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PEEFACE.

rjlHESE chapters were originally written as a series of lectures

-*- for students at the Royal Indian Engineering College,

Cooper's Hill; so that the book may be looked upon as one

mainly for students of Engineering.

The aim has been to make the work as practical as possible ;

and to keep the methods simple and concise, involving only a

fair knowledge of elementary mathematics. Numerous diagrams

and illustrations have been introduced, so as to enable the student

to obtain as clear an insight into the methods as possible.

Many of the proofs are of course similar to those ordinarily

used in other published works, and I have especially to acknowledge

the following books of reference :

Strength and Elasticity of Materials. Professor EWING.

Theory of Structures and Strength of Materials. Professor BOVEY.

Elements of Machine Design. Professor UNWIN.

Notes on Engineering Construction. Professor REILLY.

I have to thank Professor Minchin, F.R.S., for much advice

and assistance, and I am also indebted to Dr Brightmore, D.Sc.,

for his help.

A large number of Examples have been added as exercises for

the student on the application of the principles explained in each

chapter.

K J. W.

COOPER'S HILL,
Dec. 1903.
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CHAPTER I.

GRAPHIC STATICS.

1. IN order that a line may represent a force, it is necessary,

(a) that its length to a given scale should represent the magnitude of

the force, (b) its direction must correspond with the line of action of

the force, (c) the sense of the force must be indicated by an arrow.

2 . Triangle of forces.

Let OA and OB (Fig. 1) represent in magnitude and direction two
forces P and Q acting at a point 0, then R the diagonal of the

parallelogram represents the resultant of P and Q in magnitude and

Fig. 1.

direction
;
and the force F which, acting with P and Q will keep the

point in equilibrium, must be equal and opposite to R, and in the

same straight line.

Thus, when three forces act at a point, they will be in equilibrium
if they are parallel and proportional to the sides of a triangle which
are marked with arrows all going round tlie triangle in the same sense

(Fig. 2).

w. 1
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3. Resultant of a number of forces acting at a point.

Let Plt P9 ,
P3 ,

P4 be the forces acting at (Fig. 3). Draw ab

(Fig. 4) parallel and proportional to Plt and from the extremity b

Fig. 4.

draw be parallel and proportional to Pa ,
the resultant of Pl and P2 is

represented by ac. Then draw cd parallel and proportional to P3 ,
the

resultant of ac and Ps is ad. Finally drawing de parallel and pro-

portional to P4 and compounding it with ad, we get the resultant of

all the forces represented in magnitude and direction by ae, the closing

side of the polygon. Thus, if a polygon be drawn with its sides

successively parallel and proportional to the forces acting at the point,

then the "side which is required to close the polygon, represents the

resultant of all the forces in magnitude and direction. In order that

the system of forces may be in equilibrium the resultant force must be

zero
; that is, the polygon offorces must close.

Hence, if any number of forces in one plane acting at a point are

in equilibrium, then lines drawn successively parallel to the forces, in

the same direction as the sense of the forces, and having lengths

proportional to the magnitudes of the forces, must form a closed

polygon or, in short, the polygon of forces must close, the direction

arrows all pointing round the polygon in the same sense.

4. Forces acting in one plane which do not meet in a

point. Conditions of Equilibrium. Funicular Polygon.

If three forces are in equilibrium, their directions must pass through
a point, and the condition of equilibrium is that stated in Art. 3.

Let Plt P2 ,
P3) P4 (Fig. 5) be a system of forces acting in one

plane on a body. From any point a (Fig. 6) draw lines ab, be, cd, de

successively parallel and proportional to the given forces. The figure
abcde is the force polygon of the system. The closing line ae represents
the magnitude and direction of the resultant, its sense being opposite
to that of the other forces followed in circuit round the polygon.
Take any pole o, and from it draw lines oa, ob, oc, od, oe, to the
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vertices of the force polygon. From any point f on the line of action

of P! draw fg connecting PI and P2 parallel to the ray ob, which

comes between ab and be representing Pl and P2 ;
also from f dr&wfm

parallel to the ray oa which is between Pl and R. From g the point

where fg meets P2 draw gh parallel to oc, meeting P3 in h
;
from h

draw hk parallel to od, meeting P4 in k
;
and lastly draw km parallel to

oe meeting, fm in m. Then m is a point on the resultant R \ through
this point draw a line parallel to ae, and we have the resultant fixed in

magnitude, position, and direction.

The lines fg, gh, hk, km, mf, parallel to the rays drawn from any

pole o to the vertices of the force polygon, form what is called the

funicular polygon or link polygon of the system of forces.

If in Fig. 5 we apply a force P5 at m, equal and opposite to R,
then the forces P1 ... P5 will be in equilibrium. The resultant must

always pass through the point of intersection of the extreme sides fm
and km of the funicular. For each force can lie resolved into its com-

ponents along the two sides of the funicular polygon which meet at

the vertex where the force acts, these components will neutralize each

other, with the exception of those in the lines km and fm. Thus the

whole system is reduced to two forces in these lines, which are represented

in magnitude by oe and oa the components of R.

Since the pole o may be taken at any convenient point, either

inside or outside the force polygon, and as the point / where the two

components of PI are assumed to act, may be taken anywhere on the

line of action of Plt we see that any number of funicular polygons may
be drawn for the system of forces.

5. Graphic conditions of Equilibrium.

As explained in Art. 4 the resultant of a system of forces in one

plane acting on a body is proportional to the line required to close the

force polygon, now for equilibrium this line must be zero
;
therefore

12

f,"



4 GRAPHIC STATICS [CHAP.

the force polygon must close of itself. Again, the given system is

equivalent to forces represented in magnitude and direction by ao and

oe, their lines of action being in the first and last sides of any
funicular

;
these lines must coincide, that is, the funicular polygon

must close. Thus, the conditions of equilibrium are :

(1) The force polygon of the system must close.

(2) Any funicular polygon of the system must close.

6. Stress.

When a body is acted 011 by external forces which tend to deform

it, the force exerted in the interior of the body, which resists de-

formation, is called stress.

Consider a bar AB which is being pulled (Fig. 7), or pushed (Fig. 8),

by two equal and opposite forces P.

Conceive a section dividing the bar +
into two portions C and D. Consider-

ing the equilibrium of C, it is seen that Fig- 7 -

the force P to the left is balanced by p p
the force which D exerts on C at the ~*[ 'C ""*" p D >

p<
section. Similarly for the equilibrium Fig> g.

of D, the force exerted on D by C at

the section must be equal and opposite to P. Thus on opposite sides

of any ideal section there exist two equal and opposite forces, each equal
to P.

This action is called stress. The effect of the load is to produce
stress on the section, and the total stress on the section is equal to P.

The nature of the internal stress depends on the external forces.

If the forces tend to pull C and D apart, the stress is tensile
;

if the

forces push C and D together the stress is compressive. Ties are

members in tension. Struts are members in compression.

7. Stresses in a closed articulated polygonal frame.

A frame is a structure made up of straight rigid bars articulated

or hinged at the ends. The following conditions are assumed :

(1) The hinge-pins are without friction.

(2) All external forces acting on the frame are applied at and
on the joints.

Thus in the case of a frictionless pin-joint, the external force is

taken as acting through the centre of the pin, and the stress exerted

on the pin by a bar, which is equal and opposite to the reaction on the

bar by the pin, acts along the normal to the surface of contact
; and

the stresses in the bars must have their lines of action coincident with

the straight lines joining the centres of the pins.
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If P and Q (Fig. 9) are two forces acting at the joints A and B
respectively of a jointed frame, P can be resolved along the bars CA
and AB\ and Q along the bars AB and BD. These components are

, x ./

V /Q
S-

Fig. 9.

shown by dotted lines; the stresses in the bars will be equal and

opposite to the resolved components of the external forces P and Q.

The stresses in the two bars meeting at a joint, together with the

external force acting at that joint, must form a system of forces in

equilibrium.

6

Fig. 10. Fig. 11.

Notation. For finding the stresses in a frame the most convenient

method of lettering is that of Henrici and Bow, in which letters are

placed in the closed spaces between members, and in open spaces

separated by the lines of action of the external forces. Each member
and force is then designated by the letters of the spaces which it

separates. The joints are named by the letters round them.

Let Fig. 10 be a polygonal frame lettered in this manner
;
and in

equilibrium under the action of the external forces Pl , P^ Ps , P^ P6 -

Required to find the stresses Si (ob) in OB, S2 (oc) in OC, S3 (od) in

OD... in the bars of the frame.

As the external forces are in equilibrium, the force polygon must

close. Draw the force polygon abode (Fig. 11) ab being parallel and

proportional to AB
;
be parallel and proportional to BC. . . . Now the
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joint OBC is in equilibrium under the action of P%, and the stresses

>$i and #2 in OB and OC respectively. Draw from b and c lines bo and

co parallel to BO and CO, these intersect in o, giving ob as the stress

Si in OB and co as the stress Sz in CO. Similarly Ps ,
S2 ,

S3 form a

triangle cod which has one side co common to the triangle cbo. Thus

at each apex the external force may be resolved into components in the

two given directions, and the stresses Si, S2 , S3 ,
$4 ,

S5 found. To find

the sense of the stresses it is only necessary to follow round in circuit

the sides of the force triangle for each apex separately, starting with the

direction of the given force, and then transfer these directions to the

corresponding apex of the frame. Thus at joint OBC, the direction of

PZ is given, it acts in Fig. 11 from b to c, therefore following round

the triangle bco, the stress $2 acts from c to o, and the stress Si from

o to b
;
these arrows being transferred to the frame diagram (Fig. 10), we

see that Si and S2 both act away from the joint BOC, that is both are

tensile. Again for the joint COD, we get from the force triangle cdo,

the stress $
3
in the direction do, and the stress $2 in the direction oc.

Similarly for the stresses in the other bars. It will be found that the

stress $5 (oa) is compressive, the arrows pointing towards the joints.

Fig. 10 is called the frame diagram, and Fig. 11 the force or stress

diagram. To every side of one figure there is one corresponding side in

the other figure ;
these corresponding sides are parallel to each other

;

and each group of lines meeting in a point of one figure form a closed

polygon in the other. The two figures are therefore described as

"reciprocal" to each other.

Suppose that in Fig. 10, the magnitudes of Pl and P5 are unknown,

their lines of action being given. Beginning at b (Fig. 11) draw bcde

the polygon for the known forces P2 ,
P3 ,

P4 ;
then lines drawn from

b and e parallel to PI and P5 intersect in a giving ab and ea the

magnitudes, directions, and sense of these forces. Draw a funicular

polygon with respect to any pole o, and produce the extreme sides

OB and OE to meet the lines of action of PI and P5 . Draw the

closing line AO ; then OA will be parallel to oa. This property is

important when we wish to find the reactions of supports in the case

of parallel forces. For in the case of parallel forces, the polygon of

forces is a straight line, consequently ba and ea would not intersect
;

hence in order to determine a we must draw a ray oa parallel to OA,
the closing line of the funicular polygon.

8. Dead loads. Reactions, Shearing forces, and Bending
Moments.

The shearing force at any section of a beam is the algebraic sum of

the external forces between the section and either end of the beam.

The bending moment at a section is the algebraic sum of the moments
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of the external forces, acting between the section and either support,

about an axis in the section.

Let Fig. 12 represent a horizontal girder supported at the ends,

and in equilibrium under the action of the fixed vertical loads

Wl} W2 , W^ and the two upward reactions R^ and R2 .

Construct the force polygon (Fig. 15) by drawing the line of loads

ad to represent the sums of the loads on a suitable scale, and divide ad
into segments ab, be, cd representing respectively the given loads

Wi, W2 ,
W3 . Choose a convenient pole o, such that the polar

distance ok If represents on the same scale an even number of units

of force. Complete the force diagram and draw the corresponding
funicular (Fig. 13), its sides intersecting on the vertical lines of action

of the loads.

Fig. 12,

Fig. 13.

CL

Fig. 15.
^

Reactions. Complete the funicular by drawing the closing line

between R and J?2 ,
and draw og parallel to it in the force diagram,

thus determining the point g; then dg and ga are the two reactions

R and Rl respectively, which acting upwards close the force polygon.

Shearing force (Fig. 14). Between the right support and the first

load Wlt the vertical shear is equal to the reaction ag ;
between

Wl and W2 the vertical shear is ga-ab = gb', between W2 and W3

it is ga ab be = gc ;
between W3 and left support it is gd. The

ordinates of the stepped figure measured from the line drawn through
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g perpendicular to the load line ag, give the shearing force throughout
the span to the same scale as that used for the line of loads.

Sending moment (Fig. 13). Let the bending momentM be required

at any section of the beam, say, between Wl and W2 . Draw a vertical

through the section cutting two sides of the funicular, and let the

ordinate intercepted between them be called y. These sides if produced

give the point of application of the resultant of R and W^ the

magnitude of which is represented by bg in the force polygon ;
let this

resultant be R, and its horizontal distance from y x. Then

M=Rx.
But since ho-H\^, the altitude of the triangle bgo on base bg

and x ,, triangle on base y,

we have j^=
- or Rx = Hy,

JLM. OC

therefore the bending moment on the section is

&=Hyi
and since ff is constant, the bending moment at every point in the span
is proportional to the vertical ordinate of the funicular polygon at that

point. If the force represented by H is called unit of force, then

M=y
and the value of H determines the scale of bending moments on which

y represents M.
For example, if the scale of lengths be J inch = 1 foot, and H= 20 tons

on the scale of forces, then H x ^ inch = 20 ft. -tons, or,

1 foot-ton =
215-

x J- =
Jg. inch ;

that is each -^ of an inch on a vertical ordinate of the funicular

polygon represents 1 foot-ton of bending moment.

9. Graphic construction for the centre of area of plane
figures.

Triangle. The centre of area is at the intersection of lines drawn
from any two angles bisecting the opposite sides.

Parallelogram. The centre of area is at the intersection of the

two diagonals.

Any Plane Quadrilateral. Let ABCD (Fig. 16) be any quadri-
lateral figure ;

draw the diagonals AC and BD. Measure DE=BF,
and CG = AF, then the centre of area of the whole figure coincides

with the centre of area of the triangle PEG.
Centre of area of any two plane surfaces whose respective centres

of area are already known.

Let d and C2 (Fig. 17) be the known centres of area of the two
surfaces whose areas are A l and A 2 respectively. Join Cl and C2 ,

from
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C2 set off a line CBZ in any direction whose length represents on a

given scale the area J. 3 ;
and from C1 set off' a line ClBl on the

Fig. 16.

opposite side of C1 C2) parallel to C2BZ) whose length on the same
scale represents the area A 2 . Join B1B^ the intersection of B^B^ and

Oi C2 is the centre of area 0.

A repetition of this process applied to 0, and the known centre of

area of a third surface, will give the common centre of area of the

three.

<
B > '

Fig. 17.

Polygons. The centre of area of a polygon can be found by

dividing it up into triangles or four-sided figures, and finding the

centre of area of each. At the known centres of areas suppose
vertical forces to act proportional to the areas. Draw the force

diagram and funicular, and find the line of action of the resultant R
;

the common centre of area must lie somewhere in this line. Again,
draw the lines of action of the parallel forces through the centres

of area in any other direction (say horizontal). Construct a new

force polygon and a new funicular, and find the line of action of the

resultant. The intersection of this latter resultant with the former

one gives the common centre of area.
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10. Roof trusses.

A roof truss consists of a frame supporting a covering. Roof
trusses are sometimes called principals, and are placed about 10

or 12 feet apart.

The simplest form of frame is a triangle ;
its shape cannot be

changed without altering the lengths of the sides. For this reason,

all complex trusses for roofs or bridges are made up of triangular
frames.

LOADS ON ROOFS. The loads on a roof truss are (a) the dead load

due to the weight of the framing, covering and snow, (b) the live load

due to wind. The weight of the framing depends on the type and

design of the roof, and may vary from 5 to 20 Ibs. per square foot of

area covered.

The following table gives the weight of various roof coverings in

Ibs. per square foot.

The snow load is usually taken in England as 5 or 6 Ibs. per square
foot. In colder latitudes this would have to be doubled.

WIND PRESSURE. In England the maximum pressure of wind is

usually taken to vary between 40 and 50 Ibs. per square foot of surface

perpendicular to its direction, which may be taken as horizontal.

The pressure on an inclined surface can be got from the following

empirical formula deduced experimentally by Hutton,
)l'84cos0-l

pn =p sm

where p is the intensity of the horizontal wind pressure on a vertical

surface, and pn the normal intensity on a surface inclined at an angle
to the wind's direction. For the inclined surface of a roof, if the

wind is taken as horizontal, 6 is the pitch of the roof.

The following table gives the value of pn for p equal to 40 Ibs. per
square foot, and for roofs of different pitch.
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For other values of p, the corresponding values of pn will be

directly proportional to p.

The following formula is often used for determining pn the intensity

of the normal pressure on a surface inclined at an angle to the

direction of the wind,
2sin0

where p is the intensity of the wind pressure on a surface perpendicular
to its direction.

If v be the velocity of the wind in feet per second,
x o \fl/her> / - */* /'

P lafi) approx. , ny v

DISTRIBUTION OF LOAD. REACTIONS. The dead load and wind

load are usually taken as uniformly distributed. The rafters are

generally assumed to be divided up at the joints into short supported

beams, so that each joint carries one half the load between the two

adjacent supports.

In roofs of small span, the two ends of the roof truss are fixed ;

and with vertical loading, the two reactions are vertical
;

but for

a wind load, which is assumed to act on one side of the roof only,

both reactions due to it are inclined, and parallel to the normal wind

pressure.

For roofs of large span, one end of the truss is bolted down, or

fixed to the support; and the other end is supported on expansion

rollers. In this case the reaction due to the wind at the fixed end

will be inclined, and that at the free end will be vertical. The total

horizontal component of the wind pressure must be carried at the

fixed end.
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FRAME AND STRESS DIAGRAMS. NOTATION. The drawing of the

framework is called the frame diagram, and the reciprocal figure
the stress diagram.

The sides of the stress diagram are proportional to the external

forces, and to the stresses in the corresponding bars of the frame.

Having drawn lines on the frame diagram to represent the external

forces at the joints, a letter is given to each enclosed area of the

frame, also to each open space between the lines of action of the

external forces. Each bar of the frame is designated by the two
letters in the spaces separated by the bar. The line parallel to it

in the stress diagram is similarly lettered at its extremities.

EXAMPLE I. A KING ROOF TRUSS.

Data. Span = 30 feet.

Distance between principals
= 10 feet.

Pitch = 30.

Dead load on roof per square foot of horizontal surface

covered = 15 Ibs.

Horizontal wind pressure per square foot of vertical surface

-40 Ibs.

In this first example we will take the vertical load and the wind
load separately.

Vertical load. Fig. 18 is the frame diagram, and Fig. 19 the

stress diagram. The fixed vertical load on one truss is

10 x 30 x 15 - 4500 Ibs. - 2 tons (app.)

R'/'

Fig. 18.

distributed as follows. Load at each of the joints 1 and 5 = J ton.

Load at each of the joints 2, 3, 4 = \ ton. The loads being vertical

and symmetrical, the reactions will be vertical, and each reaction will

be equal to half the total load, that is 1 ton.
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Stress diagram. To draw the stress diagram, the reactions of the

supports must first be found, and then the polygon of external forces,

including the reactions, must be drawn
;
this polygon must close since

the system of external forces is in equilibrium. Commencing at a

draw the vertical line of loads of (Fig. 19), set off to any suitable scale

= J ton, bc = BC=\ ton, cd = CD = ton, de = DE=\ ton,

=\ ton. Bisect of in g, then fg = ga represent the equal
reactions Hi and R%.

Again, the external load, acting at any one joint of the frame, must
be in equilibrium with the stresses in all the bars meeting at that joint.

Consider the equilibrium of joint 1. From b (Fig. 19) draw bh and

gh respectively parallel to BH and GH (Fig. 18), then the figure

abhga is the stress diagram for joint 1, and bh and kg give the stresses

To determine the sense of the stresses in the bars BH and HG.
Since the joint 1 is in equilibrium, the arrows must point the same

way round abhga. The direction arrow of ab is known, and this fixes

the other arrows. Transferring these arrows to the corresponding bars

of the frame diagram, we see that the arrow of BH points towards the

joint 1, and that of GH away from it.

Hence BH is in compression and GH in tension.

Next, consider the equilibrium of joint 2. hb and be are known
ci and ih are unknown. Draw ci and hi respectively parallel to CI

and HI. Then the figure bcihb is the reciprocal of joint 2, and ci

and hi give the stresses in bars CI and HI, and following the arrows

given by the known direction of be, we see that bars CI and HI are

both in compression.

Similarly for joint 3, we get the stress figure cdfoic, the stress in

bar DK dk being compressive, and that in bar KI ki being tensile.

If at any joint there is no external load, the direction of the

arrows passing round the corresponding polygon must be got from the

character of the stress already found in one of the members at the joint.

The complete stress diagram (Fig. 19), is thus obtained by con-

sidering each joint in succession, taking care to start from, and then

proceed to, a joint at which there are only two unknown forces.

The stresses got by scale are :

In bar BH, bh=l'5 tons, compressive

EL, el =1-5

CI, a-1-0

KD,kd=VO
HI, hi = Q'!>

KL, M=0'5

IK, ik = Q'5 tensile

HG,hg=V30
LG, lg=T30
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WIND PRESSURE. The surface of the roof being inclined at 30

with the horizontal, and the intensity of the wind pressure on a

surface normal to its horizontal direction being given as 40 Ibs. per

square foot, the intensity of the pressure normal to the surface of the

roof is from table Art. 10

pn = 26 '4 Ibs. per square foot of roof surface.

This normal pressure acts on one side only of the roof, and the

total pressure on one bay 10 feet long is

10 x 15 x sec 30 x 26'4 Ibs. - 4573 Ibs. - 2'04 tons.

The load at joint 4 is 1'02 tons, that at joints 3 and 5 being each

equal to 0'51 tons.

Reactions. Assume the truss fixed at both ends. As the sum of

the external forces in the direction of the wind loads must be zero, the

reactions are parallel to them and can be found by constructing the

funicular polygon, thus :

In Fig. 20 draw the inclined line of loads cf, and set off on it in

order
cd = CD = 0'5l ton,

de =DE= 1-02 tons,

Q'5l ton.

The part of the reaction R2

'

which is due to ef is fe equal and

opposite to ef. To find JS/, and the remainder of B2',
take a pole o

and construct the force polygon by drawing oc, od, oe, and the

corresponding funicular a/fyS (Fig. 18). Then in the force diagram

(Fig. 20) draw og parallel to the closing line aS. The reactions are

at joint 1, gc
= 0'68 ton = RJ t

2, /0 = T36 tons = A'.
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The stress diagram is begun by considering joint 5. Draw el and

gl parallel to the bars EL and GL, then glefg is the reciprocal of the

joint 5, and gl, le represent the stresses due to wind pressure in bars

GL and LE. Following the sense of direction indicated by R%, it is

seen that the stress gl acts from the joint 5, and is therefore tensile,

while le acts towards the joint and is compressive. Proceeding

similarly for all the other joints, the diagram finally closes without

a parallel to the bar HI. This means that for a wind blowing from

the right bar HI is superfluous. If the wind blew from the left HI
would be the active bar and KL would be superfluous.

The stresses due to the wind blowing from the right are found

to be

In bars BH and CI, c, M = 118 tons compressive

Bar .EX, ^=1-48

KD, M = 0'90

HI,

KL, kl=l'2S

IK, ik = Q-QQ tensile

HG, kg = 0-QS

LG, lg=T75

By adding these with their proper sign to the stresses due to the

vertical loads we get the resultant stresses.

If the wind blows from the left, the corresponding stress diagram
will be similar to that in Fig. 20, but the stresses in those bars which

are counterparts in the two halves of the frame will be interchanged.

The two halves of the truss are usually symmetrical, the members

being designed to resist the maximum stresses to which they can be

subjected.

EXAMPLE II. ROOF TRUSS OF WHICH THE FRAME DIAGRAM is SHOWN
IN FlG. 21, FIXED AT BOTH ENDS.

Data. Span between centres of bearings ... ... 40 feet.

Distance between principals 12 feet.

Inclination of rafters with horizontal . . . 30
6

.

JJeMth of/> a//*o?a/ Tt'e ot>0/e 59^1'?$ ^ %/eef.
Loads. Dead load per square foot of horizontal area 22 Ibs.

Pressure of horizontal wind per square foot

of vertical surface ... ... 30 Ibs.

In the last example separate stress diagrams were drawn for the

fixed vertical loads and the wind loads. This was done to illustrate

the general principles, but the most usual and quickest method, as

adopted in this example, is to draw a single stress diagram to represent

the combined effects of the dead and live loads.
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Dead load. Total vertical load on one bay of roof

40 x 12 x 22 Ibs. = 10560 Ibs. = 4'72 tons.

Load at joints 1 and 5 = ^4'72 = 0'59 ton.

Load at joints 2, 3 and 4 = J4'72 = 1'18 tons.

Reactions. The reaction and load at each support have an effective

reaction equal to their difference. This effective reaction is that

due to the other loads on the truss, consequently the loads at the

supports may be entirely omitted from consideration. Thus the

reactions at 1 and 5 = J3'54 = r77 tons.

Live load. The intensity of normal wind pressure (see table

Art. 10) is

| x 26'4 = 19'8 Ibs. per square foot.

Total wind pressure acting on one principal is

12 x 20 sec 30 x 19 '8 Ibs. = 5488 Ibs. = 2 '44 tons.

Assume the wind blows from the left, then

Load at joints 1 and 3 = 0*61 ton.

2 =1'22 tons.

Reactions. The truss being fixed at the ends, the reactions are

parallel to the normal wind pressure.

Their values are found from a funicular polygon drawn exactly as

in last example (see Figs. 22 and 21).

Fig. 21.
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The values of the effective reactions are

at 1, I'Ol tons : at 5, 0*82 ton.

Now find the resultant loads acting at the joints 2 and 3 (Fig. 21)

by compounding the vertical and wind loads. Similarly at joints 1

and 5 find the resultant upward reactions.

Stress diagram (Fig. 23). First construct the polygon of loading
and supporting forces bcdegb ;

this must close.

Consider joint 1. Draw bh parallel to BH&nd gh parallel to Off.

Next for joint 2
;
draw ci and hi parallel respectively to CI and

HI', then bcihb is the reciprocal for joint 2.

Fig. 22.

This process may be continued by passing to the remaining joints

in succession, in such order that at each joint only two forces remain

to be determined. The complete stress diagram is shown in Fig. 23.

w. 2
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Table of stresses. Wind from the left.

[CHAP.

As the wind may blow from the right, corresponding members must
be designed to resist the maximum stress to which they can be subjected.

EXAMPLE III. ROOF TRUSS FIXED AT ONE END, AND FREE AT THE

OTHER, STRESSES DUE TO WIND PRESSURE.

Let the roof truss (Fig. 24) be fixed at one end, and freely

supported on rollers at the other end.

8
fc^ 3-26

FU

Data. Span -40 feet.

Height of horizontal tie above supports
- 4 feet.

Distance between principals =12 feet.

Slope of rafter with horizontal = 35.

Pressure of horizontal wind per square

foot of vertical surface = 50 Ibs. Fig. 24.
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The intensity of normal wind pressure on roof surface (see table

Art. 10) is fg x 30 = 37j Ibs. per square foot.

Length of rafter = 25 feet. ?,**

Total wind pressure on one principal is 25 x 12 x 37J = 11250 Ibs.

= 5 tons distributed as follows : 2j tons at joint 2, and 1^ tons at joints

1 and 3.

To determine the stresses due to wind it is necessary to construct

two stress diagrams, one for the wind blowing on the free side, and the

other for the wind load on the fixed side. It will be convenient to

consider the wind as having the same sense in both cases, and the

truss as free alternately at 1 and 5.

Case I. Wind on the free side.

Reactions. (Fig. 24.) The end 1 of the roof truss being free, the

reaction there is vertical. Draw the vertical through 1 to meet the

resultant wind pressure normal to 13 at 8. Join 85, this gives the

direction of the reaction at 5. For two of the three forces in equi-

librium meet at 8, consequently the third force must pass through 8,

and also through 5 the fixed support. From 8 on the line 82 set off

to a convenient scale the resultant wind pressure equal to 5 tons, and

find its components along the directions of the reactions.

Vertical reaction at 1 = 7^ = 2*57 tons.

Inclined reaction at 5 =RZ
= 3 '26 tons.

Stress diagram. Case I. Fig. 25.

Fig. 25.

Draw the inclined line ad - 5 tons normal to the slope of the

rafter 13.

22
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Set off ab = l^ tons, be = 2j tons, cd=l\ tons; draw de parallel

and equal to R%> i.e. 3 '26 tons, then ea should be vertical and equal
to Rlf i.e. 2'57 tons. The polygon abcdea is the polygon of loading
and supporting forces and must close. The stress diagram is completed
as in former examples. The points j, k

y
of stress diagram coincide as

there is no stress in bar JK\ which is evident if we consider the

equilibrium of joint 4, as there is no external load at this joint, and

the stresses in DJ and DK are equal and opposite and in the same

straight line.

Case II. Wind on the fixed side.

Keeping the wind on the same rafter, the end 1 of roof truss is

now fixed, and the end 5 free.

Reactions. (Fig. 24.) The reaction at 5 is vertical. Produce the

resultant normal wind pressure acting at centre of rafter 13 to meet

the vertical through 5 at 9. Then 91 is the direction of the other

reaction. The values of the reactions are found as in Case I. to be

MI = reaction at 1 = 3 '87 tons.

E2

' = reaction at 5 = 1 "52 tons.

Stress diagram. Case II. Fig. 26.

First .draw the polygon of loading and supporting forces abcdea, in

which ab, be, cd are the wind loads as before
;
de and ea the reactions

in direction and magnitude. The stress diagram can now be completed

as explained before. That the points j and k coincide is a check on

the accuracy of the work.

Fig. 26.

The following table gives the stresses in the members (by scale:

measurement) for the two cases :
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EXAMPLE IV.

The roof truss in Fig. 27 presents a difficulty which it is well to

point out.

Data. Span between bearings
= 60 feet.

Rise of horizontal tie above line of supports
= 4 feet.

Apex of roof above line of supports
= 20 feet.

Dead load at joints 2, 3, 4, 5, ... =3 tons.

Vertical reaction at each abutment = 10J tons.

Fig. 27.

Stress diagram. (Fig. 28.) Commencing as usual at the left

support, the force polygons for joints 1, 2, and 6 are easily con-

structed, and the stresses ai, bj, xi, xk, kj, ij obtained. Now at

each of the joints 3 and 7 there are three stresses unknown, and as
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the resultant of the known forces cannot be resolved in more than

two given directions, the problem would appear indeterminate. The

difficulty may be overcome by finding independently the stress in XU.
This can be got very simply by the method of sections. Take a section

aft cutting the bars DN, NUt
and UX. The portion of the truss to

the left of this section is acted upon by the three downward loads
;
the

upward reaction
;
and the stresses in the three bars cut by the section.

The sum of the moments of all these forces about any axis in their

plane must be zero. Take this axis at the intersection of DN and
NU

y
so that the moments of the forces acting in these lines must be

zero. Then calling ux the stress in UX
y
we have

ux x 16 = 10J x 30 - 3 (1\ + 15 + 22 J)

-315-135 = 180.

Therefore ux = 1 T25 tons.

Having found the stress in UX, that in KL can be found from

the equilibrium of joint 7, and the stress diagram completed as in

Fig. 28.

n
Settle Jo'- 1 Ton

Fig. 28.

Another method is to remove the members LM and MN tem-

porarily, and substitute for them the dotted diagonal shown in

Fig. 27
;
then draw the stress diagram as usual till the stress in

UX is found. The original bracing is now restored, and the stress

diagram completed.

11. Method of Sections.

Suppose a frame to be divided into two segments by a plane

section. Then, considering the separate equilibrium of each segment,
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we see that the stresses in the bars (or members) cut by the section

must be in equilibrium with the external forces acting on the segment
on either side of the section.

As the forces are supposed to act in one plane, the conditions of

equilibrium may be expressed analytically thus :

2(X) =
0, S(F) =

0, and S(3f) =
where

2 (X) is the algebraic sum of the horizontal components ;

5 ( F) is the algebraic sum of the vertical components ;

2 (M) is the algebraic sum of the moments of the forces with

respect to any axis.

The stresses can be determined by the solution of these three

equations, if not more than three bars are cut by the section.

EXAMPLES OF THE APPLICATION OF METHOD OF SECTIONS TO A ROOF

TRUSS.

Roof 30 ft. span (Fig. 29) carried on king trusses 10 feet apart, the

rafters and struts of which are inclined at 33 with the horizontal.

The vertical load is taken at 30 Ibs. per square foot of horizontal surface

covered.

Determine the stresses in each bar of the truss.

The total vertical load

= 30x 10 x 30 = 9000 Ibs.

= 4 tons nearly

of which J ton is carried at each of the points A and C, and 1 ton at

each of the points D t B, E.

Omitting the loads carried by the supports, the effective reactions

are each equal to 1 '5 tons.

Let #!, #2 , 3 ,
... be the stresses in bars 1, 2, 3, ... of the frame.



24 GRAPHIC STATICS [CHAP.

To find Si and $2 . At a vertical section cutting bars 1 and 2,

we have, resolving vertically and horizontally,

I*50 = /Sisin33 ,

#2
= >SUos33 .

Therefore $1 = -=2*75 tons, compression,u o4o

2
- 2'75 x 0-838 = 2'3 tons, tension.

To find $3 and S4 . Take a section cutting bars 3, 4, 2
;
then

the stresses $3 ,
S4 ,

$2 in the members 3, 4, 2 must balance the

external forces of Ij tons and 1 ton in order that equilibrium may
be preserved. Take moments about F where the bars 2 and 4 meet.

33 '- #3
x BFcos 33 = 1-5 x 15 - 1 x 7'5 - 15 ft. tons

but BF= 15 x tan 33 = 15 x '65 = 975 feet.

Therefore

83 =
9-75 x 0-888

Resolving horizontally,

#3 cos 33 + 4 cos 33 - S2
= 0.

Therefore

~ = & - #3 cos 33 2-3 -1-8x0-838
cos 33 0-838

= 0'95 tons compression.

To find S5 . Take an approximately vertical section aa, passing
to the right of B\ and to the left of F.

S6
= $3 from symmetry of roof and loading.

Resolving vertically,

#3 sin 33 + 4 sin 33 - S5
- 1 '5 - 1 - 1 = 0,

#5
=

( 3 + #4)sm33-0-5
= 275 x 0-545 - 0-5

= 1*0 ton tension.

The truss being loaded symmetrically, the stress in corresponding
bars of the two halves is the same.

12. Girders.

A girder consists of

(a) An upper member arranged in a straight or polygonal line,

and called the
"
top boom

"
or top chord.

(b) A lower member similarly formed, and called the
"
bottom

boom
"
or bottom chord.

(c) A series of members, either all inclined, or some vertical

and others inclined, connecting the two chords, and forming with them
a series of triangles. These are called the "web."
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A girder of uniform depth has both chords straight and parallel.

A girder of variable depth has usually the top chord curved or

polygonal, and the bottom chord straight; the greatest depth being
at the centre.

Girders of uniform depth belong to two principal classes :

(a) That in which the web-bars make alternately equal and

opposite angles with the vertical, forming with the chords a system of

isosceles triangles (Fig. 30). This is called a Warren girder.

Fig. 30.

(b) That in which the web-bars are alternately vertical and

inclined, forming with the chords a system of right-angled triangles

(Fig. 31).

Fig. 31.

The portion of either chord comprised between two adjacent joints

is called a "bay" or "panel length" each corresponding division of

the girder is called a "panel."

Loads on girders, (a) The dead load due to the weight of the

flooring, trusses, and lateral bracing ;
it is usually taken as uniformly

distributed.

(b) The live load which travels over the bridge, such as trains.

The live load is sometimes taken as uniformly distributed over the

span, but is now generally taken as consisting of two locomotives with

their tenders (the weight of these being concentrated upon the wheels),

followed by a uniform train load.

The maximum chord stresses due to a live load occur when every

panel point is loaded. The maximum stress in a web member is

produced when the live load covers the longer segment of the span,

and the minimum stress when the smaller segment is loaded. The
maximum and minimum stresses in the web members due to both

dead and live loads are obtained by adding, with their proper signs,

the dead load stresses to each of the corresponding live load stresses.

13. Bridge Truss with Horizontal Chords. Dead load

stresses.

A Pratt truss of eight panels (Fig. 32). Span 1 68 feet. Length of

bay 21 feet. Depth 24 feet. Dead load at each panel point of the

lower chord 8 tons.
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On the vertical line of loads (Fig. 33) set off bj by scale equal to

8 x 7 = 56 tons, and divide into seven equal parts be, cd, ... hj. Bisect

bj in a, thenfa and ab are the effective reactions.

JCt

Scale 20 - 1 Ton.

First, consider the equilibrium of joint ABK. The triangle of

forces for this joint is abk, and as ab is upwards, the other forces must
act in the same direction round the triangle; therefore the stress in

BK acts from the joint and is tension
;
the stress in AK acts towards

the joint and is compression. Similarly for the upper joint AMLK,
we get ak compression, kl tension, Im tension, and ma compression.
The stress diagram is completed by considering the joints alternately

on the bottom and top chords. The upper and lower halves of the

stress diagram will be symmetrical about aq. This diagram (Fig. 33)

shows, that the tensile stress in the lower chord and the compressive
stress in upper chord increase from the end toward the centre of the

truss
; while the stresses in the web members increase from the middle
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towards the ends of the truss. The diagonals are all in tension except
AK and AX. The verticals are all in compression except KL and

WX, which merely transmit the loads BC and HJ to the top chord.

The stress in vertical QR is zero.

As the polygon adnm is a rectangle, the tension (dri) in DN is

equal to the compression (am) in AM. Also since ao is equal to am
plus mo, the stress in A0 = stress AM plus the horizontal component
of the stress in NO.

The stresses in the different members of the truss can be got from

Fig. 33 by scale. The stresses due to live (moving) loads will be

considered later.

EXERCISES.

1. The derrick crane in Fig. 34 carries a load of 5 tons suspended
from A, at a distance of 60 feet from the axis of the post BC. Find

the supporting forces at C and D, and the stress in each member.

Am. Reaction at C= + 16 '81 tons

Z> = -11-81

Stress in ^# = 13-66 tons tension

,,
AC=IQ'13 compression

BC= 4*98 compression

BD = lQ'l tension

CJ)=ll'Sl compression.

'^//y///////////y/w^ n _
eo *__a^i..^ 3 Tons

Fig. 34. Fig. 35.

2. The framed cantilever in Fig. 35 is fixed at A and D, and
carries at C a vertical load of 3 tons. Find the stress in each member
of the truss

;
and determine the vertical and horizontal components of

the reactions at A and D.
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Ans. Stress in BC= 4 '24 tons tension

CD =3 compression

BD=1'21 ,, compression

AB = 4t '7 tension.

Vertical component at A =2 '36 tons

Horizontal A = 4'1

7? 4-1
-Lt *. *

3. The roof truss in Fig. 36 carries vertical loads as follows :

At A and C, 0'25 ton. At D and E, 0'84 ton. At 7?, 0'50 ton.

Find the angle FAJ, and the stress in each bar of the truss by the

method of sections.

Fig. 36.

NOTE. D and E are at the middle points of AB and BC respec-

tively and DFE is horizontal.

Ans. Angle FAJ= 3048'.

Stresses are : Compressive, in 1 and 8, 2 '84 tons
;

in 3 and 7,

1'74 tons; in 4 and 6, 0'71 ton. Tensile, in 2 and 9, 2'12 tons; in

5, 215 tons.

4. Fig. 37 represents a portion of a bridge truss cut by a plane
aal . The span of truss is 235

feet, divided into 10 bays, each

22J ft. long. Dead load carried

at each panel point of lower chord

is 18 tons.

.# = 19 ft.; #=22-1 ft.;

DI= 24-2 ft.

Find by method of sections i 4A ^/
to 1o la

the stress in each of the three

members cut by the section aa^ .

Ans. HI= 180 tons C.
;
HD = 46'3 tons T.

;
CD = 146'6 tons T.



GRAPHIC STATICS 29

5. A roof truss 30 ft. span in Fig. 38 carries a vertical load of

4 tons, distributed as follows : at joints 1 and 2, 0'27 ton
;
at joint 3,

0'53 ton
;
at each of the joints 4, 5, 6, 7, 0'73 ton. (a) Find the

Fig. 38.

stress in each member due to these vertical loads. The truss also

supports a normal wind load of 4 tons, distributed at joints 1 and 3,

0*54 ton; at joints 4 and 5, 1'46 ton. (b) Find the stress in each

member due to the wind.

Am. NOTE. Compressive stress marked +

Tensile stress marked -

Combine the stresses so as to find the maximum stress in each

member due to both loads.
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6. An overhanging roof for a railway station platform, 50 ft.

span (Fig. 39), is supported on a wall at one end, and on an inter-

mediate column 30 ft. from the wall. It carries fixed vertical loads

distributed as follows :

At A, 016 ton ; B, 0'44 ton
; (7, 0'44 ton

; D, 0'32 ton
; E, 0'46 ton

;

F, 0'37 ton; H, 0'46 ton; L, 0'16 ton.

Find the reactions, and the stress in each member of truss.

Aiis. Reaction at wall = 0'4 ton.

Reaction at column'= 2 '41 tons.

p K^NZ^,Q_-._P_.J(,_.QL R__

Column

Fig. 39.

W*/l

Verticals BM and HR are required only to prevent sagging of the

members AN and QL.
= - 0'41 ;<?=- 0-94; CD = - 1'4

= + 0'81; OP = + 0'63 ;

7. In the last example, if the end L is firmly fixed to the wall,

and the column is fixed at the foot, find the stress in each member

due to normal wind loads at the joints as follows : at A and D,
0'21 ton

;
at B and C, 0*58 ton.

Am. Reaction at wall = 0'43 ton.

Reaction at column= 2*01 tons.

AB = -0-47; BC= -0'98; CD = -1'5; AN= + 0'M; N0 = + 1'22;

8. If, in the last example, the column is hinged at the foot so

that the reaction there is vertical, find the stress in each member due

to the wind loads.

Ans. Reaction at wall = 0'75 ton.

Vertical reaction at column = 1 '83 tons.

0'98 CJ)=1'51

= - 1'35.
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9. A roof truss fixed at the ends 50 ft. span as in Fig. 40, the

rafters of which make an angle of 30 with the horizontal, carries vertical

loads of AB, BC, CD, DE, EF each equal to 1J tons, also wind loads

on the right, viz. CD = 0'56 ton, DE = 1'12 tons, ^=1-12
jFP^O'56 ton. Determine the stress in each member of the

due to both loads, having first found the reactions due to the

graphically.

Ans. AR
FO - + 10-20;

= + 1-5
;
1J= 0-7

;
KJ= + 2

;
KL = - 4'2

;
LM=

tons,

truss

wind

10. Roof truss as in Fig. 41
; span 77 ft.; slope of rafter 30;

rise of roof 22 '23 ft. Each rafter is divided into three equal parts, and

Fig. 41.

the main tie into five equal bays. The total vertical load on truss is

6 '2 tons distributed at the joints as under :

At 1 and 2, 0'41 ton ;
at 3, 0'83 ton

;
at 4, 5, 6, and 7, 1'14 tons.

The resultant wind pressure is 7*15 tons assumed acting on the

left, divided between the joints thus :

At 1 and 3, 0'95 ton
;
at 4 and 5, 2'62 tons.

The truss is fixed at 1, andfree at 2.

Determine the maximum stress in each member due to both loads,
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Tons

BK and GS + l-2'Ol

DN&ndEP + 8-8

MI and Qf - 9'95

KL and RS + 3'7

5-6

remembering that counterparts in opposite halves of the truss must
each have the same strength, as the wind may blow from either side.

(Compressive stress +
;
Tensile -.)

Tons

Am. BK and GS + 12'01 GL and FR + 12'2

KI and SI - 13-6

01 - 6-3

LM and QR - 4'3

NO and OP- 5'6

11. A Warren girder as in Fig. 42, of span 60 ft., carries a load of

20 tons at each joint of the bottom

chord. Find the stress in each member

of the girder.

The bracing is inclined at 60 to the

horizontal. The lower chord is divided

into six equal bays of 10 ft. in length.

Am. AB= + 57'#', BC=-5T8', CD = + 34*5; ./>./?=- 34'5
;

+ 92-4; AG= + 103'8;

Fig. 42.

-28-9; 7C=-75'0;

12. A Fink truss as in Fig. 43, span 20 ft., divided into four

equal bays of 5 ft., depth 3 ft., carries loads AB = EF=\'1 tons;

5'7 tons
;

(71) = 4 '6 tons. Find the stress in each member

graphically.

NOTE. Member 16 is HK, and 57 is NL ; as the truss consists of

a primary truss and two secondary trusses. Commence the stress

diagram at joint 6 where there are only two unknown stresses, as the

stress in HJ is equal to the vertical load BC.

Am.
BH= CJ= DM= EN = + 21-9 tons KG = LG = - 17'9 tons

HK= JK= ML = NL = - 5*5 tons HJ= MN= + 57 tons

KL = + 10-3 tons.

13. A girder 60 ft. span carries loads of 15 tons, 14 tons, 20 tons,

24 tons and 16 tons at points 17 ft., 25 ft., 32 ft., 47 ft., 56 ft.

respectively from the left support. Draw by means of the vector and

link polygons the bending moment diagram. Find the scale of this

diagram, and give the value of the maximum bending moment.



CHAPTER II.

STRESS AND STRAIN.

14. IN designing a structure we must first determine the forces

which tend to produce deformation. These are called the external

loads, or loads simply. They are measured in force units
; usually

Ibs. or tons. Knowing the loads, it is necessary to calculate the

stresses produced by them in the different parts of the structure.

Further, we must have an accurate knowledge of the properties of the

materials employed as to strength and elasticity.

STRESS AND STRAIN. A body which is acted on by external

forces is said to be strained or deformed. The force exerted in the

interior of the body, and which resists deformation, is called stress.

The state of strain is simple when the stress acts in one direction

only ;
it is compound when two or more stresses are acting in different

directions. There are five kinds of stresses, viz. :

(a) A longitudinal pull or tension.

(b) A longitudinal push or compression.

(c) Tangential or shearing stress, which tends to make the two

surfaces of a section slide on one another.

(d) Transverse stress.

(e) Twisting or torsion.

Let AB, Fig. 44, be a bar circular in cross-section acted on by two

equal and opposite axial forces F, both acting outwards, and con-

stituting a state of tension. Imagine AB divided into two parts, C
and D, by a plane at right angles to the axis. Then the force which

Fig. 44.

C exerts on D must be in equilibrium with the force F on the end B.

Similarly the force which D exerts on C must balance the force F on

w. 3
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the end A. Thus there exists at the section between C and D a stress,

the total amount of which balances F. So F is the total stress on the

section.

INTENSITY OF STRESS. Stress is usually measured by its intensity
or stress per unit of area.

TENSILE STRESS. In Fig. 44 let A be the area of section of bar in

square inches, then if the stress of jPtons is uniformly distributed so

that each square inch of area bears the same amount of stress, the

intensity of tensile stress is

F
/= -j tons per square inch

;

or, intensity of stress is the force per unit of area.

COMPRESSIVE STRESS. If, as in Fig. 45, the forces F act inwards

towards the bar they constitute

compression, tending to cause

failure by crushing, and either

force is called a compressive

load,
Fi - 45 -

In this case, also, the compressive stress is

f~r tons per square inch.

In both these cases of simple pull and push the following condition

must be fulfilled in order to ensure uniformly-distributed stress, i.e. the

line of action of the resultant load must lie in the axis of the bar,

the axis being the line joining the centres of gravity of all the normal

cross-sections.

SHEARING STRESS. If two equal and opposite forces Q, Q act

parallel and tangential to a section ab, as in

Fig. 46, the two portions of the bar separated

by the section tend to slide past one another.

The forces are called shearing forces, and pro-

duce a shearing or tangential stress on the

section. If A is the area of the section the

intensity of shearing stress is

Q 16

9j.
|Q

Bending or transverse stress and torsion will F
-

46
be considered later.

STRAIN. Strain is a change of shape produced by stress. If a bar

is pulled by an axial load applied at the ends, the stress is tensile on

cross-sections normal to the axis, and the strain consists of an

elongation in length, accompanied by a diminution in section. If the
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stress is compressive the strain consists of a shortening in length,

accompanied by an increase in section. The strain in shear is simply
a distortion by the sliding of one section on another in the direction

of the shearing stresses.

15. Elasticity. Permanent set. Elastic limit.

When a stress is applied to a body a deformation or strain is

produced. The strain is said to be elastic if it disappears when the

stress is removed. If, on the other hand, after the stress is removed
the deformation still remains, the strain is plastic, and is called

permanent set.

The limiting stress up to which the strain is elastic, and above
which a permanent set is produced, is called the elastic limit. For a
stress less than the elastic limit the strain is proportional to the

stress
;
for a stress greater than the elastic limit the strain increases

much more rapidly than the stress. Experiment shows that the

limit of elasticity under repeated stresses of equal intensity, alternately
tensile and compressive, tends to rise. The same result is also found
when the stresses vary from a maximum stress to a minimum stress

of the same kind.

16. Relation between Stress and Strain.

Let a prism of length L and cross-section A be stretched or com-

pressed longitudinally by a force F applied at the ends, acting along
the axis (Fig. 47).

F

F

Fig. 47.

Let / be the extension or compression, i.e. the deformation.

The intensity of stress on cross-sections is

F

32
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The strain is measured by the ratio

/

L'

that is the deformation per unit of original length.

Strain being a ratio of one length to another length is simply a

number. It is not expressed in any unit.

The relation between stress and strain known as Hooke's law is,

that within the elastic limits the strain is proportional to the stress

producing it.

Thus jx/;

:

H-
If the strain measured per unit of original length be denoted by X,

we have

E being a constant, which varies with different materials. It is

called Young's Modulus of Elasticity. Within the elastic limits E
has practically the same value for tension and compression. It is

expressed in the same units as the intensity of stress.

For wrought iron and steel this modulus is about 13,000 tons per

square inch
;
for cast iron about 6,000 tons per square inch.

17. Poisson's Ratio.

When a bar is extended by longitudinal pulling forces (Fig. 47) it

contracts laterally. The longitudinal strain is + A for extension, and

the lateral strain is -- . If the bar is compressed by pushing forces

(Fig. 47) it expands laterally. The longitudinal strain is - X for com-

pression, and the lateral strain is + .

1 lateral strain
The ratio m longitudinal strain

is called Poisson's Ratio.

For metals m has a value between 3 and 4.

18. Stress due to change of temperature.

If the temperature of a bar of length L is raised t its altered

length becomes L(\ +at), a being the coefficient of linear expansion.

The elongation is Lat, and the strain is at. If a change of length is

prevented the stress developed is Eat.
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19. Normal and tangential stress on an oblique plane.

Let BC (Fig. 48) be a bar acted on in the direction of its length by
a force F uniformly distributed. Let A be the area of the nonnal

cross-section.

/A A J A
J/

fn
/COSO

\f Y
c

| yy y

F
Fig. 48.

Kt Kt

*<v

V V *

F

The intensity of stress on a section DE normal to the axis is

Now take an oblique plane GH, whose normal is inclined at an

angle to the axis, and whose area =-
2 The total stress on

cos

GH= F, and acts in the direction of the axis.

TF Jf
1

The intensity of this stress on GH= c ~ TI
= -r cos

;

area of GH A
= /cos0.

The intensity of the normal component on 6rZT=/cos
2
6.

The intensity of the tangential component or shearing stress on

GH
, , . , , sin 20

=/cos sm =f
^

.

The tangential or shearing stress is evidently a maximum when
sin 20 is a maximum, that is when 20 = 90, or = 45, and the

intensity of maximum shearing stress will be

Max. q =
-

.

If we take a section at right angles to GH the intensity of the

normal component on it
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The tangential component or shearing stress on it (S <

=/sin cos
;

or, the shearing stresses on two planes at right angles are equal, and

the planes of maximum shear are inclined at an angle of 45 to the

direction of the stress.

In practical tests of tension and compression it is found that

fracture does not take place on a surface inclined at an angle of 45

to the axis. This may be due to the normal component of pull in

tension which diminishes the resistance to shearing, and the normal

component of push which increases the resistance to shearing. Ex-

periment shows that the inclination of the surfaces of shear to the axis

of the piece is about 35 for tension, and 55 for compression.

20. Shearing Strain. Modulus of Rigidity.

To consider the deformation due to shear, imagine a small cubical

element of material (Fig. 49) to be fixed on the face AB, and acted on

Fig. 49.

by a force Q along the top face CD. The cube will become distorted,

being lengthened in one diagonal direction, and shortened equally in

the other. The sides remain parallel.
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The square face ABDC becomes distorted into a rhombus ABD'C'.
The strain is measured by the change of angle, i.e. <, expressed- in

circular measure.

Within the limits of elasticity the deformation < is proportional to

the intensity of shearing stress qt (

i.e.

and n _ 9 _ shearing stress

</> shearing strain
'

where C is a constant called the Modulus of Rigidity. Its value for

wrought iron is about 5,000 tons per square inch, and for steel about

5,200 tons per square inch. For cast iron it is about 2,000 tons per

square inch.

21. Equality of Shearing Stress on planes at right angles.

Let ABCD (Fig. 50) be a small rectangular parallelepiped of unit

thickness, the stresses on which are tan-

gential stresses on two pairs of faces. *ff

The total stress on the face AB = ql .AB,
which is equal in magnitude but opposite in

direction to q^. DC, the total stress on DC.
The moment of this couple is

q^AB.AD.
Similarly the total stresses on AD and

BC form a couple of moment

q^.AD.AB.

For equilibrium these two couples must

balance.

Therefore ^ AB . AD = qzAD . AB
;

that is q\
=

q<z-

Hence, at any point in a strained body, whatever the normal

stresses may be, shearing stress in one direction is always accompanied

by a shearing stress of equal intensity in a direction at right angles to

the first. This proof is implied in Art. 19.

Two EQUAL SHEARING STRESSES ON TWO PLANES AT RIGHT ANGLES

TO ONE ANOTHER ARE EQUIVALENT TO A TENSILE STRESS, AND A

COMPRESSIVE STRESS OF EQUAL INTENSITY TO THAT OF THE SHEARING

STRESS, ON PLANES AT 45 TO THE DIRECTIONS OF THE SHEARING

STRESS.

Imagine a small cubical element of side h of the material, subjected

to shearing stress of intensity q on parallel faces AB, DC, and AD, BC

Fig. 50.
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(Fig. 51). Consider the equilibrium of the small right prism whose base

is ADB, cut off by the diagonal section DB.

The forces acting on AB and AD are each =qh
2
. Their resultant

is qh
2
\/2, acting in the direction OA . To balance this there must be

a normal pull or tension on the diagonal plane DB, acting in the

direction OC. Call this force F, then

*3f- f;

but h? \/2 is the area of the plane DB on which F acts.

Therefore f= q\

i.e. the intensity of the normal tensile stress on face DB is equal to

the intensity of the shearing stress on each of the other two faces.

Similarly, considering the equilibrium of the prism standing on the

base ACB, cut off the other diagonal AC, the resultant of the forces

on AB and BC, i.e. qh
z
\/2, acts in the direction BO', consequently for

equilibrium there must be a normal pressure or compression acting in

the direction DO, and, as above, its intensity is

F
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The straining due to the shearing stresses is therefore the same as

that produced by a pressure and tension of equal intensity upon

planes at 45.

22. Two normal Stresses at right angles to one another.

Consider a small cube of umi side, acted on by normal stresses of

intensity fly ft upon the faces AD, EC, and AB, DC.

Case I. Stresses of the same sign (Fig. 52).

The strains are

_/_ A~ E mE>Parallel to AB,

Parallel to AD, _ _
~E mE'

and the strain perpendicular to ABCD,

~mE mE'

C

ff

f
Fig. 53.

Case II. If the stresses are of equal intensity, but of opposite

sign (Fig. 53), then

/i = -/=/, say-

This is a case of simple shearing stress on two planes inclined at

45 to the directions of the normal stresses, and '<* h

The volume of the solid becomes (1 + Xj), (1
- X^ (1), which is equal

to 1, if X2 be neglected. So that the volume is inappreciably changed.
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23. Relation between constants E, C, and m.

An enclosed square (Fig. 54), drawn on the side of the original

cube in Case II. of last article, will become distorted into a rhombus,

one diagonal being lengthened, and the other shortened. Let X be

the original length of the diagonal and x its extension
;
let Y be the

length of the side of square and y the movement of the side.

From Fig. 54 the distortion can be most easily realised if we first

imagine AB fixed, and CD moved to FG by the shear on CD
;
then

consider AF fixed and BG moved to EH by the shear on BG, which

is the same as the shear on BD, as the angle DBG is very small.

Then from Fig. 54

-
X~ Y~2

x
-^is the tensile strain along one diagonal ;

i.

is the compressive strain along the other diagonal

(the total shortening is y \/2, the original length = Y \/2) ;

,
the change of angle, is the shearing strain.

<
/ \

N V Y

Fig. 54. Fig. 55.

Thus a shearing strain is equivalent to a tensile strain in one

direction, accompanied by a compressive strain in the perpendicular

direction, these strains being each half the shear strain. Fig. 55

shows distortion due to shearing stresses.

In last article the strain in either direction has been shown to be

/
E
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since the shearing stress and normal stresses to which they are

equivalent are equal;

therefore C=-. = -

and

Taking m = 4= for metals,

24. Modulus of Elasticity of Volume, or Bulk Modulus.

If an isotropic body be acted on by a stress uniform and normal to

its surface at every point, its volume will be increased or diminished.

Let V be the original volume of the body, and v the change of

volume produced by a stress / per unit of area, then the cubic strain is

v ,

-, and
v

T .(1),

where AT is called the modulus of cubic elasticity or bulk modulus.

Consider a cube of side a acted on hy a uniform stress of intensity

/on all its faces (Fig. 56).

/ /

Fig. 56.
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The linear strain is ^ of the cubic strain. For if the volume V
becomes (V-v\ and the side a becomes (a~x),

therefore 3a?x - v
;

x 1 v
or ~ =

3 T"

x f
Let the linear strain - = A = ^; then the linear strain beinga Mt

composed of one direct and two lateral strains is equal to

E m
3f / 2 \

Hence the cubic strain = -^ (
1 --

)
.E \ mj

But the cubic strain is by definition =

1 3 / 2
therefore

but E
\ m

Eliminating E we get

1 lateral strain 3K-2C
or

longitudinal strain



CHAPTER III.

STRESS-STRAIN DIAGRAMS. WORKING STRESS.

RESILIENCE.

25. Ultimate, Elastic, and Working Strength.

If a bar of material of uniform section is placed in the testing

machine and the load gradually increased, the stresses due to different

loads being plotted as ordinates, and the corresponding strains as

abscissae, we get a curve representing the relation of stress and strain.

In the case of wrought iron and mild steel the stress-strain diagram
takes the form shown in Fig. 57.

EXTENSIONS

Fig. 57.

1st stage. The elastic stage. In this stage from to A, the line

OA is perfectly straight, the strains are proportional to the stresses,

and the strains are very small. If at any time during this stage the
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stress be removed the bar returns to its original length. Between A
and B there is a slight curvature in the diagram, the proportionality

between stress and strain ceases, the strain increasing faster than the

stress, but the strain still continues very small. If during this time

the stress is removed the bar will not entirely return to its original

length ;
there will be a small amount of permanent set. At B> the

yield point, the character of the material changes. There is a sudden

rapid extension BC, without increase of the load, which is very much

greater than the previous extension. After the yield point the plastic

stage is reached, and the strain increases much faster than the stress

until fracture occurs. The actual extension during this stage depends

partly on the time during which the load acts
;
the extension increases

with time even when the load is not increased.

In tension tests a maximum stress is reached at some point D,
after which the extension continues with a reduced load. The specimen

breaks at E and the portion DE of the curve bends back.

In commercial testing the yield point is taken as the elastic limit,

and the ordinate BF represents this stress limit in tons per square

inch.

26. Ultimate or Breaking Stress.

When a ductile material such as wrought iron or steel is subjected

to a tension test we find that up to the yield point the

alteration in the length and cross-section of the specimen
is small, but after the yield point, when the loads become

large, the section decreases uniformly over the length.

When the maximum load is reached, and just before the

piece breaks, there occurs a large extension near the place

of rupture, and the section there becomes contracted as

in Fig. 58. It finally breaks with a load less than the

maximum.

The breaking stress is the maximum load divided by the

original sectional area of the piece.

The breaking stress per square inch is represented in

diagram (Fig. 57), by the ordinate DG.

This breaking stress is got from a steadily-applied load.

Experiments by Wohler and others show that pieces which

are subjected to a continually-varying stress break with a stress of

from one-third up to the full breaking stress for a steady pull, according
to the amount of variation. These experiments were carried out by
Wohler to determine the effects of repeated alternations of stress from

tension to compression, or between high and low values of the same
kind of stress. The breaking stress for an indefinite number of
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repetitions depends on the range through which the stress is varied.

It is lowered as the range is increased.

27. Plasticity.

"When a structure is liable to live loads and shocks it is important

not only to ascertain the breaking strength of the material used, but

also to determine its power of resisting deformation without rupture.

The plasticity of a material is measured by its final elongation and

contraction of area.

In wrought iron and mild steel plasticity is combined with a high

tensile strength, but this property is absent in cast iron and hard steel.

In specifying for wrought iron and steel it is usual to require a

certain percentage of elongation and contraction of area, as well as a

certain breaking stress.

The elongation is usually taken on a length of 10 inches.

28. Example of tension test.

Specimen of mild steel.

Original dimensions. Length, 10 inches
; diameter, 0*897 inches

;

area, 0*632 inches.

Final dimensions. Length, 12*658 inches; diameter, 0*584 inches;

area, 0*2678 square inches.

Elastic limit :

The elastic limit is evidently reached for a load between 13 and

14 tons. The load is taken as 13*5 tons.
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Elastic limit in tons per square inch

_ load at elastic limit

original area

13*5- = 21*43 tons per square inch.
0*632

Ultimate or breaking stress

maximum load

original area

= 3 1'52 tons per square inch.

Percentage extension on 10 inches

_ final length
-

original length

original length

- 26-58 per cent.

Contraction of area per cent.

_ original area - final area--
5 ;
-

1
- - X 100

original area

0-632 - 0-2678

= 57 "62 per cent.

Modulus of elasticity :

Taking the extensions for loads up to 12 tons, the mean extension

per ton of load is

O'OOl inches.

Now Young's modulus of elasticity

where f is the stress producing the elongation /, and L the original

length ;

/= j~- ;
/ = O'OOl inches

;
L = 10 inches.

O'boZ

Therefore

10

0-632 x O'OOl

= 15824 tons per square inch.

29. Diagram for mild steel.

Fig. 59 shows a complete diagram of the test. The loads are

plotted vertically to a scale of 0'2 inch per ton, and the extensions

are plotted horizontally, full size.

The first portion of the diagram is straight up to 13 tons. At
14 tons load we get the very sudden and increased extension which
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marks the yield point ; after which the curve continues more or less

uniformly. The maximum load was 19 '86 tons, from which point the

curve falls back to 17 '25 tons, the load at which the specimen broke.

The total extension measured after fracture was 2 "658 inches.

2-61 2 E D J

EXTENSIONS - FULL size.

Fig. 59.

30. Tension test and diagram for a wrought-iron bar.

Original dimensions. Length, 10 inches
; diameter, 0*880 inches

;

area, 0'608 square inches.

Final dimensions. Length, 12*29 inches
; diameter, 0*742 inches

;

area, 0*433 square inches.

Load at elastic limit, 10*33 tons.

Maximum load, 15*05 tons.

Stress at elastic limit =
10*33

0*608

= 17 tons per square inch.



50 STRESS-STRAIN DIAGRAMS [CHAP.

Ultimate or breaking stress

_ 15/05~
0-608

= 24 '7 tons per square inch.

Percentage elongation on 10 inches

_ 2-29 x 100

10

= 22 '9 per cent.

Percentage contraction of area

_ 0-608 - Q'433

0-608

= 28'9 per cent.

Fig. 60 gives the diagram, drawn to the same scales as the diagram
for mild steel (Fig. 59).

The total extension was 2 '29 inches.

16

! a

r
*4\l o

O

!

WRQU6HT IRON BAH

-2 -4 -6-81
EXTENSIONS -FULL

Fig. 60.

31. Work done in fracturing a test bar got from the

diagram.
For explanation, reference is made to the diagram for a mild steel

bar (Fig. 59).
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Work is the product of a force into the linear distance through

which it acts. Ordinates on the diagram represent the loads in tons,

and the extensions are measured as abscissae. Draw BE and CD
verticals. Then the area OABCD of the diagram represents, to some

scale, the work done upon the bar in breaking it. If m inches = 1 ton,

and n inches = 1 inch of extension, then

TTr . , . . , area of diagram in square inches
Work done m inch tons = -

.

mn

If we divide this by the volume of the bar we get the work done

per cubic inch.

The area of the diagram can be found by a planimeter. In the

case of mild steel bar (Fig. 59) this area is 10 square inches
;
m =

0'2,

and n 1.

Therefore

Work done = - = 50 inch tons.
0*2 x l

Work done per cubic inch is

50

0-632 x 10
= 7 '9 inch tons.

In the case of wrought-iron bar (Fig. 60) the area of diagram is

'3 square inches
;
m = 0'2

;
n = l.

Therefore
f> .0

Work done = -: - = 31'5 inch tons.
0'2 x 1

Work done per cubic inch M

31-5

0-608 x 10
5 "18 inch tons.

In order to compare results for the work done per cubic inch of
material in breaking a bar, the test specimens must be similar, for

the ultimate elongation depends for the same material on the original

length, and to some extent on the section. Again, the portion BC of

the diagram is seldom satisfactorily determined, and for purposes of

comparison it would be better not to include the work represented by
BCED, which is almost entirely work expended in local extension, and
to measure only the area OABE, which represents the work done up
to the plastic limit, at which point the bar is for all practical purposes

destroyed.

32. Compression tests.

If the specimen is very short it will fail by crushing only ;
if the

length is great it will fail by bending or buckling ;
for intermediate

lengths it will fail partly by crushing and partly by bending. In

compression tests, which are intended to cause failure by crushing

42
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only, the length of specimens should not be more than Ij to 3 times

the diameter. In the case of mild steel and other ductile metals, as

the load is increased the specimen diminishes in length, bulges out

laterally and assumes a barrel-shaped form (Fig. 61), and this bulging

Fig. 61. Fig. 62.

is accompanied by longitudinal cracks. Cast iron fails by sudden

rupture on a plane inclined at about 45 with the axis. The most

ordinary form of fracture is shearing along an oblique plane making
an angle of about 55 with the axis (Fig. 62).

fc
<o S

Fig. 63.
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STRESS-STRAIN DIAGRAM FOR CAST IRON. Fig. 63 gives a diagram
for cast iron under tension and compression. It is from experiments

by Hodgkinson. Cast metals are practically inelastic and take a set

even with small loads. They exhibit very little plasticity. Cast iron

is about six times stronger in compression than in tension.

33. Torsion Test.

Fig. 64 represents a spiral torsion test for a wrought-iron bar taken

in a Buckton's torsion machine. The specimen was 10 inches long,

f inch diameter, cross-sectional area 0"442 square inches, and broke

with a weight of 166 Ibs. at a leverage of 25 '04 inches.

The twisting moment at fracture was

T= 166 x 25-04 - 4156-6 inch Ibs.

Fig. 64.

To FIND THE WORK DONE PER CUBIC INCH. If the curve, Fig. 64,

be developed, we get a diagram, Fig. 65, in which the ordinates

represent twisting moments, and the abscissae angles of twist.
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The scale for twisting moments is got by dividing the maximum

twisting moment by the length OK (Fig. 64).

A 1 \

Vertical scale =
"n^jr

= 2000 in Ibs. per inch.

The horizontal scale for twist has been taken as 1 inch = 2?r.

The area of the diagram, Fig. 65, is 8'33 square inches.

m, - 8*33 x 2000 x 27r . , .

Therefore work done = -
094.0

~ m s

= 46 '1 inch tons.

Work done per cubic inch

t Cf.rj \ CL'I
_ 4o 7 _ 4b 7

vol 10 x 0-442

= 10*56 inch tons per cubic inch.

34. Dead load and live load.

A dead load is a constant or steady load which does not vary, and

produces a constant amount of straining action. Thus the weight of

a bridge which includes the weight of the main girders, cross girders,

and flooring is a dead load. A live load is a variable load, which

alternately comes on to and is removed from the structure, such as a

crowd of people or a railway train passing over a bridge. For live

loads an allowance is sometimes made for impact or dynamic action.

35. Factors of Safety. Working Stress.

In order to allow for possible inaccuracies in determining the loads

and stresses, imperfect workmanship, and deterioration of material by

exposure, it is necessary that the working stress, that is, the maximum
stress which a material will bear in actual practice, should be a fraction
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only of the breaking strength. The factor by which the breaking

strength is divided to get the working stress is called the factor of

breaking stress
working stress = 7 -

1 FT-
factor of safety

TABLE OF FACTORS OF SAFETY (UNWIN).

or,

This method of getting the working stress by dividing the breaking
stress by a factor of safety is an empirical one. Wohler's experiments

prove that the safety of a structure depends not on the maximum

intensity of stress to which it is exposed, but on the range of stress

and the number of repetitions of the change of stress. Thus, if a

structure is subjected to a steady load, the working stress may be

greater than when the structure is subject to a varying stress of one

kind (tensile or compressive), and when the structure is subjected to

alternate stress of opposite kinds (tensile and compressive) the working
stress must be still less.

The three cases are :

(a)

(*)

Steady load.

Load of one kind applied and removed, many times

repeated.

(c) Tension alternating with compression of the same mag-
nitude, many times repeated.

The range of stress is given as below :

Max. Stress Min. Stress Kange of Stress<<*)// o

(b) f /
(e) f ~f 2/
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And the strength of the material in these three cases is approximately
in the ratio of 3 : 2 : 1.

Wohler considered that the greatest permissible working stresses

should be in the ratio of 1:2:3, according as the members are

exposed to tension alternating with compression ; to tension alter-

nating with no stress; or to a steady load.

The weakening of material by repeated stresses is called fatigue.

Professor Unwin has proposed a formula to include cases of

fluctuating stress,

D

where /m^ is the actual breaking strength when the piece is exposed
to stresses varying from f^^ to /min , alternately repeated a great

number of times.

D is the fluctuation or range of stress
;

t the statical breaking

stress, and n a coefficient.

(a) "When D = the load is a steady one, and/max = t.

(b) When D =/max the load alternates with no load, then

/ = 2* (>/l +*-).:<,' ./ /

(c) When D = 2/max the stresses are alternately tensile and com-

pressive of equal intensity. The stress fluctuates from /
to -/, then

>*;
3

The mean value of n = - for iron and steel, then

f -
J max n

The working stress is fm&x , divided by the factor of safety.

Recent experiments made by Professor Osborne Reynolds and

Mr J. H. Smith show "that under a given range of stress the

number of reversals before rupture diminishes as the frequency in-

creases, and that hard steels will not sustain more reversals with the

same range of stress than mild steels when the frequency of the

reversals is. great." In the paper in which they describe these

experiments, they give the following concise resume of the important

results deduced by Wohler :

1 . That wrought iron and steel will rupture with stresses much
below the statical breaking stress, if such stress be repeated a sufficient

number of times.

2. That within certain limits, the range of stress, and not the

maximum stress, determines the number of reversals necessary for

rupture.
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3. That as the range of stress is diminished, the number of

repetitions for rupture increases.

4. That there is a limiting range of stress for which the number

of repetitions of stress for rupture becomes infinite.

5. That this limiting range of stress diminishes as the maximum
stress increases.

LAUNHARDT'S AND WEYRAUCH'S FORMULAE. Let t be the statical

breaking strength, under a gradually-applied load ; u the primitive

strength, that is, the breaking strength under repeated stresses of the ''

same kind, the stress varying alternately from u to ; s the vibration

strength, that is, the breaking strength under many times repeated

alternating stresses of equal intensities, but opposite in sign (tension

and compression), that is, the stress varies alternately from s to s.

(A) Suppose a bar of unit cross-sectional area is exposed to

stresses (f) of the same kind, which vary from a maximum J\ to a
minimum f$.

Then the range of stress

D=A~f* .............................. (1).

Let /' = 5Hb =e .

.A max./

By Wohler's law f, *D = K. D ........................... (2)

where K is an unknown coefficient.

From (1) and (2),

if D =
0, then /!=/2 = # and K=v>\

!
= /> =

,
and K=l

if D =
u, then

0.

Launhardt assumed K'= -
^ ,*
/i

as agreeing with, these conditions, and giving results agreeing ap-

proximately with experiment.
Therefore we get from (2)

Thus, the breaking strength for a varying stress of the same sign

many times repeated is

This is Launhardt's formula for stresses of the same sign.

(B) If the bar be subjected to stresses which are alternately

different in kind and vary from a numerical maximum J\ of one

sign to f2 of the opposite sign, then

"'" '

'
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"Weyrauch found that K= _ ------
--> for stresses of different kinds

agreed approximately with experiment.
Hence by Wohler's law

u-s

This is "Weyrauch's formula for stresses of different sign.

Experiments on iron and steel give the following approximate
values of u :

For iron, 13 '2 tons per square inch
;

For steel, 18 ,,

1,1 .. t u u s 1 ,i ,
2 ^

and the ratios - = - = -
,
that is, u = -

t.

u u 2 3

Thus equations (3) and (4) give the breaking stress of a piece

exposed to repeated varying stress, as

For iron- 13'2 l

For steel- 18 l

With a factor of safety of 3 we get

For iron =
4-4^1 |V

Working stress

For steel
=e(l |

Y
The + or - sign for Q must be used according as the stresses are

of the same kind or of different kinds.

The sectional area of the bar or member

_ the maximum load

working stress

The working stress for shearing may be taken as iths of its value

for tension.

The following values of working stress may be adopted in tension

and compression :

(a) For a dead load only,

Wrought iron, 6j tons per square inch.

Mild steel, 9 ,,

(b) For a varying load producing tensile or compressive stress

only,

Wrought iron, 4| tons per square inch.

Mild steel, 6 ,,
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(c) For a varying load producing equal alternating stresses in

tension and compression,

Wrought iron, 2j tons per square inch.

Mild steel, 3

In the case of cast iron in which the compressive strength is much

greater than the tensile strength :

Case (a} j^
6118*011

' If tons per square inch.

"[Compression, 5j ,,

Case (b) i^
ension

'

.

H -

(Compression, 4
,,

Case (c) Tension, J

DYNAMIC METHOD. (This method is more fully treated in Bridge
Construction, by Prof. Claxton Fidler.)

In Art. 37 it is shown that when a load is suddenly applied to a bar

the maximum momentary stress produced is double that of the load.

Now, if a bar or member of a structure is already strained by an

initial stress P, and an additional stress F be suddenly applied, which

produces an elongation or shortening /, we get a stress-strain diagram
as in Fig. 66, in which the energy of F+P is represented by the

area ABEH, and the work done on the bar is represented by the area

ABGC. As these two areas must be equal, we get

GE=ED = F,

and the dynamically increased stress

= BG _
= BE+EG =P +F+F ..................... (1)

statical stress + variation in stress
;

t

i
B

20

due toF

Fig. 66. Fig. 67.

or, denoting the initial stress DB =P by min. S, and BE=P +F
by max. S, we have GE the variation in stress = max. $-min. S

;

that is :

The maximum dynamically increased stress

= max. $ + (max. S min. S).

NOTE. If the initial stress is negative (- Q), and F= 2Q (Fig. 67),
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The dynamically increased stress, from (1)

= 'P~+F+ F

= max. S + {max. $ min. $},

as in this case max. S=Q, and min. S= Q.

If, as before, t = statical breaking stress, and 3 = factor of safety,

then the area of cross-section of member

_ dynamically increased stress

t_

3

statical stress + variation in stress

t_

3

tf-min. 8)} ............... (2).
t

In applying this formula, as we shall see later on, the variation of

stress is more gradual in the flange members of a girder than in other

members, and for these we take half the variation only, thus

3
Flange area = -

{max. S+ J (max. S- min. $)}.
t/

ANOTHER RULE for determining the maximum stress in any member
is to add to the dead load stress, the maximum live load stress

multiplied by a coefficient. This coefficient is 2'0 in all cases, except

for the upper and lower flanges of triangulated girders, for which a

coefficient of 1'5 may be used.

Thus, cross-sectional area

dead load stress + or > live load stress

1*1

3

It should be noted that equation (2) gives a rather greater area for

the braces near the middle of span where the variation in stress is

equal to

dead load stress + live load stress

than rule formula (3).

36. Strength of wrought iron steel cast iron.

The strength of a material depends greatly on the mechanical

treatment during manufacture. Material that has been worked during
manufacture by rolling and forging is increased in strength. Wrought
iron exhibits greater tensile strength when tested in the direction of

rolling than when tested across the direction of rolling.
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Mild steel contains from '1 to '25 per cent, of carbon, and hard
steel from '25 to 1'4 per cent, of carbon. Mild steel, on account of

its greater tensile strength and plasticity, has practically superseded

wrought iron for constructional purposes.
The tensile strength and shearing strength of steel increase as the

percentage of carbon increases, but the plasticity, as measured by the

elongation and reduction of area, diminishes.

Cast iron is inelastic
;
there is practically no proportionality between

stress and strain, and consequently no elastic limit.

The properties of each of these three metals are shown in the

following statement :

WROUGHT IRON BARS. Tensile strength, 21 to 24 tons per sq. inch.

,, plates with grain, 20 to 22
,,

,, plates across grain, ,, 18 to 20 ,, ,,

Extension on an 8-inch length, 20 to 25 per cent.

Contraction of area, 40 to 45 per cent.

Crushing strength, 16 to 20 tons per square inch.

Shearing strength, 16 to 20 tons per square inch.

E= Young's modulus of elasticity, 12,500 tons per square inch.

C= modulus of rigidity, 5,000 tons per square inch.

MILD STEEL (about 0'2 per cent, of carbon) :

Tensile strength, 28 to 30 tons per square inch.

Extension on an 8-inch length, 25 per cent.

Contraction of area, 45 to 55 per cent.

Shearing strength, 22 to 24 tons per square inch.

E= Young's modulus of elasticity, 13,000 to 13,500 tons per

square inch.

C f = modulus of rigidity, 5,200 to 5,500 tons per square inch.

CAST IRON. Tensile strength, 8 to 12 tons per square inch.

Crushing strength, 40 to 50 ,,

Shearing strength, 6 to 12

E= Young's modulus, 5,000 to 6,000 tons per square inch.

C= modulus of rigidity, 2,500 to 4,000 tons per square inch.

37. Work done in extending or compressing a bar within
the elastic limit. Resilience.

Let L be the length of the bar, I the elongation or compression,

A the area of cross-section.

CASE I. GRADUALLY-APPLIED LOAD.

Let the load be gradually applied, increasing from up to F; its

V V
mean value is

,
and the work done is therefore I, represented by

the area OAB (Fig. 68).
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But F=fA = EA -y , / being the intensity of stress.
JL

Therefore

ALw , , 4Work done=2^=
/2

Work done per unit of volume = ^ .

t^

As the material is elastic, this measures also the strain energy
stored in the piece.

If y - stress at the elastic limit, then the work done is called the

resilience of the har.

Resilience is therefore the work done in deforming a piece up to

the elastic limit, or it may be defined as the energy stored up in the

piece in consequence of a strain up to the elastic limit.

CASE II. LOAD SUDDENLY APPLIED WITHOUT VELOCITY.

If a load F be suddenly applied without velocity to a bar of length

L, let / be the deformation (Fig. 69). Then the work done by the

external load must be equal to the energy stored in the bar.

~Tf

Fig. 69.

Let T be the maximum stress produced in the bar. Its initial

T
value is nil, so the mean resistance is .
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T 1 EA
The work done on bar = / = -

-j- /
2 = area OAB.

J & Jj

Work done by external load = Fl = area A CD.

Therefore Tl_lEA
1 '

and

Hence the maximum intensity of the stress caused by the sudden

application of a constant load, without initial velocity, is double the

intensity of the load itself.

CASE III. SUDDENLY-APPLIED LOAD WITH VELOCITY.

Suppose a weight of W Ibs. dropped from a height of h inches and

stopped by a bar (Fig. 70).

Let T be the total stress produced, and / the

elongation or shortening.

The work done by the falling weight = W (h + I)

inch-lbs., and this must be equal to the energy
stored.

Therefore

\ l =
\

r = W(h s sma11 -

If V- velocity of W at the moment of impact
TJ

AREA

Example 1. What should be the area of cross- I

section of a wrought-iron bar 20 feet long in order

that it may resist the energy of a load of J a ton

falling through a height of 3 inches, the resultant load being along the

axis? -fc
T = 13,000 tons per square inch; elastic limit, 9J tons per

square inch.
T

(i),

where/= 9 '5 tons per square inch, W=k ton, h = 3 inches = 0'25 foot,

/ = deformation at the elastic limit.

Now

I (in feet)
-Therefore

and from (1)

2x|(0-25 + 0'0146) 0-2646
, QAQ . ,

4-*- r = 1-908 sq. inches.
9-5x0-0146 -1387

0'5 ton
Thus a load having an intensity of only

- =0"26 ton per
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square inch suddenly applied to this bar, with a velocity due to its

fall from a height of only 3 inches, produces momentarily the same

maximum intensity of stress as a gradually-applied load of 9j tons per

square inch.

Example 2. What would be the elongation and consequent

intensity of stress produced in a wrought-iron bar 25 feet long and

1J inches diameter when extended longitudinally by a weight of

13 cwt. falling through a height of 7 inches? 2?= 12,500 tons per

square inch.

Formula is

If we neglect Wl as being comparatively small, we get

ra =
|TT /f ........................... (1),

where W= 13 cwt. = 0'65 ton, h = 7 inches = 0*583 feet, L = 25 feet,

.#=12,500 tons per square inch, A = 1'25
2 x 0'7854 = 1'2272 square

inches.

Then
72 x25 xQ-65 x jg_ / 4'55

""

V 12500x1-2272"
~
V 3681*6

- ^0*01236 = Q-0352 feet.

Intensity of stress

/ 0'0352= E-f = 12500 x -- - = 17*6 tons per square inch.
jj 2o

If the load were gradually applied the intensity of stress would be

only
*

= 0'53 ton per square inch.
1*2272



CHAPTER IV.

COMPOUND STRESSES.

38. Combination of a pair of simple longitudinal stresses

in directions at right angles to one another. Ellipse of stress.

In simple tension and compression the direction of the stress is the

same for all planes, but the intensity varies.

Consider a small rectangular block ABCD of material of unit

thickness whose sides are perpendicular to the stresses /1} /2 ,
both of

the same sign (Fig. 71).

j,

Fig. 71.

The total stress on faces AB and CD =fAB.
The total stress on faces BC and AD =f2BC.
Consider any inclined plane BD, the normal to which makes an

angle with the direction of /i.

Let fn and ft be the intensities of the normal and tangential

stresses on plane BD.

w. 5
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Resolving perpendicular to BD for the normal stress

fnBD =f*AB cos 6 +f2BCsin 0.

Therefore fn =/ cos
2

+f, sin
2

(9

To get the tangential stress resolve along BD
ftBD =f,AB sin 6 -f.BCcos 0.

Therefore ft
=

(f, -/2) sin cos

The tangential stress is a maximum when = 45.

(1).

(2).

The normal stress on the same surface inclined at 45 is

Fig. 72.

If the stresses /i and /2 a,re of opposite sign, yi being a tension or

pull, and/a a thrust (Fig. 72), then the normal stress on

and the tangential stress on BD

ft
=

(/i +/2)
sin e cos = sin 20.

If the two stresses are of equal intensity /j and of opposite sign,

then on a plane inclined at 45 there is no normal stress. There exists

only a tangential or shearing stress on the two planes at 45 to the

axes along which the stresses act. The intensity of this shearing
2f~stress is ~

=fi.
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39. To find the magnitude and direction of the resultant

stress on the plane BD (Fig. 71).

Let f be the resultant stress. Compounding equations (1) and (2),

/. BD = Jff'
/! cos' 0+/,' sin* 0._

Therefore /= V/2
cos

2 +/2
2
sin

2 = V/?T/T2 ............... (3).

Let a be the angle which resultant makes with the direction

of /i, then

40. Ellipse of stress.

The resultant stress may be found graphically as follows (Fig. 73) :

52
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On the perpendicular to the plane BD set off OQ to represent /a ,

and OR to represent fz . Draw QM perpendicular to /,, and UP
parallel to /i to meet QM in P. Describe circles with radii j\ and /2

from as centre.

Then OP represents the .resultant stress on the plane BD in

magnitude and direction, and the locus of P is an ellipse.

Now 0=/i; OE=f9 ,

and OM = OQ cos =/i cos 6,

Therefore OP = /2
cos2 +/2

2
sin

2

and tana

Hence from equations (1) and (2) OP is the resultant stress in

magnitude and direction.

Let as, y be coordinates of P,

x = PM=-f2 sin 6,

and ~ = sin <9, ^ = cos
;

/2 /I

^ IT
therefore -^ + f-t =l.

/2 /I

Thus P lies on an ellipse of which /i and /2 are the semi-axes.

If /i=/2 ,
OP is at right angles to .#/>, and the ellipse becomes a

circle.

41. Principal stresses.

Planes on which the stresses are wholly normal are called planes of

principal stress, and the stresses themselves principal stresses.

A state of stress in two dimensions can always be represented by
an ellipse, the semi-axes of which are the principal stresses, and their

directions the axes of stress.

Suppose ./i and /2 of the preceding article to be replaced by stresses

of any magnitude and direction on two faces at right angles. Resolve

these stresses into normal and tangential components. The tangential

components must be equal. Let fn and/w
'

be the intensities of normal

components, and q the intensity of the equal tangential components on

the two planes at right angles (Fig. 74).

To determine the planes of principal stress, and the magnitude of

the principal stress on these planes.

It is required to find a plane DB such that the stress on it is

wholly normal, and to determine /, the intensity of that stress. Let 6
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be the angle which BD makes with DC. Consider the equilibrium of

the right prism DBG of unit thickness.

Fig. 74.

Resolve parallel to BC

f.DB. cos =

or /-/, = q tan

Similarly, resolving parallel to DC,

Subtracting,

fn ~fn = q (cot
- tan 0)

- 2q cot 20,

.(1).

.(2).

.(3).

Two values of satisfy this equation, that is and 90 + 0.

Thus there are two planes at right angles to each other, on which

the stress is wholly normal. The
value of the principal stress on

these planes is got by multiplying

(1) and (2),

(f-fn) (f-fn) =
q*.

The roots of this quadratic are

the stresses required.

Let AB and CD (Fig. 75) be

the pair of rectangular planes

through upon which the stresses

are wholly normal
; they are the

planes of principal stress] the

stresses themselves are called the

principal stresses at 0, and the
Fig. 75.

axes OX and Y the axes of principal stress at that point.
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42. Principal stresses in a beam.

In the case of a loaded beam we get a longitudinal stress combined
with shearing stress on longi-

tudinal and transverse planes

(Fig. 76).

Consider a small triangular

right prism of unit thickness BCD
bounded by a plane ED, inclined

at to the vertical, the vertical

plane DC, on which there is both

a normal and a shearing stress,

and the horizontal plane BC, on

which there is only shearing stress.

Let fn be the intensity of the

normal stress on DC, and let q
be the intensity of the shearing

stress, which is the same on BC
and CD (see Art. 21).

To find on what plane BD (as
Fig. 76.

measured by 6) there is a normal stress only, and to find/the intensity
of that normal stress.

Resolving horizontally,

fBDcosO=fnDC+qBC,
(f-fn) cos =

q sin (1).
or

or

Resolving vertically, fBD sin B = qDC,

/sin = q cos 6 ..
.(2).

From (1) and (2) eliminating/we get

fn = q (cot
- tan 0)

= 2q cot 20.

tan 20 =
Jn

That is

Also from (1) and (2) f(f-fn) = q'
2

,

/-&+J&7,J
2 V 4 *

.(3).

.(4).

Two values of satisfy equation (3), that is = and = 90 + 0.

Thus there are two planes of principal stress at right angles to one

another.

/ 17*=
-^

+ A/
-~The positive value / =

-^
+ A/

-~ + (f is the greatest principal

stress of the same kind as fn . The lesser principal stress is

f I7^~
/2

=
-Jl

- A/ -^
+ q

2
,
which occurs on a plane at right angles to the

former.
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The maximum intensity of shearing stress occurs on planes

inclined at 45 to the planes of principal stress, and by Art. 38

its value is

/l~/2

If the principal planes (or directions of axes of stress) be drawn by
short lines through a series of points taken very close together on

the elevation of a beam, then these lines will form two series of curves

intersecting each other at right angles, called the curves or lines of

principal stress, and the tangents to these curves at any point where

they intersect are the planes of principal stress (or the axes of stress)

at that point.

In the case of a beam supported at both ends the curves convex

upwards are curves of compression, and those convex downwards curves

of tension.

Again, when 6 = 90 or 0, then q = ;
and when 6 = 45, then

/.-o.
Thus the curves ofprincipal stress cut the upper and lower surfaces

at right angles, and cut the neutral axis at an angle of 45.

Curves of maximum shearing stress cut the upper and lower

surfaces at 45, and touch the neutral axis.

Curves of principal stress are sketched in Fig. 77.

Fig. 77.

43. General equations connecting stress and strain.

Suppose an isotropic body, that is, a body having the same

elastic properties in all directions, to be acted on by three principal

stresses flt f2,fs, the axes of reference coinciding with the principal

axes.

Let the strains be X
15

X2 ,
X3 along these axes.

Now, by the Principle of Independence of Stresses, the resultant

effect of a compound stress can be found by calculating the system of

strain due to each stress taken separately.

Thus Aj is the sum of the longitudinal strain ^ due to flt

f f
and the two lateral strains -

-^ and ^ due to /2 and /3 .

is Poisson's ratio.m
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or

Thus

Similarly

As a special case, suppose a bar pulled or pushed along the axis

of /i, left quite free along the axis of /2 ,
and all lateral strain pre-

vented along the axis of /3 .

Then / = 0, and A3
= 0.

Thus T7\ - f 3* l
~ /l

~
(I),

.(3).

From (3)

And from (1)

or
m
- 1

STRENGTHS AND WEIGHTS OF MATERIALS.
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STRENGTH OF STONES TO RESIST CRUSHING.

73

EXERCISES.

1. A bar of mild steel 10 feet long and 2 inches diameter is

stretched ^t\\ of an inch by a load of 7 tons acting along the axis of

the bar. Find the intensity of stress, the strain, and the modulus of

elasticity.

Ans. 2*2 tons per square inch
; ,-^TF ; 13,200 tons per square inch.

2. A wrought-iron tie-rod f inch thick has to support a load of

20 tons. Determine its width, assuming a working stress of 8,000. Ibs.

per square inch.

Am. 7*46 inches.

3. A mild-steel tie-rod 26 feet long is made of an angle-iron

4" x 4" x J". If it is pulled by a force of 20 tons acting along its

axis, determine the intensity of tensile stress and the elongation.

Ans. 5*3 tons per square inch
;
0127 inches.

4. What should be the diameter of the stay-bolts of a boiler in

which the pressure is 120 Ibs. per square inch, allowing one stay-bolt

to each square foot of surface, and a stress of 5 tons per square inch of

section of the bolts ?

Ans. If inches.

5. A rectangular wooden post 8 inches broad rests on a masonry

wall, and is loaded with 6 tons. Determine the necessary width of the

post if the working stress of the masonry is 140 Ibs. per square inch.

Ans. 12 inches.

6. The rod of a hydraulic hoist is 40 feet long and Ij inches

diameter; it is attached to a plunger 5 inches diameter, working under

a pressure of 1,000 Ibs. per square inch. Find the alteration in length
of the rod.

E= 30,000,000 Ibs. per square inch.

Ans. 0'18 inch.



74 COMPOUND STRESSES [CHAP.

7. A brick wall 2 feet thick, 10 feet high, weighing 110 Ibs. per
cubic foot, is supported on timber columns 8 inches square, 10 feet

long, placed 12 feet apart centre to centre. Find the compressive
stress in column. If the crushing stress of the timber is 5,000 Ibs.

per square inch, find to what height the wall can be built, allowing a

factor of safety of 10.

Am. 412*8 Ibs. per square inch
;
12*1 feet.

8. A bar of wrought-iron 20 feet long, Ij inches diameter, is

heated to 160 C.
;
while at this temperature it is made to connect two

walls of a house which have fallen outwards from the perpendicular, by
means of washers and nuts screwed on at the ends. If the walls do

not yield, find the pull exerted on them when the bar has cooled to

60 C.

Coefficient of expansion for wrought-iron = '0000124 for 1 C.

E= 30,000,000 Ibs. per square inch.

Ans. 65,844 Ibs.

9. A wrought-iron bar 4 square inches in sectional area has its

ends fixed between two immoveable blocks when the temperature is

30 C. Find the pressure that will be exerted on the blocks when the

temperature is 100 C.

Coefficient of expansion = "0000125.

E= 30,000,000 Ibs. per square inch.

Ans. 105,000 Ibs.

10. Determine the resilience of a steel tie-bar, Ij inches in

diameter and 5 feet long, if the elastic limit is reached under a load

of 20 tons.

Modulus of elasticity
= 13,000 tons per square inch.

Ans. 1164*8 inch Ibs.

11. Calculate the resilience in foot Ibs. of a bar of wrought-iron
6 inches diameter, 2 feet long.

Elastic limit = 10 tons per square inch.

E= 13,000 tons per square inch.

Ans. 487 '4 foot Ibs.

12. Steam at a pressure of 220 Ibs. per square inch is suddenly
admitted on to a piston at rest 15 inches diameter. If the piston-rod
be 6 feet long and 3 inches diameter, find the maximum stress produced
in the rod, the amount of compression, and the work done on the rod

at the maximum compression.
Modulus of elasticity

= 30,000,000 Ibs. per square inch.

Ans. 10,998 Ibs. per square inch ; 0'026 inches
;
84*2 foot Ibs.



IV] COMPOUND STRESSES 75

13. Find the resilience of a bar of steel 10 feet long and half a

square inch in sectional area, stress limit of elasticity 50,000 Ibs. per

square inch.

Modulus of elasticity
= 35,000,000 Ibs. per square inch.

Ans. 178'6 foot Ibs.

14. A bar of steel 10 feet long and 3 inches diameter is subjected

to a pulling force of 100 tons. If the modulus of elasticity
= 13,000 tons

per square inch, determine the number of foot Ibs. of energy stored in

the bar.

Ans. 1,220 foot Ibs.

15. A round bar of wrought-iron is 30 feet long and Ij inches

diameter. Find the tensile load which, if suddenly applied, would

cause an instantaneous elongation of the bar of O'l inch.

Ans. 3'07 tons.

16. A waggon weighing 5 tons, attached to a rope, is travelling

down a slope at 4 miles an hour, when it is suddenly stopped. If the

rope is 2j inches diameter, and its length 600 feet at the moment the

waggon is stopped, determine the maximum tension in the rope.

E= 30,000,000 Ibs. per square inch.

Ans. 24 tons, nearly.

17. A bar of steel is 10 feet long and 1 inch diameter. Elastic

limit 18 tons per square inch. Modulus of elasticity 33,000,000 Ibs.

per square inch. Determine the greatest weight that can be dropped
on to the bar from a height of 12 inches, and the alteration in length

of the bar.

Ans. 214'5 Ibs. ; 0161 inches.

18. A wrought-iron bar J inch diameter has two marks made on

it 20 inches apart, and it is found that in the testing machine this

distance is increased by "00416, '00832, '01248, '01664, '031 inches,

when the pull is 0'125, 0'250, 0'375, 0'500, 0'625 tons. Determine

the yield point and modulus of elasticity.

Ans. 12'5 tons per square inch
; 12,020 tons per square inch.

19. If the normal intensity of tensile stress on a transverse section

of a bar be 4 tons per square inch, determine the tangential stress on

a plane inclined to the normal section at an angle of 30
;
find also the

intensity of the resultant stress on that section.

Ans. ^3 tons per square inch
;
2 x ^/3 tons per square inch.

20. A bar of wrought-iron, 5 feet long, has to transmit shocks of

100 foot Ibs. without injuring its elasticity. If the limit of elasticity

is 30,000 Ibs. per square inch, and the modulus of elasticity is

25,000,000 Ibs. per square inch, find the sectional area of the bar.

Ans. I'l square inches.
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21. A tie-bar of wrought-iron, 25 feet long, has to resist a shock

whose energy is 200 foot Ibs. If the modulus of elasticity and working

stress are respectively 28,000,000 Ibs. per square inch and 10,000 Ibs.

per square inch, determine the sectional area of the bar.

Ans. 4 '48 square inches.

22. Through what height must 1 ton fall to produce a stress

equal to of the stress at elastic limit, supposing this latter stress is

produced by a shock whose energy is 1 foot-ton ?

Ans. ^ of a foot.

23. A cube of 6-inch side is fixed on one face, and a shearing

force of 150 tons acts on the opposite face. If the modulus of rigidity

equals 5,500 tons per square inch, find the strain, and the work done

in distorting the cube.

Ans. I-SYV 64 foot Ibs.

24. A bar of mild steel, 1 square inch in sectional area and

10 inches long, is extended by a pull by an amount 0'3 inch. Find

the lateral contraction.

E= 13,600 tons per square inch.

C= 5,200

K- 11,900

JLateral strain^ = 3K-2C
Longitudinal strain

.
QK + 2(7*

Ans. 0*0092.

25. If two tensions of 8 tons per square inch act on a plane, and

two compressions of equal magnitude act on a plane perpendicular to

the first, find the strain in the direction of each stress. Take the

same values of constants as given in Exercise 24.

Ans. T 2Vir'

26. Stresses of 7 tons per square inch and 5 tons per square inch

respectively act normally on two planes at right angles to each other.

If both stresses are tensile, find the total strain in the direction of each

stress. Use same constants as in Exercise 24.

Ana. '0004; '0002.

27. A weight of 20 tons is attached to a bar 4 square inches in

sectional area. Find the intensity of stress on a plane making an

angle of 30 with the cross-section.

Ans. 4*33 tons per square inch.

28. A bar, 4 square inches in sectional area, carries a weight of

20 tons. Find the normal and tangential stresses on a plane whose

normal makes an angle of 60 with the axis of stress.

Ans. 1*25 tons per square inch.

2-165
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29. Given that the principal stresses at a point are 6 and 5 tons

per square inch, both tensile, find the normal stress and tangential
stress on a plane whose normal makes an angle 30 with the first

stress. Determine also the resultant stress on this plane.

Am. 575 tons per square inch.

0-433

5-76

30. If in last exercise the stress of 6 tons per square inch is

tensile, and the stress of 5 tons per square inch is compressive, find

the normal and tangential stresses on the plane.

Am. 3 '25 tons per square inch.

4-763

31. Given that the principal stresses at a point are 6 tons per

square inch tensile, and 6 tons per square inch compressive, find the

normal, tangential, and resultant stresses on a plane whose normal is

inclined at 60 to the first stress.

Am. 3 tons per square inch.

5-1

6

32. In last exercise (31) find the same stresses on a plane whose

normal makes an angle of 45 with the first stress.

Am.
;
6 tons per square inch.

33. At a point within a strained solid the stress on one plane is a

tension of 80 Ibs. per square inch and inclined to the normal at 25
;

the normal component of the stress on a second plane through it at

right angles to the first plane is 50 Ibs. per square inch tensile. Find

the total stress on the second plane in magnitude and direction.

Am. 60*36 Ibs. per square inch inclined at 34 10' to the normal.

34. At a point within a solid in a state of strain the stresses on a

pair of rectangular planes through it are on AB a normal stress of

250 Ibs. per square inch
;
on CD a normal stress of 200 Ibs. per square

inch. The tangential stresses on each plane are of intensity 31 Ibs.

per square inch. Find the planes of principal stress.

Am. The inclinations of planes of principal stress to AB = 25 34'

and 115 34'.

35. The stresses on a steel bar normal to its cross-section vary
from a maximum tension of 30 tons to a minimum tension of 12 tons.

Determine the working stress, and the necessary sectional area.

Am. 7 '2 tons per square inch ;
4'2 square inches.

36. The stresses on a wrought-iron bar normal to its cross-section

vary between a tension of 24 tons and a compression of 12 tons. Find

the sectional area.

Am. 7'3 square inches.



CHAPTER V.

BENDING. BENDING MOMENTS AND SHEARING FORCES.

44. Bending.

Beams. A beam is the name given to any member of a structure

which is exposed to transverse stresses. The term girder is usually

applied to beams made of iron or steel, of a flanged form that is,

consisting of a top and bottom flange connected by a web.

A beam or girder is usually^ supported or fixed at the extremities

and loaded at points between them.

I I

A cantilever is a beam or girder fixed or encastre at one end, and

free at the other.

A continuous beam or girder is one supported at three or more

points.

1 t

When a beam rests on supports and is loaded with weights acting

vertically downwards, the upward or supporting forces at the points

of support are called reactions.

Forces which act upwards are considered positive, and those which

act downwards negative.
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45. Loaded beams.

The following conditions are assumed : (1) That the unstrained

beam is straight and has a longitudinal plane of symmetry.
(2) The bending forces are applied in that plane normally to the

axis. (3) That plane parallel normal sections of the unstrained

beam remain plane and normal after bending, radiating to the centre

of curvature.

When a beam is acted on by any load, the fibres on one side of the

beam are stretched, and those on the other compressed. If the beam
is supported at the ends, the lower fibres will be stretched and upper
fibres compressed. In a cantilever the upper fibres will be stretched

and the lower ones compressed. The surface which separates these

two portions of the beam, and which is neither extended nor com-

pressed, is called the neutral surface of the beam, and the line where

the neutral surface intersects any cross-section of the beam is called

the neutral axis of that cross-section.

In Fig. 78, AB is the neutral surface.

Fig. 78.

46. Stress at each point varies as its distance from the
neutral axis.

We shall assume that the strains lie within the elastic limit, and

consequently the strains and stresses follow Hooke's law.

In Fig. 80, a longitudinal section of a small portion of beam, let

CD and EF be two plane cross-sections, taken very close together,
which are parallel before straining, and become inclined to one

another when the beam is strained, radiating towards the centre of

curvature 0. NM- is the portion of neutral surface between the two
cross-sections

;
it remains unaltered in length, and the intersection

of this surface with cross-section of beam is called the neutral axis,
i.e. PQ of Fig. 79, which shows the cross-section of beam.

Let L (Fig. 80) be the original distanceNM between the two cross-

sections
;
R the radius of curvature of the neutral surface.

Draw GH through M, parallel to CD.
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Now if we consider any layer $/, which is at a distance y from the

neutral surface NM, or the neutral axis PQ, this layer has altered in

length from NM= SKto SJ.

G F

Fig. 79. Fig. 80.

Calling this alteration of length (JK) I, the strain = T .

LJ

This longitudinal strain must be accompanied by a longitudinal

stress, and if / is the intensity of that stress, f=E^.

Further - =
-^ by similar triangles.

pi
Hence f=^.i .(1),

where E is Young's modulus of elasticity, which we suppose the same
for all fibres of the beam.

Thus, the stress at any point of the cross-section oj the beam is
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proportional to its distance from the neutral axis that is, a uniformly-

varying-stress.

47. Stress in beams.

Let Fig. 81 represent a beam supported at both ends, and loaded

with weights Wly Wz ,
Ws . Let Rl and JR2 be the reactions at the

supports. Take PQ any normal cross-section and consider the separate

equilibrium of the portion of the beam on either side of the cross-

section. Now, stress being the internal resistance to deformation,

there must be equilibrium between the internal stresses and the

external forces. Thus the portion B of the beam is held in equi-

librium by the external forces RI and Wl ,
and the stresses which

A exerts on B. Consider the equilibrium of the portion B, and for

clearness imagine the two portions of the beam A and B to be

separated at the section PQ, as shown enlarged in Fig. 82, and

replace A by the stresses which it exerts at the section.

t

Q
R,

Fig. 81. Fig. 82.

The three statical conditions of equilibrium are :

(1) The sum of the vertical components of stress must be equal to

the sum of the vertical components of the external forces.

(2) The sum of the horizontal components of stress must be equal

to the sum of the horizontal components of the external forces.

(3) The sum of the moments of stress about any axis must be

equal to .the sum of the moments of the external forces about the same

axis.

SHEARING FORCE. By condition (1), since the portion B is in

equilibrium, and the loads acting on it are all vertical, the sum of the

vertical components of stress in the downward direction is

which is called the sliearing force. It tends to shear B from A.

w.



82 BENDING MOMENTS AND SHEARING FORCES [CHAP.

Similarly, by considering the equilibrium of the portion A we get
the shearing force

These shearing forces, the one on the right-hand portion of the

beam, the other on the left-hand portion, are equal in magnitude
but opposite in sign.

Next, consider the horizontal equilibrium of the portion B. The
external forces being all vertical have no horizontal component. As
to the horizontal stresses above the neutral axis the portion A tends

to push B to the right, but below the neutral axis A tends to pull B
to the left. For equilibrium it is necessary that the total push should

be equal to the total pull, or the total horizontal force at the section be

zero. Thus the horizontal components of stress constitute a couple.

48. Position of the neutral axis.

Now if we consider a very small strip of the cross-section of

area "a," distant y from the

neutral axis, Fig. 83, the total

push or pull on this small area

is

=/,
where / is the intensity of stress

on the area "a"

Summing up the forces on

all these elements of area com-

posing the cross-section, we must

have according to the above condition of equilibrium

NEUTRAL

Fig . 33.

or, since
, Ey/= -

E

or,

IS

-
0,

as -j^ is constant for all such elements of area.
1

Thus, the sum of the products of each element of area into its

distance from the neutral axis is zero
;
and this can be true only if

the neutral axis passes through the centre of gravity of the section.

49. Bending moment and Moment of resistance.

The third condition of equilibrium is that the sum of the moments

of all the internal stresses about any axis must balance the moments of

the external forces about the same axis.

Again, considering the equilibrium of either portion of the beam,

A or B, on one side of the section PQ, Fig. 81, the bending moment is
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the algebraic sum of the moments about an axis in the section, of the

external forces on one side of the section. The moment of the re-

sisting stress couple may be taken about any axis
;
for convenience it

is taken about the neutral axis, and this moment is called the Moment

of Resistance, or, the Moment of the Elastic Forces, and is equal in

magnitude, but opposite in sign, to the corresponding bending moment
due to the external forces.

Let /i, /2 ,
be the perpendicular distances from the section PQ to

R^ and R* respectively; and let alt #2 ,
#8 ,

be the distances from PQ
to TFi, W2) W3 respectively.

The bending moment with respect to PQ of all the forces on the

right of PQ is

JU-TF^,
and this is equal to the moment of the stress couple exerted on the

portion B at the section PQ.
The bending moment with respect to PQ of all the forces on the

left of PQ is

this is equal to the moment of the stress couple exerted on the portion
A at the section PQ and hence is equal in magnitude to the moment

It should be noted that the shearing force and bending moment

change sign, according as we consider the equilibrium of one portion or

the other of the beam at the section PQ.
In order to determine a relation between the bending moment and the

stress produced by it, consider as before the elementary strip of area a
distant y from the neutral axis on which the intensity of stress is /.

The force on this element of area is fa.
77T

Its moment about neutral axis is fay = -~ ay*.-K

The total moment of the stresses for whole area of section

The term 2a#
2

,
or the sum of all the small elements of area each

multiplied by the square of its distance from the neutral axis, is

termed the Moment of Inertia of the cross-section about that axis,

and is usually denoted by the symbol /. Let M = the bending
moment at the section.

For equilibrium we must therefore have

rr /

or, since -~ = by equation (1),& y

62
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Thus, the bending moment produces a uniformly varying longi-

tudinal stress the intensity of which f at distance y from the neutral

axs s

If y\ > 2/2
be the extreme distances from the neutral axis to the top

and bottom edges of the cross-section, and fi t fz the maximum stresses

corresponding to y^ and y^

The strength of the beam, or maximum moment of resistance to

bending, is determined from this equation.

R is the Radius of Curvature of the bent beam at the place under

consideration, and the curvature can be expressed as

/ M
S~jEy

r S~ EF

G

Fig. 84.

The stress due to bending may be graphically represented as in

Fig. 84, where CD is the side elevation of the cross-section on which

the stress acts. The neutral axis is at right angles to CD through P,
the centre of gravity of the cross-section. The stress varies uniformly

from P in direction CD. The greatest intensity of compressive stress

/i (= CF) occurs at C, and the greatest intensity of tensile stress
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/2 (= GD) occurs at D, and the stress at any point of the section is

equaT to the horizontal ordinate to the inclined line FG. Hence the

stresses may, as regards the whole cross- section of the beam, be

represented by a wedge-shaped figure (Fig. 85), where PQ represents
the width of the beam and CD the depth. The resultant stresses

above and below the neutral axis will be represented by the volume
of the wedge-shaped figures above and below that axis respectively,

and these resultants act at right angles to CD through the centres of

gravity of the triangles. To find the moment of resistance we can

either consider these forces with a leverage equal to the distance

between the two, or consider the effect of both round the neutral axis.

In either case we get for a rectangular cross-section

Moment of Resistance = ^ x x b x d = fj)d/
t

t22 o o

where /j is the intensity of stress at C (= CF}, PQ =
b, and

GRAPHICAL REPRESENTATION IN THE CASE OF RECTANGULAR BEAMS.

It is evident that if we take the cross-section of a rectangular beam
and draw the diagonals CD'
and C'D, we have a graphic

representation of the stresses

from the neutral axis to the

edges, and the shaded areas

COC' and DOD represent
the total tension and com-

pression. For if in Fig. 86,

CO' represents on any scale

the intensity of stress at the

top edge, distant y^ inches

from the neutral axis, then stress intensity y inches from neutral axis is

CC'x^=ab.

Hence the triangles COC' and DOD' represent areas of equal
resistance above and below the neutral axis, and graphically represent
the quantity and distribution of the resistance.

The moment of resistance can be obtained from these triangles

as before. If CO' = b, CD =
d, the area of the triangle COC' =

,

and the leverage of the MR = %d.

Fig. 86.

Hence
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BEAMS OF RECTANGULAR AND I SECTION. As the extreme fibres in

rectangular beams are the only parts of the beam exerting their full

working resistance, the rest of the beam might be proportionately

reduced in section. In timber beams this reduction of section is not

carried out in practice ; but in iron or steel beams this principle is

carried into effect, and beams of these metals are rolled in the shape of

letter I, or else built up of plates and angle-irons, concentrating the

material at the top and bottom edges of the cross-section in horizontal

flanges, which latter are connected by a vertical part or web.

50. Case of Simple Bending.

In this simple case, as illustrated in Fig. 87, the beam is acted on

by two equal and opposite couples. The reaction at each support is

VW YW

Aw * AW
Fig. 87.

equal to W, and there is no shearing force between B and C
;
for on

any section PQ this force equals

Again, between B and C the bending moment is constant, being

everywhere equal to Wa
;
and the curvature is therefore circular.

The stress at any section is a couple whose moment is Wa.

51. Bending moments and shearing forces on cantilevers

and beams.

In the case of a beam supported at both ends and loaded the fibres

above the neutral axis are in compression and are shortened, while

those below are in tension and are lengthened ;
so that the centre

of curvature is above the beam. In the cantilever the reverse takes

place.

We shall consider the bending moments in the first case positive,

while in the cantilever they are negative. In continuous beams, as

will be seen later on, the bending moments are partly positive and

partly negative.

A shearing force at a section is considered positive when it tends to

shear the right-hand portion of the beam upwards.
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When a beam is acted on by external loads, the bending moment

at a given section is equal to the algebraic sum of the moments about

the section of all the external forces acting on the portion of the

beam on either side of it
;
and the shearing force at any section is the

algebraic sum of all the external forces acting on either portion of

the beam into which the section divides it. We shall usually consider

the right-hand portion of the beam.

In a cantilever the bending moment at a given section is equal to

the sum of the moments about the section of all the loads between

the section and the free end of the cantilever
;
and the shearing force

at any section is equal to the sum of the loads between the section

and the free end.

In representing bending moments and shearing forces graphically,

when positive they are measured upwards above a horizontal datum

line, and when negative they are measured downwards.

CASE 1. CANTILEVER LOADED WITH A SINGLE WEIGHT AT THE

FREE END.

Let Fig. 88 represent a cantilever of length I fixed tangentially

at A and loaded with a weight W at the free end B.

Fig. 88.

a

d

w

Fig. 90.

At any section distant x from the free end the bending moment

Mx =
and the shearing force
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The bending moment evidently varies as a?, and at the fixed end,

where x = l, its value is

Max. M= - Wl.

The diagram of bending moment is a triangle as shown in Fig. 89,

where ad = WL The moment at any section K is represented by the

ordinate kg.

The diagram of shearing force is a rectangle as in Fig. 90, all

ordinates being equal to W.
It is well to note that the ordinates in the bending-moment diagram

represent expressions such as inch-tons or foot-lbs., whereas the ordi-

nates in the shearing-force diagram represent simply Ibs. or tons.

CASE 2. CANTILEVER WITH SEVERAL LOADS.

Let AB, Fig. 91, be the cantilever fixed at A, and loaded with

weights Wi, W2 ,
W3 , applied at distances x^ #2 > %$ from the fixed

end.

The bending moment at any section K, distant x from the fixed

end, is equal to

Fig. 91.

Fig. 92.

Fig. 93.
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The maximum bending moment occurs at the fixed end and is

equal to

The shearing force at section K
F=-(W1+

The shearing force at the fixed end

To draw the diagram of bending moments, Fig. 92, let ab represent
the cantilever

;
draw ad at right angles to ab to represent on any scale

of moments the moment of Wi about A, i.e. W^x^ ; produce ad to ./,

making de equal to W*x^ and, similarly, ef equal to W3xs ,
on the

same scale of moments. Let h be the point on bd vertically below

WZi and c the point on eh vertically below W3 ;
the polygon abhc/ will

represent the diagram of moments for the whole cantilever, and the

bending moment at any section K will be found by measuring the

ordinate kg of the polygon.
The shearing-force diagram is shown in Fig. 93.

The vertical ordinate at any section to the stepped figure gives the

value of the shearing force at that section.

CASE 3. CANTILEVER LOADED UNIFORMLY OVER ITS WHOLE LENGTH.

Let / be the length of the cantilever, and w the uniformly-distributed

load per unit of length. The total load Wwl.
In the case of a uniform load its weight may be assumed as acting

at its centre of gravity.

The bending moment at a section K distant x from the free end is

x warMx = -wx X
2
=
~ir-

The maximum bending moment occurs at the fixed end, where

x = I and MA = .

As Mx varies as the square of the distance, the successive moments

may be represented by the ordinates of a parabola, of which the free

end of the cantilever is the vertex.

The shearing force at section K is equal to

Fx = - wx.

Its maximum value at the fixed end,

FA = -wl = -W.
To draw the diagram of bending moments, Fig. 94, make ad on

wl2 Wl
any scale of moments equal to = . From d draw a parabola

passing through d and touching ab at b. The bending moment at any
section K is found by measuring the ordinate kg to the parabola bd.
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The diagram of shearing force is a triangle as shown in Fig. 95.

Fig. 95.

CASE 4. CANTILEVER LOADED UNIFORMLY OVER PART OF ITS LENGTH.

Let a be the length of the cantilever loaded with a uniform load w
per unit of length. Then, x being measured from the free end

For

Maximum at

x>a,

-wa(l-J.

x<a,For

Shearing force

For

For

To draw the diagram of bending moments, Fig. 96, consider the

-- a -->

Fig. 96.
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load as concentrated at its centre of gravity and lay off ad as for a

single load wa at c, the ordinate ee being equal to . Draw the

straight line ce'd and the parabola be ;
then bed will be the curve of

moments. The shearing-force diagram is shown in Fig. 97.

Fig. 97.

CASE 5. CANTILEVER LOADED WITH A WEIGHT AT THE FREE END,

AND WITH A UNIFORM LOAD.

Let W be the weight at the free end, and w the uniform load

per unit of length. Then

and maximum bending moment

The shearing force at any section,

IK.

W

X
a

Fig. 98.

uit

Fig. 99.
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The maximum value at fixed end,

Diagrams. The curves of bending moment and shearing force

are shown in Figs. 98 and 99, the ordinates of which in each case

are equal to the sum of the ordinates of the diagrams for each load

taken separately.

CASE 6. CANTILEVERS PROJECTING OVER ONE SUPPORT, LOADED WITH

A WEIGHT W AT ONE END, AND ANCHORED DOWN AT THE OTHER.

(Fig. 100.)

Let P be the force acting at (7, R the reaction at A. Then

P x CA = W x AB.

In Fig. 101 if ad is set down to represent the moment W x A,
then cdb is the diagram of bending moments

; or, for illustration, we

may consider the moment W x BC. Set down ce on the same scale as

before to represent W * BC
;

this must also be equa\. to R*AC
and the triangle ced will be the diagram of moments for the reaction

R
;
the ordinates fg, &c., being measured upwards from ed, and the

bending moment at any section K (being the difference of the moments
of W and R) will be kg, the difference between the ordinates kf
and fg.

Fig. 100.

a

Fig. 101,

52. Beams supported at both ends.

To find the bending moment at any section : Take the algebraic

sum of the moments (about the section) due to the reaction of either

support and to any loads between that support and the section in

question.

The shearing force at any section is equal to the algebraic sum of
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all the external forces (including the reaction) acting on either side of

the section.

The first thing to be done is to find the reactions. In symmetri-

cally-loaded beams each reaction is evidently equal to half the total

weight ;
in other cases the reaction at either support is obtained by

taking moments round the opposite support. The sum of the reactions

must be equal to the total load on the beam.

CASE 7. BEAMS SUPPORTED AT BOTH ENDS AND LOADED WITH A

SINGLE WEIGHT.

Let AB (Fig. 102) be the beam loaded with a weight W at C.

Let AB =
l; AC=a.

7

Reaction at A = R% =

Reaction at B = R,=

I

w
-------Z-a----

W
wa

Fig. 102.

w ^
v^>

Fig. 104.
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The bending moment at any section K between B and C is

The maximum bending moment occurs at (7, where the load acts,

and here

/

For any section between A and C the bending moment is

/ 7 \T TXT" ^

or it is R2 (I #)> which

-

Fig. 103 gives the graphical representation, where aeb is the

diagram of moments, ce representing on any scale the moment

y-
--

,
and the moment at any section K is the ordinate kg.

This diagram can also be got by considering the contrary moments

of RI and W about A. In figure ad represents the moment of R
round A, and also the moment of W round J., these moments being

equal. The bending moment at any point P is sq sp^pq.
The shearing-force diagram is shown in Fig. 104, where the positive

shearing-force in the right-hand portion is equal to R^ 9
and the

negative shearing-force in the left-hand portion is equal to 722 ,
2.0.

R,-W.
CASE 8. SINGLE LOAD W AT THE CENTRE OF THE SPAN.

W
The reactions are each = -

,
and the bending moment at any

i

section distant x from B is M=R^ and the shearing force

W

For any section between TFand R^ M
The maximum bending moment is at the centre, and its value is

/ Wl
*t"~r-

The diagrams of bending moment and shearing force are sketched

in Figs. 105 and 106.

In Fig. 105 ad represents the moment of R^ round A = -;
~2

then, completing the triangle, we see that

, ad Wl
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W

Qc

Fig. 106.

CASE 9. BEAM SUPPORTED AT BOTH ENDS AND LOADED WITH TWO

OR MORE SEPARATE LOADS.

Let / be the length of the span, and W1} W2 ,
W3 the loads at

distances a1} a2 , as respectively from the left support (Fig. 107).

Then
I

W3 (l-a3)

I

To find the bending moment at any section K distant x from the

right support, let a?t ,
#2 , #3 represent the distances of the several

weights from this section. Then, considering the right-hand portion,

we get M=Rl
x- W3x3

- JF2#2 .

The diagram of bending moments may be drawn by drawing the

diagrams for each load separately, in the first instance, and then

combining them by adding the ordinates as in Fig. 107, where

cc' = ch + cg + cf; or, second method, by calculating the bending
moment at the point of application of each weight when all the

weights rest on the beam, and drawing the ordinates cc', dd', ee
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"->

W.

W,

Fig. 109.
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(Fig. 107), equal to the moments at C, D, and E
; then ac'd'e'b will

be the diagram for beam
; or, the following purely graphic method

(Fig. 108).

From a draw the ordinate aj = EJ, I being the span, and join jb,
on the line aj mark off af= W^, fh= W2a2 , hj = W3a3 . The sum
of these three ordinates must be equal to ffj, since 3<Wa, =Rl l, as

there is no bending moment at the pier A. Join h with e, the point
where jb meets the line of W3 ; / with d' the point where he' meets
the line of Wz ;

let the line of Wi meet fd' in c, then ac'd'e'b is the

diagram of moments.

The bending moment at any section K is given by the ordinate kgt

for at this section

M R^x WsX% TF"2#2
= let - ts sg

=
kg.

The shearing force diagram is shown in Fig. 109.

CASE 10. BEAM SUPPORTED AT BOTH ENDS, AND LOADED THROUGHOUT
ITS LENGTH WITH A UNIFORMLY-DISTRIBUTED LOAD.

Let / be the length of the beam, w the uniform load per foot run

then, if W is the total weight, W = wL The reaction at each support
wl

is . At any section distant x from the right-hand end the bending

moment

(1).

This is a maximum when x
,

(dM l\
,

- = when x = -
1 :

\dx 2/
'

iuf M wl* Wl
.. Max.Jf= --= =

.

Equation (1) is that of a parabola, the origin of coordinates being

at a point on the curve distant - from the axis
;
hence to draw the

2>

diagram of moments (Fig. 110), set up the ordinate cd from the centre

to represent ,
and draw a parabola passing through adb.

o

The bending moment at any section K is given by the ordinate kg.
The bending moment curve can also be drawn by setting up the

wP
ordinate ae=

-^-,
that is the moment of R^ about A. Join be, then

for any value of x set down from this line be the ordinate fg ^-
,

2

then g is a point on the bending moment curve, and any number of

points can be found by taking different values of x.

w. 7
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The bending moment at K distant x from right-hand end is

wx*

Fig. 111.

The shearing force at any section distant # from the right-hand

end is F=Ri-wx = w(- - x\ (2).

^ is positive when x is less than -
,
and negative when x is greater

than-.

X =
Z>
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The diagram of shearing force is sketched in Fig. 111. It may be

noted here that the bending moment is a maximum where the shearing

force changes sign, since -3
= F, and the value of x when M is a

dM ^maximum is got by equating , to zero.

7/7

For, as shown, M= - x (I #), equation (1) ;

dM (I \ T7 J ~/A\
.'. -= = w ( x

)
= F, equation (2).

dx \2 /

CASE 11. BEAM SUPPORTED AT BOTH ENDS AND LOADED WITH A

UNIFORM LOAD OVER A PORTION OF ITS LENGTH NEXT TO ONE SUPPORT.

Let AB be the beam of span / feet supporting a load of w per foot

distributed over a length a next the support A.

Then .Bi =^;

At any section distant x from the right support, which includes a

portion y of the uniform load, the bending moment is

Fig. 112.

To draw the bending moment diagram (Fig. 112), set up the
2

ordinate of to represent RJ, which also represents
-
r ; join ./ft, and

2a

72
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let the vertical through C meet this line at d. From the line df set

down the ordinate kg to represent
~

,
then g is a point on the

bending moment diagram, and a series of points can be thus got for

different values of y. agdb is the bending moment diagram, of which

the portion agd is a parabola and db is a straight line.

M= R^x = kh-hg =
kg.

2

Or, another method is to consider the length AC as if it were a

beam supported at A and C, and loaded uniformly. On ac draw the

parabola amc for the uniform load, make cd equal to the moment of

RI about C. Join ad, and draw the vertical ordinates above ad equal

to the ordinates of amc. agndb is the bending moment diagram.

The diagram of shearing force is sketched in Fig. 113.

-R

Fig. 113.

CASE 12. BEAM SUPPORTED AT BOTH ENDS AND LOADED UNIFORMLY

OVER A PORTION OF ITS LENGTH, NOT EXTENDING TO EITHER ABUTMENT.

Let AB be the beam of span /, loaded over the portion CD with a

weight w per unit of length.

Let CD =
a, BD = z.

The total load on beam = wa.

The reactions are

wa

2
= wa

The bending moment at any section between B and D, where x is

the distance of the section from right support, is

For any point between C and D
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For any point between G and A

jjJL -.Tl/2 ( L 9Gj J%/\ Ou tA/Gv ~\ 00 "~"\^'7x/r
i \ ^/J

Diagram of bending moments (Fig. 114).

^. L ^f

Z J

101

R.

Fig. 115.

Let a represent the beam, the load extending over the portion cd
;

e is the centre of cd. First consider the weight of the whole load as

if it were concentrated at E, the central point of CD. Draw the

diagram afb for this load as in Case 7. Then consider the length CD
as if it were a beam supported at C and D, loaded uniformly. Draw

the parabola cmd for this load as in Case 10. From c and d draw

verticals eg and dh meeting af and bf at g and h respectively. Join

gh and draw vertical ordinates above gh equal to the ordinates of cmd.

Then agnhb is the diagram of bending moments.

The diagram can also be got as in the previous case, by setting up
the ordinate ap to represent RJ. Join pb, then curved portion of
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diagram can be got by setting down from hs ordinates at different

(% _ \2

points to represent w v
.

The shearing force diagram is shown in Fig. 115.

CASE 13. BEAM LOADED WITH A UNIFORMLY DISTRIBUTED LOAD
AND A SINGLE CONCENTRATED LOAD.

Let AB (Fig. 116) be the beam of length /, supported at A and B,
and carrying a uniformly distributed load of intensity w, together with

a weight W at the point C.

Let JSC=a; CA=b.

Fig. 117.

In all cases such as this, where the loading is not continuous, but

changes abruptly at one or more points of the span, it is necessary to

consider separately each portion of the beam between the points of

discontinuity.

The reaction at B

The shearing force F at any section between B and C distant x

from B is

wl TTr b
RI-WX = + W -, wx.
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At*, F=R^+W\.
MO, F^+Wj-wa.2 L

The shearing force, Fl} at any section between C and A distant x
from B is

R1
- W-wx = WJ + Wj- W-wx

2 I

wl Jjr a

MA,

FI at C is positive or negative according as < W 7 + wa.
2 I

To draw the shearing foi

through B^ Clt A l set off

To draw the shearing force diagram (Fig. 117). On the verticals

L to represent R1
= + Wj2 I

T, r
+ W

j-

Join LM and NO
;
this completes the diagram.

Bending moments. The bending moment at any section between

B and C is

Ate, jf

At any section between C and

The bending moment diagram is drawn as shown in Fig. 116.

First consider the weights of the uniform loads on the segments a
and b as concentrated at their centre points ;

then draw the diagram
BDEFA as in Case 9 ; and draw parabolic arcs

;
one for the portion

a, tangential to DE and DB at E and B ; the other, for the portion

b, tangential to FE and FA at E and A.
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53. Relation between bending moment and shearing
force.

(a) Concentrated loads.

Let AB (Fig. 118) be a beam of length /, supported at A and B,
and loaded at C, D, E, ... with weights Wlt Wz ,

Ws ,
....

Let !, 2 , #3) be the lengths of the segments BC, CD, DE,

i

jW*
iW3 IW2 iWi

r Otf4~" >* T""a-""T~ ^-T-^

The reaction
Fig. 118.

The shearing force Fl between B and C = R^ ,

..................... F, ......... C ... D = R,

..................... F, ......... D ... E = R,

The bending moment at C =MG =

Thus, the difference between the bending moments at the beginning
and end of any segment between two consecutive weights, is equal to the

shearingforce in that segment multiplied by the length of the segment.

(b) Distributed load of uniform intensity, or of continuously

varying intensity.

Consider two sections KK' and LL (Fig. 119) of a beam at a very

small distance dx apart.

Fig. 119.

Let M and F be the bending moment and shearing force at cross

section KK'
;
M' and F' the bending moment and shearing force

at LL'.
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Let w be the intensity of the load between the sections. Then

F-F ' =

and taking moments about LL'.

H T> T\/T -I7IJ
WM =M + Fdx +

,

as dx is very small (dxf may be neglected.

.'. M'-M=Fdx.
Let dF represent the difference between the shearing forces, and

dM the difference between the bending moments
;
then

From (1) we see, that if a curve of loading be drawn, an ordinate

of which at any section gives the load per foot run at that section,

then the shearing force \F= \ wdx + c
)
at any section is equal to the

\ J o /

area of the load diagram between the end suppoi~t and the section.

From (2) it follows, that the shearing force at any section is equal to

the rate of change, or increment per unit length of the bending moment ;

and since to find the section where M is a maximum, we equate -j

to zero, we see that M is a maximum where the shearing force changes

sign, i.e. where F- 0.

Again (Fig. 120),

-
dx

hence, in the diagrams of bending moment and shearing force, the

ordinate of the shearing force diagram at any point measures the

tangent of the slope at the corresponding point of the bending moment

curve
; also, the difference between the bending moments at any two

sections of the span is equal to the area of the shearing force diagram
between the same two sections.

Thus, in the case of a uniformly distributed load (Fig. 120) :

The bending moment at the centre of span = the area acd of the

shearing force diagram

= 1 wl I ^wj?~
2

'

2
'

2
~

8
'

and the ordinate EG of the bending moment diagram is equal .to the

area of the shaded portion of the shearing force diagram.
It is important to note that when the intensity of the load is

constant or varies continuously, the equations

dM -, , dF
-j- = F, and -j-

=w
dx dx
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can be readily integrated as w and F are functions of x
;
but in the

case of a girder loaded with a series of loads concentrated at different

points of the span ;
or with a combined uniform load and concentrated

loads ; the loading becomes discontinuous, and the equations can only

be applied between any two consecutive points at which concentrated

loads act.

S.F. .DIAGRAM

Fig. 120.

54. To show the relation between the polygon formed

by a hanging chain, loaded with any system of weights, and
the bending moment diagram for a beam similarly loaded.

Let AB be the beam (Fig. 121), loaded with weights Wl} Wz >

R! and R.2 the reactions at supports.

For any section C of the beam, the bending moment

(1).

The force polygon is a vertical line. Take any pole 0, and

describe the funicular polygon A'C'B' (Fig. 122), which is the form

a chain would assume if loaded similarly to the beam. Consider the

section of chain at C' vertically below C. Resolve the stress at C'

into two components, one vertical, the other parallel to A'B'. The

component (H) parallel to A'B' is the same for all sections of the

chain. Also' resolve the force on the chain at B' into a vertical com-

ponent, which must be equal to R^, and a component along A'B'

which is equal to H.
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To consider the equilibrium of the portion of chain on right of C',

take moments about jE", and let the vertical ordinate

Then

(2).

H

Fig. 122.

Comparing (1) and (2),

M=HD.
Since Z? s constant, D the ordinate of the funicular polygon is

proportional to M, the bending moment on the beam. Thus the

funicular polygon is a diagram of bending moments. If the scale be

chosen so that H= unity, then
M=D.

55. Examples on bending moments.

Example I. A BEAM SUPPORTED AT BOTH ENDS CARRIES A DIS-

TRIBUTED LOAD, VARYING IN INTENSITY AT A UNIFORM RATE FROM ZERO

AT ONE END TO W PER FOOT AT THE OTHER. SKETCH THE CURVES OF

BENDING MOMENT AND SHEARING FORCE.

Let l =AB = length of span. ABE represents the load.

Let W = total load (Fig. 123).

Then
3'

and
W
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Fig. 125.
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Take any section D distant x from A, then total load on AD =W j2

acting at distance from D
;
and

o

x
x -;

o

=?('-?) ...........................

This is = when x -^ .

-VJP

Substituting this value of a? in (1),

,, ,, W I /
'

1\
Max. Jf= - - ML - -

)

3 x/3\ 3/

To trace the bending-moment curve.

When a?=0, Jf-0;

, r3D==
y
M=

V3 x
7 9TF7

Take ^1^ (Fig. 124) =-j=. and erect the ordinate RS = ?-~, then
v 3 9 v 3

8 is a point on the curve of bending-moment, and tan 6 =-
; if

y

therefore we bisect RS in L and produce RS to making SO = SL,
then the inclination of the line A

3W I I ZW W
tan -

.
--=. = -- -

9 x/3 N/3 9 3
'

which is the inclination of the bending moment curve at A. If at G
(the centre of gravity of load) we erect a perpendicular to meet A at

X and join XB we get the inclination at B.

Shearing force at D
- Tt W X*

--
-fii ~z>

(this equals -p , see equation 2).

W
When # = 0, F=R,=~
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Shearing-force curve from equation (3) is evidently a parabola as

sketched in Fig. 125.

Example II. BEAM HINGED AT ONE END AND OVERHANGING A PIER,

LOADED AT THE FREE END, AND BETWEEN THE SUPPORTS.

The reaction R is got by taking moments about A.

R*BA = W*AC + W^AD.
In Fig. 126 ae represents W * AC

;

of represents W x AD
; v

.'. ef represents R x AB.

Joinfh and am, then amhc is the diagram of moments.

The bending moment at an section K is given by the ordinate kg.

M&t K=<R x BK- Wx CK- Wl
x DK-,

= rs - rk - gs ;

X
o:

JLJt-

Fig. 126.

Fig. 127.



BENDING MOMENTS AND SHEARING

If, as in figure, m is above

hogging from n to c.

The point n where the

contrary flexure.

The shearing force diagjf

)ove
q$)

i
the

ature chan* tiled

sketched in

-
The following nuineri^al^,examples|ofr'ovd(&anging

easily understood by the student without further expla^
are worked on the

principles^lready fully explain*

diagrams only are given.j
k

Example III.
*

BEAM A C OF LENGTH 50 FEET, su|

AND OVERHANGING THE PlER B, LOADED WITH 10

40 TONS AT D.

SCALES _
12 FT = I INCH,

400 FT TONS = / INCH.
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Example IV. BEAM AC, LENGTH 50 FEET, OVERHANGING THE

PlER B, LOADED WITH A WEIGHT OF 10 TONS AT C, AND A UNIFORM

LOAD OF 1 TON PER FOOT BETWEEN A AND B.

1 TON PER FOOT RUN. DC
P

I I?

k- X

SCALES -

Y/0T.

C

OC-IO ; -^ = s
.2

= ZOO

3C=30 ;



v] BENDING MOMENTS AND SHEARING FORCES 113

Example V. BEAM OVERHANGING TWO PIERS, LOADED WITH 20 TONS

AT EACH END, AND 50 TONS IN CENTRE BETWEEN THE TWO PlERS.

2O Fr =1 /MCH.

eoo f r rows

w.
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Example VI. BEAM, LENGTH 90 FEET, OVERHANGING TWO PIERS,

LOADED WITH 20 TONS AT EACH END, AND A UNIFORM LOAD OF 1 TON

PER FOOT RUN BETWEEN THE PlERS.

1400
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EXERCISES.

1. A cantilever 20 feet long supports four loads of 5, 6, 7, 8 tons,

situated at distances from the fixed end of 20, 16, 10, 5 feet respec-

tively. Find the bending moments at the fixed end, and at a section

12 feet from the fixed end.

Am. 306 foot-tons
;
64 foot-tons.

2. A cantilever 30 feet span carries a uniform load of 2 tons per

foot, and, in addition, has a concentrated load of 5 tons at the free

end. Find the maximum bending moment, and also that at the centre

of span .

Ans. Max. M= 1050 foot-tons ;^fcentr = 300 foot-tons.

3. A beam 25 feet span supported at both ends .carries a uniform

load of J ton per foot run distributed over its length ;
also two con-

centrated loads of 2\ tons at l^feet and 5 tons at 20 feet from the left

support. Draw the curves of shearing force and bending moment.

Find the section where bending moment is greatest and its value.

Ans. 55 foot-tons at the 2j tons weight.

4. A girder 60 feet span, supported at both ends, is loaded

uniformly for a distance of 25 feet from the left support, with 2 tons

per foot run. Find the bending moments at (a) centre of span ; (b) at

end of load
; (c) at centre of uniform load.

Draw curves of bending moments and shearing force.

Ans. 312'5 foot-tons
; 364'6 foot-tons

;
338'4 foot-tons.

5. A beam, length 40 feet, supported at both ends, is loaded

throughout its length with a uniform load of Ij tons per foot run.

Find the bending moment and shearing force at J, J, and J the span
from left support.

Draw diagrams of bending moment and shearing force.

Ans. 131J foot-tons
;
225 foot-tons

; 300 foot-tons
;
-
22J tons ;

- 15 tons
;

0.

6. A beam AD, 40 feet long, is supported at two points B and C,

so that AB = 8 feet, 5(7=20 feet, CD =12 feet. Weights of 5 tons

and 6 tons rest on the extremities A and Z>, and a weight of 12 tons

at centre of CB. Find the bending moments at B and C, and at the

centre of CB.

7. If in last example the central portion BC is loaded with a

uniform load of 2 tons per foot run, find bending moments at same

places.

8. A beam 50 feet span, supported at both ends, carries con-

centrated loads of 15 tons, 35 tons, and 20 tons, situated at 5, 20, and
35 feet respectively from the left support. Find the bending moment

82
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at the line of action of each of these weights, and draw curves of

bending moment and shearing force.

Ans. 202 '5 foot-tons ; 585 foot-tons
;
442 '5 foot-tons.

9. Draw the shearing-force diagram for a beam 24 feet long,

loaded with Ij tons per foot, and from it find the bending moment
at 6 feet and 12 feet from either support.

10. Two cantilevers, each 50 feet long, placed so that their free

ends abut, are loaded with two tons per foot
;
show that the bending

moment at any section equals 2,500 foot-tons, less the bending moment
-at the same section for a beam the length of the two cantilevers,

loaded in the same way and supported where the cantilevers are

fixed.

11. A beam supported at both ends and 35 feet long, is loaded at

each intermediate 5 feet with a weight of 2 tons
;
draw the bending

moment diagram, showing the contribution of each load to the bending
moment at every point.

12. A straight prismatic balk of timber floats in a horizontal

position with a weight W at the centre. Draw curves of bending
moment and shearing force.

13. A girder, span 120 feet, carries a uniformly distributed load

of \ ton per foot run, and a central load of 20 tons. Find the

bending moment and shearing force at a section 30 feet from either

support.
Ans. 975 foot-tons

;
25 tons.

14. A beam is placed horizontally upon two supports 14 feet

apart, and projects at each end 5 feet beyond the support. A load of

2 tons is placed at the centre of the span, and a load of 3 tons is

placed at each of the projecting ends. Calculate the bending moment
at the centre and at each support, and sketch the diagram of bending
moments.

15. A beam ABCDE of length 32 feet is divided into 4 equal

parts of 8 feet each by the points BCD. Draw the diagram of bending
moments for the following cases :

(a) Beam supported at A and E, loaded at D with 10 tons.

(b) Beam supported at D and B, loaded with a uniform load of

1 \ tons per foot from to D and 3 tons at A and E.

16. A girder, 30 feet span, supported at the ends, carries a uniform

load of 2 tons per foot run extending from one support to the centre of

span ; also two loads of 6 tons, one at 8 feet from the left support, the

other at 8 feet from the right support. Draw the bending moment and

shearing force diagrams.
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17. A girder, 40 feet span, supported at the ends, carries a uniform

load of 1 J tons per foot run, which covers the whole span ;
also two

concentrated loads of 6 tons and 10 tons at 8 feet and 24 feet respec-

tively from the right support. Draw the bending moment and shearing
force diagrams.

18. For a uniformly loaded beam, show that the area of the

load curve is proportional to the ordinate of the curve of shearing

force, and the area of the curve of shearing force proportional to the

ordinate of the curve of bending moment. Apply this to find the

curves of shearing force and bending moment in the case of a beam,
the load on which is zero at the ends and increases uniformly towards

the middle, proving that the maximum bending moment is ^ Wl.

56. Rolling loads.

A live or rolling load is one which travels over a beam or girder,

and occupies different positions at different times. A railway train or

traction engine passing over a bridge are examples of a live load.

Owing to the load being suddenly applied on a bridge by a train

coming on to it with high velocity, and the oscillations set up, and

the alterations of stress, which are produced, it is necessary to consider

the effect dynamically as well as statically. At present the static

effect only of moving loads will be considered.

CASE l. BEAM SUPPORTED AT BOTH ENDS, WITH A SINGLE LOAD W
ROLLING ACROSS.

Suppose the load to travel over the beam from A to B. Let / be

the length of the span. Consider any section K distant x from left

support.

BENDING MOMENT. As the load travels from A towards K the

bending moment at K is Rl (I
- x\ and as R^ keeps on increasing, the

bending moment increases. After the load passes K, the bending
moment at K diminishes since its value is now Rz

x #, and R%
diminishes as the load rolls on. Therefore the maximum value of the

bending moment at K occurs when the load is at K, and

Max. MK=R1 (la), or R2x

7 /-#= W
j-

x.

The diagram of maximum bending moments is therefore a parabola

I Wl
the ordinate at the centre, where # = -

, being
-

. (Fig. 128.)

SHEARING FORCE. The shearing farce at K as the load moves

towards the section from the left is positive, and equal to It^. This
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positive shearing force at K increases with R^ as the load moves

towards K, and when W is indefinitely near to K its value is

W
+

I*'
When the load just passes K the shearing force becomes negative,

and equal to

W W
^x-W=-^(l-x}

= -R,,

and as the load moves on towards B the shearing force atK diminishes

numerically as Rz diminishes.

K

X
I

B

Pig. 128.

Fig. 129.

Therefore the greatest positive shearing force at any section W-
I

occurs when the load is infinitely near to the section on the left side,

and the greatest negative shearing force when the load is infinitely

near to the section on the right side, its value beingW n \-
(l-x).

Hence, if W travelsfrom A to B, the successive maximum shearing
forces at the several sections of the span are represented by the

ordinates of a triangle abc (Fig. 129), in which be is equal to W, the

shearing forces being all positive. If W travels from B to A, the

maximum shearing forces are all negative, and are represented by the

ordinates of an equal triangle abd.
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CASE 2. Two CONCENTRATED MOVING LOADS AT A CONSTANT

DISTANCE APART.

Let AB represent the beam of span =1, Wi and W2 the two loads,

a the distance between them (Fig. 130).

MAXIMUM BENDING MOMENT AT A GIVEN SECTION. The maximum

bending moment on a given section occurs when one of the loads is at

the section.

First, suppose Wl at the given section whose distance from A is x.

R. i iz R n

Fig. 130.

A H

Then the reaction

and the bending moment is

Fig. 131.
B

X TTT- X
(1).

V V

Next, suppose W2 at the section, with Wl on the left of it
;
then

and the bending moment is

M2
= RAx - Wid, or RB (I

-
x)

(2).
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This last equation shows that M2 will be greater or less than Mlt

according as W^x is greater or less than W^ (/
-

x}.

Let W2 be > W19 and let AF be the value of x when

so that AF-.FB :: W, :

then when x>AF,

and when x<AF, M^ is>M2 .

TO FIND THE POSITION OF THE SECTION WHERE THE GREATEST

MAXIMUM BENDING MOMENT OCCURS. First consider the bending
moment on any section between A and F. When Wi is at this

section, the bending moment is given by equation (1) ;
and differ-

entiating for a maximum
'

. _ z

~2 2(Wl+W2)

'

Next consider the bending moment on any section x^ between F
and JB, measured from A. When W2 comes on this section, the

bending moment is given by equation (2).

For a maximum differentiate, and

I W,a*i
=

2
+
2(jF1+ r2r

.................... (4);

or, if the distances of the maxima bending moments be measured

from the centre, they are, for the left portion, 7
2

T ,
and for

2
(
H7

! + W 2 )

W a W a
the right portion,

l -
. But the expressions ^T

2

TT^ and
^ ( Jr i + rr^) rr i + Vr %

r ^TXT represent the distances of TFi and W2 respectively from

their common centre of gravity, which is in the line of action of their

resultant. The absolute maximum bending moment occurs under the

heavier load
;
when this load and the resultant of the two loads are

equally distant on opposite sides from the centre of the span.

When the loads are equal

_l Wa _l a~~~2 4'

Hence the position of maximum bending moment will be on either

side of the centre, and at a distance = \a from it.

The values of the greatest maximum bending moments may be

found from equations (1) and (2), by substituting for x and xl the

values given in equations (3) and (4). The diagram of bending
moments (Fig. 131) will consist of two parabolas intersecting vertically
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below F, one passing through A and E, where BE is the distance of

W^ from centre of gravity of W\ and W^ and the other passing

through B and H, where AH is the distance of W2 from centre of

gravity of W and W2 .

Example I. A truck with 3 tons on the left wheel and 7 tons

on the right, with wheels 10 feet apart, travels over a beam of

40 feet span. Find the section of the beam which has the greatest
maximum bending moment, and its amount.

Here ^ =
3, JT2 = 7, /=40, a = 10.

From equation (3),

40 7x10

Substituting this value of x in (1)

M= 10 x ie

From equation (4),

M= 10 x iej x S - 7 x x 16i = 69-4 foot-tons.

40 3 x 10

2(37)
Substituting this value for x in equation (2),

M= 10 x 18 J x ?1 - 3 x * * 18^ = 83-2 foot-tons.
40 40

Hence, the absolute maximum bending moment occurs in the

right half of the beam, at a distance of 1*5 feet from the centre, and

its value is 83 '2 foot-tons.

Example II. A truck with 3 tons on the leading wheel and 7 tons

on the back wheel, axles 8 feet apart, crosses a bridge 40 feet span.

Find the position and value of the greatest maximum bending moment.

Here JTi = 7, TTa
=

3, a = 8, J = 40.

From equation (4),

= 22-8 feet.

Substituting this value of x in equation (2),

M=^^ (172 + 56)
- 56 = 73'96 foot-tons.

From equation (3),

Substituting this value of x in equation (1)

M= {10 x 21-2 -(3 x 8)}
i~ = 88-36 foot-tons.

The absolute maximum bending moment occurs in the left half of
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the span at a distance of T2 feet from the centre, and its value is

88'36 foot-tons.

Shearing Force. Consider the loads as in figure, Wi being the

leading load, crossing from A to B (Fig. 132).

As the front load TFi approaches any section K the positive

shearing force at ./T increases, since its value is RB ,
and the maximum

positive shearing force occurs when Wi is at an infinitely small distance

to the left of K.

u- a -*1

Fig. 132.

When Wl passes K this shearing force at K is diminished by the

amount TFi ;
as Wl moves on from K towards B the value of +FK

increases, on account of the advance of JFi towards B and the approach
towards K of the load W2 ,

but when Wz just passes K there is another

diminution in the value of + FK ,
followed by a gradual increase until

TFa reaches B.

The maximum positive shearing force occurs when the front of Wi
is at K, and the maximum negative shearing force when the back of W2

is at K.

Diagram of Shearing Force (Fig. 132). Draw the vertical be

equal to TFi ; join dc
;
the ordinates to this line represent the greatest

positive shearing force due to Wl alone.

Produce the vertical be to g, making eg
=W2

j ,
and join gf,

where / is a point in dc distant a from d.
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CASE 3. BEAM SUPPORTED AT BOTH ENDS, CARRYING A MOVING

LOAD OF UNIFORM INTENSITY, OF LENGTH GREATER THAN THE SPAN.

The greatest bending moment on a section occurs when the load

covers the entire span; for any load placed anywhere on a girder

increases the bending moment on any section, and the bending moment
is therefore greatest when the whole girder is covered.

The curve of bending moment is a parabola through A and B, the

Wl wl2

ordiuate at the centre being
- - or - -

(Fig. 133).
o o

Shearing Force. Suppose the load to travel from left to right ;

the shearing force at any section K has its greatest positive value

Fig. 133.

Fig. 134.

when the load covers the portion of the beam lying to the left of the

section, and its greatest negative value when the load covers the

portion of the beam lying to the right of the section.

When the load occupies the position in figure the shearing force

at .AT is positive, and equal to MI. If the load move on a little so as

to pass K) then MI is increased by a portion only of the weight so
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added, but the downward force to be subtracted from R l is the whole

amount of that added weight, and the resultant, which is the shearing

force, is diminished.

When the train covers AK,

(1).

When the train covers KB
w(l-xf

.(2).

The shearing force diagram is shown in Fig. 134. The curves are

parabolic, the equations of which are given in (1) and (2) respectively.

When the train load travels from left to right, the shearing force at

the head of train is positive, and is represented by the ordinate from ab

to the parabola ac, having its vertex at a and maximum ordinate

be = + -*

If the load travels in the opposite direction (right to left), the shearing
force at the head of train is negative, and is represented by the ordi-

nates of the equal parabola bd, having its vertex at b and maximum
ordinate

ad = -

The maximum shearing force at a given section for any position

of the load, occurs when the head of the train (leading axle} is at

the section, and the load covers the longer segment of the span.

CASE 4. BEAM SUPPORTED AT BOTH ENDS, LOADED WITH A MOVING

LOAD OF LENGTH LESS THAN THE SPAN.

Let I = length of the span ; a be the length of the load
;
b distance

of any section K from the left abutment
;
x = distance from right-hand

end of load to section K
;

?
= unit of weight of the load (Fig. 135).

R2 ^--a--*

X

Fig. 135.
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To find the Maximum Bending Moment K.

MfRtQ-b)
wa

For a maximum ~r^ ;ax
wa , , , .

or --
(l-b)- wx = Q-,

substituting this value of # in (1),

Maximum bending moment at

wa ( 7 a ... 7N

To find the ordinate at centre put b = - and wa = W
;

TI^ wa ^i \ Wl Wa /0> .

lfo=-^-(2/-a)
=
-j
--- .................. (2).

The curve of maximum bending moment is a parabola with central

ordinate

Wl_Wa48
Maximum Shearing Force. The maximum positive shearing force

occurs when the front of the load is at K, and the maximum negative

shearing force when the rear of the train is at K (Fig. 136). While
the load is only partially on the girder,

When the, whole load has just come on, x = a, and the shearing
waz

force =
j-

. This is the equation to a parabola with vertex at the

left end, and maximum ordinate =
^-,

at a distance a from the

vertex.

When the load comes wholly on the beam, for any position x
measured from A

W
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which is the equation to a straight line of slope -y-, intersecting AB
at a distance - from A, and therefore tangential to the parabola.

AJ

a --

K
1

LB
9L .

\wa

Wj
wa\

Fig. 136.

A similar curve set out downwards from B gives the diagram of

maximum negative shearing force.

It should be noticed that -y is not equal to F in the case of
dx

moving loads, as is always the case when the load is stationary.

CASE 5. COMBINED DEAD LOAD AND LIVE LOAD BOTH UNIFORMLY

DISTRIBUTED.

A girder usually has to support a dead load due to the weight of

the structure, as well as a live load moving from one end of the girder

to the other
;
such as a passing train.

Shearing Force. The maximum positive and negative shearing

forces are got by combining the shearing forces due to each system

separately.

Let w1 be the weight of the dead load per foot run.

Let wz be the weight of the live load per foot run.

Let / be the length of the girder.

In Fig. 137 ordinates to ED represent the dead load shears, and

ordinates to the parabolas AJF, BKH represent maximum live load

shears.

For a load travelling from left to right the ordinates of ED (with

their proper sign) are added to the ordinates of AJF giving the curve
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of total shear DG. Similarly, for a load travelling from right to left

we get the curve EL
Fig. 138 shows a convenient graphical method of representing the

total shear due to dead and live loads, arranged so that the dead load

shear is added direct to the live load shear of the same sign.

Fig. 138.

In Fig. 137 it is seen that the curves DG and El of total shear

cross AS at L and M, and for the distance LM near the centre the

shearing force changes sign, according as the train travels over the span
from the left, or from the right. This is an important consideration in

the case of girders with lattice bracing, as the braces in this central

portion LM of the girder would have to resist either tension or com-

pression. To avoid this reversal of stress in a diagonal brace, a second

diagonal brace called a counterbrace is introduced in the same panel ;

one of these only being in action when the shearing force is positive,

and the other only when the shearing force is negative.

Bending Moment. The maximum bending moment at any section

occurs when the girder is fully loaded with both dead and live loads.

The curve of maximum bending moment is therefore a parabola with

,
, ,. (w1 + w2)l

2

central ordmate =
o



128 BENDING MOMENTS AND SHEARING FORCES [CHAP. V

57. Bending moments and shearing forces under a

system of axle loads.

When the live load is taken as consisting of a series of loaded

axles, as in the case of two locomotives followed by a heavy goods

train, and it is necessary to find the exact position of the train that

will produce the greatest bending moment at any given point in the

girder, the simplest way is to solve it graphically. The process is

simply sketched out here
;
the method is fully treated in Bridge

Construction, by Professor Claxton Fidler, from which this is taken.

The girder over which the train moves is divided into a number of

equal parts called bays or panels, and we wish to find the maximum

bending moment at each panel point as the train moves. The panel

points are 1, 2, 3, 4, 5, 6. It will be seen that it is simpler, for

diagram purposes, to make the bridge move forward, the loads re-

maining stationary.

In Fig. 139 the train is sketched as covering the whole span, the

leading axle being directly over the abutment C. Denote the suc-

cessive axle loads by W^, W9t ..., &c., and their respective distances

from the abutment A by #: ,
#2 , ..., &c. The diagram of moments for

the downward forces will be the polygonal line dbcp, which may be

constructed by setting down ae, eg, ..., &c. to represent the moments

Wi^i, W^Xz, ..., &c., as in Case 2, Cantilever with fixed loads. If

the bridge were a cantilever fixed at A, the bending moments would

be represented on this diagram by the vertical ordinates measured

below ad; but as the girder is supported at A and C, we have only

to superpose the moments due to the supporting force at (7, which

will be represented by the triangle dap, and the required moments

can be found by measuring the ordinates from the new base dp up
to the polygonal line.

The polygonal line of moments for the downward forces will serve

for any and every position of the train if we regard the abscissae of the

diagram as measured from some point in the train, such as the leading

axle; for the moment TFi#i is simply proportional to xl

-

) W^x^ pro-

portional to #2 > > &c.

Begin, then, by drawing the polygonal line of moments for the

downward forces as shown in figure, in which x^ is equal to the span ;

and the diagram for any other position of the train will always consist

of a portion of the same polygonal line. For the leading axle at C,

the bending moment at each panel point is found by projecting down

the various panel points 1, 2, ..., &c., and measuring the ordinate

between pd and the polygonal line. Thus, at point 2, the bending
moment is os. Now move the bridge forward one panel length, so that

the span becomes a^dlt and leading axle is at 6; the bending moments

are then measured on the ordinates under the panel points from the
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line diZ. Thus, at panel point 3, leading axle at 6, the bending
moment is nt. Then, having measured all the ordinates, move the

bridge forward another panel length, so that the span is now d^a2y and

the bending moments are measured from d2 o, and so on. The results

can be tabulated in the form shown, and then the maximum moments
at each panel taken.

To find the shearing force at any given panel point when the

leading axle is any given position to the left of that point, say panel

point 6, then the end ordinate a^z, scaled off the diagram and divided

by the span, will give the shearing force at the point in question, for

the shearing force at any section between the leading axle and

abutment C is equal to the reaction at that abutment, and is therefore

equal to the moment a^z (or Wx) divided by the span.

58. Shearing stress in beams.

In Fig. 140, let CD and C 1

D' be two vertical sections of the beam

separated by a very small distance dx. It has already been shown

that the shearing stress at any point in a vertical section of a beam is

accompanied by a shearing stress of equal intensity on a horizontal

plane through the point; so that the intensity of shearing stress in

the section CD at E is equal to the intensity of shearing stress in

plane EF.
Let M bending moment at CD,

M+ dM= bending moment at C'D.

c c'

F

C

D D'
Fig. 140.

Consider the equilibrium of piece of beam CEFC'';
the forces

acting on it are : the normal stresses on CE due to M
t
the normal

stresses on C'F due to M + dM, and the shearing stress on EF.
For equilibrium the total shearing stress on EF must be equal to.



V] SHEARING STRESS IN GIRDERS 131

difference between the normal stresses on C'F, and CE. We have to

state tliis algebraically.

Let q = intensity of shearing stress at E,
b width of beam at a height y from the neutral axis,

yi height of top of beam from neutral axis.

Then total shearing stress on EF= q x bdcc ..................... (1).

The intensity of the normal stress at E is /= j ,
and the

difference between this and the corresponding intensity at F is

dM
4f= -jy-

Hence the difference between the normal stresses on C'Fand CE,

dM , , dMp.=
J

, ,

bydy ......... ........... (2).

Equating (1) and (2)
dM

but
-j

- = F, the shearing force at the section.
ax

F [v\ F
Therefore q=r T \ bydy = j-fAy (3),

o . 1 Jy 01

where A is the area of the section which extends from E to C, and

y is the distance of its centre of gravity about the neutral axis. If b

varies we must get it as a function of y.

Where the lowest limit of the integral in equation (3) is zero, that

is, where y 0, the shearing stress is a maximum. The intensity of

shearing stress is therefore greatest at the neutral axis, and diminishes

to zero at the top and bottom of the section.

Tjl fy^

Max. q = -0-r I bydy, where B - width at neutral axis.
oJ- Jo

In a rectangular section let

b = breadth, which is constant,

d = depth ;
then / =

. (See next chapter.)

The maximum intensity of shearing stress

d d

F [
2 F [y*~\

2

I Jo fofL2Jo
12

3^3 F
bd? 8 2 bd 2 area of section

'

that is, Ij times the mean intensity over the whole section.

92
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The distribution of the shearing stress may be represented graphic-

ally, as in Fig. 141. The shear curve is a parabola as the ordinates

vary as y*. The intensity of shear at any point of the section CD is

represented by the ordinate at that point to the parabola. The
maximum ordinate ac represents the shearing stress at the neutral

axis.

In a circular section the maximum intensity of shearing stress is

| of the mean intensity.

Fig. 141.

Let R = radius of the circle, then,

Fig. 142.

Therefore, as / for a circle =

intensity of shearing stress

(see next chapter), maximum

7T O lT

In the case of beams of / section the above equations show that

the intensity of shearing stress is greater in the web than in the

flanges, and that the distribution over the web is nearly uniform,

and is much greater there than in the flanges, as the width b is so

much smaller. In this case a sufficiently accurate result is obtained

by assuming the web as bearing the whole shearing force, considered

uniform over the section of the web only.
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The diagram of shearing stress would be as sketched in Fig. 144,

the intensity of shear as shown in Fig. 143.

Fig. 143. Fig. 144.

When the top flanges are riveted on to the web the rivets and their

spacing must be designed to resist the ^Ma/ intensity of horizontal

shearing stress.

59. Riveting of web to flanges.

Fig. 145 gives cross section and elevation showing flanges and web.

The flanges and web are connected by angle-irons riveted to them.

h

ANGLE IKON

O O O

ELEVATION .

FIANCE

CROSS SECTION.
Fig. 145.

To find the Rivet area required in one Foot-length to connect

the Web and Angle-irons.

If F= shearing force,

Intensity of shearing stress (in vertical and horizontal directions)
Tjl

T71

u
= r I >

where t = thickness of web, h = depth of girder,
area of web t x k

Total shear on area of 1 foot-length of web

F
= 1 foot x t x j

F
~
h'
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and this must be equal to the rivet resistance in 1 foot-length, which

is equal to the rivet area required multiplied by the working shearing

stress.

Therefore

F
Rivet area required in 1 foot = T-. r : 7 .

working shearing stress

Example.

A girder 40 feet long, 2 feet deep, is loaded with a uniform load of

Ij tons per foot run. Thickness of web, f inch. Find the number of

f-inch rivets required to connect the web to the flange in 1 foot-length

at the supported ends.

Assume the working shearing stress for rivets, 5 tons per

square inch.

The shearing force at each end is = 30 tons.
2

Cross-sectional area of web = 24 x f = 9 square inches.

Intensity of shearing stress at ends = %- = 3J tons per square inch.

The area of web for 1 foot =12 inches in

square inches.

Therefore total shear in 1 foot-length of

web at ends = 4j x 3^ = 15 tons.

As there are two angle-irons, each rivet E
connecting web to angle-irons has two

sections to resist the shear, so that each
Stf'C

rivet has a resistance to shear

WEB.

Therefore number of rivets required

Or four rivets per foot are required to connect the angle-irons to

web. The pitch (distance centre to centre) equals 3 ins.

As the rivets connecting the angle-irons to flange-plate are in single

shear, the number required per foot will be eight.
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EXERCISES.

1. A rolling load of 1 J tons per foot run travels over a bridge of

140 feet span. Find the maximum bending moments and shearing

forces which can occur at sections of the bridge distant 40, 70, and

100 feet respectively from the left support.

Sketch the diagrams of maximum bending moments and shearing

forces for the whole bridge due to this rolling load.

Ans. 3000; 3575; 3000 foot-tons.

53'6; 26-25; 8'6 tons.

2. A four-wheeled truck weighing 8 tons travels over a girder

40 feet span ;
5 tons resting on the leading pair of wheels, and 3 tons

on the trailing wheels
;

the axles are 8 feet apart. Find (a) the

maximum bending moment on a section 12 feet from the right support,

(b) the position and value of the maximum possible bending moment.

Sketch with dimensions the diagrams of maximum bending moment
and shearing force for the whole span due to the above travelling load.

3. Prove that when a bridge is liable to be covered wholly or

partly by a uniform advancing load the bending moment at any section

is greatest when the bridge is wholly covered, and the shearing force

at any section has its greatest positive and negative values when the

load extends from the section to one or other of the piers.

4. A girder 40 feet span is subject to a travelling load of 3 tons

per foot run, of length not less than the span, also a uniform dead load

of 1 ton per foot. Find the maximum positive and negative shearing

forces at intervals of 5 feet for the combined loads.

Sketch the shearing force diagram for the whole girder.

5. The shearing force at a section of a plate girder is 120 tons.

Its depth at that section is 6 feet. Find (a) the thickness of the

web-plate, (b) the number of rivets required per foot for uniting the

web-plate to the booms. Working shearing stress = 10,000 Ibs. per

sq. inch. Diameter of rivets 1 inch.

6. A horizontal beam supported at its ends A and B is traversed

by a moving load W uniformly distributed over a segment PQ of con-

stant length ;
show that the bending moment at any point K of the

beam is greatest when K divides PQ in the same ratio as that in which

it divides AB ;
and show that this maximum bending moment is

W
f^AK.KB(AB-^PQ).
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7. A girder of length /, supported at both ends, carries a fixed

load of Wi tons per foot run, also a moving load of w2 tons per foot run,

travelling from one end of the span to the other, and finally covering

the whole span. Find the maximum bending moment and shearing

force on any given section.

Trace the curves of maximum shearing force due to both loads, the

moving load travelling in either direction over the girder.

8. A travelling load of 1 J tons per foot run, of length greater than

the span, passes over a girder of 100 ft. span. Find the maximum

bending moment and shearing force at a section 40 feet from the right

support.
Am. 1800 foot-tons. 27 tons.

9. If the girder in last question also supports a dead load of 1 ton

per foot run, find the maximum bending moment and shearing force

at the same section due to both loads.

Ans. 3000 foot-tons. 37 tons.

10. A plate girder 60 feet span, depth of web 5 feet, carries a

uniform load of 4 tons per foot run. Find (a) the thickness of the web

at end of girder, (b) pitch of the rivets connecting web and flanges.

Diameter of rivets J inch. Working stress = 4 tons per sq. inch.

Ans. J inch
;
5 rivets per foot.

11. A bridge girder 84 feet span carries two equal concentrated

loads, each 16*4 tons travelling over the span. The loads are fixed at

a constant distance apart of 12 feet. Find the section on which the

absolute maximum bending moment occurs, and the value of that

bending moment.

Ans. At x = 39 feet
;
max. M- 593*2 foot-tons.

12. A girder with parallel flanges 150 ft. span, is divided into

10 panels each 15 ft. long. A live load which covers the whole span,

consisting of two engines and trucks, passes over the bridge. The loads

in tons on one girder counting from the fore end of train are 9; 9; 9;

5;5;5;9;9;9;5;5;5;5;5;5;5;5;5;at distances apart starting

from the same end of 11; 11; 9; 7; 7; 9; 11; 11; 9; 7; 7; 8; 10; 8;

10
;
8 ;

10 ft. Determine graphically the maximum bending moment at

each panel point.



CHAPTER VI.

MOMENTS OF INERTIA.

60. Moments of area and moments of inertia.

DEFINITIONS. MOMENT OF AREA. If we suppose a surface divided

up into a number of small elementary areas, then the "moment of area"

about any line in its plane as axis is the sum of the products of each

elemental area into its perpendicular distance from that axis; the

perpendicular distances which lie on one side of the axis being
reckoned positive, and those on the other side negative. As in

problems we have usually to deal with, the axis is horizontal, we will

consider distances measured up as positive, and when measured down
as negative.

An axis about which the moment of area is zero passes through
a point called the "centre of area," or more usually the "centre of

gravity" of the surface. As the neutral axis passes through the

centre of gravity of the cross section, it is important to state how in

unsymmetrical sections the centre of gravity can be readily obtained.

Let A = whole area of surface, and suppose it divided up into

elements of area al} aa , 8 , ..., &c., the distances of whose centres of

area from any plane are ylt y2 , ys , ..., &c., and let y be the distance of

the centre of area of the whole surface from the same plane, then

A
or Ay =

jay.

The MOMENT OF INERTIA of a surface, about a line in its plane as

axis, is the sum of the products of each elementary area into the

square of its distance from the axis.

A moment of inertia is always positive, being the product of the

square of a length into an area. It is usually denoted by the symbol /,

and

where A is the whole area, and k the radius of gyration of the area

about the axis.
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If a surface is divided up into several portions, the moment of

inertia of the whole surface about any axis is equal to the sum of the

moments of inertia of the several portions about the same axis. If a

section is conceived as the difference of two figures, the moment of

inertia of the section about any axis is equal to the difference of the

moments of inertia of the two figures about the same axis.

61. Principal axes and principal moments of inertia of a

plane surface.

The rectangular axes intersecting at the centre of area of a given

surface, round which the moments of inertia are respectively greatest

and least, are called the principal axes. It is important, especially in

the case of struts, to know the principal moments of inertia of an area,

as the resistance of a piece to flexure will be greatest and least round

those axes of greatest and least moment of inertia respectively.

If a surface has one axis of symmetry, that axis traverses the centre

of area, and is one of the principal axes, the other principal axis being

perpendicular to it.

If a surface has only two axes of symmetry at right angles, they are

the principal axes of that surface, and their intersection is the centre

of area.

If the moments of inertia about the two principal axes are equal,

then every .axis through the centre of area is a principal axis, and the

moments of inertia are the same about each axis ;
and if a surface has

two axes of symmetry not at right angles, for example, an equilateral

triangle, the moment of inertia about each and every axis through
their intersection (the centre of area) is the same, every axis being a

principal axis. This is the case with circular and all regular polygonal

surfaces.

62. Moment of inertia of a plane area about an axis

perpendicular to the area.

Let Fig. 146 represent a plane area. Take any point, and draw

OX, Y through it at right angles ;
also assume a third axis OZ,

perpendicular to OX, OY, and therefore to the plane of the surface.

Let N be a small element of area
"
a," the coordinates of which are

x and y. The moment of inertia of the element N round the axis

OZ is aON2
. Therefore the moment of inertia of the whole surface

round that axis is

Ioz = faON
2 = fa (x* + y>}

= fax* + faf
IQX+ IOY-

Ioz is called the polar moment of inertia, and is usually designated

by the letter J.

Hence the moment of inertia of an area about an axis at right

angles to the area is equal to the sum of the moments of inertia about
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any two axes at right angles to one another, through the point 0, and

in the plane.

63. Moments of inertia about parallel axes.

The following theorem is frequently necessary in determining the

moments of inertia of beams of complex sections :

The moment of inertia of an area with respect to any axis in its

plane is equal to the moment of inertia of the area about a parallel

axis passing through its centre of gravity, plus the product of the

area into the square of the distance between the two axes.

In Fig. 147 let A be an area of any shape, XOX its neutral axis

traversing the centre of area, SS any axis in the plane, parallel to XOX
Y

Fig. 146. Fig. 147.

and distant yQ from it. Take a small elemental strip of area "a" parallel

to XOX and distant y from it.

The moment of inertia of this strip relatively to SS is a (y + y )
2
,

and of the whole surface is

or, since y is constant,

= Ixx +Ay<?-,

the second term being zero, since XOX passes through the centre of

gravity of A, and therefore fay = 0.

64. Moments of inertia of plane areas.

CASE 1. THE SURFACE A RECTANGLE.

Let Fig. 148 represent a rectangular section, of which b is the

breadth and d the depth. The neutral axis is parallel to b and
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bisects the depth d of the rectangle.

Take a small strip of area bdy at a

distance y from the neutral axis.

Then, owing to the symmetry of the

two halves of the section above and

below the neutral axis,
d d

where A = area of rectangle.

Similarly

and the radii of gyration

[CHAP.

Y
Fig. 148.

B

The moment of inertia about AB
n /jxa frtf ^ ^

~~~3
=A

3"'

CASE 2. RECTANGLE SYMMETRICALLY HOLLOWED.

Figs. 149 and 150 illustrate two varieties of this form
;
the one

hollowed internally, the other with equal and symmetrical hollows.
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The moment of inertia is the moment of inertia of the exterior

rectangle less that of hollows, and therefore

and k =
.-

2N/3

CASE 3. CIRCLE ABOUT A DIAMETER.

This is most easily obtained from the polar moment of inertia.

All axes through the centre of the circle are principal axes, and the

moments of inertia about those axes are all equal.

It has been shown that the moment of inertia about an axis

through at right angles to the area is the sum of the moments

of inertia about two rectangular axes through in the plane of the

area.

Or J=Iox +IoY'
But in the case of a circle IOX = IOY-

Therefore J= 2lox= 2/or .

Let R = radius of the circle (Fig. 151).

To find J, conceive the circular surface divided into concentric

elements of area.

Let dy be the thickness of one of these, whose distance from

is y.

Then J
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Therefore moment of inertia about any diameter

[CHAP.

1=

and

4
"

64
'

1 ^ D

The moment of inertia about a tangent line is

+ WZ2 x B? = - 7r
4 = irD*.

CASE 4. CIRCULAR RING.

Let .#! and Rz be the external and internal radii of the ring

(Fig. 152).

Then the moment of inertia and radius of gyration round any
diameter are equal to the difference of those of the outer and inner

circles. That is

= (A4 -A4

) ;/=

=W(A2 + A2

).

CASE 5. MOMENT OF INERTIA OF A TRIANGLE ABOUT AN Axis

THROUGH THE CENTRE OF AREA PARALLEL TO THE BASE.

In Fig. 153 let b be the base, and h the height of triangle. Then

centre of area is at a height
- above the base.
o

First find the moment of inertia about AB as axis. Take a small
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strip of area parallel to, and at a distance y from AB. The area of

this strip is xdy where x--(ky).

and - A __l ~ A ==

Therefore IAB = i

18

CASE 6. MOMENT OF INERTIA OF TEE SECTION IN FIG. 154 ABOUT

Axis XX.
It is first necessary to find the centre of area, and consequently the

position of neutral axis. is centre of area of whole surface, Or and

2 the centres of area of web and flange. Take moments of area

about the lower edge of flange (Fig. 154),

2 + 1

= 1'75 inches.

The distance of centre of web from neutral axis = 0*75 inches.

The distance of centre of flange from neutral axis =1*5 inches.

Therefore
web flange

= 2'66 + T12 + 0'02 + 2'25 = 6*05 inch units.
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This example has been shown in detail, but the most systematic

method is to tabulate the results, as explained in the following article

and examples.

Fig.

2 >

Y
154.

65. Moment of inertia of section composed of rectangles.

When the section is made up of a series of rectangles the moment
of inertia can be found as follows. First find the position of neutral

axis by taking moments of area about some fixed line in the plane, and

< 5-----

Fig. 155.

then dimension on the section for each rectangle the distance y of

its centre of gravity from the neutral axis. Then, for each rectangle

(Fig. 155)

bd?
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The total area is the sum of the areas of the several rectangles ; the

total moment of area about XX is the sum of the partial moments
;

and the total moment of inertia about XX is the sum of the partial

moments of inertia about this axis.

The same result can be obtained in another form, by using the

values of Y and y, the ordinates to the top and bottom edges of the

rectangles, instead of ?/ .

The rectangle (Fig. 155) may be taken as the difference of two

rectangles, whose sides are b, Y, and >, y.

Thus moment of area about the axis JOT is

-by = (.Y*-f) .................. (2).

(3),

Its moment of inertia about XJT(the base), Case I., is

The most convenient and systematic method of finding these values

is by arranging the computation in tabular form. A few examples of

each tabular method are taken for illustration.

CASE 7. MOMENT OF INERTIA OF A TEE-IRON, 7" x 6" x 1", ABOUT

NEUTRAL Axis XX.
The section is shown in Fig. 156. To get the ordinate of centre of

w. 10
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area, take moments about the lower edge of flange as axis. In this

example, equation (1) is used to find moment of inertia

CASE 8. MOMENT OF INERTIA OF A FLANGED SECTION (Fia. 157)
ABOUT NEUTRAL Axis XX.

This example will, for comparison, be worked out by both tabular

methods.

Fig. 157.
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is the centre of area of the whole section, 1} Oz , 3 the centres

of area of top flange, web, and lower flange respectively.

1. Ixx =

Find the position of neutral axis by taking moments of area about

the lower edge of bottom flange as axis.

2. In the second tabular method, Y represents the larger of two
successive values of y. The moment of area and moment of inertia are

first calculated round AB, the lower edge of bottom flange, then

The ordinates of the three rectangles from AB are 0, 1
; 1,9; 9, 10,

and their breadths are 9, 1, 3.

- 20 x 3'652=516-6 - 266-4= 250-2

102
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CASE 9. MOMENT OF INERTIA OF A GIRDER BUILT UP OF ANGLE-

IRONS AND PLATES.

Fig. 158 gives the actual cross section of girder, and Fig. 159 shows

the equivalent cross section in which the elements of area are reduced

to a series of rectangles. Choose any line as axis, say, the lower edge
of the bottom flange, the diagram and table show the breadths and

ordinates measured up from this line AS, then using equations (2)

and (3) we can get the moment of area MAB) and moment of inertia

IAE about axis AS, and the distance of neutral axis y = ~. Also
A.

the moment of inertia about neutral axis XX
Ixx = IAB -AJ? = IAB ~MABy.

In table, Y represents the larger of two successive values of y.

Fig. 158. Fig. 159.

The axis .4J9 round which the moment of inertia is first calculated

has in this example been taken as the lower edge of bottom flange, but
in sections of this class there is an axis, usually through the centre of

depth, which is an axis of symmetry for several of the rectangles taken

together, although not for all. In such cases arithmetical work will be

saved (owing to symmetry) by first computing tbe moment of area and
moment of inertia of the whole surface round this axis

;
as the ordi-

nates measured above this axis are positive, and those below negative,,

the sum of the moments of area of the symmetrical elements is zero.
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_ 1134= 12-5"

=I*B-^= 23706-91 x 12-52

= 23706-14218

= 9488

CASE 10. MOMENTS OF INERTIA OF THE SECTION OF AN UNEQUAL
SIDED ANGLE-IRON.

Let the angle-iron be 7" x 3|" x J" as in Fig. 160.

To find the moments of inertia about the axes XOX and YO Y,

through the centre of area.

To find XOX, moments of area are taken about AB, to find

YOY, they are taken round AC.
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Fig. 160.

66. Graphic method of obtaining the moment of inertia

of an irregular section.

In this method an area is easily constructed which is proportional
to the moment of inertia of the section. To find the moment of inertia
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about the axis XOX, through centre of area. For the upper portion

of the section (Fig. 161) draw a line OY perpendicular to XOX, and

at some whole number of units "6" from 0, draw LM parallel to

XOX. Draw any number of lines in the area, of which PQ is one

parallel to XOX. Make LN = OP, or PN=OL = b. Join NQ
meeting LM in M. Join OM meeting PQ in R. If this is done for

all the lines such as PQ, then R will trace out a curve the area of

which is proportional to the moment of inertia.

If A^ is the total area of this new figure above and below XOX,
then T ,.

Ixx = b2
A,.

PQ PN
LM~ NL'
LM OL

Proof.

multiplying, we get, since PN = OL =
b,

PQ V
PR OP2

'

Y

Fig. 161.
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Therefore bz .Pfi = PQ . OP 2
........................ (1).

Now if the coordinates of Q are x and y, and the coordinates of

R are x^ and y, then

and equation (1) becomes b*Xi = xy* .............................. (2).

Considering an elementary strip of area at PQ of very small

thickness dy, which is the same for both the Q and R curves
;
then

moment of inertia of this strip about XOX is xdy . y
2 and the moment

of inertia of whole area

Ixx = frtfdy = Vjx.dy. From (2)

or moment of inertia about XOX is the area traced out by R,

multiplied by 6
2
.

EXERCISES.

1. The dimensions of the section of a cast-iron beam are : Top
flange 4 inches by Ij inches

;
bottom flange 12 inches by If inches

;

web 16 inches by Ij inches. Calculate the moment of inertia of the

section about the neutral axis.

Ans. 2278*40.

2. Determine the moment of inertia and radius of gyration, about

an axis through centre of area parallel to the flanges, of two tee-irons,

each 8" x 3" x 1", placed flange to flange in cross shape.

Ans. 47'3.

3. The section of a plate girder is as follows : Top flange, two

plates each, 16 inches by J inch
;
bottom flange, three plates each,

14 inches by J inch
;
web plate 2 feet deep, f inch thick

; angle-irons

connecting flanges and web 4 inches by 4 inches by J inch. Find the

moment of inertia of the section about neutral axis.

Ans. 8175.

4. Find the moment of inertia of the section of a circular tube

10 inches external diameter and 1 inch thick.

5. Show that in the case of a triangular area the moment of

inertia about an axis through the centre of area is the same as if

we consider one-third of the area concentrated at each of the middle

points of the sides.

Note. This is useful in finding the moment of inertia of regular

polygons which can be divided up into triangles.

6. Find the moment of inertia of a regular hexagon about an axis

through its centre of area, and joining opposite angular points.

7. Find the moment of inertia of a rhomboidal or lozenge-shaped
section about a diagonal as axis.

If b and h are diagonals, /= -r^- .



CHAPTER VII.

GIRDERS.

67. Modulus of section.

We have already proved that the relation between the bending
moment and the stresses induced is given by the equation

y

i.e., the moment of the external forces is equal to the moment of

internal stresses, or moment of resistance of the beam. The quantity

- is called the
" modulus of the section," and is generally denoted by

j

the letter Z, and it is well to note that

r. I (length units)
4

., ., . N3Z=- = - I IT
- = (length units)

3
.

y length

Hence M^^fZ.
y

Generally, it is necessary to consider the greatest tension and

compression at any point of the cross section; then, if yt and yc are

taken as the distances of the parts of the section furthest from the

neutral axis, and if ft,fe be the tensile and compressive stresses corre-

sponding to the distances yt and ye ,

OT/CZC .

68. Graphic method of finding the "
equivalent area " and

" modulus of section."

Equivalent area. On the section of a beam we have the stress

varying from zero at the neutral axis to a maximum at the outer fibre.

If now we replace the section of the beam by a section which has spread

over it the same amount of stress, but instead of being variable, is

constant all over and equal to the stress on the outer fibre, we get a

figure which is called the EQUIVALENT AREA or MODULUS FIGURE.
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Divide the beam section into a number of thin strips CEGK
parallel to the neutral axis AB (Fig. 162).

P M- ^ -N

Fig. 162.

Let x= GK, y and y1 the distances of GK and outer fibre" at P
respectively from the neutral axis, and let / and fi be the stresses

corresponding to y and ylt Draw a line MN parallel to AB or its

prolongation A'B', and at a distance yl from AB'. Make MN= GK=x.
Join O'M, O'N, and let GK, CE prolonged cut these lines in g, k,c,e\

then the strip gkce has upon it a stress of constant intensity (/), and

the total stress on it is equal to the total stress on GKEC.

Fig. 163. Fig. 164. Fig. 165.

and

Let the thickness of the strip (same in both figures)
=
dy, and let

By similar triangles,

Qk V X, II n.^T.T , , .

-ffxf
= or =

,
since Ma was made equal to G-A

,

JXiJM y\ x y\

Now total stress on GKEC =fxdy

=fl
x

1dy

=/! x area of gkce = total stress on gkce.
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Figs. 163, 164, 165 give the modulus figure for a rectangle, circle,

and joist with equal flanges, which are all cases of symmetrical sections.

In the case of unsymmetrical sections, where the stress in the outer

fibres is not the same in tension and compression, two figures can be

drawn, one called the tension figure where the uniform stress is the

maximum tensile stress
;

the other, the compression figure where the

uniform stress is the maximum compressive stress. The neutral axis

is not equidistant from the top and bottom, and the figures are drawn

thus :

Compression figure (Fig. 1 66). Draw a line on the lower side, at a

distance from the neutral axis, equal to the distance of the upper fibre

from the same axis. Complete the figure as before by projecting the

widths on the lower line. Total stress =/c
x area of figure.

COMPRESSION BASE

COMPRESSION
BASE

TEMS/ON BASE

TENSION BASE
Fig. 166. Fig, 167.

For the tension figure (Fig. 167). Draw

a line parallel to the neutral axis, at a

distance above it equal to the distance of

lower fibre from that axis; project all the

widths on to that line, and join up with

centre of area. The total stress =/ x area

of figure.

Fig. 168 gives the modulus figure for a

tee-iron.

As the total amount of tension is equal

to the total amount of compression, the

area of the figure above the neutral axis

must be equal to the area of the figure

below the neutral axis, whether the section

be symmetrical or not.

J_
Fig. 168.
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Moment of Resistance. Since the intensity of stress all over the

figure is the same, the position of the resultant

will be at the centre of gravity.

In Fig. 169 let a be the area of figure

above neutral axis, which, as shown, must be

equal to the area below the neutral axis.

d = distance between the centres of gravity

G! and Gz of the upper and lower

figures.

f= intensity of stress.

Now, taking moments about neutral axis,

SECTION
MOMENT OF
INERTIA I

MODULUS OF
SECT/ON Z

HOLLOWRECTANGLE Ofi

I WITHEQUAL FLANGES

12

64

12

M*
6

O-IIB b
3

=0982 D

77 ( D -C

32 D
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Moment of stress =/[area of top half figure x OGl + area of bottom

half of figure x OG2] ;

=/x area of either half x GiGz ',

=fad =/Z, where Z=ad-,

or moment of stress = stress on material x modulus of the section.

The table on p. 156 gives the value of Z for some of the simpler

forms of section.

Examples.

1. A floor joist of / section with equal flanges, span 15 feet, is

supported at both ends. The outside depth is 6 inches, breadth of

flanges 4 inches, thickness of web and flanges each J inch. Find the

uniformly-distributed load per foot run which the joist will carry, if

stress is not to exceed 5 tons per square inch.

We have 6 = 4 inches ; bi = 3J inches
;

h = 6 inches 1^ = 5 inches
;

I 4x216-3jxl25Z=- = ~ - = 11'8 inches3
.

y\ 36

Moment of stress = 1 1 "8 x 5 = 59 inch-tons.

wP
Equating to this the value of the maximum bending moment --

,

o

where w is in tons per foot run, we get

w 152 x 122

12x8
59 x 2

Therefore w = = 0'17 tons per foot run.
675

2. A steel tube, 36 inches long, is supported at the end. External

diameter, 2 inches ; thickness, J inch. Find the central load which

will produce a maximum stress of 8 tons per square inch.

_ I _ -0982(2
4 -l-54

) _ '0982 (16- 5'06) _
*

=
~^~ ~i~

Therefore, maximum bending moment

?? - Q'537 x 8 - 4'3 inch-tons ;

4
A * ti

and W= ~ = '48 tons.
y

69. Beams of uniform strength.

In most cases the bending moment varies from section to section of

a beam, and the sections are accordingly made deeper or broader where

the greater bending moments come, being designed so that the maximum
stress / allowed is uniform throughout the whole length of the beam ;
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when the section is so proportioned the beam is said to be of uniform

strength. Now M=fZ, and as / is constant, Z, the strength modulus
of section, must be proportional to M. Take the simplest case of a

rectangular section :

1. Beam fixed at one end, loaded at the other with weight W.
M= WX) and bd 2

oc x. If b is constant, then the elevation

of beam showing d is a parabola. If d is constant, the

plan showing b is a triangle.

2. Beam fixed at one end, loaded uniformly.

iuM=
'#?, and bd 2

QC #2
. If b is constant, the elevation showing

d is a triangle. If d is constant, the plan showing b is a

parabola.

3. Beam supported at the ends, loaded uniformly.

M=
(/

2 -4^2

), and bd* QC (/
2 - 4#2

). If b is constant, the
o

elevation showing d is an ellipse. If d is constant, the

plan showing b is two parabolas.

70. Unsymmetrical sections. Beam with flanges and
web.

If a section is symmetrical, the neutral axis passes through the

centre of depth ;
hence the maximum tensile stress on the material

is equal to the maximum compressive stress. But some materials,

such as cast iron, are five times as strong in compression as in tension
;

consequently the area of the tension flange is made five times the area

of the compression flange, and the neutral axis will be about five times

as far from the compression flange as from the tension flange.

Fig. 170.

Intensity of stress

diagram.

Total stress

diagram.
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In Fig. 170, let

A c
= area of compression flange,

A t
= area of tension flange,

fc
= maximum intensity of compressive stress,

ft = maximum intensity of tensile stress,

yc and yt the distances from the neutral axis of the outer fibre in

the compression and tension flanges respectively.

Then M=^I or
ĉ

/,
* *

and, as =
,
we get the same value ofM whichever we take.

Fig. 170 gives the general form of the intensity of stress diagram,
and total stress diagram for an / section.

In cast-iron girders the web varies from 1 inch to 2 inches in

thickness, and its moment of inertia must be taken account of in

calculating the bending strength.

STEEL GIRDERS.

In girders of this class the two flanges are held apart by a thin, deep
web as in the plate girder type, or by diagonal bracing as in lattice

girders. The function of the web or diagonal braces is to resist the

shearing forces. The bending moment is borne mainly by theflanges,

one being in tension and the other in compression, and as the depth
of each flange is small in comparison to the depth of the girder, the

intensity of stress is practically uniform over the whole of each flange.

In actual practice the flanges alone are taken as resisting the bending

moment, the section of the web being neglected in the moment of

resistance of the cross section.

Web. Plate Girder.

Let F- shearing force at any section in tons,

d = depth of web in inches,

t = thickness of web in inches,

fs
- working shear stress in tons per square inch

;

then
f^Jt'

F
or t = -

.

In practice, the thickness should not be less than f inch.

Angle-iron or tee-iron stiifeners are usually riveted to the web at

intervals approximately equal to the depth of the girder. We have

seen that shear stress on a square element is equivalent to a tensile

stress along one diagonal and a compressive stress along the other,

each at 45 with the direction of shear stress. The stifFeners are

introduced to prevent buckling due to the compressive stress.
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Flanges. Let A C) A t be the areas of the flanges, fc , ft the

intensities of stress on them, and d the depth taken from the middle
of one flange area to the middle of the other (Fig. 171).

Fig. 171.

The total stress on each flange must be the same, or

The forces A cfc and A tft , being equal in value and opposite in sign,

are the forces of the stress couple whose lever arm is d.

Therefore M= A cfcd = A tft d,

or, calling // the total horizontal stress on either flange, the bending
moment "

M=Hd,

H=*.

If, therefore, the depth of the girder is uniform, i.e. d constant,

then H varies as M.
If the horizontal stress is uniform, i.e. H constant, then d varies

as M.
We shall consider these two cases in detail, taking only the

moments due to uniform dead load, for which the bending moment

diagram is a parabola.

CASE 1. GIRDER WITH PARALLEL FLANGES IN WHICH THE DEPTH
is CONSTANT.

Here d is constant. Therefore Rcc M, and the stress diagram

(Fig. 172) is a parabolic curve similar to the diagram of moments.

T

Fig. 172. Stress diagram.
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wl?
The maximum flange stress at centre H= -

,
;
at any other point

od>
ni\

of the span H=jx(l x) ; compressive in the top flange and tensile

in the bottom flange.

If /= working intensity of stress,

b = breadth of flange,

t = thickness of flange,

then H = Af= bxtxf.
Therefore b x t xy<x M.
As it is usual to make b constant, we get tec M, or, the thickness of

the flange at any cross section varies as the bending moment at that,

section.

Hence, the flange is generally constructed by drawing the curve of'

bending moment to a given scale. Then, by altering the scale, the

ordinates of the same curve represent the flange thicknesses.

Example.
Girder 60 feet long, 5 feet deep, 3 feet wide, carries a uniform load

of 3 tons per foot run. Find the thickness of plates required for the

flanges, taking 5 tons per square inch as the maximum intensity of

stress.

M M Wp 3 X 360
ffMax. M= -=- foot-tons

o o

- 1350 foot-tons.

Then I350=fbdt
= 5 x 144 x 3 x 5 x

t,

.'. t='!25 feet=lj inches,
or thickness at the centre = 1 J inches.

Suppose, as in Fig. 173, this thickness is made up of three J-inch

plates. Divide the central ordinate into three equal parts, and draw
horizontal lines

;
the points where these cut the moment curve give

Fig. 173.

the required lengths of the plates. The stepped outline represents
the moment of resistance, which for each plate

=fbtd=5 x36xx5xl2 = 5400 inch-tons - 450 foot-tons,

and as there are three plates the total moment of resistance

= 3 x 450 = 1350 foot-tons,

which is equal to the maximum bending moment.

w. 11
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CASE 2. PARABOLIC GIRDERS.

IfH be constant, then dec M.
The depth of the girder is everywhere proportional to the bending

moment, and the shape of girder is that of the moment diagram,
a parabola (Fig. 174).

Fig. 174

The uniform horizontal stress in the lower flange, or the horizontal

component of the inclined stress at any point in the curved flange, is

The vertical component
F

The total stress at any point in the curved flange is

Hence total stress S varies as sec
; consequently greater thickness

is required at the ends than at the centre, for sec & increases as

increases.

At the top where 6 = 0, S = ff;

at = 45, S=*J2H.

FUNCTION OF WEB IN RESISTING THE SHEARING FORCE.

Case I.

In parallel girders (as in Fig. 175) the stress on the flanges is

horizontal', consequently the vertical shearing force can only be resisted

Fig. 175.

by the vertical component of the stresses in the diagonal bars or web,

and it is the horizontal components of the same stresses which produce
the increment of flange stress at each panel point. The web or inclined

bracing is therefore absolutely necessary in parallel girders.
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Case II.

In the case of parabolic girders, the horizontal component of the

stress at any point of the curved flange, and the stress on the horizontal

flange, are constant.

Referring to Figs. 174 and 176, the bending moment at any point
whose coordinates are x, y, is

M=Hy,
and the shearing force

dx dx

but the vertical component of stress in curved flange
= H tan 0.

Fig. 176.

Therefore this vertical component suffices to balance the shearing
force on the section. No stress therefore occurs in the diagonal web

bracing when the girder is uniformly loaded with a dead load. Hence
in such a girder subject to a uniform dead load the diagonal bracing

may be omitted.

In the horizontal flange the stress is entirely due to the thrust of

the ends of the curved flange, and might be replaced by abutments.

This is the principle of the arch (Fig. 177).

I

Fig. 177.

Fig. 178.

112
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If the bridge have the curved flange below the horizontal the same

reasoning applies, except that the stresses are reversed, the horizontal

flange being now in compression, and the curved flange in tension

(Fig. 178).

~1

Fig. 179.

The horizontal flange can therefore be replaced by anchorages at

the abutments. This is the principle of the suspension bridge (Fig. 179).

When the load, instead of being distributed throughout the entire

length, is carried on cross-girders at the panel points, the same prin-

ciples hold good; the bending moment diagram in this case being a

polygon inscribed in a parabola.

71. Graphic method of finding the maximum stress in the

members of a parabolic girder for a live load.

Let Fig. 180 represent a girder of this class, the intersections of

the members of the upper flange lying on a parabola.

\
Fig. 180.

Let w be the intensity of the load per foot run.

Let AB be the span of length /, divided into say 6 equal bays.

Ri and R* the reactions at B and A respectively.

d the central ordinate LM.
dl and dz the ordinates CE and DF respectively.

b the length of a bay = ^
.

H the horizontal component of stress in upper flange.
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Flanges. The maximum stress in flanges occurs when the whole

span is loaded. Further, we know that in the case of a parabolic

girder loaded with a uniform load, the horizontal component of stress

in the flanges is constant.

To find the maximum stress in any member of the upper flange,

say CD.
Produce the chord member CD to meet the verticals through A and

B in G and K respectively ;
then

GK=lsecO ........................... (1),

where is the inclination of CD to the horizontal.

But we have previously shown that the

Stress in CD^HsecO ..................... (2).

Therefore, from (1) and (2) we see, that: the intercept GK represents

the total stress in CD on the same scale that I represents the horizontal

component

To find the maximum stress in braces. (Live load.)

Taking a bay as unit length, let W= wb be the load carried at the

joints of the horizontal chord.

The maximum stress in brace CF (Fig. 180) occurs when all the

joints to the right of F are loaded, then

xi-pw.
The horizontal component of stress in CF

_ moment at D moment at C
"4T~ ~~d^

moment at D = \- Wb ;
moment at C = -1/ Wb.

Now the ordinates being proportional to the bending moments,

wb x 56

* = CE 2 5

d
" ML w x 66 x 66 9

'

8

or, dl
=

-J
d

;
and d2

= %d.

Therefore, maximum horizontal component of stress in CF

20Wb 10JF6

~~6~ 6 3 Wb ,v
=
4^~

But the horizontal component of stress in flanges when the girder

is uniformly loaded is

wF _ w^ 66' x 66 _ 18 wb^ _ 18 Wb
(

,"~
8

:

8
=
4 d

"
4 d

......
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Therefore, from (3) and (4) we see that the maximum horizontal

component of stress in inclined brace

H=
6

'

Now the horizontal projection of any brace = b = -
.

6

Therefore, the actual length of each brace represents the maximum
stress in it, on the same scale that I represents the constant horizontal

component of stress (H), the girder being uniformly loaded.

72. Application of method of sections to bridge trusses.

(Dead and live loads.)

Stresses in web and chord members. In applying the method of

sections to a girder such as is shown in Fig. 181, a vertical or nearly
vertical section cuts one bar only of the web, and since each of the top
and bottom chords is horizontal the stress upon the web bar must be

such that its vertical component is equal to the shearing force F at the

section ; so that the stress in inclined web member is

^cosec 0,

being the angle which the member makes with horizontal.

Again, the stress in any top or bottom member is proportional to

the bending momentM at a vertical section taken through the opposite

joint. If d= depth of the girder, then the stress

**
Counter bracing. The diagonals in the Pratt truss (Fig. 181) are all

ties or tension members
;
but in certain positions of the live load, those

near the centre of span would be subjected to compression. In order

to prevent this, another diagonal sloping in the opposite direction

(shown dotted in Fig. 181) is inserted in those panels where this

reversal of stress takes place. These panels in which two diagonals

occur are said to be counter braced, and the additional diagonal is

called a counter brace. Both these diagonals are tension members
;

one only being in action at a time, and the minimum stresses for these

diagonals in a counter braced panel are zero.

Example.

A Pratt truss, 112 ft, span (Fig. 181), divided into 8 bays,

carries a dead load of } ton per foot run, and a live load of Ij tons

I c d e
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per foot run, both supported at the joints of the bottom chord.

The depth of the girder is TVth of the span. Determine the stresses

in the chord members de and ik, the diagonal tie ci, and the verticals

bg, ch.

Length of each bay -^ = 14 feet.

Depth of girder
- -V/ = 1 1

'

2 feet -

Dead load at each bottom joint
= 10*5 tons.

Live load at each bottom joint
= 17 '5 tons.

If 6 = angle of inclination of each tie with horizontal, then

tan 0=1-25, cosec0=l'6.

Stress in members de and ik. The maximum stress in each member
of the chords occurs when the span is fully loaded with both the dead

and live loads.

The reactions at each support
=
\ . 7 '28 = 98 tons.

Member ik, bottom chord. Let S = stress.

Take moments about joint d, upper chord,

x H-2 = Jif=98x42-28(2+ 1)14
= 2940 foot-tons.

Therefore S= ~ =262 '5 tons tension.
1 1

'

2i

Member de, top chord. Let 8' = stress.

Take moments about joint k of lower chord,

S' x Il-2 = 3f' = 98x4x 14-28(3 + 2 + 1)14
= 3136 foot-tons.

O1 Q/?

Therefore $' = T "o>^ ^80 ^ons compression.11_

Diagonal tie ci. Stress due to dead load.

The reactions due to dead load are each equal to

J x 7 x lO'o = 36-75 tons.

Take a vertical section cutting cd, ci, hi.

The shearing force Fl at the section = 15*75 tons.

Let Si be the stress in ci due to dead load, then

8l smO = F1 ,

or, Sj.
=Fl cosece=l5'15 x 1*6 = 25*2 tons tensile.

Diagonal tie ci. Stress due to live load.

The maximum stress in diagonal ci occurs when all the joints to the

right of i are loaded, the joints g and h being unloaded.

The shearing force F2 at the vertical section cutting ci is then

equal to the reaction at the left support.

Therefore F2
=^ {1 + 2 + 3 + 4 + 5}

= 32 '8 tons.
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Let $2
= maximum tensile stress.

Then S2
= F2 cosec 6 = 32 '8 x 1 -6

= 52'48 tons tensile.

The minimum stress in ci occurs when the joints g, h are loaded

with the live load, the other joints being unloaded.

The shearing force on the section cutting ci is then equal to the

reaction at the right support.

That is, jpy - |17'5 = 6 '56 tons,

and S% = 6 '56 x 1*6 = 10*5 tons compressive.

Stress due to both dead and live loads.

The stresses due to both loads are got by adding the dead load

stress to each of the live load stresses, thus :

Both the maximum and minimum being of the same sign no

counter brace will be required in this panel.

Stress in vertical bg.

The stress in bg is simply the weight at the joint g,

stress due to dead load 10*5 tons tension,

stress due to live load = 17*5 tons tension.

Stress in vertical ch.

Take an approximately vertical section cutting members be, ch, hi.

The stress in ch is the vertical component of stress of ci, and the

compressive and tensile stresses due to live load are produced by the

same distribution of the live loads as taken for ci.

Therefore,

stress due to dead load = F^ = 15'75 tons compression,

maximum compressive stress due to live load = Fz
= 32 "8 tons,

maximum tensile stress due to live load = ./<y = 6*56 tons.
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Verticals.

169

73. Effect of live load on a girder shown graphically.

Let Fig. 182 represent a Pratt truss of 9 panels subject to uniform

live load equivalent to 15 tons at each panel point, the central panel

being counter braced. The stresses in the chord members are found

graphically as for a dead load; the stresses in these members being
a maximum when the bridge is fully loaded.

Fig. 183 shows the stress diagram for the half girder in this case.

Fig. 182.

_0 CL

60

JL_
xs

Fig. 183.

To show the effect of the live load on the stresses in braces and
verticals

; Fig. 184 gives the stress diagram when the six bottom joints
to the right are loaded, the two joints on the left being unloaded, and
we see that the braces, including the full line counter brace IJ, are in

tension and the verticals in compression. There is no stress in the
dotted counter brace.
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Fig. 185 shows the stress diagram when the two joints to the left

are loaded, the remaining six joints being unloaded. We see from

this figure that the braces AB and CD are in tension, and the vertical

a

s

*-*

ss

Six joints to right loaded.

Fig. 184.

o a

Twojoints to left loaded.

Fig. 185.

BCm compression as before, but the stresses in the braces jEZ^ GH
are now compressive, and the stresses in the verticals DE, FG are

tensile
;
also that the dotted counter brace U is now in tension and

there is no stress in the full line counter brace. The maximum tensile

stress in brace EF (see Fig. 184) occurs when all the joints to the

right of it only are loaded, and from Fig. 185 we see that when

the two joints to the left of it only are loaded we get compressive
stress in it.

Summary.
The maximum stress in any vertical or diagonal brace occurs when

the live load covers the longer segment of the span.

The maximum stress in any counter brace occurs when the live load

covers the shorter segment.
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The minimum stress in a vertical or diagonal brace occurs when the

live load covers the shorter segment of the span.

The minimum stress in a counter brace is zero.

Examples.

1. A cast-iron girder of the section in Fig. 186, 20 feet span, is

supported at both ends. If the maximum

intensity of tensile stress is 1 ton per square

inch, find what uniformly-distributed load

the girder will carry.

The following data are given, but they

should be checked by the student: 10

Distance of neutral axis from lower edge

of bottom flange, # = 3'13 inches.

Moment of inertia of section /=220'4

inches4
.

The maximum bending moment,

wV rft

{<-

-----
3"

Fig. 186.

8

3'13
yt

yt
= feet

; ft
= 144 tons per square foot

;

1 2

220-4

144

144

12

foot-tons ;

.'. total load = wl =
-^T^T

= 2*35 tons.

2. A flanged girder, 50 feet span, 4 feet deep, flanges 12 inches

broad, carries a uniform load of 1J tons per foot run
; working stress

6 tons per square inch. Find the necessary thickness of flange at J,

J, and \ the span.

M=Afd=btfd.
(a) At |- of the span

.'. f . | 50 . -\-
= 1 x t x 6 x 144 x 4 foot-tons ;

= 0'06 foot -0-7 inch.

(6) At J of the span

W / _ N _ 7 .

yjj

2
"

f ^ . f 50 = 1 x t x 6 x 144 x 4 foot-tons ;

t = 0'l foot= 1*2 inches,

(c) At J the span
3 .40 _5_o_ = i x t x 6 x 144 x 4 foot-tons ;

# = 0'137 feet= 1'64 inches.
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3. A girder, 40 feet span, 4 feet deep, carries a load of 12 tons at

the centre
; breadth of flanges 9 inches

; working stress 6 tons per

square inch. Find the thickness of the flanges at J and J the span.

(a) At J the span
Thickness <xM

;

Wl
.'. Thickness at centre oc

;"

t = oW feet = | inches (app.).

(b) At J the span

=6 x 144 xf xx4;
= 2TF feet = fV inches (app.).

4. A steel girder, 40 feet span, 4 feet deep, carries a uniform load

of 3 tons per foot run
;
width of flanges, 9 inches

; working stress on

upper flange
= 6 tons per square inch

; working stress on lower flange
= 5 tons per square inch. Find the thickness of the flanges at the

centre of span, and at 10 feet from each end.

Let tc
= thickness of compression flange,

tt
= thickness of tension flange.

Then 9#c . 6 = 9# . 5.

"
tt

=
b'

(a) At centre,

Compression Flange :

wl^ *

~~8~'

3 x 40 x 40 x 12 x 12 n . , .

/. - = 6 x 9 x tc x 4 x 12 inch-tons;12x8
tc
= -2

/- inches = 2*8 inches. .

Tension Flange:

3 x 40 x 40 x 12- = 5.9.^.4x12;
o

tt
= 3J inches.

(6) At 10 feet from either end,

f .10.30.12-6.^.9.4. 12;

tc
=

f|- ^2'08 inches;

tt
= %te

= 2'5 inches.
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5. A steel plate girder, 60 feet span, 6 feet deep, carries a uniform

load of | ton per foot run, and two loads of 8 tons each, placed 6 feet

each side of the centre. Determine the necessary sections for top and

bottom flanges, taking the working stress on top flange 6 tons per

square inch, and on the bottom flange 5 tons per square inch. See

Fig. 187.

The maximum bending moment is at the centre.

Bending moment at centre for uniform load = - = 337 '5 foot-tons.
o

Bending moment at centre for concentrated loads = 192'0 foot-tons.

Total bending moment at centre = 529 '5 foot-tons.

8-r

-60-
Fig. 187.

529'5
Flange stress at centre = = 88 "2 tons.

O

The section is sketched in Fig. 188 ; the

dimensions of flange will now be determined. It

should be noted that only the areas of the parts

of the angle-irons which are attached to the flanges

are taken into consideration in finding the flange

area
;
the parts of the angle-irons attached to web

are omitted. Rivet holes are deducted in tension

flange to get its net sectional area.

Area of top flange at centre of girder

88-2 . ,= -- = 14' 7 square inches,
o

Net section of bottom flange at centre of girder

88-2 _ . ,= - as 17-7 square inches.
o

Sections:

Top flange 2 x 4" x I"

( 2 plates 16" x f
"

JL
Fig. 188.

Angle-irons used, 4" x 4" x
|-" }

giving area for flange
= 3*0 square inches.

-12-0

Total area - 15'0
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Bottom flange

Angle-irons 4" x 4" x f",

giving area for flange

2 x 4" x I
3 plates, 16"

= 3'0 square inches.

= 18-0

21-0

Deduct 8, f
"

rivet holes

in f
"
plates and angles

- 2 '5

Total net area = 18'5

These areas allow a slight margin in excess of the area required.

6. In a steel girder bridge of 150 feet span, with lattice bracing,

the top and bottom flanges are of the box-type section. The stresses

at two sections of the upper flange have been calculated to be 282 tons

and 426 tons respectively. Design suitable cross sections at these

points for a working stress of 6 tons per square inch. Take the top

plate 3 feet wide and the side plates 2 feet deep.

At Section 1 (Fig. 189),

Total stress = 282 tons.

Necessary area = -f- = 47 square inches.

Designed Area,
4 angle-irons 3j" x 3j" x J"

= 13 square inches.

1 top plate 36" x J" =18
"

2 side plates 24" x f" = 18

Total area = t9

^ ANCLE IRONS
->J.''J."

Fig. 189.

ANCLE IRONS

Fig. 190.
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At Section 2 (Fig. 190),

Total stress - 426 tons.

Necessary area =
' = 71 square inches.
o

Designed Area,
4 angle-irons 3j" x 3j" x J"

= 13 square inches.

1 top plate 36" x J" =18
2 side plates 24" x f

" = 18

2 side plates 24" x J" = 24

Total area = 73

NOTE. By adding vertical plates on the inside to get the necessary

area, we do not alter the centre of gravity of the section. The same

result may be got by adding plates on the outside between the angle-

irons, in which case we get a constant distance between the side plates ;

which may be useful in designing the verticals, as they are generally

fixed between the side plates.

EXERCISES.

1. A rolled steel joist 16 inches deep, with flanges 6 inches wide

and 1 inch thick, web f inch thick, supports a uniformly-distributed

load of 2 tons per foot. If the span is 12 feet, determine the maximum
tensile stress in the lower flange.

Ans. 1 = 847 '5, stress = 5 "5 tons per square inch.

2. Compare the strength to resist bending of the joist in Ex. 1

'when it is placed upright like this, I, and when on its side like

this, M .

3. A cast-iron girder 20 feet long is supported at the ends.

The dimensions of the section are : Top flange, 3 inches by 1 inch
;

bottom flange, 8 inches by Ij inches; web, 8 inches by Ij inches.

Find the moment of resistance, the greatest permissible compressive
and tensile stresses being 7 and 2 tons per square inch respectively.

Determine, also, the greatest safe load the girder will carry when

uniformly distributed over its length.

4. A steel plate girder, 50 feet span, 5 feet deep, carries a uniform

load of 1 ton per foot run, a load of 8 tons at centre, and two loads

of 6 tons each at 10 feet on each side of the centre. Calculate the

necessary areas of cross section of the flanges at the middle, and give
suitable design for them.

Working tensile stress = 7 tons per square inch.

"Working compressive stress = 6 tons per square inch.

Draw the diagram of bending moment.
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5. Determine the safe load at the centre which a plate web girder

of the following dimensions will carry : Span 40 feet
; depth 5 feet

;

flanges, fonr plates each, 1 4 inches wide, i inch thick. The flange is

attached to the web by two angles 4 inches by J inch. Reduce the

area of each flange by two rivet holes f inch diameter connecting the

flange and angles.

"Working stress in flanges 5 tons per square inch.

6. Find the limiting span of a cast-iron pipe 12 inches external

diameter, 1 inch thick, its weight being 100 Ibs. per foot run. Stress

not to exceed 1 \ tons per square inch.

7. A circular tube 6 inches external diameter and \ inch thick is

supported at each end
; span 5 feet. Find what load placed at the

centre will produce a stress of 5 tons per square inch.

Find also the maximum intensity of shearing stress.

8. An oak beam 12 feet span, 9 inches wide, and 12 inches deep,

carries a brick wall 9 inches thick. Find to what height the wall can

be built with safety if the greatest permissible stress is 1000 Ibs. per

square inch; weight of brickwork 120 Ibs. per cubic foot.

9. Compare the strength of an I section of depth 8 inches,

breadth of each flange 3 inches, thickness of both flanges and web

1 inch, with that of a rectangular section of the same sectional area

and depth.

Ans. I girder is the stronger in the ratio of 23 to 16.

10. Two beams of the same material are similarly loaded, one is

round in cross section, the other is square. If the beams are of the

same length and are of equal sectional area, which is the stronger ?

Ans. The square beam is the stronger in the ratio of 1 to 0*847.

11. In the last example if the side of the square section is equal
to the diameter of the circular section, compare the strengths of the

two beams.

Ans. Strength of circular section = 0*589 of the square section.

12. A Pratt girder as in Fig. 181, span 104 feet divided into 8 bays,

depth j^th of the span; carries a dead load of 3*1 tons at each joint

of the bottom chord, and a live load equivalent to 7*95 tons at the same

joints. Determine the maximum stress in each member of the third

panel.

Ans. Top member 103 '62 tons compression.

Bottom member 82*90 tons tension.

Diagonal member 31*30 tons tension.

Vertical nearest support 19*5 tons compression,

centre 11*49



CHAPTER VIII.

DEFLECTION OF BEAMS.

74. Deflection. Stiffness.

When a beam is loaded it becomes deflected or curved. The
deflection is due to the bending moment, which causes longitudinal

strains, of compression on one side of the neutral surface, and tension

on the other side.

The elastic deflection of beams is important in all permanent

engineering works. The beam or girder must not only be strong

enough to sustain the loads, but must also be stiff enough to bear

the loads without being strained beyond certain limits.

The two classes of beams which have generally to be considered in

practice are :

(1) Beams built up so as to have a uniform unit stress on each

flange throughout. The strength and depth are uniform.

This class includes all girders with parallel flanges.

(2) Beams of uniform cross section throughout, where the value

of / is constant for all sections, such as rectangular beams

and rolled joists.

The stiffness of a girder is measured by the ratio

maximum deflection

span

In practice this ratio is about T^VTF to y^Vir for long steel spans.

For short girders and joists it is about FJF .

75. Curvature.

The curvature of a circle is the reciprocal of its radius
;
and of any

curve it is the curvature of the circle which most nearly agrees with

the curve
;
or it may be defined as the angular change of the direction

of the curve per unit of length.

76. Curvature due to bending moment.
We have already shown that the bending moment

M-*i-l.R y
w. 12
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where R is the radius of curvature of the portion of the bent beam
considered.

77. Uniform curvature. Beams of uniform strength and

depth.
From the above equation we see that

1 M , 1 /
R~ El* ~R~Ey'

and it follows that a beam originally straight will bend into a circular

M f
arc if

-j
or is constant. This occurs (1) when a beam of uniform

section is subjected to a uniform or constant bending moment, and

(2) when a beam is so designed that the depth and flange stress are

both uniform.

B

Let AB in Fig. 191 represent a beam of length L bent into a

circular arc, and call ^J1 (CE) the deflection at the centre, we have

CE. CD=CA. CB,

from which, since u^ is small and U* may be omitted,

or, if d be depth of the girder and/the uniform flange stress,

./If
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78. Curvature, slope, and deflection.

Let OPQ (Fig. 192) represent the curve assumed by the neutral

surface after loading. OX is drawn horizontal. Take P and Q, two

points on the curve very close together, the coordinates of which are

x, u, and x + dx, u + du respectively.

<

Fig. 192.

Call i the slope or inclination of the tangent at P, then (i + di)

will be the inclination of the tangent at Q, di being the angle between

the tangents at P and Q, which is equal to the angle at the centre

between the normals.

Now, the deflection being very small, and consequently dx sensibly

equal to ds, the length of PQ,
dx

~S'
Therefore the curvature

R dx da?
M_
Er

M

The slope
du . [M ,

dx
=
^)-EI

dx '

122
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Deflection u = I idx.

From these equations we determine the slope and deflection.

Examples.

(1) Cantilever of length I of uniform section, loaded with a iceight

W at the free end (Fig. 193).

\W

U
l

Fig. 193.

Take the origin at the fixed end of the beam and let x be the

distance of a section from that end.

Then M=W(l-x).
d 2u _W

Integrating, we have, as E and / are constants,

du VI

To find C we must know the slope at some one place.

Now, there is no slope at the fixed end, hence

-T- = where x = ; therefore (7=0.
ax

W /I a?\
Integrating again, u = ^(

- la? -
~J

+ (7,

but u = Q when ^ = 0, .*. (7=0.

Deflection at any point of the beam

Maximum deflection is at end, where x = I.

WP

P

Fig. 194.
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(2) Cantilever of length I of uniform section uniformly loaded

(Fig. 194).

Let w be the load per unit of length, taking the origin as before

at the fixed end, in order to eliminate the constants of integration,

. _j^
'

dtf"2E (f

Integrating .'
= g =^

but ^ - when x = 0, /. c= 0.
<I0

To find the deflection, integrating again,

now w = 0, when x = 0, .*. ^ =
;

hence the curve of the beam is

At the end, where x = I, we get the maximum deflection

wl* Wls

if W=wl, the whole load on the beam.

In the two previous examples if the end is imperfectly fixed,

so that this end, instead of being horizontal, slopes at an angle a, then

du .

3- = tan a, when x -
dx

and C=EItan a.

(3) Beam of uniform section supported at both ends, loaded with

a single load W at the centre of the span (Fig. 195).

,

t

w

i

Fig. 195.
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If we take the origin at the middle of the beam, the constant of

integration is zero, since i = when x =
0,

Integrating, we get the slope at any point

. _ du _ W fl_ _ o?\

At the ends, where x = -
,
the slope

. = Wl*

To find the deflection W /la* a?

and its greatest value, namely, the rise of the ends of the beam above

Wl

the middle, is got by putting x = -
,

(4) Beam of uniform section, supported at both ends, loaded with

a uniformly-distributed load (Fig. 196).

I wl \
L

1 I wl
2

r.^l^.1
Fig. 196.

irf-t
"7^~ I ^^_____^_^__^__ T

Take the origin at the centre as before, in order to make the

constants of integration vanish, we have

I \\2~*Jwl/l

Al_
sothat

=
77 1

- - ^
) ;

W /I'
2
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Integrating, we get the slope at any point of the beam
s7 ij fit* /I^f /Y^\

=
dx

=
2EI \T

~
3/

'

Slope at ends where x = -
2

i =
Wl*

To find the deflection,

w

. ~2M 8
~

w is greatest when x = -
.

2

At the ends therefore

5 wl<

if W=wl, the total load.

This represents the rise at the ends, which is equal to the sag at

the middle.

In the above cases, the maximum deflection may be expressed by the

following general formulae :

_ Wl* _ Ml2

_ ff
nEI n,EI

where n and n^ are constants depending on the loading,

I the length of the girder,

yl the distance of extreme fibre from neutral axis,

/! the intensity of stress at ylt

For beams supported at the ends, we get the following values

of n and n^ :

Load at centre, n = 48
; % = 12.

Load uniform, n = ^|- ; n-^
- -4/.

It will be seen later on that for beams fixed at the ends :

Load at centre, n = 192
; n^ = 24.

Load uniform, n = 384
;

W, - 16.

(5) A beam is supported at its ends, and loaded with a weight W,

at a point F. Show that the deflection at F is Pt
,

/
-

rr ,
where a, b

oHiL (a + 0)

are the distancesfrom F to the points of support (Fig. 197).

Take the place where the weight acts at origin, and consider first

the portion of the beam which lies to the right.
'

The reaction at the right support is r.

CE is the tangent at 0, and AD is drawn parallel to CE.
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Now, if we consider the beam fixed at and loaded at B with

T ,
the bending moment at any section to the right of F is

Wb .

Wb

as in the case of a cantilever.

Fig. 197.

Integrating, i =^ =
EI(a + b} \

~
2~)

'

Integrating again,

at x = a, Ui

-
,

Wba*

3EI(a + 6)

'

Similarly, if we consider the portion of the beam on left of weight,

WaW

Deflection at F= FO = HO +FH= AC+FH

W ( Jn (ba*-ab-

79. Deflection of a beam supported at the ends, carrying
a series of loads.

Example.

A single-line railway bridge is carried by two main girders of

30 feet span, these girders support a continuous platform on which
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the rails are laid. A locomotive on the bridge weighs 50 tons

distributed upon three axles as follows, viz., 14 tons on the leading
axle and 18 tons on each driving axle ; the distances of the axles

from the centre of support of

main girders at one end being * a
q

respectively 7 feet, 14 feet, and ^ _> X 7
* 1 Q' 1_ *'-+

22 feet. Find the maximum r~ ~]
deflection. T~~ F

Each main girder will carry R/L 30' J Rz
half the weight of the locomotive

Fi 198
as in Fig. 198,

^=12*57 tons,

EZ = 12 '43 tons.

Segment 1 from the left support,

J?/g= 13-57*.

^*.W+<5 (A),dx

EIu = 2'0^+C^+C, (B).

Segment 2,

- 3'5 (x-l)*+W ................. (C),

-^(^-7)
3 +(71^+(72

/

............ (D).
o

Segment 3,

EI^ = 12-57^ - 7 (x
-

7)
- 9 (x

-
14),

)

2
-4-5(^-14)

2
-^7r ........... .(E),

EIu = 2-09^ --(tf-7)
3 - 1-5 (x-Uy+Ci'x+Cz" ...(P).

o

Segment 4,

d

-^
= 12-57^ - 7 (x

-
7)
- 9 (x

-
14)

- 9 (x
-

22),

l^fc
= 6-28^ - 3'5 (x -7)

2 - 4'5 (^-14)
2 - 4'5 (ar

-
22) + Ci"' ...(G),

2-09^-~(^-7)
3

-l-5(^-14)
3

-l'5(^-22)
3+ar^+0J

///

...(H).
o

To determine the values of the various constants, we have that

at a section common to two adjacent segments, identical values for

-T- and for w, must be given by the equations for each segment. Thus
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For x = 7. ft = ft' ; ft - ft', from equations (A), (C) ; (B), (D).

x = u. ft' = ft" ; ft'
-

ft", from equations (C), (E) ; (D), (F).

# = 22. ft" - ft'" ; ft" - ft"', from equations (E), (G) ; (F), (H).

Again, when x = 0, w = 0, therefore by equation (B) ft = 0, hence

ft' = ft"=ft'" = 0,

when x - 30, w = 0, therefore, equation (H),

30ft'" = ~ x 233 + 1-5 x 163 + 1-5 x 83 - 2'09 x 303
.

Therefore ft"' = ft" = ft
' = - 1 1 82.

The maximum deflection will occur in the segment 3.

The abscissa, x^ of this point is the value of x which makes

-j-
= in equation (E). Hence

6-28^
2 - 3-5 (#1

-
7)

2 -4'5 (x- H)
2 - 1182 = 0.

Solving, we get x = 14*97 ft.

Substituting this value of os-i for x in equation (F),

= - 11256-7.

11256-7 fMax. deflection is u^ foot,
**

where E is in tons per sq. foot, and / in foot units, that is (feet)
4

.

If E, 7,-and UL are in inch units,

11256-7 x 12 112567 x 12 3
. ,

Ul =-T = - ==-- inches.
EI

80. Graphic method.

We have seen that the load, shearing force, and bending moment
are connected by the relations

dF dM .,

-=-=w; -=- = F,dx dx

where w is the load per unit of length.

Again, we have deduced the following relations between bending

moment, slope, and deflection:

du_. di
L _ d^u _ M

dx~ ; ~dx~dx*~EF
Hence, if we know w, the loading of the beam, we can by

integration obtain a succession of curves representing F, M, i and u.

From the above equations we see that the bending moment curve

is the second integral of the load curve, and we know that it can be got
from the load curve by means of a vector and link polygon. Similarly
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the deflection curve, being the second integral of the -^y curve, can be
Mil

found from the bending moment curve by means of a vector and link

polygon. Also, the ordinate of the slope curve at any point is equal
to the area of the bending moment curve up to that point divided by
EI\ and the deflection at any point is equal to the area of the slope
curve up to that point.

81. Method of drawing deflection curve for unequal
loading.

Having drawn the bending moment diagram, treat it as a load

diagram ;
divide it up into narrow vertical strips (Fig. 199). Through

the centre of each strip consider a force

to act equal in magnitude to the area

of the strip. Choose a pole ;
draw a

vector and link polygon, and a line OX
parallel to the closing line AB of the

link polygon. Take a new pole Ol with

O^X horizontal, then a new link polygon
is obtained with a horizontal base line,

which gives the deflection on a certain

scale.

First, to find the scale for bending
moments.

Let

1 inch = m inches be the linear scale,

1 inch = n tons be the load scale,

Polar distance = h inches,

M= bending moment,
D = ordinate of bending moment diagram

in inches.

Then 1 inch of ordinate of bending
moment diagram represents

mnh inch-tons.

X rrr ^c%

-Fig. 199.
Secondly, to find the scale for de-

flection curve.

Let / be the width of each of the narrow strips of bending moment

diagram, and let k inches be the length of the new polar distance OlX.

Now in the second vector polygon set down the loads as represented

by the middle ordinate of each strip, consequently 1 inch on load scale

now represents an area of Im x mnh.

Thus the scale of deflection curve is
m x Im2nh x k

or, each inch of
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ordinate of deflection curve represents ^ inches real deflection,
j^l

the length units all being in inches.

Example.

For illustration of the method take the following simple case. A
girder 15 feet long supported at the ends, carries a single load of 6 tons

at the centre. If the moment of inertia of the cross section is 200 inch

units, find the maximum deflection. E= 12500 tons per sq. inch.

, ( a length scale of 1 inch = 60 inches,

I a load scale of 1 inch = 6 tons.

Draw FG vertical to represent 6 tons, and take the polar distance

= 1 inch; join FO and GO, and draw the corresponding link

Fig. 201.
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The scale forpolygon, or bending moment diagram ACB (Fig. 200).

this diagram is

1 inch = mnh = 60 x 6 x 1 = 360 inch tons.

Divide the bending moment diagram ABC (Fig. 200) into 9 vertical

strips each Jrd inch (/) long, and at the centre of each strip suppose a

force to act proportional to its area. Now on a vertical line (Fig. 201)
measure off' successively lengths equal to the middle ordinates ab, efy

gh, kl, CD. Take the pole Oit making the polar distance

OiXj (k)
= 2 inches,

and draw the link polygon AEB (Fig. 200). The central ordinate DE
(Fig. 200) gives the maximum deflection.

To get the scale,
. , - ,. Im3nhk 160x60x60x6x2

1 inch of ordinate = FTP- =El
864000

12500x200

= 0*34 inches deflection.
2500000

As the ordinate DE= 0*8 inch,

maximum deflection = 0*8 x 0'34 = 0*27 inches.

The two following cases are worked on the same principles, but in

a slightly different manner.

(1) Beam of uniform cross section supported at both ends and
loaded at the centre.

The shearing-force diagram is a curve with ordinates of constant

W
value, each = (Fig. 202). The bending moment curve (Fig. 203) is

Fig. 203.
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got from this by integration. The maximum ordinate C'D' = area of theW J H77
rectangle AD (since M= jFdx) =

^-
x
|
= - 1*

.

/$/

Fig. 204.

Fig. 205.

The curve of slope (Fig. 204) is got from the bending moment curve.

The maximum slope at the end represented by the ordinate A"D" is

the area of the triangle A'C'D' multiplied by -r

= - -
~2* 4 '2 El UEI*

The slope at the centre is zero.

To find the deflection curve (Fig. 205). The deflection at the

ends = 0, and the maximum deflection at the centre is represented

by the area of the semi-parabola A"C"D",

_
l ~3 16 2^/~48 El'

(2) Find the deflection of a uniform beam supported at the ends

and loaded symmetrically with two equal loads (Fig. 206).

Fig. 207 is the bending moment curve, and Fig. 208 the curve of

slopes. The slope at the centre is zero. The greatest slope is at the

ends, and is equal to the area of the bending moment diagram between

the end and centre multiplied by -=?*

as represented by the ordinate A'E'.
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The maximum deflection is at the centre, and is equal to the area

A'O'D'E' of the slope diagram multiplied by
-

Fig. 208.

or, since

The student should apply the above principles to find the maximum
deflection in the following cases, the cross section being assumed

constant.

(1) A horizontal beam supported at the ends
; (a) Loaded with a

weightW dividing the span into two parts of length /x and 4 ; (b) Loaded

with a uniform load of intensity w per foot run.

(2) A horizontal cantilever ; (c) Loaded with a weightW at the free

end ; (d) Loaded with a uniform load of intensity w per foot run.
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82. Fixed beams.
An encastrd or fixed beam is one whose ends are fixed tangentially,

so that they remain horizontal when the beam bends under the load

(Fig. 209).

I

Fig. 209.

The bending will take place as in figure where the parts near ends

are in "hogging" and the middle part in "sagging" curvature.

The direct stresses are distributed differently from those in sup-

ported beams. In the latter there is no direct stress at the points of

support, the value of M there being = 0. In the former the effect of

the fixing is to produce a moment at the fixing, the upper fibres being
in tension and the lower ones in compression.

The points where the curvature changes from hogging to sagging

are called "points of contrary flexure" or "points of inflection"; at

these points M=Q, and there is no direct stress. We may, in fact,

consider the whole beam to be made up, as far as the points of contrary

flexure, of two cantilevers, one at each end, and a supported beam

resting on the ends of those cantilevers.

83. Beam ends fixed horizontally. Uniformly loaded.

The loading being symmetrical, the fixing moments at the ends are

equal and opposite. The reactions are each equal to .

Let M be the bending moment at any section of the beam, if the

ends are merely supported ;
and let m be the fixing moments at the

ends. Then the bending moment at the section is

Mx =m + M.

Thus at any point distant x from the end the bending moment

TIT
W^ XMx = m + x-wxx-

The slope

WX
,(1).

mx +
6 )

.(2).
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The constant of integration
=

0, since i = when x = 0.

A
' ' l

Again,

hence

i = when x = -
,

2i

I wl* wP

12
(3).

To find the bending moment at centre, in equation (1) give m its

value from equation (3) and put x - -
.

wP wl I wP wP wP
Jlf at centre^ -- + -*---=.---

_ wP~
24'

The bending moment diagram is sketched in Fig. 210.

Fig. 210.

In a uniformly-loaded beam of span /, simply resting on end

wP
supports, the greatest bending moment is -

. In a fixed beam

wP
uniformly loaded the greatest bending moment (equation 3) is .

The fixed beam is therefore stronger, so far as the maximum bending
moment caused by a uniform load is concerned, in the proportion of 1 2

to S or 3 to 2.

To find the deflection of the fixed beam, uniformly loaded, we have

from equation (2)

/.

7 1 /"/ wPx wlx? wz?

^EiKu+^r -

w. 13
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The maximum deflection at the middle, where x = -
,
is

884T
which is only one-fifth of the deflection in a similarly-loaded beam

supported at the ends.

From equation (1)

M - w^
(1 \

To find the points of inflection, put Mx - 0, which occurs when

ff-)-
6

'

that is when x = - 1 1 + -

or # = 0'211/ and # = 0'789/ give the distances of the two points of

inflection from either support.

84. Beam fixed at both ends of uniform section carrying
a load W at the middle.

To find the bending moments at each support, and in the middle,
also the deflection at the middle.

l< 4 >L K " -H

Fig. 211.

The vertical reaction at each end is equal to .

At any point distant x from the end the bending moment is

W
lyf /m iMx -m +

2
. .(4).

The slope i - ^j
1

Br/(*'
+T')*

W
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The constant of integration must be zero, since i = when x = 0.

But ^ = when x = -
,
hence

l
+
WP = Q

_Wi
"IT*

Giving m its value in equation (4)

W Wl
(5);

at the centre, where x = -
,

Wl Wl Wl

The diagram of bending moments has the form sketched in

Fig. 211.

To find the points of inflection put Mx = in equation (5), this

occurs when x = -.
4

To find the deflection

Wl

EI\ 12 16
'

at the middle where the deflection is greatest # = -
,
and its amount is

Wl3

85. Uniform beam, uniformly loaded, fixed horizontally
at one end, and supported at the other on the same level.

The beam bends into the form shown in Fig. 212, there being
a point of contrary flexure at E. Let P be the supporting force at B.

------------ i ----------

Fig. 212.

Take the origin at fixed end. Bending moment at any section

(6).

132
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Slope

The constant of integration = ;
since i = when x = 0. Integrating

we get

2V 2 3 i2

Again constant =
;
since u = when # = 0.

But since at
,
where # =

/, we have w = 0,

J^\ = ^f^Jl + ^.\
6/ 2 V2 3 1272

P_3wl
3
"

24 '

is supported at B, and ^ths at A.
To find the points of inflection, substitute in Mxt equation (6), the

value ofP just found, then

Equating Mx to zero we get the point of contrary flexure at

Ix=- .

The moment at the fixed end is got by putting x = in equation (7)

wl I wl^

By differentiating equation (7), and equating to zero, we find a.

maximum bending moment at x = -fI,
at this point C

which is less than m.

Since m is equal to the maximum bending moment of a beam

supported at the two ends and uniformly loaded, we see that a beam

is not made stronger by fixing one of the ends only.

86. Resilience of a bent beam.

The work done in bending a short portion, dx, of a beam is \Mdi,
where M is the bending moment, and di is the change of slope in the
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length dx. Integrating from one end of the beam to the other, the

whole work dSe is

2/
M* , . di M

Examples.

1. Beam of uniform section subjected to a uniform bending

moment, consequently uniform curvature.

Work done = T̂
x I

;

now M=
I,

yi

f 2
ii

therefore, Work done = ~^ .

If the section is rectangular, /= - and y\
=

-^ 9

\'2 Z

therefore, Work done = -\ ~, ,

b-&

fi being the intensity of stress at top or bottom,

/"
2

and, Work done = k V, where V = volume,
b_/^

which is Jrd the resilience of a piece subjected to a pull or push of

uniform intensity/IP

2. Beam of uniform section, supported at ends, loaded with a

single load W at the middle.

The work done can be got by taking half the product of the load

and the maximum deflection

W Wls

_ W2
l
s

2
x
48JET

In the case of a rectangular beam

M-^T- r- bd*." /; '12'

Work done^
that is, |th of the resilience of piece subjected to a stress of uniform

intensity/!.

87. Beam fixed at one end, supported at the other at the

same level, and loaded at some intermediate point with a

single load W.
Here the bending moment is discontinuous.

x)- W(a-x)..
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This makes the method of finding slope and deflection by inte-

gration inconvenient.

To find P, the pressure on the support, we can adopt the method

of superposition of deflections.

Consider each load separately and add algebraically.

First consider W. See Fig. 213.

The portion ED of the curve AD is a straight line, and

DB =DC+CB = DC+ EF= ijh + u^
where ii is the slope of the beam at E

;
but i^ of a beam fixed at one

end and loaded at the other

Wa?

and u, =
Wa?

. no Wa*b
. . DB = --FF> + /*+l

2EI ZEI~ El 12 3J
'

-->

Fig. 214.

This would be the depression of the end B if W acted alone.

Secondly, consider P acting upwards at the free end of an encastr^

beam of length l\ then in Fig. 214 the deflection due to P is
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Since the point B really keeps in the horizontal line, the deflection

upwards due to P must be equal to the deflection downwards due

to W, or

B'D'^BD;

PI3 Wa? (b a

3EI El 12 3

/. P =

Knowing P, we can always find the bending moment at any point.

The point of contrary flexure can be found by equating the bending
moment to zero.

As a special case of this example, suppose the weight at centre,

then a = b = -
,
and

5) 5 w
"WIG/ "16

V

and the reaction at fixed end = \\ W.

This principle can be further applied to the case of a beam loaded

with several weights, TFi, W2 , &c., dividing the length of the beam
into sections, 1} 6^ a2t b2 ,

&c.
;
then

88. Beam supported at the ends and propped in the

middle, uniformly loaded. (Fig. 215.)

When a beam is loaded with several loads the deflection due to

the whole is the sum of those due to each load taken separately.

B

Fig. 215.

Hence the deflection in this case is the difference between the down-

ward deflection due to the uniform load, and the upward deflection

due to the thrust P of the prop.
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Deflection at centre

5 Wl s Pl s

384 El 4.SEI

7 3 /^
= . (- W - P

Let us suppose the upward pressure such that this deflection = 0,

or that the three supports are at the same level ;
we get

P =fTF=M
and consequently each of the supporting forces at the ends

= - vW = &wl;

where, as before, w = load per foot run, and I the whole length of beam.

The bending moment at any point distant x from A is

,oyi/y2 7/?'/1
/ -^

The points of contrary flexure are at E, Ei9 where

Next, let us suppose the middle prop to be lower than the end

supports. Assume the top of prop to be lower than the supports by

-th of the deflection of the beam when prop is removed, then

1 b_Wl^ = ^_Wl^_ PI3

n
'

384 El
~
384 El 1%EI '

that is, P=lw(l --Y
o \ n/

EXERCISES.

1. A beam uniformly loaded rests on three supports, two at the

ends and one at the middle. Find how much the middle support
must be lower than the end supports in order that the pressures on

the three supports shall be equal.

Am.
1 Wl3

1152 El
2. A uniformly-loaded beam rests on three supports distant

apart I and 2/; the centre prop is
- below the level of the two end

supports. Find the reaction on centre prop.

3. A beam of rectangular section, depth 8 inches, breadth 3 inches,

10 feet long, is supported horizontally at the ends and loaded with

a weight of 5 tons uniformly distributed. Find the deflection, as-

suming E= 12000 tons per square inch.

4. A beam 20 feet span supported at both ends carries loads

of 2 tons, 4 tons, 1 ton and 3 tons at points 3 feet, 8 feet, 12 feet, and
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17 feet respectively from the left support. Find graphically the

maximum deflection. Assume 7=300; .#=12000 tons per square
inch.

5. A wooden joist of a floor carries a uniform load of 0*2 ton

per foot run. If the span is 20 feet, determine the scantling of the

joist if the deflection is limited to f inch
;
the maximum stress being

\ ton per square inch. Assume E= 700 tons per square inch.

Ans. 14 inches deep by 7| inches wide.

6. If in the last exercise, the depth of the joist is limited instead

of the stress
;
the maximum depth allowable being 13 inches. Deter-

mine the necessary scantling.

Ans. 13 inches by 9 inches.

7. A girder 30 feet span supported at the ends carries two loads,

one of 7 tons at 6 feet, the other of 12 tons at 18 feet from the left

support. Find the maximum deflection.

8608 fA ns. u^ - ^rr 1^
fjj.

8. A girder 50 feet span supported at the ends is loaded as

follows :

7 tons at 10 feet from left support.

j )) 1"

" )J ^1 5) JJ

4 30

Find the maximum deflection.

39000
Ans. M! = pj foot,

j

9. A fir beam 12 feet span, 10 inches deep, 5 inches wide,

supported at the ends, carries a uniform load of 5 cwt. per foot of

span. Find the maximum deflection. E= 700 tons per square inch.

Ans. 0*4 inch.

10. A rectangular wooden beam 20 feet span, 14 inches deep,

carries a load of 2 tons at the centre with a maximum stress of

1000 Ibs. per square inch. Find the maximum deflection, and the

breadth of beam.

Ans. ~-.
JT : r . 8*23 inches.

ti in IDS. per square inch

11. A beam 20 feet span is fixed at the ends, carries a load of

5 tons in the centre, and loads of 2 tons each at 5 feet from the ends.

Construct the bending moment diagram. Give the value of the

maximum bending moment, and the position of the points of inflection.

Ans. 20 foot-tons. 4 '4 feet from the ends.

12. Determine the ratio between the deflection of a girder of

uniform / cross section, and one of uniform strength, both girders
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being designed for the same span, with the same uniform depth, and

the same maximum working stress per square inch of flange section

under a central load.

Ans. 2 : 3.

13. In last exercise if the load is uniformly distributed, determine

the relative deflections for .the same maximum stress.

Ans. 5 : 6.

14. A horizontal beam of uniform section, whose moment of

inertia is /, and whose total length is 2/, is supported at the centre,

one end being anchored down to a fixed abutment. Neglecting the

weight of the beam, suppose it to be loaded at the other end with

a single weight W. Find an expression for the vertical deflection

of that end below its unstrained position.

1W13

Am.
I^/

.

15. A horizontal beam fixed at both ends carries a weight W at

a point which divides the span into two portions a and b. Find the

deflection at the point of application of the weight, and the work done

in bending the beam.
W ( ab \

3 W2

( ab
I_ 1 _ i_

16. A girder 42 feet span, supported at the ends, carries two
concentrated loads, one of 6 tons at 7 feet, and one of 10 tons at

28 feet from the left support. Find the maximum deflection.

17537 ,
Ans. u^ = v , foot.

til

E in tons per square foot, I (feet)
4

.

17. A girder 100 feet span carries three loads of 20 tons placed
at 20, 40, and 60 feet respectively from the left support. Determine

the maximum deflection.

Ans. The maximum deflection occurs at a section 48 '6 feet from

the left support, its value is

1024312 x 123
. ,

Ui frf
~ inches.

&1 .

18. A cross girder of a railway bridge carrying a double line of

way is 27 feet span between the main girders, and the four rails are

carried by it at 3 feet and 8 feet respectively from the centre of span
on each side. The maximum load at each of these four points when

two trains are on the bridge may be taken as 8 tons. Find the

maximum deflection.

Ans. The maximum deflection occurs at the centre of span,

9899 x 123
. ,

UT
= -- TF inches.



CHAPTER IX.

BENDING AND DIRECT STRESS. NON-AXIAL LOADS.-STRESS
AT A PLANE JOINT. MASONRY STRUCTURES.

89. Uniform stress. Uniformly-varying stress.

We know that in bent beams the stress on a cross section is a

uniformly-varying stress. The following are also examples of this

state of stress : Ties and struts where the load, although parallel

to, does not act along the axis of the piece that is, the load is

non-axial
;

also masonry piers and arches, where the line of action

of the resultant thrust does not pass through the centre of gravity
of the joint.

UNIFORM STRESS. When a load is applied along the axis of a piece

it produces a uniform distribution of stress over the surface of a cross

section
;
the intensity of stress at all points of the surface is uniform

and constant
;
and the resultant of the stress on the surface acts at a

point called the centre of stress, which in this case coincides with the

centre of area.

UNIFORMLY-VARYING STRESS. If, on the other hand, the centre of

stress of the cross section does not coincide with the centre of area,

then the distribution of stress over the surface is unequal, and it is

assumed that the stress is a uniformly-varying one that is, the

intensity of stress at any point in the section varies directly as the

distance of that point from a fixed line in the plane of the section.

This line is called the neutral axis of the stress.

Thus, if ordinates be drawn at right angles to the stressed surface

AB (Figs. 216 and 217), each representing the intensity of stress at

the point on which it is erected, the locus of the extremities of these

ordinates will be in a plane CD, which will be parallel or inclined to the

surface AS, according as the intensity of stress is uniform (Fig. 216)

or uniformly varying (Fig. 217). The volume of the cylinder represents

the total amount of stress. The line through E at right angles to the

plane of the paper is the neutral axis of the uniformly-varying stress.

It is evident from Fig. 217 that in the case of a uniformly-varying

stress the resultant falls on one side of the centre of area of the

surface AB.
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When, as in Fig. 218, the neutral axis of the uniformly-varying
stress falls outside the surface AJB, then the stress is of one sign all

Fig. 216. Fig. 217.

over the surface. If the neutral axis, as in Fig. 219, falls within the

surface AB it divides the surface into two parts, on one of which there

is tension, and on the other compression. If the neutral axis passes

through the centre of area of the surface, then (as in bent beams) the

total tension on one side is equal to the total compression on the other,

and the resultant of the stress is a couple.

Fig. 218.
B

B

Fig. 219.

90. Stress on a section or joint, the load being non-axial.

Let AB (Fig. 220) represent the trace of a surface on a plane at

right angles to it, being that of a line through its centre of area.

Let F be the resultant force normal to the surface, its line of action

intersecting AB in M. jPis also the resultant internal stress developed

at AB.
Let OM= #

;
that is, the distance of centre of stress from centre

of area.

Let xl and x^ be the distances from of B and A respectively.

Let $= area of surface AB. v
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Let/j and/a be the extreme intensities of stress at B and A.

Let/ be the intensity of stress at centre of area of AB.
Let / be the moment of inertia of the surface about an axis through

at right angles to the plane of the figure.

Then the stress represented by ABCD (Fig. 220) may be considered

as made up of two parts, viz. : (a) A uniform stress AGHB, due to

D

Fig. 220.

a load equal to F acting at the centre of area 0, the intensity of which
ET

is/o= ~a 5
and (b) a uniformly-varying stress GCJHD, due to a bending

moment M=F.xQ , represented by the triangular figures HDJ(com-
pressive) and GCJ (tensile), compressive and tensile stresses being

regarded as of opposite signs. Compressive and tensile stresses are

regarded as positive and negative respectively.

The intensity of this uniformly-varying stress on any line distant

x from is

M.x
I I

Adding (a) and (b) we get :

The intensity of stress at edge B

= /A +

.(2).

The intensity of stress at edge A

/.-/.-

.(3).
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We have thus a uniform stress all over the section or joint
= -~

as well as a uniformly-varying stress (compressive on one side of 0,

and tensile on the other side), which the bending moment FxQ produces.
If the resultant of the loading forces is a force R inclined to the section

or joint, then F in the above equations is the component of R normal

to AB.
In symmetrical sections #2

= a\ ; and equations (2) and (3) become

/ /

91. To find the limiting value of # without reversing the

sign of the stress.

It is necessary, especially in the case of bed joints of masonry

structures, to limit the value of #OJ in order to ensure that at no part

of the joint will the stress be tensile. To fulfil this condition put

then .(6).

RECTANGULAR JOINT.

For a rectangular joint in masonry whose sides are t and I (Fig. 221)

we have

Fig. 221.

Substituting in equation (6)

Limiting value of # =
(7),

as #0 may be on either side of 0, we have from equation (7) that the

resultant thrust must fall within the middle third of the joint in order

that there may be no tensile stress on any part of the joint.
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t / JF\
When # = -

,
the value of the stress varies from 2

(
-~

)
at the edge

6 Vox
nearest the resultant, to zero at the opposite edge (Fig. 222).

CIRCULAR SECTION.

Let r = radius. Then, for this section,

TIT
4

/= T>

Therefore .(8);

hence the limit of deviation of the point of application of the resultant

from the centre to ensure stress of the same sign all over the circular

section is

_r_ D
v-j- 8

-

In a hollow, circular section of outside diameter D and inside

diameter Dl the limit of deviation is

91A. Another method ofdetermining the extreme intensities

of stress/j and/2 on a rectangular joint.

The position of the centre of stress M is sometimes given by its

distance from the nearest edge of the section or joint.

Let F resultant normal pressure.

t =--
length of joint AB.

d = distance of the centre of stress M from the edge B.

,, /! and/2 be the maximum and minimum stresses at B and A
respectively.

T
I

Al

_i
E

.

Fig. 223.
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Let the ordinates BD and AC (Fig. 223) be drawn to represent

fi andy*2 respectively. Then the trapezoid ABDC represents the total

stress on the joint. Draw CE parallel to AB.

Let the width of the joints at right angles to tJie paper be unity.

Then the total stress on the joint is made up of two parts, viz.

ABEC=fz t acting at 0, and EDC=^~^' t acting at a distance
2

- from B.
o

Take moments round B,

-** ................................... <

But J^lC/i +/*)*;

Therefore f* = ^f-A (10).

Substituting in (9) for/2 its value in (10),

Maximum intensity of stress =/i = ( 2 -
J

(11).

Similarly from equations (9) and (10),

Minimum intensity of stress =/2
=

( ~7~
~ *

) ( 12 )'

In equation (11) is the value of the average stress-intensity on
t

the base, that is,/ .

Therefore /, - 2.

or

Equation (13) gives the value of d, the distance of the centre of

pressure from the extremity of base, where /i is the maximum

stress-intensity, and fQ is the average stress-intensity on the base.

To get the limiting value of d so that there shall be no tension on the

joint, put
/ = 0; .

to fulfil this condition we must have

H
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92. Given a non-axial load acting on a section, to deter-

mine where the stress changes sign. (For this solution I am
indebted to Prof. G. M. Minchin, F.R.S.)

Fig. 224 (A) represents the diagram of stress on the joint.

In Fig. 224 (B) let AHBEA represent a normal cross section of a

pillar or column, and let a non-axial load F act on the line PQ ;

the centre of pressure being at M. Let be the centre of area

of the cross section, and KL the neutral axis of stress.

D

Fig. 224 (B).

Take a parallel normal cross section A^B^ at a very small distance

below AB, and consider the equilibrium of the portion of column

between AB and A lBl .

The resultant upward pressure on A lBl must be exactly equal and

opposite to F.

Consider a small element of area dS of A^B^ distant x from the

neutral axis through C.

The pressure on this element = \xdS where X is a constant.

Therefore, the total pressure on the area A^B is

= \8.CO.

Again, taking moments about KL,

where Jcc is the radius of gyration of the area about the axis KL.

w. 14



210 BENDING AND DIRECT STKESS

Substituting for F its value above,

[CHAP.

or

therefore MO x C0 = k ........................ (14),

# being the radius of gyration of the area about the axis EH through
the centre of area.

From (14) we see that the points M&nd. C are related as the centre

of oscillation and centre of suspension in a compound pendulum whose

centre of gravity is and radius of gyration .

Examples.

1. Determine the greatest and least intensities of compressive stress

on a normal cross section of a rectangular pillar, the width of which

is 4 feet and the breadth 2 feet, due to a load of 250 tons. The line

of action of the load is 6 inches from the axis of pillar, in the central

plane parallel to the width (Fig. 225).

8=8 square feet ;
1=

Max. stress /i
= -~

=
; XQ

= J foot.
O

= -f- (1 + 1|) = 54 '7 tons per square foot compressive.

Min. stress /2
= if (!-*) = T8

2. Determine the maximum intensities of compressive and tensile

stress on the cross section, 6 inches square, of a wooden post under a
vertical load of 7 '5 tons acting at Ij inches from the axis of the post

in a central plane parallel to one side of the post.

$=36 square inches
;

5 . 6
4

T inches
;
F= 7*5 tons

;
1= = 108.
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F f $x x \
Max. compressive stress = -~ ( 1 +

j J

7-5x2240 A 5\--
( 1 + -} IDS. per square inch

= 1,050 Ibs. per square inch.

TVT -i 7'5 x 2240 / 5\ . ,

Max. tensile stress = -- -
(
1 -

}
IDS. per square inch

DO \ 4/

= - 116'8 Ibs. per square inch.

3. A wrought-iron bar of rectangular section, 3 inches by 1 inch,

transmits a tensile force of 5 tons. The bar is cranked so that the

line of action of the load, though parallel to the axis of the bar,

coincides with the middle of one of the smaller sides. Determine the

maximum intensities of stress in a normal cross section.

8=3 square inches ; F= - 5 tons
;
# = f inches

;

F flg a - 5 ,

= 6 '6 tons per square inch (tensile) ;

/2
= -f(l-3)
= + 1*66 tons per square inch (compressive).

4. A masonry dam has a horizontal base 115 feet wide. It retains

a depth of water of 150 feet. Assume that the weight of one foot in

length of the dam is 500 tons, and that the resultant acts at 45 feet

from the right-hand edge of base. Determine the maximum intensities

of vertical stress on the base (Fig. 226).

3/2-5 TONS.

F us'

Fig. 226.

142
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Consider one foot in length of the dam.

The total water pressure is

wk2
1 1502

Note. One cubic foot of water weighs \th of a ton. The hori-

zontal component of resultant is 312'5 tons. The vertical component
of resultant is 500 tons.

Substituting in the formula (11) and (12),

Max. intensity of stress /i = -
(2 J

2 x 500 / 3 x 45

115

= 7'18 tons per square foot.

..,.,, f 2TF (U ,\Mm. intensity of stress /2
= -

(
1

)
t \ t j

= 2 x 500 /3 x 45 _ \

115 \ 115 )

= 1'5 tons per square foot.

These are the values of the vertical intensities at the outer edges
of the horizontal base B and A respectively. The mean intensity

8*62
of stress is - =4'34 tons per square foot.

The maximum intensity of pressure is on a plane at right angles

to the resultant R.

The resultant pressure
= \/5002 + 312'52 = 589 tons.

The maximum intensity of stress on a section at right angles to

the resultant

cos e
'

W 500
where cos 0= .__^ .

Hence,

The maximum stress-intensity at B= 718 x

= 8*48 tons per square foot.

The minimum stress-intensity at A = 1 '5 x |
= 1*75 tons per square foot.

Note. When the resultant pressure is inclined to the horizontal,,

the maximum intensity of stress is found not by taking the normal

component of the resultant pressure acting at the centre of pressure,

but by considering a joint at right angles to the resultant R. This
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joint makes an angle 9 with the horizontal. The maximum intensity

of compressive stress is therefore, for

d> *. fss
M

(2 M\
3'

Jl
~tGo&e\

2 "
t)

, 2TF/ 3d\
and not /j = ( 2 -

yj ,

W being the normal component of R. The stress is greater in the

ratio of 1 to cos
2
6.

93. Stability of masonry structures.

In order to illustrate the application of the formulae in this chapter
we will apply them to a few simple cases of masonry structures.

For a further treatment of "dams," see Principles of Waterworks

Engineering, by Tudsbery and Brightmore, from which one or two

examples have been taken.

The conditions of stability at a plane joint are :

I. That the portion of structure above the joint shall not

overturn.

II. That the maximum intensity of pressure at any point in

the joint shall not exceed a certain limit known to

be safe.

III. That the portion of the structure above the joint shall not

slide along the surface of the joint.

As the two first conditions are dependent on the position of the

centre of pressure, these conditions may be stated as :

I. The centre of pressure must fall within certain limiting

positions on the surface of the joint.

II. The angle between the direction of the resultant pressure
and the normal to the joint must be less than the angle
of friction.

It is well to note again with reference to Condition L, that if no

tensile stress is permissible at any point in the surface of the joint

the limiting distance of the centre of pressure from the centre of

area is :

In a rectangular joint. Jth the thickness of the joint.

-,
... Diameter

In a circular joint. .

o

In a hollow circular joint of outside diameter D, and inside

diameter Dl . n
]

.

O-L/

94. Consideration of the conditions of stability.

Condition I. Let Fig. 227 represent in section a portion of a pier

or buttress, AB being the trace of one of the bed joints.
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Let W=ihe weight of the structure above AB, its line of action

intersecting AB at D.

P = the resultant of the external forces acting on the part
whose weight is W.

Let the point C be the centre of pressure at AB, and the middle

point of AB.

Fig. 227.

Let x and y be the horizontal and vertical coordinates of E, the

point of application of P, with reference to C.

Let and < be the inclinations to the horizontal of AB, and the

direction of P respectively.

The horizontal and vertical components of P are

P cos <j>
and P sin <.

Taking moments about C :

The moment of P (which is equal to the algebraic sum of its

component moments)
=P (y cos <f>

x sin <).

The first condition of stability requires that this moment of P
must be less than, or equal to, the moment of W with respect
to C7, or

............ (15).

95. Line of resistance (Fig. 228).

Let Ci be the centre of pressure of joint aa, and let P1 be the

amount and direction of the resultant force on that joint ; then by

compounding Px with the weight of the block ab, the resultant

PZ is obtained acting on the joint bb, through the centre of

pressure (72 .

Proceeding similarly, the centre of pressure and resultant at each

successive joint can be determined, and the stability of the structure

examined.
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The polygon CiCift, &c., formed by joining the successive centres

of pressure by straight lines, is called the "line of resistance."

Condition II. The maximum intensity of pressure at any point
of the joint shall not exceed a certain limit known to be safe.

When the position of the centre of pressure is determined the

maximum intensity of pressure can be computed by equations (2)

or (11).

The following data give the limiting intensities of pressure :

Rock, 8 to 12 tons per square foot.

Gravel and clay, 2 tons per square foot.

Loamy soil, 1 ton per square foot.

Good lime concrete, 3 to 4 tons per square foot.

Condition III. To satisfy this it is necessary that the tangential

component of the resultant pressure shall not exceed the resistance

of friction at the joint, which is the normal component multiplied by
the coefficient of friction (or tangent of the angle of repose).

The following values may be taken for <f>, the angle of repose, and

fi
= tan (f> the coefficient of friction (Rankine) :
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Examples.

1. A masonry pillar 4 feet diameter is built of masonry weighing
140 Ibs. per cubic foot. It is subjected to a wind pressure whose normal

intensity is 40 Ibs. per square foot. Determine the greatest safe height

of the pillar, assuming that, owing to the convexity of the pillar, the

effective wind pressure per square foot is half the normal intensity on a

plane section through the axis ofpillar.

Let h = height of pillar.

d = diameter = 4 feet.

w= 140 Ibs. per cubic foot.

Effective wind pressure = - = 20 Ibs. per square foot on a section

through the axis of pillar.

Weight of pillar
Ji 2

Ibs.
4 74

Total effective wind pressure = 20 x h x 4

= 80 h.

Taking moments round the limiting position of the centre of

pressure,

80A x \ = W^ = 1760^ x 1 = 880^,
& O J

/. h = 22 feet.

2. A pier of masonry weighing
112 Ibs. per cubic foot, 20 feet

high, and 6 feet square on plan, is

subjected to a horizontal pressure

of 4 tons applied to one face at a

height of 12 feet above the footings.

Investigate the stability of the joint

at the top of the footings and calcu-

late the greatest and least intensities

ofpressure (Fig. 229).

P = 4 tons.

Weight of pier

= W= 6 x 6 x 20 x ^ = 36 tons.

Then from triangle of forces

CEO,

Therefore

12 36'

But the limiting value of # is

x 6 = 1 foot. Fig. 229.
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Therefore the condition that there shall be no tensile stress is

not satisfied.

The maximum intensity of normal pressure is at the edge B.

The total normal component of R = W.
The maximum intensity of pressure

W

36 36 x 3

36 36 x 3

= 2J tons per square foot.

3. A wall of thickness t retains water which is level with the top

of the wall. Determine the height to which the wall can be built to

satisfy the condition of the resultantfalling within the middle third.

Let w = weight of water per cubic foot = 62! Ibs.

Wi = weight of masonry per cubic foot.

If p = specific gravity of the masonry, then Wi = pw.

h = required height.

The total water pressure is .

The weight of masonry is wjit.

Take moments about the limiting position of centre of pressure
t

m,

Then -

Therefore h = t vp, or t = ^ .

4. Masonry wall with vertical

face subjected to water pressure

(Fig. 230).

Let ti and 2
= thickness of wall

at base and top

respectively.

w = weight of cubic

foot of water.

Wi weight of cubic

footofmasonry.

p = specific gravity
of the masonry.

Then w
1

= pw.

Assuming the water to be level

with top of wall, find the height
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h of the wall so that the resultant pressure will act at the outer

middle third of the base.

Note. If the wall is trapezoidal or triangular in vertical section,

and the resultant pressure acts within the middle third of tlie

base, the same condition will be fulfilled for every other joint.

Consider a strip of wall 1 foot long. Divide up the section into a

rectangle of area t2 h, and a triangle of area
1 8 & The resultant

water pressure is - -
acting at a height

- above the base. Taking
O

moments about C, the outer middle third of tlf we get

wph

Therefore W = p (^ + M2
-

2
2
).

The "
line of resistance

"
in this case is a hyperbola. If the wall is

rectangular in vertical section the
"
line of resistance

"
is a parabola.

If t2
=

0, so that the vertical section of wall is a triangle of base ti ,

and height h, we get

Therefore or t,
=

The "
line of resistance

"
is a straight line.

5. To find the height to which a dam of triangular section may be

built consistent with the conditions of stability :

(a) That the resultant pressure, in its limiting position, shall cut

the joint at frds of its thickness from the inner face.

(b) That a given limiting intensity of pressure, shall not be

exceeded.

Assume the water level with the top of the dam (Fig. 231).

Let h height of dam.

t = thickness at base.

)} W= total weight of masonry.

p = specific gravity of masonry.
R = resultant pressure on base.

w = weight of one cubic foot of masonry.

/= limiting intensity of pressure.

It was shown in the latter part of Example 4 that in the case of

a triangular section in which condition (a) is fulfilled, that
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The maximum intensity of pressure is on a plane at right angles to

R, and if this intensity is / tons per square foot, then the intensity

of pressure on the horizontal base AB is /cos 0.

Fig. 231.

Therefore average intensity of pressure on AS=- .

W
But the average intensity of pressure on AB = -r-~ = ~" "T"

A.JJ i L
fl X

-p.-

V/E>W
Therefore

/cos 6 _ cos0

2 ~7 1

or

Since

/cos
2

(9

2 h 2
'

but,

Therefore,

* = / P_

1+P 2

f=hw(l -f p); or A =
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6. A cylindrical chimney is 10 feet outside diameter and 8 feet

inside diameter. Find to what height

such a chimney may be built, assuming
that the brickwork weighs 112 Ibs. per
cubic foot and that the normal in-

tensity of horizontal wind pressure is

40 Ibs. per squarefoot (Fig. 232).

In the case of a cylindrical sur-

face it is usual to assume that the

effective intensity of the wind pressure

is half the normal intensity, that is,

half the intensity on a plane surface

normal to the wind's direction.

Let H= height of chimney above

its base.

,, D = outside diameter of chim-

ney.

,, D! = inside diameter of chim-

ney.

P = resultant wind pressure.

,, /= effective intensity of the

wind pressure.

w ^weight of masonry per cubic foot.
TT

P acts at a height of above the base.

The greatest height H is found by equating the moment of the

resultant wind pressure P, about the limiting position C of the centre

of pressure of the base joint, to the moment of the weight of chimney
about the same point.

The moment of P about C is

Fig. 232.

The weight of chimney is w - (D
2 - Df) H.

The limiting distance of C from centre of area is, for a hollow

cylinder,

8D

Therefore the moment of the weight about C is
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Equating (1) and (2) we get

221

Therefore limiting height is

.(3).

Substituting the numerical values,

/= -^-
= 20 Ibs. per sq. ft., w =

22 112

7 x 16 20 x 100

- 65 feet.

Ibs. per sq. ft.,

(100 -64) (100 + 64)

22
~T"5

96. Earth pressure on retaining walls.

Let Fig. 233 represent a mass of earth supported by a retaining

wall. If we imagine the wall re-

moved, a wedge of earth ABC will

separate from the general mass.

Let BC be the line along which

rupture takes place inclined at an

angle to the vertical.

It is assumed that the pressure

on the wall is the maximum pressure

due to this wedge-shaped mass of

earth; hence we require to find
the value of that will make the

pressure on the wall a maximum.
Consider the wedge of earth

ABC, the forces acting on it are :

(1) The weight W of the wedge

acting at its centre of gravity.

(2) The reaction P of the plane AB acting at ^AB from A.

(3) The friction along AB^^P] //. being the coefficient of

friction.

(4) The reaction R of the plane BC.

(5) The friction along AC=\*.E. Assume that the coefficient

of friction is the same for earth on earth as for earth on masonry.
This although not quite true is sufficiently accurate for practical

purposes, and simplifies the formulae.

The forces in Fig. 233 represent these forces acting on the wedge
of earth.

Resolving horizontally,

(1).

Fig. 233.
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Resolving vertically,

sm6 = W .................. (2).

Let p = specific gravity of earth
;
and take the weight of 1 cubic foot

of water = V ton. Then
^r h x h tan 6W=---- x x - ton

72
'

Substituting this value of W in (2),

/*P + /*JScos0 + ^sin0 =^|^ ............... (3).
7 J

From (1), R (cos
-

/* sin 0)
= P.

Therefore
.

.' ^jL-,-.; -
_

-

Substituting this value of R in (3),

/*P cos Psin0 _ p#~

P (2/x. cos
-

/x
2
sin + sin 0) = pff sin

cos -
/x sin

~
72

'

cos
'

mi. f n P
-

//i \
Therefore p.E.j^C.j ..................... (4).

To find the value of 0, for which P is a maximum, equate ^
to zero.

That is,

(1
-
p? + 2/x cot 0) (- /u,

sec
2

0)
-

(1
-

/x tan 0) (- 2/x cosec
2

0)
=

0,

or -(l- /
x
2
)sin

2
0-2/xsin0cos0 + 2cos2

Therefore (1
-

/x
2

)
tan2 + 4/t tan

- 2 - 0.

Solving, we get for a maximum

(5).

Substituting this value of tan in equation (4),

M p /
x-

"72* -ft

97. To find the resultant pressure on the base of a

retaining wall, in magnitude, direction, and position.

Let t be the thickness of base (Fig. 234).

A be the height of wall.

d be the distance of the point where the resultant cuts the base

from the outer edge of base.
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Let P be the maximum pressure of the earth on wall acting at a

height
- above base.
o

Wi be the weight of the wall.

,, R be the resultant pressure on base of wall.

,,
a be the angle which the direction of resultant makes with

horizontal.

b be the distance of line of action of Wl from outer edge
of base.

u ---------_._..

Fig. 234.

Then resolving horizontally and vertically,

R COS a - P,

R sin a = W1 + ftP.

Therefore JR2 =P2 + (JF1 +

and tan a =

Taking moments about outer edge of base,

3*

A

Therefore <* =

(6),

.(7).

.(8).

Equations (6), (7), (8), give the magnitude, direction and position

of the resultant pressure.



CHAPTEK X.

COLUMNS AND STRUTS.

98. Short columns.

If a load P acts along the axis of a short column, the ratio of whose

length to diameter is small, usually not greater than 3 to 1, the column

will fail by direct crushing.

The relation between the load and the stress produced is

P_J -s> IP

where /= intensity of compressive stress, I /%

P = total load,

/S=area of cross section.

COLUMNS OF MEDIUM LENGTH fail partly by crush-

ing and partly by bending.
VERY LONG COLUMNS fail wholly by bending.

99. Rankine's and Gordon's formulae for

columns of medium length.

Let the column be hinged or free at both ends

(Fig. 235).

Let OA be the primitively straight axis of the

column
;
take this as axis of #, and the

extremity for origin.

/= length of the column, the deformed axis

after bending being represented by the curve

OBA.
x and u = the coordinates of the centre of

area of a normal cross section, u being the

deflection at abscissa x.

-M!
= maximum deflection.

P = load.

8 = area of cross section.

,, f1
= maximum intensity of stress.

Then, using the notation of previous chapter, if Fig. 235.



CHAP. X] COLUMNS AND STRUTS 225

/ be the uniform compressive stress on a cross section of the column

(Fig. 236),

/t-f (i).

A

Fig. 236.

Let fb =f1 fQ be the maximum intensity of stress due to bending.

We know that fb
= -~

.

But Max. M- Pu^ ,
where u^ is the deflection of the middle of the

column from vertical.

Therefore fb~ .(2).

To find u^ let R be the radius of curvature of the bent axis of

column (Fig. 237), then

//\ 2

(-} = M! (2R UT)
= %Rui (app.),

'

i =-^5 (3),

Fig. 237.

W. 15
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f 7?
but -^ = ^ . Therefore from (3)

y -"*

f P l
z f

Ui = ~L = a -
,
where a is a constant --^.

SM, y y 8jB

Substituting in equation (2) this value of MJ, we getPP 72 7 2
72 J?

S9.7*-7f-/*j
where & is the radius of gyration.

Then the maximum intensity of stress,

/ P\ P / 1

/i=/o

If/! is the maximum stress intensity allowable, which must not

be greater than the elastic limit stress in compression of the material,

then

P = breaking load = l̂8
n ..................... (4),

where k is the radius of gyration of section with respect to the axis

about which the resistance to bending is least, namely, the axis about

which / is least.

Equation (4) is Rankings formula, and the constant a depends on

the material.

The steady working load should not be greater than nP, where

ft = Jth or ^th for wrought iron and steel, Jth for cast iron, and

^jth for wood. For live loads these values of n must be halved.

Goi^doris formula, which is similar to Rankine's, is

(5),

where b, the least breadth of the section, is used instead of k, the least

radius of gyration. The constant c depends both on the material and
on the type of section.

100. Proof of Gordon's formula.

Taking the same notation as in the proof of Rankine's formula,
Let b be the least dimension of the section.

,, d be the greater dimension of the section.

S=db = area of cross section.

The maximum bending moment, M Pu
I
2

but u^ x . (Deflection of Beams.)

PI 2

Therefore, M <x r .
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=
0/072" )

where is a constant.

Again,

Now, maximum intensity of stress,

Therefore,

M PI2 PP"

1 + c

101. Fixed and hinged ends.

In Rankine's and Gordon's formulae / is the length of the column

between the supports. If both ends of the column are fixed (Fig. 239)

IP |P IP
Fig. 238. Fig. 239. Fig. 240.

the load which it will carry before bending is the same as for a strut

of half the length hinged at the ends, and we must substitute - for /.

If one end of the column is fixed and the other end rounded or free

(Fig. 240) we must substitute f/ for /. There are thus three cases to

consider. Rankine's formulae for the three cases are :

Both ends rounded or free, &-
...(6)-

152
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Both ends fixed, P
,

a v

i +Ii

[CHAP.

...(7).

One end fixed and the other rounded or free

The following values found from experiment may be taken for the

constants/! and a in Rankine's formulae (6), (7), (8) :

The following table gives the values of c and J\ in Gordon's

formula, equation (5), found from experiments :
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Values of k* for different Cross sections.

229

Cross section Least fc
2

i Square of side b, or rectangle with
y -1-1 . i 7

smallest side o

k--A--!

12

Hollow square

Hollow rectangle

H section, equal flanges

Angle-iron, smallest side

Tee-iron, smallest side

la" \J
if thin

bbs -b,b, s

Do.

Cruciform do.

Angle, tee, or cruciform section with equal sides,

each equal to b

Solid circle, diameter d

Do.

24

d*

16

Hollow circle, external diameter D, internal

diameter d

Thin hollow circle, external diameter D

16

yapp.
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102. Very long columns. Euler's formula.

Euler's formula, which is applicable only to columns where the

ratio of length to diameter is very great, is

where P is the limiting load which the strut can support.

E is the modulus of elasticity.

/ the least moment of inertia of the cross section about an axis

through the centre of area of the section.

/ the length of the strut.

This equation is founded on the following assumptions, which are

never really fulfilled in practice, and is consequently that for an ideal

column :

(1) The column is originally straight and of uniform section.

(2) The line of action of the load coincides initially with the axis

of the column.

(3) Material of the column homogeneous.

103. Proof of Euler's formula.

Suppose the column hinged or rounded at the ends.

(Fig. 241) be the bent axis of the column. Take as

origin and the vertical line OA as the axis of x. Let u 0_

be the deflection at any point C.

ThenM =-Pu =
EI-^\

. (See Chapter on Deflection.)

The negative sign is used, because, if deflection is

positive, the centre of curvature lies on the negative side.

dzu
__

Pu

dud*u Pudu

Integrating, \^\
=
-^j-(

u2 + c
)'>

when -5-
=

0, u = 8 the maximum deflection, hence c = - S2.

Therefore f~Y =
jjr(&-

u*\

/El du x . .

or dx = A / -FT ;= \A y

Integrating again, x - \l -p
sin"

1

g
+ ci ;
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when x = 0, u = 0, therefore Ci
=

0,

/ f~P\
therefore u = 8 sin

(
x x / -^-T \

,

\ v iLlj

which is the equation of the elastic curve.

Again, when x = -
,
u = 8

;

I
I p

therefore sin- ^/ ^y
=

1,

/ /2l_ <jr 35 57T o

The /e?05# value of P, and hence the minimum thrust which will

bend the column, is given by
1 /Z_-2V EL 2'

or P =^ (9).

But P=pS,

hence

104. Fixed ends.

If the strut is fixed at both ends, the load which it will stand

before yielding is the same as for a strut of half the length hinged
at the ends (Figs. 238 and 239).

"=

(I)

//* one end is fixed and the other hinged,

**EI _WEI , .

=

(PF
:

"IP"'

Euler's equation is for very long struts loaded under ideal con-

ditions of initial straightness and perfectly axial load combined with

a perfectly homogeneous material, and requires modification to render

it applicable to practical cases.

For very short columns, if / is the crushing strength of the

material and 8 the area of cross section,

Breaking load=./$.

For very long columns, according to Euler's theory,

i- i A
Breaking load =
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Then the formula

P = breaking load = ^
(12)

may be taken as true for columns of all lengths, because in this

formula, if / is small, the denominator is 1 (app.) and P=fS.
When / is great, we can neglect 1 in the denominator, and

p=^.
Let I==St?, where k is the least radius of gyration of the section,

then we get from (12)

P =^-!? (13),

where a = -: but if a is calculated from Euler's formula, we get
7T ]<j

values which make the strut too strong, because in practice perfect

straightness, symmetrical loading, and symmetry of elasticity do not

exist
;
hence the formula is treated as empirical, and the constants /

and a are determined from experimental results.

105. Johnson's parabolic formula.

In Euler's formula the buckling stress is

P T?E

In Rankine's formula

where / is the
"
elastic limit

"
stress in compression.

Professor Johnson has deduced the formula

where / is the
"
elastic limit

"
stress in compression of the material,

and b is a constant whose value is

If a curve is plotted as in Fig. 242 representing Euler's formula

when applied to wrought-iron columns, with ratios of I to k as abscissae,

and buckling stresses as ordinates, then Johnson's formula
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is the equation to a curve parabolic in form, tangential to Euler's

curve, where 7 = 150, and with its apex at the elastic limit of the

metal.

Professor Johnson gives the following values as deduced from the

Watertown experiments :

For wrought iron/is taken as 34000 Ibs. per square inch.

For mild steel/is taken as 42000 Ibs. per square inch.

JO

20

ILASTfC L/MIT.

I

SO /oo fSO 200

or- i :k
Fig. 242.

Wrougfit-iron columns, pin ends,

j.<nQ', P = 34000 - 0-67

Wrought-iron columns, flat ends,

I
< 210

; p = 34000 - 0'43

Mild-steel columns, pin ends,

|
< 150 ; p = 42000 - 0'97

Mild-steel columns, flat ends,

I
< 190 ; p = 42000 - 0'62

Cast-iron columns, round ends,
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Cast-iron columns, flat ends,

J<120; p = 60000 -|(JY.n/ rt \/t/

The working stress must not exceed -, where w = 4 to 5 for

wrought-iron and steel, and 6 for cast-iron.

Example.

Find by Rankings formula the working load for a wrought-iron
column 25 feet long, firmly fixed at the ends, and the section of which

is given in sketch (Fig. 243).

Y

IY
12"

Fig. 243.

Assume/= 36000 Ibs. per square inch, and a factor of safety- 5.

In this case the least moment of inertia is evidently about the

axis XOXj and
2 x 1 x 12 3 + 10 x 2s

12
-294-67.

Area of section, $= 2 x 12 x 1 + 2x10 = 43 square inches.

Therefore
7 _ 29^67 _

* Cf~ A A
~ U ' *

IS 44

load

Also 1= 25 feet = 300 inches.

Substituting these values in Rankine's formula, we get the breaking

36000 x 44 1584000P =

1 4-

100
+
268

3Q 2

36000' 6'7

-1153565 Ibs. -515 tons.

With the given factor of safety 5, the working load will be

tons = 103 tons.
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The same by Johnson's parabolic formula.

p=s
[34000-

O-GT
(|yi

= 44 [34000-0-67.^]L o*7 J
= 1 100000 Ibs.

= 500 tons.

Therefore working load =-^ = 100 tons.

EXERCISES ON CHAPTERS IX. AND X.

1. An upright post 14 inches x 11 inches supports a vertical load

of 15 tons
;
the resultant acts in the centre line of the width (least

dimension) of post, but at a distance of 4 inches from the centre of

area. Determine the mean and maximum intensities of stress occurring

on a normal cross section.

Ans. Mean intensity of stress = 0*097 ton per sq. inch compression.
Max. ,, -0-264 ,,

Min. =-0'07 tension.

2. A T-iron consists of a web half an inch thick and 4 inches

deep, with a flange half an inch thick and 2 inches broad. It is subject

to tension, and the line of action of the tensile force acts through the

centre of the depth instead of along the axis of the piece. Find in

what ratio the T-iron is weakened.

Ans. 1*68 to 1.

3. A short vertical pillar of mild steel, 5 inches diameter, carries

a load of 50 tons acting vertically at 1 inch from the axis. Determine

the maximum intensities of stress on a cross section.

Aiis. 6*62 tons per square inch compressive.

1*53 ,, tensile.

4. A short hollow circular column of cast iron, 6 inches external

diameter and 1 inch thick, carries a load of 60 tons, the line of action

of which is parallel to the vertical axis, but 1^ inches distant from it.

Find the greatest intensities of stress on a normal cross section.

Ans. 8 '23 tons per square inch compressive.

0"59 ,, tensile.

5. A vertical pier of brickwork of rectangular section, 5 feet by
6 feet, and 15 feet high above the footings, receives at the top an

inclined downward thrust, whose vertical component, acting along the

vertical axis of the pier, is 10 tons, and whose horizontal component
at the top of the pier, acting parallel to the 6-feet width, is 3 tons.

Calculate the position of the centre of pressure on the joint above

footings, and determine the maximum intensity of compressive stress.

Assume the brickwork to weigh 112 Ibs. per cubic foot.

Ans. # = 1'38 feet
;
41 '6 Ibs. per square inch.
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6. The total vertical pressure on a horizontal section of a wall

is 60 tons per foot of length. The thickness of wall is 6 feet, and

the centre of pressure is 6 inches from the centre of thickness of

joint. Determine the intensity of stress at the opposite edges of

the joint.

Ans. 15 tons per square foot ; 5 tons per square foot.

7. Calculate by Rankine's formula the safe load for a hollow

cylindrical cast-iron column 10 feet long, 6 inches internal and 7 inches

external diameter, (1) when fixed at both ends; (2) when hinged at

both ends.

Take /= 36 tons per square inch, and a factor of safety
= 6.

Ans. (1) 43-03 tons; (2) 22'74 tons.

8. Find by the same formula the load which an angle-iron strut

of section 3 inches by 3 inches by f inch and 12 feet long will carry

(1) when fixed at both ends
; (2) when hinged at both ends. Assume

the intensity of working stress to be 5 tons per square inch.

Ans. 3'6 tons
;
1'21 tons.

(F- 0-299).

9. A wrought-iron tubular strut, in a roof truss, carries a com-

pressive load of 6 tons acting along the axis
;
the strut is 8 feet long,

2j inches "external diameter and f inch thick. Find the maximum

intensity of stress to which a cross section is liable : (1) strut hinged

at both ends ; (2) fixed at one end and hinged at the other.

Ans. 6 '6 tons per square inch.

4 '2 7 tons per square inch.

10. Find by Gordon's formula the breaking weight of a wrought-
iron strut of angle-iron section 3" x 3" x f", its length being 5 feet,

and ends fixed.

Assume /= 19 tons, a = -Q^.
Ans. 21 '2 tons.

11. Find by Rankine's formula the breaking weight of a cast-iron

column 30 feet long, 12 inches external diameter and J inch thick,

both ends being hinged.

Ans. 125 tons.

12. A strut 10 feet long is made up of two tee-irons 6 inches by
3 inches by J inch, riveted back to back. Determine the working load

by Gordon's formula :

(1) When the ends are fixed.

(2) When the ends are hinged.

Assume /= 19 tons per square inch; c = J^, and take a factor

of safety of 5.

Ans. (1) 22'3 tons; (2) 11 '6 tons.
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e-r -
I

LjL

13. Find by Gordon's formula the working load for a cast-iron

pillar 8 inches external diameter, 6| inches internal diameter, and

22 feet high, both ends being fixed. Take a factor of safety of 10,

and assume/=35 tons per square inch; = -$^-

Ans. 21*25 tons.

14. Fig. 244 represents a vertical section of a wall which has to

resist the pressure of water on either

side alternately, i.e., not simultane-

ously on both sides. Assuming that

there shall be no tension at any joint,

and that the weight of a cubic foot

of water is w, and of a cubic foot of

masonry 2w, find the thicknesses ti

and > Take the water as level with

the top of wall.

Ans. *!
= 2-12 feet ; t.2

= 4'35 feet.

15. A reservoir wall is vertical

on the inner face
;

it is 10 feet

thick at the base, 3 feet thick at the

top, and 15 feet high. The water

is liable to rise to the top of the

wall.

(A) Determine the positions of

the centre of pressure on the hori-

zontal base joint : (1) when the

reservoir is empty ; (2) when the

reservoir is full.

(B) Are the conditions of stability fulfilled ?

(C) The reservoir being full, what are the intensities of pressure
on the base at its inner and outer edges ?

Assume the weight of wall 120 Ibs. per cubic foot, and of water

62*4 Ibs. per cubic foot.

Ans. (A) (1) 1 '44 feet from centre of base towards inner face.

(2) 1'56 outer face.

1. Centre of pressure falls within the middle

third.

CT^ Y 2 ' Moment of weight 36352 foot Ibs. exceeds

moment of water pressure 35100 foot Ibs.

3. Tangent of inclination of resultant with ver-

tical - T
7

TTIR7 = '6.

(C) / - 2265 Ibs. per square foot.

/2 =74'9

Fig. 244.
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EIVETED JOINTS.

106. Definitions. Lap and butt joints.

In a lap joint one plate overlaps the other, and they are connected

by one or more rows of rivets.

In a butt joint the plates are kept in the same plane, and the

joint is covered on one or both sides by a cover plate, and riveted to

each. ^V on * or nt ert /-0 **/* 1f yy^flrj,

The lap joint is objectionable, owing to the straining forces on the

two plates not being in the same line, thus forming a couple, which

weakens the joint by bending (Fig. 247).

The butt joint is the one generally used, and is the more effective

joint, owing to its symmetry and the absence of eccentric stresses.

Single riveting is when there is only one line of rivets in a lap

joint, or one line on each side of the joint in a butt joint.

Double riveting, when there are two lines of rivets in the lap, or

two lines on each side of the joint in a butt joint.

Fig. 245 shows a single-riveted lap joint ; Fig. 246 a single-riveted

butt joint ; Figs. 248 to 251 show double-riveted lap and butt joints.

In chain riveting the rivets in the several rows are opposite to

one another (Figs. 248 and 250).

In zig-zag riveting the rivets in one row alternate with the spaces

in next row (Figs. 249 and 251).

The pitch is the distance from centre to centre of the rivets in

one row.

The lap is the distance at right angles to the joint, between the

edges of two overlapping plates ; or, in the case of a butt joint, the

distance between the joint and the end of the cover plate.

A rivet is in single shear when shearing can take place only on

one cross section of the rivet, as in lap joints and in butt joints with

one cover plate (Figs. 245 and 246).

A rivet is in double shear when shearing can take place on two

cross sections, as in butt joints with two cover plates.
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Fig. 251.
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107. Rules to be observed in designing joints.

Diameter of Rivets for given Plates.

Let t = thickness of plate in inches.

,, d diameter of rivet in inches.

The following rule is sometimes used : d = 2t for plates under J" ;

d\\t for plates of J" and over.

Professor Unwin gives the simple rule which should be adopted :

In girder-work the rivets ought, if possible, to be of one size

throughout, or at most two sizes. -In structural iron-work of this

class rivets f" and J" are most generally used. Field rivets, which

have to be riveted up by hand when the girder is in position, should

never exceed f
"
diameter, on account of the difficulty of driving tight

rivets of larger size by hand.

Minimum pitch. The pitch of the rivets, as will be seen presently,

is found by equating the shearing strength of the rivets to the tensile

strength of the net area of the plate, but the distance between the

edges of the rivet holes should never be less than the diameter of the

rivet. This gives the minimum pitch 2d.

In boiler-work the pitch of the rivets is necessarily close, but in

girder-work the pitch is practically never less than three diameters.

A maximum pitch of 6" should not be exceeded, as it is advisable

to keep the plates close to prevent the entrance of water.

The distance from the centre of rivet hole to the edge of a plate
should not be less than l^d. This leaves a clear diameter of rivet

between the edge of hole and edge of plate. This minimum distance

is, in practice, increased to IJ^ + yV, and in girder-work is often 2d.

It should be noted that the diameter of the hole is usually T\ of an

inch larger than the diameter of the rivet, to allow the latter to enter

when hot.

The grip of a rivet that is, the distance between its heads is the

thickness of the plates to be joined by it, plus -^ of an inch for each

joint between the plates to allow for uneven surfaces, which prevents

very close contact. The maximum grip of a rivet should not exceed

four times the diameter of the rivet.

108. Strength of riveted joints.

Take, for simplicity, the case of a single-riveted lap joint. Consider

a strip of such a joint of width equal to the pitch (Fig. 252). As each

rivet supports such a strip, the results obtained may be applied to the

joint* as a whole.
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Let p -
pitch of rivets.

,, d = diameter of rivet.

t - thickness of plates.

1= distance from centre of rivet to edge of plate.

,, ft
= tensile resistance of plates.

fs
= shearing resistance of rivets.

fc
= crushing resistance.

,, T= resistance of a strip of the joint of width p.

Such a joint, if in tension, may fail in four ways :

1. The rivet may shear (Fig. 253). The area resisting shear

The resistance to shear is

(1).

Fig. 252.

Fig. 253.

Fig. 254.

Fig. 255.

Fig. 256.

16
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2. The plate may tear along the line of minimum section

(Fig. 254). The area of either plate on this line is

(p-d)t. The resistance to tension is

T=ft (p-d)t ..................... (2).

3. The plate and rivet may be crushed (Fig. 255), and this will

render the joint loose. The area of plate or rivet supporting
the pressure = dt

;
this area is called the bearing area, and

the pressure upon it the bearing pressure. The resistance

to crushing is

T=fc dt ........................... (3).

4. The plate may break in front of the rivet (Fig. 256). The

portion of plate in front of the rivet mav^ be considered

-f~ as a Deam of length d, and depth ^p-^&t Suppose the
^ T

pull T to be replaced by two parts ,
each acting half-way

A

between the centre and edge of the rivet. This gives a
/TT 7

bending moment of -

,
and equating this to the moment

o

of resistance

The resistances to shearing, tearing, crushing, or breaking should

be equal.

When the rivets are in double shear equation (1) becomes

109. Resistance of multiple-riveted joints.

When there are more than two rows of rivets parallel to the joint.

in each plate it is called multiple riveted.

Let T= total longitudinal force, transmitted through the joint.

n = number of rivets required in each plate joined, that is the

total number through the joint if a lap joint, or the number
on each side of the joint in a butt joint.

Then, assuming that T is uniformly distributed among the n rivets>

n must be such that

(nfs

-=j

- for rivets in single shear
;

4
2

nfs
'"

for rivets in double shear
;

and T=nfcdt;

4 V- ^/^/< -*
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also if b = breadth of plate,

m = number of rivets in one transverse row,

the tensile resistance of the net section of the plate is ft (b-md)t,
and it is necessary that the number m, and the dimensions b, t, should

be such that T-ft (b
- nid) t.

110. Tensile, shearing, and crushing strength of plates

and rivets in riveted joints.

The values given are the breaking strengths.

Tensile strength of iron and steel plates (unperforated),

Wrought iron, 18 to 24 tons per sq. inch.

Steel, 28 to 32

Tensile strength of iron and steel in riveted joints. The strength
of the net section of plate appears to be increased by some causes and

diminished by others.

One cause of loss is the injury done to the plate by punching^ due

chiefly to the pressure of the punch straining the metal round the hole,

causing it to become harder and more brittle. The loss of strength

depends chiefly on the thickness and quality of the plate, and is less

in the case of wrought-iron plates than of steel plates. For soft wrought
iron the loss is 4 to 8 per cent., while for harder plates it is 20 per cent.,

and for steel plates it is from 8 to 35 per cent.

The injury due to punching may be remedied by annealing or by

rimering out the holes
;
in the latter case the hole is punched smaller

than the intended diameter, and then rimered out about
|-
inch all

round.

Single-riveted lap joints, and butt joints with one cover only, are

subject to a further loss of strength due to the tendency of such joints

to straighten out, so that the resultant force may act in a line through
the middle of the plates ; consequently bending takes place, and the

resistance of the joint is diminished.

Another cause of loss is the unequal distribution of stress, owing
to its concentration at the edges of the pulling rivets

;
and this is

emphasised when the bearing pressure is too great.

On the other hand, there appears to be a distinct gain in the

tensile strength of the net section due to
^

to the more uniform distribution of stress over the portions of the plate
between the holes.

Experiment shows that the tensile strength of a drilled plate is

10 per cent, greater than the original undrilled plate, but this applies
to boiler-work, where the pitch is small

;
the increase would be very

much less in the case of girder work, where the pitch is usually large.

The following average values give the ratio of the tensile strength

162
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of joint plate ft to the tensile strength of the original unperforated

plate :

Single-riveted joints, punched
drilled

Double-riveted joints, punched
drilled

or the following average values of the tensile strength ft of the different

joints may be taken :

Single-riveted, punched
drilled

Double-riveted, punched
drilled

Shearing strength of iron and steel. fs . Shearing resistance,

iron and- steel plates, is approximately Jths of the tensile strength

or f~\ft- But for riveted joints the following values should be

taken :

Ratio of tensile and shearing resistance
j.

in riveted joints (Unwin).
Js

Crushing Pressure. fc . The crushing or bearing pressure should

not exceed 40 to 43 tons per sq. inch. The relation between crushing

strength and shearing strength is yet undetermined, but it has been

found by experiment that when the crushing pressure amounted to

50 tons per sq. inch, the shearing strength of the rivets was reduced

from 24 to 18 tons per sq. inch of rivet section. Thus 50 tons is taken

as the limit, otherwise the rivets become too weak.

If we consider a joint where the rivets are in single shear, and call
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fc and fs the crushing and shearing stress, equating the crushing and

shearing resistance we get
, ,,
/<# =

j

= 0-785
s t

or

For rivets in double shear

(5),

(6).

.(7).

Thus we see that the crushing pressure increases as the ratio of

diameter of rivet increases. c*(. ~ 2

f
If we take a limiting ratio of

*^
=

2, then from (6) f /.a? r
Js

d ^ 2 *54 for rivets in single shear (8),
>
/J"

and from (7) d^ l'21t for rivets in double shear (9).

The diameters of rivets as calculated from Professor Unwin's rule

d=l'2\/i for different thicknesses of plates are given in tabular form.

From (8) and (9) we see that with rivets thus proportioned there

is really no necessity to ever consider the crushing action in single-

shear joints, and in double shear joints only when the plates are less

than | inch.

RESISTANCE OF RIVETED JOINTS.

The strength of a riveted joint is greatest when it offers equal
resistance to each of the four modes of failure described. The relative

values of
jt?, d. /, t obtained from equations (1), (2), (3), (4) modified,

if necessary, by practical considerations may be considered as good

proportions for the joint.

111. CASE 1. SINGLE-RIVETED LAP JOINT. SINGLE-RIVETED BUTT

JOINT WITH ONE COVER.

See Figs. 245 and 246.

In both these cases the rivets are in single shear.

Diameter of rivet. As explained in the last article, by equating
the shearing resistance to the bearing resistance we get too large a

value for the diameter. This is fixed in terms of the thickness of
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the plate t by the formula d= l'2\/. The effect of taking this ratio

of - in preference to the greater theoretical value is to diminish the
t

shearing area as compared with the bearing area, thus increasing

the bearing resistance of the rivet as compared with its shearing

resistance.

Pitch. Equating the tearing resistance to the shearing resistance,

so the pitch p can be found by using the value of given in table for
ft

these joints.

Overlap. Equating the tearing resistance of the plate in line of

rivets to the tearing resistance in front of the rivet, equations (2), (4),

This must be at least three times the diameter of rivet.

CASE 2.
DouBLE-RijJfcjp

LAP JOINT. DOUBLE-RIVETED BUTT

JOINT WITH SINGLE CoviSp
See Figs. 248 and 249.

Since there are in this case two rivets to each strip of a width equal

to the pitch, equations (1) and (3) become

T-*d
*

f -s--/;

T=

Diameter. . The values of the ratio - got from these two equations
t

would be the same as in Case 1, and d is fixed as before from the

formula d=l'2 *Jt.

Pitch.' Equating the tearing and shearing resistance here,

f
From this the pitch can be found by taking the value of ratio *~ from

/i
table for double-riveted joints.

Overlap. In chain-riveted joints it is best to allow Ij times the
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diameter of the rivet between the edges of the holes in the two rows,

especially when the holes are punched. The distance between the

pitch lines (centre lines of each row of rivets) is then 2j times the

diameter, and the overlap becomes 5J diameters.

In zig-zag riveted joints (Figs. 249 and 251) it is necessary that the

distance between the pitch lines should be such that the resistance of

the plate to fracture along the zig-zag line is at least equal to the

resistance to fracture along either pitch line. In practice the distance

between the pitch lines is usually taken f of the pitch,

so the lap
- 3 diameters + f pitch.

CASE 3. SINGLE-RIVETED BUTT JOINT WITH TWO COVERS.

See Fig. 246.

For this form of joint the rivets are in double shear, and equation

(1) for shearing resistance becomes -7 /s ,
the other equations re-

maining the same.

Diameter. Equating the shearing resistance to bearing resistance,

if this gives a smaller value than the empirical rule for - the latter
t

must be taken. The effect of taking the larger value is to increase

the shearing resistance of the rivet as compared with its bearing
resistance.

To determine the pitch and lap for this case, the resistances of the

plate to direct^ stress upon its net section, and to tearing out, have

therefore to be equated to the least resistance of the rivet, that is its

bearing resistance.

CASE. 4. DOUBLE-RIVETED BUTT JOINT WITH TWO COVERS.

See Figs. 250 and 251.

With this joint there are two rows of rivets in double shear, and

equations (1) and (2) become

T=f8 ird*,

T= 2fc dt.

Diameter. Pitch. The ratio of -
got from these equations would

t

be the same as in Case 3, and the same remarks apply.

Lap. Same as in Case .2.

In chain-riveted joints distance between pitch lines is 2j diameters.

Lap = 5\ diameters.

For zig-zag riveted joints, lap
= 3 diameters + f of the pitch.

It must be remembered that all the values given for the lap are
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minimum values for good workmanship. With ordinary work, especially
when the holes are punched and the edges of the plates not planed, an

addition of 10 to 15 per cent, should be made.

112. Thickness of cover plates.

The thickness of the cover plates must be such that the strength
of their net section is at least equal to that of the net section of the

plates to be joined.

The usual proportions are :

With one cover plate, thickness = 1
J- of the plate thickness.

With two cover plates, thickness of each = f of the plate thickness.

113. Efficiency of riveted joints.

The efficiency of a joint is the ratio of the strength of the joint

to the strength of an equal width of the solid plate.

Taking a strip of the joint of width equal to the pitch p,

Efficiency <x

, , _ tensile strength of the_net section of joint

tensile strength of solid plate

The strength of joint = k (
J

x the strength of the solid plate.

The following approximate values of k can be taken :

Single-riveted joints

Double-riveted joints

114. Group-riveted joints.

Joints are sometimes made by a group of rivets, so arranged that

as little as possible of the original resistance of the unperforated

plate is lost at the joint. The arrangement of the rivets is called

group riveting.

In order to get the stress uniformly distributed over the plate the

centre of gravity of the group of rivets must lie on the axis of the

piece, the axis being the line joining the centres of gravity of the

cross sections. When two plates not in line are to be riveted, as in

the bracing and the flange of a girder, the centre of gravity of the

group ought to lie on the intersection of the axes of the two plates.
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115. Group-riveted joint of greatest economy.
In an ordinary group-riveted joint (Fig. 257) the net section of the

plate is its gross section diminished by all the rivet holes in the

transverse row nearest to the end of the cover plate. By adopting

Y
Fig. 257.

the form shown in Fig. 258 the loss of section may be reduced to that

due to one rivet hole only.ale

a 6 c

Fig. 258.

Consider, for example, a joint for which calculation gives n = 6

rivets required on each side of joint.

A single rivet is placed in the line aa on the axis of the plate,

diminishing the section by one rivet hole, and on the net section we
have the whole stress T. Now, assuming that the stress T is equally

distributed between the 6 rivets in the groups the leading rivet

T
transmits to the cover plates, so that the stress on the net section

at bb is |- T. A second rivet may therefore be placed at bb without

diminishing the resistance of the joint. At section cc the stress is

| T, so that one more rivet may be placed at that section.

At cc the stress in the cover plates will be equal to T.

The distances ab, be are usually f of the transverse pitch.

The strength of the joint is approximately, equal at all the sections

and may be taken as (t>-'*l Of J & ' ?
(b-d)ft .t.

The thickness of the cover plates must be such that the resistance of
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their net section at the transverse row of rivets cc nearest to the joint

is at least equal to the stress T.

Let #!
= required thickness of each cover plate ;

,, m L number of rivets in row cc
;
then

t

The width of the cover plates is tapered uniformly as in Fig. 258.

Examples.

1. A single-riveted lap joint for a pair of steel plates J" thick has

to transmit a tensile stress of 30 tons. Determine the diameter, pitch,

number of rivets, and width of plate required for the joint. Rivet

holes drilled.

Take ft
= 28 tons per sq. inch

'

/8
= 22 -

breaking stress.

f 4-4-
)J JC~ J> J) /

Diameter. Equate bearing resistance to shearing resistance,

This diameter is too great.

Take d according to rule :

_ 7"
>

as the rivet holes are made about 4 per cent, larger than the diameter

of the rivet, and in riveting up the

rivet is compressed to fill the hole.

The rivets will, in all examples,
be taken 4 per cent, larger than

their nominal diameter.

Pitch. Diameter J" + 4 per
cent. = 0'91".

Equating the tearing and shear-

ing resistances,

(p-d)tft =185dys ,

--
t Jt

= 785x1-33 + 0-91

= 1-96", say 2".

Number of rivets. The working
Fig. 259.

shear stress may be taken at 5 tons per sq. inch, giving a factor of

safety of about 4j.
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The shearing resistance of each rivet is

/.
~ = 5 x 0-6 - 3 tons,

which is less than the bearing resistance.

Therefore number of rivets required is

3 tons

Width ofplate. Let b = width required.

The tensile working stress may be taken as 6 tons per sq. inch.

Then along a line of rivets we must have

or, 30^ 6(6-9-1) J,

/. b ^ 191".

This value is not sufficient for b, as it must be in this case at least

equal to 9 times pitch + 3 diameters of rivets.

Take 6 = 9x2 + 3x-91 = 20'73 = 20f", which allows a distance of

fd from the centre of the nearest rivet to each lateral edge of the

plate.

Efficiency. The efficiency of the joint

_ 9 /1-96--91N

-TOV 1-96 /-
See Fig. 259 for plan and section of joint.

2. Two steel plates |" thick are to be connected, by a double-riveted

lap joint. The joint has to resist a tensile force of 60 tons. Find the

diameter, pitch, and number of rivets required for the joint, the holes

being drilled.

Take/* = 28 tons per sq. inch
1

breaking stress.

Diameter. Take d=l'%Ji= 1TV" ;

or d for calculation = 1TV + 4 % = I'l".

Pitch. Equate shearing and tearing resistances, ^ ,
1

/-<*)/,= */.j

~ *

,

"

^ - ? 3 *
/ 5-7

' 9C '- '**- "' * - * '
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Number of rivets. Taking the working shear stress at 5 tons per

sq. inch,

Shearing resistance of one rivet =fs
= 5 x 0'95

= 4'75 tons.

Therefore number of rivets = ^ =12*6

= 13, say.

Width of plate. If we arrange the rivets in two rows of 6 rivets

and 7 rivets respectively,

Let b = width of plate along the line of the 7 rivets, then

t (b
-

Id)ft ^ 60 tons,

where ft
= working tensile stress per sq. inch,

= 5^ tons per sq. inch (say),

then f (6 -7-7)5J 5 60,

b ^ 22-2".

The width has to be slightly greater in order to get \\d from the

centre of nearest rivet to edge of plate, consequently b is made

Efficiency =* = 0-65.

Lap. Distance from centre of each row of rivets to end of plate
= lj<#=r65, say 1 }" ;

and between pitch lines = f/?
= 2 ". The lap

is therefore 2J + 2 x If = 6".

Fig. 260 shows the joint in plan and section.

23

-J

Fig. 260.

3. Required, the dimensions of a zig-zag double-riveted butt joint

with two covers for two wrought iron boiler-plates f
"

thick, the rivet

holes being punched (Fig. 261).

Take /t 22 tons per sq. inch.

) ) J8 1
, , , ,

j Jc 36 ,,
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There are two rows of rivets in double shear.

2P/.P

253

If Ik'

Fig. 261.

Diameter. Equating (1) and (2),

- 2fc dt,

This value of c? is #00 small.

Take rf = 1*2 V^= I
"

J
that is, diameter for calculation = f + 4 per

cent. - 0'78".

The effect of thus increasing the diameter is to diminish the

intensity of shearing stress upon the section of a rivet, and so in-

creasing the shearing resistance as compared with its bearing resistance.

Pitch. To get the pitch equate the tearing resistance to the least

resistance of a rivet
;

that is, its bearing resistance instead of, as

before, to its shearing resistance.

(p
-

d) tft = 2fc dt,

Lap, or distance between the edges of the plate and cover plate,

Cover plates. Width = 21= 9J".

Thickness = f* = J
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Efficiency
= k (2 ')

- 0'9
( 3 i

?8

)
= 0'69, or 69 per cent.

4. A tie-bar J" thick has to transmit a tensile stress of 36 tons.

Design a butt joint with two cover plates, such that not more than one
rivet hole is lostfrom the gross section of the plate (see Fig. 262).

Fig. 262.

Working intensities of stress are

ft = 6 tons per sq. inch.

Diameter of rivets f".

Number of rivets. Let N= number of rivets required.

Then ^^ = 36,

^x4'5 x 0-88 -36,

N=9. Say 10.

Width ofplate. Let b = width of plate.

Then (b
-

d) . t .ft
= 36 tons,

(b
-

f) . J . 6 = 36,

b = 12}". Say 13".

The rivets are arranged as in Fig. 262, which represents the joint

in plan and section.

Thickness of cover plates. Let t = thickness of each cover plate.

Then, taking the section along the line of four rivets,

2^(13-4 x f)6-36,
* = Jf = 0-36" = !", say.
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5. A tie-bar 6" by J" transmits a stress of 12 tons. Find the

number of |" rivets required to connect it to the side plate of a girder

boom made up of J" plates and angle-irons (see Fig. 263).

Fig. 263.

Net section of bar, deducting one rivet hole

=
(6
~
I) i = 2

'

62 S(l- inches.

12
Intensity of stress = - = 4 '6 tons per sq. inch.

Let N= number of rivets required,

fs
= 5 tons per sq. inch, then

-^x 0-44x5,

/. ^=5-4. Say 6.

The six rivets must be .symmetrically grouped round the centre

line or axis of the bar, one rivet being in the first row, as we have

assumed that the bar is only weakened by one rivet hole.

Very often it is necessary to connect the ties to the boom by means
of subsidiary plates, called gusset plates or connecting plates, of which

Fig. 264 is an example.

6. A tie, 14" by f", has to be joined to the side plate of a girder

boom by a connecting plate f
"

thick, using a butt joint with two cover

plates. Design a suitable joint for the connection, arranging that the

tie is weakened only by one met section (Fig. 264).

Tensile stress in tie = 62 tons.

Diameter of rivets, f".

Working shear stress = 5 tons per sq. inch.

Let N= number of rivets required.-

The trial shearing area of the rivets on each side of the joint line

multiplied by the safe working shear stress for the rivets should equal
the total stress transmitted through the plates.
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Then, as the rivets are in double shear, we have

T ff x 2 2~- x /

i.e., 62 - ^x 2 x U'44 x 5 = 14'1, say 15,

arranged as in Fig. 264.

[CHAP.

Or, we can find the number of rivets by comparing the rivet area

and net cross sectional area of plate previously designed, thus :

The rivet area _ tensile or coinpressive strength of plate per sq. inch

/Sectional area\
~

shearing strength of rivet steel per sq. inch

I of plate, less
)

Vend rivet hole/

The following values for steel may be taken :

Tensile strength of steel 27 to 30 tons per sq. inch.

Coinpressive strength of steel 21 tons per sq. inch.

Shearing strength of rivets 20 tons per sq. inch.

In above example, as the rivets are in double shear,

14x }-} xf
_ 27

Cover plates. Each cover plate is in this case weakened by 5 rivet

holes.
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Let t = thickness of one cover plate, then

10=
so7^

= 2 m '
say*

1. To find the number of f
"
rivets required to connect the vertical

compression post (B) (Fig. 264) to the side plate of boom.

1' 0" -^

ir
"
thick.

Let the area of cross section of post as designed consist of

1 plate 12" = 4 '5 sq. inches.

2angles4"x3j"xf" =

Less rivet holes

Net area

9-88

1-70

-8*18

The rivets being in single shear, the number of rivets required

_ net area of strut 21 _ 818 21

area of one rivet 20
~~

0*44 20
= 20 (nearly).

Joint for two or more plates. When several plates have to be

riveted together, their joints are arranged in consecutive steps as in

Fig. 265.

Fig. 265, so that one pair of cover plates is sufficient for the whole

series of joints. The length of lap is generally twice the longitudinal

pitch of the riveting. The number of rivets between any two con-

secutive joints must be proportioned to the stress. The stress in

the cover plates is that given to them by the rivets.

116. Thin shells or boilers.

CIRCULAR OR HOOP STRESS IN A THIN CYLINDRICAL SHELL.

LONGITUDINAL JOINTS OF A BOILER.

Let Fig. 266 represent the section of a cylindrical boiler
;
and let

r = internal radius in inches,

t = thickness of shell in inches, always very small compared
with r.

p = intensity of internal pressure in Ibs. per sq. inch, acting

normally to the surface.

w. 17
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Consider a portion of the cylinder / inches long.

Then the resultant of the internal pressure is

P =
2rlp,

which must be in equilibrium with the total tensile stress on the

section of the plates at A and B.

A fll

Fig. 266.

If / Ibs. per sq. inch is the intensity of tensile stress, assumed

uniform, as the thickness of plates is small, then 2 (t
x

/) sq. inches

is the area of metal cut through at the section AB, and for equi-

librium we must have

2tlf= 2rlp.

Hence pr
J ~

t

or

(1),

.(2).

Equation (2) gives the working pressure iff is the working stress,

and is the formula always used for the strength of a cylindrical pipe

or boiler. It should be noted that a boiler being composed of plates

riveted together, the strength / must be taken as that of the metal in

the joint, and not that of the solid metal.

As stated in Art. 113,

The strength of joint
=
efficiency of joint x strength of the solid metal.

Consequently, if f is taken to denote the strength of the solid metal,

equation (1) becomes

/x efficiency of joint
-^

,

, pr
~/x efficiency of joint

'

This gives the necessary thickness of the plates.
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/ may be taken as 10,000 Ibs. per sq. inch for wrought iron, and

12,000 Ibs. per sq. inch for mild steel.

LONGITUDINAL STRESS ON A TRANSVERSE SECTION.

Let Fig. 267 represent a longitudinal diametral section of the

cylinder; CD a transverse section.

"IT
Fig. 267.

Consider the equilibrium of either portion of cylinder.

The resultant internal pressure acting along the axis of cylinder

upon the end, which may be either curved or flat, is

P =p x area of section of the shell

=P X flT
2
,

which is balanced by the longitudinal stress, /' say, exerted on the

cross section of the shell at CD, namely, the ring whose area is 2-rrr . t.

Hence p . -n-r
2
=f'2irrt,

or p=e r .(4).

If the ends are connected by stays this relation does not hold, as

the stays relieve the shell plates from any longitudinal tension.

EXERCISES.
1. Determine the thickness of the plates suitable for a boiler 6 feet

diameter, working under a pressure of 100 Ibs. per square inch.

Take the efficiency of the joints to be 70 per cent., and the safe stress

as 10,000 Ibs. per square inch. Am. \ inch.

2. Two mild-steel tie-rods 8 inches by inch are to be connected

by a butt joint with double straps. Design the joint and calculate the

efficiency.

172
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3. The steel plates of a boiler are J inch thick, connected by

longitudinal double-riveted butt joints, with two covers or straps.

Determine the diameter of the rivets, pitch, and efficiency.

4. The plates of a locomotive boiler, 4 feet diameter, are \ inch

thick. If the rivets are f inch diameter and If inch pitch, deter-

mine the working pressure of the steam, taking the safe stress as

12,000 Ibs. per square inch.

5. A boiler 6 feet diameter, of mild-steel plates, is subjected to a

pressure of 120 Ibs. per square inch. Design a double-riveted butt

joint with single strap suitable for the longitudinal joint,

6. The steel plates of a cylindrical boiler 6 feet diameter are f inch

thick. The plates are connected by a butt joint with two cover plates

and are treble riveted. The holes are drilled. Determine the pitch and

diameter of the rivets and the working pressure.

7. A pipe is 3 feet diameter and \ inch thick. The working
stress is 5 tons per square inch, but the strength of plate is reduced

by 25 per cent, on account of riveted joint. Determine the working

pressure. Ans. 233*3 Ibs. per sq. inch.

8. A tension plate of designed section 1' 8" x J" has to be joined
to a gusset plate f

"
thick by f

"
rivets. Find the number of rivets

necessary, and design the joint so that the plate is weakened by only
one rivet hole. Double covers.

117. Strength of thick cylinders.

In considering the thin cylinder we neglected the variation of stress

in the plates, and obtained the equation

If the thickness of the plates is considerable compared with the

radius, the tensile stress can no longer be regarded as having the same

intensity from inside to outside.

Let the internal and external radii of the cylinder (Fig. 268) be

RO and Rl respectively. Consider a ring

of metal 1" in wrdth parallel to the axis

of the cylinder, of internal radius r and

thickness dr. Let p be the intensity of

the radial pressure on the inner surface

of the ring, p + dp the intensity of the

radial pressure on the outer surface, and

call p the compressive stress in the

material at right angles to the radius

(the hoop stress), p has a negative value

that is, the stress is tensile when the

pressure inside the cylinder exceeds the Fig. 268.
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pressure outside. For equilibrium we equate the resultant radial

force, tending to produce fracture, to the resultant of the forces due

to hoop stress, which prevent fracture
;

that is

(p + dp) x 2 (r + dr) p x 2r = 2p'dr,

(p + dp) (r + dr) -pr =
p'dr,

df)
or r^+P =P .............................. (1).

"We have obtained only a relation between the stresses. "We require

another equation which will express the method in which the cylinder

yields.

Assume that plane cross sections remain plane when strained, that

is, that the longitudinal strain is uniform. If we assume that the

cylinder is subjected to a uniform longitudinal stress ps , then, if X, is

the longitudinal strain,

and since p^ and X3 are both constant, p +p' must be constant.

Take p+p'^Zc .............................. (2).

Substituting in (2) the value of p' from equation (1),

or r + 2p = 2c.
dr f

To solve this write it as

r^dp + 2prdr = 2crdr,

Integrating, pr*
= cr2 + c1}

or P = c +
^>

and P'
= c-.

The two constants depend on the pressure on the interior or

exterior, and on the internal and external diameters.

118. Thick cylinder subjected to internal pressure only.

Let po be the internal pressure, and let the internal and external

radii be RQ and Rl respectively, when
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therefore Po
= c +

-^-
2t

when r =Rl \ p =
0,

that is,
= c + v,

1

^ .

Subtracting, pQ
= c

( ^-2
-

or cx
- J

and c

Hence p = - -^

R?-R<?

These equations may be written

and

The negative sign in the latter equation shows that p, the hoop

stress, is tensile.

The hoop tensile stress has its maximum value at the inner surface,

where r = RQ .

rnuThus

If / is safe tensile stress which the material of cylinder will bear,

then the safe internal pressure is

119. Thick cylinder subjected to external pressure only.

If pi is the external radial pressure, there being no internal

pressure, the constants are

-

and the hoop stress at any radius r is
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This pressure is a maximum at the inner surface, where r = R$.

Max '=
2*A>

**> ^f^Sf'
120. Strength of thick cylinders when the material is

initially strained.

If, before the cylinder is subjected to internal or external pressure,

there already exist initial stresses in the material, then the stresses

in (4) or (5) must be added algebraically to those already existing.

Thus, large guns are built up of two or more tubes. The outer

tube, being heated and shrunk on to the inner one, produces a com-

pressive stress in the inner tube and a tensile stress in itself.

Now, when an internal pressure is applied to this compound
cylinder, the hoop tension it produces is added algebraically to the

already existing hoop stresses, with the result that the stress on the

outer portion is increased, and that on the inner portion is diminished,

since its hoop tension is reduced by the initial stress. The distribution

of stress is equalised.

Examples.

1. The external and internal diameters of a cylindric hydraulic

press are 16" and 8" respectively. If the internal pressure is 3 tons

per sq. inch, find the stresses at the inside and outside.

i\
= 8 j .ff/o

= 4.

Therefore, from equations (3) and (4),

3xl6
48

, = 3x16
P ''

48
At the inner surface r = 4

;

.'. p = 3 tons per sq. inch
;

p'
= - 5 tons per sq. inch.

At the outer surface r = 8
;

p'
= -2 tons per sq. inch.

2. A tube of 12" internal diameter and 30" external diameter^is

subjected to an internal pressure of 15 tons per sq. inch. Find the

stress at points 1" apart radially between the inner and outer surfaces

Here R, 15. Rn = 6 :

15 x 36 225

15 x 36 f225=-- + 1
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Table of Stresses.

[CHAP.

The curves roughly plotted in Fig. 269 show that the radial and

hoop stress diminish very rapidly as we pass from the inner to the

i/S /A/CHES.

20 7
Fig. 269.

outer surface. The high value of the maximum hoop stress (20 '7 tons

per sq. inch) shows that the material would fail unless it had

previously been put into a state of compression by shrinking on a

ring.
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3. The cast-iron cylinder of a hydraulic accumulator is 9 inches

internal diameter. Find the thickness required to resist an internal

pressure of 800 Ibs. per sq. inch. Take the maximum safe stress as

2200 Ibs. per sq. inch.

at the inside

,, -

therefore

therefore thickness

p = 2200 Ibs. per sq. inch
;

r = RQ = 4*5 inches
;

800W + (4'5)')

&-(*!>)'>
R = 6*35 inches

;

= 6*35 -4'5 = 1*85 inches.

EXERCISES.

1. What should be the thickness of a 12 -in. cylinder which has to

sustain an internal pressure of 4000 Ibs. per sq. inch
; the maximum

tensile stress being limited to 10,000 Ibs. per sq. inch 1

2. A hydraulic press cylinder is 12 ins. external diameter and

2 ins. thick. Internally it sustains a pressure of 2 tons per sq. inch.

Find the hoop tension at the inner and outer surfaces, and graph its

value throughout the thickness.



CHAPTER XII.

CONTINUOUS GIRDERS.

121. WHEN a girder is supported at more than two points it is

said to be continuous. When loaded a portion of each span near the

supports is bent convex upwards, the upper fibres being in tension, and

the lower fibres in compression. The central portion of each span is

bent concave upwards, the upper fibres being in compression, and the

lower fibres in tension just as in a loaded girder supported at two

points. At the points of contrary flexure, or points of inflection, the

curvature changes sign, the bending moment is zero, and consequently
the flange stresses are zero.

122. To find the bending moment at any section of a

span of a. continuous girder loaded with a uniform load.

Let /! be the length of the span 1 2 (Fig. 270).

Wi be weight of the uniform load per foot run.

x be the abscissa of any section K referred to support 1 as

origin.

MI and M2 be the moments of the elastic forces at the supports
1 and 2 respectively.M be the bending moment at K.

F be the shearing force at K.

FI be the shearing force on a section in span 1 2, infinitely

near to and on the right of support 1.

F% the shearing force on a section in the span 1 2, infinitely

near to and on the left of support 2.

F< rum
'-

Fig. 270.
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Considering the separate equilibrium of the portion (h
-
x) of the

span, we get

or M= - J/2 + JV (I, -x)-
Wl (l

\

~ *?
............... (1).

4

Again, considering the whole span, we have

F^-, .....................

Substituting in (1) for Fi its value from (2),

x
2 v f a 2^

#
(3),

where m is the bending moment at the section K for a span l similarly

loaded, but merely supported at the ends.

The shearing force at K is

F=FJ-wl (ll -x) ........................ (4),

which for x = 0, gives by equation (2)

, ,

From these equations the bending moment and shearing force at

any section of the span can be found, when the moments at each

extremity of the span are known.

The maximum value of Mat any section intermediate between the

points of inflection occurs where the shearing force F changes sign, its

position being got by solving for x in the equation

F=0,
or by equations (2) and (4)

hence, x =
|
- -4 {M, - M,} ........................ (6).

t W\ l\

The substitution in equation (3) of the value of x obtained from

(6) will give the maximum bending moment occurring between the

points of inflection.
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The positions of the points of inflection are got by solving for x in

the equation

or .(7).

123. Graphic representation of the bending moment at

any section of a given span.

Let 1 and 2 be the supports of span 1 2 (Fig. 271) of length ^.

Draw la, 26, perpendicular to 12 to represent the moments at 1 and

2
;
then fd the ordinate to ab at abscissa x represents the value of the

two first terms of equation (3), since

Fig. 271.

But the ordinate dg> measured upwards to the parabola abp, re

presents the third term of that equation

Thus the ordinate fg represents M, the bending moment at x.

To draw the parabola, find x - Ih by solving equation (6), substitute

this value of x in the equation

and draw hp to represent the corresponding value of M
;
then p is the

vertex of the parabola.

The points of inflection are at r and s where M=
; they can be

obtained from equation (7).

The bending moment at any point is represented by the ordinate of

the shaded area.
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124. Theorem of three moments.

To determine a relation between the bending moments at any three

consecutive supports of a uniform and uniformly loaded continuous

girder resting on a number of supports, all of which are on the same

level.

Let 1, 2, 3 be three consecutive supports on the same level for a

continuous girder over any number of spans (Fig. 272).

I

Fig. 272.

Let li
- length of span 1 2.

,, /2
= length of span 2 3.

Wt, w2
= loads per unit of length on the spans 1 2, 2 3,

respectively.

Hi, R2) Rs be the reactions at supports 1, 2, 3, respectively.

MI, M2 ,
M3 be the bending moments at 1, 2, 3, respectively.

,, Fl be the shear on a section in span 1 2, very close to

support 1.

F2

'

be the shear on a section in span 1 2, very close to

support 2.

,, F2 be the shear on a section in span 2 3, very close to

support 2.

Fs

'

be the shear on a section in span 2 3, very close to

support 3.

a be the angle which the tangent to the girder at 2 makes
with the horizontal.

Take at support 2 as origin, and 2 3 as the axis of x.

Consider the span 2 3. The bending moment at any point

(x, y) is

/72>J/ -J!- /*2

(1)

at support 3
;
x = 12 andM=M3 .

Therefore M3
=M2 +F2 12-^ ........................ (2).

Integrating equation (1),

6

when # = 0, -y^
= tana; hence C= El tan a.
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Therefore

.

6

Integrating again,

EI(y - x tan a)
=

There is no constant of integration, for when x -
; y = 0.

Again, when x = lz ; y = 0, hence,

Substituting for Fz its value from (2), we get

22 i
.

+ - .................. (3).

Similarly for the span 1 2, we get by substituting tan a

for tan a,

Hence by adding (3) and (4),

This relation is called the theorem of the three moments. If there

are n supports, we get n-2 equations connecting the corresponding

bending fiKHnents, and two other equations are given by the conditions

of supporV&^heAnds. Thus if the girder is merely supported^ at the

-ends, MI MO and Mn = ;
if an end is fixed -^ = at that support.

OjX

From the values of MI, M2 , ,
Mn thus obtained we can determine

the bending moment at any section of a given span.

The section of maximum bending moment is got by making

-j
=

;
and the points of inflection by solution of the equation M=0.

Thus considering span 2 3,

= F -wx = Q
dx

Therefore x =
,w

s

F*
and max. bending moment =M2 + ~ .

For concentrated loads, the theorem of three moments becomes

(Ml + 2M2) li + (M3 + 2^/2) 4 + S j
-

(/i
2 -

#i
2
)

* 2 Y~
'

(^
2 - ^2

2

)
=

0,
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where Wl and W2 are the loads in the two spans /i and 4 respectively,

and #j and #2 the distances of those loads to the supports at the

extremities of the span under consideration. If there are a number

of loads in one span take the algebraic sum of the moments, i.e. 2 Wx.

125. Reactions.

The reaction at any support is the sum of the shearing forces on

each side of that support. This is evident if we consider the separate

equilibrium of the very small portion of the girder between the sections

on which F^ and F% act
;
the reaction 7?2 which is equal and opposite

to the pressure on the support, must for equilibrium be equal to the

sum of the shearing forces, thus

R, =F^F ........................... (6),

and at any support n Rn =Fn + Fn ........................... (7).

At the two extreme ends, where the girder is merely supported, the

reaction is equal to the shearing force.

To find the reaction B2 at support 2 (Fig. 272).

Consider the equilibrium of the span 2 3. Taking moments
about support 3, we get

Again, considering the span 1 2,

--- a - i ^v
*-'-*- ^ j

or ^ = ^LZ^? +^ (9)

Therefore, by adding (8) and (9),

7? _i~2 ,
S
-

S
,

w
t

~ir ~~ir "2

and generally at any intermediate support n separating the spans /_!
and ln ,

, ,~~
If there are r supports, 1, 2, 3, ..., r, with spans ll} lz , ..., /r-i,

and the girder is free over the supports 1 and r, then evidently

? T"'~
and

Thus, having found the values of the moments at each support by
the equation of the theory of three moments, the reactions can be at

once obtained.
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Examples.

1. Find the bending moment at the middle support of a continuous

girder of two unequal spans, the left one of length 40 feet carrying
2 tons per foot run, and the right one of length 30 feet carrying 1 ton

perfoot run. Find also the reactions at each support.'

The equation of three moments (5) is

but as MI = 0, and M3
=

0, we get

= -2x403 -l x 303 = -91000,

l/2 = - 162*5 foot-tons.

By equation (12), or from moments about support 2,

By equations (10) or (11), putting 1/1 = 0, 1/3 = 0, ,

162-5 162-5 2 x 40 lj^30
40 30 2 2

= 64'48 tons.

By equation (13), or by moments round support 2,

=
-162-5

|

1 x30

= 9'58 tons.

44-06

= -162'5 ;

35-94-

2042

9-5S

Fig. 273.

The results can be verified thus :

35-94 + 64-48 + 9'58 - 80 - 30 = 0,

or 110-110 = 0,

which shows that the values of Mlt R^.Rz are correct.
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The shearing force diagram is sketched in Fig. 273, and the bending
moment diagram in Fig. 274.

Fig. 274.

2. A continuous girder of three spans has two equal end spans

of 240 feet, and a centre span of 150 feet ; the supports are level and
the girders are free over the abutment piers, and are assumed to be of

uniform section. Thefixed load carried by each girder is \ ton per foot,

and the moving load is 1 ton per foot. Calculate the bending moments

over the two central supports when the left end span only is covered

by the moving load, and then determine the maximum positive bending
moment occurring on a section in that span. Find also the reactions

at each support.

Adopting the notation of previous articles we have

/!
= 240 feet, /a

= 150 feet, ls
= 240 feet,

Wl = 1 1 ton per foot, w2
= w3

= \ ton per foot,

Equation of three moments for spans 1 2, 2 3, is

(Ml
+ 2l/2) (, + (M3

4

Substituting the numerical values above, we get

SMZ (240 + 150) + 4^/3 x 150 - - 1 x 2403 -
J x 1503

,

or, 5-%M2 +M3
= -373 72 '5 (A).

For spans 2 3, 3 4, similarly

5"2M3 +M2
= - 14332-5 (B).

Solving for M2 from equations (A) and (B), we get

26-04Jif2 =- 180004-5,

or, M2
= - 6912'6 foot-tons,

and M3
=- 37372'5 - 5'2 x - 6912*6

= - 1427 foot-tons.

Maximum positive bending moment, span 1 2.

At any section distant x from support 1, the bending moment is

(C).
'A

w. 18
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At support 2, where x = h, M=M2 , and

l
= + ........................

(D).

Substituting in (C),

1 -z) ............... (E);

but since Ml
=

0, M=M2 + ft
-

ar)
LI J

= \x (240-ff)- x 6912-6;

this will have its maximum positive value when -3
=

0, that is for

180 -#-28-8 =
0,

or x = 100'8 feet from support 1.

The maximum value ofM required is

M= f x 100-8 x 139-2 - 100-8 x 28'8

- + 7620-5 foot-tons.

Reactions. Using the notation of Art. 124, we have MI =M4
= 0.

Taking moments about support 2,

= 151'2 tons.

Taking moments about support 1,

M M w I + 6912 3F*
=

k ~2~~ 240
+
4

X 24(

Taking moments about support 3,

M^ Mz Wzh +5485 1

and B2
=F2 +F2

'= 73'5 + 2Q8'7 = 282'2 tons.

Taking moments about support 2,

+ -* 150 = 1'6 tons.
^2 ^ J.OU 4

Taking moments about support 4,

4

and ^3
= jP3 + F* = 65*8 + 1'7 = 6 7 '5 tons.

Taking moments about support 3,

t
= Pt

> = ^, + = + 24Q = _ 5
.

9 + 6Q = 54 .2 tons .

4 2 240 4 -
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To verify the accuracy,

Rl + R* + Rs + Ei = 151-2 + 282-2 + 67'4 + 54'2 = 555,

which must be equal to

wJi + wz l2 + W3 13
- 360 + 75 + 120 = 555.

Again, the sum of the shears at the supports in any one span
should be equal to the total load on that span. Thus for span 2 3

on which the total load is W2 12
= 75 tons, we have

Fa +F = 73-4 + 1-6 - 75 tons.

126. Spans of equal length, each loaded with the same
uniform load w per foot run.

If / be the length of each span, the equation of three moments

HT M AM Wl*

becomes Ml
+M3 + 4Mz

=
^-

.

CASE 1. Two equal spans.

wl 2

Therefore Mz
= -

-3- .

o

T-, J\fa Wl Wl Wl 3
Again, R^ = F!=

-j-
+ = -

g-
=
g
W.

Similarly R3
=
%wl,

CASE 2. Three equal spans.

M1
= Q and MI = 0,

2
'

Therefore M3 + 4Mt
= -~

,

wl2

till Cl Jjj. 2 ' ~x-AJJ- 3 ^

wl2

Solving we get MZ
=M3

= -
.

wl wl 4 7

Again, Hi = Rt = -^ + =
YQ

w*<

From symmetry, and knowing that Rl
+ H2 + E3 + R4

=

CASE 3. Four equal spans.

MI =
0, M6

=
0, and from symmetry M2

=M4 .

182
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General equation is

Therefore, M3 + 4tM2
= -

(A).

a.J2

Again, M2 +M4

or J/2 + 2^f3 =- (B).

From (A) and (B) we get

Therefore M3
=

,

14

and M2
=M4

= - ^wl2
.

Reactions.

-n -n MI Wl 3 Wl

and RS
Moments round 1,

jnr,
Wl Mz Wl 3 , 17 ,

li -T-T"t

r*ii."'-ii
iI*

Moments round 3,

M3-M2 wl 1 3 1\ 15

Therefore Rz
= Fi +

and R = \

Again, taking moments about 2,

w , M2
-M3 wl ( 3 1 IN 13F*= ' +

-2=

Taking moments about 4,

Therefore Rs
= F* +Fz

=

127. Case of middle support lower than the end supports.

A girder continuous over two spans 4 and 12 rests freely on two

end supports which are on the same level. If t/te intermediate support
settle yQ inches, find how much the bending moment at this support will

be diminished.
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Let /!, /2
= lengths of the two spans (Fig. 275).

MI, ^2
= loads per foot run on same.

3/2 = bending moment at support 2.

a = slope of tangent to girder at 2.

y = settlement of support 2.

Rz
= reaction at support 2.

Take the level line of supports 1 and 3 as the axis of x, and its

intersection with centre line of support 2 as origin.

Consider the span 4, on right side of 0.

Bending moment at any section (x) is

x2Mx = (1).

Y

1

< x >
7~ ~~

1

Fig. 275.

For x = lz y
MX = Q

Therefore Rz
= -^

-
-^

Substituting for Rz in (1),

Therefore

Integrating,

rrr fdy \ HT ( &*\ W* {1*3? O?\El 1-r- - tan a
)
= M* (

x - -r }
+ -^ (
~ -

)\dx J \ 2/j/ 2 \ 2 3/

Integrating again,

For x = lz,y = Q, therefore

or (A).
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Similarly for the span h , using
- tan a instead of tan a, we have

l! tan a = ............ (B).

Multiply equation (A) by ll} equation (B) by 4, and add,

2 (I,
+ 12) kk + l (wjf + w2 l*) IJ2

= - QE1 (I,

M2
=--]**-EI.................. (C).

O l>i
+ 1% l\l<i

When yQ
=

0, equation (C) is the form which the equation expressing

the
" Theorem of Three Moments "

reduces to, for the special case of

two spans with the three supports on the same level.

Example.

Let 4 = 4 = 100 ft. = 1 200 ins.

Let
3/0
= the settlement of the central support = 1 inch.

Then the last term of equation (C) is

3EI El= + _______ mch-lbs.
1200 x 1200 480000

and expresses the diminution in the amount of the negative bending
moment at support 2 due to the sinking of the centre support.

128. Advantages and disadvantages of continuous girders

In the case of separate spans the bending moment is greatest near

the centre, whereas in the continuous girder the maximum bending
moments occur near the supports, also the average value of the bending
moment is less, thus there is a saving in the flange material, and the

heavier sections are placed over the supports, which means that a

portion of the weight is removed from the centre towards the

supports.

The disadvantages of continuity are chiefly due to the effect of

rolling loads which alter the positions of the points of inflection, and

portions of the span are subjected to bending moments which change
in sign and amount, the members there being exposed to stresses

which are alternately tensile and compressive, especially so when dead

load on the bridge is light as compared to the live load. Another

disadvantage of continuous girders is that settlement in the supports
also causes the points of inflection to change, and may considerably
alter the stresses calculated on the assumption that all the supports
are level. The Moment of Inertia / is not constant

;
it is subject to

variation.
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EXERCISES.

1. A continuous girder covers 2 spans of unequal length, the left

one of span 30 feet carrying 3 tons per foot run, the other of 20 feet

carrying 1 ton per foot run. Find the bending moment at the middle

support, and the reaction at each support.

Ans. M2
= - 222*5 foot-tons.

7^ = 37*58 tons.

.#2 = 73-54 tons.

J28 = -l-12 tons.

2. A. A continuous girder of uniform section rests on three level

supports. The spans are 100 feet and 150 feet. The girder carries

a dead load of 0'4 ton per foot, and a moving load of 0*6 ton per foot.

Calculate the bending moment at the intermediate support, and the

reactions at the three supports, when both spans are covered by the

moving load.

B. If the longer span only is covered with the moving load,

determine the bending moment at the middle support, and on a

section in the centre of the longer span.

Ans. A. -2187*5 foot-tons; 28*13 tons
; 161*45 tons

;
60*42 tons.

B. M2
= - 1887*5 foot-tons

;
M= 1868*75 foot-tons.

3. A continuous girder covers three equal spans of 40 feet, each

carrying a uniform load of 2 tons per foot. Determine the bending
moments at -the two intermediate supports, the position and value of

the maximum positive bending moments in each span, and the points
of inflection for each span.

A ns. M2
=M3

= - 320 foot-tons,

at x = 16 feet right of 1, M- + 256 foot-tons,

at x = 20 feet right of 2, M= 4 80 foot-tons,

at x = 24 feet right of 3, M= + 256 foot-tons.

Points of inflection :

Span 12 ;
32 feet from 1.

23 ; 11*1 feet and 28*9 feet from 2.

34
; 8 feet from 3.

4. A girder is continuous over three spans, the two end spans

/i and 13 each 50 feet long, the central span 4 70 feet long. It rests

freely on its end supports, and carries a dead load of 1 ton per foot run

over its whole length, and a live load of lj tons per foot.

When the moving load covers spans h and /2 , determine the
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bending moments at supports 2 and 3, the reaction at support 2, and

the position of the points of inflection in span 2 3 (4).

Ans. M2
= - 1005*8 foot-tons

;
M3

= - 7301 foot-tons
;

R2
= 174-06 tons ; x = 13*49 feet and 59*66 feet from 2.

5. A continuous girder rests on three level supports; it is free at

the end supports, and is divided by the intermediate support into two

spans of 80 feet and 120 feet. It carries a uniform dead load of

0*4 ton per foot run, and a moving load of 0*6 ton per foot. (A) Cal-

culate the bending moment at the intermediate support, and the

reactions at the three supports when the moving load covers both

spans. (B) Calculate the bending moment at the intermediate

support, and on a section in the middle of the longer span when that

span alone is covered by the moving load.

Ans. (A) M* = - 1400 foot-tons
;
Rt

= 22*5 tons
;

^2-129*17 tons; ^ = 48*33 tons.

(B) Mz
= - 1208 foot-tons

;
R2

= 49*93 tons ;

M= + 1196 foot-tons.

6. A continuous girder covering two equal spans of 50 feet carries

a load of 10 tons at a distance of 12J feet from the left support.

Calculate the bending moment at the central pier, and the reactions at

each pier.

Ans. M2
= - 2 9 '3 foot-tons

;

R! = 6*92 tons
;
R2

= 3*66 tons
;
RB

= - 0*58 ton.

7. A girder continuous over two equal spans supports a load of

2000 Ibs. at the centre of first span, and a load of 1000 Ibs. at the

centre of the second span. Find the reactions.

Ans. Rl
= 718*75 Ibs.

;
R2

= 2062*50 Ibs.

^3=218*75108.

8. A girder of uniform section, loaded with a uniform load, is

continuous over two equal spans. What is the gain in strength and

stiffness as compared with two discontinuous girders of the same

section similarly loaded ?

Ans. Strength the same. Stiffness in the ratio of 5 to 2.



CHAPTER XIII.

CANTILEVER BRIDGES. SUSPENSION BRIDGES. ARCHED RIBS.

129. THE disadvantages of continuous girders are removed if

hinges are introduced at the points of contrary flexure. The bridge is

then composed of cantilevers and suspended girders ;
and there is no

ambiguity regarding the stresses. The advantage of the continuous

girder is preserved, and its chief disadvantage is avoided.

Fig. 276.

Y
Fig. 277.

In Fig. 276, let 1, 2, 3, 4 be the points of support :

(a) The hinges may be introduced in the central span at B and C,

then these points become the points of contrary flexure
;
and the

portion BC may be treated as an independent girder supported at the

ends by the cantilever arms %B and 3(7. In this case the side spans
must be anchored down at 1 and 4, as the reactions at these points

may become negative, that is, the girders may exert a lifting force.

The line BC becomes the datum line for the bending moment

diagram.

(b) The hinges may be introduced in the side spans at A and D
(Fig. 277). In this case the reactions at 1 and 4 are always positive,

as the girders cannot exert any lifting force at these points.

Note. The hinges may be placed in the central span or in the side

spans, but not in both.
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130. CASE A. Hinges in the central span (Fig. 278).

/. Uniform load of intensity w per foot run.

Let Rl} Rz ,
R3 , RI be the reactions at the points of support 1, 2,

3, 4 respectively.

Assume the spans symmetrical.
Let /! be the length of each of the two side spans.

a be the distance from support 2 to the first hinge B.

b be the distance between the hinges.

Fig. 278.

Now treat the portion BC as an independent girder supported at

the ends. The stresses in it are those due to its own loads only. IB
and 4(7 can also be treated as independent girders loaded with their

own loads, and the weights at the ends B and (7, equal to the reactions

at these points due to the load on the girder BC.

The bending moments at piers 2 and 3 are

,, 1/r wo? wb w , n , xM2
=M3

= - - a = -
^(a

z + ab).

To find filt take moments about pier 2,

D 7 wl* wa? wb
^i-^- +

-2-
+ Y =

o,

,. w w a? + ab

To find Rz ,
take moments about pier 1,

7 wl? /, a\ wb /7 .- R2 l, + ~Y
+ wa

(li
+

-J
+ (k + a),

Rl
= R4 and R2

= R3 from symmetry.

//. Concentrated loads.

A load Wl on the side span 12 distant xl from pier 2.

A load W2 on the cantilever arm 2 distant #2 from pier 2.

A load Wz on the suspended girder distant #3 from hinge C.

A load W on the side span 3 4 distant #4 from pier 3.

Load at B = - Load at (7= W3
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Bending moment at pier 2,

Bending moment at pier 3,

*.-

To find RI ,
take moments about 2,

To find R4) take moments about 3,

To find RI, take moments about 1,

BJk =Wl (ll
-

x,) + W> (4 + *) +^p (/, + a).

To find RZ, take moments about 4,

+ a)
- TT4 (A - 4).

We see in both the cases considered, that

Rl and R^ may be negative,

_K2 and ^3 are always positive.

The pier moments are determined solely by the loads on the span

containing the hinges, i.e. the central span.

131. CASE B. Bridge hinged in the side spans.

Let B and C be the hinges in this case (Fig. 279).

W3

Fig. 279.

The portions \B and 4(7 may be considered as independent girders

supported at the ends, and the part BC as an independent girder

supported at 2 and 3, carrying its own loads, and in addition the

weights at B and C equal to the reactions at these points due to the

loads on IB and 4(7.

Let rB = ax ;
52 = ^; 23 = lz ; 3(7=&2 j Cl=at .
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(1) A uniform load of intensity w per foot run.

Taking IB and 4(7 as independent girders,

.

2 2
'

.#! and R are always positive ;
there can be no lifting force at 1

or 4, consequently no anchorage will be needed at these points.

Taking BC as an independent girder,

T J D Tt WCI>\
.Load at n wcLi JKi = ;

T J n Mitts
Loaa at u = -r- .

Take moments about pier 3,

If a/i
= $2 ,

and 61 = bz ,

A-f(,
The bending moment at pier 2,

Bending moment at any section distant x from pier 2,

(2) Concentrated loads.

A load Wl on 1^ distant ^ from B.

A load PTa on the span 2 3 distant #2 from 3.

A load Ws on 4(7 distant #3 from

In this case, we get the reactions

al

a,

Load at B =Wl -Rl
=

Load at C =W3
- R^ =

Taking moments about pier 3,
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Taking moments about pier 2,

285

These equations give Rz and Rs .

The bending moments at piers 2 and 3 are

Here again we see that the moments at the piers are determined

solely from the loads on the spans containing the hinges.

132. Suspension Bridges.

In a suspension bridge, the platform is suspended by steel rods

from link or wire rope cables, which pass over towers built on piers,

and are securely anchored down at the ends.

When a chain of uniform weight per foot of length is suspended'
and hangs freely it takes the form of a catenary curve.

In practice, however, the loads are usually suspended from the

cables by rods placed at equal distances apart, and the load is assumed

to be uniform per horizontal foot run of span. The curve of the cable

or chain is then a parabola.

133. Chain uniformly loaded per foot run of span.

Let A OB, Fig. 280, be the chain suspended at A and B.

w = uniform load per foot run of span.

1= length of span.

d = dip, or depth of lowest point of curve below horizontal AB.

B

H

Fig. 280.

Take the lowest point of chain as origin.

Let #, y, be the coordinates of any point P of the chain.

The portion OP of the chain is kept in equilibrium by :

(1) The weight wx, acting at R, the middle point of OQ.
(2) The tension at P, acting tangentially to the chain.

(3) The horizontal tension H at 0.
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These three forces must meet in the same point JR, and PQE is a

triangle of forces.

mu r y WX
Therefore * - TF ,x ]

2

wx*
or

which is the equation to a parabola with its vertex at 0.

wr2

From(l) H =^ .............................. (2).

Let T= tension at P, then

T2 = (wxf + HZ

Therefore T=wx \ + ........................ (3).

This equation gives the tension at any point of the chain. At the

ends A and B, where x = -
; y = d\ we get from equations (2) and (3)

wl*
" ~~^J '

wl l
* wl

134. - Pressure on the piers.

In Fig. 280, AOB is the main chain or cable, AC and BD are the

side chains or backstays which are anchored down at C and D. There

are two methods of carrying the chain over the piers.

(a) The main chain and backstays may be continuous, and pass

over smooth rounded saddles.

(b) The main chain and backstays may be separate, each secured

to a saddle free to move horizontally on the top of pier.

Let TI = tension on main chain at B.

,, Tz
= tension on backstay at B.

^ = inclination to the horizontal of main chain at B.

tt2
= inclination to the horizontal of backstay at B.

,, R = vertical pressure on pier.

CASE A. The tensions 7\ and T2 are practically equal.

Then R = 7\ (sin 04 + sin a2 )

and there is a horizontal force

= TI (cos aj
- cos a2) ;

if ax
=

02, then R = ^T: sin a1}

and there is no horizontal force.

CASE B. The resultant pressure on pier will always be vertical,

R = TI sin ttj + jT2 sin <%.
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135. Stiffening Girder.

When a moving load passes over a suspension bridge the shape
of the cables becomes deformed. The object of the stiffening girder

is to distribute the load uniformly over the cables, so that they may
not be distorted.

Fig. 281 shows a stiffening girder. The booms or chords must be

designed to take tension and compression. It may be a single girder

extending from tower to tower, or it may consist of two girders hinged
at the centre

;
the latter is the better method as it counteracts the

stresses due to changes of temperature.

136.

load.

Single girder without central hinge. Uniform live

"When the live load comes on to the bridge, the stiffening girder
distributes the load uniformly to the cable, and if the load is light in

comparison with the weight of the cable, the latter will keep its

parabolic shape, and thus the stresses in the suspenders will be equal.

In Fig. 281, A and B are the supports, and suppose the bridge
loaded over the portion BC=x, with a live load of intensity w per
lineal foot.

Let / = span.

P = pull on each suspender.

p = uniform upward pull of the suspenders per lineal foot.

RI and RZ be the reactions at B and A respectively,
- due to

the partial load.

Now on the assumption that the weight is transmitted through the

suspenders,

pi = wx,

_wx
I

Applying the conditions of equilibrium,

RI + RZ + pi wx 0.

Taking moments round B,

or .CD.
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~Therefore R

and R^-R^^l-x} ..................... (2).

The reactions are therefore equal and opposite, and are a maximum

when x = -
;

their maximum value being . Thus, the maximum
2 o

shearing force at the supports occurs when the live load covers half the

span.

The shearing force at any section in the loaded segment distant x^

from the right support is

Substituting for Rl and jt>
their values from (1) and (2),

T-J W (I X) (X

when ^ =
' F=0.

It can be similarly shown that the . shearing force is zero at the

middle of the unloaded segment.

Again, from (3) we see when

a?!
=

a?, F=-Ri.

Thus, the magnitude of the shearing force at the head of the live load

is equal to that of either reaction, and the absolute maximum shearing

force equal to ^- occurs when the live load covers half the span.
o

Bending moment. The bending moment at any section of the

loaded segment distant xl from the right support is

? wx*

From (4) we see that

M= 0, when x^ = and when ^ = x.

M is a max. when x^ = -
,
that is, where ^=0,

AT H/T W (l~ X) <LMax. M = - - x2
.

To find the absolute maximum as the load advances, equate

to zero, which gives x = \l.
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Therefore absolute maximum bending moment

=
~54'

and occurs when the live load covers two-thirds of the span.

Similarly by considering the unloaded segment, the maximum

bending moment occurs also at its middle section, its absolute maximum
value being

wl2

~
54

'

and occurs when the live load covers one-third of the span.

137. Stiffening girder hinged at the centre.

The hinge at centre provides for contraction and expansion, and
thus counteracts the stresses due to changes of temperature.

As in the last case the cable is assumed to remain parabolic in

shape with its vertex at the middle when the span is partially loaded,

and consequently all the suspenders are subject to an equal stress.

Again, owing to the hinge, there is no bending moment at the middle.

Taking the same notation as in the last case, let R^ and J?2 be the

reactions at the right and left supports ;
w the intensity of the live

load
;
and p the uniform upward pull of the suspenders.

Fig. 282.

Let the live load, as in Fig. 282, cover a portion x of the right
half span.

Then for equilibrium, we have

and taking moments about the hinge,

wx

From these three equations we get

p =

w. 19
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R1 is a maximum when x - -
;
and max. Rl

=
.

6 b

R2 is a maximum when x = -
;
and max. R2

= -
.

2 o

The shearing force at the front of load

FRi+px wx

This is a maximum when ^ = -
,
and is equal to .

^ o

Maximum bending moments.

The maximum bending moment occurs at the section where F= 0.

At any section of the loaded segment distant xl from the right

support,
wxl ........................ (1),

If F= 0, then from (1)

R! _ (2x1 -30*) I

Xl~w-p 2(/
2

and M=\-^-2 w p
_w -

.-
8 ~l*~^2^~

For max. M, differentiating and equating to zero, we get

(/
2 - 20s

) (/
-

3a?) + ^
2

(21
-

Zx) = 0,

or 3^-3/2^ + /
3
-0;

x - 0'4/

is an approximate solution.

Substituting in (3),

Max. positive M = -

(app.).Oo

For the left-hand half of the span, at a section distant #2 from the

left support,
wo? 2wa? ,

--^+-pr a? ................. (4),

.................................... (5).

From (4) we see, when F= 0, #2 = 7,

and

Therefore, max. negative bending moment = - .
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ARCHED RIBS.
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138. Linear arch or curve of pressures.

Suspended and arch systems. When a chain hangs under a dis-

tributed load of uniform intensity per unit of span, it assumes the

shape of a parabola, similar to that of the bending moment curve for

a beam or girder similarly loaded. There is a tension at each point of

the chain, the horizontal component of which is constant. Further, if

the load instead of being uniformly distributed, consists of a series of

loads hanging at intervals, the chain will take up a shape corresponding
to the bending moment diagram, and the bending moment at any

point is proportional to the depth of the chain below the line of

supports.

If, now, we suppose the chain inverted and stiffened we get an arch,

and the same principles apply except that we have compression or

thrust at each point of the arch instead of tension.

The curve of pressure, or linear arch, is a funicular polygon of the

forces which act on the arch, and it has been shown in Art. 54, that it

is the bending moment curve drawn to a definite scale for a similarly

loaded horizontal beam of the same span.

If the linear arch coincides with the axis of the rib, the thrust

on any normal cross section is axial, and consequently of uniform

intensity.

But the arch being incapable of adjusting itself to the bending
moment curve for variable loading, there is bending produced where

the linear arch does not coincide with the axis of the arch, and at these

sections we have bending moment and shearing stress, as well as a

thrust.

139. Bending moment and thrust in an arched rib.

Vertical loads. Let ADCS (Fig. 283) be the axis of the rib, and

let AECB represent the line of pressure.

Draw a vertical line JDE cutting the axis of rib at D, and the line

of pressure at E.

Fig. 283.

192



292 AKCHED RIBS [CHAP.

Draw EK a tangent at E to the line of pressure, and call T the

thrust at E, its line of action being along the tangent EK. Draw DF
perpendicular to the tangent EK, and FG perpendicular to DE.
Then T at E is equivalent to a parallel force T at D, and a couple

whose moment is

The horizontal component of T is

Therefore, HxDE=T*DF=M.
Thus the moment at D is equal to the constant horizontal component

of thrust multiplied by the height of the linear arch above D.

Again, the force T at D (the centre of area of the cross section of

rib) may be resolved into components parallel and perpendicular to the

normal section at D
;
the parallel component is the shearing stress

;

the perpendicular component produces a uniform compressive stress

which has to be combined with the stress due to the bending moment.

Thus the thrust, shear, and bending moment at any section are easily

found when the funicular has been drawn.

140. Arch with three hinges. Loads vertical.

The hinges are placed at the ends, and at the crown. At these

three points the bending moment is zero, therefore the linear arch

passes through the centre of each hinge.

In Fig. 284, let ACB be the rib, hinged at A, B, and (7, and

suppose W the load acting at a distance x from A, the left support.

Fig. 284.

Then since there is no load on BC, the pressure at C and the reaction

Rl at B must be equal and opposite, their lines of action being along
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BC. Join EC and produce it to meet the line of action of W in D,
join AD ;

this must be the line of action of the other reaction R% at A.
These reactions may be found graphically by taking the vertical PQ to

represent W, and drawing lines PO and QO parallel respectively to

RI and R%. If OS be drawn horizontal, we get H the horizontal

component ;
and Fl5 F2 ,

the vertical components of R and R. The
load being vertical the horizontal components of the two reactions

must be equal.

Let FI and F2 be the vertical components. Then

Fx+ F2 =TF,

\*-l /

where H is the horizontal component, and d the rise of arch at the

crown.

From these equations

Wx

WxH=
-M-

The values of FI and F2 are the same as the vertical reactions for

a horizontal girder of the same span loaded in the same way.
The reactions due to a number of loads can be found by adding

together the respective values of Vlt F2 ,
and H found for each load,

or they may be found graphically. When the reactions have been

obtained, the stresses in the different members may be found either

analytically or graphically as in the case of an ordinary truss.

141. Professor Ewing gives the following method for finding the

bending moments.

The linear arch must pass through the centre of each hinge. Draw
the axis of rib, then draw the bending moment diagram for the given
loads considered as acting on a beam of span AB. If this diagram

passes through the third hinge, it is the true linear arch
;

if not, alter

the scale of the bending moment diagram, drawn on the base AB,
so as to make it pass through C the third hinge. This can be done

by first drawing it to any scale, and then reducing all the ordinates

in the ratio of the central height of axis of rib to the central ordinate

of the bending moment diagram.
The linear arch having been thus drawn, the vertical distance

between it and the axis of rib gives on the same scale the bending
moment. The thrust T is found from the known form of the linear
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arch and the known values of the loads. Thus the stress at any
section of the rib is found. The loads may be symmetrical or un-

symmetrical.
This method may also be applied to the case of a chain with hinged

stiffening girder.

Example.

A semicircular arched rib hinged at the crown and springing carries

a uniform load ofw Ibs. per foot of horizontal length. Find the position

and value of the maximum bending moment.

B
Fig. 285.

In Fig. 285, let AECB be the axis of the circular rib of radius r.

The load being uniform, the line of pressures will be the parabola

ADOB, passing through the hinges A, C, and B. It has been shown

that the bending moment at any point E of the rib is

M=H*DE
where H is the horizontal thrust.

In order to find the maximum bending moment, it is first necessary

to determine the maximum value of DE.
Take 0> the centre of circle as origin, and let us find the value of

x (OJ) for which ED is a maximum.

Now,

Therefore,
i

Differentiating and equating to zero for a maximum,
/yi O/y*

-7^= + ^ =
0,

2
'
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Substituting in the equation for DE, we get

Max. .

4

The direction of the thrust T at A is a tangent to the parabola

at that point. This tangent can be at once got by producing OG
to a point K, making CK

'

= CO, and then joining KA. Now as

0(7= OA =r, the tangent at A makes an angle with the horizontal

2r
A such that tan 6 = =

2,

2 1

and, sin = - cos = -
.

Resolving vertically,

therefore,

Horizontal thrust,

I WT W

where W = total weight on the arch.

Therefore, maximum bending moment

wr r= * max.

EXERCISES.

1. The span of a suspension bridge is 150 feet. The dip of the

chains is 25 feet. Load 1500 Ibs. per lineal foot of span. Assuming
the chains to hang in parabolic curves, find the tension at the lowest

point, and at the ends of each of the two chains.

2. A cable weighing 500 Ibs. per horizontal foot of span is stretched

between supports in the same horizontal line 1000 feet apart. If the

maximum deflection is 70 feet, find the greatest and least tensions in

the cable.

3. A suspension bridge consists of a central span of 240 feet and

two side spans of 120 feet. The dip of central span is 20 feet, the chains

of the side spans hang in a parabolic arc similar to one-half that of the

central span. If the three spans are loaded with l tons per foot of

span, determine the greatest and least tensions in the chains, and the

vertical and horizontal forces acting on the towers and abutments.

4. In last exercise if the saddles are fixed to the tops of the

towers, and the load on the side spans is 1 ton per foot run, that on
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the central span being 2 tons per foot run, find the magnitude and
direction of the resultant pressure on each tower.

5. A cantilever bridge supported on piers 1, 2, 3, 4 consists of

two end spans each of 200 feet, and a central span of 300 feet.

The bridge is hinged in the side spans at distances of 50 feet from

piers 2 and 3. Find the bending moments at pier 2 and at the middle

of the central span in each of the following cases :

(a) Dead load of Ij tons per foot, and live load of 2 tons per
foot covering all the spans.

(b) Dead load of 1J tons per foot on all spans. Live load 2 tons

per foot on the spans 1 2, 3 4 only.

(c) Same dead load on all spans. Same live load on the central

span only.

6. A suspension bridge is formed of two cables of uniform section,

span 120 feet, dip 12 feet. Width of bridge 10 feet. Load 150 Ibs.

per square foot. Find the maximum tension on the cables, and their

cross sectional area if the working stress is 5 tons per square inch.

7. A cantilever bridge supported on piers 1, 2, 3, 4 consists of two

end spans each 100 feet and a central span 260 feet. The hinges are

in the central span at 56 feet from piers 2 and 3. Find the bending

moments at pier 2, and at the middle of the central span, taking a dead

load on all the spans of Ij tons per foot run, and a live load of 2 tons

per foot run distributed as follows :

(a) Live load covering all spans.

(b) Live load covering the centre portion between the two hinges.

(c) Live load covering the two portions from hinges to the ends 1

and 4, leaving the central portion between hinges uncovered.

8. A footpath 10 feet wide is to be carried over a river 80 feet

wide by two cables of uniform section. Dip at the centre 10 feet.

Load 160 Ibs. per square foot. Determine (a) the maximum pull on

the cables
; (b) the necessary cross-sectional area

;
if the working

stress in the cable is not to exceed 4j tons per square inch, and if the

material of the cable weighs 480 Ibs. per cubic foot.
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TORSION.

142. Theory of torsion or twisting.

When a cylindrical bar or shaft of uniform section is fixed at one

end, and twisted by a single couple at the free end in a plane per-

pendicular to the axis of the bar (Fig. 286) ;
or what is the same, if a

pair of equal and opposite couples are applied to the ends, the axis of

Fig. 286.

the couples coinciding with the axis of the bar
;
the effect of the couples

is to turn one transverse section of the bar relatively to another through
a small angle, and to cause fibres originally straight and parallel to the

axis, such as AS, to become changed into helices, as AD, inclined at a

constant angle < to the axis. A small square efgh drawn on the

surface of the bar becomes distorted into a rhombus emnh corresponding
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exactly to the deformation . produced by shearing stress. At any
transverse section the resistance to torsion is the shearing stress exerted

at the section, which is equivalent to tensile and compressive stresses,

of equal intensity to the shearing stress, acting along the diagonals

km, en, inclined at 45 to the axis of the bar. Thus, the lines of

principal stress are helices inclined at 45 to the axis of bar (Fig. 287).
The strain at any point in a cross section is evidently proportional

to the distance of the point from the axis
; consequently within the

elastic limits, the shearing stress which is at right angles to the radius

drawn to the point, has an intensity q proportional to that radius.

Fig. 287. Fig. 288.

Let Fig. 288 represent two cross sections of a bar of radius r, taken

at a very small distance dl from one another.

Let < be the angle which the helix em makes with the line ef

originally parallel to the axis : then </> is the angle of shear, and it

is proportional to r. The radius of is turned through a small angle d9,

called the angle of twist, or angle of torsion, which is proportional to dl.

Now the distance fm through which one section turns relatively to

the other is expressed by <f>dl, or rdO.

Therefore

or
dB

The corresponding intensity of shearing stress is

a),

where C is the modulus of rigidity.
7/3

-TJ
, the angle twist per unit of length, is constant.

Therefore q varies as r.

143. Maximum intensity of shearing stress in circular

shafts to a given twisting moment.

Let MT = the twisting moment, or moment of the twisting couple.
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Let ^ = the radius of the shaft.

r = radius of a concentric cylindrical surface in the interior of

the shaft.

(ft
= maximum intensity of shearing stress, which occurs at the

surface, that is, at a distance i\ from the axis.

q = intensity of shearing stress at distance r from the axis.

Consider a thin ring of cross section of radius r, and thickness dr

(Fig. 289).

The shearing stress on this small area is

The moment of this shearing stress round

the axis is

The total moment of the shearing stress

distributed over the cross section is

j
f*dr,

Fig. 289.

since

For equilibrium, this moment must be equal and opposite to the

twisting moment.

Therefore MT =
2?

jr*dr
(2).

For a solid shaft, integrating between the limits rx and 0, we get

Kg-fi ql T /Q
v~ J vv>

where J is the polar moment of inertia of the section, which is equal to

twice the moment of inertia about a diameter.

Or, maximum intensity of shearing stress

(4),

if dl is the diameter of the shaft.

For a hollow shaft, of external radius rl9 and internal radius r2 ,
we

have from equation (2)

Mr = ^b r
1*1 J rz

16
(5),

where dl and d2 are the external and internal diameters, and J is the

polar moment of inertia of the section.
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The maximum intensity of shearing stress

^MT^ iMTdl . v

K-vW-rfi-irW-df)
These equations are true only so long as the stress does not exceed

the elastic limit.

The working values of q for steady motion may be taken as :

For cast iron 3600 Ibs. per sq. inch.

For wrought iron 9000

For steel 13500

The above results apply only to circular cross sections in which the

ratio of q to r is constant.

144. Angle of torsion for a shaft of uniform, circular

cross section. Experimental determination of 0, the modulus
of rigidity.

Let = the total angle of torsion or twist, that is, the angle in

circular measure through which the section in the plane

of one twisting couple is turned relatively to the section

in the plane of the other.

I length of the shaft between the two couples.
A

Then y is the angle of torsion per unit of length, and from
I

equation (1)
-

f
= =

^;
but, by equation (4), within the elastic limits,

Therefore, for a solid shaft,

0_ 2MT 32MT MT

I ~"0vr1*~ard1
< ~CJ'

'

=

Similarly, for a hollow shaft,

_ZMr_ =
1

~
CTT (r^-r,

4
~
C7rdl

4 -d
~
CJ 1

,_ T T .~*~
The quantity = CJ measures the torsional rigidity of the shaft.

G)
These latter equations are used for the determination of C.

The usual way of determining the Modulus of Bigidity is by
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experiments on torsion, in which the stresses are within the elastic

limit. The following is a very simple method for thin rods. The rod

is fixed at one end ; on the free end is clamped a lever arm and pointer.

Before starting the experiment, the fixed end, which is capable of

adjustment by means of a slotted arc, is moved till the lever arm is

truly horizontal and the pointer marks zero on a fixed graduated scale.

The end of the lever arm is now weighted, and the pointer measures

on the scale the angle of torsion in degrees. The rod rests freely on

supports.

The following is an experiment made on a wrought iron rod

12 inches long, J inch diameter, fixed at one end and carrying a lever

arm 10 inches long at the free end. The arm was first set horizontal,

and the pointer marked zero. A weight of 6 Ibs. was then hung at the

end of the lever arm, and the pointer measured 9 on its scale.

Then the twisting moment = 10 x 6 = 60 inch-lbs.

TT X 9
Angle of torsion in circular measure = ,

I = 12 inches
; ^ = J inch.

17 4.' /-,\ Arrom equation (7),

mu f n mMT l
Therefore C= yr^r

TOI

x . ,~ tons per sq. inch
22x22x9x2240

= 5331 tons per sq. inch.

145. Relation between twisting moment and horse-power
transmitted. Diameter of a round shaft to transmit a given

horse-power.

Let F= the force of the twisting couple, in pounds, either constant,

or the mean value if variable.

,, R = the length of the lever arm of the twisting couple in feet.

Then the mean twisting moment MT =F . R foot-lbs.

Let HP - number of horse-power transmitted ; one horse-power

being 33000 foot-lbs. of work done per minute.

N number of revolutions per minute.

The work done per minute = F x lirEN foot-lbs.

=MT x 2-n-N foot-lbs.

Again, the work done per minute = 33000 HP foot-lbs.

, r 33000HP
Therefore, T=

or, MT (inch-tons)
= 12 *

= 63030 (inch-tons).
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By equation (3), MT = ^
]

.

lo

Hence, \fi~^~~ST'
3
i-gp

Therefore d, = 68'5 --
.

'.=;/

Assuming the safe values of q to be for steady motion,

Cast iron 3600 Ibs. per sq. inch.

Wrought iron 9000

Steel 13500

The diameter in inches for a round shaft in terms of the horse-

power is for

Cast iron, di =

Wrought iron,

Steel,

The twisting moment is here assumed to remain constant at its

mean value. In practice, however, the twisting moment in many cases

varies, to allow for which it is usual to take the maximum twisting

moment as from 1*3 to 1'5 times the mean twisting moment, thus

slightly increasing the values of d as found above.

Work done in twisting a round shaft.

When a twisting moment MT is gradually increased from to MTj

the angle of torsion increasing from to 0,

The work done = ^MT 6.

If / is the length of the shaft, we know from equation (1)

and from equation (3) MT = i
1

Therefore, The work done =^r

<

and, The work done per unit of volume = j^ .

146. Circular shafts subjected to twisting and bending.

In this case the shaft is acted on by a bending load, such as

a heavy wheel or pulley fixed on it, in addition to a pair of twisting

couples.
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Let MB and MT be the values of the given bending moment and

twisting moment respectively, occurring simultaneously on

a circular cross section of a shaft of radius ?v

/= maximum intensity of the normal longitudinal stress, tensile

or compressive, due to the bending moment MB .

, q = maximum intensity of shearing stress at the circumference

of section due to the twisting moment MT .

Then f=-^Ms ,

2
and q 3

MT ;

f and q act in planes at right angles to one another.

To find the principal stress we must combine / and q as in Art. 42,

where it was shown that the maximum principal stress

+ ?2-

;
V -

"

Substituting for / and q in this equation their values as above, in

terms of MB and MTt we see that the shaft is subjected to the

maximum compressive or tensile stress

(9)

for a solid shaft, or

for a hollow shaft.

Thus the maximum principal stress in a shaft, due to the combined

effect of MB and MT ,
has the same value as the stress due to the

bending moment acting alone without twisting

called the equivalent bending moment.

Or, the maximum principal stress is numerically equal to the

greatest shearing stress which would be produced by a twisting moment

acting alone =MB + \lM^ + Mf,
called the equivalent twisting moment.

If the working tensile or compressive stress (/i) is given, the

corresponding value of i\ may be got from equation (9).

The maximum shearing stress, due to twisting and bending, by

Art. 42, is



304 TORSION [CHAP.

In an ordinary crank shaft (Fig. 290), let F be the force applied

to the pin A, at right angles to the

crank.

Then

and

Hence

2F

The maximum shear stress Fig. 290.

Examples.

1. Find the principal stress in a shaft 10 inches diameter, 20 feet

long between the bearings, weighing 0'12 ton per foot run. The shaft

carries a wheel weighing 3 tons at 4 feet from the right-hand bearing,

and transmits 800 horse-power at 100 revolutions per minute.

The reaction at the right-hand bearing is

Let x be the distance from right-hand bearing at which the bending
moment MB is a max., that is, where the shearing force F=0.

Now F=Q, at x = 5 feet.

Hence MB = 3'6 x 5 - 3 x 1 - 0'12 x %5-

= 13 '50 foot-tons = 162 inch-tons.

The twisting moment is constant for all sections, and

33000 x HP 33000 x 800 x 7

27T1Y

The greater principal stress

, = 2

2x7

2 x 22 x 100

= 42000 foot-lbs.

= 225 inch-tons.

22 x 125

=
TJTTT x 4^9 = 2*23 tons per sq. inch.

147. Torsion of shafts not circular in cross section.

St Venant has investigated the stress produced by torsion in shafts

of elliptic, square, and other cross sections. In a circular section the
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stress is the same at all points equally distant from the centre, varying

directly as the radius r
;
and sections primitively plane and normal

remain plain and normal during twisting. St Venant has shown that

in non-circular sections the stress is greatest at those points of the

boundary of the section which are nearest to the centre of area. The

following are the values for MT and (in circular measure for different

sections). Those for a circle are restated for comparison.

Section a circle of diameter d,

6 =
Cd

Section an ellipse. Axis major = a. Axis minor = b.

The maximum stress occurs at the extremities of the smaller

axis b.

Section a square of side ,

MT = 0-2QSq1 b\

Maximum stress occurs at the middle points of each side.

= TlMrl
Cb*

Section a rectangle; sides =B and b
;
B>b.

Maximum stress occurs at the middle of the longer side.

Q&&
n in the above equation for a rectangle is a numerical coefficient the

value of which varies for different ratios of B to b.

w. 20
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148. Cylindrical spiral springs.

Fig. 291 represents a spiral spring of length /, loaded with a weightW in the direction of its axis.

Let R be the radius of the coil measured to the centre of the wire

from the axis of the spring and r the radius of the wire.

The strain is practically pure torsion, for although there is some

bending, it is comparatively small. Taking any normal cross section

of the wire, we have there a shearing force W and a twisting torque

w
Fig. 291. Fig. 292.

equal to WR. The effect of the shearing force W may be neglected

in comparison with that of the moment WR, more especially when the

spring is closely coiled, and the radius R of the coil is large as compared

with the radius r of the wire. Thus the spring may be assumed as

being subjected to torsion at every section.

The twisting moment = WR is the same for every section of the

wire.

Hence, the maximum shearing stress

_
qi
~

I

where is the total angle of torsion for the length /.

If n be the number of coils in the spring, the length

n.
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The elongation of the spring by the load W (Fig. 292)

^

The work done in stretching the spring, or the energy stored in the

spring

The work done per unit of volume of the wire = -.
40

Mr Hartnell gives the following values found from experiment for

the maximum safe stress for steel wire :

Wire J inch diameter 70000 Ibs. per sq. inch.

)) s 60000 ,, ,, ,,

2 )> 50000 ,, ,,

2. A spiral spring has 20 coils
t
the diameter of the coil is 4 ins.,

and the diameter of the steel rod of which the spring is made is J inch.

Find the weight W acting along the axis of the coil which will produce
an extension of 3 ins. C = 5000 tons per sq. inch.

\in = number of coils in the spring, the length

mi i

The extension =
.

Cr

qi x 2 x -2T
2- x 4 x 20

500^
Therefore

3 x 500 x 7 . ,

& = ir~ 7*
- 3*7 tons per sq. inch.

2x22x4x8x2

Now Resilience -
|^

V.

Hence

W 3'7x3'7 22 22 1 __

- 18*9 inch-lbs.

Therefore W= 12'9 Ibs.

3. A truck weighing 30 cwt. travels at 6 miles an hour. Find

how many spiral springs each of 20 coils are necessary to store the

energy of motion. The diameter of the coil in each spring is 10 ins.,

and the diameter of the steel rod I inch. The compression of the springs

may be 10 ins., but not more. Take C= 5000 tons per sq. inch.

First find the energy of motion due to velocity.
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o 8 '8 x 8 '8

Energy to be absorbed =
t

= - x -
-. = T81 foot-tons

"Zff t <B X O Z

= 21'72 inch-tons.

The compression =^ .

, ... gi
x 5 x TT x 10 x 20

Therefore 10 ms. = --
=^-;; j ,

OUUU x
2

25
or <7i

= = 7*97 tons per sq. inch.
7T

The resilience of one spring
= ~~ . V

7-97x7-97 TT

6'25 = 1*56 inch-tons.
4

The number of springs necessary is therefore

1-56

To find the weight of these 14 springs : 1 cubic inch of steel weighs

0'28 Ibs.

Volume = 14 x TTT
Z x %-jrRn.

Therefore the weight - Vol. x 0'28

- 1936 Ibs.

EXERCISES.

1. A shaft 10 feet long, 2j ins. diameter, is fixed at one end, and
at the free end is twisted by a force of 500 Ibs. acting at a radius of

3 feet. Find the angle of torsion, and the displacement of the point
of application of the force. Take C= 5200 tons per sq. inch.

Ans. 2*77 degrees. 1*75 inches.

2. A shaft 3 inches diameter, 15 feet long, transmits 20 horse-

power at 100 revolutions per minute. Find the angle of torsion, and

the maximum intensity of shearing stress. Assume C 5200 tons per

sq. inch.

Ans. 1'37 degrees. 2380 Ibs. per sq. inch.

3. A shaft 20 feet long and 2j inches diameter is subjected to a

twisting moment of 16000 inch-lbs., and is loaded at the centre by
a pulley weighing 200 Ibs. Find the equivalent twisting moment and

the maximum stress.

Ans. 32000 inch-lbs. 10445 Ibs. per sq. inch.



XIV] TORSION 309

4. Find the diameter of a shaft required to transmit 200 horse-

power at 100 revolutions per minute, the limiting intensity of shearing
stress being 9000 Ibs. per sq. inch.

Ans. 4'14 ins.

5. A steel shaft is supported in bearings 12 feet apart, and at

3 feet from one bearing carries a wheel weighing 4 tons. The shaft

transmits 200 horse-power at 80 revolutions per minute. Neglecting
the weight of shaft, determine its diameter for a limiting intensity of

tensile stress of 6 tons per sq. inch.

Ans. 6 ins. (nearly).

6. Calculate the greatest intensity of tensile stress in a shaft

12 ins. diameter, 20 feet long between the bearings, weighing 480 Ibs.

per cubic foot. The shaft carries a wheel weighing 5 tons at 4 feet

from one bearing, and transmits 1000 horse-power at 100 revolutions

per minute.

Ans. 1'88 tons per sq. inch.

7. A circular shaft is twisted by a force of 500 Ibs. applied

tangentially at the circumference of a pulley, 4 feet diameter, keyed on

the shaft at one end, and tending to turn it against a resistance of

1000 Ibs. applied at the end of a crank 1 ft. long, keyed on the other

end of the shaft, which is supported in bearings placed close to the

wheel and crank respectively. Determine the diameter of the shaft,

assuming the working intensity of shearing stress to be 4 tons per

sq. inch.

Ans. 2 inches (app.).

8. If, in exercise 7, the distance between the wheel and crank is

10 feet, determine the angle of torsion, assuming C= 11,200,000 Ibs.

per sq. inch.

Ans. 5*5 degrees.

9. Determine the maximum stress produced at the circumference

of a circular steel engine-shaft 5 inches diameter, 10 feet long between

centres of journals. The shaft carries midway between the journals a

fly-wheel 12 feet diameter, weighing 4 tons, transmitting 180 horse-

power at 100 revolutions per minute by means of a belt driving

horizontally from the lowest point of its circumference. Take the

weight of the shaft as 480 Ibs. per cubic foot.

Ans. 10 "7 tons per sq. inch.

10. Compare (1) the resistance to a steady twist, (2) the angles
of torsion for the same maximum stress, (3) the resilience, of two
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shafts of the same length, weight, and material, one of which is solid,

and the other hollow with internal radius half the external.

(1) ; (2) ; (3 ) .

11. If the amount of twist in a solid shaft is limited to 1 for each

10 feet in length, determine the diameter if the shaft is subjected to

a twisting moment of 70 inch-tons. Take (7=12,000,000 Ibs. per

square inch.

Am. 5 '5 inches.

12. Find the extension which a weight of 50 Ibs. will produce in a

spiral spring of 30 coils, if the mean diameter of the coil is 2| inches,

and the diameter of the wire J inch. Assume C = 5000 tons per

sq. inch.

Ans. 4*3 inches.

13. A rod 12 inches long and J inch diameter, fixed at one end, is

twisted by a force of 6 Ibs. acting at the end of a lever arm 10 inches

long, which is keyed to the rod at the free end. Find the angle of

torsion, and the maximum stress produced in the rod. Take C = 5000

tons per sq. inch.

Ans. 7j degrees. 8'7 tons per sq. inch.

14. Show that if n is the outside radius of a solid or a hollow

shaft, and ql the maximum intensity of shearing stress due to a

twisting moment MT ,

qi^Mr
* J '

where J is the polar moment of inertia of the section, which is equal to

twice the moment of inertia about a diameter.

15. A cylindrical shaft of wrought iron transmits 100 horse-

power at 60 revolutions per minute. It is supported in bearings 8 feet

apart, and at 2 feet from one bearing carries a wheel weighing 3 tons.

Determine the diameter such that the maximum intensity of stress

shall be 4 tons per square inch.

Ans. 5J ins. (app.).

16. The external diameter of a hollow steel shaft is 10 ins., the

internal diameter 8 ins. Find the twisting moment it can transmit

with a working stress of 4 tons per sq. inch.

Ans. 464 inch-tons.
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Translated by Dr. R. A. LEHFELDT. In three volumes. Illustrated. DemySvo.,
28s. net ;

or obtainable separately, as follows :

Vol. I. Chemical Dynamics. 125. net.

Vol. n. Chemical Statics. 8s. 6d. net.

Vol. III. Relations between Properties and Composition.
75. 6d. net.
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THE ELEMENTS OF INORGANIC CHEMISTRY. For use in

Schools and Colleges. By W. A. SHENSTONE, Lecturer in Chemistry at Clifton

College. With nearly 150 Illustrations and a Coloured Table of Spectra.
xii + 5o6 pages. Crown 8vo., cloth, 43. 6d.

A COURSE OF PRACTICAL CHEMISTRY. Being a Revised
Edition of 'A Laboratory Companion for Use with Shenstone's Inorganic

Chemistry.' By W. A. SHENSTONE. 144 pages. Crown 8vo., is. 6d.

A TEXT-BOOK OF PHYSICAL CHEMISTRY. By Dr. R. A. LEH-
FELDT, Professor of Physics at the East London Technical College. With 40
Illustrations. Crown 8vo., cloth, 7s. 6d.

THE CHEMICAL SYNTHESIS OF VITAL PRODUCTS AND
THE INTER-RELATIONS BETWEEN ORGANIC COMPOUNDS. By
Professor RAPHAEL MELDOLA, F.R.S., of the City and Guilds of London
Technical College, Finsbury. [/ preparation.

A TEXT-BOOK OF PHYSICS. With Sections on the Applications
of Physics to Physiology and Medicine. By Dr. R. A. LEHFELDT, Professor of

Physics at the East London Technical College, Finsbury, Author of ' A Text-

book of Physical Chemistry,' etc. Fully Illustrated. Crown 8vo., cloth, 6s.

PHYSICAL CHEMISTRY FOR BEGINNERS. By Dr. Ch, M. VAN
DEVENTER. With a Preface by J. H. VAN 'T HOFF. Translated by Dr. R. A,

LEHFELDT, Professor of Physics at the East London Technical College. 2s. 6d.

A FIRST YEAR'S COURSE OF EXPERIMENTAL WORK IN
CHEMISTRY. By ERNEST H. COOK, D.Sc., F.I.C., Principal of the Clifton

Laboratory, Bristol. With 26 Illustrations. viii+135 pages. Crown Svo.,

cloth, is. 6d.

AN EXPERIMENTAL COURSE OF CHEMISTRY FOR AGRI-
CULTURAL STUDENTS. By T. S. DYMOND, F.I.C., Lecturer on

Agricultural Chemistry in the County Technical Laboratories, Chelmsford.

With 50 Illustrations. 192 pages. Crown 8vo., cloth, 2s. 6d.

THE STANDARD COURSE OF ELEMENTARY CHEMISTRY.
By E. J. Cox, F.C.S., Headmaster of the George Dixon Higher Grade School,

Birmingham. With 90 Illustrations. 350 pages. Crown 8vo., cloth, 35.

Also obtainable in five parts, limp cloth. Parts I. -IV., ;d. each ; Part V., is.

PHYSICAL DETERMINATIONS. A Manual of Laboratory Instruc-

tions for the Determination of Physical Quantities connected with General

Physics, Heat, Electricity and Magnetism, Ligh and Optics, and Sound. By
W. R. KELSEY, B.Sc., A.I.E.E., Lecturer in Physics to the Bradford Municipal
Technical College. Illustrated. Crown 8vo., cloth, 45. 6d.

THE BALANCING OF ENGINES. By W. E. DALBY, M.A., B.Sc.,

M.Inst.C.E., M.I.M.E., Professor of Mechanical Engineering and Applied
Mathematics in the City and Guilds of London Technical College, Finsbury.

With 173 Illustrations. Demy 8vo., IDS. 6d. net.

THE STRENGTH AND ELASTICITY OF STRUCTURAL MEMBERS.
By R. J. WOODS, Master of Engineering, Royal University of Ireland, Fellow of

the Royal Indian Engineering College, and Assistant Professor of Engineering

Cooper's Hill College. Demy Svo. los. 6d. net.
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TRAVERSE TABLES. With an Introductory Chapter on Co-
ordinate Surveying. By HENRY Louis, M.A., A.R.S.M., F.I.C., F.G.S.,
etc., Professor of Mining and Lecturer on Surveying, Durham College of Science,

Newcastle-on-Tyne ; and G. W. CAUNT, M.A., Lecturer in Mathematics, Dur-
ham College of Science, Newcastle-on-Tyne. Demy 8vo., 45. 6d. net.

THE CALCULUS FOR ENGINEERS. By JOHN PERRY, M.E.,
D.Sc., F.R.S., Professor of Mechanics and Mathematics in the Royal College of

Science, Vice-President of the Physical Society, Vice-President of the Institution

of Electrical Engineers, etc. Fifth Edition. Crown 8vo., cloth, 75. 6d.

ELECTRIC AND MAGNETIC CIRCUITS. By ELLIS H. CRAPPER,
M.I.E.E., Head of the Electrical Engineering Department in the University

College, Sheffield, viii + 380 pages. Demy 8vo., los. 6d. net.

ELECTROLYTIC PREPARATIONS. Exercises for use in the labora-

tory by chemists and electro-chemists. By Dr. KARL ELBS, Professor of

Chemistry at the University of Giessen. Translated by R. S. HUTTON, M.Sc.,
Demonstrator and Lecturer on Electro-Chemistry, Owens College, Manchester.

Demy 8vo., 45. 6d. net.

ELECTRICAL TRACTION. By ERNEST WILSON, Wh.Sc., M.I.E.E.,
Professor of Electrical Engineering in the Siemens Laboratory, King's College,
London. Crown 8vo., 55.

ELECTRICITY AND MAGNETISM. By C. E. ASHFORD, M.A.,
Headmaster of the Osborne Royal Naval College, late Senior Science Master at

Harrow School. With over 200 Diagrams. Crown 8vo., 35. 6d.

MAGNETISM AND ELECTRICITY. An Elementary Treatise for

Junior Students, Descriptive and Experimental. By J. PALEY YORKE, of the

Northern Polytechnic Institute, London. With nearly 150 Illustrations. 35. 6d.

ELEMENTARY NATURAL PHILOSOPHY. By ALFRED EARL,
M.A., Assistant Master at Tonbridge School. With numerous Illustrations and

Diagrams. Crown 8vo., cloth, 45. 6d.

AN INTRODUCTION TO THE THEORY OF OPTICS. By Pro-
fessor ARTHUR SCHUSTER, F.R.S. With numerous Diagrams. [/ the Press.

VECTORS AND ROTORS. With Applications. Being Lectures
delivered at the Central Technical College. By Professor O. HENRICI, F.R.S.
Edited by G. C. TURNER, Goldsmith Institute. Crown 8vo., cloth. 45. 6d.

THR PRINCIPLES OF MECHANISM. By H. A. GARRATT,
A.M.I.C.E., Head of the Engineering Department of the Northern Polytechnic
Institute, Holloway. Crown 8vo., cloth, 35. 6d.

ELEMENTARY PLANE AND SOLID MENSURATION. By R. W. K.

EDWARDS, M.A., Lecturer on Mathematics at King's College, London. For
use in Schools, Colleges, and Technical Classes. 304 pages, Crown 8vo., 35. 6d.
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AN ELEMENTARY TREATISE ON PRACTICAL MATHEMATICS.
By JOHN GRAHAM, B.A., Demonstrator of Mechanical Engineering and Applied
Mathematics in the Technical College, Finsbury. Crown 8vo., cloth, 33. 6d.

FIVE-FIGURE TABLES OF MATHEMATICAL FUNCTIONS. By
J. B. DALE, M.A. Camb., B.A. Lond., late Scholar St. John's College, Cam-
bridge, Lecturer on Pure and Applied Mathematics, King's College, University
of London. Contains the usual Tables and many others of great and increasing
importance in Physics and Applied Mathematics which have never hitherto been

brought together and rendered easily accessible. Demy 8vo., 35. 6d. net.

A CLASS-BOOK OF BOTANY. By G. P. MUDGE, A.R.C.Sc.
Lond., F.Z.S., Lecturer on Botany and Zoology at the London School of

Medicine for Women (University of London), W.C., and at the Regent Street

Polytechnic, W., and A. J. MASLEN, F.L.S., Lecturer on Botany at the Wool-
wich Polytechnic. With over 200 Illustrations. Crown 8vo., 7s. 6d.

A MANUAL OF ALCOHOLIC FERMENTATION AND THE
ALLIED INDUSTRIES. By CHARLES G. MATTHEWS, F.I.C., F.C.S., etc.

Fully Illustrated. Crown 8vo,, cloth, 73. 6d. net.

WOOD. A Manual of the Natural History and Industrial Applications
of the Timbers of Commerce. By G. S. BOULGER, F.L.S., F.G.S. Fully
Illustrated. Crown 8vo., 7s. 6d. net.

A TEXT-BOOK OF ZOOLOGY. By G. P. MUDGE, A.R.C.Sc.,
Lond., Lecturer on Biology at the London School of Medicine for Women,
and the Polytechnic Institute, Regent Street. With about 200 original Illustra- .

tions. Crown 8vo., cloth, 75. 6d.

WORKS BY PROFESSOR C. LLOYD MORGAN, F.R.S.

ANIMAL BEHAVIOUR. By C. LLOYD MORGAN, F.R.S., Principal
of University College Bristol, author of 'Animal Life and Intelligence,' etc.

With numerous Illustrations. Large crown 8vo., IDS. 6d.

OUTLINE OF CONTENTS. I. Organic Behaviour II. Consciousness III. The
Mental Faculties of Animals IV. Heredity and Evolution V. Instinctive

Behaviour VI. Intelligent Behaviour VII. Some Types of Animal Behaviour
VIII. Social Behaviour IX. Emotional Behaviour X. The Rdle of Con-

sciousness in Evolution.

HABIT AND INSTINCT. By C. LLOYD MORGAN,. F.R.S. With
Photogravure Frontispiece, viii + 352 pages. Demy 8vo., cloth, i6s.

The earlier chapters contain the author's original observations upon the young
of many species of birds and mammals. These are followed by an interesting
discussion upon Animal Habits and Instincts, and the work ends with chapters,
on ' The Relation of Organic to Mental Evolution,'

' Are Acquired Habits
Inherited ?'

* Modification and Variation,' and '

Heredity in Man.'

PSYCHOLOGY FOR TEACHERS. By C. LLOYD MORGAN, F.R.S.
xii + 25i pages. Crown 8vo., 33. 6d.

ANIMAL SKETCHES. By C. LLOYD MORGAN, F.R.S. viii + 3i2
pages, with 52 Illustrations (many of them full-page). Crown 8vo., cloth, 35. 6d.
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