearing stress.

59. Riveting of web to flanges.

Fig. 145 gives cross section and elevation showing flanges and web.
The flanges and web are connected by angle-irons riveted to them.

FLANCE

e, = 5
—\jﬂb—r \ Jooo \

| ~WEB < /2" )

ANGLE IRON
Jpﬁ [ Jooo
L :

FLANCE
CROSS SECTION. ELEVATION.
Fig. 145.

To find the Rivet area required in one Foot-length to connect
the Web and Angle-irons.

If F=shearing foree,
Intensity of shearing stress (in vertical and horizontal directions)

=Mff;“@ e where ¢ = thickness of web, %= depth of girder.
Total sheat on area of 1 foot-length of web

F
=1f00txtxt'—x"}l'
i
=30

P e SRR R T
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and this must be equal to the rivet resistance in 1 foot-length, which
is equal to the rivet area required multiplied by the working shearing
stress.
Therefore
‘lﬂ
h
working shearing stress

Rivet area required in 1 foot =

Ezample.

A girder 40 feet long, 2 feet deep, is loaded with a uniform load of
14 tons per foot run. Thickness of web,  inch. Find the number of
$-inch rivets required to connect the web to the flange in 1 foot-length
at the supported ends.

Assume the working shearing stress for rivets, 5 tons per
square inch.

The shearing force at each end is 40—; . 30 tons.

Cross-sectional area of web =24 x 8 =9 square inches.

Intensity of shearing stress at ends = 32 = 3% tons per square inch.

The area of web for 1 foot=12 inches in length=12x3=4}
square inches.

Therefore total shear in 1 foot-length of
web at ends =4} x 33 = 15 tons.

As there are two angle-irons, each rivet
connecting web to angle-irons has two
sections to resist the shear, so that eack

rivet has a resistance to shear ‘
=2x 232 % (2)2x 5. WES.
Therefore number of rivets required
18 15 336
IxEEx@Fx5
Or four rivets per foot are required to connect the angle-irons to
web. The pitch (distance centre to centre) equals 3 ins.

As the rivets connecting the angle-irons to flange-plate are in single
shear, the number required per foot will be eight.

)

&l

3
o
=

=34, say 4.
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EXERCISES.

1. A rolling load of 1} tons per foot run travels over a bridge of
140 feet span. Find the maximum bending moments and shearing
forces which can occur at sections of the bridge distant 40, 70, and
100 feet respectively from the left support.

Sketch the diagrams of maximum bending moments and shearing
forces for the whole bridge due to this rolling load.

Ans.  3000; 3575; 3000 foot-tons.
536; 26°25; 86 tons.

2. A four-wheeled truck weighing 8 tons travels over a girder
40 feet span ; 5 tons resting on the leading pair of wheels, and 3 tons
on the trailing wheels; the axles are 8 feet apart. Find (@) the
maximum bending moment on a section 12 feet from the right support,
(0) the position and value of the maximum possible bending moment.

Sketch with dimensions the diagrams of maximum bending moment
and shearing force for the whole span due to the above travelling load.

3. Prove that when a bridge is liable to be covered wholly or
partly by a uniform advancing load the bending moment at any section
is greatest when the bridge is wholly covered, and the shearing force
at any section has its greatest positive and negative values when the
load extends from the section to one or other of the piers.

4. A girder 40 feet span is subject to a travelling load of 3 tons
per foot run, of length not less than the span, also a uniform dead load
of 1 ton per foot. Find the maximum positive and negative shearing
forces at intervals of 5 feet for the combined loads.

Sketch the shearing force diagram for the whole girder.

5. The shearing force at a section of a plate girder is 120 tons.
Its depth at that section is 6 feet. Find (a) the thickness of the
web-plate, (b) the number of rivets required per foot for uniting the
web-plate to the booms. Working shearing stress=10,000 lbs. per
8q. inch. Diameter of rivets 1 inch.

6. A horizontal beam supported at its ends A and B is traversed
by a moving load W uniformly distributed over a segment P¢ of con-
stant length ; show that the bending moment at any point A of the
beam is greatest when K divides @ in the same ratio as that in which
it divides 4 B ; and show that this maximum bending moment is

w
EZEAK' KB (AB—1% PQ).
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7. A girder of length /, supported at both ends, carries a fixed
load of w, tons per foot run, also a moving load of w, tons per foot run,
travelling from one end of the span to the other, and finally covering
the whole span. Find the maximum bending moment and shearing
force on any given section.

Trace the curves of maximum shearing force due to both loads, the
moving load travelling in either direction over the girder.

8. A travelling load of 1} tons per foot run, of length greater than
the span, passes over a girder of 100 ft. span. Find the maximum
bending moment and shearing force at a section 40 feet from the right

support.
Ans. 1800 foot-tons. 27 tons.

9. If the girder in last question also supports a dead load of 1 ton
per foot run, find the maximum bending moment and shearing force
at the same section due to both loads.

Ans. 3000 foot-tons. 37 tons.

10. A plate girder 60 feet span, depth of web 5 feet, carries a
uniform load of 4 tons per foot run. Find (a) the thickness of the web
at end of girder, (b) pitch of the rivets connecting web and flanges.
Diameter of rivets & inch. Working stress =4 tons per sq. inch.

Ans. % inch; 5 rivets per foot.

11. A bridge girder 84 feet span carries two equal concentrated
loads, each 16°4 tons travelling over the span. The loads are fixed at
a constant distance apart of 12 feet. Find the section on which the
absolute maximum bending moment occurs, and the value of that
bending moment. '

Ans. At x =39 feet ; max. M= 5932 foot-tons.

12. A girder with parallel flanges 150 ft. span, is divided into
10 panels each 15 ft. long. A live load which covers the whole span,
consisting of two engines and trucks, passes over the bridge. The loads
in tons on one girder counting from the fore end of train are 9; 9; 9;
5;5;5;9;9;9;5;5;5;5;5:5;5;5;5; at distances apart starting |
from the same end of 11;11;9;7;7; 9; 11; 11; 9; 7; 7; 8; 10; 8;
10; 8; 10 ft. Determine graphically the maximum bending moment at
each panel point.



CHAPTER VL
MOMENTS OF INERTIA.

60. Moments of area. and moments of inertia.

DeriNitions. MoMeNT oF ArRea. If we suppose a surface divided
up into a number of small elementary areas, then the “moment of area”
about any line in its plane as axis is the sum of the products of each
elemental area into its perpendicular distance from that axis; the
perpendicular distances which lie on one side of the axis being
reckoned positive, and those on the other side negative. As in
problems we have usually to deal with, the axis is horizontal, we will
consider distances measured up as positive, and when measured down
as negative,

An axis about which the moment of area is zero passes through
a point called the ““centre of area,” or more usually the “centre of
gravity ” of the surface. As the neutral axis passes through the
centre of gravity of the cross section, it is important to state how in
unsymmetrical sections the centre of gravity can be readily obtained.

Let A =whole area of surface, and suppose it divided up into
elements of area a,, a,, @s, ..., &c., the distances of whose centres of
area from any plane are yi, ¥, ¥s, -.., &c., and let 7 be the distance of
the centre of area of the whole surface from the same plane, then
_17=“"% - azyj sl + ...

or Ay = [ay.

The MoMENT oF INERTIA of a surface, abont a line in its plane as
axis, is the sum of the products of each elementary area into the
square of its distance from the axis.

A moment of inertia is always positive, being the product of the
square of a length into an area. It is usually denoted by the symbol 7.
and

I=a® + ays® + agys® + ..
= Jay*
=Ar
where A is the whole area, and # the radius of gyration of the:area
about the axis.
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If a surface is divided up into several portions, the moment of
inertia of the whole surface about any axis is equal to the sum of the
moments of inertia of the several portions about the same axis. If a
section is conceived as the difference of two figures, the moment of
inertia of the section about any axis is equal to the difference of the
moments of inertia of the two figures about the same axis.

6l. Principal axes and principal moments of inertia of a
plane surface.

The rectangular axes intersecting at the centre of area of a given
surface, round which the moments of inertia are respectively greatest
and least, are called the principal axes. It is important, especially in
the case of struts, to know the principal moments of inertia of an area,
as the resistance of a piece to flexure will be greatest and least round
those axes of greatest and least moment of inertia respectively.

If a surface has one axis of symmetry, that axis traverses the centre
of area, and is one of the principal axes, the other principal axis being
perpendicular to it.

If a surface has only fwo azes of symmetry at right angles, they are
the principal axes of that surface, and their intersection is the centre
of area. '

If the moments of inertia about the two principal axes are equal,
then every .axis through the centre of area is a principal axis, and the
moments of inértia are the same about each axis ; and if a surface has
two axes of symmetry not at right angles,—for example, an equilateral
triangle,—the moment of inertia about each and every axis through
their intersection (the céntre of area) is the same, every axis being a
principal axis. This is the case with circular and all regular polygonal
surfaces.

62. Moment of inertia of a plane area about an axis
perpendicular to the area.

Let Fig. 146 represent a plane area. Take O any point, and draw
0X, OY through it at right angles; also assume a third axis 0Z,
perpendicular to OX, OY, and therefore to the plane of the surface.
Let IV be a small element of area “a,” the coordinates of which are
2 and y. The moment of inertia of the element XV round the axis
0Z is aON®. Therefore the moment of inertia of the whole surface
round that axis is

Ios=JaON* = fa (2 + y) = faa® + [ay*
= ILox+ Loy
Iyz is called the polar moment of inertia, and is usually designated
by the letter .J. .

Hence the moment of inertia of an area about an axis O at right

angles to the area is equal to the sum of the moments of inertia about
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any two axes at right angles to one another, through the point O, and
in the plane.

63. Moments of inertia about parallel axes.

The following theorem is frequently necessary in determining the
moments of inertia of beams of complex sections :

The moment of inertia of an area with respect to any axis in its
plane is equal to the moment of inertia of the area about o parallel
axis passing through its centre of gravity, plus the product of the
area into the square of the distance between the two axes.

In Fig. 147 let A be an area of any shape, XOX its neutral axis
traversing the centre of area, SS any axis in the plane, parallel to YOX

Y
N
Db Al A% X ka1 X
w T‘
|
Yo
]
|
S ¢
Fig. 146. Fig. 147.

and distant y, from it. Take a small elemental strip of area “a” parallel
to XOX and distant y from it.
The moment of inertia of this strip relatively to SS is a (v + %)%
and of the whole surface is
Iss= fa(y +yo)f = Ja (5" + 2yp +90),
or, since ¥, is constant,
=Jay’ + 2y, Jay + 3.’ [a
=Iyx+ Ay ;
the second term being zero, since XOX passes through the centre of
gravity of 4, and therefore [ay = 0.
64. Moments of inertia of plane areas.
CasE 1. THE SURFACE A RECTANGLE.

Let Fig. 148 represent a rectangular section, of which & is the
breadth and d the depth. The neutral axis is parallel to & and
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bisects the depth d of the rectangle.
Take a small strip of area bdy at a Y

distance y from the neutral axis.
Then, owing to the symmetry of the eillote 3
two halves of the section above and "‘ 4
below the neutral axis, i d
d d | m a
‘ by"’]"' 2
i 2 — e
&) | :
5 I
S oA . d
12 12 By ] 2
where A =area of rectangle. :
Similarly v l
a8 A B
Irr=1y=4 13>
and the radii of gyration Y
e b Fig. 148.
ST T 24/3
The moment of inertia about 4 B
bd? d\* _ bd’ d?
Frn ﬁ+baz(§) =2 =45

CaSE 2. RECTANGLE SYMMETRICALLY HOLLOWED.

Figs. 149 and 150 illustrate two varieties of this form ; the one
hollowed internally, the other with equal and symmetrical hollows.

% Y
%{////T V///g’/ i
n

X // o //l X X /%" | X
] d  7jd g
Z ib /i b 22 ;b |

uivik’ € 5 N e 3> |

% Y

Fig. 149. Fig. 150.
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The moment of inertia is the moment of inertia of the exterior
rectangle less that of hollows, and therefore

IXX — 'Tl?_; (de =3 bl d13>,

e bd® — by dy?
273 bd — bydy

Oase 8. CIRCLE ABOUT A DIAMETER.

This is most easily obtained from the polar moment of inertia.
All axes through the centre O of the circle are principal axes, and the
moments of inertia about those axes are all equal.

It has been shown that the moment of inertia about an axis
through O at right angles to the area is the sum of the moments
of inertia about two rectangular axes through O in the plane of the
area.

and

Or J= [ox 3+ IOY-
But in the case of a circle Iy = Iy
Therefore J=21px=21y.

Let R =radius of the circle (Fig. 151).

Fig. 151.

To find J, conceive the circular surface divided into concentric
elements of area.
Let dy be the thickness of one of these, whose distance from O

is .
'R R 4
Then J=fo21rydy xy2=2wfoy3dy=1%=7;€f.
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Therefore moment of inertia about any diameter
il
4 64’
D
T
The moment of inertia about a tangent line is

4
=£§ +WR2XRQ%EWR4=%WD‘.

I:

1
and ]g=§R=

CasE 4. CircuLar Rixe.

Let B, and R, be the external and internal radii of the ring
(Fig. 152).

Q\
X

£
.

Y

Fig. 152.

Then the moment of inertia and radius of gyration round any
diameter are equal to the difference of those of the outer and inner

circles. That is
I=}r (B~ B =gz (D= D)Y;
k=3JR?+ R2=1J(D+ D).

Case 5. MoMENT OF INERTIA OF A TRIANGLE ABOUT AN AXIS
THROUGH THE CENTRE OF AREA PARALLEL TO THE BASE.

In Fig. 153 let b be the base, and % the height of triangle. Then

centre of area is at a height g above the base.

First find the moment of inertia about 4B as axis. Take a small
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strip of area parallel to, and at a distance y from AB. The area of

this strip is #dy where = g (h—z).

h
Therefore IAB = % /(; (ﬁ “:l/) yzdy = b (h4 li“)

R\3 4
_bF,
TLiBa
b AR R
ahd Ia=fs-4 () =57
_
& 36

CasE 6. MomeNT oF INERTIA OF TEE SECTION IN FI6. 154 ABOUT
Axis XX.

It is first necessary to find the ceatre of area, and consequently the
position of neutral axis. O is centre of area of whole surface, 0, and
0, the centres of area of web and flange. Take moments of area
about the lower edge of flange (Fig. 154),

- 4xix2p+2xix}
7 2+1
=175 inches.
The distance of centre of web from neutral axis=075 inches.

The distance of centre of flange from neutral axis=1'5 inches.
Therefore

web flange
A
13
25ro==
[ 2 1
IXX=EXI§+§X4X0'752+ 12 +2X§X1'52

=266 + 1'12 + 0°02 + 225 =605 inch units.
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The total area is the sum of the areas of the several rectangles; the
total moment of area about XX is the sum of the partial moments;
and the total moment of inertia about XX is the sum of the partial
moments of inertia about this axis.

The same result can be obtained in another form, by using the
values of ¥ and g, the ordinates to the top and bottom edges of the
rectangles, instead of ¥,

The rectangle (Fig. 155) may be taken as the difference of two
rectangles, whose sides are b, Y, and b, .

Thus moment of area about the axis XX is

=[)Y><2Z—by%=g(yz—"y2) .................. (2).
Its moment of inertia about XX (the base), Case L., is
Y by b v s
IXX_T—§_3(Y P) e (8).

The most convenient and systematic method of finding these values
is by arranging the computation in tabular form. A few examples of
each tabular method are taken for illustration.

Case 7. MoMENT oF INERTIA OF A TEE-IRON, 77 x 6” x 1", ABOUT
Nevrrar Axis XX,

The section is shown in Fig. 156. To get the ordinate of centre of

Y
h
w08 (S
|
|
|
|
0, {
T
! /-9 :
R E % 04 - - X
|
e | Be
| /-6 I _}/—2/
o TSR, R &t g 0] e
Thy T
«————— —— - -7 — ————— >
Y
Fig. 156.

w. 10
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O is the centre of area of the whole section, 0,, 0,, O, the centres
of area of top flange, web, and lower flange respectively.

SR % et (yo“ - tli—;)

Find the position of neutral axis by taking moments of area about
the lower edge of bottom flange as axis.

Memb 3 pe oy
ember a y ay Yo Yo -1 (yo +1—2)
Top Flange 3 | op| 28y | 58 |3423 | 3 1029
Web 8 5 40 1-35 1:82 is 57-20
Lower Flange 9 3 4} 315 992 > 9010
20 73 2502
§=7—3=3-65" x=2602

2%

In the second tabular method, ¥ represents the larger of two
successive values of y. The moment of area and moment of inertia are
first calculated round A5, the lower edge of bottom flange, then

IXX=IAB—AT-

The ordinates of the three rectangles from A B are 0,1;1,9; 9, 10,
and their breadths are 9, 1, 3.

L 2 CPRE b 3 3 _ 43 E 33
b| Y |Y-y|Area | AT s -y T | By 3(Y*-9)
0 0 0
9 1 9 1 45 1. 30
1 1 1
i 8 8 80 400 728 2426
9 81 729
3 1 3 19 285 271 2710
10 100 1000
A= 20 M= 73 L=| 5166
y=';—(?;=3'65”

Ixx=1,,—20x 3652=>516-6 — 2664 = 2502

10—2
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Case 9. MoMENT oF INERTIA OF A GIRDER BUILT UP OF ANGLE-
IRONS AND PLATEs.

Fig. 158 gives the actual cross section of girder, and Fig. 159 shows
the equivalent cross section in which the elements of area are reduced
to a series of rectangles. Choose any line as axis, say, the lower edge
of the bottom flange, the diagram and table show the breadths and
ordinates measured up from this line 4B, then using equations (2)
and (8) we can get the moment of area M ,5, and moment of inertia

L5 about axis 4B, and the distance of neutral axis y:ﬂ—{;f . Also

the moment of inertia about neutral axis XX
Iyy= Lp— A?72 =I5— ]‘[Asy-
In table, } represents the larger of two successive values of 3.

L2 PLATES 1'¢'x5"

(SISILI YIS IS SIS SIS SIS S IS SIS IS SISO IS

NN
R ORDINATES

[ e e e e

PSS SIS > oy Ll I\I\IIIIIIIIII/IIIA Iy [(_ 2 0 _:]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ 2 2
VSIS I/,% yll// 1
2PLATES 1'8%# /3
ANGLE IRONS "
35 x3 é‘ x5 /87

.
X Oz X

wes . NEUTRAL||Ax1s T
|
|

7
7
I
////// N 22272

NN

///II//IIV/II///I ik

7
4
7
N

\

744
AAARHMERIANL L ANUEANRAREE RN »
R lldcdidididiiisiidedecdececdldlcaiccd A Tl 0 |l——m — == — /16 — — — N B
AMTANTIITLTANEUUR AN UEEEREEE AU A o
I//III/IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII/
[
4 PLATES 1'4"x5
Fig. 158. Fig. 159.

The axis A B round which the moment of inertia is first caleulated
has in this example been taken as the lower edge of bottom flange, but
in sections of this class there is an axis, usually through the centre of
depth, which is an axis of symmetry for several of the rectangles taken
together, although not for all. In such cases arithmetical work will be
saved (owing to symmetry) by first compnting the moment of area and
moment of inertia of the whole surface round this axis; as the ordi-
nates measured above this axis are positive, and those below negative,
the sum of the moments of area of the symmetrical elements is zero.



vi] MOMENTS OF INERTIA 149

b | Y Yoylare| ¥ vy Rrregy | T | yeogr|2(reoy)
—|—
0| 0 | -
16| | 2 |32 | 4 32 8 427
2 | 4 8
73 3| 3 225 8% 76 190
24 625 156
13 3 | 4 24 18 1508 754
5% 3025 166:4
-V Eal b e 312 78 61652 10275
18} 7 34295 63316
1 3 | 4 120 90 3606:8| 18034
21} 462:25 99384
73 ) 2175|815 7006| 17740
22 484 10648
20 1 |20 45 450 1519 | 101270
23 529 12167
16 1 |16 47 376 1657 | 88373
24 576 13824
4= 91 | M=| 1134 L= 23706
=== I
s e
g="3r =12

wx=1 5= AG2=23706 — 91 x 1252
=23706 — 14218
=9488

CasE 10. MoMENTS OF INERTIA OF THE SECTION OF AN UNEQUAL

SIDED ANGLE-IRON.

Let the angle-iron be 7 x 84" x 3" as in Fig. 160.

To find the moments of inertia about the axes XOX and YOY,
through O the centre of area.

To find XOX, moments of area are taken about AB, to find
YOY, they are taken round AC.

y : a2 az
a y ay Yo Yo' 3 | ® (Wﬁg)
35 35 12°2 1 1 4-1 17-85
15 25 2 2-25 506 02 762
50 1255 9547
=120 =25 Lix=2547 inch units
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Therefore BRI =P OO P SRl (1).

Now if the coordinates of @ are z and ¥, and the coordinates of
R are #; and y, then

OR=y B WP R =5

and equation (1) becomes U3 S, (S R AN I U SR (2).

Considering an elementary strip of area at P of very small
thickness dy, which is the same for both the § and B curves; then
moment of inertia of this strip about X0X is «dy . * and the moment
of inertia of whole area

Ixx = [xy*dy = b faydy. From (2)
=b4,,

or moment of inertia about XOX is the area traced out by R,
multiplied by 6%

EXERCISES.

1. The dimensions of the section of a cast-iron beam are :—Top
flange 4 inches by 13 inches; bottom flange 12 inches by 1% inches ;
web 16 inches by 1} inches. Calculate the moment of inertia of the
section about the neutral axis.

Ans.  2278°40. ;

2. Determine the moment of inertia and radius of gyration, abaut
an axis through centre of area parallel to the flanges, of two tee-irons,
each 8" x 8" x 1", placed flange to flange in cross shape.

Ans. 47°3.

3. The section of a plate girder is as follows :—Top flange, two
plates each, 16 inches by % inch ;. bottom flange, three plates each,
14 inches by 4 inch; web plate 2 feet deep, 3 inch thick ; angle-irons
connecting flanges and web 4 inches by 4 inches by 4 inch. Find the
moment of inertia of the section about neutral axis.

Ans. 8175.

4. Tind the moment of inertia of the section of a circular tube
10 inches external diameter and 1 inch thick.

5. Show that in the case of a triangular area the moment of
inertia about an axis through the centre of area is the same as if
we consider one-third of the area concentrated at each of the middle
points of the sides.

Note. 'This is useful in finding the moment of inertia of regular
polygons which can be divided up into triangles.

6. Find the moment of inertia of a regular hexagon about an axis
through its centre of area, and joining opposite angular points.

7. Find the moment of inertia of a rhomboidal or lozenge-shaped

section about a diagonal as axis.

; bl
If b and % are diagonals, 1 = 15"



CHAPTER VIL
GIRDERS.

67. Modulus of section.

We have already proved that the relation between the bending
moment and the stresses induced is given by the equation

u-Lr
v

i.e., the moment of the external forces is equal to the moment of
internal stresses, or moment of resistance of the beam. The quantity

4 is called the “modulus of the section,” and is generally denoted by

" the letter Z, and it is well to note that

S I _ (length units)*
"y length

Hence M= f;yl ~/Z

Generally, it is necessary to consider the greatest tension and
compression at any point of the cross section; then, if y, and y, are
taken as the distances of the parts of the section furthest from the
neutral axis, and if f;, /, be the tensile and compressive stresses corre-

sponding to the distances ¥, and .,
M S I or Je I
yt yc

=fiZy, ox f.Z,.

68. Graphic method of finding the “ equivalent area” and
“modulus of section.”

Equivalent area. On the section of a beam we have the stress
varying from zero at the neutral axis to a maximum at the outer fibre.
If now we replace the section of the beam by a section which has spread
over it the same amount of stress, but instead of being variable, is
constant all over and equal to the stress on the outer fibre, we get a
figure which is called the EQuivaLENT AREA or MopULUS FIGURE.

= (length units)®.
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Divide the beam section into a number of thin strips CEGK
parallel to the neutral axis 4 B (Fig. 162).
P Mo == 0 — i

|
i .
Gfxmum———FiK I 74
Rl {\8 A B’

NEUTRAL |0 AXx/S [0}

Fig. 162.

Let 2= GK, y and 7, the distances of GA and outer fibreZat £
respectively from the neutral axis, and let / and f; be the stresses
corresponding to y and 7. Draw a line MN parallel to AB or its
prolongation A'%’, and at a distance %, from A'B’. Make MN=GK=x.
Join O'M, O'N, and let GK, CFK prolonged cut these lines in g, £, ¢, ¢;
then the strip gkce has upon it a stress of constant intensity (/), and
the total stress on it is equal to the total stress on GKEC.

D i T TN e = =
I : 7
[} //
j 2
[}
) K %
4 \
| %
% B
W e
Fig. 163. Fig. 165.
Let the thickness of the strip (same in both figures) =dy, and let
gk=ua,.

By similar triangles,
el L W ST
Y roam or = = 7o since M N was made equal to GX,
d L 7
an pX
Now total stress on GKEC = fxd

S 4
= d = — d
" yxay 7 hnay

=fndy
=/, x area of gkce = total stress on gkce.
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Figs. 163, 164, 165 give the modulus figure for a rectangle, circle,
and joist with equal flanges, which are all cases of symmetrical sections.

In the case of unsymmetrical sections, where the stress in the outer
fibres is not the same in tension and compression, two figures can be
drawn, one called the tension figure where the uniform stress is the
maximum tensile stress; the other, the compression figure where the
uniform stress is the maximum compressive stress. The neutral axis
is not equidistant from the top and bottom, and the figures are drawn
thus :(—

Compression figure (Fig. 166). Draw a line on the lower side, at a
distance from the neutral axis, equal to the distance of the upper fibre
from the same axis. Complete the figure as before by projecting the
widths on the lower line. Total stress =f, x area of figure.

COMPRESSION BASE

=== = 7§
~ e | ____S==—=7 COMPRESSION
VBl % N ’/T | BASE
W Ve 4 %
NA. |V @ Ay ]
; é 7 é 7
/ ] i \\ |
| /18 A 9% Q e e
Je ——— T r— >
| / |" 3 N Ly — - e s d
o it A \ TENSION BASE
TENS/ON BASE :
Fig. 166. Fig, 167.

For the tension figure (Fig. 167). Draw
a line parallel to the neutral axis, at a
distance above it equal to the distance of
lower fibre from that axis; project all the
widths on to that line, and join up with
centre of area. The total stress=f; x area
of figure.

Fig. 168 gives the modulus figure for a
tee-iron.

As the total amount of tension is equal
to the total amount of compression, the
area of the figure above the neutral axis
must be equal to the area of the figure
below the neutral axis, whether the section
be symmetrical or not.
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Moment of Resistance. Since the intensity of stress all over the

figure is the same, the position of the resultant
will be at the centre of gravity.
In Fig. 169 let a be the area of figure

above neutral axis, which, as shown, must be G ——T
equal to the area below the neutral axis. NA. N0 ('{
d = distance between the centres of gravity :
G, and G, of the upper and lower G- —+
figures.
J = intensity of stress. Fig. 169.
Now, taking moments about neutral axis,
SECTION MOMENT OF | MODULUS OF
INERTIA 1 SEcTion Z
b
R
/ 2 6
& 8 s 2
= -% o-ng b
77 p* 7703
64 32
=-0982 D
T ey | Zlotd)
64 32D
=-0982(0%d %)

D

bhiG R}

bRZOA
iz

HOLLOW RECTANGLE OR
T wirw couaL FranGes

6/




VII] GIRDERS 157

Moment of stress = f[area of top half figure x OG, + area of bottom
half of figure x 0G,];
= f x area of either half x G1G;;
=fad =fZ, where Z = ad;
or moment of stress = stress on material x modulus of the section.
The table on p. 156 gives the value of Z for some of the simpler
forms of section.
Lixamples.

1. A floor joist of [ section with equal flanges, span 15 feet, is
supported at both ends. The outside depth is 6 inches, breadth of
flanges 4 inches, thickness of web and flanges each § inch. Find the
uniformly-distributed load per foot run which the joist will carry, if
stress is not to exceed 5 tons per square inch.

We have b=4 inches ; b, =3} inches;

k=6 inches ; £, =5 inches;
g _4x216-3}x125
h 36
Moment of stress=118 x 5 = 59 inch-tons.

=118 inches®.

Equating to this the value of the maximum bending moment %f ;
where o is in tons per foof run, we get
w15 x 12°
T2x8 ~ o
59 x 2

Therefore w=

615 = 0°17 tons per foot run.

2. A steel tube, 36 inches long, is supported at the end. External
diameter, 2 inches; thickness, } inch. Find the central load which
will produce a maximum stress of 8 tons per square inch.

3 4_ 1.rd c L
Z=-£ _ 0982 (2¢—1-5%) _ 0982 (16-5 06)=0,537‘
% 2 2
Therefore, maximum bending moment
W x 36 ;
s 0537 x 8 = 43 inch-tons ;
and W = 49—3 =48 tons.

69. Beams of uniform strength.

In most cases the bending moment varies from section to section of
a beam, and the sections are accordingly made deeper or broader where
the greater bending moments come, being designed so that the maximum
stress f allowed is uniform’ throughout the whole length of the beam ;
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when the section is so proportioned the beam is said to be of uniform
strength. Now M=fZ, and as f is constant, Z, the strength modulus
of section, must be proportional to M. "Take the simplest case of a
rectangular section :

1. Beam fixed at one end, loaded at the other with weight W.

M=Wz, and bd*«xax. If b is constant, then the elevation
of beam showing d is a parabola. If d is constant, the
plan showing & is a triangle.

2. Beam fixed at one end, loaded uniformly.

M =%)'.z“, and bd® 2. If b is constant, the elevation showing

d is a triangle. If d is constant, the plan showing b is a
parabola.

8. Beam supported at the ends, loaded uniformly.
M= gj (*-42°), and bd® « ({*—427). If b is constant, the

elevation showing ¢ is an ellipse. If d is constant, the
plan showing b is two parabolas.

70. Unsymmetrical sections. Beam with flanges and
web.

If a section is symmetrical, the neutral axis passes through the
centre of depth; hence the maximum tensile stress on the waterial
1s equal to the maximum compressive stress. But some materials,
such as cast iron, are five times as strong in compression as in tension ;
consequently the area of the tension flange is made five times the area
of the compression flange, and the neutral axis will be about five times
as far from the compression flange as from the tension flange.

e - o e T e

i AR AR, S

Intensity of stress Total stress
diagram, diagram.

>
-
o2

Fig. 170.
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In Fig. 170, let

A, = area of compression flange,

A, =area of tension flange,

/. = maximum intensity of compressive stress,

/i = maximum intensity of tensile stress,

9. and y, the distances from the neutral axis of the outer fibre in
the compression and tension flanges respectively.

Then M-Lp o L,
t [
and, as g‘ = j, we get the same value of M whichever we take.
t ¢

Fig. 170 gives the general form of the intensity of stress diagram,
and fotal stress diagram for an [ section.

In cast-iron girders the web varies from 1 inch to 2 inches in
thickness, and its moment of inertia must be taken account of in
calculating the bending strength.

STEEL GIRDERS.

In girders of this class the two flanges are held apart by a thin, deep
web as in the plate girder type, or by diagonal bracing as in lattice
girders. The junction of the web or diagonal braces is to resist the
shearing forces. 'The bending moment is borne mainly by the flanges,
one being in tension and the other in compression, and as the depth
of each flange is small in comparison to the depth of the girder, the
intensity of stress is practically uniform over the whole of each flange.
In actual practice the flanges alone are taken as resisting the bending
moment, the section of the web being neglected in the moment of
resistance of the cross section.

Web. Plate Girder.
Let #'=shearing force at any section in tons,
d = depth of web in inches, 2
t = thickness of web in inches,
J: = working shear stress in tons per square inch ;

h e L

then 'f;—d—t’
o T
=ia

In practice, the thickness should not be less than £ inch.

Angle-iron or tee-iron stiffeners are usually riveted to the web at
intervals approximately equal to the depth of the girder. We have
seen that shear stress on a square element is equivalent to a tensile
stress along one diagonal and a compressive stress along the other,
each at 45° with the direction of shear stress. The stiffeners are
introduced to prevent buckling due to the compressive stress.
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Flanges. Let A., A, be the areas of the flanges, /., f, the
intensities of stress on them, and & the depth taken from the middle
of one flange area to the middle of the other (Fig. 171).

Fig. 171.

The total stress on each flange must be the same, or

Acf; =4 t.ft'
The forces 4./, and A4,f;, being equal in value and opposite in sign,
are the forces of the stress couple whose lever arm is d.
Therefore M=A.fd=A.fd,
or, calling / the total horizontal stress on either flange, the bending

moment -
M= Hd,
M
or = 7"

If, therefore, the depth of the girder is uniform, i.e. d constant,
then H varies as M.

If the horizontal stress is uniform, i.e. A constant, then d varies
as M.

We shall consider these two cases in detail, taking only the
moments due to uniform dead load, for which the bending moment
diagram is a parabola.

Case 1. GirDER witH PARALLEL FLANGES IN WHICH THE DEPTH
1S CONSTANT.

Here d is constant. Therefore Hoc M, and the stress diagram
(Fig. 172) is a parabolic curve similar to the diagram of moments.

Fig. 172. Stress diagram.
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The maximum flange stress at centre H =78£§ ; at any other point

of the span H= Q%x ({—2); compressive in the top flange and tensile
in the bottom flange.

It J = working intensity of stress,

b = breadth of flange,
¢ = thickness of flange,
then = AR

Therefore bxtxfoe M.

As it is usual to make b constant, we get toc M, or, the thickness of
the flange at any cross section varies as the bending moment at that,
section.

Hence, the flange is generally constructed by drawing the curve of’
bending moment to a given scale. Then, by altering the scale, the
ordinates of the same curve represent the flange thicknesses.

Lzample.

Girder 60 feet long, 5 feet deep, 3 feet wide, carries a uniform load
of 3 tons per foot run. Find the thickness of plates required for the
flanges, taking 5 tons per square inch as the maximum intensity of
stress.

Max. M= %{2 = Lgso—qfoot-tons
= 1850 foot-tons.
Then 1350 = fbdt

=5x144 xIxHx¢,
<. t="125 feet = 1} inches,
or thickness at the centre = 1} inches.
Suppose, as in Fig. 178, this thickness is made up of three }-inch
plates. Divide the central ordinate into three equal parts, and draw
horizontal lines; the points where these cut the moment curve give

7 3 Ao

| 2

l %

_/” i
g

o

v 2,

Fig. 173.

the required lengths of the plates. The stepped outline represents
the moment of resistance, which for eack plate
=fbtd="5 %36 x § x 5 x 12 = 5400 inch-tons = 450 foot-tons,
and as there are three plates the total moment of resistance
= 8 x 450 = 1850 foot-tons,
which is equal to the maximum bending moment.

w. 11
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Case 2. ParaBoLic GIRDERS.

If A be constant, then doc M.

The depth of the girder is everywhere proportional to the bending
moment, and the skape of girder is that of the moment diagram,
a parabola (Fig. 174).

Fig. 174.

The uniform horizontal stress in the lower flange, or the korizontal
component of the inclined stress at any point in the curved flange, is

wl
JE = R
The vertical component
V = Htan 6.
The total stress at any point in the curved flange is
S= H sec 6.

Hence total stress S varies as sec 6; consequently greater thickness
is required at the ends than at the centre, for sec 6 increases as 6
increases.
At the top where 6=0, S=H;
at 0=45°, =2 H.

Funcrion or WEB IN RESISTING THE SHEARING FORCE.
Case I.

In parallel girders (as in Fig. 175) the stress on the flanges is
horizontal; consequently the vertical shearing force can only be resisted

3
e <

N

Y
N

Fig. 175,

by the vertical component of the stresses in the diagonal bars or web,
and it is the horizontal components of the same stresses which produce
the increment of flange stress at each panel point. The web or inclined
bracing is therefore absolutely necessary in parallel girders.
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Case I1.

In the case of parabolic girders, the horizontal component of the
stress at any point of the curved flange, and the stress on the horizontal
flange, are constant.

Referring to Figs. 174 and 176, the bending moment at any point
whose coordinates are z, y, is

M= Hy,
and the shearing force
M

g _HdJ Htan 6;
dz

but the vertical component of stress in curved flange = H tan 6.

£

/9 m

7R LT

Fig. 176.

Therefore this vertical component suffices to balance the shearing
force on the section. No stress therefore occurs in the diagonal web
bracing when the girder is uniformly loaded with a dead load. Hence
in such a girder subject to a uniform dead load the diagonal bracing
may be omitted.

In the horizontal flange the stress is entirely due to the thrust of
the ends of the curved flange, and might be replaced by abutments.
This is the principle of the arch (Fig. 177).

A\

Fig. 177.

N

Fig. 178.
="
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If .the bridge have the curved flange below the horizontal the same
reasoning applies, except that the stresses are reversed, the horizontal

ﬁapge being now in compression, and the curved flange in tension
(Fig. 178).

=1 P

..{
Fig. 179.

The horizontal flange can therefore be replaced by anchorages at
the abutments. This is the principle of the suspension bridge (Fig. 179).

When the load, instead of being distributed throughout the entire
length, is carried on cross-girders at the panel points, the same prin-
ciples hold good; the bending moment diagram in this case being a
polygon inscribed in a parabola.

71. Graphic method of finding the maximum stress in the
members of a parabolic girder for a live load.

Let Fig. 180 represent a girder of this class, the intersections of
the members of the upper flange lying on a parabola.

P

e o o —— —— e ——— o — D

Fig. 180.

Let w be the intensity of the load per foot run.

Let AB be the span of length /, divided into say 6 equal bays.
R, and R, the reactions at B and A respectively.

d the central ordinate L.

d, and d, the ordinates CE and DF respectively.

b the length of a bay = é
H the horizontal component of stress in upper flange.
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Flanges. The maximum stress in flanges occurs when the whole
span is loaded. Further, we know that in the case of a parabolic
girder loaded with a uniform load, the horizontal component of stress
in the flanges is constant.

To find the maximum stress in any member of the upper flange,
say CD.

Produce the chord member CD to meet the verticals through 4 and
B in G and K respectively; then

G PO SRR L i (1),

where 6 is the inclination of C'D to the horizontal.
But we have previously shown that the
Stress in CD=Hsecd .....cocovvvnnnnnnnn. (2).
Therefore, from (1) and (2) we see, that the intercept GK represents

the total stress in CD on the same scale that | represents the horizontal

component
wl?

= ik
To find the mazimum stress in braces. (Live load.)

Taking a bay as unit length, let W =wb be the load carried at the
joints of the horizontal chord.
The maximum stress in brace CF (Fig. 180) occurs when all the
joints to the right of /" are loaded, then
R,=22 W.
The horizontal component of stress in CF
moment at ) moment at C
: d, Civerrs B
moment at D=22Wb; moment at C =22 Wb.

Now the ordinates being proportional to the bending moments,

ool
L NG
d—ﬂ[L_zfxfibXGé_ﬁ)’

8
or, di=5d; and d,=3d.
Therefore, maximum horizontal component of stress in CF
20Wh 10Wb

663w

But the horizontal component of stress in flanges when the girder
is uniformly loaded is

- . L L L B ).
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Therefore, from (8) and (4) we see that the maximum horizontal
component of stress in inclined brace
2
=3
Now the horizontal projection of any brace =b= é

Therefore, the actual length of eack brace represents the mazimum
stress in it, on the same scale that 1 represents the constant horizontal
component of stress (H), the girder being wniformly loaded.

72. Application of method of sections to bridge trusses.
(Dead and live loads.)

Stresses in web and chord members. In applying the method of
sections to a girder such as is shown in Fig. 181, a vertical or nearly
vertical section cuts one bar only of the web, and since each of the top
and bottom chords is horizontal the stress upon the web bar must be _
such that its vertical component is equal to the shearing force /' at the
section ; so that the stress in inclined web member is

Fcosec 6,

6 being the angle which the member makes with horizontal.

Again, the stress in any top or bottom member is proportional to
the bending moment A at a vertical section taken through the opposite
joint. If d=depth of the girder, then the stress

M
Sf= e

Counter bracing. The diagonals in the Pratt truss (Fig. 181) are all
ties or tension members ; but in certain positions of the live load, those
near the centre of span would be subjected to compression. In order
to prevent this, another diagonal sloping in the opposite direction
(shown dotted in Fig. 181) is inserted in those panels where this
reversal of stress takes place. These panels in which two diagonals
occur are said to be counter braced, and the additional diagonal is
called a counter brace. Both these diagonals are tension members ;
one only being in action at a time, and the minimum stresses for these
diagonals in a counter braced panel are zero.

Lzample.
A Pratt truss, 112 ft. span (Fig. 181), divided into 8 bays,
carries a dead load of £ ton per foot run, and a live load of 1} tons

b c d e
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per foot run, both supported at the joints of the bottom chord.
The depth of the girder is %;th of the span. Determine the stresses
in the chord members de and ¢k, the diagonal tie ¢7, and the verticals
by, ch.

Length of each bay =132 =14 feet.
Depth of girder =212 = 11 -2 feet.
Dead load at each bottom joint =105 tons.
Live load at each bottom joint =175 tons.
If 6 =angle of inclination of each tie with horizontal, then
tan =125, cosecf=16.
Stress in members de and k. The maximum stress in each member

of the chords occurs when the span is fully loaded w1th both the dead
and live loads.

or,

The reactions at each support=4% . 728 = 98 tons.
Member ik, bottom chord. Let S= stress.
Take moments about joint d, upper chord,
Sx112=M=98x 42 — 28 (2 + 1) 14
= 2940 foot-tons.
Therefore S= 21(1;43 =262°5 tons fension.
Member de, top chord. Let S’ = stress.
Take moments about joint % of lower chord,
S'x112=M'=98x4x14—28(8+2+1)14

= 8136 foot-tons.

Th , 3136 5
erefore S'= 515 280 tons compression.
Diagonal tie ci. Stress due to dead load.
The reactions due to dead load are each equal to
% x 7x10'5 =36°75 tons.
Take a vertical section cutting cd, ct, ki.
The shearing force ) at the section = 15°75 tons.
Let S; be the stress in ¢/ due to dead load, then
S,sin 6 = F,,
S, =F,cosec 8=1515 x 1'6 = 252 tons tensile.

Diagonal tie ci. Stress due to live load.
The maximum stress in diagonal ¢ occurs when all the joints to the

right of 7 are loaded, the joints g and % being unloaded.

The shearing force F, at the vertical section cutting ¢i is then

equal to the reaction at the left support.

Therefore F2=1—7—'§{1+2+3+4+ 5}
175 x15

3 =328 tons.
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Let S, = maximum tensile stress.
Then Sy = Fycosec=23828x16
= 5248 tons fensile.
The minimum stress in ¢i occurs when the joints ¢, % are loaded
with the live load, the other joints being unloaded.

The shearing force on the section cutting ci is then equal to the
reaction at the right support.

That is, Fy =2175=6"56 tons,
and Sy =656 x 16 = 10°5 tons compressive.
Stress due to both dead and live loads.

The stresses due to both loads are got by adding the dead load
stress to each of the live load stresses, thus :

‘Web member ’ ct :
Dead load | 2520 tensile
Live load greatest | 5248 tensile
Live load least : 1050 compressive
Maximum | 77'68 tensile

. |

Minimum 14-70 tensile

Both the maximum and minimum being of the same sign no
counter brace will be required in this panel.

Stress in vertical bg.
The stress in bg is simply the weight at the joint g,
stress due to dead load =105 tons Zension,
stress due to live load =175 tons tension.

Stress in vertical ch.

Take an approximately vertical section cutting members be, ck, ki.

The stress in cA is the vertical component of stress of ¢Z, and the
compressive and tensile stresses due to live load are produced by the
same distribution of the live loads as taken for ci.

Therefore,

stress due to dead load = F, =15°75 tons compression,
maximum compressive stress due to live load = #} = 32'8 tons,
maximum tensile stress due to live load = #, = 656 tons.
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Verticals.
by ch \
|
Dead load 105 tons tension 1575 tons | compression
Live load () compression 3280 ,, compression
Live load 117 tension 656 ,, tension
Maximum 280 ,, ’ tension 4855 ,, compression
Minimum 105 | tension P19 5 compression
|

73. Effect of live load on a girder shown graphically.

Let Fig. 182 represent a Pratt truss of 9 panels subject to uniform
live load equivalent to 15 tons at each panel point, the central panel
being counter braced. The stresses in the chord members are found
graphically as for a dead load; the stresses in these members being
a maximum when the bridge is fully loaded.

Fig. 183 shows the stress diagram for the half girder in this case.

BI\D F‘H 4 M
X AN O\ ENIGNN/L 1N
AOVPY QYRYSYTYU
Fig. 182.

Ul N
.i___ \ hv

v
xs b d 5
AlL joints loaded,

Fig. 183.

To show the effect of the live load on the stresses in braces and
verticals; Fig. 184 gives the stress diagram when the siz bottom joints
to the right are loaded, the two joints on the left being unloaded, and
we see that the braces, including the full line counter brace I1J, are in
tension and the verticals in compression. There is no stress in the
dotted counter brace.
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Fig. 185 shows the stress diagram when the fwo joints to the left
are loaded, the remaining six joints being unloaded. We see from
this figure that the braces 4.8 and CD are in tension, and the vertical

%P_Z a C e
|
i
r
| .
| S &
3 N\ .
Tw 5 d f J.k
¢
| Bk o ‘
.f'.f
I
| /
|
I
_i Six joinks to right loaded.
0\ Fig. 184.
o
=2
2|5 (4
PN\ b R
i 3 d
e e
g L g
Two joinks to left loaded,.
Fig. 185.

BC in compression as before, but the stresses in the braces KF, GH
are now compressive, and the stresses in the verticals DE, FG are
tensile; also that the dotted counter brace /J is now in tension and
there is no stress in the full line counter brace. The mazimum tensile
stress in brace EF (see Fig. 184) occurs when all the joints to the
right of it only are loaded, and from Fig. 185 we see that when
the two joints to the left of it only are loaded we get compressive
stress in it.

Summary.

The maximum stress in any vertical or diagonal brace occurs when
the live load covers the longer segment of the span.

The maximum stress in any counter brace occurs when the live load
covers the shorter segment.
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The minimum stress in a vertical or diagonal brace occurs when the

live load covers the shorter segment of the span.
The minimum stress in a counter brace is zero.

Ezamples.

1. A cast-iron girder of the section in Fig. 186, 20 feet span, is
supported at both ends. If the maximum

intensity of tensile stress is 1 ton per square _ __ _ waN L
inch, find what uniformly-distributed load f o n
the girder will carry. ]
The following data are given, but they !
should be checked by the student: /0"
Distance of neutral axis from lower edge :
of bottom flange, 7 =313 inches. |
Moment of inertia of section I = 2204 : Lk
inches®. ] | ] %
The maximum bending moment, ft- ----- 8--—-- -:’
]‘[=—l2= I_/:t Fig. 186
8 Yt
313
Yi=raa- feet; /=144 tons per square foot;
) 2204 144
x wl§=144x144x 313 foot-tons ;
(%)
2204

.. total load = wl = =235 tons.

939

2. A flanged girder, 50 feet span, 4 feet deep, flanges 12 inches
broad, carries a uniform load of 1} tons per foot run; working stress
6 tons per square inch. Find the necessary thickness of flange at ,

%, and 1 the span.
M= Afd=btfd.
(@) At L of the span

M=%"(l-w)x=btfd,-
o 3,250,380 =1 x ¢ x 6 x 144 x 4 foot-tons ;
t=006 foot=07 inch.
(b) At } of the span
%w(l—m):brgfd;

" $.32.350=1x¢x6 %144 x 4 foot-tons;
) AbPob ¢ =01 foot =12 inches.
c t 3 the span
$.502 501 x ¢ x6x144 x4 foot-tons ;
t=0°137 feet = 164 inches.
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3. A girder, 40 feet span, 4 feet deep, carries a load of 12 tons at
the centre; breadth of flanges 9 inches; working stress 6 tons per
square inch. Find the thickness of the flanges at } and } the span.

(a) At % the span

Thickness oc M ;

*. Thickness at centre o LZZ 5
T — fitd ;

. 12 x 40
{ 4
e = 31 feet =& inches (app.).
t ¢ the span
1 Wi

ET—G 144 x § x ¢ x 4;

=6x144 x§ ¢x4;
X

. t= 53y feet = P inches (app.).

4. A steel girder, 40 feet span, 4 feet deep, carries a uniform load
of 8 tons per foot run; width of flanges, 9 inches; working stress on
upper flange = 6 tons per square inch ; working stress on lower flange
=5 tons per square inch. Find the thickness of the flanges at the
centre of span, and at 10 feet from each end.

Let ¢, = thickness of compression flange,

¢, =thickness of tension flange.
Then 9¢,. 6 = 9¢,. 5.

et d
% 6
(@) At centre,
Compression Flange :
\]2 A
= Hd = @LSZ_ 5

3 x40x40x12 x12
WIS 8
t,= 2% inches = 28 inches. .

=6x9 x ¢, x 4 x 12 inch-tons;

Tension Flange :
3 x40 x 40 x 12

. =5.9.%.4x12; g

¢, = 3% inches.
(b) At 10 feet from either end,
g v(l-z)=Hd;

3.10.80.12=6.%.9.4.12;
¢, = 33 = 2'08 inches ;

t=%8,=25 mches




vII] GIRDERS 173

5. A steel plate girder, 60 feet span, 6 feet deep, carries a uniform
load of ¢ ton per foot run, and two loads of 8 tons each, placed 6 feet
each side of the centre. Determine the necessary sections for top and
bottom flanges, taking the working stress on top flange 6 tons per
square inch, and on the bottom flange 5 tons per square inch. See
Fig. 187.

The maximum bending moment is at the centre.

2
Bending moment at centre for uniform load = z%l =337'5 foot-tons.
Bending moment at centre for concentrated loads = 192°0 foot-tons.

Total bending moment at centre = 529°5 foot-tons.

8r 8Tt
CRER20
/E( /Y Y/,
7 T
4‘ """""" Sl AR ."%
Fig, 187

9 .
Flange stress at centre = i o 882 tons.

6
The section is sketched in Fig. 188; the =—m——==
dimensions of flange will now be determined. It _l [—

should be noted that only the areas of the parts
of the angle-irons which are attached to the flanges
are taken into consideration in finding the flange
area ; the parts of the angle-irons attached to web
are omitted. Rivet holes are deducted in tension
flange to get its net sectional area.
Area of top flange at centre of girder
882

= = 14°7 square inches. ¢ —J L_

Net section of bottom flange at centre of girder

= 5112 = 17-7 square inches. Fig. 158,
Sections:
J Angle-irons used, 4" x 4" x 3",
giving area for flange
Top flange l 2x4"xg" = 3'0 square inches.
' 1 2 plates 16” x §” =120 -

Total area =150

b2
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Angle-irons 4" x 4" x 2

Bottom flange giving area for flange

2 x 4" x 3" = 380 square inches.
3 plates, 16” x 2" =180 b
21°0 s
Deduct 8, §” rivet holes
in 3" plates and angles = 25 s
Total net area =185 I

These areas allow a slight margin in excess of the area required.

6. In a steel girder bridge of 150 feet span, with lattice bracing,
the top and bottom flanges are of the box-type section. The stresses
at two sections of the upper flange have been calculated to be 282 tons
and 426 tons respectively. Design suitable cross sections at these
points for a working stress of 6 tons per square inch. Take the top
plate 3 feet wide and the side plates 2 feet deep.

At Section 1 (Fig. 189),

Total stress = 282 tons. :
Necessary area = 252 =47 square inches.
Designed Area,
4 angle-irons 33" x 3" x 4" =13 square inches.

1 top plate 36" x §” =18 2
2 side plates 24" x 2" =18 o
Total area = 49 o
o el B O sl
f ] [« ancie 1rONS
g% I
| 3a X32 X5
o 3 g
35 5 8
|
|
v =
Fig. 189.
L TS R e
1] 5
g
’ l i _/. " 31:
,2 2 2\ /Z;‘
|
| ANGCLE IRONS
v _J t/.?z—’”x 2_,x2_,

Fig. 190.
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At Section 2 (Fig. 190),
Total stress. =426 tons.
Necessary area = %; = 71 square inches.
Designed Area,
4 angle-irons 34" x 831" x 1" = 13 square inches.

1 top plate 36" x 3" =18 =
2 side plates 24" x 3" =18 -
2 side plates 24" x 3" =30 oy

Total area = 73 b

Nore. By adding vertical plates on the inside to get the necessary
area, we do not alter the centre of gravity of the section. The same
result may be got by adding plates on the outside between the angle-
irons, in which case we get a constant distance between the side plates;
which may be useful in designing the verticals, as they are generally
fixed between the side plates.

EXERCISES.

1. A rolled steel joist 16 inches deep, with flanges 6 inches wide
and 1 inch thick, web # inch thick, supports a uniformly-distributed
load of 2 tons per foot. If the span is 12 feet, determine the maximum
tensile stress in the lower flange.

Ans. I=847"5, stress=5'5 tons per square inch.

2. Compare the strength to resist bending of the joist in Ex. 1
~when it is placed upright like this, I, and when on its side like
this, =,

3. A cast-iron girder 20 feet long is supported at the ends.
The dimensions of the section are: Top flange, 3 inches by 1 inch;
bottom flange, 8 inches by 14 inches; web, 8 inches by 1} inches.
Find the moment of resistance, the greatest permissible compressive
and tensile stresses being 7 and 2 tons per square inch respectively.

Determine, also, the greatest safe load the girder will carry when
uniformly distributed over its length.

4. A steel plate girder, 50 feet span, 5 feet deep, carries a uniform
load of 1 ton per foot run, a load of 8 tons at centre, and two loads
of 6 tons each at 10 feet on each side of the centre. Calculate the
necessary areas of cross section of the flanges at the middle, and give
suitable design for them.

Working tensile stress = 7 tons per square inch.

Working compressive stress = 6 tons per square inch,

Draw the diagram of bending moment.
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5. Determine the safe load at the centre which a plate web girder
of the following dimensions will carry : Span 40 feet; depth 5 feet;
flanges, four plates each, 14 inches wide, 4 inch thick. The flange is
attached to the web by two angles 4 inches by 1 inch. Reduce the
area of each flange by two rivet holes  inch diameter connecting the
flange and angles.

Working stress in flanges 5 tons per square inch.

6. Find the limiting span of a cast-iron pipe 12 inches external
diameter, 1 inch thick, its weight being 100 lbs. per foot run. Stress
not to exceed 1} tons per square inch.

7. A circular tube 6 inches external diameter and } inch thick is
supported at each end; span 5 feet. Find what load placed at the
centre will produce a stress of 5 tons per square inch.

Find also the maximum intensity of shearing stress.

8. An oak beam 12 feet span, 9 inches wide, and 12 inches deep,
carries a brick wall 9 inches thick. Find to what height the wall can
be built with safety if the greatest permissible stress is 1000 lbs. per
square inch ; weight of brickwork 120 lbs. per cubic foot.

9. Compare the strength of an I section of depth 8 inches,
breadth of each flange 3 inches, thickness of both flanges and web
1 inch, with that of a rectangular section of the same sectional area
and depth.

Ans. I girder is the stronger in the ratio of 23 to 16.

10. Two beams of the same material are similarly loaded, one is
round in cross section, the other is square. If the beams are of the
same length and are of equal sectional area, which is the stronger ? '

Ans. 'The square beam is the stronger in the ratio of 1 to 0°847.

11. In the last example if the side of the square section is equal
to the diameter of the circular section, compare the strengths of the
two beams.

Ans. Strength of circular section = 0°589 of the square section.

12. A Pratt girder as in Fig. 181, span 104 feet divided into 8 bays,
depth #;th of the span; carries a dead load of 3'1 tons at each joint
of the bottom chord, and a live load equivalent to 795 tons at the same
joints. Determine the maximum stress in each member of the third
panel.

Ans.  Top member 103'62 tons compression.

Bottom member 8290 tons tension.

Diagonal member 31°30 tons tension.

Vertical nearest support 19°5 tons compression.

5 " centre 1149 55



CHAPTER VIIL
DEFLECTION OF BEAMS.

74. Deflection. Stiffness.

When a beam is loaded it becomes deflected or curved. The
deflection is due to the bending moment, which causes longitudinal
strains, of compression on one side of the neutral surface, and tension
on the other side. ;

The elastic deflection of beams is important in all permanent
engineering works. The beam or girder must not only be strong
enough to sustain the loads, but must also be stiff enough to bear
the loads without being strained beyond certain limits.

The two classes of beams which have generally to be considered in
practice are :

(1) Beams built up so as to have a uniform unit stress on each

flange throughout. 'The strength and depth are uniform.
This class includes all girders with parallel flanges.

(2) Beams of uniform cross section throughout, where the value
of Iis constant for all sections, such as rectangular beams
and rolled joists.

The stiffness of a girder is measured by the ratio

maximum deflection
span

In practice this ratio is about 15%5 to tevu for long steel spans.
For short girders and joists it is about 535.

75. Curvature. -

The curvature of a circle is the reciprocal of its radius; and of any
curve it is the curvature of the circle which most nearly agrees with
the curve ; or it may be defined as the angular change of the direction
of the curve per unit of length.

76. Curvature due to bending moment.
We have already shown that the bending moment

n==-Lp
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where R is the radius of curvature of the portion of the bent beam
considered.

77. Uniform curvature. Beams of uniform strength and
depth.
From the above equation we see that

L M T

E-BIISE T my
and it follows that a beam originally straight will bend into a circular

S

arc if %—[or?is constant. This occurs (1) when a beam of uniform

section is subjected to a uniform or constant bending moment, and
(2) when a beam is so designed that the depth and flange stress are
both uniform.

D

S5E
Fig. 191.

Let AB in Fig. 191 represent a beam of length Z bent into a
circular arc, and call u, (CE) the deflection at the centre, we have

CE.CD=CA.CB,
L 2
w@E-w)=(3)
from which, since #, is small and »,® may be omitted,
__Do
, T 8R TBEI’
or, if d be depth of the girder and f the uniform flange stress,

2
= ydE

k]
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78. Curvature, slope, and deflection.

Let OPQ (Fig. 192) represent the curve assumed by the neutral
surface after loading. OJX is drawn horizontal. Take P and @), two
points on the curve very close together, the coordinates of which are
2, u, and & + dz, w + du respectively.

c

Call ¢ the slope or inclination of the tangent at P, then (¢ + d7)
will be the inclination of the tangent at @), di being the angle between
the tangents at P and @, which is equal to the angle at the centre
between the normals.

Now, the deflection being very small, and consequently dz sensibly
equal to ds, the length of 2@,

L
dz’ R
Therefore the curvature
l - _@. —dz_u But l o= M
R dx di*’ TH AT
, duw M
. . d—xé - E-
" A= M
The slope = Ty da.

. 122
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Deflection U= f idz.

From these equations we determine the slope and deflection.

Ezamples.

(1) Cantilever of length 1 of uniform section, loaded with a weight
W at the free end (Fig. 193).

w
e o

I
[}
/]
]
!
“——3e-
~

Fig. 193.

Take the origin at the fixed end of the beam and let z be the
distance of a section from that end.

Then M=W(l-=z).
Cdw W fa),
- 37 = EI

Integrating, we have, as & and I are constants,
- (E-D) e
de  EI 2 ’
To find € we must know the slope at some one place.
Now, there is no slope at the fixed end, hence

Z—Z =0 where =0 ; therefore C'=0.
: 1 W
Integrating again, wu= -E—I< lz* - ) + C,
but =0 when z=0, .*. C=0.
Deflection at any point of the beam
w
v= (5%
Maximum deflection is at end, where 2= .
e B
et A
/ P
%V]ﬁ////////////// //////////l//// yIIIIIY]
Gl i e R - l-x -
|
lo :
]
PR < e ' -
S u
~—_ =0 1

* Fig. 194.
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(2) Cantilever of length 1 of uniform section uniformly loaded
(Fig. 194).

Let w be the load per unit of length, taking the origin as before
at the fixed end, in order to eliminate the constants of integration,

M=w(-2Z2

w 2
—'2 (l_w):
L du ow
.. W—-m(ﬁ—?lﬁ+xz).
2 . duw A ?
Integrating ¢= H= m(lj’w— lz* + §> +c;
it % ‘ Z—u:Owhenx=0, =)
z

To find the deflection, integrating again,

WL s g0 2y 4) 1
u= g <2lx 3l.z5+12x +¢13
now u=0, when 2=0, .". ¢,=0;
hence the curve of the beam is

e ) 232000
U= oTBT (6222~ 4la® + o).
At the end, where =1/, we get the maximum deflection
i T
S Y

if W =uwl, the whole load on the beam.
In the two previous examples if the end O is imperfectly fixed,
so that this end, instead of being horizontal, slopes at an angle o, then
C—Zﬂ=tan a, when =0
dx

and C = ET tan o.

(8) Beam of uniform section supported at both ends, loaded with
a single load W at the centre of the span (Fig. 195).

- W
w w =
z | oot Syefetge

Pl S A
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If we take the origin at the middle of the beam, the constant of
integration is zero, since ¢=0 when z =0,

=T
%3‘%[(%_’”)‘

Integrating, we get the slope at any point
du W (l .z-*)

i= 7= 2mT\3% 3
At the ends, where x:—;—, the slope
. W
“=TeEI
To find the deflection
fize= T (2,
“”fl ”"21»’[(4 6/’ ,

and its greatest value, namely, the rise of the ends of the beam above
the middle, is got by putting w:é,
T ot
e Uy = 48—1(4—'[ .
(4) Beam of uniform section, supported at both ends, loaded with
a uniformly-distributed load (Fig. 196).

GIIITEIIIBRINIIIIRIIIIERIIATEIIIUIIIADEIEIIIEITY
1wl : 1wl
5 A 3 ] N2
- - x — Ve - -x -

2
Fig. 196.
wl | [t
2 i‘\ ~ i - iu . &
~Ea i 85
“““ ke _1 e _i ¢

Take the origin at the centre as before, in order to make the
constants of integration vanish, we have

so that —— == (— —x‘).



g

U N CIRSIT Y
2 7
VIII] DEFLEB’HO‘{I‘ OF <BEAMS 183

Integrating, we get the slope at any point of the beam
_du_w <l2w R
“dx 2EI 3 )

Slope at ends where 2= 3
PR, L
1 U4ED
To find the deflection,

u=/idx=-2%[fx(l2—w— '?) dz ;

55 - §2)s

u is greatest when # = é

At the ends therefore
LI
1T 884 K1 384 EI’
if W =wl, the total load.
This represents the rise at the ends, which is equal to the sag at
the middle. :
In the above cases, the maximum deflection may be expressed by the
following general formule :
CWAE M AR
“nEI mEI mEy’
where » and #, are constants depending on the loading,
{ the length of the girder,
7, the distance of extreme fibre from neutral axis,
J1 the intensity of stress at ;.
For beams supported at the ends, we get the followmg values
of n and n;:
Load at centre, n=48; n,=12.
Load uniform, n=2384; p, =48,
It will be seen later on that for beams JSized at the ends :
Load at centre, n=192; n, = 24,
Load uniform, »=2384; n,=16.
(5) A beam is supported at its ends, and loaded with a weight W,
Wa?? % b
SE(@+D)’ where a,
are the distances from F to the points of support (Fig. 197).
Take the place where the weight acts at origin, and consider first
the portion of the beam which lies to the right. °

at a point . Show that the deflection at F is

The reaction at the right support is W_: B
CE is the tangent at O, and A D is drawn parallel to CZ.
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Now, if we consider the beam fixed at O and loaded at B with
%, the bending moment at any section to the right of F'is
Wb ( )
a+b B ),
. d’u
' 3= Ela+ b)/ (a~a)da,

as in the case of a cantilever.

Fig. 197.
Integfating, J= Z—Z = ITI—(_% (a.z' - ‘g)
Integrating again, =z IZb-i- ) (aaﬁ '7;) p
at z=a, %=BE=?EI}V('_Z¢1+_®.
Similarly, if we consider the portion of the beam on left of weight,
v AR ?,E;V—(Zb—ib—) .

Deflection at = FO=HO+ FH=AC+ FH

b
=Uz + m(ul — Us)

>, w s, (ba*—ab’
=3EI(a+b) {“b i ( (@+b) ) b}
Wl sk
= 3EI(a+b)
79. Deflection of a beam supported at the ends, carrying
a series of loads.
' Ezample.
A single-line railway bridge is carried by two main girders of
30 feet span, these girders support a continuous platform on which



VIII] DEFLECTION OF BEAMS 185

the rails are laid. A locomotive on the bridge weighs 50 tons
distributed upon three axles as follows, viz., 14 tons on the leading
axle and 18 tons on each driving axle; the distances of the axles
from the centre of support of

main girders at one ‘end being
respectively 7 feet, 14 feet, and <_7,__‘i_7.‘i_ 8._i_ o
[ bt

22 feet. Find the maximum

deflection.
Each main girder will carry R‘L ________ e i R2
half the weight of the locomotive Fig. 198,
as in Fig. 198,
£, =12"57 tons,
R,=12"43 tons.
Segment 1 from the left support,

BI 3 =125,
ARE 21116
HECRE fiaatagl S (A),
Flu=20924C@ + 0, covurveidiennnnnn. (B).
Segment 2,
EI%% 1951017 (2—1)
P ’
E[% =62822—-35(@—T7F+C .ooirveriiinienes (C),
Elu=2092"~ 22 (2= 10 + Ol + G/ oo (D).
Segment 3,
EI%Y  19570-17 (2= 1) — 9 (- 14)
P ’
EI gg =62822 35 (2 — T =45 (= 142+ O .ovevrnee, (E),
Blu=2092 -2 (277~ 15 (2= 149+ 0" 2+ 0" ...(F).
Segment 4, X
2
BITS=125T0 -7 (- 7) -9 (a-14) -9 (z — 22)

EIZ—Z: 62822~ 3'5 (2 7)1 — 4°5 (2 — 14)* — 4'5 (2 - 220+ € ...(G),
Elu=2092 - ?%5(x-7)3—1-5(w—14)3-1-5(z-22)ﬂ+ ¢ o+ Cy"...(H).

To determine the values of the various constants, we have that
at a section common to two adjacent segments, identical values for
du

T and for «, must be given by the equations; for each segment. Thus
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Forz=1. C,=C/; C,= 0y, from equations (A), (C); (B), (D).
z=14. C'=0); C'=0C,’, from equations (C), (E); (D), (F).
z=22. C/"=0)"; C;=0,", from equations (E), (&); (F), (H).

Again, when z =0, u = 0, therefore by equation (B) C; =0, hence

02 - 02,I — 02III — O’
when @ = 30, u = 0, therefore, equation (H),
300'1"'=33—"é x 28% + 15 x 16 + 1'5 x 8°—2'09 x 30°
Therefore " =0)"=C'=-1182.

The maximum deflection will occur in the segment 3.
The abscissa, #,, of this point is the value of # which makes

Z—Z =0 in equation (E). Hence
62822 — 3'5 (2, — 12— 4°5 (2 — 14)*- 1182 = 0.
Solving, we get &, = 14°97 ft.
Substituting this value of 2, for # in equation (F),
Elu,=-11256°7.

11256°7
“EI foot,

where % is in tons per sq. foot, and 7 in foot units, that is (feet)*.
If £, I,-and «, are in inch units,
11256'7 x 12 11256°7 x 12% .

i Er
FE x 122 x El
80. Graphic method.
We have seen that the load, shearing force, and bending moment
are connected by the relations
dF dM

Max. deflection is T

inches.

%= Wb
e

where w is the load per unit of length.
Again, we have deduced the following relations between bending
moment, slope, and deflection :
du_ . di _dw_ M
dz= ' @z~ d*” EI’
Hence, if we know w, the loading of the beam, we can by
integration obtain a succession of curves representing ¥, 2, ¢ and .
From the above equations we see that the bending moment curve
is the second integral of the load curve, and we know that it can be got
from the load curve by means of a vector and link polygon. Similarly
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the deflection curve, being the second integral of the %eurve, can be
found from the bending moment curve by means of a vector and link
polygon.  Also, the ordinate of the slope curve at any point is equal
to the area of the bending moment curve up to that point divided by
ET; and the deflection at any point is equal to the area of the slope
curve up to that point.

8l. Method of drawing deflection curve for unequal
loading.

Having drawn the bending moment diagram, treat it as a load
diagram ; divide it up into narrow vertical strips (Fig. 199). Through
the centre of each strip consider a force
to act equal in magnitude to the area
of the strip. Choose a pole O; draw a
vector and link polygon, and a line O.X
parallel to the closing line AB of the
link polygon. Take a new pole O, with
0,X horizontal, then a new link polygon
is obtained with a horizontal base line,
which gives the deflection on a certain
scale.

First, to find the scale for bending
moments.

Let
1 inch = m inches be the linear scale,

1 inch =7 tons be the load scale,

Polar distance =% inches,

M =bending moment,

D = ordinate of bending moment diagram
in inches.

Then 1 inch of ordinate of bending
moment diagram represents

%I= mnk inch-tons.
Secondly, to find the scale for de- ‘ -Fig. 199.

flection curve.
Let / be the width of each of the narrow strips of bending moment

diagram, and let £ inches be the length of the new polar distance 0,.X.
Now in the second vector polygon set down the loads as represented

by the middle ordinate of each strip, consequently 1 inch on load scale

now represents an area of Im x mnh.

m x lm*nk x k

£l

Thus the scale of deflection curve is or, each inch of
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polygon, or bending moment diagram ACB (Fig. 200). The scale for
this diagram is
1 inch = mnk =60 x 6 x 1 = 360 inch tons.

Divide the bending moment diagram 4 BC (Fig. 200) into 9 vertical
strips each 4rd inch (/) long, and at the centre of each strip suppose a
force to act proportional to its area. Now on a vertical line (Fig. 201)
measure off successively lengths equal to the middle ordinates ab, ¢f,
gh, ki, CD. 'Take the pole 0,, making the polar distance

01‘.&’1 (k) =) inches,
and draw the link polygon A £B (Fig. 200). The central ordinate DE
(Fig. 200) gives the maximum deflection.

To get the scale,
Im*nhk % 60 x 60x60 x 6 x2

Er — 12500 x 200
864000
~ 2500000
As the ordinate DE =08 inch,
maximum deflection = 0'8 x 0°34 = 0°27 inches.
The two following cases are worked on the same principles, but in
a slightly different manner.
(1) Beam of uniform cross section supported at both ends and
loaded at the centre.
The shearing-force diagram is a curve with ordinates of constant

1 inch of ordinate =

=084 inches deflection.

value, each = gf (Fig. 202). The bending moment curve (Fig. 203) is

D
W \\
8 20+&\\A
w.aé
2
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got from this by integration. The maximum ordinate D’ =area of the
rectangle A.D (since M= [ Fdz) = %—V x é = %l :

DII

wet
16E1

I c” A"

Fig. 204.

1%
48E1

Fig. 205.

The curve of slope (Fig. 204) is got from the bending moment curve.
The maximum slope at the end represented by the ordinate 4”D"” is

the area of the triangle A’C"D’ multiplied by El'i

i wmi_wre
w204 "2EL ACHEE
The slope at the centre is zero.
To find the deflection curve (Fig. 205). The deflection at the
ends=0, and the maximum deflection at the centre is represented
by the area of the semi-parabola A”C”"D",

Pyl g S b S
“Tee (9Bl 48 BT
(2) Find the deflection of a uniform beam supported at the ends
and loaded symmetrically with two equal loads (Fig. 206).

Fig. 207 is the bending moment curve, and Fig. 208 the curve of
slopes. The slope at the centre is zero. The greatest slope is at the
ends, and is equal to the area of the bending moment diagram between

e g &
the end and centre multiplied by 574
Wa? 1
= ( B T W'ab) ZD
as represented by the ordinate A'E’. .
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82. Fixed beams.
An encastré or fixed beam is one whose ends are fixed tangentially,

so that they remain horizontal when the beam bends under the load
(Fig. 209).

[cHAP.

s
i 2]
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The bending will take place as in figure where the parts near ends
are in ‘“‘hogging ” and the middle part in ““sagging ” curvature.

The direct stresses are distributed differently from those in sup-
ported beams. In the latter there is no direct stress at the points of
support, the value of M there being=0. In the former the effect of
the fixing is to produce a moment at the fixing, the upper fibres being
in tension and the lower ones in compression.

The points where the curvature changes from hogging to sagging
are called “points of contrary flexure” or “points of inflection”; at
these points M =0, and there is no direct stress. We may, in fact,
consider the whole beam to be made up, as far as the points of contrary
flexure, of two cantilevers, one at each end, and a supported beam
resting on the ends of those cantilevers.

83. Beam ends fixed horizontally. Uniformly loaded.
The loading being symmetrical, the fixing moments at the ends are
equal and opposite. The reactions are each equal to %-l

Let A be the bending moment at any section of the beam, ¢f the
ends are merely supported ; and let m be the fixing moments at the
ends. Then the bending moment at the section is

M,=m + M.
Thus at any point distant 2 from the end the bending moment

wl x
ﬂ[x=m+?x—-wxx—2—

=m+w—;"(z-z) ........................... (1).
The slope

i=z%/ﬂlmdx=]%f(m+%i’(z—m)) dao

=-E1_I(mx+ %—%) e AN R (2)
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The constant of integration = 0, since =0 when z = 0.

Again, i=0 when z= %,
I wl wP
hence m-2~+E—E—O,
gL oL
ve M= '1—2' ................................. (3).

To find the bending moment at centre, in equation (1) give m its
value from equation (3) and put z = é

wl wl 1 wP_ wl wl
DIatcentre——E 7 (o S
_wb
T 24
The bending moment diagram is sketched in Fig. 210.

(- 0.241Z -» te-0-211L --->

NI

Fig. 210.
In a uniformly-loaded beam of span I, simply resting on end

supports, the grea,tést bending moment is 1_08£2 . In a fixed beam

wi?
E .
The fized beam is therefore stronger, so far as the mazimum bending
moment caused by a uniform load is concerned, in the proportion of 12
to 8 or 3 to 2.

To find the deflection of the fixed beam, uniformly loaded, we have
from equation (2)

4 1 wllr wlr®* wa®
u= fide=gz [(- 5+ - 55 &=

uniformly loaded the greatest bending moment (equation 3) is
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The maximum deflection at the middle, where x=é PoTS
wlt WP
384 K1 384K’
which is only one-fifth of the deflection in o similarly-loaded beam
supported at the ends.
From equation (1)

U =

M,= Z’E il = (- 2).
To find the points of 1nﬂect10n, put Mz = 0, which occurs when
z(l-2)= l(—:,
: l 1
that is when T== (1 o 73>

or z=0211/ and @ =0'789/ give the distances of the two points of
inflection from either support.

84. Beam fixed at both ends of uniform section carrying
a load W at the middle.

To find the bending moments at each support, and in the middle,
also the deflection at the middle.

—— e =

1
+W
(4
R e Lo e
Wi W
-8 ¥
Fig. 211.

The vertical reaction at each end is equal to %V {

At any point distant # from the end the bending moment is

Tl A R oy . s 4)
The slope i=Ei,I/dew=E-—1,I/<m+}2Zx)dx
=E1,7(mw+ Z—I{w"‘)
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The constant of integration must be zero, since ¢ = 0 when 2 = 0.

But ¢ =0 when z:é, hence
LA
TR RN

CMm=——,

8
Giving m its value in equation (4)

at the centre, where 2 .=£

2 b
WL Wi Wi
by o
The diagram of bending moments has the form sketched in
Fig. 211.

To find the points of inflection put M, =0 in equation (5), this
occurs when @ =:i-.
To find the deflection
: 1 wi W
u:/zdx:—mf(— 8 .Z'+Tx“)dx

1 (W.z'* Ww> ,

S BIN G 16
at the middle where the deflection is greatest z = £ , and its amount is

2

T A
T 192ET

85. Uniform beam, uniformly loaded, fixed horizontally
at one end, and supported at the other on the same level.

The beam bends into the form shown in Fig. 212, there being
a point of contrary flexure at Z. Let P be the supporting force at B.

4
e @ --—;): jp:% wl
i o ! B

Fig. 212,

Take the origin at fixed end. Bending moment at any section
My=P(l-2)— 3w (-2 cceevivrininnnnnn... (6).
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Slope
i_ EI]{P(Z ) - —w(l w)"’}dx

—i{P(z.z«-"f)——(zz la? + L o
T EI =l 5 >} :
The constant of integration = 0; since ¢=0 when 2= 0. Integrating

EEY 1 I o Pz I 2
EI{P< 6) 2(—2"_3 ix2)}

Again constant =0 ; since »= 0 when 2=0.
But since at B, where z =1, we have u =0,

P(5-5)-5G5 %)

A . P _ 3wl
o o
s P= 3wl

So that 3ths of the load is supported at B, and Sths at A.
To find the points of inflection, substitute in M, equation (6), the
value of P just found, then

-yt )0 (5 %)

=‘—”(z—x)(m-—) ........................... (7).
2
Equating M, to zero we get the point of contrary flexure at
Ak
: e
The moment at the fixed end is got by putting 2= 0 in equation (7)
PO B WS St B
A TR SR 8

By differentiating equation (7), and equating to zero, we find a
maximum bending moment at #=§/, at this point ¢ :
M, =}w x 31 x 3= 12 wl?,

which is less than m.

Since m is equal to the maximum bending, moment of a beam
supported at the two ends and uniformly loaded, we see that a beam
18 not made stronger by fixing one of the ends only.

Sé. Resilience of a bent beam.

The work done in bending a short portion, de, of a beam is }Mdi,
where J{ is the bending moment, and di is the change of slope in the
8
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length da. I egratwg from one end of the beam to the other, the
whole work d8he is

: f Mdi
M? d X dz' M
N sin € o =
Ezamples.

1. Beam of uniform section subjected to a uniform bending
moment, consequently uniform curvature.

Work done = < Sl

oKT
now M= 'ﬁ 1
K51
therefore Work done = Sr1l
3 2By
If the section is rectangular, 7= bd and ph=
therefore, Work done = f—é%dl,
/1 being the intensity of stress at top or bottom, ’
and, Work done = gf Vor V, where V =volume,

which is 4rd the resilience of a piece subjected to a pull or push of
uniform intensity f;.

2. Beam of uniform section, supported at ends, loaded with a
single load W at the middle.
The work done can be got by taking half the product of the load
and the maximum deflection
75 S A I
T2 “UBEI T 96EI"
In the case of a rectangular beam

fx bd? g
SRR T e
e N T

Work done = 18 —ISE'V

that is, §th of the resilience of piece subjected to a stress of uniform
intensity f;.

87. Beam fixed at one end, supported at the other at the
same level, and loaded at some intermediate point with a
single load .

Here the bending moment is discontinuous.

For z <a, M,=P(l—2)— W (a—a)..

For z > a, M,=P(l-).
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This makes the method of finding slope and deflection by inte-
gration inconvenient.

To find P, the pressure on the support, we can adopt the method
of superposition of deflections.

Consider each load separately and add algebraically.

First consider W. See Fig. 213.

The portion ZD of the curve 4D is a straight line, and

DB=DC+ CB=DC+EF=db+u,

where 7, is the slope of the beam at Z; but 7, of a beam fixed at one
end and loaded at the other

_wa,
= T pYE
d _Wa*
an ul_m,
) _Wa*b Wo* Wa' (b  a
DB e 15t 5]
N
P
B S
Z
A '
A ] B
-« -4
Z A
- WS B Pzl 73
%
v w
i Sl @ - e T R b ————————— S5
af R B

_____________ C )
Ip
Fig. 213.
Dl
P
A ll B’
Fig. 214.

This would be the depression of the end B if W acted alone.
Secondly, consider P acting upwards at the free end of an encastré
beam of length 7; then in Fig. 214 the deflection due to P is

L]
BD =
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Since the point B really keeps in the horizontal line, the deflection
upwards due to P must be equal to the deflection downwards due
to W, or

BD =BD;

P Wo* (b «
3EI EI{ 3 }
Rk St

Knowing P, we can always find the bending moment at any point.

The point of contrary flexure can be found by equating the bending
moment to zero.

As a special case of this example, suppose the weight at centre,
then a=b6= g, and

3Wa (5 5
P=Sg et =

and the reaction at fixed end = 11

This principle can be further app11ed to the case of a beam loaded
with several weights, W,, W,, &c., dividing the length of the beam
into sections, a,, by ; @, by, &e.; then

P‘132W2{Z +5)s

213 X Wa* {3b + 2as,

88. Beam supported at the ends and propped in the
middle, uniformly loaded. (Fig. 215.)

When a beam is loaded with several loads the deflection due to
the whole is the sum of those due to each load taken separately.

A c B

Fig. 215.

Hence the deflection in this case is the difference between the down-
ward deflection due to the uniform load, and the upward deflection
due to the thrust P of the prop.
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Deflection at centre

b T P

T 384 EI 48ET
[25s

=48EI(§ W"P>"

Let us suppose the upward pressure such that this deflection=0,
or that the three supports are at the same level ; we get

P=5W=2_;wl,
and consequently each of the supporting forces at the ends
=L W =sul;
where, as before, w = load per foot run, and / the whole length of beam.
The bending moment at any point distant # from 4 is
, wa’ _wx
ﬂ[m—wwlx %50 < I~ )

The points of contrary flexure are at E, &,, where AE=3]=3A4C.
Next, let us suppose the middle prop to be lower than the end
supports. Assume the top of prop to be lower than the supports by

:;th of the deflection of the beam when prop is removed, then
LS W o W SR
n" 384 KT 384 EI 4A8EID’
: 5 1
that is, P—§W<1-—7z).

EXERCISES.

1. A beam uniformly loaded rests on three supports, two at the
ends and one at the middle. Find how much the middle support
must be lower than the end supports in order that the pressures on
the three supports shall be equal.

T WP
Ans. F{)Q-ET

2. A uniformly-loaded beam rests on three supports distant
apart / and 27; the centre prop is ;z below the level of the two end

supports. Find the reaction on centre prop.

3. Abeam of rectangular section, depth 8 inches, breadth 3 inches,
10 feet long, is supported horizontally at the ends and loaded with
a weight of 5 tons uniformly distributed. Find the deflection, as-
suming #=12000 tons per square inch.

4. A beam 20 feet span supported at both ends carries loads
of 2 tons, 4 tons, 1 ton and 3 tons at points 3 feet, 8 feet, 12 feet, and
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17 feet respectively from the left support. Find graphically the
maximum deflection. Assume /=300; E=12000 tons per square
inch.

5. A wooden joist of a floor carries a uniform load of 02 ton
per foot run. If the span is 20 feet, determine the scantling of the
joist if the deflection is limited to § inch; the maximum stress being
1 ton per square inch. Assume =700 tons per square inch.

Ans. 14 inches deep by 72 inches wide.

6. If in the last exercise, the depth of the joist is limited instead
of the stress; the maximum depth allowable being 13 inches. Deter-
mine the necessary scantling.

Ans. 13 inches by 9 inches.

7. A girder 30 feet span supported at the ends carries two loads,
one of 7 tons at 6 feet, the other of 12 tons at 18 feet from the left
support. Find the maximum deflection.

Ans. u1=—87(6j%8— foot.
8. A girder 50 feet span supported at the ends is loaded as

follows :
7 tons at 10 feet from left support.

3 L 15 3 )
5 D | o) »
4 55 30 & ”»
Find the maximum deflection.
39000
Ans. u, = 2T foot.

9. A fir beam 12 feet spam, 10 inches deep, 5 inches wide,
supported at the ends, carries a uniform load of 5 ewt. per foot of
span. Find the maximum deflection. &= 700 tons per square inch.

Ans. 04 inch.

10. A rectangular wooden beam 20 feet span, 14 inches deep,
carries a load of 2 tons at the centre with a maximum stress of
1000 lbs. per square inch. Find the maximum deflection, and the
breadth of beam.

685714 >
= £ in lbs. per square inch SRE Bt

11. A beam 20 feet span is fixed at the ends, carries a load of
3 tons in the centre, and loads of 2 tons each at 5 feet from the ends.
Construct the bending moment diagram. Give the value of the
maximum bending moment, and the position of the points of inflection.

Ans. 20 foot-tons. 44 feet from the ends.

12. Determine the ratio between the deflection of a girder of
uniform 7 cross section, and one of uniform strength, both girders
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being designed for the same span, with the same uniform depth, and
the same maximum working stress per square inch of flange section
under a central load.

Ans. 2:8.

13. Inlast exercise if the load is uniformly distributed, determine

the relative deflections for the same maximum stress.
Ans. 5:6.

14. A horizontal beam of uniform section, whose moment of
inertia is 7, and whose total length is 2/, is supported at the centre,
one end being anchored down to a fixed abutment. Neglecting the
weight of the beam, suppose it to be loaded at the other end with
a single weight W. Find an expression for the vertical deflection
of that end below its unstrained position.

s pLade
CO12ET

15. A horizontal beam fixed at both ends carries a weight W at
a point which divides the span into two portions ¢ and 6. Find the
deflection at the point of application of the weight, and the work done
-in bending the beam.

P _Ij’_(ab >3. W2<ab )a
3K \a+b)’ 6EI\a+bd)’

16. A girder 42 feet span, supported at the ends, carries two
concentrated loads, one of 6 tons at 7 feet, and one of 10 tons at
28 feet from the left support. Find the maximum deflection.

_ 17537 :
Ans. —— foot.

ET
£ in tons per square foot, 7 (feet)®.

17. A girder 100 feet span carries three loads of 20 tons placed
at 20, 40, and 60 feet respectively from the left support. Determine
the maximum deflection.

Ans. The maximum deflection occurs at a section 486 feet from
the left support, its value is

4, 1024312 x 12
o Kl :

18. A cross girder of a railway bridge carrying a double line of
way is 27 feet span between the main girders, and the four rails are
carried by it at 3 feet and 8'feet respectively from the centre of span
on each side. The maximum load at each of these four points when
two trains are on the bridge may be taken as 8 tons. Find the
maximum deflection.

Ans. The maximum deflection occurs at the centre of span,

5 9899 x 12°
e e

nches.

inches.



CHAPTER IX.

BENDING AND DIRECT STRESS.—NON-AXIAL LOADS.—STRESS
AT A PLANE JOINT.—MASONRY STRUCTURES.

89. TUniform stress. Uniformly-varying stress.

We know that in bent beams the stress on a cross section is a
uniformly-varying stress. The following are also examples of this
state of stress:—Ties and struts where the load, although parallel
to, does not act along the axis of the piece—that is, the load is
non-axial ; also masonry piers and arches, where the line of action
of the resultant thrust does not pass through the centre of gravity
of the joint.

Uxtrorm StrEss.  When a load is applied along the axis of a piece
it produces a uniform distribution of stress over the surface of a cross
section ; the intensity of stress at all points of the surface is uniform
and constant ; and the resultant of the stress on the surface acts at a
point called the centre of stress, which in this case coincides with the
centre of area.

UnirorMLY-VARYING STRESS. If, on the other hand, the centre of
stress of the cross section does not coincide with the centre of area,
then the distribution of stress over the surface is unequal, and it is
assumed that the stress is a wniformly-varying one—that is, the
intensity of stress at any point in the section varies directly as the
distance of that point from a fixed line in the plane of the section.
This line is called the neutral axis of the stress.

Thus, if ordinates be drawn at right angles to the stressed surface
AB (Figs. 216 and 217), each representing the intensity of stress at
the point on which it is erected, the locus of the extremities of these
ordinates will be in a plane O'D, which will be parallel or inclined to the
surface AB, according as the intensity of stress is uniform (Fig. 216)
or uniformly varying (Fig. 217). The volume of the cylinder represents
the total amount of stress. The line through £ at right angles to the
plane of the paper is the neutral axis of the uniformly-varying stress.
It is evident from Fig. 217 that in the case of a uniformly-varying
stress the resultant falls on one side of the centre of area of the
surface AB.



204 BENDING AND DIRECT STRESS [cHAP.

When, as in Fig. 218, the neutral axis of the uniformly-varying
stress falls outside the surface 4B, then the stress is of one sign all

D

Fig. 216. Fig. 217.

over the surface. If the neutral axis, as in Fig. 219, falls within the
surface A B it divides the surface into two parts, on one of which there
is tension, and on the other compression. If the neutral axis passes
through the centre of area of the surface, then (as in bent beams) the
total tension on one side is equal to the total compression on the other,
and the resultant of the stress is a couple.

Joamdii st
8 A B
Fig. 218.
A
E B
Fig. 219.

90. Stress on a section or joint, the load being non-axial.

Let AB (Fig. 220) represent the trace of a surface on a plane at
right angles to it, O being ‘that of a line through its centre of area.
Let /" be the resultant force normal to the surface, its line of action
intersecting ABin M. F'is also the resultant internal stress developed
at AB. : 5

Let OM =z, ; that is, the distance of centre of stress from centre
of area. : ,

Let 2, and , be the distances from O, of B and A respectively.

Let S=area of surface 4B.\
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Let £, and f; be the extreme intensities of stress at B and 4.

Let £, be the intensity of stress at centre of area of AB.

Let I be the moment of inertia of the surface about an axis through
O at right angles to the plane of the figure.

Then the stress represented by 4 BCD (Fig. 220) may be considered
as made up of two parts, viz. :—(a) A uniform stress AGHDB, due to

a load equal to F acting at the centre of area O, the intensity of which
18 fo= ; and (b) a uniformly-varying stress GCJHD, due to a bending

moment M=F.x,, represented by the triangular figures ZDJ (com-
pressive) and GCJ (tensile), compressive and tensile stresses being
regarded as of opposite signs. Compressive and tensile stresses are
regarded as positive and negative respectively.
The intensity of this uniformly-varying stress on any line distant
z from O is _
M.2 Fouzx
i T O
Adding («) and (b) we get :
The intensity of stress at edge B
Fz'oml

= Y A e B (1)
= F Sxoxx
=5 (1 + 20 ) ........................ ).
The intensity of stress at edge A
l/-z_lf:) F'ZO'TE
sl Szowg
-7 (1 e ) ........................ 3)
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o

We have thus a uniform stress all over the section or joint =8

as well as a uniformly-varying stress (compressive on one side of O,
and tensile on the other side), which the bending moment Fx, produces.
If the resultant of the loading forces is a force £ inclined to the section
or joint, then # in the above equations is the component of & normal
to 4B. :

In symmetrical sections #; =2, ; and equations (2) and (8) become

o f_; <1 + %) ........................ (1),
il g (1 -@}fj ........................ ().

91. To find the limiting value of 2, without reversing the
sign of the stress.

It is necessary, especially in the case of bed joints of masonry
structures, to limit the value of ,, in order to ensure that at no part
of the joint will the stress be tensile. To fulfil this condition put

fe=0;
then Bg= g wesveeeneriseniiinieeee (6).
1

RECTANGULAR JOINT.

For a rectangular joint in masonry whose sides are ¢ and / (Fig. 221)
we have

it ¢
I=i§’ S=1, n=3.
| D
A | B ¥
g " 2F
; % oF
VR e §
J O
| o - -~ kg‘-l :
¥ 2 I !
A | 'B ' 4.
e — e ———— s A o~ B
Fig. 221 Fig. 222.
Substituting in equation (6) ; .
Limiting value of 2, = ARREITET PPN (7),

as #, may be on either side of O, we have from equation (7) that the
resultant thrust must foll within the middle third of the joint in order
that there may be no tensile stress on any part of the joint.



1X ] BENDING AND DIRECT STRESS 207

When z, = %, the value of the stress varies from 2 <%) at the edge
nearest the resultant, to zero at the opposite edge (Fig. 222).
CIRCULAR SECTION.

Let » =radius. Then, for this section,
o4
S=xr, I=% =,

Therefore Te - e sk T (8);

hence the limit of deviation of the point of application of the resultant
from the centre to ensure stress of the same sign all over the circular
section is

P
BT

In a kollow circular section of outside diameter D and inside
diameter D, the limit of deviation is
D+ D?

8D -

91A. Another method of determining the extreme intensities

of stress /; and f, on a rectangular joint.

The position of the centre of stress M is sometimes given by its
distance from the nearest edge of the section or joint.
Let F'=resultant normal pressure.
» t=length of joint 4 5.
,» d=distance of the centre of stress M from the edge B.
,» J1and f; be the maximum and minimum stresses at B and 4
respectively.

0=




208 BENDING AND DIRECT STRESS [cHAP.

Let the ordinates BD and AC (Fig. 223) be drawn to represent
/1 and f; respectively. Then the trapezoid A BDC represents the total
stress on the joint. Draw CX parallel to A B5.

Let the width of the joints at right angles to the paper be unity.
Then the total stress on the joint is made up of two parts, viz.

ABEC=f,t acting at 0, and EDC =£f’%fﬂ—) ¢t acting at a distance
% from B.
Take moments round 5,

Fd fztx LA=f), 8

2 3
S T ek )

But F=%(f1+fs)t;
"Therefore o= g el auel e LS (10).
Substituting in (9) for f, its value in (10),

]%Iazimum intensity of stress =jfi= 2tF (2 - 37d> .......... (11).
Similarly from equations (9) and (10),

Minimum intensity of stress=f,= —2—]—’1 ﬁ - 1) ........... (12).

In equation (11) gyis the value of the average stress-intensity on

the base, that is, f;.

Therefore Ji=2f (2 - §0—l>
or d= % ( Qf},o > ........................... (13).

Equation (13) gives the value of d, the distance of the centre of
pressure from the extremity of base, where f, is the maximum
stress-intensity, and f, is the average stress-intensity on the base.

To get the limiting value of d so that there shall be no tension on the
Joint, put

So=0;

to fulfil this condition we must have

’

17
d—g.
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92. Given a non-axial load acting on a section, to deter-
mine where the stress changes sign. (For this solution I am
indebted to Prof. G. M. Minchin, F.R.S.)

Fig. 224 (A) represents the diagram of stress on the joint.

In Fig. 224 (B) let A HBEA represent a normal cross section of a
pillar or column, and let a non-axial load F" act on the line PQ;
the centre of pressure being at M. Let O be the centre of area
of the cross section, and KL the neutral axis of stress.

D
F
A | 4’
Ker— o) M B
5 Fig, 224 (A).
P
e H -
Q

Fig. 224 (B).

Take a parallel normal cross section 4,B,; at a very small distance
below 4B, and consider the equilibrium of the portion of column
between AB and A4,B,.

The resultant upward pressure on 4,5, must be exactly equal and
opposite to F. :

Consider a small element of area dS of A4,B; distant «# from the
neutral axis through C.

The pressure on this element = Azd§ where A is a constant.

Therefore, the total pressure on the area A, B, is

F=X\«dS
=A8. CO.
Again, taking moments about KL,
F. MC=\[a*dS=\Sk?
where £, is the radius of gyration of the area about the axis KL.

W. 14
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Substituting for # its value above,
MCx 00 =k:=k?+CO,
or (MO +C0) 00=k+ CO*;
therefore MOx CO=k® woovvroiiiiiinnns (14),
k, being the radius of gyration of the area about the axis ZH through
O the centre of area.
From (14) we see that the points M and C are related as the centre

of oscillation and centre of suspension in a compound pendulum whose
centre of gravity is O and radius of gyration %,.

Ezamples.
1. Determine the greatest and least intensities of compressive stress
on a normal cross section of a rectangular pillar, the width of which
is 4 feet and the breadth 2 feet, due to a load of 250 tons. The line

i

A : 8
1 '
1 '
., 0I M
2.5 = s = s S
) 6.
: '

A ; 8

Wik - = K
Fig. 225

of action of the load is 6 inches from the axis of pillar, in the central
plane parallel to the width (Fig. 225).

¢ 3
S=8 square feet ; I:%‘_{= 3?2; ST oot
F S.
Max. stress fi="5 (1 g :v[ow1>
=2go (14 82022
32

=280 (1 + 24) =547 tons per square foot compressive.

Min. stress f;=-2—g—0(1—%‘;‘)= 78 3 i) ”» E2]

2. Determine the mazimum intensities of compressive and tensile
stress on the cross section, 6 inches square, of a wooden post under a
vertical load of T'5 tons acting at 1% inches from the axis of the post
in a central plane parallel to one side of the post.

t 4
8=36 square inches ; 2, =g inches; #'=17'5 tons; I= -1% =108.
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Max. compressive stress =§ (1 + Sx}wl)

T°5 x 2240
e 36

= 1,050 lbs. per square inch.
75 x 2240

36

=-116°8 lbs. per square inch.

3. A wrought-iron bar of rectangilar section, 8 inches by 1 inch,
transmits a tensile force of 5 tons. The bar is cranked so that the
line of action of the load, though parallel to the axis of the bar,
coincides with the middle of one of the smaller sides. Determine the
mazimum intensities of stress in a normal cross section.

S'=38 square inches ; F'=—35 tons; z,=2 inches;
P 70y

=—6"6 tons per square inch (tensile);
Ja==3(1-3)

=+ 1'66 tons per square inch (compressive).

4. A masonry dam has a horizontal base 115 feet wide. It retains
a depth of water of 150 feet. Assume that the weight of one foot in
length of the dam is 500 tons, and that the resultant acts at 45 feet

from the right-hand edge of base. Determine the maximum intensities
of wertical stress on the base (Fig. 226).

<1 + g) lbs. per square inch

Max. tensile stress = (1 - ?i") Ibs. per square inch

o7 S ey e
e
P |
|
]
!
|
/150’
|
p N l Nl
r > 3/2-5 Tons.
Loy
|
s w
| -i 500
\y.
AR 5
- n5° —8<5)
//
Ve
e
Fig. 226.

14—2
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Consider one foot in length of the dam.
The total water pressure is

wh? 1 150°
2 36 2
Note. One cubic foot of water weighs th of a ton. The hori-
zontal component of resultant is 312'5 tons. The vertical component
of resultant is 500 tons.
Substituting in the formule (11) and (12),

Max. intensity of stress f; = a5 (2 - ?%z)
_2x509< 28 x45)
T UE 115
= 7-18 tons per square foot.

Miun. intensity of stress f, = L <3—:-l - 1)

_2x500(3x45_1>
L5 115

=15 tons per square foot.

=312'5 tons.

These are the values of the vertical intensities at the outer edges
of the horizontal base B and A respectively. The mean intensity

of stress is 8.2&=4‘34 tons per square foot.

The mawimum intensity of pressure is on a plane at right angles
to the resultant 2.

The resultant pressure = ~/500%+312°5 = 589 tons.

The maximum intensity of stress on a section at right angles to
the resultant

= -—f‘l ~
cos 6’
where cos 6= ——-——_VV_ = il
JW2e P2 589°
Hence,

The maximum stress-intensity at B =718 x £33
=848 tons per square foot,
The minimum stress-intensity at 4 =15 x £88
=175 tons per square foot.
Note. When the resultant pressure is inclined to the horizontal,
the maximum intensity of stress is found not by taking the normal

component of the resultant pressure acting at the centre of pressure,
but by considering a joint at right angles to the resultant £. This.
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joint makes an angle 6 with the horizontal. The maximum intensity
of compressive stress is therefore, for

#>3 A== §)
and not Si= 2?7(2—%(!),

W being the normal component of R. The stress is greater in the
ratio of 1 to cos® 6.

93. Stability of masonry structures.

In order to illustrate the application of the formule in this chapter
we will apply them to a few simple cases of masonry structures.
For a further treatment of “dams,” see Principles of Waterworks
Engineering, by Tudsbery and Brightmore, from which one or two
examples have been taken.

The conditions of stability at a plane joint are :

I.  That the portion of structure above the joint shall not
overturn.

II. That the maximum intensity of pressure at any point in
the joint shall not exceed a certain limit known to
be safe. ;

III. That the portion of the structure above the joint shall not
slide along the surface of the joint.

As the two first conditions are dependent on the position of the
centre of pressure, these conditions may be stated as :

I.  The centre of pressure must fall within certain limiting
positions on the surface of the joint.

II. The angle between the direction of the resultant pressure
and the normal to the joint must be less than the angle
of friction.

It is well to note again with reference to Condition I., that if no
tensile stress is permissible at any point in the surface of the joint
the hmmng dlstance of the centre of pressure from the centre of
areaas s

In a rectangular joint. 1th the thickness of the joint.

Diameter
By i
In a hollow circular joint of outside diameter D, and inside
D*+ D2
SRS

94. Consideration of the conditions of stability.

Condition I. Let Fig. 227 represent in section a portion of a pier
or buttress, A B being the trace of one of the bed joints.

In a circular joint.

diameter D,.
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Let W=the weight of the structure above 4B, its line of action
intersecting A B at D.
» P=the resultant of the external forces acting on the part
whose weight is W.

Let the point C be the centre of pressure at A B, and O the middle

/ g__
-—

> Yw

Fig. 227.

Let # and y be the horizontal and vertical coordinates of X, the
point of application of P, with reference to C.

Let 6 and ¢ be the inclinations to the horizontal of 4B, and the
direction of P respectively.

The horizontal and vertical components of P are

Pcosd and Psin .

Taking moments about C':

The moment of P (which is equal to the algebraic sum of its
component moments)

= P (ycos p—asin ¢).

The first condition of stability requires that this moment of P
must be less than, or equal to, the moment of W with respect
to C, or

P(ycosp—asing) =W.DCcos O ............ (15).

95. Line of resistance (Fig. 228).

Let C; be the centre of pressure of joint aa, and let P; be the
amount and direction of the resultant force on that joint; then by
compounding P, with the weight of the block ab, the resultant
P; is obtained acting on the joint b, through the centre of
pressure C;.

Proceeding similarly, the centre of pressure and resultant at each
successive joint can be determined, and the stability of the structure
examined.
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The polygon C,C,C5, &e., formed by joining the successive centres
of pressure by straight lines, is called the “line of resistance.”

c Cs ¢
P W3
d o d
Fig. 228.

Condition II. The maximum intensity of pressure at any point
of the joint shall not exceed a certain limit known to be safe.

When the position of the centre of pressure is determined the
maximum intensity of pressure can be computed by equations (2)
or (11). .

The following data give the limiting intensities of pressure :

Rock, 8 to 12 tons per square foot.

Gravel and clay, 2 tons per square foot.

Loamy soil, 1 ton per square foot.

Good lime concrete, 8 to 4 tons per square foot.

Condition II1. To satisfy this it is necessary that the tangential
component of the resultant pressure shall not exceed the resistance
of friction at the joint, which is the normal component multiplied by
the coefficient of friction (or tangent of the angle of repose).

The following values may be taken for ¢, the angle of repose, and
p=tan ¢ the coefficient of friction (Rankine) :

Surfaces j ‘ [ n=tan ¢

Dry masonry and brickwork 31 to 35 6 to 7
Masonry and brick with wet mortar 25 047
Masonry with damp mortar 36 0-74
Masonry on dry clay... 27 051
Masonry on moist clay - ... 18} 033
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Ezamples.

1. A masonry pillar 4 feet diameter is built of masonry weighing
140 lbs. per cubic foot. It is subjected to a wind pressure whose normal
intensity is 40 lbs. per square jfoot. Determine the greatest safe height
of the pillar, assuming that, owing to the convexity of the pillar, the
effective wind pressure per square foot is half the normal intensity on a
plane section through the axis of pillar.

Let % =height of pillar.

,, d=diameter=4 feet.
,» w=140 lbs. per cubic foot.

Effective wind pressure =42=20 lbs. per square foot on a section
through the axis of pillar.

Weight of pillar
2 2
W =0 =22 « £ 140 x k= 17604 Ibs.
4 7T 4
Total effective wind pressure=20 x4 x 4
=804.
Taking moments round the limiting position of the centre of
pressure,
h d 1 r
80’L><§—W§—-1760k><§—880k, 3 :
s k=22 feet. |
|

2. A pier of masonry weighing 4 T‘;NS

112 lbs. per cubic foot, 20 feet '}\
kigh,-and 6 feet square on plan, is I
subjected to a horizontal pressure i
of 4 tons applied to one fuce at o 12’ R
|
|

height of 12 feet above the footings.

Inwestigate the stability of the joint
ot the top of the footings and calcu- :
late the greatest and least intensities { )

of pressure (Fig. 229).

P =1 tons. A |
Weight of pier I
=W =6 x6 x 20 x 3% = 36 tons. :
Then from triangle of forces o!
CEO, ‘ ; B
l
I

e,
12 736"
Therefore .
Zy =45 =14 feet. Aﬁ—-“ A
But the limiting value of «, is ?

# % 6=1 foot.

Fig. 229,
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Therefore the condition that there shall be no tensile stress is
not satisfied.

The maximum intensity of normal pressure is at the edge B.

The total normal component of B = W.

The maximum intensity of pressure

W Waaz
S I

_36 86x13x3
T8 " 36x3

=2} tons per square foot.

3. A wall of thickness t retains water which is level with the top
of the wall. Determine the height to which the wall can be built to
satisfy the condition of the resultant falling within the middle third.

Let w = weight of water per cubic foot =62} Ibs.
» W, =weight of masonry per cubic foot.
If p=specific gravity of the masonry, then w; = pw.
k=required height.

2
The total water pressure is wT :

The weight of masonry is w, At.
Take moments about the limiting position of centre of pressure
14

wo - ‘é .
wh & ht? he
Then R iy Wp?.

Therefore A=¢+/p, or t=—-.
~/ P

4.  Masonry wall with vertical
Jace subjected to water pressure
(Fig. 230).

Let #, and #,=thickness of wall
at base and top
respectively.

2 w=weight of cubic
foot of water.

o w, =weight of cubic

" footof masonry.

0 p=specific gravity

of the masonry.

Then w, = pw.
Assuming the water to be level
with top of wall, find the height
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% of the wall so that the resultant pressure will act at the outer
middle third of the base.

Note. If the wall is ¢rapezoidal or triangular in vertical section,
and the resultant pressure acts within the middle third of ¢ke
base, the same condition will be fulfilled for every other joint.

Consider a strip of wall 1 foot long. Divide up the section into a

rectangle of area %4, and a triangle of area ” tgk The resultant

water pressure is %Zl— acting at a height g above the base. Taking
moments about C, the outer middle third of #,, we get

]
%:wl {tgk (g tl_t2_2> tl t2}l[3 tl tz tg)]}
2+ tt,+t wpk
@L(_le_lz_z) ROpLY WP (82 + t.t,— t.3).

Therefore B=p (8 + tts— 1t 21

The “line of resistance” in this case is a hyperbola. If the wall is
rectangular in vertical section the ““line of resistance ” is a parabola.

If #,=0, so that the vertical section of wall is a triangle of base ¢,
and height 4, we get

e =ptl

Therefore h=t,p, or t,= i_ 3
Vp

The “line of resistance ” is a straight line.

5. To find the height to which a dam of triangular section may be
built consistent with the conditions of stability :

(¢) That the resultant pressure, in its limiting position, shall cut
the joint at 2rds of its thickness from the inner face.
) That a given limiting intensity of pressure shall not be
exceeded.
Assume the water level with the top of the dam (Fig. 231).
Let 2=height of dam.
,, t=thickness at base.
,» W=total weight of masonry.
,» p=specific gravity of masonry.
,» R =resultant pressure on base.
,» w=weight of one cubic foot of masonry.
,» f=limiting intensity of pressure.
It was shown in the latter part of Example 4 that in the case of
a triangular section in which condition () is fulfilled, that
h

-7
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6. A cylindrical chimney is 10 feet outside diameter and 8 feet
inside diameter. Find to what height
suchk a chimney may be built, assuming
that the brickwork weighs 112 lbs. per 3
cubic foot and that the normal in- |
tensity of horizontal wind pressure is |
40 Ibs. per square foot (Fig. 232). |

In the case of a cylindrical sur- |
face it is usual to assume that the I

H
|
l
|
|
|

|
l
™
4

T
|
|
-~
Q
l

CESEXRRZRE:

A

effective intensity of the wind pressure
is half the normal intensity, that is,
half the intensity on a plane surface
normal to the wind’s direction.
Let H=height of chimney above
its base.
D = outside diameter of chim-
ney.
D, =1inside diameter of chim- st r
ney. -
» P =resultant wind pressure. Fig. 232,
J'=effective intensity of the
wind pressure.
» w=weight of masonry per cubic foot.

P acts at a height of g above the base.

The greatest height A is found by equating the moment of the
resultant wind pressure P, about the limiting position € of the centre
of pressure of the base joint, to the moment of the weight of chimney
about the same point.

The moment of P about C is

—_fDH

-0

)
<

2

A A Y

IIEEYYYYSYYYY:

A T T T TR

bR

2

e | %
3 éfDH .................. ()
The weight of chimney is wy (D2— D3 H.

The limiting distance of C' from centre of area O is, for a hollow

cylinder,

D+ Dy
8D
Therefore the moment of the weight about € is
T D* + D1
wHZ (D'~ D) - (55 )

w WH 2 2
=25 7 (DP= DY) (D4 D) covvvvsenennenns @).
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Equating (1) and (2) we get

Lppr = = (e py0r+ D),
Therefore limiting height is
= I% ?%2 (D= DHAP D e (3).

Substituting the numerical values,
JS=%2=20 lbs. per sq. ft., w=112 lbs. per sq. ft., 7=3232,

22 112
=65 feet.

96. Earth pressure on retaining walls.

Let Fig. 233 represent a mass of earth supported by a retaining
wall. If we imagine the wall re-
moved, a wedge of earth 4 BC will B C
separate from the general mass.

Let BC be the line along which
rupture takes place inclined at an
angle 6 to the vertical.

It is assumed that the pressure
on the wall is the maximum pressure
due to this wedge-shaped mass of
earth ; hence we require fo find
the value of 0 that will make the
pressure on the wall a maximum.

Consider the wedge of earth
ABC, the forces acting on it are:

(1) The weight IV of the wedge Fig. 233.
acting at its centre of gravity.

(2) 'The reaction P of the plane A B acting at 24 B from A.

(3) The friction along AB=pP; p being the coefficient of
friction.

(4) The reaction R of the plane BC.

(5) The friction along AC=pR. Assume that the coefficient.
of friction is the same for earth on earth as for earth on masonry.
- This although not quite true is sufficiently accurate for practical
purposes, and simplifies the formule.

The forces in Fig. 233 represent these forces acting on the wedge
of earth.

Resolving horizontally,

FEEN st =Y G080 T, TR (1).
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Resolving vertically,
uP +pRcosb0+ Rsin0=W .oocooooovinnnnns (2).
Let p=specific gravity of earth ; and take the weight of 1 cubic foot
of water =z ton. Then
h x htan 0
W= —————
: 2
_ ph*tan 0
- TN
Substituting this value of W in (2),

X p % 5= ton

2
pPpRoos 6+ Rsing=LEt00 3).

From (1), R (cos 6 —psin 6) = P.
P
Therefore = m 5
Substituting this value of B in (3),
p»P cos 0 Psin 6 pk

: tan 6,
‘uP+cos6—,usm0 cosf—pusinb e
P (21 cos 6 —p’sin 6 +sin 6) _ ph* sin 6
o cos 6 —psin 6 T 72 "cos 6’
£ 0
Therefore p= L LS de s uiat 128, (4).

! e w2+ 2ucot @

To find the value of 6, for which P is a maximum, equate ‘2—};
to zero.
That is,
(1~ p2+ 2p cot ) (— psec® 6) — (1 — p tan 6) (— 2p cosec® d) =
or —(1—p?) sin® 0 — 2 sin 0 cos 6 + 2 cos® § — 2. 5in 6 cos 6 = 0.
Therefore (1—p?) tan®6 + 4ptan 6 —2=0.
Solving, we get for a maximum
—2u+ N2(pt+ 1)
1—p?
Substituting this value of tan 6 in equation (4),

A2 3uP — 2u A/2 +D+1
Max. P—P— # ’21_(’:)2 )

97. To find the resultant pressure on the base of a
reta.mmg wall, in magnitude, direction, and position.

Let ¢ be the thickness of base (Fig. 234).
»» & be the height of wall.

» @ be the distance of the point where the resultant cuts the base
from the outer edge of base.

tan 6 =







CHAPTER X.

COLUMNS AND STRUTS.

98. Short columns.

If a load P acts along the axis of a short column, the ratio of whose
length to diameter is small, usually not greater than 3 to 1, the column
will fail by direct crushing.

The relation between the load and the stress produced is

P
f = rsi ]
where f=intensity of compressive stress,
P =total load,

S=area of cross section.

CoLumMNs OF MEDIUM LENGTH fail partly by crush-
ing and partly by bending.
VERY LoNG coLUMNS fail wholly by bending.

e

99. Rankine’s and Gordon’s formule for
columns of medium length.

Let the column be hinged or free at both ends
(Fig. 235).

Let OA be the primitively straight axis of the
column ; take this as axis of 2z, and the
extremity O for origin.

,, {=length of the column, the deformed axis
after bending being represented by the curve
OBA.

, « and u=the coordinates of the centre of
area of a mormal cross section, » being the
deflection at abscissa .

,» % =maximum deflection.

,» P=load.

,» S=area of cross section.

» Ji=maximum intensity of stress.

Then, using the notation of previous chapter, if

BN ot o

——— e - - - -
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but {q;b =% Therefore from (3)
N L J
SE —,w erealsaconstant—h.

Substituting in equatlon (2) this value of u,, we get
E R i g
= ol =g p=ra
where % is the radius of gyration.
Then the maximum intensity of stress,

ﬁiﬁ,+ﬁ=fo<1 +a£) {;(l +a]l;)

If £, is the maximum stress intensity allowable, which must not
be greater than the elastic limit stress in compression of the material,
then

P =Dbreaking load = S8 Ti e (4),
1+a P

where £ is the radius of gyration of section with respect to the axis

about which the resistance to bending is least, namely, the axis about

which 7 is least.

Equation (4) is Rankine's formula, and the constant ¢ depends on
the material.

The steady working load should not be greater than n/’, where
n=}th or ith for wrought iron and steel, ith for cast iron, and
Lth for wood. For live loads these values of » must be halved.

Gordon’s formula, which is similar to Rankine’s, is

S
Pl ®),
1+e¢x 7
where b, the least breadth of the section, is used instead of %, the least

radius of gyration. The constant ¢ depends both on the material and
on the type of section.

100. Proof of Gordon’s formula.

Taking the same notation as in the proof of Rankine’s formula,
Let b be the least dimension of the section.

,»» @ be the greater dimension of the section.

,, S=db=area of cross section.

The maximum bending moment, M = Pu, ;
2

but W o« l— (Deflection of Beams.)

b
Therefore, M < fbf
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Both ends fized, - T,
YuE
One end fixed and the other rounded or free,
S
Paadf i @®)
1+ {;a F

The following values found from experiment may be taken for the
constants £, and @ in Rankine’s formule (6), (7), (8) :

Material Tons perlSquare a
Inch
Cast iron ... 35 1956
‘Wrought iron... 16 5090
Mild steel ... ... 21 R
Hard steel ... 30 5500

The following table gives the values of ¢ and f; in Gordon’s
formula, equation (5), found from experiments :

Values of ¢
Material Section Fuds S ﬁ?:]:g ,e:hde %
round or | geoq | other end
itees pivoted
Wrought iron | L, T, channel ]
I and hollow square % vbo 550 380 &
Hollow round 350 39 2000 17
Solid round 50 75 1950 16
Solid rectangular 50 3300 1700 16
Cast iron Hollow round 250 b5 e 35
Solid round ibo 5o 736 35
Mild steel Solid rectangular 550 5750 G 30
Solid round 33 1750 30 30
Hollow round B3 T500 1700 30
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102. Very long columns. Euler’s formula.

Euler’s formula, which is applicable only to columns where the
ratio of length to diameter is very great, is

x?

where P is the limiting load which the strut can support.

E is the modulus of elasticity.

I the least moment of inertia of the cross section about an axis
through the centre of area of the section.

I the length of the strut.

This equation is founded on the following assumptions, which are
never really fulfilled in practice, and is consequently that for an ideal -
column :

(1) The column is originally straight and of uniform section.

(2) The line of action of the lbad coincides zmtzally with the axis
of the column.

(8) Material of the column homogeneous.

103. Proof of Euler’s formula.

Suppose the column hinged or rounded at the ends. Let 0BA4
(Fig. 241) be the bent axis of the column. Take O as ip
origin and the vertical line OA4 as the axis of #. Letu O
be the deflection at any point C.

2

Then M =— Pu=EI %‘;—; . (See Chapter on Deflection.)

The negative sign is used, because, if deflection is
positive, the centre of curvature lies on the negative side.

d’u_' Pu g
@~ ED
dud’u__Pudu )
deds® Eldx®

Integrating, (;%’;)2: £ Eiil (@ + ¢);

when — oy =0, u =3 the maximum deﬁectlon, hence c=- &,

dx
m V du ~
Therefore (% ) E E_'[ (8~ u?),
or dr = EJL
P Je—u

ks = _\/ET[. U ; fP
ntegrating agaln, z= panTy +6; Fig. 241.
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when z=0, » =0, therefore ¢, =

therefore u=23 s1n \/ 7 I
which is the equation of the elastic curve.

Again, when x=—é, u=29;

N \/ P
therefore sin =Y 1

or IJ s orfm&
Ty g Ty e

The Zeast value of P, and hence the minimum thrust which will
. bend the column, is given by
l \/
lﬂ 2’

or = 12 ................................. (9).
But P=pS, and 7=S%;

K
hence -

104. Fixed ends.

If the strut is fixed at both ends, the load which it will stand
before yielding is the same as for a strut of half the length hinged
at the ends (Figs. 238 and 239).

If the ends are fixed,

o= L AL (10).

(>

If one end is fized and the other kinged,
Bl 9n*ET
= e i eeitnaaseeas 1598
P~y - e
Euler’s equation is for very long struts loaded under ideal con-
ditions of initial straightness and perfectly axial load combined with
a perfectly homogeneous material, and requires modification to render
it applicable to practical cases.
For very short columns, if f is the crushing strength of the
material and § the area of cross section,

Breaking load = /8.
For very long columns, according to Euler’s theory,

Breaking load = J?I
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Then the formula

P bk AT s i (12)
1+/8 gt
may be taken as true for columns of all lengths, because in this
formula, if  ¢s small, the denominator is 1 (app.) and P=/8.
When [ is great, we can neglect 1 in the denominator, and
p_TEL
Let =Sk where £ is the least radius of gyration of the section,
then we get from (12)

S
_P:-f_F ........................... (13),
1‘!’(1%2

where o = but if @ is calculated from Euler’s formula, we get

S
=B’
values which make the strut too strong, because in practice perfect
straightness, symmetrical loading, and symmetry of elasticity do not
exist ; hence the formula is treated as empirical, and the constants f
and o are determined from experimental results.

105. Johnson’s parabolic formula.
In Euler’s formula the buckling stress is

ok P =K

I AN
(%)

In Rankine’s formula X

P=§=1—+@)ﬂs,

where f is the “elastic limit ” stress in compression.
Professor Johnson has deduced the formula

P N2
Y i "S =f =D (]—L‘) ’
where f is the “elastic limit” stress in compression of the material,
and b is a constant whose value is
fﬂ
b= 4?”_2_,.

If a curve is plotted as in Fig. 242 representing Euler’s formula
when applied to wrought-iron columns, with ratios of  to £ as abscisse,
and buckling stresses as ordinates, then Johnson’s formula

pes-dpl-r-+()
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is the equation to a curve parabolic in form, tangential to Euler’s

curve, where /%= 150, and with its apex at the elastic limit of the

metal.

Professor Johnson gives the following values as deduced from the
Watertown experiments :

For wrought iron f'is taken as 34000 lbs. per square inch.

For mild steel f'is taken as 42000 lbs. per square inch.

SRR S A D A 1 T = ey 7 e e A
| \ ! | I
! oy ! |
| 0 ! ‘
[} \ [} | |
} \v{ ( )
{ X - [ [}
2l= == s ondmmn A e 2
ELASTIC LIMIT)] [ i !
3 . | '
3 ! |
3 | ;
Y 1
X ishlics L ie T !
§ /0 X : : -':
“ : : | '
x ' :
g i 3 ' .
4 A : -
i
g 1 | : :
N o S0 /00 /50 200
rRArI0 oF (K
Fig. 242.

Wrought-iron columns, pin ends,
2

ol

]% <170; p=34000 — 067

Wrought-iron columns, flat ends,

N~

2

]%< 210 ; p=34000—0'43( > .
Mild-steel columns, pin ends,

)2

2

¢
213

é < 150; p=42000— 097

DMild-steel columns, flat ends,

o~

é <190; p= 42000-0'62(

Cast-iron columns, round ends,

]% <70; p= 60000—%3(%)2.
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Cast-iron columns, flat ends,

7 g _9siy
<1205 p=60000 Z(lc)'

The working stress must not exceed f—;, where =4 to 5 for
wrought-iron and steel, and 6 for cast-iron.

Example.

Find by Rankines formula the working load for a wrought-iron
column 25 feet long, firmly fixzed at the ends, and the section of whick
s given in sketch (Fig. 243).

Y
o= e
1
1 (]
)
]
]
:
N ¥ 3
x (%l L 21/ 9. 5 3 X
| ol 2oty
: [
| " ¢ .
] < /% /™
¥l | e
| ' |
P L st
/211
Fig. 243

Assume f= 36000 lbs. per square inch, and a factor of safety = 5.
In this case the least moment of inertia is evidently about the
axis XOX, and
2x1x12°+10x23

[XOX= 12 =294-67.
Area, of section, S=2 x 12 x 1 + 2 x 10 =43 square inches.
I 29467 .
Therefore k= Shasras 6°17.

Also 7= 25 feet = 300 inches.
Substituting these values in Rankine’s formula, we get the breaking
36000 x 44 1584000
g £¥5 T 300° . _ 100
' * 36000 67 ' *268
=1153565 lbs. =515 tons.
With the given factor of safety 5, the working load will be
515 tons =103 tons.
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The same by Johnsow’s parabolic formula.

P=g [34000 ~0°67 ({ﬂ

4 [34000 067 . 9%030
=1100000 lbs.
=500 tons.

Therefore working load =222 =100 tons.

EXERCISES ON CHAPTERS IX. AND X.

1. An upright post 14 inches x 11 inches supports a vertical load
of 15 tons; the resultant acts in the centre line of the width (least
dimension) of post, but at a distance of 4 inches from the centre of
area. Determine the mean and maximum intensities of stress occurring
on a normal cross section. ‘

Amns.  Mean intensity of stress=0097 ton per sq. inch compression.
Max. » » » =0264 ,, » 2 »
Min. 5 o R TN () s (T . ,, tension.

2. A T-iron consists of a web half an inch thick and 4 inches
deep, with a flange half an inch thick and 2 inches broad. It is subject
to tension, and the line of action of the tensile force acts through the
centre of the depth instead of along the axis of the piece. Find in
what ratio the T-iron is weakened.

Ans. 168 to 1.

3. A short vertical pillar of mild steel, 5 inches diameter, carries
a load of 50 tons acting vertically at 1 inch from the axis. Determine
the maximum intensities of stress on a cross section.

Ans. 6°62 tons per square inch compressive.
1:53 , & 3 tensile.

4. A short hollow circular column of cast iron, 6 inches external
diameter and 1 inch thick, carries a load of 60 tons, the line of action
of which is parallel to the vertical axis, but 1} inches distant from it.
Find the greatest intensities of stress on a normal cross section.

Ans. 823 tons per square inch compressive.
DI 3 - tensile.

5. A vertical pier of brickwork of rectangular section, 5 feet by
6 feet, and 15 feet high above the footings, receives at the top an
inclined downward thrust, whose vertical component, acting along the
vertical axis of the pier, is 10 tons, and whose horizontal component
at the top of the pier, acting parallel to the 6-feet width, is 3 tons.
Calculate the position of the centre of pressure on the joint above
footings, and determine the maximum intensity of compressive stress.

Assume the brickwork to weigh 112 lbs. per cubic foot.

Ans. x,=138 feet ; 416 lbs. per square inch.
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6. The total vertical pressure on a horizontal section of a wall
is 60 tons per foot of length. The thickness of wall is 6 feet, and
the centre of pressure is 6 inches from the centre of thickness of
joint. Determine the intensity of stress at the opposite edges of
the joint.

Ans. 15 tons per square foot ; 5 tons per square foot.

7. Calculate by Rankine’s formula the safe load for a hollow
cylindrical cast-iron column 10 feet long, 6 inches internal and 7 inches
external diameter, (1) when fixed at both ends; (2) when hinged at
both ends.

Take /=36 tons per square inch, and a factor of safety = 6.

Ans. (1) 4303 tons; (2) 22°74 tons.

8. Find by the same formula the load which an angle-iron strut
of section 8 inches by 3 inches by 2 inch and 12 feet long will carry
(1) when fixed at both ends; (2) when hinged at both ends. Assume
the intensity of working stress to be 5 tons per square inch.

Ans. 36 tons; 121 tons.
(£ =0-299).

9. A wrought-iron tubular strut, in a roof truss, carries a com-
pressive load of 6 tons acting along the axis ; the strut is 8 feet long,
2} inches external diameter and 2 inch thlck Find the maximum
intensity of stress to which a cross section is liable : (1) strut hinged
at both ends; (2) fixed at one end and hinged at the other.

Ans. 66 tons per square inch.
427 tons per square inch.

10. Find by Gordon’s formula the breaking weight of a wrought-
iron strut of angle-iron section 3” x 8" x 3", its length being 5 feet,
and ends fixed.

Assume f=19 tons, a=535.

Ans. 21°2 tons.

11. Find by Rankine’s formula the breaking weight of a cast-iron
column 30 feet long, 12 inches external diameter and % inch thick,
both ends being hinged.

Ans. 125 tons.

12. A strut 10 feet long is made up of two tee-irons 6 inches by
3 inches by % inch, riveted back to back. Determine the working load
by Gordon’s formula, :
(1) When the ends are fixed.
(2) When the ends are hinged.
Assume f=19 tons per square inch; c¢=yly, and take a factor
of safety of 5.
Ans. (1) 223 tons; (2) 11°6 tons.
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13. Find by Gordon’s formula the working load for a cast-iron
pillar 8 inches external diameter, 6} inches internal diameter, and
22 feet high, both ends being fixed. Take a factor of safety of 10,
and assume /=35 tons per square inch; ¢=ggg.

Ans. . 2125 tons.

14. Fig. 244 represents a vertical section of a wall which has to
resist the pressure of water on either
side alternately, i.e., not ‘simultane-
ously on both sides. Assuming that
there shall be no tension at any joint,
and that the weight of a cubic foot
of water is w, and of a cubic foot of
masonry 2w, find the thicknesses ¢
and ¢,. Take the water as level with
the top of wall. ;

I]\
SN

-x-
I
3l
h-)
1
I

Ans. t,=2'12 feet; t,=4'35 feet.

W
15. A reservoir wall is vertical s
on the inner face; it is 10 feet Beis ¥ ’
thick at the base, 3 feet thick at the & e (=
top, and 15 feet high. The water N
is lable to rise to the top of the LS

wall.

(A) Determine the positions of
the centre of pressure on the hori-
zontal base joint: (1) when the
reservoir is empty; (2) when the Fig. 244.
reservoir is full.

(B) Are the conditions of stability fulfilled ?

(C) The reservoir being full, what are the intensities of pressure
on the base at its inner and outer edges ?

Assume the weight of wall 120 lbs. per cubic foot, and of water
624 lbs. per cubic foot.

Ans. (A) (1) 1°44 feet from centre of base towards inner face.
(RSG50 L x S 15 outer face.
1. Centre of pressure falls within the middle
third.
2. Moment of weight 36352 foot lbs. exceeds
moment of water pressure 35100 foot lbs.
3. Tangent of inclination of resultant with ver-
tical =%%% = 076.
(C) /1=2265 lbs. per square foot.
f2=74.9 5% BT) " »

(B) Yes.



CHAPTER XI
RIVETED JOINTS.

106. Definitions. Lap and butt joints.

In a lap joint one plate overlaps the other, and they are connected
by one or more rows of rivets.

In a butt joint the plates are kept in the same plane, and the
joint is covered on one or both sides by a cover plate, and riveted to
eachb’; e ornrort you's i" '’ 31

The lap joint is objectionable, owing to the straining forces on the
two plates not being in the same line, thus forming a couple, which
weakens the joint by bending (Fig. 247).

The butt joint is the one generally used, and is the more effective
joint, owing to its symmetry and the absence of eccentric stresses.

Single riveting is when there is only one line of rivets in a lap
joint, or one line on eack side of the joint in a butt joint.

Double riveting, when there are two lines of rivets in the lap, or
two lines on eackh side of the joint in a butt joint.

Fig. 245 shows a single-riveted lap joint; Fig. 246 a single-riveted
butt joint ; Figs. 248 to 251 show double-riveted lap and butt joints.

In chain riveting the rivets in the several rows are opposite to
one another (Figs. 248 and 250).

In zig-zag riveting the rivets in one row alternate with the spaces
in next row (Figs. 249 and 251).

* The pitch is the distance from centre to centre of the rivets in
one row.

The lap is the distance at right angles to the joint, between the
edges of two overlapping plates; or, in the case of a butt joint, the
distance between the joint and the end of the cover plate.

A rivet is in single shear when shearing can take place only on
one cross section of the rivet, as in lap joints and in butt joints with
one cover plate (Figs 245 and 246).

A rivet is in double shear when shearing can take place on two
cross sections, as in butt joints with two cover plates.
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107. Rules to be observed in designing joints.
Diameter of Rivets for given Plates.

Let ¢ = thickness of plate in inches.
,, d=diameter of rivet in inches.

The following rule is sometimes used : o =2¢ for plates under 3" ;
d = 1}¢ for plates of }” and over.

Professor Unwin gives the simple rule which should be adopted :
d=12 .

In girder-work the rivets ought, if possible, to be of one size
throughout, or at most two sizes. .In structural iron-work of this
class rivets 4" and %" are most generally used. Field rivets, which
have to be riveted up by hand when the girder is in position, should
never exceed 3 diameter, on account of the difficulty of driving tight
rivets of larger size by hand.

Minimum pitch. The pitch of the rivets, as will be seen presently,
is found by equating the shearing strength of the rivets to the tensile
strength of the net area of the plate, but the distance between the
edges of the rivet holes should never be less than the diameter of the
rivet. This gives the minimum pitch = 24.

In boiler-work the pitch of the rivets is necessarily close, but in
girder-work the pitch is practically never less than three diameters.

A maximum pitch of 6” should not be exceeded, as it is advisable
to keep the plates close to prevent the entrance of water.

The distance from the centre of rivet hole to the edge of a plate
should not be less than 14d. This leaves a clear diameter of rivet
between the edge of hole and edge of plate. This minimum distance
is, in practice, increased to 13d + %, and in girder-work is often 2d.
It should be noted that the diameter of the hole is usually % of an
inch larger than the diameter of the rivet, to allow the latter to enter
when hot.

The grip of a rivet—that is, the distance between its heads—is the
thickness of the plates to be joined by it, plus % of an inch for each
joint between the plates to allow for uneven surfaces, which prevents
very close contact. The maximum grip of a rivet should not exceed
Jour times the diameter of the rivet.

108. Strength of riveted joints.

Take, for simplicity, the case of a single-riveted lap joint. Consider
a strip of such a joint of width equal to the pitch (Fig. 252). As each
rivet supports such a strip, the results obtained may be applied to the
jointsas a whole.
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2. The plate may tear along the line of minimum section
(Fig. 254). . The area of either plate on this line is
(p—d)t. The resistance to tension is

=SSP £ m a3 (2).
8. The plate and rivet may be crushed (Fig. 255), and this will
render the joint loose. The area of plate or rivet supporting
the pressure=dt; this area is called the bearing area, and
the pressure upon it the bearing pressure. 'The resistance
to crushing is :
=y I s i e & T (3).
The plate may break in front of the rivet (Fig. 256). The

portion of plate in front of the rivet may be considered
as a beam of length d, and depth ——M Suppose the

N]Q =~

gepl 7=/~ 7
“pull 7 to be replaced by two parts 30 each acting half-way
between the centre and edge of the rivet. This gives a

bending moment of %, and equating this to the moment

Td <l v “)

——ftZ~

'0"1‘ - ft t__(% d_) .................. (4)

The resistances to shearing, tearing, crushlng, or breaking should
be equal.
‘When the rivets are in double shear equation (1) becomes

2
T=f, ’rg :

of resistance

109. Resistance of multiple-riveted joints.

© When there are more than two rows of rivets parallel to the joint.
U in each plate it is called multiple riveted.
Let T'=total longitudinal force, transmitted through the joint.

,, m=number of rivets required in each plate joined, that is the
total number through the joint if a lap joint, or the number
on each side of the joint in a butt joint.

Then, assuming that 7" is uniformly distributed among the n rivets,
n must be such that

nﬂ, for rivets in single shear ;
= d
nfy iR for rivets in double shear ;

and T =nf.dt;
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also if b = breadth of plate,
m = number of rivets in one transverse row,

the tensile resistance of the net section of the plate is 7;(b—md)¢,
and it is necessary that the number s, and the dimensions &, ¢, should
be such that 7'=f; (b —md) t.

110. Tensile, shearing, and crushing strength of plates
and rivets in riveted joints.

The values given are the breaking strengths.
Tensile strength of iron and steel plates (unperforated),

Wrought iron, 18 to 24 tons per sq. inch.
Steel, 28 to 32 - #

Tensile strength of iron and steel in riveted joints. The strength
of the net section of plate appears to be increased by some causes and
diminished by others.

One cause of loss is the injury done to the plate by punching, due
chiefly to the pressure of the punch straining the metal round the hole,
causing it to become harder and more brittle. The loss of strength
depends chiefly on the thickness and quality of the plate, and is less
in the case of wrought-iron plates than of steel plates. For soft wrought
iron the loss is 4 to 8 per cent., while for harder plates it is 20 per cent.,
and for steel plates it is from 8 to 35 per cent.

The injury due to punching may be remedied by annealing or by
rimering out the holes; in the latter case the hole is punched smaller
than the intended diameter, and then rimered out about % inch all
round.

Single-riveted lap joints, and butt joints with one cover only, are
subject to a further loss of strength due to the tendency of such joints
to straighten out, so that the resultant force may act in a line through
the middle of the plates; consequently bending takes place, and the
resistance of the joint is diminished.

Another cause of loss is the unequal distribution of stress, owing
to its concentration at the edges of the pulling rivets ; and this is
emphasised when the bearing pressure is too great.

On the other hand, there appears to be a distinct gain in the bY dris
tensile strength of the net section due to M(mm%g probably
to the more uniform distribution of stress over the portions of the plate
between the holes.

Experiment shows that the tensile strength of a drilled plate is
10 per cent. greater than the original undrilled plate, but this applies
to boiler-work, where the pitch is small ; the increase would be very
much less in the case of girder work, where the pitch is usually large.

The following average values give the ratio of the tensile strength

16—2
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of joint plate f; to the tensile strength of the original unperforated
plate :

Iron Plates Steel Plates

Single-riveted joints, punched 3. o
i ,  drilled z 1
Double-riveted joints, punched I 1
5 5 drilled 1 10

or the following average values of the tensile strength f, of the different
joints may be taken :

Iron Plates Steel Plates

Single-riveted, punched ... ... ... 16 To 3 95 7om >
5 drilled 18 28
Double-riveted, punched ... 18 28
2 drilled s o by 20 30

Shearing strength of iron and steel. f,. Shearing resistance,
iron and-steel plates, is approximately 4ths of the tensile strength
or f,=%f,. But for riveted joints the following values should be
taken :

/:

Ratio of tensile and shearing resistance JT‘ in riveted joints (Unwin).
8
Iron Plates, Iron Rivets || Steel Plates, Steel Rivets
Joints
Drilled Punched Drilled Punched
Single-riveted ... 094 077 125 1:05
Double-riveted ... 1-02 085 To134 117

Crushing Pressure. f,. The crushing or bearing pressure should
not exceed 40 to 43 tons per sq. inch. The relation between crushing
strength and shearing strength is yet undetermined, but it has been
found by experiment that when the crushing pressure amounted to
50 tons per sq. inch, the shearing strength of the rivets was reduced
from 24 to 18 tons per sq. inch of rivet section. Thus 50 tons is taken
as the limit, otherwise the rivets become too weak.

If we consider a joint where the rivets are in single shear, and call
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Je and f, the crushing and shearing stress, equating the crushing and
shearing resistance we get

Juds T2
4
A d
‘;.; 0785 2 oo, (5),
d_ .fc
or t i_ 827 ]-; ........................... (6)
For rivets in double shear
d fe
—-= 0635 S B Do GEO QO AR P s
> 7 (7)
Thus we see that the crushing pressure increases as the ratio of
diameter of rivet increases. Calt = . 2
If we take a limiting ratio of ?-2 then from (6) o)
t oo J0R
d = 2°54¢ for rivets in single shear ............ (8),” 1/ E,a‘ :
and from (7) d = 1-27¢ for rivets in double shear............ 9). of

The diameters of rivets as calculated from Professor Unwin’s rule
d =12Vt for different thicknesses of plates are given in tabular form.

F|H|1

o
ook
|

]
2o
-l

s
Wi
——
S
Aes
et
>

Thickness of plate
in inches !

Diameter of rivet:
imanee et AE | 2 (48] 8 | 8 [38] 1 11| 1 1| 1t

From (8) and (9) we see that with rivets thus proportioned there
is really no necessity to ever consider the crushing action in single-
shear joints, and in double shear joints only when the plates are less
than 7 inch.

REsIsTANCE OF RIVETED JOINTS.

The strength of a riveted joint is greatest when it offers equal
resistance to each of the four modes of failure described. The relative
values of p, d. [, ¢ obtained from equations (1), (2), (8), (4) modified,
if necessary, by practical considerations may be considered as good
proportions for the joint.

111. Case 1. SINGLE-RIVETED LAP JOINT. SINGLE-RIVETED BurT
JoinT wITH ONE COVER.
See Figs. 245 and 246,

In both these cases the rivets are in single shear.

Diameter of rivet. As explained in the last article, by equating
the shearing resistance to the bearing resistance we get too large a
value for the diameter. This is fixed in terms of the thickness of
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the plate ¢ by the formula d =127 The effect of taking this ratio
of % in preference to the greater theoretical value is to diminish the

shearing area as compared with the bearing area, thus increasing
the bearing resistance of the rivet as compared with its shearing

resistance.
Pitch. Equating the tearmg res1stance to the shearuw resistance,

(p-d) tf,= f 0-785d°f, ;
2
¥ f’+d

¢S
50 the pitch p can be found by using the value of Jf; given in table for
t

p=0185—

these joints.
Overlap. Equating the tearing resistance of the plate in line of
rivets to the tearing resistance in front of the rivet, equations (2), (4),

t(p-d)= 2 4

(2l-d)3=38d (p-d);
oo 2l=d+3d (p—d).
This must be at least three times the diameter of rivet.

Case 2. DouBLE-RI w Lap Joint. Dousre-Riverep Burr
JoinT wirH SINGLE CovEf

See Figs. 248 and 249.

Since there are in this case two rivets to each strip of a width equal
to the pitch, equations (1) and (3) become

wd?
T =29f.dt.

Diameter. . 'The values of the ratio 4 7 8ot from these two equations

would be the same as in Case 1, and d is fixed as before from the

formula d =12 V2.
Pitch” Equating the tearing and shearing resistance here,

(p—d)tfting,;
p=151% @,

tf
From this the pltfh can be !ouns by taking the value of ratio o from

S
table for double-riveted i .
Overlap. In chain: joints it is best to allow 14 times the
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diameter of the rivet between the edges of the holes in the two rows,
especially when the holes are punched. The distance between the
pitch lines (centre lines of each row of rivets) is then 2} times the
diameter, and the overlap becomes 54 diameters.

In zig-zag riveted joints (Figs. 249 and 251) it is necessary that the
distance between the pitch lines should be such that the resistance of
the plate to fracture along the zig-zag line is at least equal to the
resistance to fracture along either pitch line. In practice the distance
between the pitch lines is usually taken £ of the pitch,

so the lap = 3 diameters + £ pitch.

CasE 8. SINGLE-RIVETED Burr JoiNT wiTH TWo COVERS.
See Fig. 246.
For this form of joint the rivets are in double shear, and equation
2
(1) for shearing resistance becomes % Js, the other equations re-

maining the same.
Diameter. Equating the shearing resistance to bearing resistance,

a_2/.
G s
if this gives a smaller value than the empirical rule for 4 the latter

t
must be taken. The effect of taking the larger value is to increase
the shearing resistance of the rivet as compared with its bearing
resistance.

To determine the pitch and lap for this case, the resistances of the
plate to direct“stress upon its net section, and to tearing out, have
therefore to be equated to the least resistance of the rivet, that is its -
bearing resistance.

Casg, 4. Dousre-rivereDp Burr Joint wita Two CovERs.
See Figs. 250 and 251.
With this joint there are two rows of rivets in double shear, and
equations (1) and (2) become
T =f,md?
T=2f.dt.

Diameter. Pitch. 'The ratio of %i got from these equations would

be the same as in Case 3, and the same remarks apply.

Lap. Same as in Case 2.

In chain-riveted joints distance between pitch lines is 24 diameters.
Lap = 5} diameters.

For zig-zag riveted joints, lap = 3 diameters + £ of the pitch.

It must be remembered that all the values given for the lap are
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minimum values for good workmanship. With ordinary work, especially
when the holes are punched and the edges of the plates not planed, an
addition of 10 to 15 per cent. should be made.

112. Thickness of cover plates.

The thickness of the cover plates must be such that the strength
of their net section is af least equal to that of the net section of the
plates to be joined.

The usual proportions are:

With one cover plate, thickness =121 of the plate thickness.

With two cover plates, thickness of each = £ of the plate thickness.

113. Efficiency of riveted joints.

The efficiency of a joint is the ratio of the strength of the joint
to the strength of an equal width of the solid plate.
Taking a strip of the joint of width equal to the pitch p,
Efficiency o 4 _—d=7c <M> ;
p .
_ tensile strength of the net section of joint

where b4 tensile strength of solid plate

The strength of joint = £ (Z’ ; d) x the strength of the solid plate.

The following approximate values of £ can be taken:

|
Iron Steel

Punched Drilled Puuched Drilled

10
i

Single-riveted joints
Double-riveted joints

TR Ao
@

fr

o ok

114. Group-riveted joints.

Joints are sometimes made by a group of rivets, so arranged that
as little as possible of the original resistance of the unperforated
plate is lost at the joint. The arrangement of the rivets is called
group riveting.

In order to get the stress uniformly distributed over the plate the
centre of gravity of the group of rivets must lie on the axis of the
piece, the axis being the line joining the centres of gravity of the
cross sections. When two plates not in line are to be riveted, as in
the bracing and, the flange of a girder, the centre of gravity of the
group ought to lie on the intersection of the axes of the two plates.
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115. Group-riveted joint of greatest economy.

In an ordinary group-riveted joint (Fig. 257) the net section of the
plate is its gross section diminished by all the rivet holes in the
transverse row nearest to the end of the cover plate. By adopting

D oio_ooO
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Fig. 257.
the form shown in Fig. 258 the loss of section may be reduced to that
due to one rivet hole only.

AR el T
— e
4 g__d}'@_lvf
helo ‘

Fig. 258.

Consider, for example, a joint for which calculation gives n=6
rivets required on each side of joint.

A single rivet is placed in the line aa on the axis of the plate,
diminishing the section by one rivet hole, and on the net section we
have the whole stress 7. Now, assuming that the stress 7" is equally
distributed between the 6 rivets in the groups the leading rivet
transmits %, to the cover plates, so that the stress on the net section
at bb is §7. A second rivet may therefore be placed at bb without
diminishing the resistance of the joint. At section cc the stress is
3 T, so that one more rivet may be placed at that section.

At cc the stress in the cover plates will be equal to 7'

The distances ab, bc are usually $ of the transverse pitch.

The strength of the joint is approximately equal at all the sections
and may be taken as (b= d) 7% .t

(b-4d)f:.t.

The thickness of the cover plates must be such that the resistance of
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their net section at the transverse row of rivets cc nearest to the joint
is at least equal to the stress 7.
Let ¢, = required thickness of each cover plate ;
,» My =number of rivets in row cc ; then
o, (b-md). /s T,
o' 5 I
2(b—md) s’ i
The width of the cover plates is tapered uniformly as in Fig. 258.

or i

il

; Ezamples.

1. A single-riveted lap joint for a pair of steel plates ¥ thick has
to transmit a tensile stress of 30 tons. Determine the diameter, pitch,
number of rivets, and width of plate required for the joint. Rivet
holes drilled.

Take ;=28 tons per sq. inch

=2 = | L breaking stress.

n j:: =4 , ,, 2
Diameter. Equate bearing resistance to shearing resistance,

wd?
fdt=f",

: d =24t
This diameter is too great.
Take d according to rule :

as the rivet holes are made about 4 per cent. larger than the diameter
of the rivet, and in riveting up the
rivet is compressed to fill the hole.
The rivets will, in all examples,
be taken 4 per cent. larger than
their nominal diameter.

Pitch. Diameter [’ + 4 per
cent. = 091"

Equating the tearing and shear-
ing resistances,

(p—a) tf,=185d%,,
2
p= 785 ti'f—; +d

1N
= Wezzzzz3—>

t i — ESSSUUNS
="785x1'33 + 0'91 2 *
” " <
i M Fig. 259.

Number of rivets. The working
shear stress may be taken at 5 tons per sq. inch, giving a factor of
safety of about 4}.
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The shearing resistance of each rivet is
ﬂ”w—5x0£=3wm,
which is less than the bearing resistance.
Therefore number of rivets required is
_ 30 tons
~Stons 10
Width of plate. Let b=width required.
The tensile working stress may be taken as 6 tons per sq. inch.
Then along a line of rivets we must have
T=/.(b—10d)¢,
or, 302 6(b—91)1,
OIS LORI:
This value is not sufficient for b, as it must be in this case at least
equal to 9 times pitch + 3 diameters of rivets.
Take b=9x2 + 3 x *91=20'73=20%", which allows a distance of
3d from the centre of the nearest rivet to each lateral edge of the
plate.

Efficiency. The efficiency of the joint
—d
g 1’__>
7
9 /196 —-91 I
T10\ 196 >*O&
See Fig. 259 for plan and section of joint.

2. Two steel plates 3" thick are to be vonnected by a double-riveted
lap joint. The joint /zas to resist a tensile force of 60 tons. Find the
diameter, pitch, and number of rivets required for the jomt the holes
being drilled. >

Take f, = 28 tons per sq. inch
» Jo= » ” breaking stress.

I j;=48 ” 2

Diameter. Take d=12Jt=1%&";
or d for calculation =17 +4°/,=11".

Pitch. Equate shearing and tearing resistances, Lot
d2
t(p—dfi="5 S
a: f,
=157 -2 +d

121 x4
3

/~5

=157 xF+1148 5 3i1ns.
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Number of rivets. Taking the working shear stress at 5 tons per
sq. inch,

2
Shearing resistance of one rivet = f,;’—r% =5x%095

=475 tons.
60
475
=13, say.

Width of plate. If we arrange the rivets in two rows of 6 rivets
and 7 rivets respectively,

Let b= width of plate along the line of the 7 rivets, then

t(b—1d).f; = 60 tons,

Therefore number of rivets =126

where J:=working tensile stress per sq. inch,
= 54 tons per sq. inch (say),

then $(b—-7"7) 5% = 60,

: b= 222"

The width has to be slightly greater in order to get 13d from the
centre of nearest rivet to edge of plate, consequently & is made

= 6p+3d =22°5".
Lfficiency =k (p;_d) = 3—23:#) =065.

Lap. Distance from centre of each row of rivets to end of plate
=1}d=165, say 14”; and between pitch lines=$§p=2%". The lap
is therefore 24 + 2 x 1% =6".

Fig. 260 shows the joint in plan and section.

Fig. 260.

3. Required, the dimensions of a zig-zag double-riveted butt joint
with two covers for two wrought iron botler-plates 3" thick, the rivet
holes being punched (Fig. 261).

Take f; =22 tons per sq. inch.

i .fs= 18 ’” ”
2 f:: =36 » ”»
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There are two rows of rivets in double shear.

L e e 1)
PP a2 Ty @)
R g e AT T (3)

g
N
&

P
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23| B oz
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1 X /‘\\lejf 2

}‘/ 2§ S Fo 14 »

Hy

Fig. 261.
Diameter. Equating (1) and (2),
Jowd? = 2f.dt,
2l 103 g,

T fe 22 8

"This value of & is too small.

Take d=12./¢=%"; that is, diameter for calculation = 3 +4 per
cent. = 0'78".

The effect of thus increasing the diameter is to diminish the
intensity of shearing stress upon the section of a rivet, and so in-
creasing the shearing resistance as compared with its bearing resistance.

Pitck. 'To get the pitch equate the tearing resistance to the least
resistance of a rivet; that is, its bearing resistance instead of, as
before, to its shearing resistance.

(p z d) t.ft = 2.ﬁ>dt7
p=d {1 + 2?} =078 {1 + %} =3}
12
Lap, or distance between the edges of the plate and cover plate,
I=13d + {p +13d
=14"+2}" + 11" (app.) =4%".
Cover plates. Width = 27=94".
Thickness = §¢ = }".

’
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Efficiency =k (p—%i) =09 <3—i%f—78> =069, or 69 per cent.

4. A tie-bar §" thick has to transmit « tensile stress of 36 tons.
Design a butt joint with two cover plates, such that not more than one
rivet hole is lost from the gross section of the plate (see Fig. 262).

L3
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Fig. 262.

Working intensities of stress are
Jft=6 tons per sq. inch.
= 4% 3 I
Je=9 ” 1
Diameter of rivets 3”.
Number of rivets. Let N =number of rivets required.

Then /ALY
N x4'5 ><0'88=36,
N=9. Say l10.
Width of plate. liet b = width of plate.
Then (b—-d).¢t.f,=36 tons,
b-3).3.6=36,

b=12%". Say 13".
The rivets are arranged as in Fig. 262, which represents the joint

in plan and section.
Thickness of cover plates. Let ¢=thickness of each cover plate.
Then, taking the section along the line of four rivets,

2t (b — 4d) f, = 36
2t (18 — 4 x ) 6=36,
t=22=0'86"=3", say.
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5. A tie-bar 6" by }" transmits a stress of 12 tons. Find the
number of 3" rivets required to connect it to the side plate of a girder
boom made up of }" plates and angle-irons (see Fig. 263).

z)/\/'\/'\/'\f\f\f\

\ OUOVOVOVOUOVOﬁ
% -
&
A
Fig. 263.

Net section of bar, deducting one rivet hole
= (6 —%) £ =262 sq. inches.
: 12
Intensity of stress = 562
Let N =number of rivets required,
Js=25 tons per sq. inch, then

= 4'6 tons per sq inch.

12=N"T s,
=N x 044 x 5,
. N=54. Sayé.

The six rivets must be symmetrically grouped round the centre
line or axis of the bar, one rivet being in the first row, as we have
assumed that the bar is only weakened by one rivet hole.

Very often it is necessary to connect the ties to the boom by means

of subsidiary plates, called gusset plates or connecting plates, of which
Fig. 264 is an example.

6. A tie, 14" by §", has to be joined to the side plate of a girder
boom by a connecting plate 3" thick, using a butt joint with two cover
plates.  Design a suitable joint for the connection, arranging that the
tie is weakened only by one rivet section (Fig. 264).

Tensile stress in tie = 62 tons.

Diameter of rivets, §".

Working shear stress = 5 tons per sq. inch.

Let N =number of rivets required.v

The total shearing area of the rivets on each side of the joint line
multiplied by the safe working shear stress for the rivets should equal
the total stress transmitted through the plates.
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Then, as the rivets are in double shear, we have
2
T=Nx2 ’;f_ ool

i.e., 62=Nx2x044 x 5 =141, say 15,
arranged as in Fig. 264.
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2
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Fig. 264.

Or, we can find the number of rivets by comparing the rivet area
* and net cross sectional area of plate previously designed, thus :

The rivet area _ tensile or compressive strength of plate per sq. inch
(Sectional area) = shearing strength of rivet steel per sq. inch

of plate, less
end rivet hole

The following values for steel may be taken :

Tensile strength of steel 27 to 30 tons per sq. inch.
Compressive strength of steel 21 tons per sq. inch.
Shearing strength of rivets 20 tons per sq. inch.

In above example, as the rivets are in double shear,
d2
N R
o =R
111
_or (14 X%—%X%):
N=3% 2 x 0'44 18
Cover plates. Each cover plate is in this case weakened by 5 rivet
holes.
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Let ¢ =thickness of one cover plate, then
2'/’(14—5 O =R

G= 20—5 = 1 inch, say.

1. To find the number of 3" rivets required to connect the vertical
compression post (B) (Fig. 264) to the side plate of boom.

—‘_:_1| ‘;;’_‘2- ¢ thick.

Let the area of cross section of post as designed consist of

1 plate 12" = 3” =4'5 sq. inches.
2 angles 4" x 33" x 8" =5° 38 o
988
Less rivet holes 1:70 =
Net area =818 5

The rivets being in single shear, the number of rivets required
_ net area of strut LN 8 18 21
=20 (nearly).

Joint for two or more plates. When several plates have to be
riveted together, their joints are arranged in consecutive steps as in

WS \\\\\ \\\\\ B S \\\

r/>\>// o ez ez // b B B

SSsESssSsEssS S RPN
keakad ’// / e ///// SIS S S s

\\\\\\~ \\\\\ N KR Sl

Fig. 265.
Fig. 265, so that one pair of cover plates is sufficient for the whole
series of joints. The length of lap is generally twice the longitudinal
pitch of the riveting. The number of rivets between any two con-
secutive joints must be proportioned to the stress. The stress in
the cover plates is that given to them by the rivets.

116. Thin shells or boilers.
CircurAR OR Hoor Stress IN A THIN CYLINDRICAL SHELL.
LoNaITupiNAL JoINTs OF A BoILER.
Let Fig. 266 represent the section of a cylindrical boiler ; and et
r=1internal radius in inches,
¢ =thickness of shell in inches, always very small compared
with 7.
p=intensity of internal pressure in lbs. per sq. inch, acting
normally to the surface.
W. 17
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Consider a portion of the cylinder / inches long.
Then the resultant of the internal pressure is
P =2rlp,
which must be in equilibrium with the total tensile stress on the
section of the plates at 4 and B.

If £ lbs. per sq. inch is the intensity of tensile stress, assumed
uniform, as the thickness of plates is small, then 2 (¢ x /) sq. inches
is the area of metal cut through at the section 4B, and for equi-
librium we must have

28lf = 2rip.
Hence & =%—r ................................. (1),
t
or p =J; ................................. (2).

Equation (2) gives the working pressure if f is the working stress,
and is the formula always used for the strength of a cylindrical pipe
or boiler. It should be noted that a boiler being composed of plates
riveted together, the strength / must be taken as that of the metal in
the joint, and not that of the solid metal.

As stated in Art. 113,

The strength of joint =efficiency of joint x strength of the solid metal.
Consequently, if f is taken to denote the strength of the solid metal,
equation (1) becomes

S x efficiency of joint =1;—r,
t= ot
S x efficiency of joint’
This gives the necessary thickness of the plates.

and
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J may be taken as 10,000 lbs. per sq. inch for wrought iron, and
12,000 lbs. per sq. inch for mild steel.

LoNGITUDINAL STRESS ON A TRANSVERSE SECTION.

Let Fig. 267 represent a longitudinal diametral section of the
cylinder ; CD a transverse section.

Fig. 267.

Consider the equilibrium of either portion of cylinder.
The resultant internal pressure acting along the axis of cylinder
upon the end, which may be either curved or flat, is

P =p xarea of section of the shell
=p x 7
which is balanced by the longitudinal stress, f” say, exerted on the
cross section of the shell at €D, namely, the ring whose area is 2zr. ¢.

Hence p .7t =f"2mrt,
50
R AR ),
or = gf—t .............................. (4).

If the ends are connected by stays this relation does not hold, as
the stays relieve the shell plates from any longitudinal tension.

EXERCISES.

1. Determine the thickness of the plates suitable for a boiler 6 feet
diameter, working under a pressure of 100 lbs. per square inch.
Take the efficiency of the joints to be 70 per cent., and the safe stress
as 10,000 lbs. per square inch. Ans. ¥ inch.

2. Two mild-steel tie-rods 8 inches by % inch are to be connected
by a butt joint with double straps. Design the joint and calculate the
efficiency.

17—2
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3. The steel plates of a boiler are % inch thick, connected by
longitudinal double-riveted butt joints, with two covers or straps.
Determine the diameter of the rivets, pitch, and efficiency.

4. The plates of a locomotive boiler, 4 feet diameter, are } inch
thick. If the rivets are § inch diameter and 1% inch pitch, deter-
mine the working pressure of the steam, taking the safe stress as
12,000 lbs. per square inch.

5. A boiler 6 feet diameter, of mild-steel plates, is subjected to a
pressure of 120 lbs. per square inch. Design a double-riveted butt
joint with single strap suitable for the longitudinal joint,

6. The steel plates of a cylindrical boiler 6 feet diameter are § inch
thick. The plates are connected by a butt joint with two cover plates
and are treble riveted. The holes are drilled. Determine the pitch and
diameter of the rivets and the working pressure.

7. A pipe is 3 feet diameter and } inch thick. The working
stress is 5 tons per square inch, but the strength of plate is reduced
by 25 per cent. on account of riveted joint. Determine the working
pressure. Ans. 233-3 lbs. per sq. inch,

8. A tension plate of designed section 1’8" x }” has to be joined
to a gusset plate & thick by 2” rivets. Find the number of rivets
necessary, and de51gn the joint so that the plate is weakened by only
one rivet-hole. Double covers.

117. Strength of thick cylinders.

In considering the thin cylinder we neglected the variation of stress
in the plates, and obtained the equation

p —ft

If the thickness of the plates is considerable compared with the
radius, the tensile stress can no longer be regarded as having the same
intensity from inside to outside.

Let the internal and external radii of the cylinder (Flg 268) be
Ry and R, respectively. Consider a rmg
of metal 1” in width parallel to the axis
of the cylinder, of internal radius » and
thickness dr. Let p be the intensity of
the radial pressure on the inner surface
of the ring, p +dp the intensity of the
radial pressure on the outer surface, and
call p’ the compressive stress in the
material at right angles to the radius
(the hoop stress). p’ has a negative value
—that is, the stress is tensile—when the
pressure inside the cylinder exceeds the Fig. 268,
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pressure outside. For equilibrium we equate the resultant radial
force, tending to produce fracture, to the resultant of the forces due
to hoop stress, which prevent fracture ; that is

(p+dp) x2(r+dr)—p x 2r=2p'dr,
(p + dp) (r +dr) - pr=_p'dr,

d, 2
or rc-lf:‘—)+p=p .............................. (1).

We have obtained only a relation between the stresses. We require
another equation which will express the method in which the cylinder
yields.

Assume that plane cross sections remain plane when strained, that
is, that the longitudinal strain is uniform. If we assume that the
cylinder is subjected to a uniform longitudinal stress p;, then, if A; is
the longitudinal strain,

+p
E)\3=Ps"p m]? »

and since p, and A, are both constant, p + ' must be constant.

Take ATy B A SOt £ e AR RAR RS (2).
Substituting in (2) the value of p’ from equation (1),
d,
r d—‘: +p=2c-p,
P .o g
or LAE ek 2p = 2c¢.

To solve this write it as
*dp + 2prdr = 2crdr,

&d; (pr®) =2cr.

Integrating, pri=cr + ¢,
or =c + ﬁ
7= 2’
: ¢
and p=c— -r—; 3

The two constants depend on the pressure on the interior or
exterior, and on the internal and external diameters.
118. Thick cylinder subjected to internal pressure only.

Let p, be the internal pressure, and let the internal and external
radii be R, and R, respectively, when

r=Ry; p=p,
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therefore Po=c+ 1%,, )
when r=R,; Z’ =0,
that is, O=c+ _R:
Subtracting, A Po=0 ( B2~ ]-;—12> ’
and C= = R];o_l-igog.

O PoRo _Po ByP R
P R R PR-RY
These equations may be written

$= R]laoR° [Rl :I ........................ (3),
and . P —.—Rp" Rz[R~ + 1] ........................ (4).

The negative sign in the latter equation shows that p', the hoop
stress, 18 tensile.
The hoop tensile stress has its maximum value at the inner surface,
where r = R,.
o R+ R, 2]
Thus Max. p’'=-p, Re— Ry
If f is safe tensile stress which the material of cylinder will bear,
then the safe internal pressure is
S (B~ Ry
IaE T i

119. Thick eylinder subjected to external pressure only.

If p, is the external radial pressure, there being no internal
pressure, the constants are

7 }h-RI2
RE-RY’
p1R12R2

=T BI-RY

and the hoop stress at any radius r is
R TR
yaspti o e ®
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This pressure is a maximum at the inner surface, where r = R,.
2p Ry

'~ R

120. Strength of thick cylinders when the material is
initially strained.

If, before the cylinder is subjected to internal or external pressure,
there already exist initial stresses in the material, then the stresses
in (4) or (5) must be added algebraically to those already existing.

Thus, large guns are built up of two or more tubes. The outer
tube, being heated and shrunk on to the inner one, produces a com-
pressive stress in the inner tube and a tensile stress in itself.

Now, when an internal pressure is applied to this compound
cylinder, the hoop tension it produces is added algebraically to the
already existing hoop stresses, with the result that the stress on the
outer portion is increased, and that on the inner portion is diminished,
since its hoop tension is reduced by the initial stress. The distribution
of stress is equalised.

Max. p'= yx

Lramples.

1. The external and internal diameters of a cylindric hydraulic
press are 16" and 8" respectively. If the internal pressure is 3 tons
per $q. inch, find the stresses at the inside and outside.

diy= Sh e R =4
Therefore, from equations (8) and (4),
3x1664 ] .

L TR
—axioe 1
8 P '

At the inner surface r=4 ;

Sop=3 tons per sq. inch ;
p'=->5 tons per sq. inch.

At the outer surface r=8;

. p=0;
P =—2 tons per sq. inch,

2. A tube of 12" internal diameter and 30" external diametersis
subjected to an internal pressure of 15 tons per sq. inch. Find the
stress at points 1" apart radially between the inner and outer surfaces

Here SRR =16

225 e =06
_15x36 1225 1] 1
189 r® ?
,__15x36225 # 1]
189 7 :
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Table of Stresses.

Tons per Square Inch
r in Inches
P v

6 15 20°7
7 103 160
8 715 129
9 515 109
10 36 93
11 247 815
12 16 73
13 ‘945 67
14 315 6-02
15 0 572

The curves roughly plotted in Fig. 269 show that the radial and
hoop stress diminish very rapidly as we pass from the inner to the
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Fig. 269.

outer surface. The high value of the maximum hoop stress (207 tons
per sq. inch) shows that the material would fail unless it had
previously been put into a state of compression by shrinking on a
ring. j






CHAPTER XIL
CONTINUOUS GIRDERS.

121. WHEN a girder is supported at more than two points it is
said to be continuous. When loaded a portion of each span near the
supports is bent convex upwards, the upper fibres being in tension, and
the lower fibres in compression. The central portion of each span is
bent concave upwards, the upper fibres being in compression, and the
lower fibres in tension just as in a loaded girder supported at two
points. At the points of contrary flexure, or points of inflection, the
curvature changes sign, the bending moment is zero, and consequently
the flange stresses are zero.

122. To find the bending moment at any section of a
span of a.continuous girder loaded with a uniform load.

Let 7, be the length of the span 1—2 (Fig. 270).
» w; be weight of the uniform load per foot run.
» & be the abscissa of any section K referred to support 1 as
origin.
» M, and M, be the moments of the elastic forces at the supports
1 and 2 respectively.
»» M be the bending moment at K.
»» £ be the shearing force at A.
,»» 1 be the shearing force on a section in span 1—2, infinitely
near to and on the right of support 1.
,» [y the shearing force on a section in the span 1—2, infinitely .
near to and on the left of support 2.
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Considering the separate equilibrium of the portion (4 — z) of the
span, we get
2y NG
F (h-a)- =202 _pr_g,
o Me-Ms Fi () -2 1).

Again, considering the whole span, we have
2
E’ll+ﬂ[1—ll[2-w—‘2ll—=0,

or, = Z}—I%M + - R (2).
1, 2

Substituting in (1) for #; its value from (2),

2
M=-M+(M—M)+%-(MZ-M) %- “Lélf—%(zf—%xwﬂ)
=—J!L-(M2—Ml)-l“—i +%‘f(zl—x) TN )

=2~ (M=) T+ m
1

where m is the bending moment at the section K for a span /, similarly
loaded, but merely supported at the ends.
The shearing force at K is

=Ty 0 (=) oy i by osivigin hiont (4),
which for 2 = 0, gives by equation (2)
Fi=F —wl
LMy wid
= T s (5).

From these equations the bending moment and shearing force at
any section of the span can be found, when the moments at each
extremity of the span are known.

The mazimum value of M at any section intermediate between the
points of inflection occurs where the shearing force F' changes sign, its
position being got by solving for # in the equation

' A
or by equations (2) and (4)
M,— M, wl

be o
hence, r=2— =5 M, — M} .. 5L SR (6).

The substitution in equation (3) of the value of 2 obtained from
(6) will give the mawimum bending moment occurring between the
points of inflection.
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The positions of the points of inflection are got by solving for  in

the equation
M=0;

or Ay i
l] o

123. Graphic representation of the bending moment at
any section of a given span.

Let 1 and 2 be the supports of span 1—2 (Fig. 271) of length /.
Draw 1a, 25, perpendicular to 12 to represent the moments at 1 and
2 ; then fd the ordinate to @b at abscissa # represents the value of the
two first terms of equation (3), since

== M+ (M= D) §) === (W= D0) 7.
A A

(N =10 o (7).

_______ o

7

Fig. 271. :
But the ordinate dg, measured upwards.to the parabola abp, re-
presents the third term of that equation

m= -"i;f (L~ ).
Thus the ordinate fg represents A, the bending moment at .
To draw the parabola, find « = 1% by solving equation (6), substitute
this value of # in the equation .
Tz

M=~ (- 3) 7 + 57 (b~ a),

and draw %p to represent the corresponding value of M7; then p is the
vertex of the parabola.

The points of inflection are at + and s where M =0; they can be
obtained from equation (7).

The bending moment at any point is represented by the ordinate of
the shaded area.
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124. Theorem of three moments.

To determine a relation between the bending moments at any three
consecutive supports of a uniform and uniformly loaded continuous
girder resting on a number of supports, all of which are on the same
level.

Let 1, 2, 3 be three consecutive supports on the same level for a
continuous girder over any number of spans (Fig. 272).

TF; Fgﬁﬁ,

Fig. 272.

Let [, =length of span 1—2.
»» l=length of span 2—3.
» W, wy=loads per unit of length on the spans 1—2, 2—3,
respectively.
,» R, R., R,Dbe the reactions at supports 1, 2, 3, respectively.
,, M, M,, M;be the bending moments at 1, 2, 3, respectively.
,, I, be the shear on a section in span 1—2, very close to
support 1.
,, By be the shear on a section in span 1—2, very close to
support 2.
,, Fy be the shear on a section in span 2—38, very close to
support 2.
,» Fy be the shear on a section in span 2—3, very close to
support 3.
,» a be the angle which the tangent to the girder at 2 makes
with the horizontal.
Take O at support 2 as origin, and 2--3 as the axis of z.
Consider the span 2—3. The bending moment at any point

(2, y) 1s .
o Wy 2?
BISE=M=M,+ Fp 2 s 1)
at support 3; =14 and M = 2. '
2
Therefore M= M P B B @).

Integrating equation (1),

EI—~JII,.2:+%F2.2:’ 26—+C

when z =0, g——tana hence C'= ET tan a.
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Therefore
w.®
e

d;
Er (CTZ'— tan a.) =M + L Fya* -

Integrating again,

BT (y— o tan o) = 1Mt + 3 Fo? — 2”

4
There is no constant of integration, for when #=0; y=0.
Again, when #=1;; y=0, hence,

_ Eltena=}Mil+ Fﬁ;zﬂ—wﬁf.

Substituting for #, its value from (2), we get

Myl | Myl wl?
— Eltana= g TR g e 3).

Similarly for the span 1—2, we get by substituting — tan a
for tan a,

Mll VAA w l?

Eltana o T g g e (4).

Hence by adding (3) and (4),
(M, +20M5) L+ (M + 200) b+ % (wn P + wod¥) =0 ... (5).

This relation is called the theorem of the three moments. If there
are n supg)c%‘ts, we get n—2 equations connecting the corresponding

bending ents, and two other equations are given by the conditions
of suppor{ 4t thewends. Thus if the girder is merely supported at the

ends, M, ) and M,=0; if an end is fixed @—0 at that support.

From the vhlues of M, 2M,, ..., M, thus obtamed we can determine
“the bending moment at any sectlon of a given span.
The section of maximum bending moment is got by making

o 0 ; and the points of inflection by solution of the equation 2/=0.

dz
Thus considering span 2—3,
M=M, w;x”,
ofl];[ Fo—w,x=0
Thegefore = —E?
w?
FE
.and max. bending moment = A, + e
2

For concentrated loads, the theorem of three moments becomes

' (Ml +200) b+ (D, + 20 by + S W‘“’”‘ (02 - o) +3

VV;:x, (lzz = 5’/'22) =0,
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where W, and W, are the loads in the two spans /; and /, respectively,
and 2, and z, the distances of those loads to the supports at the
extremities of the span under consideration. If there are a number
of loads in one span take the algebraic sum of the moments, ¢.c. S Wa.

[N

125. Reactions. 5 g 5

The reaction at any support is the sum of the shearing forces on
each side of that support. This is evident if we consider the separate
equilibrium of the very small portion of the girder between the sections
on which F}, and F' act; the reaction 72, which is equal and opposite
to the pressure on the support, must for equilibrium be equal to the

sum of the shearing forces, thus
R - B B e e (6),

and at any support » T DR 1 B b A et LTI (7).
At the two extreme ends, where the girder is merely supported, the
reaction is equal to the shearing force.

To find the reaction R, at support 2 (Fig. 272).

Consider the equilibrium of the span 2—8. Taking moments
about support 3, we get

M= P25 1 o,

M;— wyl,
or F . = ___3__[_;___2 + ; ........................ (8).
Again, considering the span 1—2,
: M= Fin -2y,
or et o o i Sl AL w;ll ........................ (9).
1

Therefore, by adding (8) and (9),
_M—M M~ M, wl wl
_R_z_ ll L lz.v +‘2—+—-2— ......... (10),
and generally at any intermediate support » separating the spans 7,-,
and /,,

My —M, My—DM, K Wiilny wil,

l"_l + ln + 9 “+ ——2 ...... (1 1)-

If there are r supports, 1, 2, 3, ..., r, with spans 4, &, ..., .,
and the girder is free over the supports 1 and 7, then evidently

M,  wl,
Isiii= - ; Al i bz adh (12)

My wely ;
[t g s
Thus, having found the values of the moments at each support by

the equation of the theory of three moments, the reactions can be at
once obtained.

R, =

and dpp= I
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Examples.

1. Find the bending moment at the middle support of a continuous
girder of two unequal spans, the left one of length 40 feet carrying
2 tons per foot run, and the right one of length 30 feet carrying 1 ton
per foot run. Find also the reactions at each support.”

The equation of three moments (5) is

(M + 20 1+ (My + 20) b= —} (w2 + w, 1),
but as M;=0, and M;=0, we get
8, (b + L) = —wy 1 — w, 1y,
560 M,=— 2 x 40°— 1 x 30° =-91000,
M, =—~162"5 foot-tons.
By equation (12), or from moments about support 2,
R = :—{16()2—'5 + 23;—49 = 3594 tons.

By equations (10) or (11), putting M;=0, M;=0, M,=-162'5;

_ 1625 1625 2x40 1x30

%% B 8 2
=6448 tons.
By equation (18), or by moments round support 2,
—1625  1x30
= e ol
=958 tons.
44.06
/] 958
20-42/
35.9¢
Fig. 273.

The results can be verified thus :
R+ Ro+ Ry— wyly —wyl,=0,
3594 + 6448 + 9°58 —80 - 30 =0,
or 110 -110=0,
which shows that the values of R,, R,, R; are correct.
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The shearing force diagram is sketched in Fig. 273, and the bending
moment diagram in Fig. 274.

Vo e SR o S

C162:5

Fig. 274.

2. A continuous girder of three spans has two equal end spans
of 240 feet, and a centre span of 150 feet ; the supports are level and
the girders are free over the abutment piers, and are assumed to be of
uniform section. The fized load carried by each girder is } ton per jfoot,
and the moving load is 1 ton per foot. Calculate the bending moments
over the two central supports when the left end span only is covered
by the moving load, and then determine the maximum positive bending
moment occurring on @ section in that span. Find also the reactions
at each support.

Adopting the notation of previous articles we have

1, = 240 feet, /,= 150 feet, I;= 240 feet,
w, =1} ton per foot, w,=w; =14 ton per foot,
My=M,=0. Pk
Equation of three moments for spans 1—2, 2—3, is

3 3
(M, + 230 1, + (M, + 23L) z,,:-i’fi"—lgM.

W A
Substituting the numerical values above, we get {
8D, (240 + 150) + 4, x 150 =— 3 x 240°— } x 150%,
or, 5: Mol My=—8T8T2:5 cooilevosivnioinnenninns (A).
For spans 2—38, 3—4, similarly
o P, R PE LT S BT (B).

Solving for 2, from equations (A) and (B), we get
26°04.M, = — 180004°5,
or, : M,=-6912°6 foot-tons,
and M,=— 3873725 — 52 x —6912'6
=— 1427 foot-tons.
Muzimum positive bending moment, span 1—2.
At any section distant z from support 1, the bending moment is

M=3, +Fio=2 i ©).

w. 18
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At support 2, where z =14, M = M, and

= M+ Py~ 2%,
e ﬁvl:]‘[ﬂ;MH—”;ﬁ ........................ (D).

¢ .

Substituting in (C),
z wlx

M=+ (M~ M) T VT RPE S o L) E);

but since 2/, =0, M=Mg'7—”+w—‘x(l —x)

=32 (2 iy -6 -
=32 (240 — z) — 240 x 691276 ;
this will have its maximum positive value when 0%[= 0, that is for
180 — 22 - 288 =0,

2 =1008 feet from support 1.

The mazimum value of M required is

M=% x100'8 x 139°2 — 100°8 x 28°8
= + 7620°5 foot-tons.

or

Reactions. Using the notation of Art. 124, we have M, = M,=0.
Taking moments about support 2,
i o M-M, wil -6912 3
T AT AN BT R
=1512 tons.
Taking moments about support 1,
g wh 26912 3

2 2 =910 4 x 240 =208"8 tons.
Taking moments about support 3
W= A ER 3 —-—157+4150—734tons,
R,=F,+ F, =135 +208"7= 2822 tons
Taking moments about support 2,
, My—DM, wdl, —5485 1 .08
1= I +—2—— 150 +zx150—-16t0ns.
Taking moments about support 4,
MM CwL Ty
= 7 g AN +4><240—658tons,

R,=F;+ Fy =658 +1'7=67"5 tons.
Taking moments about support 3

' /_]}1’3_}[4 W3Z3_"'1427 9 3 o o
=l = A e 540 +Z240——-59+60—542tons.

and

and
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To verify the accuracy,
R+ Ry+ Ry + Ri=151'2 + 2822 + 67°4 + 54'2 =555,
which must be equal to
wrly + waly + wsls — 360 + 75 + 120 = 555.

Again, the sum of the shears at the supports in any one span
should be equal to the total load on that span. Thus for span 2—3
on which the total load is w,l,= 75 tons, we have

Fy+ Fy=1734+16=75 tons.
126. Spans of equal length, each loaded with the same
uniform load w per foot run.
If 7 be the length of each span, the equation of three moments

wi®
becomes M+ M+ 4M,=— T
Case 1. Two equal spans.
M,=0 and M;=
2
Therefore M,=— %%- ,
: M,  wl wl 3
Again, R1=F1=Ta+%=%—§-=§wl
Similarly Ry= 3wl

R,=2wl— 3wl— 3wl=4wl.
CasE 2. Three equal spans.
M;=0and M,=

2
JlI1 + M+ 40, = wl
2
Therefore M+ 41112:——21—,
l2
and ZIL+4Z)[3=—T.
l2
Solving we get M,=M,= b
: wl wl 4
Again, R1=R4=—E+?=—16%l'
From symmetry, and knowing that R, + Ry + By + Ry= 3wl,
Ry= Ry =% (3wl — 4wl)
=1 lwl

Casg 8.  Four equal spans.
M,=0, M;=0, and from symmetry M, = M,.
13—2
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General equation is

2
M, + M, + ad,=— "%,
Therefore, Mir M=~ i (A).
L, 2
.o iy Mo+ M+ aMy ==,
or M+ 2M; = “f A Ry (B).
From (A) and (B) we get
M=%
AT Ion
Theref M=
erefore =T
and Z‘A E= B/_l; = §§wl2.
Reactions.
JV[g wl_ 3 wl
LR L e e ]
= $1wl,
and Rs=13wl.
Moments round 1,
,_wl M, wl 3 ., 17
F2—2 l ?4—%?01—%11}1.

Moments round 3,

e e ok o I AT
=g +?‘“’l\"14+%+2>‘%wl'
Therefore Ry=Fy + Fy=32wl,

and R,=3Zwl.
Again, taking moments about 2,
. M,—M, wl_ R S N T
e e l(—28 +14‘“2) ="
Taking moments about 4,
E=ZlL—Mg+wl_ l( SRR 1> 13

wl.

I

AR Tl S SSTRETET
Therefore Ry=Fy + Fy=2%wl.

127. Case of middle support lower than the end supports.

A girder continuous over two spans b, and 1, rests freely on two
end supports whick are on the same level. If the intermediate support
settle y, inches, find how much the bending moment at this support will
be diminished.
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Similarly for the span 4, using ~ tan a instead of tan a, we have
20050+ s 6Ty~ 6Bl tana=0 ..o (B).

‘Multiply equation (A) by l,, equation (B) by Z,, and add,
2M, G+ la) hi, +~i (wllls + W, 23) Ll,=-6E1l (lx ah lz) Yo,
g ] w1l + wyls® __19)19
M= RS = ek Y v 9 % e (C).

When y,=0, equation (C) is the form which the equation expressing
the “Theorem of Three Moments” reduces to, for the special case of
two spans with the three supports on the same level.

or

Eé:ample.
Let 5, =1,=100 ft. =1200 ins.
Let y,=the settlement of the central support=—1 1nch
Then the last term of equation (C) is

A 3ET Rl EI
1200 x 1200 480000

and expresses the diminution in the amount of the negative bending
moment at support 2 due to the sinking of the centre support.

inch-lbs.

128. Advantages and disadvantages of continuous girders

In the case of separate spans the bending moment is greatest near
the centre, whereas in the continuous girder the maximum bending
moments occur near the supports, also the average value of the bending
moment is less, thus there is a saving in the flange material, and the
heavier sections are placed over the supports, which means that a
portion of the weight is removed from the centre towards the
supports.

The disadvantages of continuity are chiefly due to the effect of
rolling loads which alter the positions of the points of inflection, and
portions of the span are subjected to bending moments which change
in sign and amount, the members there being exposed to stresses
which are alternately tensile and compressive, especially so when dead
load on the bridge is light as compared to the live load. Another
disadvantage of continuous girders is that settlement in the supports
also causes the points of inflection to change, and may considerably
alter the stresses calculated on the assumption that all the supports
are level. The Moment of Inertia 7 is not constant; it is subject to
variation.
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EXERCISES.

1. A continuous girder covers 2 spans of unequal length, the left
one of span 30 feet carrying 3 tons per foot run, the other of 20 feet
carrying 1 ton per foot run. Find the bending moment at the middle
support, and the reaction at each support.

Ans. M,=-—2225 foot-tons.
R, = 3758 tons.
R, =17354 tons.
R;=—1"12 tons.

2. A. A continuous girder of uniform section rests on three level
supports. The spans are 100 feet and 150 feet. The girder carries
a dead load of 04 ton per foot, and a moving load of 06 ton per foot.
Calculate the bending moment at the intermediate support, and the
reactions at the three supports, when both spans are covered by the
moving load.

B. If the longer span only is covered with the moving load,
determine the bending moment at the middle support, and on a
section in the centre of the longer span.

Ans. A, —2187°5 foot-tons ; 28°13 tons; 161°45 tons ; 60°42 tons.
B. M,=-1887"5 foot-tons ; M =186875 foot-tons.

3. A continuous girder covers three equal spans of 40 feet, each
carrying a uniform load of 2 tons per foot. Determine the bending
moments at the two intermediate supports, the position and value of
the maximum positive bending moments in each span, and the points
of inflection for each span.

Ans. M, = M,=- 320 foot-tons,

at =16 feet right of 1, 2 =+ 256 foot-tons,
at =20 feet right of 2, M =+ 80 foot-tons,
at # =24 feet right of 3, M =+ 256 foot-tons.

Points of inflection :

Span 1—2; 32 feet from 1.
. 2—3; 11°1 feet and 289 feet from 2.
5, 3—4; 8 feet from 3.

4. A girder is continuous over three spans, the two end spans
4 and [; each 50 feet long, the central span 7, 70 feet long. It rests
freely on its end supports, and carries a dead load of 1 ton per foot run
over its whole length, and a live load of 1} tons per foot.

When the moving load covers spans /; and Z, determine the
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bending moments at supports 2 and 3, the reaction at support 2, and
the position of the points of inflection in span 2—3 (&).
Ans. M,=-10058 foot-tons ; M;=—"730"1 foot-tons ;
R,=17406 tons ; z=18'49 feet and 5966 feet from 2.

6. A continuous girder rests on three level supports; it is free at
the end supports, and is divided by the intermediate support into two
spans of 80 feet and 120 feet. It carries a uniform dead load of
04 ton per foot run, and a moving load of 0'6 ton per foot. (A) Cal-
culate the bending moment at the intermediate support, and the
reactions at the three supports when the moving load covers both
spans. (B) Calculate the bending moment at the intermediate
support, and on a section in the middle of the longer span when that
span alone is covered by the moving load.

Ans. (A) M,=-1400 foot-tons ; R, =225 tons;
R;=12917 tons ; IR;=48"33 tons..
(B) M,=-1208 foot-tons ; R,=49'93 tons;
M= +1196 foot-tons.

6. A continuous girder covering two equal spans of 50 feet carries
a load of 10 tons at a distance of 12} feet from the left support.
Calculate the bending moment at the central pier, and the reactions at
each pier.
Ans. M, =~ 293 foot-tons;
R,=692 tons ; B,=366 tons; F;=-058 ton.

7. A girder continuous over two equal spans supports a load of
2000 Ibs. at the centre of first span, and a load of 1000 lbs. at the
centre of the second span. Find the reactions.

Ans. R,=11875 lbs.; R,= 206250 lbs.
R;=21875 lbs.

8. A girder of uniform section, loaded with a uniform load, is
continuous over two equal spans. What is the gain in strength and
stiffness as compared with two discontinuous girders of the same
section similarly loaded ?

Ans. Strength the same. Stiffness in the ratio of 5 to 2.



CHAPTER XIII.
CANTILEVER BRIDGES.—SUSPENSION BRIDGES.—ARCHED RIBS.

129. Tue disadvantages of continuous girders are removed if
hinges are introduced at the points of contrary flexure. The bridge is
then composed of cantilevers and suspended girders ; and there is no
ambiguity regarding the stresses. The advantage of the continuous
girder is preserved, and its chief disadvantage is avoided.

2/°B C\ 3
Fig. 276.
e /\ T
7 2 3/D 4
Fig. 277.

In Fig. 276, let 1, 2, 3, 4 be the points of support :

(¢) The hinges may be introduced in the central span at B and C,
then these points become the points of contrary flexure; and the
portion BC may be treated as an independent girder supported at the
ends by the cantilever arms 2B and 3C. In this case the side spans
must be anchored down at 1 and 4, as the reactions at these points
may become negative, that is, the girders may exert a lifting force.

The line BC becomes the datum line for the bending moment
diagram.

(b) 'The hinges may be introduced in the side spans at 4 and D
(Fig. 277). In this case the reactions at 1 and 4 are always positive,
as the girders cannot exert any lifting force at these points.

Note. 'The hinges may be placed in the central span or in the side
spans, but 20t in both.
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130. Case A. Hinges in the central span (Fig. 278).
1. Uniform load of intensity w per foot run.
Let R, R., R;, R, be the reactions at the points of support 1, 2,
3, 4 respectively.
Assume the spans symmetrical.
Let 7, be the length of each of the two side spans.
,»» @ be the distance from support 2 to the first hinge B.
» b be the distance between the hinges.

Wi W2 We
Twa of Lo
3 3] c 4 A
7 e ¢ 3 4
T Del PR MBI Sty A N e

Fig. 278.

Now treat the portion BC as an independent girder supported at
the ends. The stresses in it are those due to its own loads only. 12
and 4C can also be treated as independent girders loaded with their
own loads, and the weights at the ends B and C, equal to the reactions
at these points due to the load on the girder BC.

The bending moments at piers 2 and 3 are

2
My=2= -2y Y (s )
To find R,, take moments about pier 2,
wh® wad® wb
Rlll——+—§-+?a—0,

wl, w <a2 + ab

To find R,, take moments about pier 1,
: b
—R2l1+—+w (l,+g)+u;—(ll+a),

2
R2=—(l1+2a+b)+£](¥é).
1

By = R, and R, = R, from symmetry.

I1.  Concentrated loads.

A load W, on the side span 1—2 distant ; from pier 2.

A load W, on the cantilever arm 2.8 distant , from pier 2.
A load W; on the suspended girder distant #; from hinge C.
A load W, on the side span 3—4 distant #, from pier 3.

Wiz £ b—a;
Load at B= b3 Load at 0—W3< 5 )
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Bending moment at pier 2,
My= Wy + Wi .
Bending moment at pier 3,
M,=,(*52)a

b

To find R;, take moments about 2,

Wiz,
b

.Rll1= Wlxl_ szz_ a= Vlel_ﬂ/Ig.

To find R;, take moments about 3,

-R4ll = I/V4w4_ W (b b 3 ) a= W’.;w“, M.

To find R,, take moments about 1,
Buli= W, (h— ) + Wl +23) + ng" (+a).
To find R;, take moments about 4,
RL=W, <” . ”3> i+ 8) =~ W, ~ z)).

b
We see in both the cases considered, that
R, and R, may be negative,
R, and R, are always positive.

The pier moments are determined solely by the loads on the span
containing the hinges, .e. the central span.

131. Case B. Bridge hinged in the side spans.
Let B and C be the hinges in this case (Fig. 279).

W, W W,
1T<—x1-91 z‘td——— Lg=——> k“x‘g‘i i
+1 Ig ~ 3% ¥ 4‘\|‘
2 i
=< a iy e o By AB B S R Jantarte %—bzi-—— @z---
Fig. 279

The portions 1B and 4C may be considered as independent girders
supported at the ends, and the part BC as an independent girder
supported at 2 and 3, carrying its own loads, and in addition the
weights at B and C equal to the reactions at these points due to the
loads on 15 and 4C.

Let 1B=a,; B2=b,; 2—3=10; 3C=b,; Ci=a,.
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(1) A wuniform load of intensity w per foot run.
Taking 18 and 4C as independent girders,

wa, _w
R;al 2 . Rl——‘g .

_wad L p W
R4a2— Gy s .o .R4— o

R, and R, are always positive ; there can be no lifting force at 1
or 4, consequently no anchorage will be needed at these points.
Taking BC as an independent girder,

Load at B=wa,— R, = wal

Load at 0= 7%%.

Take moments about pier 3,
2 2
Ril="00 b0+ b, (34 1) + 0 2V,
If @, =a,, and b, =b,,
B,= *—29 (ay + 2By + 1,).
The bending moment at pier 2,
iy wa1 wb1
M, = i
Bending moment at any sectlon distant 2 from pier 2,
M, = By~ (b, + ) — by (b‘ 2)- %’f
(2) Concentrated loads.

A load W, on 1B distant #, from B.

A load W, on the span 2—3 distant z, from 3.
A load W, on 4C distant 2; from C.

In this case, we get the reactions

Wiz,
Rl &= )
a0
W,z
.R4 = et .
as

Load at B=W,~ R, =W, (1 _2>;

Load at O=W,-R=W:(1-2).
2
Taking moments about pier 8,

R=W, (1 £ %) by + 1) + Wazg— W, (1 & z-:) )
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Taking moments about pier 2,
Rb=Wi(1=2) e 1)+ Wa (b= ) - W, (1- 2o
These equations give R, and R;.
The bending moments at piers 2 and 3 are
My=- W, (1- %o,

1
== Wi (1- 2o,
(433
Here again we see that the moments at the piers are determined
solely from the loads en the spans containing the hinges.

132. Suspension Bridges.

In a suspension bridge, the platform is suspended by steel rods
from link or wire rope cables, which pass over towers built on piers,
and are securely anchored down at the ends.

When a chain of uniform weight per foot of length is suspended
and hangs freely it takes the form of a catenary curve.

In practice, however, the loads are usually suspended from the
cables by rods placed at equal distances apart, and the load is assumed
to be uniform per horizontal foot run of span. The curve of the cable
or chain is then a parabola.

133. Chain uniformly loaded per foot run of span.

Let AOB, Fig. 280, be the chain suspended at 4 and B.
» w=uniform load per foot run of span.
» [=length of span.
» d=dip, or depth of lowest point of curve below horizontal 4 B.

o i AT RO

Fig. 280.

Take O the lowest point of chain as origin.

Let 2, y, be the coordinates of any point P of the chain.

The portion OP of the chain is kept in equilibrium by :
(1) The weight wa, acting at R, the middle point of 0Q.
(2) The tension at P, acting tangentially to the chain.
(3) 'The horizontal tension H at O.
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These three forces' must meet in the same point R, and PQR is a
triangle of forces.

Therefore % 7;; -
; B
w,
or Vi G e (1),
which is the equation to a parabola with its vertex at O.
From (1) H:ng .............................. ().
Let T'=tension at P, then ;
2
T* = (wa) + H? = 4"”
Therefore V=7 \/ 1+ e e U R A (3).

This equation gives the tension at any point of the chain. A¢ the
ends A and B, where z=3 / ; y=d : we get from equations (2) and (8)

w_l’
8d’

wl\/ 7wl -
16d2 8d~/16d’+l

134. - _Pressure on the piers.

In Fig. 280, AOB is the main chain or cable, AC and BD are the
side chains or backstays which are anchored down at C'and D. There
are two methods of carrying the chain over the piers.

(¢) The main chain and backstays may be continuous, and pass
over smooth rounded saddles.

() The main chain and backstays may be separate, each secured
to a saddle free to move horizontally on the top of pier.

Let 7', = tension on main chain at B.

,, T,=tension on backstay at B.

o, =1inclination to the horizontal of main chain at B.
, 0g=Iinclination to the horizontal of backstay at 5.
,» R =vertical pressure on pier.

CasE A. The tensions 7} and 7} are practically equal.

Then R =T, (sin a; +sin a,)
and there is a horizontal force

= T (cos o, — cos ay) ;
if a;=0,, then R=2T;sna,,
and there is no horizontal force.
Case B. The resultant pressure on pier will always be vertical,
R =T, sin a; + T, sin a,.

H=

»
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135. Stiffening Girder.

When a moving load passes over a suspension bridge the shape
of the cables hecomes deformed. The object of the stiffening girder
is to distribute the load uniformly over the cables, so that they may
not be distorted.

Fig. 281 shows a stiffening girder. The booms or chords must be
designed to take tension and compression. It may be a single girder
extending from tower to tower, or it may consist of two girders hinged
at the centre; the latter is the better method as it counteracts the
stresses due to changes of temperature.

d PR
i \PPH—A—:—FM

A CIEEC N R
R, R,
Fig. 281.

136. Single girder without central hinge. Uniform live
load.

When the live load comes on to the bridge, the stiffening girder
distributes the load uniformly to the cable, and if the load is light in
comparison with the weight of the cable, the latter will keep its
parabolic shape, and thus the stresses in the suspenders will be equal.

In Fig. 281, A and B are the supports, and suppose the bridge
loaded over the portion BC=a, with a live load of intensity w per
lineal foot.

Let ¢=span.

»» P=pull on each suspender.
,» p=nuniform upward pull of the suspenders per lineal foot.
R, and R, be the reactions at B and A respectively, due to
the partial load.

Now on the assumption that the weight is transmitted through the

suspenders,

EH]

pl=waz,
or p = -uilg ................................. (1).

Applying the conditions of equilibrium,
R, + R, + pl —wz=0.
SR+ Ry=0.
Taking moments round B,
r wa?

M D
Ryl + 3 ) 0.
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Therefore Ry=— ’g—l” (- z),

and Bi=— By= (=) cceomecinine @).

The reactions are therefore equal and opposite, and are a maximum
when x=é; their maximum value being 'L—g—l Thus, the maximum

shearing force at the supports occurs when the live load covers half the
span.
The shearing force at any section in the loaded segment distant a,
from the right support is
F=R, +px,-wa,.

Substituting for &, and p their values from (1) and (2),
i (o B LA )
P2 ( e [ e ey o ®),

It
=3

It can be similarly shown that the shearing force is zero at the
middle of the unloaded segment.

Again, from (3) we see when

" o=z, F=—R,.

Thus, the magnitude of the shearing force at the head of the live load

is equal to that of either reaction, and the absolute maximum shearing

when 2 F=0.

Jorce equal to %l occurs when the live load covers half the span.

Bending moment. The bending moment at any section of the
loaded segment distant @, from the right support is

2 e
M= B+ T3 - 22
fri
L% = OB ) o it ().

From (4) we see that
M=0, when #; =0 and when z;=2.

M is @ maxz. when a, =g , that is, where F'=0,

Mz M:%ﬂzﬂ.

To find the absolute maximum as the load advances, equate
d
7 (la® = 2°)

to zero, which gives = £/
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Therefore absolute maximum bending moment
_wl?
==
and occurs when the live load covers two-thirds of the span.
Similarly by considering the unloaded segment, the maximum
bending moment oceurs also at its middle section, its absolute maximum

value being

wl?

i
and occurs when the live load covers one-third of the span.
137. Stiffening girder hinged at the centre.

The hinge at centre provides for contraction and expansion, and
thus counteracts the stresses due to changes of temperature.

As in the last case the cable is assumed to remain parabolic in
shape with its vertex at the middle when the span is partially loaded,
and consequently all the suspenders are subject to an equal stress.
Again, owing to the hinge, there is no bending moment at the middle.

Taking the same notation as in the last case, let R, and R, be the
reactions at the right and left supports; w the intensity of the live
load ; and p the uniform upward pull of the suspenders.

e fﬂ’rﬂ/l\

Re (e
Fig. 282.
Let the live load, as in Fig. 282, cover a portion 2 of the right
half span.
Then for equilibrium, we have
i B+ Ry+ pl —wz=0,
and taking moments about the hinge,

/) 2 wx
ng+p§——§—(l-x)=0,

I pl*
-R2§+ *8——0.

From these three equations we get
2wa’®

P

w
By= 5 (240~ 309,

w
_Rz—_2_lz2.
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R, is a maximum when m—é ; and max. R, = ’L%l
: : ! wl
R, is a maximum when =23 and max. R2~—§ .

The shearing force at the front of load
. H= Rl + pa — wx
=op (4.@"‘ 3a%1).

This is a maximum when z = é , and is equal to %l

Mazimum bending moments.
The maximum bending moment occurs at the section where #'=0.
At any section of the loaded segment distant ; from the right

support,
=R A pa—nmy oo e L (1),

war,®

M= Rz, + P;”l SRS Ve ).
If F=0, then from (1)

oo B _(2al-32%)1

-p 2(*-22)°
B
w—p
w (2xl — 32%)?
S o R B 3).
For max. M, differentiating and equating to zero, we get
(02 —227) ({— 3z) + 2* (2] - 32) =0,
or 32 - 3w+’ =
=041

and ; M=

18 an approximate solution.
Substituting in (3),

Max. positive M = 53 (app)

For the left-hand half of the span, at a section distant x, from the

left support,
wa® | 2w ,

F=R2+plw2=—§+7w ................. (4:),
Ry, +1‘L;”1 .................................... (5)
From (4) we see, when F'=0, z,= i ;
wa*
and A= =
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ARcHED Riss.

138. Linear arch or curve of pressures.

Suspended and arch systems. When a chain hangs under a dis-
tributed load of uniform intensity per unit of span, it assumes the
shape of a parabola, similar to that of the bending moment curve for
a beam or girder similarly loaded. There is a tension at each point of
the chain, the horizontal component of which is constant. Further, if
the load instead of being uniformly distributed, consists of a series of
loads hanging at intervals, the chain will take up a shape corresponding
to the bending moment diagram, and the bending moment at any
point is proportional to the depth of the chain below the line of
supports.

If, now, we suppose the chain inverted and stiffened we get an arch,
and the same principles apply except that we have compression or
thrust at each point of the arch instead of tension.

"The curve of pressure, or linear arch, is a funicular polygon of the
forces which act on the arch, and it has been shown in Art. 54, that it
is the bending moment curve drawn to a definite scale for a similarly
loaded horizontal beam of the same span.

If the linear arch coincides with the axis of the rib, the thrust
on any normal cross section is axial, and consequently of uniform
intensity.

But the arch being incapable of adjusting itself to the bending
moment curve for variable loading, there is bending produced where
the linear arch does not coincide with the axis of the arch, and at these
sections we have bending moment and shearing stress, as well as a
thrust.

139. Bending moment and thrust in an arched rib.

Vertical loads. Let ADCB (Fig. 283) be the axis of the rib, and
let A ECB represent the line of pressure.

Draw a vertical line JDE cutting the axis of rib at D, and the line
of pressure at %.

TFig. 283.
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Draw EK a tangent at E to the line of pressure, and call 7" the
thrust at %, its line of action being along the tangent K. Draw DF
perpendicular to the tangent EK, and FG perpendicular to DE.
Then 7' at E is equivalent to a parallel force 7" at D, and a couple
whose moment is

M=Tx DF.

The horizontal component of 7’ is
DF
H=Tcos FDE = T—DwE.

Therefore, Hx DE=Tx DF=M.

Thus the moment at D is equal to the constant horizontal component
of thrust multiplied by the height of the linear arch above D.

Again, the force 7" at D (the centre of area of the cross section of
1ib) may be resolved into components parallel and perpendicular to the
normal section at D ; the parallel component is the shearing stress;
the perpendicular component produces a uniform compressive stress
which has to be combined with the stress due to the bending moment.
Thus the thrust, shear, and bending moment at any section are easily
found when the funicular has been drawn.

140. Arch with three hinges. Loads vertical.

The hinges are placed at the ends, and at the crown. At these
three points the bending moment is zero, therefore the linear arch
passes through the centre of each hinge.

In Fig. 284, let ACB be the rib, hinged at 4, B, and C, and
suppose W the load acting at a distance z from A, the left support.

P

r R

=

¥ >0
R

-4 Rz
vy

Fig. 234.

Then since there is no load on BC, the pressure at C and the reaction
R, at B must be equal and opposite, their lines of action being along
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BC. Join BC and produce it to meet the line of action of W in D,
join A D ; this must be the line of action of the other reaction &, at 4.
These reactions may be found graphically by taking the vertical PQ to
represent W, and drawing lines PO and QO parallel respectively to
R, and R,. If OS be drawn horizontal, we get H the horizontal
component ; and V5, V,, the vertical components of R, and R,. The
load being vertical the horizontal components of the two reactions
must be equal.
Let V¥, and V, be the vertical components. Then
Vi+ Vo= W,
V- W(l-2)=0,

Vs~ Hi- W(é —w)=0,

where A is the horizontal component, and d the rise of arch at the
crown.
From these equations

V.= W(ll—-.z‘)’
Wz
= >

The values of V; and V, are the same as the vertical reactions for
a horizontal girder of the same span loaded in the same way.

The reactions due to a number of loads can be found by adding
together the respective values of V3, V3, and H found for each load,
or they may be found graphically. When the reactions have been
obtained, the stresses in the different members may be found either
analytically or graphically as in the case of an ordinary truss.

141. Professor Ewing gives the following method for finding the
bending moments.

The linear arch must pass through the centre of each hinge. Draw
the axis of rib, then draw the bending moment diagram for the given
loads considered as acting on a beam of span AB. If this diagram
passes through the third hinge, it is the true linear arch ; if not, alter
the scale of the bending moment diagram, drawn on the base AB,
s0 as to make it pass through C the third hinge. This can be done
by first drawing it to any scale, and then reducing all the ordinates
in the ratio of the central height of axis of rib to the central ordinate
of the bending moment diagram.

The linear arch having been thus drawn, the vertical distance
between it and the axis of rib gives on the same scale the bending
moment. The thrust 7" is found from the known form of the linear
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arch and the known values of the loads. Thus the stress at any
section of the rib is found. The loads may be symmetrical or un-
symmetrical.

This method may also be applied to the case of a chain with hinged
stiffening girder.

Ezxample.
A semicircular arched rib hinged at the crown and springing carries
a uniform load of w lbs. per foot of horizontal length. Find the position
and value of the maximum bending moment.

C

AJ 0 ‘ B

In Fig. 285, let AECB be the axis of the circular rib of radius .
The load being uniform, the line of pressures will be the parabola
ADOB, passing through the hinges 4, C, and B. It has been shown
that the bending moment at any point % of the rib is

M=HxDE
where H is the horizontal thrust.

In order to find the maximum bending moment, it is first necessary
to determine the maximum value of DE.

Take O the centre of circle as origin, and let us find the value of
2 (0J) for which ED is a maximum.

Now, JE = Nrr—a,

JD=1‘(1 —g)

Therefore, DE=Jr—2- % (r’— 7).

Differentiating and equating to zero for a maximum,
;-Z'_ + 2_.@' — 0
o At Gait
1
-2
7/ .
_3. .

b

(4%

€T =
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Substituting in the equation for DE, we get
Max. DE=7.

The direction of the thrust 7" at 4 is a tangent to the parabola
at that point. This tangent can be at once got by producing OC
to a point K, making CK = CO, and then joining KA. Now as
0C= 0A =r, the tangent at 4 makes an angle 6 with the horizontal

AO such that tan 6= 277' =9
5 2 1
and, sm0—:/—5, cos0—75.
Resolving vertically, % T=uwr,
therefore, = wr2J5 :
Horizontal thrust,

£ “wr s 1w W
H—TcosG—T. Vil
where W = total weight on the arch.
Therefore, maximum bending moment

wr r wr?
= H x max. DE——2— TR
EXERCISES.

1. The span of a suspension bridge is 150 feet. The dip of the
chains is 25 feet. Load 1500 lbs. per lineal foot of span. Assuming
the chains to hang in parabolic curves, find the tension at the lowest
point, and at the ends of each of the two chains.

2. A cable weighing 500 lbs. per horizontal foot of span is stretched
between supports in the same horizontal line 1000 feet apart. If the
maximum deflection is 70 feet, find the greatest and least tensions in
the cable.

3. A suspension bridge consists of a central span of 240 feet and
two side spans of 120 feet. The dip of central span is 20 feet, the chains
of the side spans hang in a parabolic arc similar to one-half that of the
central span. If the three spans are loaded with 1} tons per foot of
span, determine the greatest and least tensions in the chains, and the
vertical and horizontal forces acting on the towers and abutments.

4. In last exercise if the saddles are fixed to the tops of the
towers, and the load  on the side spans is 1 ton per foot run, that on
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the central span being 2 tons per foot run, find the magnitude and
direction of the resultant pressure on each tower.

5. A cantilever bridge supported on piers 1, 2, 3, 4 consists of
two end spans each of 200 feet, and a central span of 300 feet.
The bridge is hinged in the side spans at distances of 50 feet from
piers 2 and 3. Find the bending moments at pier 2 and at the middle
of the central span in each of the following cases:

(@) Dead load of 1} tons per foot, and live load of 2 tons per
foot covering all the spans.

(b)) Dead load of 1} tons per foot on all spans. Live load 2 tons
per foot on the spans 1—2, 3—4 only.

(¢) Same dead load on all spans. Same live load on the central
span only.

6. A suspension bridge is formed of two cables of uniform section,
span 120 feet, dip 12 feet. Width of bridge 10 feet. Load 150 lbs.
per square foot. Find the maximum tension on the cables, and their
cross sectional area if the working stress is 5 tons per square inch.

7. A cantilever bridge supported on piers 1, 2, 3, 4 consists of two
end spans each 100 feet and a central span 260 feet. The hinges are
in the central span at 56 feet from piers 2 and 3. Find the bending
moments at pier 2, and at the middle of the central span, taking a dead
load on all the spans of 1} tons per foot run, and a live load of 2 tons
per foot run distributed as follows :

(¢) Live load covering all spans.

(b) Live load covering the centre portion between the two hinges.

(c) Live load covering the two portions from hinges to the ends 1
and 4, leaving the central portion between hinges uncovered.

8. A footpath 10 feet wide is to be carried over a river 80 feet
wide by two cables of uniform section. Dip at the centre 10 feet.
Load 160 lbs. per square foot. Determine (@) the maximum pull on
the cables; (&) the necessary cross-sectional area; if the working
stress in the cable is not to exceed 4} tons per square inch, and if the
material of the cable weighs 480 lbs. per cubic foot.



CHAPTER XIV.
TORSION.

142. Theory of torsion or twisting.

When a cylindrical bar or shaft of uniform section is fixed at one
end, and twisted by a single couple at the free end in a plane per-
pendicular to the axis of the bar (Fig. 286); or what is the same, if a
pair of equal and opposite couples are applied to the ends, the axis of

Fig. 286.

the couples coinciding with the axis of the bar ; the effect of the couples
is to turn one transverse section of the bar relatively to another through
a small angle, and to cause fibres originally straight and parallel to the
axis, such as 4 B, to become changed into helices, as A D, inclined at a
constant angle ¢ to the axis. A small square ¢fgh drawn on the
surface of the bar becomes distorted into a rhombus emnk corresponding
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exactly to the deformation.produced by shearing stress. At any
transverse section the resistance to torsion is the shearing stress exerted
at the section, which is equivalent to tensile and compressive stresses,
of equal intensity to the shearing stress, acting along the diagonals
km, en, inclined at 45° to the axis of the bar. Thus, the lines of
principal stress are helices inclined at 45° to the axis of bar (Fig. 287).
The strain at any point in a cross section is evidently proportional
to the distance of the point from the axis; consequently within the
elastic limits, the skearing stress which is at right angles to the radius
drawn to the point, has an intensity ¢ proportional to that radius.

Fig. 287. Fig. 288.

Let Fig. 288 represent two cross sections of a bar of radius r, taken
at a very small distance d/ from one another.

Let ¢ be the angle which the helix em makes with the line ¢f
originally parallel to the axis: then ¢ is the angle of shear, and it
is proportional to . The radius ¢f is turned through a small angle d6,
called the angle of twist, or angle of torsion, which is proportional to di.

Now the distance fm through which one section turns relatively to
the other is expressed by ¢dl, or rd6.

Therefore bdl = rdb,
do
or lf) =r d_l 5
The corresponding intensity of shearing stress is
de
" 0¢ =Cr E—Z ........................... (1),

where C is the modulus of rigidity.

%g— , the angle twist per unit of length, is constant.

Therefore ¢ varies as .

143. Maximum intensity of shearing stress in circular
shafts to a given twisting moment.

Let My =the twisting moment, or moment of the twisting couple.
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Let r, =the radius of the shaft.

r=radius of a concentric cylindrical surface in the interior of
the shaft.

¢, =maximum intensity of shearing stress, which occurs at the
surface, that is, at a distance », from the axis.

,»  g=Iintensity of shearing stress at distance # from the axis.

Consider a thin ring of cross section of radius », and thickness dr

3

b2

(Fig. 289).
The shearing stress on this small area is g
q2mrdr.
The moment of this shearing stress round 9
the axis is 0=
q2mrdr.

The total moment of the shearing stress
distributed over the cross section is

f qQ2mridr = 2:41 f r*dr,
1
£

P A

Fig. 289.

since

For equilibrium, this moment must be equal and opposite to the
twisting moment.

Therefore M= 2?-1 / R Pod et A B o B (2).
1
For a solid shaft, integrating between the limits 7, and 0, we get
ey S Ve o AR
=77 ]0 Py =T BT 3),

where J is the polar moment of inertie of the section, which is equal to
twice the moment of inertia about a diameter.
Or, maximum intensity of shearing stress

oM, 161,
= 11‘—7'1;1' = ?J?!— ........................ (4),
if d, is the diameter of the shaft.
For a hollow shaft, of external radius r;, and internal radius r,, we

have from equation (2)
ﬂ[r: 21rq1 flﬁdr

7y
rgiled nilrmty (i 5D (5)
a T TR ;
=%y
1

where d; and d, are the external and internal diameters, and J is the
polar moment of inertia of the section.
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The maximum intensity of shearing stress
e 221_[1'7'1 e 161‘[de
e — (= e — Wy S v o (6).
These equations are true only so long as the stress does not exceed
the elastic limit.
The working values of ¢, for steady motion may be taken as:

For cast iron 3600 lbs. per sq. inch.
For wrought iron 9000 ,, 5
For steel 13500 ,, 5

The above results apply only to circular cross sections in which the
ratio of ¢ to 7 is constant.

144. Angle of torsion for a shaft of uniform circular
cross section. Experimental determination of ¢, the modulus
of rigidity.

Let 6=the total angle of torsion or twist, that is, the angle i
circular measure through which the section in the plane
of one twisting couple is turned relatively to the section

~in the plane of the other.
,» I=length of the shaft between the two couples.

Then g is the angle of torsion per wunit of lengtﬁ; and from

equation (1) 0 C’r g;l ;

but, by equation (4), within t/ze elastic limits,
G R,
rnowrt

Therefore, for a solid shaft,
6_ 20y 5o, M,
I Onrt Cxd?  CJ’
32M,l  102Myl

or, 6= o L el SR (7).
Similarly, for a Aollow shaft,
6 oM, _  32M; M,

1" Or(n'-r) Or(di—df) CJ’
320yl 10201

or, = I A (8).
The quantity Z‘-% = CJ measures the torsional rigidity of the shaft.
l

These latter equations are used for the determination of C.
The usual way of determining the Modulus of Rigidity is by
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experiments on torsion, in which the stresses are within the elastic
limit. 'The following is a very simple method for thin rods. The rod
is fixed at one end ; on the free end is clamped a lever arm and pointer.
Before starting the experiment, the fixed end, which is capable of
adjustment by means of a slotted arc, is moved till the lever arm is
truly horizontal and the pointer marks zero on a fixed graduated scale.
The end of the lever arm is now weighted, and the pointer measures
on the scale the angle of torsion in degrees. The rod rests freely on
supports.

The following is an experiment made on a wrought iron rod
12 inches long, 1 inch diameter, fixed at one end and carrying a lever
arm 10 inches long at the free end. The arm was first set horizontal,
and the pointer marked zero. A weight of 6 lbs. was then hung at the
end of the lever arm, and the pointer measured 9° on its scale.

Then the twisting moment = 10 x 6 = 60 inch-Ibs.
rx9°

180 °’

I=12 inches; d,=1% inch.
From equation (7), gl

Ordit”
_ 32My!

Therefore ——W
_32x60x12x7xTx256x180
= 22 x 22 x 9 x 2240

= 5331 tons per sq. inch.

Angle of torsion in circular measure =

tons per sq. inch

145. Relation between twisting moment and horse-power
transmitted. Diameter of a round shaft to transmit a given
horse-power.

Let F'=the force of the twisting couple, in pounds, either constant,
or the mean value if variable.
,» R =the length of the lever arm of the twisting couple in feet.
Then the mean twisting moment M= F'. R foot-lbs.
Let HP =number of horse-power transmitted ; one horse-power
being 33000 foot-lbs. of work done per minute.
» N =number of revolutions per minute.
The work done per minute = /" x 2= RV foot-1bs.
= My x 2w N foot-1bs.
Again, the work done per minute = 33000 P foot-lbs.

" 33000 HP
Therefore, M= e
. 12 x 33000 HP HIE:
or, M (inch-tons) = ——x-‘m—-—= 63030 " N (lnch-tons).
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] 8
By equation (3), M= ”%'g‘ ;
Hence, ”M‘ = 63030 %{’__
HP
Therefore d,=685 T s
Assuming the safe values of ¢, to be for steady motion,
Cast iron 3600 lbs. per sq. inch.
Wrought iron 9000 ,, %
Steel 13500 » 3

The diameter in inches for a round shaft in terms of the horse-
power is for

Py e
Cast iron, dy=4°5 \/ -—[Q—)
Wrought iron, d,=33 \/ HP.
Steel, d,=29 Ig) :

The twisting moment is here assumed to remain constant at its
mean value. In practice, however, the twisting moment in many cases
varies, to allow for which it is usual to take the maximum twisting
moment as from 13 to 1'5 times the mean twisting moment, thus
slightly increasing the values of d; as found above.

Work done in twisting a round shaft.

When a twisting moment 3 is gradually increased from 0 to My,
the angle of torsion increasing from 0 to 6,

The work done = $2/,6.
If 7 is the length of the shaft, we know from equation (1)

Ot
i COr
and from equation (3) JIIT=-7rq—I2T—13 3
Therefore, The work done =* Z(TII .
210 vol.
and, The work done per unit of volume —4—2,,

146. Circular shafts subjected to twisting and bending.

In this case the shaft is acted on by a bending load, such as
a heavy wheel or pulley fixed -on it, in addition to a pair of twisting
couples.
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Let My and M, be the values of the given bending moment and
twisting moment respectively, occurring simultaneously on
a circular cross section of a shaft of radius r;.
,, J=maximum intensity of the normal longitudinal stress, tensile
or compressive, due to the bending moment M.
,» ¢=maximum intensity of shearing stress at the circumference
of section due to the twisting moment 17,.

Then f=: %MB,

and q= Z’[ T;

Jfand ¢ act in planes at right angles to one another.
To find the principal stress we must combine f and ¢ as in Art. 42,
where it was shown that the maximum principal stress

o e

Substituting for / and ¢ in this equation their values as above, in
terms of Mz and My, we see that the shaft is subjected to the
maximum compressive or tensile stress

2 A e ——
fim oM+ NMEYMP i (9)
for a solid shaft, or
2 :
Al ;G?’—l—){MB + NMG+ My ........... ...(10)

for a hollow shaft.

Thus the maximum principal stress in a shaft, due to the combined
effect of My and M, has the same value as the stress due to the
bending moment acting alone without twisting

=} (My+ N Mg+ Mp),
called the equivalent bending moment.

Or, the maximum principal stress is numerically equal to the
greatest shearing stress which would be produced by a twisting moment

acting alone =My+ NMgZ+ Mg,
called the equivalent twisting moment.
If the working tensile or compressive stress (f;) is given, the

corresponding value of r, may be got from equation (9).
The maximum shearing stress, due to twisting and bending, by

2
Art. 42, is \/‘L‘ +q

_2NMg+ M7

s
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In an ordinary crank shaft (Fig. 290), let # be the force applied
to the pin A4, at right angles to the

crank.
Then ‘My=1F. BC, 'j\_\t
and M,=F.AB. &
Hence ) :
L _— |
fi=3{BO+VBC + AB u 3
i s s,
2L
== {BC+AC}.
‘ Ty
The maximum shear stress Fig. 290.
N/Baz g s A
T’
Eramples.

1. Find the principal stress in a shaft 10 inches diameter, 20 feet
long between the bearings, weighing 0712 ton per foot run. The shaft
carries a wheel weighing 3 tons at 4 feet from the right-hand bearing,
and transmits 800 horse-power at 100 revolutions per minute.

The reaction at the right-hand bearing is

i 3—;(—)1—9 220 ‘12 =36 tons.

Let 2 be the distance from right-hand bearing at which the bending
moment Mz is a max., that is, where the shearing force #'= 0.

Now F'=0, at =5 feet.

Hence My=36x5-8x1-012x2%

=18-50 foot-tons = 162 inch-tons.
The twisting moment is constant for all sections, and
M= 33000 x @ 45 33000 x 800 x 7
2r N 2 x 22 x 100
= 42000 foot-1bs.

= 225 inch-tons.

The greater principal stress
Fi= 2 My + IS O
1

R
T 22x125
= 1ars x 439 =223 tons per sq. inch.

{162 + V1627 + 2257

147. Torsion of shafts not circular in cross section.

St Venant has investigated the stress produced by torsion in shafts
of elliptic, square, and other cross sections. In a circular section the
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stress is the same at all points equally distant from the centre, varying

directly as the radius »; and sections primitively plane and normal

remain plain and normal during twisting. St Venant has shown that
in non-circular sections the stress is greatest at those points of the

boundary of the section which are nearest to the centre of area. The

following are the values for M, and 6 (in circular measure for different

sections). Those for a circle are restated for comparison.

Section a circle of diameter d,
M= 116 ad?,

6 10 2M !
Cdi =

Section an ellipse. Axis major=a. Axis minor = b.
NS ey
M= e h ab®.

The maximum stress occurs at the extremities of the smaller
axis b.
5 1Myl (o + %)
Ca*b® 3
Section a square of side b,
MT = 0'208qlb2.
Maximum stress occurs at the middle points of each side.
o TIML
O
Section a rectangle ; sides=B and b; B>b.
M, =N Bbz. ¢
Maximum stress occurs at the middle of the longer side.
_35Ml(B*+ V)
Y CB%® ?
n in the above equation for a rectangle is a numerical coefficient the
value of which varies for different ratios of B to &.

0=

0

B B

‘b- n 3 n

1 0-208 35 0275
15 0231 4 0282
2 0246 5 0292
25 0258 10 0312
3 0267
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148. Cylindrical spiral springs.

Fig. 291 represents a spiral spring of length /, loaded with a weight
W in the direction of its axis.

Let R be the radius of the coil measured to the centre of the wire
from the axis of the spring and # the radius of the wire.

The strain is practically pure torsion, for although there is some
bending, it is comparatively small. Takmg any normal cross section
of the wire, we have there a shearing force W and a twisting torque

V2%

<«-R~>

.Qlw

Fig. 291. Fig. 292.

equal to WR. The effect of the shearing force ¥ may be neglected
in comparison with that of the moment WZE, more especially when the
spring is closely coiled, and the radius R of the coil is large as compared
with the radius » of the wire. Thus the spring may be assumed as
being subjected to torsion at every section.
The twisting moment = W is the same for every section of the
wire.
Hence, the maximum shearing stress
2WR Cbr
e e T
where 6 is the total angle of torsion for the length /.
If » be the number of coils in the spring, the length
l=2zR.n
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The elongation of the spring by the load W (Fig. 292)
oa 2WRN qRI
ey * Ot~ Or -
The work done in stretching the spring, or the energy stored in the
spring

_WR 0= W3R q, .
=2 - Ot 40

The work done per unit of volume of the wire = R’

Mr Hartnell gives the following values found from experiment for
the maximum safe stress for steel wire:
Wire i inch diameter 70000 Ibs. per sq. inch.
» S‘ » ” 60000 2 » ”»
» % bR} » 50000 » » »

2. A spiral spring has 20 coils, the diameter of the coil is 4 ins.,
and the diameter of the steel vod of which the spring is made is } inch.
Find the weight W acting along the azis of the coil which will produce
an extension of 3 ins. C = 5000 tons per sq. inch.

If n=number of coils in the spring, the length

l=2nRn.
The extension = %Rl.
Or
@i x2%x 22 x4 %20 .
Hence 3= 5000 x 1
Therefore
3x500x7 ) .
R TR g 37 tons per sq. inch.
2
Now Resilience = ZC’ V.
Hence
w DT 32T 22 22 1
—2—x3 4x5000 x4x4—x7x-1—€x20x2240

=189 1nch-lbs.
Therefore W =129 lbs.

3. A truck weighing 30 cwt. travels at 6 miles an hour. Find
how many spiral springs each of 20 coils are necessary to store the
enerqy of motion. The diameter of the coil in each spring is 10 ins.,
and the diameter of the steel rod 1 inch. The compression of the springs
may be 10 ins., but not more. Take C = 5000 fons per sq. inch.

First find the energy of motion due to velocity.

6 x 5280

6060~ 8°8 ft. per sec.

Velocity =
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We* 3 88x88 .
Energy to be absorbed = Tk e 81 foot-tons

= 2172 inch-tons.
. q kil
The compression = o

G x5 x7x10x20

Al 53 = 2
Therefore 10 ins. = 5000 x X
or ¢= %-—- 7°97 tons per sq. inch.
2
The resilience of one spring =Z—‘0. V
T9Tx797T =
A0 B h
= % = 156 inch-tons.
The number of springs necessary is therefore
2172
TR

To find the weight of these 14 springs: 1 cubic inch of steel weighs
0°28 lbs. :
Volume = 14 x 72 x 2w Rn.

Therefore the weight = Vol. x 0-28
=1936 lbs.
EXERCISES.

1. A shaft 10 feet long, 24 ins. diameter, is fixed at one end, and
at the free end is twisted by a force of 500 lbs. acting at a radius of
3 feet. Find the angle of torsion, and the displacement of the point
of application of the force. Take C'= 5200 tons per sq. inch.

Ans. 277 degrees. 1°75 inches.

2. A shaft 3 inches diameter, 15 feet long, transmits 20 horse-
power at 100 revolutions per minute. Find the angle of torsion, and
the maximum intensity of shearing stress. Assume C'= 5200 tons per
8q. inch.

Ans. 1'37 degrees. 2380 lbs. per sq. inch.

3. A shaft 20 feet long and 2} inches diameter is subjected to a
twisting moment of 16000 inch-lbs., and is loaded at the centre by
a pulley weighing 200 lbs. Find the equivalent twisting moment and
the maximum stress.

Ans. 32000 inch-lbs. 10445 lbs. per sq. inch.
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4. Tind the diameter of a shaft required to transmit 200 horse-
power at 100 revolutions per minute, the limiting intensity of shearing
stress being 9000 lbs. per sq. inch.

Ans. 4°14 ins.

5. A steel shaft is supported in bearings 12 feet apart, and at
3 feet from one bearing carries a wheel weighing 4 tons. The shaft
transmits 200 horse-power at 80 revolutions per minute. Neglecting
the weight of shaft, determine its diameter for a limiting intensity of
tensile stress of 6 tons per sq. inch.

Ans. 6 ins. (nearly).

6. Calculate the greatest intensity of tenmsile stress in a shaft
12 ins. diameter, 20 feet long between the bearings, weighing 480 Ibs.
per cubic foot. The shaft carries a wheel weighing 5 tons at 4 feet
from one bearing, and transmits 1000 horse-power at 100 revolutions
per minute.
Ans. 188 tons per sq. inch.

7. A circular shaft is twisted by a force of 500 lbs. applied
tangentially at the circumference of a pulley, 4 feet diameter, keyed on
the shaft at one end, and tending to turn it against a resistance of
1000 Ibs. applied at the end of a crank 1 ft. long, keyed on the other
end of the shaft, which is supported in bearings placed close to the
wheel and crank respectively. Determine the diameter of the shaft,
assuming the working intensity of shearing stress to be 4 tons per
8q. inch.

Ans. 2 inches (app.).

8. If, in exercise 7, the distance between the wheel and crank is
10 feet, determine the angle of torsion, assuming €= 11,200,000 lbs.
per sq. inch.
Ans. 55 degrees.

9. Determine the maximum stress produced at the circumference
of a circular steel engine-shaft 5 inches diameter, 10 feet long between
centres of journals. The shaft carries midway between the journals a
fly-wheel 12 feet diameter, weighing 4 tons, transmitting 180 horse-
power at 100 revolutions per minute by means of a belt driving
horizontally from the lowest point of its circumference. Take the
weight of the shaft as 480 lbs. per cubic foot.

Ans.  10°7 tons per sq. inch.

10. Compare (1) the resistance to a steady twist, (2) the angles
of torsion for the same maximum stress, (3) the resilience, of two
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shafts of the same length, weight, and material, one of which is solid,
and the other hollow with internal radius half the external.

Y O TGRS

11. If the amount of twist in a solid shaft is limited to 1° for each
10 feet in length, determine the diameter if the shaft is subjected to
a twisting moment of 70 inch-tons. Take C=12,000,000 lbs. per

square inch.
Ans. 55 inches.

12. Find the extension which a weight of 50 lbs. will produce in a
spiral spring of 30 coils, if the mean diameter of the coil is 24 inches,
and the diameter of the wire } inch. Assume C'=5000 tons per
5q. inch.

Ans. 43 inches.

13. A rod 12 inches long and } inch diameter, fixed at one end, is
twisted by a force of 6 lbs. acting at the end of a lever arm 10 inches
long, which is keyed to the rod at the free end. Find the angle of
torsion, and the maximum stress produced in the rod. Take C= 5000
tons per sq. inch.

Ans. 7% degrees. 87 tons per sq. inch.

14. Show that if », is the outside radius of a solid or a hollow
shaft, and ¢ the maximum intensity of shearing stress due to a
twisting moment My,

¢ _ My

R
where J is the polar moment of inertia of the section, which is equal to
twice the moment of inertia about a diameter.

15. A cylindrical shaft of wrought iron transmits 100 horse-
power at 60 revolutions per minute. It is supported in bearings 8 feet
apart, and at 2 feet from one bearing carries a wheel weighing 3 tons.
Determine the diameter such that the maximum intensity of stress
shall be 4 tons per square inch.

Ans. 5% ins. (app.).

16. 'The external diameter of a hollow steel shaft is 10 ins., the
internal diameter 8 ins. Find the twisting moment it can transmit
with a working stress of 4 tons per sq. inch.

Ans. 464 inch-tons.
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