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PREFACE.

Tais book is intended to give the student a grasp of the physical
and mathematical ideas underlying the Mechanics of Materials,
together with enough of the experimental facts and simple appli-
cations to sustain his interest, fix his theory, and prepare him
for the technical subjects as given in works on Machine Design,
Reinforced Concrete, or Stresses in Structures.

It is assumed that the reader has completed the Integral
Calculus, and has taken a course in Theoretical Mechanics which
includes statics and the moment of inertia of plane areas. Chap-
ters XVI and XVII give a brief discussion of center of gravity
and moment of inertia. Students who have not mastered these
subjects should study these chapters before taking up Chapter V
(preferably before beginning Chapter I).

The problems, which are given with nearly every article, form
an essential part of the development of the subject. They were
prepared with the twofold object of fixing the theory and enabling
the student to discover for himself important facts and applica-
tions. The first problems of each set usually require the use of
but one new principle, — the one given in the text which immedi-
ately precedes; the later problems aim to combine this principle
with others previously studied and with the fundamental opera-
tions of Mathematics and Mechanics. The constants given in
the data or derived from the results of the problems fall within
the range of the figures obtained from actual tests of materials.
Many of the problems are taken directly from such measurements.
Some of them are from tests made by the author or his colleagues
at the Ohio State University; others are from bulletins of the
University of Illinois Engineering Experiment Station, from
“Tests of Metals’ at the Watertown Arsenal, and from the Trans-
actions of the American Society of Civil Engineers.

This book is designed for use with “ Cambria Steel,” to which
references are made by title instead of by page, so that they are
adapted to any edition of the handbook.

v
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The author acknowledges his indebtedness for suggestions and
criticisms to Professors C. T. Morris, E. F. Coddington, Robert
Meiklejohn, K. D. Swartzel, and many others of the Faculty of
the College of Engineering; and to Professor Horace Judd of the
Department of Mechanical Engineering for the material for several
of the half-tones. He also expresses his obligations to the books
which have helped to mold his ideas of the subject,— Johnson’s
“Materials of Construction,” Ewing’s ““Strength of Materials,”” and
especially the textbooks which he has used with his classes, — Mer-
riman’s ‘“ Mechanics of Materials,” Heller’s ‘ Stresses in Struc-
tures,” and Goodman’s “Mechanics Applied to Engineering.”

The symbols used in the mathematical expressions are much
the same as in Heller’s “ Stresses in Structures.”

CorumBus, Onio, :
November 6, 1911.
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NOTATION.

The symbols which are frequently used in this book are:

= radius of circle; pitch of rivets.

= area of cross section.

breadth; breadth of rectangular section; base of triangle.
= some special value of b.

a
A
b
B

C, Cy, C, = integration constants.
d = depth; height of rectangular section; diameter; distance between parallel
axes.
D = some special depth.
e = eccentricity of load on column.
E = modulus of elasticity.

h = height.
H = product of inertia.

I = moment of inertia. 3
I, = moment of inertia with respect to the X axis.
I, = moment of inertia with respect to an axis through the center of gravity.

J = polar moment of inertia of a plane area.
k = a constant coefficient (in Chapters VII, VIII).
k = radius of gyration (in Chapter XVII). :
K, K,, K, = constants of integration.
I = length; length of beam between supports; length of column between
points of counterflexure.
L = length; total length of column.
M, M, = moment, moment at origin of codrdinates.
Mgq, My, M, = moment over three consecutive supports.
M., M., M;, ete. = moment over first, second, and third supports, ete.
M= torque.
N = normal force at surface.

P, Py, etc. = concentrated loads or forces.
r = radius of gyration (in Chapters XII, XIII).
r = distance from origin (in Chapters XVI, XVII).
R = reaction at support; resultant force.
R, = reaction at left support.
R, = reaction at right or second support.
xi






STRENGTH OF MATERIALS.

CHAPTER 1.

STRESSES.

1. Strength of Materials. — That branch of Mechanies which
treats of the changes in form and dimensions of elastic solids and
the forces which cause these changes is called The Mechanics of
Materials. When the physical constants and the results of ex-
perimental tests upon the materials of construction are included
with the theoretical discussion of the ideal elastic solid, the entire
_ subject is called The Sirength of Materials or The Resistance of
Materials.

2. Tension. — Support one end of a band of soft rubber, and
attach a small hook to the other end, as shown in Fig. 1. Now
apply a small weight to the hook.
The rubber band is stretched; its = f
length is increased by an amount
a, while its cross section is dimin-
ished. Add a second weight. If
the second weight is equal to the
first one, the elongation b, which
it causes, is equal to that caused

by the first weight. Remove the by —.
weights, and the rubber band re- @ iz_

turns to its original length and -+

cross section. é i s
If steel, iron, wood, concrete,

stone, or other solid material is

used instead of rubber, the re-

sults are .similar. Thfere is this §g. 1. — Ribbet Barldis

apparent difference: while the rub- T

ber may be stretched to twice or

three times its original length and still return to its original size

and shape after the load is removed, one of the other materials
1




2 STRENGTH OF MATERIALS

may be stretched only a very small amount (usually less than
0.002 of its length), without receiving a permanent change in its
dimensions. Again, the force required to produce a relatively
small increase in the length of a rod of wood or steel, for instance,
is many times greater than that necessary to double the length
of a soft rubber band of equal cross section. These differences
between the behavior of soft rubber and other solid materials
are differences of degree and not of kind. KEssentially they are
alike.

The rubber bands shown in Fig. 1 are subjected to the action
of two forces: the force of the weights pulling downward, and the
reaction of the support pulling upward. The bands are in tension.
A body is said to be in tension when it is subjected to two sets of
forces whose resultants are in the same straight line, opposite in
direction, and directed away from each other.

3. Compression. — When a body is subjected to two sets of

50 Lbs. forces whose resultants are in the same straight

L line, opposite in direction, and directed foward

each other, it is said to be in compression. In

Fig. 2, the block B is in compression under the

action of the 50 pounds pushing down and the

reaction of the support pushing up. The effect

of compression upon a body is to shorten it in

the line of the forces and increase its dimen-
sions in the plane perpendicular to this line.

Tension and compression may be repre-
sented as in Fig. 3, where the arrows repre-
sent the forces, and the small rectangles represent the bodies,
or portions of a body, upon which

Fig. 2. — Compres-
sion.

the fore ct. The rectangles are TENSION Cohe sy
orces act. . g :
often omitted; a pair of arrows with Fig. 3

their heads together indicate compres-
sion, and a pair with their heads in the opposite sense indicate
tension.

4. Stress; Total Stress. — The force exerted by one body
upon another at their surface of contact is called the stress
between the bodies or the tofal siress between the bodies. If a
single body be regarded as cut by an imaginary surface; the force
exerted across this surface by either portion of the body upon the
other portion is the total internal stress in the body at the section.
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In the case of an internal stress, if the forces are such that the
portions of the body are pushed together at the imaginary surface,
the stress is compressive. If the forces tend
to pull the portions apart, the stress is fensile.
Compressive stress at the surface of contact of
two separate bodies is called bearing stress.

All parts of the bar AB, Fig. 4, are under
tensile stress. The total tensile stress at any
section CD is the load L and the weight of the
hook and of that portion of the bar below the
section.

All parts of the block in Fig. 5 are in com-
pression. The total compressive stress at any
section JK is 10 pounds plus the weight of the
portion of the block above the section; or, since
action and reaction are equal, it is the upward reaction at the
base minus the weight of the portion below JK.

5. Unit Stress; Intensity of Stress. — The unit siress at any
surface is the total stress at the surface divided by its area.

Unit stress is frequently called ¢nfensity of
stress. In American engineering practice, unit
o stresses are usually expressed in pounds per

i - square inch. Compressive stresses in masonry

i are sometimes given in tons per square foot;

—\ the bearing pressure of masonry upon soils is
& ] always so expressed. [English engineers fre-
quently use long tons per square inch to express
the intensity of stress in steel and similar solids.
Continental engineers, of course, use kilograms
per square centimeter. Physicists, the world over, prefer dynes
per square centimeter. In the case of tensile or compressive
stresses, the surface considered is a plane section perpendicular
to the direction of the forces, unless otherwise stated.

A

Fig. 4.— Tensile
Stress.

Fig. 5. — Compres-
“sive Stress.

PROBLEMS.

1. The rod AB, Fig. 4, is circular and 2 inches in diameter. If the load L
is 5000 pounds, and the weight of the hook and the lower part of the rod are

neglected, what is the unit stress at any section? )
: Ans. 1592 pounds per square inch.

2. If in Fig. 4 the diameter of the rod is 3 inches, what mgst be the load L
to produce an intensity of stress of 3500 pounds per square inch?
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3. If a section of the block in Fig. 5 is § inch by § inch, what is the unit
stress near the top? Ans. 32 pounds per square inch.
4. A 6-inch by 8-inch oak post 12 feet high supports a load of 6 tons at the
top. The oak weighs 48 pounds per cubic foot. Find the unit compressive
stress near the top and near the bottom.
Ans. 254 pounds per square inch near the bottom.
5. A concrete wall 18 inches thick and 12 feet high carries a load of 3300
pounds per running foot. The concrete weighs 150 pounds per cubic foot.
Find the bearing pressure on the soil immediately under the foot of the wall.
Ans. 2 tons per square foot.
6. A 2-inch round steel rod is subjected to a pull of 100,000 pounds. Find
the unit stress in pounds per square inch, long tons per square inch, kilograms
per square centimeter, and dynes per square centimeter.

The total load upon a structure is often given in terms of the
volume of some material. It is therefore advisable to learn the
approximate density of some of the common substances. The
figures given below will be used in problems throughout this book
unless otherwise stated, and should be memorized.

Material. Weight per cubic
foot in pounds.

e N s T Ll 5 1

Wirough Silronvg R es R bl B S e 480
e e e P A T B e T S LS SAT o 490
(BB s 50 & Srodra S o e iyte T AU S S E ) 450
(GOICTEYeR, - Mg PeErbie o Bt fe e T 1k 150
12507t G el g RN RS T S AR S AL O e A R 125
LTIV L1 TT1 0751 PR, ey T S h s T e S 48

A steel rod one inch square and one foot long is calculated as
weighing 3.4 pounds. A wrought-iron rod of one square inch
cross section weighs 10 pounds per yard.

PROBLEMS.

7. A 1-inch round steel rod 100 feet long hangs vertical and supports a
tank weighing 125 pounds, which contains 14 cubic feet of water. Find the
unit stress in the rod near the top. Ans. 1613 pounds per square inch.

8. A brick wall 12 inches thick, 30 feet high, and 15 feet long is supported
by a steel beam 15 feet long and 19 square inches cross section. The ends of
the bean are supported on two concrete columns each 12 inches square and
10 feet high. Find the unit stress near the bottom of the columns.

9. A floor is supported by long-leaf yellow-pine joists 2 inches by 12 inches
by 16 feet, spaced 16 inches center to center. The floor is inch oak over inch
hemlock. The lath and plaster weighs 14 pounds per square foot. Find the
load on each joist including its own weight. (Take weights of timber from
tables of the United States Department of Agriculture, given in Cambria.)

6. Working Stress; Allowable Unit Stress.— Working stresses
are the unit stresses to which the materials of a structure or
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machine are subjected. The allowable unit siress for a given
material is the maximum working stress which, in the judgment
of some engineer or other authority, should be applied to that
material. As examples of allowable unit stresses, the building
laws of New York city (see Cambria) and the American Railway
Engineering and Maintenance of Way Association recommend
16,000 pounds per square inch as the allowable unit tensile stress
in structural steel. The United States Department of Agricul-
ture gives 1000 pounds per square inch as the allowable com-
pressive stress, parallel to the grain, in long-leaf yellow pine, and
215 pounds per square inch across the grain.

PROBLEMS.

For allowable unit stresses in the following problems use the values recom-
mended by the United States Department of Agriculture for timber, and those
of the New York building laws for other materials, unless otherwise specified.

1. Find the total load in compression parallel to the grain which may be
applied to a 4-inch by 4-inch short block of white oak.
Ans. 12,800 pounds.
2. What should be the length of a 6-inch by 6-inch block of short-leaf
yellow pine to support a compressive load of 12,000 pounds across the grain?
Ans. 9.3 inches.
3. What should be the thickness of an eye-bar of rolled steel, 5 inches wide,
to support 80,000 pounds in tension? Ans. 1 inch.
4. What is the total tension which may be safely applied to a 1-inch wrought-
iron bolt? (See table of Franklin Institute standard dimensions of bolts and
nuts in Cambria.) Ans. 6600 pounds.
5. An 8-inch by 8-inch short oak post stands on a cast-iron base plate
which is supported by a pier of 1:2 :4 Portland cement concrete. If the
post is subjected to its allowable safe load, what should be the minimum area
of the pier? Ans. 223 square inches, 15 inches square.
6. If the pier in Problem 5 is 16 inches square at the top and enlarges to
form a frustum of a pyramid 3 feet in height, what must be the dimensions
of the base, if the bearing pressure on the soil shall not exceed 2 tons per
square foot?

7. Deformations; Unit Deformation. — The changes in di-
mensions which oceur when forees are applied to a body are called
deformations. In Fig. 1, the increase of length, a, which takes
place when the first load is applied is the deformation due to that
load, the increase b is the deformation due to the second lozad,
and a + b is the deformation due to the two loads. The def-
ormation produced by a fensile force or pull is an elongation;
that caused by a compressive force or push is a compression. A
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deformation which remains after the force is removed is called
a set.

Unit deformation in a body is the deformation per unit length.
It is calculated by dividing the total deformation in a given
length by the original length. The length a in Fig. 1 divided by
the original length of the band is the unit elongation due to the
first load. It is frequently convenient to consider unit deforma-
tion as the ratio of the deformation to the original length. It is
then called the relative deformation.

In algebraic equations many authors represent unit deforma-
tion by the letter § (pronounced delta).

PROBLEMS.

1. A rod is subjected to a tensile stress and a portion of the rod, originally
8 inches long, is stretched 0.0040 inch. Find the unit elongation.
Ans. 0.00050 inch.
2. A block 4 inches long is compressed 0.0028 inch.© What is the unit com-
pression?
3. A change of temperature of 20° F. causes a relative elongation of 0.00013
in an iron rod. What is the total elongation in a length of 30 feet?
" Ans. 0.0468 inch.
4. In the tension test of a bar of cast iron, it was found that a pull of
7000 pounds per square inch produced an elongation of 0.0044 inch in a length
of 8 inches. What was the relative elongation? Ans. 0.00055.

8. Elastic Limit. — When a stress is applied to a solid body
and then removed, the body returns to its original size and shape,
provided the stress has not exceeded a certain limit. If the
stress has gone beyond this limit, the body does not return
entirely to its original dimensions, but retains some permanent
deformation or set. This limit is called the elastic limit of the
material. A wrought-iron rod in tension is stretched about
0.006 inch in a length of 8 inches by a load of 20,000 pounds per
square inch. When the load is removed, it returns to its original
length. A stress of 20,000 pounds per square inch, or the corre-
sponding unit elongation of 0.00075 inch, is below the elastic
limit of wrought iron. If the load is inereased to 30,000 pounds
per square inch, the elongation in 8 inches becomes, perhaps,
0.075 inch. Upon the removal of the load the rod shortens only
0.009 inch and the residual 0.066 inch remains as a permanent
set. The elastic limit is below 30,000 pounds per square inch.
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9. Modulus of Elasticity. — For all stresses below the elastic
limit the unit stress bears a constant ratio to the unit defor-
mation. The quotient obtained by dividing unit stress by the
accompanying unit deformation is called the modulus of elasticity
of the material, or Young’s modulus. In algebraic formulas,
modulus of elasticity is represented by the letter E. Writing
the above definition algebraically

E= %, * Formula I.
where E is the modulus of elasticity,

s is the unit stress,
0 is the unit deformation.

PROBLEMS.

1. A steel rod of 1 square inch cross section is tested in tension. It is
found that a pull of 23,600 pounds stretches 8 inches of the rod 0.0064 inch.
Find the unit deformation and the modulus of elasticity. :

Ans. Modulus of elasticity, 29,500,000 pounds per square inch.

2. A wooden block 2 inches square and 12 lnches long is tested in com-
pression. It is found that a total load of 2800 pounds shortens 10 inches of
the block 0.0050 inch. What is the modulus of elasticity of this wood?

Ans. 1,400,000 pounds per square inch.

3. A steel bar 1inch by 5 inches is elongated 0.024 inch in a length of 5 feet
by a certain load. If the modulus of elasticity of this steel is 30,000,000
pounds per square inch, what is the unit stress and the total load?

Ans. Total load, 60,000 pounds.

4. In a tension test of cast iron at the Watertown Arsenal, an increase of
unit stress from 1000 pounds per square inch to 6000 pounds per square inch
produced an increase in length of 0.0034 inch in a gauged length of 10 inches.
Find E for this cast iron. Ans. 14,700,000 pounds per square inch.

5. A 2-inch round steel rod is cooled from 80° F. to 30° F. without being
allowed to contract. If the coeflicient of expansion of the steel is 0.0000067 per
degree Fahrenheit, and the modulus of elasticity is 29,000,000, what is the
total tension developed? Ans. 30,520 pounds.

6. A cast-iron bar 2 inches wide and % inch thick is placed between two
steel bars each 2 inches wide by 1 inch thick. If the modulus of elasticity of
the steel is 30,000,000 and that of the cast iron 15,000,000, what total pull
will stretch the combined bar 0.0044 inch in a length of 8 inches, and what will
be the unit stress in each material? Ans. Total pull, 24,750 pounds.

7. A steel bar 4 inches wide and 1 inch thick is placed between two wrought-
iron bars each 4 inches wide and $ inch thick, and a total pull of 94,000 pounds
is applied to the combination. If E for the steel is 30,000,000, and for the
iron, 27,000,000, what is the unit tensile stress in each?

Ans. 10,000 pounds per square inch in the steel;
9,000 pounds per square inch in the iron.

* Important formulas, which should be memorized, are designated by the
Roman numerals in this book.
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“8. A 1l-inch round steel rod passes through a wrought-iron pipe 1 inch
inside diameter, 1.4 inches outside diameter, and 12 inches long. A nut on the
rod is turned so as to produce tension in the rod and compression in the pipe.
Neglecting the elasticity of the nut and of the projecting part of the rod, how
much is the unit stress in each increased when the nut is turned 30 degrees,
there being eight threads to the inch, and E the same as in Problem 7?

10. Physical Meaning of E. — Formula I of Article 9 may be
written

Il @

If s be made equal to unity, 6 becomes equal to '1%_] With the

common engineering units, the reciproecal of E is the unit defor-
mation produced by a unit load of one pound per square inch.
For steel having a modulus of 30,000,000 pounds per square inch,
a unit stress of one pound per square inch is developed when the
deformation is one thirty-millionth of the original length.

EXAMPLES.
Solve without writing.

1. If wood having a modulus of 1,200,000 pounds per square inch is sub-
jected to a tensile stress of 600 pounds per square inch, what is its elongation
per inch of length? What is the total elongation in a length of 5 feet?

2. A 4-inch by 4-inch wooden block is subjected to a compressive force of
6400 pounds. If the modulus of elasticity parallel to the fibers is 1,600,000
pounds per square inch; what is the unit compression and the total com-
pression in a length of 20 inches?

3. If steel has a modulus of 30,000,000, what is the unit elongation due to
a load of 15,000 pounds per square inch?

Formula I may also be written
s = Eg,
which defines E as the coefficient which multiplied into the unit
deformation gives the unit stress. It helps to fix our ideas if we
consider the case where the unit deformation is 0.001. We may
then define the modulus as 1000 times the unit stress which pro-
duces a unit deformation of 0.001 of the original length.

EXAMPLES.
Solve without writing.

4. If the modulus of steel is 30,000,000, what is the unit stress when the
unit deformation is 0.001? If the unit deformation is 0.0005, what is the unit _
stress? If a steel rod 40 inches long is stretched 0.008 inch, what is the unit
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stress? What total pull will stretch a bar 2 inches square 0.024 inch in a length
of 5 feet?

5. If the modulus of white oak is 1,500,000, what is the unit stress which
produces a unit elongation of 0.001? Is this more or less than the allowable
unit stress? .

If, in Formula I, § be made unity, s becomes equal to E. From this, the
modulus of elasticity may be defined as the unit stress which would produce a
deformation equal to the original length, if such deformation were possible
without breaking the material or exceeding the elastic limit. This means the
unit stress which would double the length of a bar in tension or reduce to
nothing the length of a block in compression.

11. Resilience. — When force acts on a body and motion
takes place in the direction of the force, the force does work on
the body. The amount of work is measured by the product of
the force multiplied by the distance its point of application moves
along its line of action. When a body is deformed by a force, the
amount of work is the product of the average force multiplied
by the deformation. When the stress is kept below the elastic
limit, the average force is the mean of the initial and final forces.

PROBLEMS.

1. A load of 6000 pounds is applied to a steel rod having no initial load
and causes an elongation of 0.024 inch: What is the work in foot pounds?
Ans. 6 foot pounds.
2. An additional load of 9000 pounds is applied to the rod of Problem 1,
producing an additional elongation of 0.036 inch. What is the additional
work done on the rod (a) by the 9000 pounds alone? (b) by the 9000 pounds
and the 6000 pounds together? (c) Compare the result of (b) with the work
done if the entire 15,000 pounds is applied at once to the rod with no initial
load.
Ans. (a) 13.5 foot pounds; (b) 31.5 foot pounds; (c) 37.5 foot pounds.
3. A load of 60,000 pounds in tension is applied to a steel bar of 4 square
inches cross section. If the modulus of the steel is 30,000,000, how much
work is done on a length of 10 feet of the bar? Ans. 150 foot pounds.
4. A steel rod of 6 square inches cross section is stretched 0.072 inch in a
length of 9 feet. If the modulus is 30,000,000, what is the total load, the
average force, and the total work on the 9-foot length?
Ans. 360 foot pounds of work.

The work done in deforming an elastic body is stored up in
the body as elastic energy, which may be given up in restoring
the body to its original form when the load is removed. If the
stress does not exceed the elastic limit, all this work is returned.
If the stress exceeds the elastic limit, some of the work is con-
verted into heat as the deformation takes place and cannot be
recovered as mechanical energy.
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12. Modulus of Resilience. — The work expended in deform-
ing unit volume of any material to the elastic limit is called the
modulus of resilience of the material. It is the elastic potential
energy of unit volume when stressed to the elastic limit. The
modulus of resilience is a measure of the amount of energy which
may be stored in a given material and recovered as mechanical
work without.loss.

If we consider a cubic inch of material subjected to unit stress

s, the deformation is% and the average force is %; the total work
is the product
ixf—s—z Formula II
K 2T v

;%) gives the energy
for any value of s below the elastic limit. When s is the unit
stress at the elastic limit, the expression is the modulus of resil-
ience. When s and E are given in pounds per square inch,
Formula II gives the energy in inch pounds per cubic inch.

The total elastic energy in a body, all parts of which are sub-
jected to a unit stress s, is obtained by multiplying the total
volume of the body by the energy per unit volume, and is inde-
pendent of the form of body.

This expression <energy in unit volume =

PROBLEMS.

1. Find the modulus of resilience of structural steel having a modulus
of elasticity of 29,000,000 and an elastic limit of 30,000 pounds per square
inch. Amns. 15.5 inch pounds per cubic inch.

2. Find the modulus of resilience of spring steel for which E equals
30,000,000 and the elastic limit is 100,000 pounds per square inch.

Ans. 166.7 inch pounds.

3. A 2-inch round steel rod is subjected to a pull of 100,000 pounds, which
produces an elongation of 0.012 inch in a 12-inch length. What is the total
work expended on the 12-inch length? What is the work per cubic inch?

4. What is the modulus of resilience of wood having a modulus of elas-
ticity of 1,200,000 and an elastic limit of 3000 pounds per square inch?

5. How many cubic inches of steel having an elastic limit of 80,000 pounds
and a modulus of elasticity of 30,000,000 are required to store 100 foot pounds
of energy? Ans. 11.25 cubic inches.

6. How high can the energy which may be stored in steel as used in
Problem 5 lift its own weight? Ans. 31.37 {cet.
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In calculating the work of resilience, we used the average force
multiplied by the deformation. We may obtain the same results
by means of the Calculus.

Let x represent the total elongation of a rod of length I and
unit cross section; and let dz represent an infinitesimal increment
of this elongation. When the elongation is z the unit elongation
is £ and the unit stress is % .

l
The work done in causing an elongation dz in the rod of unit
eross section is the product of this unit stress multiplied by dz.

Increment of work = lblx dx. (1)
Ex E Ea )
Total work =f—l— dx = 2_l[x2]x, =37 (z2—zh), 2)

where z; and x, are the initial and final elongations respectively.
Substituting for z; and x, their values in terms of the stress, we
get:

Total work = l(sg ol s;") = s — Sg) X volume 3)
2K ( 2F )

If the initial stress is zero, equation (3) becomes Formula II.

PROBLEMS.

7. Derive equation (2) by means of average force without integrating.

8. Derive the expression for total work and work per unit volume in a
bar of length I/, cross section 4, and modulus E, when the total load changes
from P, to P,, and show that the final expression for total work is the same
as equation (3) above.

13. Poisson’s Ratio. — When a body is subjected to a tensile
stress it is elongated, the amount of elongation, provided the
unit stress does not exceed the elastic limit, being proportional
to the stress. At the same time its diameter is diminished. The
ratio of this relative decrease in diameter to the unit increase in
length is called Poisson’s ratio. The value of this ratio varies
with the material, but it is usually in the neighborhood of . It
is about 0.27 for stecl. If a steel rod is elongated 0.001 of its
length, its diameter is diminished about 0.00027 of its original
value. The same relation holds in compression.
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PROBLEMS.

1. Taking Poisson’s ratio as 0.27 and the modulus of elasticity as 30,000,000,
find the decrease in diameter of a 2-inch round steel rod under a pull of 100,000
pounds. g

2. In Problem 1, if the unit stress is proportional to the unit deformation,

- what is the transverse unit compressive stress? :
Ans. 8594 pounds per square inch.

3. A block of metal 2 inches square and 10 inches long is subjected to a
compressive stress parallel to its length which makes the unit deformation
0.001. If Poisson’s ratio is 1, how much is its volume diminished?

Ans. 0.02 cubic inch nearly.

4. A block of metal, in the form of a rectangular parallelopiped whose
edges correspond with the axes of Cartesian codrdinates, is subjected to a
compressive stress of 4800 pounds per square inch along the X axis. If the
modulus of elasticity in both compression and tension is the same in all direc-
tions, what is the unit stress and unit deformation in each of the principal
directions when E equals 30,000,000 and Poisson’s ratio is 1?

Axis, Unit Deformation. Unit Stress,
Ans. X 0.00016 compression 4800 Ibs. per sq. in.
Y 0.00004 tension 1200 lbs. per sq. in.
Z 0.00004 tension 1200 Ibs. per sq. in.

5. Solve Problem 4 if the applied stress is 6000 pounds per square inch
compression along the X axis and 4800 pounds per square inch tension along
the Y axis.

Axis, Unit Deformation.
Ans. X 0.00024 compression.
Y 0.00021 tension.
Z 0.00001 tension.

14. Change in Volume inside the Elastic Limit. — If a body
of unit dimensions is elongated an amount § due to an external
pull, its length becomes 1 + 8, and its transverse dimensions
become 1 — pd, where p* is Poisson’s ratio. Its area of cross
section becomes (1 — pd)2=1—2pd +(pd)2. Since (pd) is small,
being never greater than 0.001, (pd)?, being more than a thou-
sand times smaller, may be neglected without appreciable error.

The volume is (1 +8) (1 —2p8) =14 (1 —2p) § — 2 ps2.

The last term, 2 pé2, may also be neglected.

Final volume =1 + (1 — 2p) §;

Original volume = 1;

Increment of volume = (1 — 2p)4..

PROBLEMS.

1. If Poisson’s ratio is %, show that the relative increase in volume when
a tension is applied is one-half as great as the relative increase in length.

* Greek letter p, pronounced rho.
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2. In the case of compression, find the ratio of the increment of volume
to the increment of length.

3. A steel bar of 6 square inches cross section is subjected to a pull of
90,000 pounds. If Poisson’s ratio is 0.27 and E is 30,000,000, what is the
increase in volume of a 10-inch length? :

Solve by means of the formula above, and also by multiplying together
the dimensions without omitting any figures, and compare the results.

4. Show that a body for which Poisson’s ratio is } has its volume un-
changed by a direct stress.

Note that the discussion of Articles 13 and 14 applies to stresses
and deformations below the elastic limit, for which all deforma-
" tion is temporary. For stresses beyond the elastic limit, produc-
ing permanent deformation and rearrangement of the molecules
of the body, the conditions are somewhat different.

MISCELLANEOUS PROBLEMS.

1. A stick of Douglas fir tested in tension at the Watertown Arsenal
(““ Tests of Metals,”” 1896, page 405) showed an elongation of 0.0427 inch in a
gauged length of 200 inches when the load per square inch changed from 100
pounds to 500 pounds. Find E. Ans. 1,874,000 pounds per square inch.

2. A second stick of Douglas fir tested in tension (1896, pages 407-9)
showed an elongation of 0.1015 inch in a gauged length of 200 inches, and a
decrease of width of 0.0020 inch in a width of 12 inches when the load changed
from 100 pounds to 1000 pounds per square inch. Find the modulus of elas-
ticity in tension parallel to the grain and Poisson’s ratio.

Ans. Poisson’s ratio, 0.33.

3. In a compressive piece cut from the stick of Problem 2, when the com-
pressive stress changed from 100 pounds to 1000 pounds per square inch there
was a compression of 0.0230 inch in a gauged length of 50 inches. Find E..

4. A white-oak stick 11.98 inches by 9.95 inches tested in compression
(1896, page 425) was shortened 0.0140 inch in a gauged length of 50 inches
when the load was increased from 11,920 pounds to 71,520 pounds. Find E.

5. A block of the same oak used in Problem 4 was tested in compression
across the grain. When the unit stress changed from 20 pounds per square
inch to 320 pounds per square inch the compression in a gauged length of
6 inches was 0.0091 inch. Find the modulus of elasticity of oak across the
grain. Ans. 198,000 pounds per square inch.

6. Two blocks of Douglas fir were tested in compression across the grain.
In the first block the compression was normal to the growth rings, and the
compression in a gauged length of 6 inches when the unit load changed from
20 pounds to 300 pounds was 0.0081 inch. In the second block the compres-
sion was tangent to the growth rings, and the compression in 6 inches with
the same change of load was 0.0195 inch. Find E for each case. (‘‘Tests of
Metals,” 1896, pages 396-7.)

7. A steel column 100 feet long and of uniform cross section stands in a
yertical position. If the modulus of elasticity is 30,000,000, how much is it
shortened by its own weight? Solve by Calculus and check by average force.

Ans. 0.0068 inch.
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8. A round steel rod tapers gradually from 2 inches diameter to 1 inch
diameter in a length of 10 inches. If E is 30,000,000, and if we assume that
the unit stress in any transverse section is uniform throughout the section,
caleulate by means of Integral Calculus the elongation in this 10-inch length
due to a pull of 20,000 pounds. Ans. 0.00424 inch.

9. A plate of uniform thickness ¢ has a breadth b at one end of a given
length [ and a breadth ¢ at the other end. Find the expression for the elonga-

: . Pl
tion of this length I due to a pull P. Ans. e =b)

10. In Problem 9, E is 30,000,000; P, 40,000 pounds; ¢ is 1 inch; b is 2 inches;
¢ is 3 inches; I is 12 inches. Find elongation and check approximately by
comparing with a bar of uniform breadth 2.5 inches.

The ratio of unit stress which is equal in all directions to the unit volume
deformation which it causes is called the modulus of volume elasticity. A solid
submerged in a liquid is under stress of this kind.

If Poisson’s ratio is known, the modulus of volume elasticity may be com-
puted from the modulus in tension or compression. When a solid is subjected
to a stress in all directions, the unit deformation in any direction is the sum
of the deformation in that direction due to the force in the same direction plus
the deformation due to the force in each of the other principal directions. If
3 is the deformation along the X axis due to a force in the direction of that
axis, an equal force along the Y axis produces a deformation pd, and a simi-
lar force along the Z axis has the same effect. When the force is compressive
and equal in all directions, the unit deformation along any axis — § -+ pé + pé =
—3(1 —2p). A unit cube has each dimension changed from unity to
1 —58(1 —2p). The volume of this cube becomes

V=[1-860-2p)P=1—-351—2p), ete.
The increment of volume is — 36 (1 — 2 p).

If E is the modulus of elasticity in tension or compression when the force
is applied along only one direction,

logg-

where s is the unit pressure.
The increment of volume, or unit volume deformation (since the original
volume was unity), becomes

3
F 1 —20).
Dividing the unit stress by the unit volume deformation,
E
W e
where E, is the modulus of volume elasticity.
If Poisson’s ratio isl, E,= ﬂ«j_
4 3
PROBLEMS.
11. Find the modulus of volume elasticity for steel for which E = 29,000,000
and Poisson’s ratio is 0.27. Ans. 21,000,000 nearly.

12. If the modulus of volume elasticity is 18,000,000 and the modulus in
compression is 25,000,000, find Poisson’s ratio.



CHAPTER 1II.
STRESS BEYOND THE ELASTIC LIMIT.

15. Stress-strain Diagrams. — In the preceding chapter we
have considered only stresses below the elastic limit. Within
this limit the unit stress is proportional to the unit deformation
and Formula I holds good. Stresses below the elastic limit are
the most important from the standpoint of the engineer, for in
well-designed structures the unit stress seldom exceeds one-half
this limit. It is desirable, however, to know what takes place
above the elastic limit and the character of the final failure of
the material. To secure this information, tests are made in
which a series of loads are applied to a piece of the material in
question, and the corresponding deformations are observed with
suitable measuring apparatus. Table I gives a part * of the re-
sults of a tension test of a rod of ¥ machine steel. The rod was
originally 20 inches long and turned to a diameter of 1.31 inches.
About 9 inches of the rod at the middle was turned down further
to a diameter of 1.115inches. A length of 8 inches in this middle
portion was taken as the gauged length from which to measure
elongations. The rod I on the right in Fig. 6 (photographed -
from a rod exactly like the one tested) shows the original form
of this test piece. The elongations in this gauged length were
measured by an extensometer reading to 0.0001 inch (see John-
son’s “ Materials of Construction,” Fig. 271). As there are two
micrometers in this extensometer, we are warranted in giving
the gauge readings to 0.5 of a division. When the load reached
78,000 pounds per square inch, the extensometer was removed
and the elongations taken with an ordinary steel scale reading
in hundredths of an inch. After fracture the rod was taken from

* Readings were taken at 2000-pound intervals from 56,000 to 76,000
pounds per square inch, and were used in locating the curve of Fig. 6. Read-
ings were also taken at 2000-pound intervals between 30,000 and 40,000
pounds per square inch, as it was suspected that the yield point might fall
between these limits.

t An analysis of this steel, made by Prof. D. J. Demorest, gave: carbon,
0.42 of 1 per cent; manganese, 0.71 of 1 per cent. The rod was turned from
a bar of hot-rolled steel.

15
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the machine, the two portions placed together as shown in Fig. 6,
II, and- the final elongation of 1.99 inches measured. Loads were
applied and measured by means of a 100,000-pound Olsen testing
machine (see Johnson’s “Materials of Construction,” Fig. 256).
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Fig. 6.— Steel Rod Tested in Tension.

In order to present the results of such a test visually, it is con-
venient to use the unit stress and the unit elongation as the co-
ordinates in a curve called the stress-strain * diagram, or simply
stress diagram.

* This is using the word “strain” in its correct sense as a synonym for
deformation. A permanent deformation or set is frequently designated as a
strain, The term “strain” is frequently heard where stress is meant. This
incorrect use of the word should be avoided.
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TABLE 1.
TENSION TEST OF MACHINE STEEL.
Diameter, 1.115 inches; area of section, 0.976 square inch; gauged length,

8 inches.
Applied load. ' Elongation.

Total. Per square inch. In gauged length. Per inch length.

Pounds. Pounds. Inch. Inch.
0 0 0 0

2,928 3,000 .00085 .00011

4,880 L 5,000 .00145 .00018

9,760 10,000 .00260 .00033
14,640 15,000 -00410 .00051
19,520 20,000 .00535 .00067
24,400 25,000 .00665 .00083
29,980 30,000 .00795 .00099
34,160 35,000 -00920 -00115
39,040 40,000 .01075 .00134
40,992 42,000 .0114 .00142
42,944 44,000 .0144 .00180
44 896 46,000 .0356 .00445
44 000 45,080 .0734 .00917
44,500 45,504 .0965 .01206
45,000 46,100 .0973 .01216
45,872 47,000 .0981 .01226
46,848 48,000 .0991 - .01239
47,824 49,000 .1013 .01266
48,800 50,000 1163 .01454
50,752 52,000 .1273 .01589
52,704 54,000 .1381 .01726
54,656 56,000 .1552 .01940
64,416 66,000 .2601 (1)* .03250
74,176 76,000 .4244 (2) .05530
76,128 - 78,000 .50 (by .0625
78,080 80,000 .59 scale) .074
79,056 81,000 .70 .0875
80,032 82,000 .76 .095
81,008 83,000 .85 - 106
81,984 84,000 .99 124
83,000 85,040 1.24 -155
83,200 85,240 1.50 .187
82,000 84,100 1.64 (3) .205
80,000 82,000 1.85 (4) .231
72,000 73,800 (broke)|  1.99 (5) .247

* (1) Diameter, 1.097 inches. (2) Diameter, 1.083 inches.
(3) Begins to * neck.” (4) Diameter of neck, 0.904 inch.

(5) Elongation measured after fracture. Diameter of neck, 0.821 inch.
Steel, hot rolled; carbon, 0.42 per cent.
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In America, the unit stress in pounds per square inch is used
as ordinate, and the unit deformation is taken as abscissa. In
England, some writers use unit stress as abscissa and unit defor-
mation as ordinate.

Fig. 7 is the stress-strain diagram plotted from Table I. One
division on the horizontal scale represents a unit elongation of
0.01, and one division on the vertical scale represents a unit stress
of 5000 pounds per square inch.

Fig. 8 is a part of the stress-strain diagram from the same table
plotted on an enlarged scale; one division on the horizontal repre-

o
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Fig. 7. — Stress-strain Diagram of Machine Steel.

sents a unit elongation of 0.0002 inch per inch of length (one-fif-
tieth as much as in Fig. 7); one division on the vertical represents
a unit stress of 2500 pounds per square inch (one-half as much
as in Fig. 7).

16. Elastic Limit, and Yield Point. — The point B in Flgs 7
and 8 represents the true elastic limet.  Up to that point the curve
is a straight line. In other words, the unit stress is proportional
to the unit deformation below this point. Above B, the curve
deviates from the straight line. Up to a unit stress of 42,000
pounds per square inch this deviation is slight, and it is difficult
to locate the point B exactly. From 42,000 to 44,000 pounds
the change is more rapid. This may be seen from Table I.
Below 35,000 pounds per square inch the inerease in the total
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elongation for an increment of 5000 pounds in the unit stress
is about 13 divisions. Between 35,000 and 40,000 pounds unit
stress the stretch is 15.5 divisions. Between 40,000 and 42,000
the rate is slightly greater. Between 42,000 and 44,000 pounds
the increase amounts to 30 divisions, the rate being over five
times that below the true elastic limit.

At C, at a unit stress of 46,000 pounds per square inch, the
curve becomes horizontal. This is the yield poinf. Beyond the
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Fig. 8. — Part of Diagram for Machine Steel.

yield point the curve drops to a unit stress of about 45,000 pounds
per square inch. Not only is there an increase of length with no
increase of stress, but there is a considerable elongation with a
diminished stress. In changing down to 45,000 pounds and back
again to 45,500 pounds, the increase in length is nearly twice
as great as the entire elongation up to the yield point, and five
times as great as the elongation from zero load to a stress of
42,000 pounds per square inch. At the yield point, steel and
wrought iron stretch like taffy, though the force required is
probably one hundred thousand times as great.
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As the stress-strain diagram deviates slowly from a straight
line at first, it is difficult to locate the true elastic limit. On the
other hand, the stress at the yield point may be easily determined
in rapid commercial tests and without delicate apparatus for
measuring the elongations. If we consider Table I, we find that
the total elongation in the gauged length of 8 inches is about
one-seventieth of an inch at a unit stress of 44,000 pounds, and
rises to more than one-thirtieth of an inch at a unit stress of
46,000 pounds. This increase in length may easily be measured
with an ordinary scale, so that the yield point may be determined
within one or two thousand pounds without the use of any
extensometer whatever. Again, just beyond the yield point
the elongation is increased with a diminished load. This may
easily be determined in rapid commercial tests in which the test-
ing machine is kept running continuously. Before reaching the
yield point, the poise on the beam of the weighing apparatus
must be continually moved out to preserve a balance, showing
that the stress is increasing with the elongation. At the yield
point the ¢ beam drops”” while the elongation increases, and the
poise must be moved backward to secure a balance. In iron or
steel which has not been turned or polished, and is therefore
covered with a coat of oxide, the yield point may be determined
by this oxide breaking loose and falling. We sometimes see a
portion of a rod reach the yield point before the remainder; the
oxide falls from this portion, while the other parts of the bar are
unchanged till the stress becomes a little greater. The curve
in such a rod will show several steps or bends beyond the first
yield point, corresponding to the yield points of the various
portions.

Owing to the fact that the yield point may be determined
so easily, by methods which were in use before delicate exten-
someters were available, the term “ elastic limit’’ is commonly
applied to what is really the yield point. When the term “ elas-
tic limit ”’ is used in specifications, yield point is frequently meant.
The point B, where the curve deviates from the straight line,
is distinguished by some writers as the true elastic limit. Since
the deformation is proportional to the unit stress for values
below this point, it is also called the proportional elastic limat.*

* See Chapter XIX for effect of time on the form of the stress-strain dia-
gram of steel.
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17. Johnson’s Apparent Elastic Limit. — Since it is somewhat
difficult to determine the true elastic limit accurately, especially
in hard steel, where there is a wide range between this point and
the yield point, and in materials (such as cast iron) which have no
yield point, the late Prof. J. B. Johnson proposed another point
which he called the ‘“ apparent elastic limit.”’* He defined the
apparent elastic limit as “the point on the stress diagram at
which the rate of deformation is 50 per cent greater than at the
origin.”’ It is that point on the curve at which the slope of the
tangent from the vertical is 50 per cent greater than that of
the straight-line part of the curve.

This term has not yet come into general use among engineers.
In some investigations of the strength of materials, it has been
found useful in comparing the results of different tests.t

18. Calculation of the Modulus of Elasticity. — The stress-
strain diagram, when plotted to a sufficiently large scale, en-
ables us to calculate quickly the average value of the modulus
of elasticity. If the straight line passes through the origin, we
merely find the value of stress which corresponds to some con-
venient unit elongation such as 0.001 or 0.0005. If the straight
line does not pass through the origin, we get the difference of
stress for some convenient difference of elongation. In either
case, to get the modulus, we divide the difference in stress by
the corresponding difference in elongation.

PROBLEMS.

1. From the curve of Fig. 8 find the unit stress which corresponds to the
unit elongation 0.001, and calculate E to three significant figures.

2. From Fig. 8 find the unit elongation which corresponds to the unit
stress of 25,000 pounds, and compute E to three significant figures.

3. From the data of Table I plot the stress-strain diagram up to the unit
stress of 42,000 pounds per square inch to the scales 1 inch equals a unit stress
of 5000 pounds per square inch and a unit elongation of 0.0002 inch per inch
of length. Use paper ruled in 0.1 inch units. Draw the curve as a light line
and solve Problems 1 and 2.

It is, of course, not necessary to plot the stress diagram in
order to solve for E. The diagram enables us to compute a
good average value with a single calculation. It also enables

* See Johnson’s “‘ Materials of Construction,” pages 18-20.
t See work of H. F. Moore in Bulletin No. 42 of the University of Illinois
Engineering Experiment Station, page 14.
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us to judge of the accuracy of the test by observing how closely
the points fall on the straight line. In an autographic testing
machine, where the curve is automatically drawn as the piece
is tested, it is important to be able to determine the modulus
from the curve.

Where the readings are available, as in Table I, these may be
used in determining E. If all the readings were exactly correct,
so that all would fall exactly on the straight line when plotted
to any scale, any one such reading would give a correct result.
Since there is some probable error in balancing the scales and
setting the extensometers, there will be some variation in the
values of E taken from the different intervals. The relative
accuracy is practically proportional to the interval.” The value
of E from a 20,000-pound interval should be given twice the
weight which is given to the result of a 10,000-pound interval.

Of course, all readings for calculating E must be taken below
the true elastic limit. If the curve is not plotted, this may
be determined by observing the point where the increment of
elongation corresponding to a given increment of stress per-
manently increases. As shown in Article 16, this is between
35,000 and 40,000 pounds per square inch for the steel of
Table 1.

PROBLEMS.

4. From Table I calculate E, using the intervals 0-25,000 and 0-30,000
pounds and the exact unit elongation calculated from the total elongation.
What relative weights may be given to the two results in averaging them?

Ans. Relative weight, 5 : 6. Mean E, 30,140,000.

5. Calculate E for three intervals of 25,000 pounds per square inch; from
0 to 25,000, from 5000 to 30,000, and from 10,000 to 35,000. Average the
results. Ans. Mean E, 30,350,000.

6. Calculate the weighted mean for all the readings without computing
the separate values of E, by adding together all the micrometer readings and
all the stresses and using the totals as the unit stress and the total elongations
respectively. Ans. E equals 29,990,000.

7. If you are using the interval of 30,000 pounds, what error in E would
an error of one division in the extensometer reading produce? What would
be the error in E due to an error of 10 pounds in the total load?

19. Ultimate Strength and Breaking Strength. — The point F
at the top of the curve of Fig. 7, fepresenting a unit stress of a
little more than 85,000 pounds per square inch, gives the wulti-
mate strength of the steel under test. The rod at this stress was
elongated 1.5 inches in the gauged length of 8 inches, and the diam-
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eter was practically uniform throughout this length. Beyond this
elongation, the rod began to ““neck ”’; its diameter decreasing
rapidly at one section, while the remainder was not changed.
When the load had dropped to about 82,000 pounds per square
inch, the minimum diameter at the neck was 0.904 inch, while
that of most of the gauged length was a little over 1 inch. It
finally broke at a total load of 72,000 pounds, which, in terms
of the original area, corresponds to a unit stress of 73,800 pounds
per square inch. This is the breaking strength, the point G of
Fig. 7.

Most materials, such as wood, cast iron, concrete, and hard
steel, do not neck; the ultimate strength corresponds Wlth the
breaklng strength.

20. Per cent of Elongation and of Reduction of Area. — The
per cent of elongation in ductile materials, such as wrought iron
and steel, is an important factor. (See Cambria for the minimum
values in the Manufacturers’ Standard Specifications. See also
latest Proceedings of the American Society for Testing Materials.)
In tension tests the gauged length of 8 inches is subdivided into
inch intervals by punch marks, Fig. 6, I. If we observe the
tested rod, Fig. 6, II, we notice a considerable variation in the
distance between points which were originally one inch apart.
Measurements of the rod are as follows:

Interval. Elongation.

(O I far s B R Aot £ B e VR 0.17 1nch
81 « :
.54 ““ inclided neck..
AT

e e v L A 7 o«
7AR T R Nte s i = P 505 7 o«

If we use only the interval 3—4, which included the neck, we get
an elongation of 54 per cent. If we take the 4-inch interval 0-4,
we get 30.2 per cent. 'In order to make the results of differ-
ent tests comparable with one another, the Society for Testing
Materials has adopted 8 inches as the standard gauged length
for rods 4 inch and upwards. (See Manufacturers’ Specifications,
Article 12, in Cambria.)

The per cent of reduction of area at the neck is also of inter-
est. In the rod of Table I, the original diameter was 1.115 inches
and the final diameter was 0.821 inch. The final area of the neck
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was 54.2 per cent of the original area. The reduction was 45.8
per cent. '

Table I is for steel containing 0.42 per cent carbon. For
structural steel, compare the annealed rod of Table V.

PROBLEMS.

1. From the above measurements find the per cent of elongation for the
four intervals 4-8, which do not include the neck. Iind also the per cent of
elongation for the entire gauged length.

2. A rod of soft steel, originally 0.874 inch in diameter, was tested in ten-
sion. After fracture under a load of 28,000 pounds, the diameter of the neck
was found to be 0.570 inch. What was the per cent of reduction of area?
What was the breaking strength?

Ans. 57.5 per cent; 46,700 pounds per square inch.

3. In Problem 2, the maximum load was 36,000 pounds. Find the ultimate
strength.

21. Apparent and Actual Unit Stress. — The unit stresses in
Table I were calculated by dividing the total load by the origi-
nal area of cross section. This is the usual custom, and, unless
otherwise stated, all tables and curves are given in this way.
Owing to the fact that the area of cross section is permanently
reduced when the yield point is reached, the actual unit stress
is different. At the time of rupture of Table I, the total load
was 72,000 pounds and the apparent unit stress was 73,800 pounds
per square inch. The actual diameter of the neck at fracture
was 0.821 inch, which gives an actual unit stress of 136,000 pounds
per square inch. The curve of Fig. 7 falls from F to G. The
actual stress increases for all loads except at the yield point.

‘PROBLEMS.

1. Calculate from Table I the actual unit stress when the total elongation
was 1.85 inches.

2. Calculate the actual unit stress when the apparent unit stress was 76,000
pounds per square inch.

To get the actual unit stress after the rod begins to neck, we
must measure the diameter of the smallest section at each load.
Before necking begins, the mean area of the cross section may
be computed from the fact that the volume and density remain
nearly constant. Accordingly, the area of cross section is in-
versely as the length, and the ratio of actual to apparent unit
stress is directly as the length. If A is the original cross section
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and A’ the actual area corresponding to a given unit elongation, 8,
A=A'(1+36) and
Actual stress = apparent stress multiplied by (1 4 8).

PROBLEMS.

3. Calculate the diameters corresponding to unit stresses of 66,000 and
76,000 and compare results with Table I.

4. Compute the actual unit stress for Table I for all apparent stresses above
45,000 pounds per square inch, and plot curve with coordinates as follows:
One inch equals a unit deformation of 5 per cent and a unit stress of 20,000
pounds per square inch.

The student may notice an apparent discrepancy between the statements
above and those of Article 14. Poisson’s ratio and the discussion of Article 14
apply only to stresses and deformations inside the elastic limits, where all
deformations are femporary and relatively very small. The discussion above
refers to the permanent changes beyond the elastic limit. The temporary
deformations, to which Poisson’s ratio applies, are, of course, superimposed
on these permanent deformations; but they are relatively so small that they
can only be measured with delicate instruments. In the test of Table I the
unit deformation at the elastic limit was a little over 0.001; and the corre-
sponding decrease in diameter calculated by Poisson’s ratio was about 0.0003
inch.

The density does not remain exactly constant, but the differences are beyond
the limits of accuracy of the elongation measurements.

22. Curves of Various Structural Materials. — The curves of
Figs. 7 and 8 give a fair average idea of the behavior of machine
steel in tension. Structural steel, with a smaller per cent of car-
bon, has a yield point of a little over 30,000 pounds per square
inch and an ultimate strength of about 60,000 pounds per square
inch. Its modulus of elasticity is about 29,000,000. Tool steel
has a yield point above 50,000 pounds and an ultimate strength of
over 100,000 pounds. The heat and mechanical treatment have
a great effect upon these factors but very little effect upon the
modulus of elasticity.

Table II and curve II of Fig. 9 represent the behavior of ‘cast
iron in tension. The table is the mean of the tests of six bars
from the same heat. The figures represent what may be expected
in good cast iron.

Table II is from the average of six tests, specimens 8014,
8041, 8050, 8051, 8053, and 8063, at the Watertown Arsenal
(“ Tests of Metals,” 1905).

The average ultimate load was 26,450 pounds per square inch.
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The actual initial load was 1000 pounds. The table is calculated
on the assumption that the elongation from 0 to 1000 is the
same as from 1000 to 2000.

The curve for this cast iron is plotted to the same scale as -
Fig. 8, and a part of the curve of steel from Fig. 8 is drawn for
comparison. The dotted line shows approximately the initial
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UNIT DEFORMATIONS
Fig. 9.

slope of the cast-iron stress diagram. The curve begins to bend
almost at the start, and it is difficult to locate the true elastic-
limit. There is no yield point, and the material breaks with-
out necking.

PROBLEMS.

1. From the dotted line of curve II, Fig. 9, calculate the modulus of elas-
ticity of cast iron. Check result by means of the readings of Table II.

2. From the curve of Fig. 9 find Johnson’s apparent elastic limit and com-
pare the result with the table. Also construct a curve for which the abscissas
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are unit stress, and ordinates are the differences between successive unit defor-
mations and 56, and determine the apparent elastic limit from the abscissa
of the point for which the ordinate is 28.

3. From Tables I and II determine the ratio of the elongation of steel at
rupture to that of cast iron.

4. If we take 2000 pounds as the true elastic limit of cast iron in tension,
what is its modulus of resilience?

TABLE II.
TENSION TEST OF CAST IRON.

Diameter, 1.129 inches; area, 1 square inch; gauged length, 10 inches.

Elongation.
Load per square inch.
In gauged length. Per inch length.

Pounds. Inch. Inch.
1,000 0.00056 0.000056
2,000 .00112 .000112
3,000 .00171 .000171
4,000 .00236 .000236
5,000 .00303 .000303
6,000 .00374 .000374
7,000 .00446 .000446
8,000 .00526 .000526
9,000 .00606 .000606
10,000 .00691 .000691
11,000 .00779 .000779
12,000 .00871 .000871
13,000 .00968 .000968
14,000 .01061 . .001061
15,000 .01174 .001174
16,000 .01283 .001283
17,000 .01404 .001404
18,000 .01544 .001544
19,000 .01689 .001689
20,000 .01851 .001851
21,000 .02003 .002003
22,000 .02182 .002182
23,000 .02420 .002420
24,000 .02626 .002626

Table III, and curve IIT of Fig. 9, represent the behavior of
Jong-leaf yellow pine in compression. Like steel, the curve for
timber is a straight line for a considerable portion of its length.
In other respects it resembles the curve for cast iron. The post
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1

represented by Table III failed outside of the gauged portion;
the ultimate elongation is, therefore, less than it would be if the
failure had occurred inside of this length.

TABLE III.
COMPRESSION TEST OF LONG-LEAF YELLOW PINE.

From Watertown Arsenal Report, 1897, page 420.
Length of post, 10 feet. Dimensions, 9.75 inches by 9.77 inches.
Area, 95.26 square inches. Gauged length, 50 inches.

Applied load. Deformation. ]
Total, U:g&;g?izﬁf” In gauged length. Unit per inch length.
Pounds. Pounds. Inch. Inch.
9,626 100 0.0021 0.000042
19,052 200 .0044 .000088
28,578 300 .0067 .000134
38,104 400 .0091 .000182
47,630 500 .0116 .000232
57,156 600 .0141 .000282
66,682 700 .0165 .000330
76,208 800 .0191 .000382
85,734 900 .0215 .000430
95,260 1000 .0240 .000480
114,312 1200 .0290 .000580
133,364 1400 .0340 .000680
152,416 1600 .0389 .000778
171,468 1800 .0443 .000886
190,520 2000 .0495 .000990
209,572 2200 .0546 .001092
228,624 2400 .0601 .001202
247,676 2600 .0652 .001304
266,728 2800 .0705 .001410
285,780 3000 .0758 .001516
304,832 3200 .0811 .001622
323,884 3400 .0869 .001738
342,936 3600 .0932 .001864
361,988 3800 .1005 .002010
381,040 4000 .1077 .002154
400,092 4200 .1084 .002168
416,000 4367 Ultimate strength

Failed by crushing at end.

PROBLEMS.

5. Find E of yellow pine from the dotted prolongation of curve III, and
also from "Table III.
6. Ina post similar to that of Table III an increment of load amounting to
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500 pounds per square inch produced a deformation of 0.0146 inch in a gauged
length of 50 inches. Find E.

7. An old post of long-leaf yellow pine, tested at the Watertown Arsenal,
was 9.43 inches by 9.35 inches, and was chamfered % inch at each corner.
Using the area to the nearest square inch, find the ultimate strength, the ulti-

mate load being 528,400 pounds.

TABLE IV.
COMPRESSION TEST OF1:2} :6 CONCRETE; AGE, 90 DAYS.

Ans. 1,710,000.

Diameter of test cylinder, 8 inches; area, 50 sqhare inches.
Total length, 16 inches; gauged length, 10 inches.

Applied load. Deformation.
Total. . Per square inch. In gauged length. Per inch length.
Pounds. Pounds. Inch. Inch.
2,000 40 0.00013 0.000013
4,000 80 .00026 .000026
6,000 120 .00038 000038
8,000 160 .00052 .000052
10,000 200 .00068 .000068
12,000 240 .00081 .000081
14,000 280 .00099 .000099
16,000 320 .00113 .000113
18,000 360 .00136 .000136
20,000 400 .00158 .000158
22,000 440 .00180 .000180
24,000 480 .00206 .000206
26,000 520 .00232 .000232
28,000 560 .00260 .000260
30,000 600 .00295 .000295
32,000 640 .00327 .000327
34,000 680 .00377 .000377
36,000 720 .00421 .000421
38,000 760 .00473 .000473
40,000 800 .00535 .000535
42,000 840 .00609 .000609
44,000 880 .00692 .000692
46,000 920 .00796 .000796
48,000 960 .00922 .000922
50,000 1000 .01058 .001058
52,000 1080 .01177 .001177
54,000 1080 .01323 .001323
56,000 1120 01575 .001575
58,000 1160 .01847 .001847
60,000 1200 Failed

Fig. 10>gives some comparative curves for timber and con-
crete. Curve I is the long-leaf yellow pine of Table III.

The
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unit deformations are represented on a scale twice as great as in
Fig. 9, and the unit stresses, by a scale ten times as great. Curve
II of Fig. 10 is the stress diagram for a sample of 1:2.5: 6 concrete
in compression, the readings for which are given in Table IV.
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Fig. 10.
PROBLEMS.

8. Calculate the modulus of elasticity of concrete from the dotted pro-
longation of the curve in Fig. 10.

9. From the area included between the curve for timber in Fig. 10, the
X axis, and the ordinate corresponding to a unit elongation 0.001, compute
the work done per unit volume in producing this elongation.

23. Factor of Safety. — In Article 6, the allowable unit stress
was defined as depending upon the judgment of some authority.
These judgments are based on tests of materials such as those
of Tables I to IV.

Working stresses should never exceed the true elastic limit.
They are generally based on the ultimate strength of the material.
The ratio of the ultimate strength of a given material to the
allowable working stress is called the factor of safety.

- PROBLEMS.

1. If the steel of Table I is used with a factor of safety of 5, what is the
allowable unit stress?
2. If cast iron such as that of Table II is used with a factor of safety of
10 in tension, what is the allowable unit stress?
Ans. 2500 pounds per square inch.
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3. A concrete pier 16 inches square carries a load of 75,000 pounds. Using
Table IV, find the factor of safety. Ans. 4.
4. A steel structure is designed in accordance with the New York building
laws. The steel used satisfies the minimum requirements of the Manufac-
turers’ Standard Specifications for steel for bridges. What is the factor of
safety? Ans. 3.5.

The value of the factor of safety which should be used depends
upon a great number of conditions. Some of these are:

Repeated stresses slightly beyond the true elastic limit will
finally cause failure, so that a body subjected to varying load
should have its allowable stresses well below this limit. The
greater the variation of stress, the smaller should be the allow-
able unit stress.

The factor of safety must be large enough to allow for any
deterioration of the material from any cause during the time
which it is to be used. This includes the decay of timber, the
rusting of metal, the effect of frost and electrolysis.

In deciding what factor of safety to use, the uniformity of the
material must be taken into account. Structural steel which
has an ultimate strength of 65,000 pounds per square inch on
an average will seldom vary 5000 pounds on either side of this
figure; while the variation of timber sufficiently good to pass a
reasonable inspection may be 50 per cent of the average ulti-
mate strength. An engineer, in designing a concrete structure
which he knows will be built under competent supervision, will
use much higher unit stresses than he will risk where such inspec-
tion is wanting.

The factor of safety must also depend upon the amount of
injury which would occur if the material failed. We would
use a plank in a scaffold 3 feet high with a much lower factor
of safety than we would consider if failure meant a fall of 100
feet.

The factor of safety must allow some margin for unexpected
loads. Cases have occurred where a wagon bridge has failed
when used as a grand stand to watch a boat race or fireworks.
That part of the factor of safety which makes allowance for lack
of ordinary judgment in persons using the machine or struc-
ture is ecalled the “ fool factor.”
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PROBLEM.

5. Taking the figures of the United States Department of Agriculture as
correct, find the factor of safety of white oak and long-leaf yellow pine in com-
pression, with the grain and across the grain, when used in accordance with the
New York building laws.

24. Effect of Form on the Ultimate Strength.— We have
assumed in our discussions that the stress across any section is
uniform. This is true in a rod of uniform section at some dis-
tance from the surface of application of the load, provided that
the line of resultant force coincides with the axis of the rod.

Test bars are made of uniform section throughout, or of
uniform section for some distance beyond the extremities of the

Fig. 11. — Stress Distribution in Test Fig. 12. — Abrupt Change of
Bar. Section.

gauged length. (See Fig. 6, and also the form of test bar adopted
by the Society for Testing Materials, as given in Cambria, under
Manufacturers’ Standard Specifications, or in the Proceedings
of the Society.) Fig. 11 represents one end of such a bar. The
stress which may be uniformly distributed across a section at A
is unequally distributed at sections B and C, and becomes uniform
and parallel to the axis at D. If the gauged length began at C
at the beginning of the parallel portion, the measured elongation
would be too high, owing to the fact that the stress is greater
than the average near the surface. This effect would be increased
if the change in section were abrupt as in Fig. 12.

The ultimate strength of a rod at such a change of section
depends upon its ductility. If rods as in Fig. 12 are made
of cast iron or other nonductile material, they will fail at section
C owing to the concentration of stress near the surface. The
more abrupt the change the greater the concentration and the
easier the failure. If the rod is of ductile material, such as struc-
tural steel, the strength at C will be tncreased by the material of
the larger section to the left. A ductile substance necks before
it fails. The material of the larger section tends to prevent
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necking in the smaller sections at a considerable distance to the
right of C.

A rod of ductile material with a short reduced area, such as I
and II, Fig. 13, will show a considerably higher ultimate strength
than a rod in which the minimum section is longer, as in III,
Fig. 13.

It is not necessary to make test bars of the form shown in
Fig. 6; any bar of uniform section will do, and many tests are
made of such bars as they come from the rolls. There is this
advantage in the standard form shown in Fig. 6, — that it will
fail inside the gauged length on account of the resistance to neck-
ing for some distance from the larger section. A bar of uni-
form section may fail outside of the gauged length.

]
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Fig. 13. — Reduced Sections.

It is hardly necessary to state that all changes in section should
be gradual. The standard form of bar, as adopted by the Society
for Testing Materials, changes from large to small section on the
arc of a circle tangent to the surface of the smaller section. It is
easier to make a taper from one size to the other, and the results
are practically as good.

25. Effect of Stresses beyond the Yield Point. — In materials
which are not ductile, any stress beyond the elastic limit produces
a permanent injury. In ductile materials, especially ‘soft iron
and steel, this is not the case. If a rod of steel or iron, originally
hot-rolled, is stressed beyond the yield point, the result is a rais-
ing of the yield point. If a rod having a yield point of 35,000
pounds is carried up to 50,000 pounds, producing a large per-
manent set, upon testing the second time the yield point will be
found to be about 50,000 pounds. When a high elastic limit
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and yield point are desired, soft steel is subjected to cold-rolling.
The effect of this is to raise the yield point to nearly the ultimate
strength of the steel. The ultimate strength is also raised con-
siderably in terms of the original cold-rolled section. Cold-draw-
ing as employed in the manufacture of wire has a similar effect.

Fig. 14. — Soft Steel in Tension; Left, Cold-Rolled; Right, Annealed.

Fig. 14 and Table V show the effect of cold-rolling. In Fig. 14
the middle rod is a piece of nominal Z-inch cold-rolled shafting.
The left rod is an exactly similar one after testing in tension. Its
ultimate strength was over 86,000 pounds per square inch and
its elongation practically 10 per cent. On the right is a third
rod, originally like the others, which was annealed by heating to
redness and cooling slowly to destroy the effect of the previous
cold-rolling. When tested in tension its ultimate strength was
found to be 60,000 pounds per square inch and its elongation
22 per cent.
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Diameter of rods, 0.874 inch; area, 0.600 square inch; gauged length, 8 inches.

Total load in pounds.

Unit elongation.

Cold-rolled rod. Annealed rod.
inch inch
3,000 0.000163 0.000175
6,000 .000356 .000356
9,000 .000512 000525
12,000 .000681 .000712
15,000 .000861 .000894
18,000 00102 .00106
21,000 00118 .00122
N i (R L -00177
29I800_ SR IR S .00217
22: 200 gp i ¥ Ty ol SN .00231
22, SO0 Gy |35, VM0 e .00245
2304000 < mIFT(Ls S (res 1T .00480
24,000 00132 .00750
,000 00150 1034
30,000 00166 -050
33,000 00184 .081
36,000 00202 .164
S5 2008 SREE [ e .189
3300035 By | wp it 28 o8 .201
i e R 219
39,000 00223
42,000 00264
45,000 00326
48,000 00570
49,500 00739
47,000 00775
49,000 .01045
49,500 01502
50,000 01895
51,000 02970
51,900 054
51,100 .067
48,000 .079
45,000 .085
39,000 .099

Diameter of neck at fracture was 0.640 inch in cold-rolled rod and 0.570
inch in annealed rod. Analysis: carbon, 0.113 per cent; manganese, 0.495

per cent.






CHAPTER III.
SHEAR.

26. Shear and Shearing Stress. — We have learned that when
a body is subjected to a pair of forces in the same line, tensile
stress is produced, if the forces are directed away from each other,
and compressive stress, if they are directed towards each other.

If the forces are in parallel lines or planes, shearing and bending
stresses are produced in the portion of the body between the
planes of the forces. In Fig. 15, the block A is securely held by
the body B and a horizontal force P is applied by a second body
C. This force P is parallel to the upper surface of B. The body
B exerts a horizontal force on the block which is equal and oppo-
site to the force in C. If we consider that portion of the block A
between the plane of the upper surface of B and the plane EFG
of the lower surface of C, we find that
it is subjected to a pair of equal and ,{\ a!
opposite forces. The material of this IR
portion of the block is subjected to
shearing and bending stresses. The
shearing stresses depend upon the mag-
nitude of the forces and the area of
the section of A. The bending stresses
depend upon these and also upon the
distance of the forces apart. If the body -
C is brought very close to B, so that the distance between the
two forces P and P’ becomes negligible, the unit bending stress
becomes small, while the unit shearing stress is unchanged. The
average unit shearing stress is calculated by dividing the force P
by the area of the cross section EFG or the area of any section
parallel to it. We notice that in tension or compression we
divide the total force by the area of the cross section perpendicular
to its direction to get the unit stress; while in shear we divide the
total force by the area of the cross section parallel to the forces
and perpendicular to the plane which includes the two sets of
forces.

A

8 [’

Fig. 15. — Shear and Bend-
ing.

37
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In this, as in all other cases, the line P in the drawing represents
the resultant of a set of forces distributed over an area. The
resultant P’ must fall some distance below the upper surface of
B, and the resultant P must be above the lower surface of C. It
is, therefore, not convenient by this method to get shearing stress
entirely free from bending or compressive stress. We will find
later that the distribution of shearing stress, when combined with
bending, is not uniform over the section; but for the present we
shall take no account of this variation, and shall calculate the
average shearing stress by dividing force by area.

PROBLEMS.

1. A l-inch round rod projects horizontally from a wall. A ring hung on

the rod supports a load of 5000 pounds. Find the average unit shearing stress.

Ans. 6366 pounds per square inch.

2. A bar 1 inch wide and % inch thick rests upon two supports and carries

a load of 400 pounds midway between them. Find the mean unit shearing
stress.

3. A 4-inch by 4-inch wooden block has a notch 2 inches deep cut in one

side, the edge of the notch being 6 inches from one end of the block. A pull

of 1800 pounds parallel to its length is applied

| by means of a second block set in the notch.

x Find the unit shearing stress.

\ . Ans. 75 pounds per square inch.
4\ 4. If, in Problem 3, the grain is parallel to

the length, what is the greatest allowable pull for

an oak block? . Ans. 4800 pounds.
5. Solve Problem 4 for long-leaf yellow pine
B8 and for hemlock. State your authority for
AN
3

allowable unit stresses.

6. A 2-inch by 4-inch long-leaf yellow-pine
block, hung vertical and supported at the upper
<—22 > end, has a hole 1 inch square perpendicular to
the 4-inch face. The lower edge of this hole is
4} inches from the lower end of the block. If a
load of 1800 pounds is hung on a rod passing
through this hole, what is the unit shearing
stress in the timber? What is the mean unit
shearing stress in the rod if the load is symmetri-
cal (Fig. 16)?

‘Ans. 100 pounds per square inch;
900 pounds per square inch.

7. The head of a 1-inch bolt is Z inch thick. Find the mean unit shear-
ing stress tending to strip the head from the bolt when subjected to a pull of
10,000 pounds. Ans. 3640 pounds per square inch.

8. In Problem 7, what is the unit tensile stress in the weakest part of the
bolt if the pull is applied by means of a nut? :

Fig. 16. — Shear in Timber.
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27. Shearing Deformations. — Consider a portion D of block
A of Fig. 15. The portion extends through the block with its
long dimension perpendicular to the plane which contains the
resultants P and P’. It is represented on an enlarged scale by
the rectangle HIJK, Fig. 17. When the shearing forces are
applied as shown in Fig. 15, it is distorted to the form HI'J'K.
If we regard HK as fixed, the total displacement of any point
in the upper line is equal to II’ or JJ'. The unit deformation
is the ratio of this horizontal displacement, 1I', to the vertical
distance, HI. The unit shear is the tangent of the angle IHI’
or JKJ'. The effect of the shearing forces is to lengthen the
diagonal HJ, and shorten the diagonal IK.

C
{3

e e

H K
Fig. 17. — Shearing Deformations.

PROBLEMS.

1. Two equal bars, AB and CD, Fig. 18, are hinged to a second pair of
equal bars, AC and BD, to form a parallelogram. A sheet of rubber 6 inches
wide has one edge securely clamped to AB and the other edge to CD. The
length of AB, center to center of hinges, is 10 inches. What is the unit shear
when B is displaced 0.2 inch to the right of the vertical from its original vertical
position? Ans. Unit shear, 0.02.

2. A hollow circular shaft 5 inches in diameter is subjected to a twisting
moment, and it is found that two sections 10 feet apart suffer a relative dis-
placement of 2 degrees. What is the total shearing displacement of the fibers?
What is the unit displacement?

e { Total displacement, 0.0873 inch;
Unit displacement, 0.00073.

28. Modulus of Elasticity in Shear. — The modulus of elas-
ticity in shear is obtained by dividing unit shearing stress by
unit shearing deformation, just as the modulus of elasticity in
tension or compression is computed by dividing unit stress by
unit deformation. The modulus of elasticity in shear is also
called the modulus of rigidity. In formulas it is represented
by E,, when it is desirable to distinguish it from the modulus in
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tension or compression. The latter may be represented by E,
and E., respectively. Forces applied as in Fig. 15 do not give
pure shearing stress. It is only in the case of torsion, as in
Problem 2 of Article 27, that we get pure shear.

PROBLEMS.
1. In Problem 2 of Article 27, if Es; equals 11,000,000, what is the unit
shearing stress? Ans. 8030 pounds per square inch.

2. If the modulus of elasticity in shear in a given 4-inch circular shaft is
10,500,000, what is the maximum allowable unit shear, if the allowable unit
shearing stress is 9000 pounds per square inch? Ans. 0.000857.

3. In Problem 2, what is the maximum angle of twist in a length of 5 feet?

MISCELLANEOUS PROBLEMS.

1. In Fig. 19, A and B are short compression members or struts of yellow
pine, joined' together at the top by a bolt or pin and held from spreading at

7

7

Fig. 19.

the bottom by being set into the notches in the bottom chord C. If the load
P is 6000 pounds, what is the unit compressive stress in A and B? What is
the maximum unit tensile stress in C? What must be the length of the section
d to avoid shearing, if C is made of oak? Ans. Length of d, 6.5 inches.

2. In Problem 1, what must be the thickness of the supports upon which
C rests; (a) if made of limestone; (b) if made of Douglas fir parallel to the
grain? (c) if made of Douglas fir with load perpendicular to the grain?

3. What is the force required to punch a $-inch hole in a }-inch steel plate
if the ultimate shearing strength of the plate is 40,000 pounds per square inch?

4. In Problem 3, what is the unit compressive stress in the punch?

5. A set of punches are made of steel having a compressive strength of
150,000 pounds per square inch and are used to punch steel with a unit shear-
ing strength of 40,000 pounds per square inch. What is the smallest hole
which can be punched in a $-inch plate? Ans. 0.8 inch diameter.

6. If s; is the compressive strength of the punch, and ss the shearing
strength of the plate, derive the formula which will express the relation between
the thickness of the plate and the diameter of the smallest hole which can be
safely punched.
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29. Shear Caused by Compression or Tension. — Fig. 20 rep-
resents a block subjected to a compressive force P in the direc-
tion of its length and an equal reaction at the bottom. Imagine
the block cut by a plane normal to its length and glued together
again. If we consider the portion of the block above the section
BCDE as a free body and resolve vertically, we have the force
P acting downwards equal to the upward reaction of the glued

surface. (Neglect the weight of the portion above BCDE.) If
" A is the area of the glued surface, the unit compressive stress is
given by

P

oA
If we resolve horizontally, that is, parallel to any line in BCDE,
all the components of the external force are zero and the unit
shearing stress is zero. If the body was actually made of two
portions, the upper portion would not slide on the lower portion,
no matter how smooth the surfaces of contact might be.

JE P

(=)

Fig. 20. — Section Normal to Force. Fig. 21.— Section Inclined to Force.

Now consider a similar body, Fig. 21, cut by a plane BC'D'E’
which makes an angle ¢ with the normal plane. Taking the
portion above the plane as a free body, as before, we will resolve
the external force P perpendicular and parallel to the plane.
The total perpendicular component is P cos ¢, and the unit
compressive stress is this component divided by the area of the
section. If A is the area of the normal section BCDE, the area
of the inclined section is A sec ¢.

%CS%Z—ZZ = —E cos? ¢. (1)
Resolving parallel to the line BG, which makes the maximum
angle with the normal plane, the component of P is equal to

Unit compressive stress =
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P sin . The unit shearing stress is this component divided by

the area of the inclined section.
P sin Psing P P
- Asec é Zsm¢cos¢ 24

The same relations hold for tension and compression.

sin 2 ¢. (2)

PROBLEMS.

1. Show from equations (1) and (2) that shearing stress is zero and com-
pressive stress a maximum when ¢ is zero.

2. A 2-inch by 2-inch block is subjected to a compressive force of 1800
pounds in the direction of its length. Find the unit compressive and unit
shearing stresses with respect to a plane making an angle of 20 degrees with
the normal cross section. (A7 { 8¢, 397 pounds per square inch;

ss, 145 pounds per square 1nch

3. A 4-inch by 4—1nch long-leaf yellow-pine post has the grain 15 degrees
with its axis. What is the total safe load considering the shear parallel to
the grain, using the values recommended by the Association of Railway
Superintendents of Buildings and Bridges? Ans. 9600 pounds.

4. Prove that the unit shearing stress produced by a single tensile or com-
pressive load is a maximum at 45 degrees with the direction of the load, and
that the maximum unit shearing stress is one-half of the compressive or tensile
stress.

30. Shearing Forces in Pairs. — Shearing forces applied as in
Fig. 15 do not give pure shearing stress. If we consider the
block shown in vertical section in Fig. 22, the force P at the left

s N
2 A 1N\
—] [s [s ik
A?(b ’ A b
L g P 32N |
?v B —b—>]
Fig. 22. Fig. 23. — Equilibrium in Shear.

will turn it over, unless it is held down at C or at some other
point to the left of F. If it is held down at C, there is an equal
and opposite force at F, the two forces at C and F forming a
couple of moment equal to that of the horizontal forces P and
P’. Take a small block of rectangular section, of height A and
breadth b, running through the large block A perpendicular to
the plane of the paper (Figs. 22, 23). Let I be the length of this
small block perpendicular to the plane of the paper in Fig. 22,
and perpendicular to the planes of all the applied forces. The
top and bottom surfaces have areas bl each. The area of the left
vertical surface is hl. Let there be a shearing force of s pounds
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per square inch directed towards the right in the upper surface,
- and a stress of equal intensity in the lower surface directed towards
the left. The fotal shearing force in each of these surfaces is
sbl, and the moment of the couple tending to turn the block in a
clockwise direction is the product of one of these total forces mul-
tiplied by the distance between their planes, or sblh. If the block
is subjected to shearing forces only, there must be a shear down-
ward at the left surface and a shear upward at the right surface,
to prevent rotation. If s’ is the intensity of one of these verti-
cal shearing stresses, the total force on each of these vertical
surfaces is the product of s’ multiplied by the area Al; and the
moment is s’hlb. The moments of the horizontal and vertical
forces are equal, if the block is in equilibrium.

sbhl = s’hlb, s =¢'. Formula III.

When a body or portion of a body is subjected to pure shear-
ing stresses, these stresses occur in pairs at right angles to each
other, and the unit shearing siress is the same in both pairs.

If forces are applied to a block as in Fig. 22, with a downward
pull at C, and an upward push at F, a small block of section bk
will be subjected to pure shear if it is in the vertical plane mid-
way between C and F. If the small block is located to the left
of the middle, there will be shear combined with tension. If it
is on the right side, there will be shear and compression.

31. Compressive and Tensile Stress Caused by Shear. —
Fig, 24 I, represents a rectangular parallelopiped of breadth b,
height h, and length I, sub- '
jected to pure shearing AKX
stress. The shearing stress / 5\

acts toward the right paral- ) - %5-‘ s v h
lel to the breadth at the top S 2 a2 b %
and toward the left at the yar B
bottom. As shown in Arti- N L N
cle 30, there is also a shear- S P c

ing stress of the same inten- X I

sity at the left surface acting TFig. 24. — Shear Causing Compression.
downward and an equal

shearing stress at the right surface acting upward. (If the di-
rection of one of these shears is reversed, they must all be re-
versed to produce equilibrium.) Now consider the parallelopiped
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divided by the inclined plane containing the edges CD and GF,
and treat the triangular prism to the left of this plane as a free
body in equilibrium under the action of the forces at its surface.
These forces are four in number: the shearing force H in the
upper surface acting toward the right, the shearing force V in the
left vertical surface acting downward, the compressive force N
acting normal to the inclined surface (Fig. 24, II, which repre-~
sents all the forces in the plane of the paper), and a shearing
force T along this surface parallel to the diagonal line CG. If
s, is the intensity of the horizontal and vertical shear,

Ha=s:bl30 = Vi ="s.hl.
Resolving normal to the inclined plane,

N = Hsin6 +V cos#, (1)

N = s;blsin 0 + s,hl cos 6, (2)
where 0 is the angle which the inclined plane makes with the
horizontal surface. Since

tan 6 =ll,.

N = 2s,blsin 6. 3)

To get the unit compressive stress, s;, across the inclined sur-

face, divide the total compression N by the area of the surface

bl sec 6:

Se = 2s,8infcosf = s,sin2 0. 4)

When 6 is 45 degrees, we get the maximum value of the compres-
sive stress,

8 = 85 Formula IV.

In like manner, if we consider a second inclined plane perpendic-

ular to CG and parallel to CD, we get a tensile stress of the same

value.
i,COMP.
& B
< s, X
2] ,'.?\o«x r ~<— ® /;f —>
& i5°
SHEAR
Fig. 25. Fig. 26.

When a body is subjected to pure shear, there is a compressive
stress of equal intensity across planes at 45 degrees to the direc-
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tion of the shearing stresses, and tensile stresses of the same inten-
sity across planes at 45 degrees to the shearing planes in the
opposite directions. This is shown in Fig. 25.

PROBLEMS.

1. Prove that a block, subjected to a compressive stress of intensity s and a
tensile stress of the same intensity at right angles, has a shearing stress of the
same intensity at 45 degrees and 135 degrees (Fig. 26).

2. A 2-inch by 2-inch block is cut at an angle of 14 degrees and glued to-
gether again. If a pull of 400 pounds is applied parallel to its length (at 14
degrees with the glued section), what is the unit shearing stress in the glue?
what is the unit tensile stress in the glue?

i { ss, 23.5 pounds per square inch;
s¢, 5.85 pounds per square inch.

8007
I 8', 1
2%x2" coad >
= et 007

Fig. 27.

3. If a compressive force of 800 pounds is applied transversely to a length
of 8 inches of the block of Problem 2 (Fig. 27), while the longitudinal stress
is acting, find the unit shearing and normal stress in the glue.

vyt { 8s, 35.2 pounds per square inch;
¢, 41.1 pounds per square inch.

4. Solve Problem 3, if the 400 pounds is changed to compression.

[ B, J

DD
L - P
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H e K H K H
1 11 111

Fig. 28. — Shearing Deformation.

i)

The modulus of shearing elasticity may be calculated from the modulus in
tension or compression if Poisson’s ratio is known.

Fig. 28 is the front elevation of a block of square section subjected to shear-
ing forces. The unit shearing displacement is the tangent of the angle ¢
between the lines /H and I'H of Fig. 28, II. In Fig. 28, III, we have kept the
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directions of the diagonals constant instead of the base line, as in II, so that
the line HK’ makes an angle g with the horizontal, and the line HI’ makes
an equal angle with the vertical. We will determine the magnitude of this
angle g .

When the shearing force acts on the body, the diagonal HJ is lengthened
to HJ’ and the diagonal IK is shortened to I’K’. The half-diagonals HM and
MK, orlgmally equal, suffer a proportional deformation.

If 6 is the unit linear deformation due to a unit direct stress s, the umt
deformation along the diagonal HJ’ is & (1 4 p). This is made up of the
elongation & due to the tension along this diagonal and the elongation pé due
to the equal compression along the other diagonal. In a similar way the unit
deformation along the diagonal I’K’ is — & (1 + p). ;

The tangent of the angle ¢ which the line HK’ (Fig. 28, IIT) makes with
the diagonal is given by:

ME ME[1-50+p)]_1-510+p).
HM " HM[I+s0+p)] 1+60+0s)

we will sabtract the angle ¢ from 45 degrees.

tan ¢ =

To get the angleg

[} tan 45° — tan ¢

Tan§ i 1 4 tan 45° tan ¢ =31 +a).

For small angles, tan 6 = 2 tan g =261+ p).

Since 5 =%
tan = 28 (1E+ »)
s E
Es_tan0=2(1 T55)

1 2F
When P = ‘1, Es = ? .

PROBLEMS.
5. If E for steel is 29,000,000 and Poisson’s ratio is 0.27, find the modulus

of shearing elasticity. Ans. E; = 11,400,000.

6. If E is 30,000,000 and E; is 11,600,000, find Poisson’s ratio.

32. Methods of Failure.— We have shown the method of fail-
ure of soft steel in tension. It necks and finally breaks normal
to the length. One portion is slightly concave, especially at the
outside, showing that the final failure here is by shearing. A rod
of hard steel will sometimes shear off at nearly 45 degrees with
the direction of its length. In Article 29 we found that a tensile
or compressive stress produces a shearing stress which has its
maximum value at 45 degrees, at which direction it is one-half
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the direct stress. If any material is less than half as strong at 45
degrees in shear as it is in tension or compression in the direction
of the stress, it will fail by shear. As the shearing stress varies
slowly near 45 degrees, the direction of failure may differ consider~
ably from that angle. If the shearing strength at 30 degrees or
at 60 degrees is less than 86 per cent of the strength at 45 degrees,
failure may occur along one of these direc-
tions. Timber has a small shearing strength |
parallel to the growth rings and a larger 3
strength at right angles to them. Fig. 29
shows a small piece of timber which was
tested in tension. The lines of fracture are
oblique, the shear taking place first in one
direction and then in the other.

In compression, materials which are not
ductile may fail by shearing at about 45 de-
grees with the direction of the stress or by
splitting longitudinally. The shearing takes
place as in tension when the unit compres-.
sive stress exceeds twice the unit shearing
strength at 45 degrees; the splitting longi-
tudinally depends upon the relative values of
the compressive strength in the direction of
the length, the tensile strength normal to the
length, and Poisson’s ratio. For instance, if
Poisson’s ratio for concrete is 0.2, a unit com-
pressive stress of 2000 pounds per square inch
will cause a unit tensile stress of 400 pounds
per square inch, provided the moduli of elas-
ticity in tension and compression are the same.
Under such conditions concrete may fail by
tension. If the concrete is tested by com-
pression between steel plates in the testing
machine, the friction of the plates tends to prevent expansion at
the ends. Fig. 30 shows the behavior of two 4-inch by 4-inch’
blocks of 1:1 cement mortar under a compressive load parallel
to the long dimension. Both failed by splitting lengthwise,
and both sheared to form a pyramid-shaped block at one end.
Cement and stone cubes usually fail by shear. Fig. 31 shows
the failure of two paving bricks in compression.

Fig. 29. — Timber in
Tension.
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In Fig. 32 the short block illustrates shear. Only short blocks
of very uniform structure will fail in this way (by shear entirely
across the section in one plane). Most blocks fail by a combi-

P s e o T ——— — S
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Fig. 30. — Cement in Compression.

nation of shear and splitting, as shown in the other cases. In
fact, all of these are selected samples. Generally the shear planes
will run for only a short distance and then split or run the other
way.

PROBLEMS.

1. The white-oak block on the right in Fig. 32 was originally 1.83 inches
by 1.82 inches. The ultimate load was 19,314 pounds. What was the unit
shearing stress at 45 degrees to the normal section? what was it at 35 degrees
and at 55 degrees to that section?
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2. A white-oak block 1.8 inches square was cut so that the growth rings
made an angle of 10 degrees with the plane of the ends. When tested in com-
pression it failed by shearing along the growth rings under a load of 4700
pounds. What was the unit shearing strength parallel to the grain?

Plastic material in compression may expand almost indefinitely
under compression. If less plastic, there is considerable expan-
sion and longitudinal splitting. .

Fig. 33 shows two pieces of wrought-iron tubing which failed
in this way. A solid rod, unless very short, with the resultant
force exactly central, will fail by bending, as in the left of Fig. 33.
If too short to bend it will expand indefinitely.

Fig. 831. — Hard Brick in Compression.

33. Bearing Strength; Failure by Cutting.— The bearing
strength of a solid depends upon the relative size of the surface
of contact and the entire dimensions of the body. In the treat-
ment of bearing stress, there are two limiting cases. The first
is that shown in Fig. 34, in which the surface of contact is equal
to the entire cross section of the body B, and the length in the
direction of the applied force is at least equal to the thickness of
the body. In this case the bearing strength is equal to the com-
pressive strength. Used in this way, a soft material like babbitt
metal would have little bearing strength. Fig. 35 shows the
second case. Here the load is applied to a small portion of a
body which is of unlimited extent or is confined laterally by
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Fig. 33. — Metal in Compression.
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another body. The portion outside of the loaded area acts as
a hoop to prevent the lateral expansion. In this form, a body
composed of separate particles may have considerable bearing
strength, depending upon the friction. Dry sand is an example.

-t_,

l B

Fig. 34. Fig. 35.

In a mass of wheat or flaxseed, where the friction is smaller, the
bearing strength is less.
Fig. 36 shows two cases intermediate between Figs. 34 and 35.

v

-

Fig. 36.

Cutting with a knife or chisel depends upon the bearing
strength of the tool and of the material cut. The bearing strength
of the tool under the conditions of Fig. 34 must be greater than

I II III
Fig. 37. — Cutting.

that of the material under the conditions of Fig. 35. At first
there is a depression in the material under the edge of the tool,
as shown in Fig. 37, I. When the stress in the material passes
the bearing strength, it is permanently pushed back. 1In a plas-
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tic nonporous material, some of the substance is forced up by the
pressure, as shown in Fig. 37, II. In a porous body like wood
there is an increase in density adjacent to the cutting surface.
The wheel of a wagon cutting in soft earth illustrates both cases.
If the earth is wet clay, we have an illustration of the plastic non-
porous substance; if it is dry loam, it approaches the other case.

When a cutting tool has penetrated a little distance, it acts
as a wedge and exerts a tensile stress upon the material in front
of its edge. This is shown in Fig. 37, IIL.

_— PUNCH

— =

Fig. 38. — Cutting with Shears. Fig. 39.

%

Fig. 38 shows the behavior of a pair of scissors or shears. At
the beginning, the cutting is due to the bearing stress on the
cutting edges, as shown in Fig. 38, I. As the edges penetrate

S

OeseB 8

Fig. 40. — Slugs Punched from Steel Plates.

1

into the material the bearing force is increased at each blade.
These forces produce shearing stresses in all portions of the body
in the plane of the cutting edges. The corresponding shearing
deformations are shown by the dotted lines in Fig. 38, II. Fig. 39
represents the punching of a metal plate. The plate is bent
a little at first, which makes the surface of contact a narrow
ring at the edge of the punch and die. When the compressive







CHAPTER 1IV.
RIVETED JOINTS.

34. Kinds of Stress.— Riveted joints afford an excellent illus-
tration of tension, compression, and shear, and of the manner
of transmission of stress.- Fig. 41 represents a pair of plates,
each of breadth b and thickness ¢, transmitting a pull P in the

Fig. 41. — Stress at a Bolted Joint.

direction of their length. The plates are united by means of a
pin C, which fits tightly in a hole in the lower plate and passes
through a hole in the upper plate. If we consider the upper
plate, we find that the portion to the left of the pin is in tension.
The intensity of this tensile stress is found by dividing the
pull P by the area bf. At the section EH in the plane of the
center of the hole, the stress is still tension. The unit stress is
greater here, for the area of cross section is diminished by the
material cut away to make room for the pin. If the hole is in
the middle of the section and in the line of the pull, half of
the total stress is transmitted by the lower section EF and half
by the upper section GH. The total stress which passes EF as
tension passes FK as shear. The intensity of this shearing

stress in the plate may be calculated by dividing the pull, g;

by the section of length FK and thickness . At M, the surface
54
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of contact of the pin and plate, the stress is compression. The
force is transmitted as a shearing stress from the part of the
pin in the upper plate to the portion in the lower plate, and
finally as compression to the lower plate.

It helps to fix our ideas if we regard stress as flowing like an
electric current. This is illustrated in Fig. 42. We may regard

1
! TENSION

SHEAR
COMPRESSION

SHEAR

TENSION
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SHEAR
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Fig. 42, — Flow of Stress.

the circuit as closed through tlie bodies which exert the pull
on the plates.

PROBLEMS.

1. The plates in Fi 1g 41 are each 2 inches wide and % inch thick. The hole
in the upper plate is § inch in diameter and that in the lower plate is § inch
in diameter. The bolt is § inch in diameter. The pull is 4000 pounds. Find
the unit shearing stress in the bolt and the maximum tensile stress in each plate.

2 { ss, 9054 pounds per square inch;
s¢, 7111, 6400 pounds per square inch.

2. In Fig. 41 the bolt is 2 mch in dlameter and exactly fits in the lower
plate. The lower plate is 2 mches wide. What must be its thickness in order
that the maximum unit tensile stress shall be equal to the unit shearing stress
in the bolt joining the plates?

In calculating the unit shearing stress in the plates behind the
bolt or pin, since there is some uncertainty as to the width of
the bearing surface at M, it is customary to take the distance
MN instead of FK in getting the shear area.

PROBLEM.

3. In Problem 1 find the unit stress in shear in the upper plate to the right
of the pin, if the center of the hole is 1.5 inches from the edge of the plate.
Ans. 3765 pounds per square inch.
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1

35. Bearing Stress. — In calculating the unit bearing or com-
pressive stress at the surface of contact of the pin and plate,
it is customary to regard the bearing area as the product of the
thickness of the plate multiplied by the diameter of the pin. If
d is the diameter of the pin and ¢ is the thickness of the plate,
the bearing area is td. - In other words, it is the projection upon
a plane parallel to the axis of the pin of that portion of the pin
which is inside of the plate, Consider Fig. 43, in which a rec-

P,
V4

1

g v

N

Fig. 43. — Bearing. Fig. 44. — Bearing.

tangular bar of thickness d is placed across the edge of a plate
of thickness ¢.  If the bar crosses the plate at right angles, it
is plain that the area of contact is td. If, as in Fig. 44, the
bar passes through a hole in the plate, the bearing area is the
same; and if the forces P;, P; are balanced with respect to the
center of the plate, the bearing stress is uniform over the entire

R,

1

Fig. 45. — Bearing. Fig. 46. — Bearing.

area. If the forces are not balanced, the area remains the same
and the average bearing stress is the same, but the maximum
stress is greater. If there is force on only one side of the
plate, the maximum bearing stress will be less the smaller the
distance between the force and plate. In Fig. 45 we have a
round pin or bolt passing through a plate. The actual area is
the lower half of the surface of the cylinder, of length ¢ and
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diameter d. The reactions Ri, R,, etc., are not all vertieal, but
are nearly normal to the surface of contact. If, as in the case
of liquid pressure, these reactions were exactly normal and of
equal intensity, the resultant of their vertical components would
be the same as if that unit pressure were exerted on the hori-
zontal projection of this cylindrical surface.

Consider a rivet in the form of an isosceles triangle of base b
and equal sides ¢ (Fig. 46), subjected to a load P perpendicular
to the side b. If @ is one-half of the angle opposite b and N
is the resultant normal force on one side ¢, we have by vertical
resolutions:

2 Nsing = P.
The unit normal pressure on each side is found by dividing N by
the area of contact fc. Substituting for ¢ its value in terms of
b and 6, we get:

£

5

This is on the assumption that there is no friction and that the
bearing stress is uniform.

From these considerations we are warranted in assuming that
the unit bearing stress on a pin which accurately fits the hole
is obtained by regarding the projection of the curved surface on
a plane as the surface of contact. This is the common practice
of engineers in computing rivets.

PROBLEMS.

1. In Problem 1 of Article 34, what is the unit bearing stress on the pin?

Ans. 10,667 pounds per square inch.

2. In Fig. 41 the diameter of the bolt and of the hole in the lower plate is

3 inch. What must be the thickness and width of this plate in order that the

unit shearing stress in bolt shall be one-half of the unit bearing stress and
two-thirds of the unit tensile stress in the net section of the plate?

Unit stress =

36. Lap Joint with a Single Row of Rivets. — Fig. 47 shows
a lap joint with a single row of rivets. In any riveted joint the
distance a from center to center of adjacent rivets in a row is
called the piich. In solving problems, it is often convenient to
consider a single strip of width @ alone. In this case the prob-
lem of a lap joint with a single row of rivets becomes the same as
that of Article 34. We may take this strip as extending from
center to center of adjacent rivets, as in the lower part of Fig. 47.
In this cage, the total tension is transmitted in the plate between
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the two rivets, and the shear is equally divided between the
upper half of the lower rivet and the lower half of the upper
rivet. Or we may take the strip as in-
cluding a single rivet, as in the upper portion
of Fig. 47, in which case the shear is trans-
mitted by a single rivet and the tension is
divided.

In problems in riveting, unless otherwise stated, we
shall consider the rivet as exactly filling the rivet hole,
and that the holes are drilled or reamed so that there
is no injured material around them due to overstrain
while punching. In practice, where the holes are
punched and not reamed it is customary to make
Fig. 47.—Lap Joint some allowance for this injured material.

with Single Row In problems where the width of the plate is given,

of Rivets. it is generally better to consider the entire plate as

a unit. In Problem 1 below, to get the tensile

stress we may take a strip 4.25 inches wide transmitting a pull of 15,000
pounds.

PROBLEMS.

1. Two }-inch plates, each 8 inches wide, are united by five $-inch rivets
in a single row to form a lap joint. The joint transmits a pull of 15,000 pounds.
Find the unit stress in the gross section of the plates, the unit tensile stress in
the net section between the rivets, the unit shearing stress in the rivets, and
the unit bearing stress.

st, 7059 pounds in net section;
Ans. { 85, 6790 pounds;
e, 8000 pounds.

2. Two %-inch plates are united to form a lap joint by a single row of
rivets. The pitch is 3 inches and the diameter of the rivets is § inch. Find
the unit tensile stress in the net section when the unit shearing stress in the
rivets is 7068 pounds per square inch.

3. Two -inch plates are united by a single row of 1-inch rivets to form a
lap joint. What must be the pitch if the unit shearing stress in the rivets shall
be 6000 pounds per square inch when the unit tensile stress in the net section
of the plates is 8000 pounds per square inch, and what is the unit bearing
stress? Ans. 1.94 inches; 7540 pounds per square inch.

37. Butt Joint. — Fig. 48 represents a buit joint, with double
cover plates, with a single row of rivets on each side. In a butt
joint with double cover plates the rivets are in double shear.
In all other respects the problem is the same as that of the lap
joint. A butt joint with a single cover plate is the same as a
pair of lap joints placed tandem.
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: PROBLEM.

1. Two %-inch plates are united to form a butt joint by means of two ;-
inch cover plates. There is one row of 3-inch rivets on each side. -What must
be the pitch if the tensile stress in the net section of the 3-inch main plates
between the rivets shall be 8000 pounds per square inch when the shearing
stress in the rivets is 6000 pounds per square inch? What is the bearing stress
between rivets and 3-inch plates? also between rivets and cover plates?

Ans. Pitch, 2.07 inches; s, 14,137 and 11,310 pounds per square inch.

Fig. 49 represents a set of tests at the Watertown Arsenal in
1885, to study the behavior of riveted joints. A plate of width b
and thickness ¢ was planed down for a portion of its length to
some convenient width and united to a pair of cover plates, thus
forming one-half of a butt joint. Wrought-iron rivets were used
of nominal diameter one-sixteenth of an inch less than the diam-
eter of the holes. In calculating it was assumed that the fin-
ished rivets entirely filled the rivet holes.

&0 4 &1 |
sl 4 e
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Egvzn PLAT\E'V ‘ qﬁ g
Fig. 48. — Butt Joint with Single Row Fig. 49. — Half of Butt
of Rivets on Each Side. Joint.
PROBLEMS.

2. In test piece No. 1353 (Watertown Arsenal, 1885, page 867), the breadth
b was 14.90 inches; the tested width, 14.39 inches; the actual thickness of the
plate, 0.248 inch. There were five rivets in inch drilled holes. The joint
failed by tension along the line of the rivet holes under a pull of 156,440 pounds.
The calculated results as published are:

AREAs. Square inches.
Gross sectional area of plate. .. .............coviieiiann. 3.569
Net sectional area of plafe. .........coivieriiiiineeennn. 2.329
Bearing surface of rivets. ... ......cccivieriinnncececans 1.240
Shearing area of rivets. ..........cooiiiiiiiiiiiiiiaa 7.854
MAXIMUM STRESS ON JOINT. Pounds per sq. in.
Tension in gross section of plate. . ............... ... 43,830
Tension on net section of plate. . . .............. ... ... 67,170
Compression on bearing surface of rivets......... QRN 126,160
Shearing on rivets. . ................ 53 a0 T i e e 19,920

Verify these results.
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3. In test piece No. 1355 the results were:

Tested width of plate. .................... L8 gy 15 inches.
A e L T s e e e o T eSS 0.251 inch.
T N TS e R S 0 P B DA i B e o 167,200 pounds.

There were five rivets in 1-inch holes. ‘‘Fractured two outside sections of
plate at edge along line of riveting; the two middle sections sheared in front
of the rivets.”

Compute all unit stresses as in Problem 2.

Fig. 50 is a copy of a photograph of this plate after failure.
It shows failure by tension across the net section and shear in
front of the rivets. It also shows elongation of the rivet holes
due to bearing pressure on the plate, combined with shear.

Fig. 50. — Failure of Riveted Plate.

’

In order to compare the strength of the material in the net
section of a riveted joint with the ordinary tension tests, two
strips were sheared from each sheet of steel, one lengthwise, the
other crosswise the sheet. These were planed to a width of 1.5 ,
inches and tested in the usual way.

From the sheet used in No. 1353 two test pieces were taken.

These gave as ultimate tensile strengths:
Pounds per sq. in.
N0 12183 engthwisels = v Arkyes b J D or St an Je IS 59,180
12245 ATOSSWISET N ok LR v e bohe o L SRR T 60,840

Four test strips were taken from the sheet used for No. 1355:
Pounds per sq. in.
INo: 1214 lengthwise 8 el B vt ot rae kst ke B koo ons 58,680

1220, A e e S S LA . o e U 62,300
1225, crosswise

1226, @ato &f o= at G i e 516"3106 B0 bl GO o ARG 60,890
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Comparing these results with the unit stresses in the net sec-
tion of the riveted plates, we find that the stress in the test pieces
is considerably lower. This is an illustration of Article 24. The
net section in the riveted plate is relatively short and consequently
is kept from necking as it would in a longer piece. Notice that
there is no certain difference between the pieces lengthwise and
those crosswise the plate. This is explained by the fact that in
rolling the metal it was worked both ways, so that there was no
definite grain in one direction.

In Problems 2 and 3, the design was such that there was rela-
tively small shearing stress. The rivets used were large compared
with the thickness of the plate. Problem 4, below, represents a
different case with a different mode of failure.

PROBLEMS.

4. In a test piece similar to Fig. 49 (Watertown Arsenal, 1886, page 1401),
the following data are given; tested width, 13.11 inches; thickness, 0.630 inch;
five rivets in l-inch drilled holes; failed by shearing the rivets under a pull
of 295,500 pounds; rivet holes elongated 0.31 inch, 0.32 inch, 0.26 inch, 0.25
inch, 0.24 inch.

Calculate the unit stresses.
Pounds per sq. in.

Ans. Tensile stress in net section. . .................... 57,840
BeanmgIStnesdigi . PP ey SEa ST T mi s v L - 93,810
Shearing stressonrivets . .. ...................... 37,620

5..In Problem 4, the cover plates were 0.384 inch .thick. Find the unit
tepsile stress in the net section.

Fig. 51 is a copy of a photograph of a rivet which failed by
shear as in Problem 4 (Watertown Arsenal, ¢ Tests of Metals,”
1886, page 1567).

38. Rivets in More than One Row.— Rivets are frequently
arranged in more than one row. The rivets in the second row
may be placed directly behind those in the first row, or they may
be arranged zigzag as shown in Fig. 52. The figure shows the
plates and rivet holes for a lap joint with a double row of rivets.
In this zigzag arrangement the second row must be set back
sufficiently far that the sum of the net diagonal intervals ¢ and e
shall considerably exceed the net interval f between rivet holes
in the same row. If the rows are placed too close together the
joint is likely to fail along the zigzag line.

In computing problems with two or more rows of rivets, we
assume that the shearing stress is the same in the rivets of all
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rows. If we consider a strip of width a equal to the piteh, ex-
tending from the center of rivet hole 1 to the center of rivet hole
2, the total stress transmitted by
this strip is carried by the lower
half of rivet 1, the upper half of
rivet 2, and the whole of rivet 3.
Or we may take a strip of width
a, which entirely includes one
rivet in each row. In any case
the entire stress transmitted by
a strip of gross width a passes
through between the rivets of
the first row. Half of this stress
is carried as shear to the lower
plate by the rivet of the first row
and the other half passes as ten-
sion through the second row.
Fig. 53 shows an arrangement
of three rows, with twice as many
rivets in the second row as in
= either of the others. In solving
Fig. 51. — Failure of Rivet. a problem of this kind, we take
as the unit a strip of width equal
to the pitch in the outer rows. This strip may extend from the
middle of rivet 1 to the middle of rivet 5, or it may include the
whole of rivet 1 and none of rivet 5. In either case the strip
embraces two rivets in the middle row and one in each of the
others.

PROBLEMS.

1. In a joint similar to Fig. 52, the plates are § inch thick and are united
by two rows of -inch rivets to form alap joint. The pitch is 2§ inches. If the
unit tensile stress in the gross section is 4800 pounds per square inch, find the
unit tensile stress in the net section at the left row in the upper plate, the unit
tensile stress at the right row in the upper plate, the unit shearing stress in

the rivets, and the unit bearing stress.
Pounds per sq. in.

Ans. Tensile stress, left upper and right lower............. 7200
Tensile stress, right upper and left lower.............. 3600
Shearing [Stress, i Tivetshl etk s e b 8 o oo, 6548
B eATING  SRESE $.x 5t oot Sl b o SRy o h 13 7200

2. In a lap joint similar to Fig. 563, the pitch in the outer rows is 5 inches,
and in the middle row 2.5 inches. The plates are } inch thick and are joined
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by 2-inch rivets. When the unit tensile stress in the gross section is 4000

pounds per square inch, find the unit shearing stress in the rivets and the unit

tensile stress in the net section at the right row'in the upper plate and the left
row in the lower plate.

e { 8s, 5659 pounds per square inch;

st, 4706 pounds per square inch.

3. In Problem 2 find the unit tensile stress in the net section at the middle

row in each plate. Ans. 4286 pounds per square inch.

06
&
4.9,

P
A B
Fig. 52. — Lap Joint with Double Fig. 53. — Rivets in Three
Row of Rivets. Rows.

(RS S Tt

4. In Problem 2 show that the unit tensile stress in the net section at the
left row in the upper plate is one-fourth that in the right row in the same plate.

5. A butt joint is formed of two -inch plates united by two ;-inch cover
plates. There are two rows of Z-inch rivets on each side, the inner rows of 3-inch
pitch and the outer rows of 6-inch pitch. The unit stress in the gross section
of the 3-inch plates is 6000 pounds per square inch. Find the unit tensile
stress in the net section at each row of rivets in the }-inch plates and at one
of the inner rows in the cover plates. Find the unit-shearing stress in the
rivets and the unit bearing stress between the rivets and the 3-inch plates.

Pounds per sq. in.

s¢ in 3-inch plates in outerrows. .................. 7,024
s¢ in 3-inch plates in innerrows. .. ................ 5,647
Ans. { & in cover plates at inner rows. . ... B s LT 7,529
E P R 0 T (o T b e e s B T GO P 4,989
sc between rivets and main plates. . ... ............ 13,714

6. In Problem 5 what should be the thickness of the cover plates if the
unit tensile stress does not exceed the maximum in the main plates?

7. Taking ultimate strengths from Problems 2 and 4 of Article 37, what is
the factor of safety in Problem 5 for each case?

8. Fig. 54 shows a joint tested at the Watertown Arsenal (1896, pages
258, 259). 'The average thickness of the plates was 0.534 inch; the rivet holes,
13 inch. The joint failed by tension along line shown when the tota] pull was
502,200 pounds. Find the unit tensile stress at each row of rivets and the
unit shearing and bearing stress.

39. Efficiency of a Riveted Joint. — The ratio of the strength
of a riveted joint to the strength of one of the plates which
it unites is called the efficiency of the joint. The efficiency may
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also be defined as the ratio of the unit stress in the gross section,
when the joint is stressed to its allowed limit, to the allowable
unit stress in the plates. If the joint is so designed as to make
it at least as strong in shear and compression as it is in tension at
the net section, the efficiency becomes the ratio of the net to the
gross sections. For instance, if two plates are united by 2-inch
rivets with a pitch of 3 inches, the efficiency is 75 per cent, pro-
vided the thickness of the plates is such that the joint is no
stronger in tension than it is in shear and compression.

PROBLEMS.

In the following problems, unless otherwise stated, we shall use as allowable
unit stresses: s; 9000; ss, 6000; and s., 12,000 pounds per square inch.

1. Two $-inch plates are united by a single row of 1-inch rivets to form a
butt joint. The pitch is 2} inches. What is the efficiency based on tensile
stress only? What pull on strip of pitch width will produce the maximum al-
lowable tensile stress? What are the shearing and bearing stresses at this pull?

Ans. 57} per cent efficiency.

2. Two %-inch plates are united to form a lap joint by two rows of 3-inch
rivets spaced 3 inches apart. What stress determines the strength of the
joint? What is its efficiency? :

Ans. Weakest in shear. Efficiency, 39.3 per cent.

3. In Problem 2 what should be the pitch in order to make the joint equally
strong in shear and in tension? What is the efficiency?

Ans. 1.93 inches; 61.1 per cent.

4, In Problem 3 is the unit bearing stress within the allowed value?

It is possible to design a riveted joint so as to bring tensile,
compressive, and shearing stresses to their allowable values at
the same load. This is not usually done, however, as it would
involve inconvenient sizes of rivets, and frequently require rivet
holes too small relatively to the size of the plate to be punched.
Usually the joint is designed for shear and tension in the net
seetion and then examined to see if the bearing stress is within
the allowable limit.

PROBLEMS.

5. If the allowable bearing stress is twice the shearing stress, what is the
minimum thickness of plate which can be used with {-inch rivets in a lap joint
with a single row of rivets? Ans. 0.295 inch.

6. Derive an expression for thickness of plate in terms of diameter of rivet
which will make the bearing stress twice the shearing stress.

wd

e
Ans. 8

= 7—? for double shear.

- for single shear;
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7. Solve Problem 6 if the allowable shearing stress is two-fifths of the
bearing stress.

8. Using shearing stress two-fifths the bearing stress and two-thirds the
tensile stress, and using rivets to the nearest sixteenth, design a butt joint with

LINE OF FRACTURE

0"
{P D Tll2xPiteh
_ % Drille
] holes
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e Az}ﬂ.bilf’cbé.{i’” T
VR T P R e
Fig. 54. — Butt Joint Tested at Watertown Arsenal.

double cover plates with one row of rivets equally spaced on each side to unite
two §-inch plates. Find the efficiency of the joint.

Ans. l-inch rivets; pitch, 2.67 inches; efficiency, 62.5 per cent.

9. In Problem 8 use three rows of rivets having a pitch ratio 1:2:4 on

each side.  Ans. Efficiency, 92 per cent; cover plates at least 1% inch thick.



CHAPTER V.
BEAMS.

40. Definition of a Beam. — Fig. 55 is a front elevation of a
beam supported near the ends and carrying a single concentrated
load P in addition to its own weight. If the beam is uniform,

its own weight is a wuniformly distributed load. There is an
upward reaction at each support. A beam may be defined as a
rigid body subject to transverse loads and reactions.

R, R,
Fig. 55. — Beam Supported Fig. 56. — Cantilever.
at Ends.

41. Kinds of Beams. — Beams may be classified aceording
to the character of the support and the method of loading.
Fig. 56 represents a beam fixed at one end and free at the other.
This kind of beam is called a cantilever. Fig. 57 is a beam

1
Fig. 57. — Beam Fixed at Both Fig. 58. — Beam Fixed at One End
Ends. and Supported at the Other.

fixed at both ends. Fig. 58 is fized at the right end and supported
at the left. Fig. 59 is a beam which overhangs its supports.
A beam with three or more supports, as in Fig. 60, is a continuous

beam.

JD

If‘I'l'I'‘I'l'l'l"]‘I'l']"l'l'l’l famansaaan] LHTOTTATITTITIITT
? l ? 1; 5 T Uz
R, R, E, Ry R,
Fig. 59. — Beam Overhanging its Fig. 60. — Continuous Beam.
Supports.

66
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The figures show different methods of loading and some of the
.ways of representing the loads and reactions in diagrams and
drawings.

In Figs. 55 and 58, we have a single concentrated load. In
Fig. 57, there are two concentrated loads. In Fig. 56, there is
a uniformly distributed load over the entire length. In Fig. 59,
there is a uniformly distributed load over half of the length, and
a concentrated load at the right end. In Fig. 60, there is a
distributed load over part of the left portion and another load
of greater weight per unit length over the right half.

A beam is not necessarily horizontal. A vertical fence post
subjected to the horizontal force of the wind or the weight of
a gate is a cantilever beam: A post at the end of a line of wire
fence is a vertical beam supported at one end and partially
fixed at the other, with several concentrated loads due to the
tension in the wire.

\

!
T RS QT:J

Fig. 61. Fig. 62.

42. Internal Stresses in Beams. — If a log of wood, supported
near the ends, is cut in two by a saw running horizontal, the saw
cut gradually narrows at the top. In a large log it becomes
necessary to drive a wedge into the cut above the saw, as shown
in Fig. 61 to prevent it from ‘‘ pinching.” The material which
has been removed by the saw was under compressive stress. If
the log overhangs the support as in Fig. 62, the cut widens and
finally splits off along the line BC. The material cut in this
case was in tension and the final failure is due to shear. If the
log overhangs each support one-fourth of its length and the cut
is at the middle, there is no tendency to open or close. There
is zero stress at this point under these conditions.

We learned in Mechanics, that when a body is subjected to
a set of coplanar nonconcurrent forces, these forces may be
replaced by a single force at any desired point in the plane and a
single couple. We learned also that when a body in equilibrium
is cut into two portions at any section, the resultant of the external
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forces upon either portion is equal to the forces across this sec-
tion from this portion to the other.

Fig. 63 represents a cantilever of uniform section, weighing
w pounds per foot. Let us consider the forces at a section EF
at a distance z from the left end. If we consider the portion to
the left of the section EF as a free body in equilibrium, we find
that the only external force is the weight of the portion vertically

downward applied at its center of gravity, a distanceg from the

section. This weight is wx pounds. To produce equilibrium,
there must be an equal force wz vertically upward acting from
the right portion to the left across the section EF. There is
an equal force acting vertically downward from the left portion

£
!
w Pounds Ier Foot ‘lir

5 5

o 1

m|

7

wr 1;’ Wy

Fig. 63. — Shear at Beam Section.

to the right. This last force is the single force above mentioned,
which replaces the external forces acting on the left portion.
It is called the vertical shear at the section. The vertical shear
at any section of a beam is the sum of the vertical components
of all the external forces to the left of the section. It is regarded
as positive upward and negative downward. It is, of course,
equal and opposite to the sum of the vertical components of all
the external forces acting upon the portion to the right of the
section. KEither portion may be used in determining the magni-
tude of the vertical shear The left portion alone determines
the sign. These are merely arbitrary conventions, but they are
commonly used in the discussion of Strength of Materials. In
this book, total vertical shear is represented in algebraic formulas
by the letter S (many authors use V). The author finds it
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convenient to represent shear by an arrow with a single barb.
The one on the left of EF, in Fig. 63, indicates that the shear
from the left portion to the right is downward. The arrow
on the right of the section indicates that there is a shearing
stress upward from the right to the left portion.

PROBLEMS.

1. A cantilever beam weighing 40 pounds per foot is fixed at the right end
and carries a load of 100 pounds 2 feet from the left end. Find the vertical
shear at 1 foot and at 3 feet from the left end.

. Ans. At 1 foot, S = —40 pounds;
At 3 feet, S = —220 pounds.

2. A cantilever beam weighing 30 pounds per foot is fixed at the left end
and ecarries a load of 120 pounds 3 feet from the right end. Find the total
shear 2 feet and 4 feet from the right end.

Ans. 60 pounds and 240 pounds.

3. A beam 8 feet long weighing 30 pounds per foot is supported at the
left end and 2 feet from the right end. Find the total shear 2 feet and 4 feet
from the left end. Ans. 20 pounds, —40 pounds.

When the external forces are not all given, it is necessary to determine them
for at least one side of the section. In this case it is sufficient if one reaction
is determined. It is better to determine both reactions by moments and then
check by vertical resolutions. Taking moments about the right support, we
get 80 pounds as the reaction at the left support. Taking moments about
the left support, we find the right reaction to be 160 pounds. In taking
moments about the right support, consider the entire beam at its center of
gravity 2 feet from this support; and do not divide it into two portions of 6 feet
and 2 feet.

4. A beam 10 feet long weighing 40 pounds per foot is supported at the
ends and carries a load of 120 pounds 3 feet from the left end. Find the re-
actions at the supports and the vertical shear 2 feet and 4 feet from the left
end. Check the magnitude of the shear by using the right portion as a free
body. Ans. Ry, 284; R», 236; S, 204 and 4 pounds.

43. External Moment and Resisting Moment. —In Fig. 63
the external force of gravity at the center of the left portion is
resisted by the vertical shear upward at the section EF. This
vertical shear from the right portion to the left is called the
resisting shear. This resisting shear and the weight of the por-
tion together form a couple of which the forces are each wz and
the moment arm g The moment is z_vzf - This is the external
moment. We may get this moment in another way. Compute
the moment of all the external forces acting on the portion about
a horizontal axis perpendicular to the beam through some point



70 STRENGTH OF MATERIALS

in the section EF. The moment of the resisting shear is zero,
since its moment arm is zero; the moment of the weight is

wz multiplied by'g- The external moment at any section is

the moment with respect to a horizontal axis in the section of
all the forces acting on the portion of the body to the left of the
section. The external moment is balanced by a second couple,
the forces of which act across the section from the other portion.
This is the resisting moment.  In Fig. 63 the forces of the resist-
ing moment are tensile at the top and compressive at the bottom.

In Fig. 63 we have the weight wz applied at the center of
gravity of the left portion, replaced by an equal force applied at
EF (the external shear), and a couple which we call the external
moment. The effect of this external moment is to tend to turn
the left portion counterclockwise. It is convenient to give this
moment the negative sign. When the moment of the external
forces tends to turn the left portion clockwise, the moment is
positive. This is an arbitrary convention, which is convenient
in caleulating deflections.

If the student prefers to think of counterclockwise rotation as positive, he
may fix his attention on the resisting moment. When the resisting moment
acting on the left portion of a beam across any section is counterclockwise,
the moment at that section is positive.

PROBLEMS.

1. A cantilever beam weighing 30 pounds per foot is fixed at the right end
and carries a concentrated load of 80 pounds at the left end. Find the external
moment and shear 3 feet from the left end.

Ans. Moment, —375 foot pounds; shear, —170 pounds.

2. A cantilever beam weighing 20 pounds per foot is fixed at the left end
and carries a concentrated load of 100 pounds at the right end. Find the
external moment and shear 4 feet from the right end. (Use portion to the
right of section as free body.)

Ans. Moment, —560 foot pounds; shear, 180 pounds.

3. A beam 12 feet long weighing 20 pounds per foot is supported at the
ends. Find the external moment and shear 2 feet from the left end, 2 feet
from the right end, and at the middle.

Ans. From left end. Foot-pounds moment. Pounds shear.
2 feet i 200 80
6 feet 360 4 0
10 feet 200 —80

4. A beam 20 feet long weighing 6 pounds per foot is supported at the ends
and carries a load of 80 pounds 6 feet from the left end. Find the moment
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and shear at 5 feet from the left end, at the middle, and at 5 feet from the
right end. Check results, using the portion to the right of the section.

Ans. From left end. Foot~-pounds moment. Pounds shear,
5 feet 505 86
10 feet 540 —24
15 feet 3 345 —54

5. A beam of length ! supported at the ends carries a load P at the
middle. Find the moment at the middle.
Bl

Ans. Moment at the middle, s

6. A beam of length [ supported at the ends carries a uniformly distributed
load of w pounds per unit length.” Find the moment at the middle, and the

1 2
shear at the middle. I % , 0.
7. A beam supported at the ends carries a uniformly distributed load W.
Find the moment at the middle. Wi
Ans. =

8. Find the moment at the fixed end of a cantilever of length I due to a
load P at the free end, also that due to a uniform load W. Ans. —Pl — Wi,
f Ll

2

44. Experiments Illustrating Moment and Shear. — In Fig.
64 we have a front elevation of a cantilever beam which has been

E | SHEAR TENSION
A IZ-zRESULTANT TENSION
N

D O B W=<_RESULTANT COMPRESSH!

Fig. 64. — Shear and Moment at Beam Section.

cut in two along a vertical plane. A chain A is attached at the
top connecting the two portions and a cylinder B is placed be-
tween them near the bottom. The chain exerts a pull in the
direction of its length and the cylinder exerts a horizontal push.
When the chain is horizontal the left portion of the beam is not
in equilibrium, as there is no resisting shear to oppose the external
shear. A second cylinder C' may take the place of this resisting
shear. If this cylinder C rests on a scale platform,.we may de-
termine the resisting shear by weighing. If the chain is horizon-
tal and the friction of the cylinder B is small, we find the resisting
shear equal to the weight of the portion of the beam to the left
of the section.
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If a spring balance is attached to the chain A, we may measure
the tension and compute the resisting moment. We find that
the moment of the tension in the chain about the axis of the
cylinder B is equal to the moment of the weight of the left por-
tion about the axis of the cylinder C. That is, the resisting
moment and the external moment are equal. If we move the
chain in a vertical plane about its left end, the load on the eylinder
C gradually decreases. In the position shown by the dotted line
the weight becomes zero. The entire vertical shear is now
carried by the vertical component of the pull on the chain. This
is the position in which the line of pull of the chain intersects the
horizontal line through B directly below the center of gravity
of the left portion of the beam. This is the condition of equi-
librium of three forces. In an actual beam there is tension in the
upper fibers. This tension has a component upward. The com-
pression in the lower fibers has also a component upward. We
learned in Article 31 that a shearing stress is equivalent to a
tensile and a compressive stress at right angles to each other and
45 degrees with the plane of shear. The real stress in the upper
fibers of any section of Fig. 64 is the resultant of the horizontal
tension and an inclined tension due to shear. In the same way
the compression below the middle may be regarded as made up
of a horizontal compression and an inclined compression due
to shear. This is shown diagrammatically at the section EF,
Fig. 64. .

Fig. 65 represents a beam supported near the ends. The
external moment is positive; hence the resisting moment is

H
(3] |
B

7 i domx\—:\—x% TR

Fig. 65.

counterclockwise. The horizontal force which acts across any
section from the right portion to the left must push at the top
and pull at the bottom; consequently we put the chain at the
bottom and the cylinder near the top.

The shear at a section near the left end is positive. The verti-
cal forces tend to move the left portion upward relatively to the
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right portion. To resist this shear without changing the end
reaction, we place the cylinder C' on the top of the left portion
and support the right portion by means of a small extension H
resting on C.

Fig. 66 represents another beam supported at the ends. In-
stead of a single chain under the middle of the section, we have a

i T e

Fig. 66.

pair of links pulling against pins in the front and back vertical
surfaces. Instead of the cylinder B, we have a prism of square
section, with edges in contact with the portions of the beam. If
we place this prism with its diagonal somewhat inclined to the
horizontal, we find one position of unstable equilibrium where it
will support both shear and compression.

PROBLEMS.

1. In a beam similar to Fig. 64, the portion to the left of the section is
3 feet long and weighs 16 pounds. The distance from the center of the cylinder
B to the chain A is 8 inches. What is the tension in the chain in pounds if the
ceylinder C is exactly under the end? Ans. 36 pounds.

2. In Problem 1, if the chain A is attached to the upper corner of the left
portion, at what angle should it be placed in order that there may be no load
on cylinder C? Ans. The angle with the horizontal whose tangent is §.

3. In Problem 1, if the chain is attached to a point in the upper surface at
a distance of 4 inches to the left of the right end of the portion, at what angle
should it be placed to the horizontal in order that there may be no load on C?

4. In Problem 1, replace cylinder B by a small square block with faces
parallel to the section, and remove cylinder C. What must be the coefficient
of friction between the block and the portions of the beam in order that the
friction will support the shear? Ans. 0.44.

5. In Problem 4, if the coefficient of friction is 0.4, what is the maximum
distance between the block and chain if the friction supports the shear?

6. A beam 6 feet long weighing 72 pounds is supported at the ends. The
beam is cut in two at the middle and supported by a pair of links and a.square
prism as shown in Fig. 66. If the vertical distdnce between the plane of the
links and the axis of the prism is 8 inches, find the total tension on the links.

Ans. 81 pounds.

7. The beam in Problem 6 is cut 2 feet from the left end. The tension

links are horizontal. What is the angle of inclination of the diagonal of the
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compression prism? (Solve by resolutions and moments, using the left portion
as a free body. Also solve by finding the resultant of the left reaction and the
weight of the 2 feet of beam, and the condition that the lines of the remaining
two forces intersect on this resultant.)

8. A uniform beam 10 feet long and 1 foot deep rests on supports each 2 feet
from the ends. The beam is cut in two at the middle and drops slightly till
the edges touch at the top. What must be the coefficient of friction at the
supports to hold it in this position?

45. Shear Diagrams. — It is convenient to represent the total
shear at all sections of a beam by means of curves called shear
diagrams. Fig. 67 is the shear diagram for Problem 3 of Article

| 20%#Per Foot
& 12—t

7/ Is! ?I lpl 1‘1, 1‘2f

=120
Fig. 67. — Shear Diagram for Distributed Load.

43. The end reactions are each 120 pounds. We begin at the
left support and take a section infinitely near the end. The
vertical reaction, R, is 120 pounds and the weight of the portion
is negligible. The vertical shear is 120 pounds. Accordingly,
we lay off an ordinate 120 units long, using some convenient scale.
We may now take points at 1-foot intervals on the beam and
compute the shear. At 1 foot from the end it is 100 pounds;
at 2 feet it is 80 pounds, etc. ~We notice that the curve which
joins these points is a straight line, since the ordinates have a
constant rate of change. All that is really necessary is to com-
pute the shear at the ends and connect the points by a straight
line. This straight line, together with the ordinates at the ends,
makes the shear diagram.

Fig. 68 is the shear diagram for a beam 10 feet long, supported
at the ends, with a uniform load due to its own weight of 60
pounds per foot and a concentrated load of 200 pounds, 3 feet
from the left end. By moments about the right support, we

.
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find the left reaction, R;, to be 440 pounds. By moments about
the left support, we find R, to be 360 pounds. The sum of these
reactions is equal to the total load, affording a check.

200 #
«—3g"
60% Per Foot
10'
R R
1o+ s

[t

(

260

|
: 60+
6————4’——“\J
]
[}
i
«360

Fig. 68. — Concentrated and Distributed Loads.

Infinitely close to the left support the shear is 440 pounds.
It drops 180 pounds in the first 3 feet and is 260 pounds infinitely
close to the load of 200 pounds. 1In a negligible distance in pass-
ing from the left side to the right side of the concentrated load it
drops an additional 200 pounds, so that it becomes 60 pounds
infinitely close to the load on the right side. Here the shear
diagram is a vertical line. Beyond the concentrated load the
shear drops at the rate of 60 pounds per foot for the remaining 7
feet, which brings it to —360 pounds infinitely close to the right
support. The reaction of 360 pounds raises it to the initial line.
The shear diagram crosses the zero or initial line 1 foot to the
right of the concentrated load, or 4 feet from the left support.

Notice that the shear diagram in Fig. 68 drops vertically downward under
the load of 200 pounds, and we speak of points as infinitely near the load on
either side. This would mean that the load is applied along a mathematical
line running across the beam. The actual surface of contactisa band of some
width running across the beam, and the actual shear diagram is something like
that represented by the dotted lines.
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PROBLEMS.

1. A uniform beam 15 feet long weighing 40 pounds per foot is supported
at the ends and carries a concentrated load of 360 pounds 3 feet from the left
end. Construct the shear diagram, using as abscissas 1 inch equals 2 feet of
length, and as ordinates 1 inch equals a shear of 100 pounds. Find the equa-
tion of the shear diagram on each side of the load.

Ans. S = 588 — 40¢z; S = 228 — 40 .

2. In Problem 1 find the position of zero shear from the equations.

3. A cantilever beam of uniform section, weighing 20 pounds per foot, is
fixed at the right end and projects 10 feet to the left. It carries a concen-
trated load of 80 pounds 3 feet from the free end. Construet the shear dia-
gram, using the scale of Problem 1. Find the equation of the two parts of
the line, taking the origin at the left end.

4. A beam 24 feet long, supported at the ends, carries a load of 4000 pounds
8 feet from the left end and a load of 5000 pounds 5 feet from the right end.
Construct the shear diagram to the scale 1 inch equals 4 feet of length and
1000 pounds shear. Neglect the weight of the beam.

—

II

s

Fig. 69. — Shear Diagrams.

Shear diagrams are usually made up of straight lines. These
lines are horizontal from one load to the other when the loads
are concentrated and the weight of the beam is neglected. ~With
uniformly distributed loads, the lines slope downward from left
to right. (With distributed loads pushing up, as in the bottom
of a boat due to the water pressure, the lines slope upward.)
Where loads are distributed not uniformly, as in the case of the
water pressure on a vertical dam, the shear diagram is curved.

The student should become sufficiently familiar with the
simpler shear diagrams to be able to recognize the character of
the loading at a glance. '



BEAMS 77

PROBLEM.

5. Describe the loading and the character of support which gives each of
the shear diagrams of Fig. 69.

46. Moment Diagrams. — Moment diagrams are constructed
in the same way as shear diagrams, using external moment as
ordinates. In this book we shall draw positive moment upward,
though many engineers prefer the opposite.

Shear diagrams are easily constructed, as they usually consist
of straight lines. Moment diagrams are curved, except when
the loading is made of concentrated loads only.

! i . Distributed Load 40 Per Foot
7 3 7 T T O T O O T T I

MOMENT DIAGRAM MOMENTS
Fig. 70. — Single Concentrated Fig. 71. — Uniformly Distributed
Load. Load.

Fig. 70 shows the shear and moment diagram for a beam sup-
ported at the ends and carrying a load P at the middle. The

weight of the beam is neglected. The end reactions are g . The

moment at any section at a distance x from the left end is %,
provided z is not greater than one-half of the length. Under the
load the moment is %l The moment diagram for the left half
of the beam is a straight line through the points (O, O) (ZQ: %)

Beyond the load, the moment is due to the reaction at the left
support turning clockwise minus that due to the load at the
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middle. At a distance = from the left end when x is greater than
l

27
2 (B S i i

This is also a straight line. Notice that the last of the three
expressions for moment is the one which we get directly, if we
use the portion to the right of the section as a free body. The

Moment=&—P( l)—Pl e

right reaction is g and the moment arm is I — z. The sign is

opposite, as it should be.

Fig. 71 gives the shear and moment diagrams for a beam
supported at the ends, with a uniformly distributed load. The
moment diagram is a parabola with the vertex at the top.

PROBLEMS.

1. With the data of Fig. 71, find the equation of the moment curve.

2. Find the equation of the moment curve of: a beam supported at the
ends, with a uniformly distributed load of w pounds per unit length.

wlx wa? wzx
Ans. M o ko ~-2—(l — ).

3. A beam 10 feet long is supported at the ends and carries a concentrated
load of 200 pounds 6 feet from the left end. Neglecting the weight of the
beam, construct the shear and moment diagrams to the scale 1 inch hori-
zontally equals 2 feet of length, 1 inch vertically equals 50 pounds shear and
100 foot pounds of moment. Derive the equation of each curve.

Ans. On the right of the load, S = —120 pounds; M = 1200—120z.

4. A beam of uniform section, 10 feet long, is supported at the ends. It
carries a uniform load, including its own weight, of 16 pounds per foot. Cal-
culate the moment for each foot and construct the shear and moment diagrams,
using the same scale as in Problem 3.

5. A beam 10 feet long, supported at the ends, carries a distributed load
equal to that of Problem 4, and a concentrated load equal to that of Problem 3.
Using the same scale as in those problems, construct the shear and moment
diagrams for the combined loadings.

It is best to construct the moment diagrams for the concentrated and dis-
tributed loads separately. Then combine the two by adding the ordinates
graphically. Fig. 72 shows the shear and moment diagrams for another beam
supported at the ends, with a uniform load and fwo concentrated loads. The
moment diagram for the concentrated loads consists of three straight lines.
To construct the moment diagram for the distributed loads, it is sufficient to
compute the moments for foot intervals for one side of the middle. The
resultant moment AD at the 2-foot position is the sum of the ordinates
AB and AC. With a scale or compass lay off from 5 the distance BD equal
to AC. This may be done for every half-foot interval cr less.
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6. From your curve of Problem 5 find the slope of the moment diagram
at 5 feet and at 6 feet. Find also the position of maximum moment and the

corresponding value of the shear.

60* Yot

3- 20% Per Fool b2l
.

400
= 360 b
i MOMENT OF y
3 300 COMBINED LOADS og0 300
D
@ 1”210 —"TIOMENT OF
% 200 IB 150 DISTRIBUTED LOAD 60 2001
2100 ; MOMENT OF 00.
o
- ' CONCENTRATED LOADS
2 A
T T T T

1] T T T T
ONESE VAR UAE gt (R IS 6 S SIS A 9110
MOMENT
Fig. 72. — Concentrated and Distributed Loads.

47. Relation of Moment and Shear. — Fig. 73 represents a
beam supported at the ends and carrying a concentrated load
P at a distance a from the left end and distributed load of w
per unit length. The reaction at the left support is ‘R;. Cal-
culating the moment at a section at a distance z from the left
end (where z is greater than a), we get:

2
M=Rlx—P(x—a)-—3"-2”i- 1)

Differentiating with respect to z, we get the derivative:

dM
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origin. Computmg the moment with respect to a section at a dlstance z to
the right of the origin: ;
wr

M=R(c+z)—Q@®+z)— Pl(x—al)—Pg(:c—ag)—* 6]
Differentiating:

The second member of (4) is the shear at the section, hence
£f =8. Formula V.
dx

Where there are several concentrated loads, such as P;, the moment equation
for points to the right of the origin for all points to the right of these loads may

be written:
M=Re+m)—-Q+2) - 2P E—a "% )

and the shear equation: ’

S=R—-Q—ZP — wz. 6)
There might be an infinite number of loads P, so that the equations apply

to any distribution whatever. Some of the concentrated loads may be negative.
Considering Fig. 73,

On the left of the load, On the right of the load,
2
M=Rlx—%2, M=Ra-% -P@-a
(Z‘l{— — wz, %—Rl—wx—P.
If we let z = a in each shear equation,
aM aM
dI =R — w a, —CE=R1—ura—P,

the shear just to the left of the load; the shear just to the right of the load.

PROBLEMS.

1. In Fig. 72 calculate %ﬂg for both equations at the point z equals 3 feet.

Compare results with the slope of the tangent to the curve and with the
ordinates of the shear diagram.
2. Solve Problem 1 for the 8-foot position.

48. Area of Shear Diagram Equals Moment. — Since
S = —; Sdxr=dM, and dex fdM M. Formula VI

In Fig. 75, I, Sdx is the area of a vertical strip of the shear
diagram of height S and width d». The integral of Sdr
between the limits O and z; is the area bounded by the shear
diagram, the X axis, and the ordinate at z;. The moment at
the point z; is the area of the shear diagram to the left of that
point. Similarly, the moment at z. is the area of the shaded
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PROBLEMS.

1. In Fig. 70, calculate the moment at the middle by means of the area of
the shear diagram. Find also the moment at one-fourth the length and at
three-fourths the length from the left end.

2. In Fig. 71, find the moment at 1 foot from the left end by means
of the area bounded by the shear line, the X axis, and the ordinates z = 0
and z = 1 foot. .

3. In Fig. 72, find the ordinates of the moment diagram at 3 feet and at
4 feet from the left end by means of the corresponding areas of the shear
diagram.

4. In Fig. 72, find the moment at 3 feet and the moment at 6 feet.

5. Without computing the moments at either position, show that the
moment at 2 feet, in Fig. 72, is 60 foot pounds less than that at 7 feet.

Since the area of the shear diagram to the left of any point
measures the moment at that point, and areas below the X axis
are regarded as negative, the moment has its greatest numerical
values at points where the shear is zero. This is true whether
the shear crosses the axis obliquely, giving a true mathematical
maximum or minimum, or crosses vertically under a concentrated
load or over a support. These points of zero shear are called the
dangerous sections in a beam.

PROBLEMS.

In the problems below, compute the moments by means of the shear diagram
and check by the moment equations.

6. A beam 12 feet long weighing 100 pounds per foot is supported at the
left end and 2 feet from the right end, and carries a load of 600 pounds 2 feet
from the left end. Calculate the moment under the concentrated load and
at the dangerous sections.

7. A beam 20 feet long, supported at the ends, carries a distributed load,
including its own weight, of 120 pounds per foot, and two concentrated loads,
600 pounds 4 feet from the left end and 720 pounds 5 feet from the right end.
Find the moment at the dangerous section and under each concentrated load.

Ans. At dangerous section, M = 9015 foot pounds.

8. A cantilever fixed at the right end projects 8 feet and carries a dis-
tributed load, including its own weight, of 60 pounds per foot and a load of
300 pounds 2 feet from the left end. Construct the moment and shear dia-
grams: 1 inch equals 1 foot; 1 inch equals 200 pounds shear; 1 inch equals
1000 foot pounds of moment. Where is the dangerous section?

9. A beam 14 feet long weighing 30 pounds per foot is supported 4 feet
from the left end and held in a horizontal position by a downward force at the
left end. Draw the shear and moment diagrams.

10. A cantilever beam weighing 20 pounds per foot is fixed at the left end
and projects 10 feet. Construct the moment and shear diagrams.

We must construct the shear diagram from the free end. We may also
begin at the right end to get the moment diagram. Or we may begin at the
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wall to get the moment, if we remember that there must be a negative shear
area ir the wall equal to the triangle outside. If the beam touches the wall
at two points A and B (Fig. 76), the problem is the same as that of Problem 9.

2007 SHEAR

Y~1000 Fool Pounds
Fig. 76. — Cantilever Fixed at Left End

The shear diagram is CDEF. If the contact is distributed, the shear diagram
is that shown by the dotted lines, and the dangerous section is at C’, a little
to the left of the face of the wall.

11. A beam is supported at the ends and carries two equal concentrated
loads at one-third the length from the left end and one-third the length from
the right end. Draw moment and shear diagrams, neglecting the weight of
the beam.

12. A beam 12 feet long is supported 3 feet from the ends. The total
load is 60 pounds per foot. Construct the shear and moment diagrams:
1 inch equals 2 feet length, 100 pounds shear, and 100 foot-pounds moment.



CHAPTER VI
STRESSES IN BEAMS.

49. Nature of Stresses.— In the experiments described in
Article 44, we found tension at the top of the cantilever beam
and compression at the bottom. With the beam supported
at the ends, we were obliged to put the chain below and the
cylinder above. In each case, the compression was at the con-
cave side and the tension at the convex side. At any section
in a bent beam the fibers in the convex side are elongated and
those in the econcave side are compressed. Between these,
there is a surface which remains unchanged in length. This is
called the neutral surface.

Fig. 77 represents a beam supported at the ends and bent by
its own weight or other loads between the supports. (The
amount of bending is exaggerated.) The points B, B’, C, C’,
lie on the neutral surface. The transverse lines joining B to
B’ and C to C’ are neutral axes for their respective sections.
Experiments show that a plane section such as EFG remains
plane when the beam is bent. In Fig. 77, the dotted lines
K'M’, M’N’ indicate the position, before the beam was bent,
of a plane section parallel to EFG. After bending, its position
with reference to EFG is shown by the plane KMN. The
change consists of a rotation of the plane KMN through an
angle A about the neutral axis CC’ from the position K'M'N’
to the position KMN. (There is also a slight vertical shift in
position, but this does not affect the problem.) If we consider
a portion of length Al extending from the plane EFG to the plane
KMN, we find that the fibers at the bottom are elongated an
amount equal to the distance from N’ to N, and those at the
top are shortened an amount equal to the distance from 3’ to
M. In the figure a filament of infinitesimal cross section d4 is
shown at a distance » above the neutral surface. This filament
is compressed an amount vA@ when the beam is bent. If v is
negative, the deformation becomes an elongation. .(We use v

to represent the distance of any element of area above the
85
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neutral surface, and reserve y to represent the deflection of the
beam from its original position.)

REACTION

dAl
v

NEUTRAL AXIS B

w,

SIDE ELEVATION FRONT ELEVATION
, 11 111
Fig. 77. — Deformation of a Bent Beam.

To get some idea of the magnitude of the quantities involved,
let us consider Fig. 78. This represents a beam 6 inches wide and
8 inches deep, and about 7 feet long, supported at two points
about 80 inches apart. An extensometer (not shown) is attached
at two points, F and M, 40 inches apart and 1 inch below the
top of the beam. A second extensometer is attached at G and
N, 1inch from the bottom. Two loads of 4000 pounds each are
applied 16 inches from the supports. If the beam is made of

4000 # 4000#

ar | ol | =i
| e 48 —16"—]
FT T4 ais 77
Gl LN

Iz, , ol
Fig. 78.

timber, the deflection at the middle is about 0.08 inch. (This
deflection is too small to show in the drawing unless the scale
is exaggerated.) The upper extensometer shows a shortening
of about 0.0180 inch in the original length of 40 inches, and the
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lower extensometer shows an equal elongation. If the tension
and compression are exactly equal, the neutral surface is mid-
way between the extensometers. If the readings are unequal, the
location of the neutral surface may be found from the similar
triangles, such as MCM’, NCN’ (Fig. 77), with MM’ and NN’
known from the extensometer readings, and the distance between
the instruments equal to MN. In case the readings are each
0.0180 inch, showing that the neutral axis is at the middle of
the section, 4 inches from the top, the compression in the top
fibers is four-thirds as great as at M. The compression at 1 inch
from the neutral surface is 0.0060 inch; and at a distance v it is
0.0060 ». The unit deformation at a distance » from the neutral
axis is 0.00015 .

PROBLEMS.

1. A beam is tested as shown in Fig. 78. The points F and M are 40 inches
apart and 6 inches above the similar points G and N. The compression read-
ing on the upper instrument is 0.0198 inch, and the extension on the lower
instrument is the same. What is the unit stress 4 inches above and 4 inches
below the neutral surface, if E equals 1,500,000 pounds per square inch?

Ans. 990 pounds per square inch.

2. In Problem 1, what is the unit stress at a distance unity and at a distance
v from the neutral surface?

3. In a case similar to Problem 1, the upper instrument shows a com-
pression of 0.0140 inch and the lower instrument an extension of 0.0160 inch.
If the beam is 8 inches deep how far is the neutral surface from the top surface?
What is the unit stress at the top and at the bottom of the beam?

Ans. 3.8 inches from the top; s equals 0.000475 E..

50. Relation of Moment to Stress. — In Fig. 77, let Al
represent the original distance between the planes EFG and
K'M’N’. This is the distance BC in the figure. Consider a
filament of cross section dA connecting these planes at a distance
v above the neutral surface. The cross section of this filament
may be of infinitesimal dimensions in both directions, as in Fig. 77,
or it may be of infinitesimal height dv and extend the entire
width of the beam. If this filament is above the neutral axis
(in a beam concave upwards), it is shortened an amount »A#,
and if it is below fhe neutral axis it is lengthened »A8-when the
beam is bent. The unit deformation, being the ratio of the total
deformation to the original length, is: -

vAQ
é= T 1)
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The unit stress in a filament is the product of the unit deforma-
tion by the modulus of elasticity:

s=Ev—A—0

A5 @
The total stress on a filament of area d4 is the product of the
unit stress by the area:
total stress on dA = Ev%qldA. 3)
The moment of this stress with respect to the neutral axis BB’
is the product of the total stress on dA by the moment arm v;
moment of stress about axis = Evz%la dA = E %—lev“’dA =dM. 4)
The total moment of all the filaments which make up the
beam is the integral of dM over the section EFG. Integrating

over this area, %remains constant and

M =22 e e w T ®)

Al Jo, Al
where v;, v, are the distances of the lower and upper surfaces of
the beam from the neutral surface, I is the moment of inertia of
the cross section EFG or KMN with respect to its neutral axis,
and A6 is the change in slope of the normal to the beam, or the
change in slope of the tangent to the beam, in the length Al.

51. Unit Stress in the Outer Fibers. — The extreme upper
and lower fibers in a beam which is bent in a vertical plane
suffer the greatest deformations and are subjected to the great-
est stress. The allowable unit stress in these fibers determines
the load which the beam can safely carry.

The unit stress in any fiber at a distance » from the neutral
axis is:

Af

s=FE L
Af s
_ Ba=s
Substituting in equation (5) of Article 50,
M= %, Formula VII.
My

e LA e Formula VIII.
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s is the unit stress at a distance » from the neutral axis. In
Fig. 77, s is positive (compression) when v is positive, and s
is negative (tension) when v is negative. When » becomes vs,
Formula VIII gives the unit stress in the outer (top) fibers.
In these equations, M is the resisting moment of all the fibers
and is equal to the external moment. Notice in Fig. 77 that
the compression in the top fibers and the tension in the bottom
fibers at the section EFG both turn counterclockwise about the
axis BB; the resisting moment is negative and the external mo-
ment is positive.

Notice that this discussion assumes that the modulus of elas-
ticity is constant for all stresses used and is the same in com-
pression and in tension.

The theory of Articles 50 and 51 may be given more briefly. Let & be the

unit stress at unit distance from the neutral axis. At a distance v from the
neutral axis, *

s = kv, (2)
On an increment of area dA4,
total stress = kvdA. 3)
The moment of this total stress with respect to the neutral axis is
dM = total stress on dA multiplied by v = k?dA4, @
which is positive for all values of v when £ is positive and vice versa.
M = [Trdd = kI, ®)
If s; is the unit stress at a distance »; from the neutral axis s; = kuv,,
S48 -
b= ©)
Substituting (6) in (5):
S

Formula VII.
U1

While Formula VIII may be obtained at once from VII, they
are of such importance that both ol R
should be memorized.

52. Location of the Neutral vl CE
Axis. — We have yet to obtain 5
the position of the neutral axis. IRE
To do this, we make use of the G
fact that the total tensile stress
across the section EFG below Fig. 79.

the neutral axis is equal to
the total compressive stress above the neutral axis.
Consider Fig. 79, a horizontal cantilever. Take the forces
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which act on the portion on the left of the section EFG, and re-
solve horizontally. Since the external force has no horizontal
component, the only forces to be considered are the internal
forces at the section. The portion is in equilibrium, hence the
total compressive force across the section below the neutral axis
must equal the total tensile force across the section above the
axis.

Stress on d4 = kv dA, (1)
which has the same sign as k& when v is positive and the opposite
sign when » is negative.

Total stress on entire section = k f vdA = 0; (2)
k is not zero when the beam is bent, hence
f v dA must equal zero. 3)

In Mechanics we learned that the position of the center of gravity
of a plane area is given by

fydA

A
74 = [vdA. 4
The second member of equation (4) is zero, hence
vA = 0.
Since A is not zero
i=a(0)s

The neutral axis in a beam of any section passes through the
center of gravity of the section.

This is on the assumption that the modulus of elasticity is constant for all
stresses used, and is the same in compression and tension. Where the beam
is stressed beyond the elastic limit, this is not strictly true. Since working
loads should be well within the elastic limit, these results are strictly correct
in well-designed structures.

PROBLEMS.

1. A beam 4 inches wide, 6 inches deep, and 10 feet long is supported at
the ends. Find the unit stress in the top and bottom fibers at the middle of
its length due to a load of 400 pounds at the middle.

The moment at the middle is 1000 foot pounds. The moment of inertia

of the cross section with respect to the neutral axis is 72 inches*. % equals

24 inches? for both top and bottom fibers. The external moment and ;I) must
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be expressed in the same units. Since we express stress in pounds per square
inch, we reduce the moment to inch pounds to use in Formula VIII.
Ans. s = 500 pounds per square inch.
2. A beam 6 inches wide, 8 inches high, and 15 feet long is supported at
the ends and carries a uniformly distributed load, including its own weight,
of 160 pounds per foot. Find the maximum moment in inch pounds and the
maximum fiber stress.
Ans. Maximum fiber stress, 844 pounds per square inch.
3. A 10-inch 25-pound I-beam is supported at two points 13 feet 4 inches
apart and carries a load of 6000 pounds midway between the supports. Neg-
lecting the weight of the beam, find the maximum fiber stress under the load.
(See Cambria for the moment of inertia of I-beams.)
Ans. 9830 pounds per square inch.

53. Section Modulus. — The expression g ,where v is the dis-

| tance to the extreme outer fiber, is used so often that it is con-
venient to give it a name. It is called the sectton modulus, or
modulus of the section. Formula VIII becomes

external moment
section modulus

The value of the section modulus for I-beams and channels is
given in Cambria in column 8 of the properties of these shapes.
It is convenient to know the section modulus of a rectangular
section. If the breadth is b and the depth is d, the moment of

unit stress in extreme fibers =

: ¢
inertia is I—)fl—, and v is Q; hence the modulus of the section is:

12 %
2
I = Il(—i— Formula IX.
v 6
PROBLEMS.

1. How much stronger is a beam 6 inches wide and 8 inches deep, than a
beam of the same material 4 in¢hes wide and 6 inches deep? Ans. 8 : 3.

2. Compare the strength of a 4-inch by 6-inch beam with the 6-inch side
vertical, with that of the same beam with the 4-inch side vertical.

3. Show that the ratio of the strength of a beam of rectangular section
with the side b vertical to its strength with the side d vertical is 2

4. A 4-inch by 6-inch cantilever projects 6 feet from a wall and carries a
distributed load of 40 pounds per foot and a load, P, 3 feet from the free end.
What is the maximum value of P if the fiber stress shall not exceed 1000
pounds per square inch? Ans. 427 pounds.

(In giving dimensions, horizontal are given first. A 4-inch by 6-inch beam
is 4 inches wide and 6 inches deep.)
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5. Find the I-beam for a span of 15 feet with a uniformly distributed load,
including the weight of the beam, of 600 pounds per foot, and a load of 4000
pounds at the middle, with allowable stress 13,500.

Ans. The section modulus is 28.3. Use a 10-inch 35-pound I-beam,
or a 12-inch 31.5-pound I-beam. The latter is cheaper and stronger, and
should be used unless the 2 inches of head room is important.

6. A 15-inch 45-pound I-beam, supported at the ends, is used for a 20-foot
span to carry a uniformly distributed load, including its own weight, of 500
pounds per foot, and a load of 3000 pounds 4 feet from the left support.
Find the maximum fiber stress. Ans. 6189 pounds per square inch.

7. Find the I-beam for a span of 20 feet to carry a uniformly distributed
load, inclusive of its own weight, of 600 pounds per foot and two concentrated
loads, 2000 pounds 3 feet from the left support and 3000 pounds 4 feet from
the right support, if the allowable unit stress is 12,500 pounds per square inch.

Ans. A 12-inch 35 pound I-beam.

8. A wooden beam is used for a span of 12 feet 6 inches to carry a load of
4000 pounds at the middle. If the breadth of the beam is 8 inches and the
allowable working stress is 1000 pounds per square inch, what is the minimum
depth?

9. A yellow-pine beam 6 inches wide, 10 inches deep, and 20 feet long is
supported at the left end and 4 feet from the right end and carries a distributed
load, including its own weight, of 120 pounds per foot and two concentrated
loads, 1200 pounds 2 feet from the left end and 400 pounds at the right end.
Construct the shear diagram. Find the moment at each dangerous section,
and the maximum fiber stress.

Ans. Maximum fiber stress, 499 pounds per square inch.

10. In Problem 9 there is a point between the first dangerous section and
the right support at which the moment is zero. Find this position by writing
the moment equation in terms of the distance from the left end and equating
to zero. Solve also by means of the shear diagram, making use of the fact
that the area of the shear diagram between the point to be found and the
first dangerous section is equal to the area to the left of this dangerous
section. '

11. Using New York building laws, calculate the maximum allowable load,
uniformly distributed, on a 2-inch by 12-inch floor joist of long-leaf yellow pine,
of 16 feet 8 inches span. Ans. 2304 pounds, 138 pounds per foot.

12. If the weight of the joist, flooring, and plastering, in Problem 11, is
20 pounds per square foot, is the construction allowable for a school building
with joists spaced 12 inches center to center?

13. Find the maximum span, according to New York building laws, for
a 2-inch by 10-inch long-leaf yellow-pine joist supporting a distributed load,
including its own weight, of 120 pounds per foot. Ans. 14.9 feet.

14. What is the maximum span for a 20-inch 65-pound I-beam supporting
a uniformly distributed load, including its own weight, of 1500 pounds per foot,
if the allowable unit stress is 13,500 pounds per square inch?

Ans. 26 feet 6 inches.

15. Determine the moment of inertia of a circular section of radius a, and
show that the section modulus is 7%3 .

16. What is the section modulus of a 6-inch square with the diagonal ver-
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tical? How does it compare with the section modulus of the same section
with one side vertical? . Ans. Section modulus, 25.45; ratio, 1 : V/2.

17. A square section with diagonal vertical has its section modulus in-
creased by chamfering the top and bottom corners. What must be the
dimensions of the triangular sections cut away, in terms of the side of the
square, to make the section modulus a maximum?

18. A wooden box girder is made of two 2-inch by 12-inch planks and two
2-inch by 8-inch planks. What is the section modulus when these are united
to form a girder of square section? Ans. 231 inches?.

19. A box girder is made of two 10-inch 15-pound channels and two 12-
inch by 3-inch plates. What is the section modulus with the channels verti-
cal? (Take I of channels from table in Cambria.)

20. A 6-inch by 8-inch cantilever 10 feet long is placed with its 8-inch
faces 30 degrees to the vertical and a load of 200 pounds applied at the free
end. Find the maximum fiber stress at the corners.

Ans. 574.7 pounds per square inch.

Resolve the force or the moment perpendicular and parallel to the principal
axes of inertia. Find unit stress separately and add.

54. Graphic Representation of Stress Distribution. — The
unit stress in a beam, provided it does not exceed the elastic
limit, varies as the distance from the neutral axis. It may be
represented by the straight line EF of Fig. 80. This straight

F c
G
———7_dA
N M d
= v =
4 o
NEUTRAL/\ AXIS
b ——> :
SECTION OF BEAM =
1 B L © 10d
Fig. 80.— Variation of Stress in Sec-  Fig. 81. — Stress Distribution in a
tion. 3 Rectangular Section.

line is really a part of the straight-line portion of the stress
diagram for both tension and compression, while the vertical
line BC is the X axis. If the stress is carried beyond the elastic
limit, the dotted line G H represents its distribution in the beam.

In a beam of rectangular section, the total stress on any area
dA, extending across the section, is proportional to the unit
stress. The shaded area of Fig. 80 may represent the total
stress in a rectangular section as well as the unit stress in a sec-
tion of any form. It is often convenient to represent total stress
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in a rectangular section by a figure similar to the shaded area in
Fig. 81. This is really the same as Fig. 80 with oblique axes.
The line FC represents the breadth of the section and also the
total stress in the extreme outer fibers. It is evident, from the
similar triangles, that the total stress on the area dA4, extending
across the section at a distance » from the neutral axis, will be to
the total stress at the top, as the length M N is to the length FC.
The actual stress over the entire section is equal to a uniform
stress of intensity equal to that in the outer fibers over the shaded
area. If the cross section is drawn to full scale, the area of the
shaded triangle OFC gives the total stress above the neutral sur-
face when the maximum stress is 1 pound per square inch. Like-
wise, the area O BG gives the total stress below the neutral surface.
These triangular areas are equal in magnitude and opposite in
sign, making the sum of the total stress zero.

The section modulus of a rectangular section may be computed
from these diagrams. The area of the triangle OFC is'%f—l- A
uniform stress of intensity unity over the entire triangle would

have a resultant i at the center of gravity of the triangle. The

4
moment of the upper half with respect to the neutral axis is
bd d _ bd?
ARE 3 a2 ;

The moment of the lower half is the same and rotates in the same
direction (since both stress and moment arm change signs).

o ,
The total moment is l% -

When the unit stress in the outer fibers is s instead of unity
sbd?

.

We will now draw the stress distribution for an I-beam section.
This diagram for the rectangular portion of the flange is drawn
like Fig. 81. Now take a small area dA, Fig. 82, in the web.
The total stress in this area is to the total stress in a similar area
JK at the top as the distance of dA from the neutral axis is to the
distance of J K from this axis. To get the total stress on d4,
we first project its length on the upper surface to locate the points
JK. Then draw straight lines from the center O to J and K.

total moment =
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The part of dA between these lines represents the total stress.
To get the stress on the triangular portion of the flange, consider
the portion ST drawn (for convenience) in the lower flange.
Project S and 7 on the lower line and connect the center O with
the points thus found by means of the dotted lines. The portion
S'T’ between these lines measures the total stress. A number
of these lines will give the curved area required.

NEUTRAL AXiS

1l
1 1A
\
\
[}
!
i
!
!
!
/
!

e, by
s/ TI
Fig. 82. — Stress Distribution
in an I-beam.

L

Fig. 83. — Distribution in a
T-section.

Fig. 83 is the stress distribution in a T shaped section. The
lower portion is constructed like Fig. 81. The outer fibers at
the top are nearer the neutral axis than those at the bottom.
Instead of projecting on the upper line of the section, we project
on a line CF whose distance from the neutral axis is the same as
the lower fibers. The total stress in this diagram is expressed
in terms of the unit stress in the bottom fibers. We might
express the total stress in terms of the unit stress in the top
fibers. In that case the lower part of the diagram would extend

beyond the section to the right and left.

PROBLEMS.

1. Construct the stress-distribution diagram for a 6-inch by 4-inch by 1-inch

angle section, using neutral axis parallel to shorter leg.
2. A beam 12 inches deep is constructed of one 12-inch by }-inch plate and
four 4-inch by 3-inch by }-inch angles with shorter legs parallel to the plate.

Construct the stress-distribution diagram.
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3. Construct the stress-distribution diagram for a 6-inch by 8-inch rectan-
gular section with the 6-inch side horizontal. Calculate from the diagram
the total stress in the upper strip 1 inch high and 6 inches wide as compared
with the total stress in a similar strip touching the neutral axis.

55. Stress Beyond the Elastic Limit. — In Fig. 85 the shaded
area shows the distribution of stress in a rectangular section,
when the stress is considerably beyond the elastic limit. The
actual stress in the outer fibers is less than it would be if the
modulus were constant in the ratio of the lengths CH: CF.
The moment of resistance is also less.

1 . GIE
Fig. 84. — Distribu- Fig. 85. Fig. 86. — Rectangular Section Be-
tion in an Angle yond the Elastic Limit.
Section.

Fig. 86 represents the stress distribution when the elastic
limit is exceeded as compared with a beam of constant modulus
having the same resisting moment. The moment of the curved
area OMKHC must equal the moment of the triangular area
OFC. From the center of the section to the point K the curve
lies outside of the straight line. Beyond K it is inside. The
unit stress in the fibers near the neutral surface is greater than
if the modulus were constant; and the unit stress in the outer
fibers is less. The moment of the dotted area OMK (or the
shaded area ONL) is equal to that of the area KFH or LGE.

56. Modulus of Rupture. — When a beam is broken by bend-
ing, the stress-distribution diagram for a rectangular section,
OMKH (Fig. 86), is similar to the complete tension or compres-
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sion curve of the material. The actual unit stress in the outer
fibers is less than that obtained from the equation

e # Formula VIII.

in the ratio of CH:CF (Fig. 86.) The calculated value of the
stress in the outer fibers computed from Formula VIII is called
the modulus of rupture, or the transverse ultimate strength of the
material. It is also called the extreme fiber stress in bending.

While the modulus of rupture does not give the actual stress,
it enables us to compare stresses in similar sections. If the
modulus of rupture is obtained from the test of beams of rec-
tangular section, this figure may be used in computing the ulti-
mate transverse load in other beams of rectangular section made
of the same material. The results may also be used with little
error for beams of other shapes, provided they are symmetrical
with respect to the neutral axis. With unsymmetrical sections,
such as angles, it is better to make tests and obtain the modulus
of rupture for each shape.

The student will remember, however, that these statements
apply to the stress beyond the elastic limit. Sinece allowable
stresses are below the elastic limit, Formula VIII is strictly
correct for allowable loads. The change in the stress-distribu-
tion diagram when the stress passes the elastic limit affects the
factor of safety only.

Ductile materials, such as soft steel, have no modulus of
rupture, strictly speaking, since beams of such material may be
bent double without breaking.

PROBLEMS.

1. A white-pine beam 1.78 inches wide and 1.25 inches thick was supported
at two points 12 inches apart and broken by a load at the middle. The total
load at rupture was 1112 pounds. Find the modulus of rupture.

Ans. 7200 pounds per square inch.

2. If white pine of quality equal to that of Problem 1 is used in the form
of a 4-inch by 4-inch beam to carry a load of 700 pounds midway between two
supports 6 feet apart, what is the factor of safety?

3. A rectangular bar of cast iron 1.04 inches wide and 0.80 inch thick is
placed on two supports 12 inches apart and broken by a load of 1635 pounds
at the middle. What should be the allowable working stress in this cast iron
in beams of rectangular section with a factor of safety of 10?

Ans. 4400 pounds per square inch.
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4." A beam of short-leaf yellow pine, tested by Prof. A. N. Talbot at the

" University of Illinois, had the following dimensions: kreadth, 7.12 inches;
depth, 16.25 inches; distance between supports, 13 feet 6 inches. Two equal
loads were appliedat points 4 feet 6 inches from the supports, making the
bending moment constant and the shear zero between these points (if the
weight of the beam is neglected). The beam broke by tension in the outer
fibers between the loads when each load was 27,500 pounds. Find the modulus
of rupture. . Ans. 4739 pounds per square inch,

5. A beam of long-leaf yellow pine 7.0 inches wide and 14.0 inches deep,
supported and loaded as in Problem 4, broke under a fotal load of 37,300
pounds. What was the ultimate bending strength of this timber?

Ans. 4400 pounds per square inch.

6. A second beam of long-leaf yellow pine 7.0 inches by 12.1 inches, sup-
ported and loaded as above, broke under a total load of 52,900 pounds. What
was the ultimate bending strength of this timber?

Ans. 8362 pounds per square inch.

Problems 4, 5, and 6 are from Bulletin 41 of the University of Illinois
Engineering Experiment Station.

7. A 5-inch by 6-inch beam of 1:2 :4 concrete, placed on supports 32
inches apart, was broken by a load of 1300 pounds midway between the sup~
ports. Neglecting the weight of the beam, find the modulus of rupture.

Ans. 347 pounds per square inch.



CHAPTER VII.

DEFLECTION IN BEAMS.

57. _Deﬁection and Moment. — In Article 50, equation (5),

we have:

Af de
M= BEI% =EI% 1)

for infinitesimal lengths dl, measured along the neutral surface
of the bent beam. The angle df is the change in slope of the
tangent to the neutral surface in the length dl. We will now
determme the relation existing between the moment and the
deflection of the beam from its original form. This is expecially
easy in polar coordinates. The lines FG and MN, of Figs. 87

Fig. 87. — Curvature of Beam.

and 77, make an angle df with each other (when Al becomes dl),
and intersect at some point beyond the drawing, at a distance p
from the neutral surface. This distance p is the radius of curva-
ture of the neutral surface.

By geometry:

pdf = dI, 2
de 1
Tl £
Substituting in (1),
M _1 M= EI 1
El ™ o p

If M is constant, or if I varies as M, p is constant, and the curve
of the beam is an arc of a circle which may be computed by

trigonometry.
99
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PROBLEMS.

1. A 3-inch by 1-inch steel beam 10 feet lgng rests on two supports each
30 inches from the ends and carries a load of 200 pounds on each end. Neg-
lecting the weight of the beam, what is the bending moment at the supports?
If the modulus of elasticity is 30,000,000, what. is the radius of curvature?
How much is the beam deflected upward at the middle?

Moment, 6000 inch pounds;
Ans. { Radius of curvature, 1250 inches;
Deflection at the middle, 0.36 inch.

SuaaesTioN. — With the radius of curvature known, calculate the angle in
radians subtended by half the span. The versed sine of this angle multiplied
by the radius of curvature is the deflection at the middle. As ordinary tables
are of little value for such small angles, it is recommended that the student use
the first two terms of the cosine series to get this versed sine. (See trigonom-
etry for series or develop by Maclaurin’s formula.)

2. In Problem 5 of Article 56, if E is 1,500,000, what was the radius of
curvature when the total load was 30,000 pounds?

200 ¥

Fig. 88.

58. Deflection in Rectangular Coodrdinates. — To express the
value of %17 in rectangular coordinates, we must determine %% in
terms of x and y and their derivatives. Let z express distance
parallel to the unbent beam and y express deflection of the beam
from its original position. These distances are usually measured
along the neutral surface. The angle § may be measured from
any fixed line. For convenience of calculation, we will measure
6 from a line parallel to the X axis. The angle 6 is then the
angle which the tangent to the curved beam makes with the
original direction of the beam. It is the angle through which
the tangent to the beam at any point is turned when the beam is
bent.

Fig. 89 shows a beam supported at the ends and bent. The
lower figure represents the neutral axis with the vertical deflection
exaggerated. The origin is taken at the left support, and z is
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In beams, as used in engineering practice, the deflections
allowed are small, and Z—g is usually so small compared with unity

that it may be dropped from the denominator of equation (5).

2
It seldom happens that %is greater than 0.01. This makes (Z—Z)
not greater than 0.0001, and the error in dropping it entirely from
the denominator is not more than one part in 7000. Equation
(5) then becomes:

2
M= m1y. Formula X.

Formula X is the differential equation which enables us to
calculate the deflection of a beam or column. The X axis must

be parallel to the direction of the unbent beam and%must be so

small that its square is negligible compared with unity.

To determine the deflection of a beam, we must solve this dif-
ferential equation for y in terms of x and the constants. Where
E and I are constant this means that we must express M in terms
of z and y and solve. When all;the loads are vertical and the
beam horizontal, or in general, when all loads and reactions are
perpendicular to the unbent beam, M may be expressed in terms
of z alone. Our problem then is to solve a differential equation
of the second order and first degree of the form

%;% = function of z.

To solve this we merely integrate twice. There are two constants
of integration which must be determined from the conditions of
the problem. There are two things to be done in solving these
problems. The first is to write an expression for the moment at
any point in terms of 2 and the known loads and reactions. The
second is to determine two conditions from which the two inte-
gration constants may be evaluated.

59. Beam Supported at Two Points; Moment Constant.—
This is the case shown in Fig. 90. A beam rests on two supports
at a distance [ apart, overhangs these supports, and carries loads
on the free ends which make the moment at each support the
same (Pc = Qe). Let M be the value of this moment. If the
weight of the beam is neglected, the moment is eonstant through-
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out the span of length [ from one support to the other. We will
consider this portion only. Remembering that the sign of the
moment is negative and substituting in Formula X:

RTE
EI b 3 1)
Integrating:
dy _
Eld——x =—Mz 4 C,. )
Integrating again:
Mz?
Q

g
L—-c—><—ft——)J le—e—>
Bk |

tul

Yy
[ T €

I l 1
Fig. 90. — Beam with Constant Moment.

To obtain the constants C; and C,, we have the condition that
y = 0 at the left support where z = 0. Substituting in equation
(3), we get:

C,=0;

2
Ely =— _Mz_x + Cix. (4)

Equation (4) is true for all values of z for which the moment is
.—M. It is true at the right support, where z = [ and y = 0.

Substituting in (4):
Mi

M1?
0=—'—2~—+Cll, Cl=—2—'
Substituting this value of C; in equation (4), we get:

Mz? | Mlx

EIy=—--—2—+ 2 ’ (5)

M M
Yy =—-2——E—T(x2—lx) =m(l$—x2) (6)

Equation (6), which gives the value of y in terms of x and the
constants EI and M, for all values of x between the supports, is
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called the equation of the elastic line of the beam between these

points. To find the position of maximum deflection, let L g 0

dx
in equation (2). After substituting the value of C}, we get:
-t
dx  EI\2 y
dy =0 when z=_,
dx

hence the point of maximum deflection is at the middle of the
span. Substituting in (6), to get the maximum deflection at the
middle:

Miz
Ymax = SEI (7)

It is evident that if the loads P and @ are equal and the lengths ¢ and
e are equal, the beam would be symmetrical with respect to the middle of
the span; and that this point would be the position of maximum deflection.
In that case we could set Z—Z equal to 0 when z equals %in equation (2) and
solve for C; before integrating the second time. If P and @ are not equal, but
the products
Pc = Qe,

the symmetry is not so self-evident, and it is safer to obtain the constants as
we have done. ]

PROBLEMS.

1. Show that the deflection for all parts of the span is positive.

2. Apply equation (7) to Problem 1 of Article 57.

3. Apply equation (6) to the above problem to find the deflection at 10
inches, 20 inches, and 40 inches from the left support. .

Ans. a5 y
10 inches. 0.20 inch.
20 ¢ 032 ¢
40 « 032 «

4. In the above problem find the slope of the tangent at either support,
2
and find how much 1 + (%) differs from unity.

Ans. 0.024, —0.024, 0.000576.

5. A 4-inch by 4-inch wooden beam 12 feet long is supported 4 feet from

the left end and 3 feet from the right end. A load of 150 pounds is placed on

the left end and a load of 200 pounds on the right end. A point midway
between the supports rises 0.112 inch when the loads are applied. Find E.

Ans. 1,350,000 pounds per square inch.

60. Cantilever Beam with Load on the Free End.— Fig. 91
represents a cantilever beam fixed at the right end and loaded
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PROBLEMS.

1. A wooden cantilever 6 inches square and 10 feet long is deflected 0.64
inch at the end by a load of 180 pounds at the end. Find E and maximum
fiber stress. :
Ans. E, 1,500,000; maximum stress, 600 pounds per square inch.

2. In Problem 1 what is the deflection 3 feet from the free end?

: Ans. 0.36 inch.

3. A cantilever beam 8 feet 4 inches long is deflected 0.2 inch at the end
by a load at the end. What is the deflection 30 inches from the free end?

4. A 4-inch by 4-inch wooden cantilever 10 feet long is deflected 1 inch at
the end by a load at the end. If E equals 1,200,000 pounds per square inch,
what is the maximum fiber stress?

5. A 10-inch I-beam, as a cantilever 8 feet long, is deflected 0.35 inch at
the end by a load at the end. If E is 29,000,000, find the maximum fiber
stress. Ans. 16,520 pounds per square inch.

6. If the allowable fiber stress in a wooden beam is 1000 pounds per square
inch and the modulus of elasticity is 1,500,000, derive the expression for the
deflection at the end of a cantilever of length [ and depth d due to the maximum
allowable load at the end.

7. A cantilever of length @ + ¢ has a load P at a distance a from the fixed
end. Find the deflection under the load and at the free end.

8. A cantilever of length a + ¢ has a load P at the free end. Find the
deflection at a distance ¢ from the free end.

61. Cantilever with Uniformly Distributed Load. — Fig. 92
represents a cantilever with a uniformly distributed load. We

w Pounds Per Unit Length
T T T T T A T

g I~z

o~

Wmas
55

{
|

Fig. 92. — Cantilever with Uniformly Distributed Load.

have drawn this cantilever fixed at the left, and taken the origin
at the wall. To determine the moment, we use the free end of
length I — z to the right of the section at a distance x from the
origin. If w is the load per unit length, the weight of this free

portion is w (I — z). Its moment arm is 5

M = —w—gl—Tx)—zq
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The sign is negative, since the moment with which the left
portion tends to turn the right portion is counterclockwise (or
the beam is convex upward).

dy _ w(—2)?

BIgY - -2 1)
d w(l —x)3
Ezd—g=—(6—x)+cl. ¢)

At the wall, where z = 0, d—g =.0;

3
,0=%+Cl; (3)
dy w(l —z)® wlp
Ha=""% ~& @)
w(l —x)t wlizx
Ely = — (24 ufP: 6 + C.. (5)
Atz =0,y =
wlt .
Cz=—271: (6)
= 4 3. 4
EIy=—w(l x) _wlx_*_wl' 1)

24 6 24

The maximum deflection is at the point where z = I;

wit Wi
Ymax = — SEI ~ "3 EI Formula XTII.

where W = wl, the total distributed load.

We stated that the maximum deflection is at the poiht where ¢ = 1. This
is not a ma}hematical maximum, where the slope of the tangent is zero. It
is a numerical maximum because the beam ends at this point. The curves
considered in the Galeulus are of indefinite extent.

PROBLEMS.

1. What is the deflection at the end of a 6-inch by 6-inch cantilever 12 feet
long due to a distributed load of 40 pounds per foot, if ¥ is 1,200,000, and
what is the maximum fiber stress?

A { Deflection at free end, 1.38 inches;
* ! Fiber stress at wall, 960 pounds per square inch.

2. If the allowable fiber stress in a wooden beam is 1000 pounds per square
inch and the modulus of elasticity is 1,500,000, derive the expression for the
deflection at the end of a cantilever of length I and depth d due to uniformly
distributed load which develops the allowable stress.
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3. How does the deflection of a cantilever with a uniformly distributed
load compare with the deflection of a cantilever with a concentrated load at
the free end, if the fiber stress is the same in both cases?

4. Expand equation (1) and integrate to get the equation of the elastic
line. Then expand equation (7) and compare the results.

5. Take a cantilever fixed at the right end as in Fig. 91, with a uniformly
distributed load of w per unit length. With the origin at the free end as in
Fig. 91, write the differential equation and solve for the equation of the elastic
line. Compare the resulting equation with (7) for points at the free end, at
the middle, and at a distance ¢ from the free end.

6. What is the total deflection of a wooden beam 8 inches wide, 6 inches
deep, as a cantilever 8 feet 4 inches long, due to a distributed load of 84 pounds
per foot and a load of 350 pounds at the free end, if £ is 1,400,000? What is
the maximum fiber stress? What is the factor of safety if the beam is white
oak? i Ans. Deflection at the end, 1.01 inches.

62. Beam Supported at the Ends, Uniformly Loaded. — In a
beam supported at the ends and uniformly loaded, the end reac-
tions are each equal to one-half of the total load,

W wl
s g T
B w Pounds Per Unit Length
IFERRNANENEE TN RN EAEEEREE,
T—— 3
1=%l Rf%l

Fig. 93. — Supports at Ends, Load Uniformly Distributed.

The moment at a distance x from the left support is
vz _ wet

o 120
and the differential equation becomes:

i e S @
pr @y _ wie?  wa?
=TT ", @)

From symmetry we see that the tangent is horizontal at the
middle,

C: =—2—4'§ 3)
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Bl =—— — — ——. 4)

wlxd  wxt wlx
Atx =0,y =0;Cs = 0; (6)
wlz® wxt wl
e el M T T i

When z = éthe deflection is a maximum

Wi/l 1 1 5wl
Plijee =15 (5~ 55 1) =~ 30

__ Buwl __ 5WB
e ERE T 0 R T 5 7 i

where W = wl, the total load.

If we substitute x = 7 in the equation of the elastic line, we get
y = 0, as the deflection at the right support. We might have
used this condition, ¥ = 0, when z = [, to determine Ci.

Formula XIII.

PROBLEMS.

1. What is the deflection at the middle of a 2-inch by 12-inch floor joist,
15 feet between supports, due to a distributed load of 90 pounds per foot, if
E is 1,350,000? Ans. 0.264 inch.

2. A 15-inch 42-pound I-beam is used with a span of 20 feet to carry a
load of 800 pounds per foot. If E is 29,000,000, what is the deflection? What
is the maximum fiber stress?

A { Deflection at the middle, 0.225 inch;
Bending stress, 8150 pounds per square inch.

3. In Problem 1 what is the slope of the tangent to the beam at the sup-
ports? If the beam extends 4 feet beyond one support, how much is this
extension elevated at the end when the load is applied between the supports?

4. If E is 29,000,000 for structural steel, what is the greatest deflection in
a beam of length I between supports and depth d, if the load is uniformly
distributed and the allowable fiber stress is 15,000 pounds per square inch?
Apply result to a 12-inch beam of 20-foot span. Ans. 0.517 inch.

63. Beam Supported at the Ends with a Concentrated Load
at the Middle. — With a beam supported at the ends, with a

load P at the middle, the end reactions are each IEJ , and the

moment from the left support to the load at the middle is %

This moment is positive, the left portion at any section tending
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PROBLEMS.

1. A selected beam of red oak, 1.75 inches wide and 1.25 inches deep, was
placed on two supports 12 inches apart and a load applied at the middle.
When an addition of 607 pounds was made to the load the deflection at the
middle was increased 0.050 inch. Find E.

Ans. 1,534,000 pounds per square inch.

2. In the beam of Problem 1 an addition of 721 pounds produced a deflec-
tion of 0.059 inch. Find E.

3. In Problem 1 how much would the last significant figures of the value
of E be changed if the deflection readings were incorrect 0.0005 inch? if the
breadth were incorrect 0.005 inch? if the depth were incorrect 0.005 inch? if
the load were incorrect 1 pound? How much would E be changed if all these
errors occurred at once in the same direction?

Ans. An error of 0.005 inch in the depth would change the.result 1.2 per
cent, a change of 18 in the significant figures.

4. The beam of Problem 1 broke under a load of 2315 pounds. Find the
fiber stress at rupture.

5. What is the deflection at the middle of a 10-inch 25-pound I-beam of
15 feet span due to a load of 6000 pounds at the middle, if £ is 29,000,000?

6. If a rod 5 feet long is clamped to one end of the beam of Problem 5,
how much will the free end of this rod be elevated when the load is applied
to the beam? Ans. 0.206 inch.

7. What is the deflection at the middle of a 12-inch 31.5-pound I-beam of
20 feet span due to a distributed load of 360 pounds per foot and a load of
5000 pounds at the middle, if E is 29,000,000?7 What is the maximum fiber
stress due to these loads? Ans. Deflection at the middle, 0.437 inch.

8. Substitute x = [ in equation (7). The result is not the deflection at
the right support. Why?

64. Beam Supported at the Ends, Load at any Point between
Supports. — In the case of a beam with a concentrated load,
the moment expression changes when we pass this load. The
" differential equation (1) and the equation of the elastic line (7) of
the preceding article apply from the left support to the middle.
Fortunately, on account of the symmetry of the two ends we
could assume that the beam was horizontal under the load and
thus have two conditions from which to determine the two arbi-

‘ dy .
trary constants. When the load is not at the middle, El?yv is zero

for some point between the load and the middle. We must write
. the differential equation for both sides of the load. The solution
of these two differential equations gives four arbitrary constants.

Fig. 94 represents a beam supported at the ends with a load P
at a distance kI from the left support, which is taken as the origin.
The letter k represents any fraction between zero and unity, and
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is constant for any particular problem. The left reaction is
(1 — k) P and the right reaction is kP. From the left support
to the load the moment is

Pl —k)x;
and from the load to the right end it is
P —k)xz— P (xz—kl).
It is convenient to write the differential equations for both por-
tions of the beam and carry the integrations through together;

remembering that the one set of equations applies from z = 0 to
x = kl, inclusive, and the other set applies from x = kl to z = [,

wnclusive.
o /5
1 \

Fig. 94. — Supports
at Ends, Load at

TR
o3

— Y J2 _Jli/-———"é any Point. .
R,=PU-k) R,=Pk
For all points from x = 0 to For all points from x = kl to
z = ki, inclusive, z = [, inclusive,
IOV Lip 1 Ey e | )Y BISY a2y
dac? % dz?

—P@—=k); (2

Eld_ngi(l_“@ﬁ_;_ol_ (3) EId_y=P(l—k)x2_P(x——kl)2

d 2 dx 2 2
+C,. 4)

The curve of the beam is continuous under the load with no

sudden change of direction, and % from the left equation (3) is

the same as %from the right equation (4) at the common point
z = kl.  Accordingly, when 2 = kI, the second members of equa-
tions (3) and (4) are equal.

Equating these second members, we observe that the first
terms of the two expressions are the same when = kI, and that
the second term of (4) vanishes:

Cl £3 Cs.
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Integrating again, remembering that C; = Cs:
_P(A-k)z* Pl —k)z* _P(x—Fkl)?
6 6 6
When z = 0, y = 0, hence +Cix+C.. (6)
Cz == 0

Ely +Ciz+C,. (5) | Ely=

When z = kI the values of y for (5) and (6) are the same and
the second members of these equations are equal; from which:

O = 02 —3 04.
When z =l in (6), y = 0;
JELP

Substituting the value of C;
from (7) in (5), we get:

Ezy=§(1—k)x3

+%)§ (1—k)3—(1—k) %l%. 8)

As a check, apply equation (8) to find the deflection under the

load when the load is at the middle; & = %; -k = %; T = é;

12PNk P(l 1>l3 IHE

Ely = 5 16 +=l5—5)5 =— 55 (Compare Formula XIV.)

6\8 2/2 48

The point of maximum deflection is given by
3z2=(1—-(1-k))i2, ,
provided that k£ > % so that equation (3) for the left side applies.

It may be shown that é< x < kl, where z is the position of
maximum deflection and k > }; and consequently the point of
maximum deflection lies between the load and the middle of the
beam.

In finding the point of maximum deflection and the deflection
at this point, it is convenient to use the simpler equations to the
left of the load (3) and (8). In case the load is to the left of the
middle, imagine yourself on the opposite side of the beam. This
will make & greater than one-half.



114 STRENGTH OF MATERIALS

PROBLEMS.
1. If & = 0.6, what is the point of maximum deflection? Ans. 0.529 1.

2. Show that the point of maximum deflection is never beyond Ly

V3

3. A 3-inch by 2-inch beam 10 feet long supports a load of 45 pounds 6 feet
from the left end. If the beam is supported at the ends, and E is 1,500,000,
find the deflection at the middle, under the load, and the maximum deflection.
Ans. At middle, 0.510 inch; under load, 0.498 inch.

65. Beam Supported at Ends, Two Equal Loads Symmetrically
Placed. — An important case is that of a beam supported at two
points with two equal loads at equal distances from the supports.
If we neglect the weight of the beam, the shear is zero and the
moment is constant between the loads. For this .reason this
method of loading is much used in tests of beams, for it enables
the experimenter to study the effect of moment independent of
shear between the loads, and the effect of shear and moment
combined beyond the loads. The moment and the resulting
stress in any horizontal fiber being constant between the loads,
measurements of elongation enable him to locate the neutral axis.

* Fig. 95. — Supports at Ends, Two Loads Symmetrically Placed.

In Fig. 95, the load at each point is represented by g The

total span is [ and the loads are at a distance a from the supports.
As usual, the left support is taken as the origin. There are three
moment equations. Owing to the symmetry, we see that % is
zero at the middle. If we write the equations for the left portion
and for that between the loads, we shall need four conditions to
determine the constants. These are ¥y = 0 when z = 0 in the

first portion; % has the same value for both equations under the
first load; y has the same value for both equations under this

load; and % = 0 at the middle.
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We will check (9) for the case when a= %,

Pl(l2 12) _-PB

Ymex = F7\06 ~ 32) = T 48EI

If the loads are placed at the third points, the deflection at
the middle is

__ 93PB
Ymax = = 1906 BT

PROBLEMS.

1. If a is equal to onefourth of the length between supports, find the
maximum deflection.

2. A 6-inch by 8-inch wooden beam supported at points 12 feet apart is
loaded with two equal loads of 800 pounds each 4 feet from the supports. If
E is 1,200,000, what is the deflection under a load and at the middle?

Ans. Under a load, 0.240 inch; at middle, 0.276 inch.

3. In Problem 2, two vertical lines are ruled on one side of the beam 20
inches on the right and left of the middle. When the load is applied, what
angles will these lines make with each other?

¢ 7 3‘?0 47 80.0 4/ !

¥ ;

I gn IE 40" N :
G

i ===

Fig. 96.

4. In Problem 3, Fig. 96, the distance FN between the upper ends of the
lines is measured with a delicate extensometer. How much is this distance
diminished when the loads are applied, and what is the unit deformation in
40 inches? Ans. Total, 0.0200 inch; unit 0.00050 inch.

5. Compute the fiber stress in the upper fibers from the unit deformation
in Problem 4 and check by Formula VIII.

6. Show that the error due to measuring the chord instead of the arc in
Problem 4 is less than 0.00004 inch, and that the relative error in the unit
deformation is less than one part in 500. (Use the first two terms of the sine
series for the half-angle.)

66. Any Beam with Two Supports. — All the cases of deflec-
tions so far considered are cases of two supports. (In the can-
tilever one of these supports pushes down in the wall.) In all
problems of this sort, the reactions may be computed algebra-
ically and the moment equations written for any section. At
each support and at each concentrated load the equation of
moment changes and a different differential equation must be
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formed. The solution of each differential equation of the second

order involves two integration constants which must be deter-

mined from the values of y and % at'boints to which the equa-

tions apply. There must be twice as many of these known
conditions as there are differential equations.

PROBLEMS.

1. A beam of length ! 4+ a, uniformly loaded w pounds per unit length,
is supported at the left end and at a distance a from the right end.

Can you get the equation of the elastic line of the portion between the
supports without getting the equation of the length a to the right of the right
support? Why? Can you get the equation of the elastic line for the portion
beyond the right support without writing the differential equation for the
portion between the supports? Why?

2. A 6-inch by 6-inch wooden beam 15 feet long is supported at the left
end and 5 feet from the right end and carries a distributed load, including its
own weight, of 60 pounds per foot. The modulus of elasticity is 1,000,000.

Draw the shear diagram, 1 inch equals 100 pounds. Draw the moment
diagram, 1 inch equals 200 foot pounds. Draw the deflection diagram, 1 inch
equals 0.1 inch deflection. Find the point of zero moment from the moment
equation and check from the shear diagram.

3. A beam of length I 4 @ is supported at a distance a from the right end
and is held down at the right end. Find the equation of the elastic line when
a load P is applied at the left end, neglecting the weight of the beam. How
does this differ from a cantilever with a load on the end?

4, A 10-inch 25-pound I-beam 20 feet long is supported 3 feet from the
left end and 5 feet from the right end. What is the maximum allowable load,
including its own weight, which may be uniformly distributed over the entire
length, if the allowable fiber stress is 12,000 pounds per square inch? What
is the deflection at the middle, the maximum deflection between the supports,
and the deflection at the right end? Ans. Load, 1952 pounds per foot.

67. Stiffness of Beams. — The stiffness of a beam is the recip-
rocal of the deflection. The stiffness of a beam may be defined
as the load which will produce unit deflection. We are not
accustomed to express stiffness in this way, but use it as a rela-
tive term.

In the expression for the maximum deflection of all the beams
which we have considered, the terms E and I occur in the denom-
inator. The stiffness of a beam varies directly as the modulus
of elasticity and directly as the moment of inertia of its cross
section. The moment of inertia of a rectangular section varies
as the cube of the depth, consequently the stiffness of a rectan-
gular section varies in the same ratio.






CHAPTER VIII.
BEAMS WITH MORE THAN TWO SUPPORTS.

68. Relation of Deflection to Stress.— In the case of beams
with two supports, including cantilevers, we are able to compute
the moment and consequently the fiber stress without making
use of the deflection. From this, since unit stresses are more
important from the engineering standpoint than deflections, the
student may get the impression that we are giving too much
attention to the elastic curve. However, when we attempt to
get the stress in a beam with more

[T
than two supports, we find that we Hi‘:"‘" L
must write the differential equations T ——1 e
and solve for the elastic curve before N 1 A 05

we can get even the reactions. (In
some cases it is only necessary to
integrate once for the slope of the
curve and determine the constants.)
Consequently, a knowledge of these
equations of deflection is indispen-

sable for the ecalculation of stresses s WL

except in the simplest cases. — 7
69. Cantilever Supported at One MCMENT v

End. — Fig. 97 represents a canti- . //

lever fixed at the right end and sup- T .
ported at the left end, and carrying *18: 9¢.— beam Iixed at Une
a uniformly distributed load of w ]S?Sefnd BUBporiedaf LhA
pounds per unit length. The origin
is taken at the left support. The moment at a section at a dis-
tance x from the origin is:

wx?

M=R1$—*‘2—'

The reaction at the left support, Ri, is at present unknown.
We will use it in the differential equations and determine its

value later. 2
&y _p, W
dy . Riz* wx?
EI  Edmita i e + Ch. ©))
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dy

Wl _ R

When T =.l, 25 =0, hence Cy=-5—"5; 3)
ol _ Rt Rl _ww  ub
Bl = AT g g @
e R e (O s Vi e
Ely = 6 _T_—21—+T+C2' (5)

Whenz = 0, y = 0, hence C; = 0.
We still have one condition from which to find the reaction R;:
When z = I, y = 0, which, substituted in equation (5), gives

3wl 3W
s ot e ©)

where W is the total distributed load.

y=—48—%—j(2x4—3lx3+l3x). (7

With R; known we may now write the moment equation

3Wzx wzx?
e Tt &
PROBLEMS.

1. Draw shear and moment diagrams for beam fixed at one end and sup-
ported at the other. Find the moment at each dangerous section from the

shear diagram and compare with the result from the equation of moments.
9 Wi wi

Ans. Moment at dangerous sections, T8 T8
2. How does the greatest moment, numerically, compare with that of a

beam supported at the ends?

3. Find the position of maximum deflection and the value of this maximum
deflection. '
Ans. Point of maximum deflection is 0.4215 [ from the left support.
Substituting the value of R in equation (4), or differentiating (7), we get
for the points where the beam is horizontal:

828 —9la2+ ¥ = 0.
Since the beam is horizontal at the wall, z = I must satisfy this cubic equation.

Dividing by the corresponding factor, z — I, we get a quadratic. Explain the
meaning of the negative root.
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4. A 44nch by 6-inch wooden beam 20 feet long is supported at both ends
and at the middle and carries a uniformly distributed load, including its own
weight, of 120 pounds per foot. What is the maximum fiber stress? Where
is it? What is the load on each of the three supports? Would the beam be
stronger or weaker if it were cut in two at the middle and simply rested on the
middle support instead of being continuous over it?

5. Draw the shear and moment diagrams for Problem 4: 1 inch equals
4 feet length, 200 pounds shear, and 1000 foot-pounds moment. In deriving
the theory of this article, we assume that the beam is absolutely fixed at one
end; that the tangent remains horizontal when the load is applied. If it is
not perfectly fixed, as in the case of a beam clamped -at one end, the reaction
at the supported end will be greater than that given by the theory. We also
assume that the support suffers no displacement when the load is applied.
Neither of these conditions is fully met in the arrangement of Fig. 97. Fig. 98

Fig. 98. — Continuous Beam of Two Equal Spans.

shows a beam with supports at the ends and at the middle. If these supports
are so dimensioned that a load of 10 pounds at the middle will produce the
same deformation as a load of 3 pounds at either of the others, a uniform load
over the length will leave the tangent horizontal over the middle support,
and the ends will not be deflected with refererice to the middle. Either half
of this beam will now fulfill the conditions of the theory.

6. A 6-inch by 8-inch wooden beam is supported at the middle and 15 feet
on each side of the middle and carries a load of 150 pounds per foot for this
30 feet of length. The end posts are 6 inches by 6 inches and rest on concrete
footings 1 foot square. What should be the dimensions of the footing for the
middle post if the settlement of all shall be equal?

7. In Problem 6 suppose that the middle post settles 0.1 inch and that £
equals 1,200,000. Find the reaction on each support.

8. A beam is absolutely fixed at one end and is supported at the other
by a support which is deformed a unit distance by a load Q. What is the
reaction at this support due to a uniform load W over the entire beam?

wis

RSP
EI
2o Q

Ans. Ri=

70. Cantilever Supported at One End, Load Concentrated. —
Fig. 99 represents a beam supported at the left end and fixed
at the right end, with a load P at a distance kI from the left
support. We will carry the two sets of equations together as in
Article 64.
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AR k = }, find the moment at each dangerous section and the location
of the point of inflection where the moment changes sign.

2]

)
1‘]31:%? W

: 5
33 2l
5
1_5"’)
’ MOMENT
6

Fig. 100. — Beam Fixed at One End and Supported at the Other with
Load at the Middle.

SHEAR

-
% D

3. A 2-inch by l-inch wooden beam is securely clamped so that 8 feet
projects as a cantilever. The end of this cantilever rests on a platform scale.
When a load of 20 pounds is applied 3 feet from the supported end, how much '
should be the increase in the scale reading? Ans. 9.28 pounds.

71. General Equations of Moment and Shear. — If we attempt
to derive the equations for a beam fized at the left end and sup-
ported at the right end, we have difficulty in forming the expres-
sion for the moment. It is therefore advisable to derive a general
equation which applies to all cases. In Article 47, we have this
expression for moment:

M=Re+n)-Qb+a)-SP@—a-"2;

M=R—Q+ER-Qz-3Pk—a)-"0 (@

Now the term Re¢ — Qb represents the moment at the origin of
all the forces on the left of the origin. R — @ is the sum of the
vertical forces to the left of the origin. Equation (2) may be
written:

2
M = My + Sex —EP(x —a) —-1021, Formula XV. (3)

where
M is the moment at any section at a distance z from the
origin;
M, is the moment at the origin;
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8o is the vertical shear at the origin;

ZP(xz — a) is the sum of the moments of all the concentrated
forces between the origin and the section;
2 ¢ :

% is the moment of the distributed forces between the

origin and the section.

PROBLEMS.

1. A beam 20 feet long is supported at the right end and 5 feet from the
left end and carries a load, including its own weight, of 120 pounds per foot
and a load of 2800 pounds 17 feet from the left end. Calculate the moment
at the left support and write the moment equation for the portion between
the supports, using a point infinitely near the left support as the origin of
cobrdinates.

Ans. M =—1500 + 1560 z — 60 22, from z = 0 to z = 12 feet.
M =—1500 + 1560 z — 60 22 — 2800 (z — 12), from z = 12 feet to
z = 15 feet.

2. Form the derivatives of the moment equations above and solve for
the position of maximum moment. Neither gives the correct result. Why?
What is the meaning of the results obtained?

3. Solve the moment equations above for the positions of zero moment.

Ans. 1 foot and 15 feet.

Each of these quadratic equations has two solutions. How do you know

which one to use?

72. Point of Inflection. — A point of inflection in a beam is
a point where the moment changes sign, and where the center of
curvature changes from one side of the beam to the other. A
point of inflection is also called a point of counterflexure. From
our calculus we remember that a point of inflection occurs when
3
g;—'z equals zero, providedg—xgdoes not equal zero at the point.
In the case of an elastic curve,
dy M dy_ S
de?  EI' dx* EI
ET being always positive, a point of inflection oceurs where the
moment is zero and the shear is not zero. In Problem 3 of the
preceding article, the first answer gives a point of counterflexure.
At this point the moment is zero and the beam could be cut in
two and one portion support the other by means of slight projec-
tion to take the shearing stress.
Fig. 101 represents the beam of Problems 1 and 3 of Article 71.
The left portion weighing 720 pounds supports the right portion
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weighing 1680 pounds and the load of 2800 pounds. In the
upper figures we have drawn the beam as made of two parts
united by a pin connection at the point of inflection. In the

; 2800%
17 F—3—>
2|
1 ¢ i 120 Per Foot A
9 o 3040%
2160
28007
-
S 1680 :
]
216&1 3040*

Fig. 101. — Point of Counterflexure.

lower figure the beam is represented as cut at this point with
one end resting on the other. To find the force with which the
left portion lifts the right portion, take moments around the left
support. The 720 pounds with center of gravity 2 feet to the
left of the support balances 1440 pounds 1 foot to the right of
the support. Taking moments about the right support:

2800 X 3 = 8,400

1680 X 7 = 11,760

S X 14 = 20,160
S = 1,440
If we examine the shear diagram, we find the shear at this point
is 1440 pounds.

PROBLEMS.

1. A beam of length [ with uniform load of w pounds per foot is supported
one-fourth the length from the left end and one-fifth the length from the right
end. Find the points of counterflexure.

2. From the shear diagram of Article 69 determine the point of inflection
of a beam fixed at one end and supported at the other.

73. Cantilever Fixed at Left End, Supported at Right End,
Load Uniformly Distributed. — Having now the general equation
of moment (Formula XV), we may take the case of a beam
fixed at the left end. With a uniform load only

d%y wr?
EId—xZ=M0+Sox_—2—" (1)
dy Se2? _ wa? _ '
| Mox2 Soa:s__’wa:“ s
EIy———2—+——6— -——24 +[Cz—0]- (3) 3
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w Pounds Per Unit Length
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Fig. 102.

PROBLEMS.
1. Show that the moment at the middle is one-half that at the ends.

2. Find the points of inflection.

3. What is the maximum deflection at the middle? )

Ans. 0.2111 and 0.789 1.
__wb
334 EI’

7s. Beam Fixed at Both Ends, Concentrated Load k! from

Left End. —
v
%%—kl———ﬂ,
/ V . Fig. 103.
%, z %
From left end to load, From load to right end,
d%y d2y
EI dx2— My + Sox. 1) Elﬁ—Mo—}-SOx
— P(z—kl). (2)
dy So_wz
Eliy:Mox_i_Soxz E d ZW()II)-'—
o % P(z—kl)?
FC=0 @) - +[Ca=0L @
3 &
Ely = M2°x2 + %ﬁ Ely= MOx +Sﬂ - P——-—(xﬁ il
+ [C: = 0]. (6) + [Cy = 0]. (M)

0=3 Mo+Ss—Pl(1—k).  (8)
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From (5) and (8):
So=P{3(1 —k)2—2(1 —k)3;
My=—Pl{(1 —k)¥— (1 —k)3}.

PROBLEMS.

1. Construct the moment and shear diagrams when & = 1.

2. When k = % show that the deflection at the middle is one-fourth as
great as it is in a beam simply supported at the ends with a load at the middle
and that the unit stress is one-half as great. 4

3. Show that the beam cut off as in Fig. 104 has the same shear at walls,
moment at walls, moment at the middle, deflection at the middle and quarter
points, as the beam in Fig. 103.

Pl
|
"‘/I\x
\\l/ MOMENT W
AR SVRY
8 8

Fig. 104. — Points of Counterflexure in Beam with Ends Fixed.
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76. Theorem of Three Moments. — The methods of the pre-
ceding articles may be applied to any number of spans or to
any number of concentrated loads. However, when it becomes
necessary to write more than two moment equations and solve
for the corresponding constants, the work becomes laborious.
When, as is usually the case, it is desired to find the moments,
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reactions, and shears, without getting the deflections, the theorem
of three moments is of great use.

The theorem of three moments is an algebraic equation which
expresses the relation of the moments at three successive sup-
ports of a continuous beam in terms of the length of the inter-
vening spans and the loads which they carry. In Fig. 105, the
moments over the supports are represented by M., M,, M..
The length of the span from support A to support B is I;, and
from B to C it is l,. Fig. 105 represents a uniformly distributed
load of w; pounds per unit length for the first span and w» pounds
per unit length for the second span. The subscripts a, b, ¢,
represent the order from left to right and may be applied to any
three poinis in succession. The same is true of the subscripts 1
and 2 applied to the spans and the unit loads.

We will take the origin of coordinates for the first span at 4
and for the second span at B and write a differential equation
for each span, remembering that the origin is different for the
two equations.

77. Theorem of Three Moments for Distributed Loads. —

Ma 10, Por Unit Loamti T M s Per Unit Length Mo
; ﬁ;wg__)] MSESHEAR > S Fig. 105.
§ B 4 0
Span AB. Span BC. .
EIdy M.,+Sax—w12”2- E1%=Mb+&,x—@—x— (1)
I% = R e ‘ﬂé’ia 4 et §&2
W2IE e, @
At support B, x =1, At support B, =A0"
dy _dy
dr — dx’

6 ML + 3 S} —’wll?‘*'GCx = 6Cs. ; (3)
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M2 | Saxd  wat A 3wt

N G i

+ Ciz + [C: = 0]. +Csz 4 [C4 =0]. (4)
At right end of span,

0 =12M 0, +4 S.B —w,B+24C,. (5)
At right end of span BC,
=12 Myly + 4 S5 — wyl

+ 24 C,. (6)

Combining equations (6), (5) and (3) to eliminate C; and Cs:
12 Ml 4 12 Mylo 4+ 8 Soli + 4 Selz — 3 wili — wol3 = 0. )

We wish to eliminate the shear and bring in the moment at C:

M=M, + Sz —'“"sz;

When x=l1,

My = M, + S —-"—’-125;

Siy = M, — M, +“’ll‘ Sl p M,,+w2’9 L (8)

Substituting these values of the shear in (7):

4 Moy 4+ 8 My (L + L) + 4 My + wild + weli = 0; 9
M +2My (L + 1) + Ml = — 1 (wil} + wlB). (10)

Equation (10) is called the theorem of three moments for dis-
tributed loads.

If the spans are equal and the loads per unit length in the two
successive spans are the same, the equation of three moments

becomes:
wl?

M.+4M,+ M, o7 Formula XVT.

78. Calculation of Moments. — The theorem of three moments
applies to continuous beams with any number of supports. We
first apply the theorem for three consecutive supports, beginning
with the first one. We next write the equation beginning with
the second support as A. This is continued till all the moments
are used. If there are four supports, two equations are written;
if there are five supports three equations are required. Since
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there are always two more unknown moments than there are equa-
tions, we must know two of the moments or have some relations
from which to find them. Let us take the case of a beam with
four supports and three equal spans, each loaded w pounds per
unit length. The simple form of the theorem (Formula XVI)
applies. '

My Mo M3
L T T T T T T T T T T T T LT
LB 2 1S 7 A8
L3 ™ (] T e
R, R, R, R,

Fig. 106. — Uniformly Loaded Beam of Three Equal Spans.

This is represented by Fig. 106. Representing the moments
by the subscripts 1, 2, 3, 4, as they refer now to definite moments
and not merely to the order of arrangement, the equations are

wl?
My+4Me+ My=— - 1)
wl?
M2+4M3+M4=—’§“ (2)

If the beam does not overhang the end supports, M, = 0 and
M, = 0. Solving the equations for this case we get

wl?
Mot A s =
2 3 10
PROBLEMS.
1. Find the moments for two equal spans, with uniform loads on both, with
no overhang at the end supports. Ik

wl?
Ans. M1 =0, Mz =——8—! M3=0

2. Find the moments over the supports for four equal spans, with uniform
loads on each and with no overhang.
? ﬂ’[; == =) M4=M2, M5 =O.

Ans. My =0, M; = — 14

3. Find the moments over the supports with two equal spans of length [,
and overhangs of 0.6 [ to the left of the left support and 0.4 to the right of
the right support, with a uniformly distributed load throughout the entire
length. Ans. My = — 0.18 wi?, My = — 0.06 wl?, M3 = — 0.08 wi*.

4. A beam 30 feet long, weighing w pounds per foot, rests on four supports
50 as to make three equal spans of 8 feet each, and overhangs the left support
4 feet and the right support 2 feet. Find the moment over each support.

Ans. — 8w, — 44w, — 64w, —2w.

5. A uniformly loaded beam rests on three supports so as to have two
equal spans with equal overhang on each end. What must be the ratio of
overhang to span if the moments at all supports are the same?

Ans. Overhang 0.408 of the length of span.

3 wi? wl?
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6. A beam 20 feet long with a uniformly distributed load is supported at
the ends and 12 feet from the left end. What is the moment at the second
support? Ans. — 14 w.

7. A shaft 30 feet long, weighing 10 pounds per foot, is supported by three
bearings at 4 feet from the left end, 14 feet from the left end, and 4 feet from
the right end. It carries a load of 200 pounds 1 foot from the left end, and a
load of 300 pounds 2 feet from the right end. Find the moment at each
bearing. Ans. — 680, 185, — 680 foot pounds.

79. Calculation of Shear.— To determine the shear to the
right of any support, we make use of equation (8) of Article 77.

o el Z—2t ‘ﬂl—‘ Formula XVIL.
1
S, is the shear just to the right of any support;
M, is the moment over that support;
M, is the moment over the next support;
wy is the load per unit length between these supports.

Notice that the last term of the formula i is simply half the load
on the span.

We will apply this formula to the case of three equal spans and
four supports considered in Article 78.

To find the shear at the right of the first support

wl?
10 T 0 wl
S = 3 +5 = 04wl = 04W.
At the right of the second support,
_ult it
§o=—10 L0 1 % 05wl =05 W.

In the same way, S; = 0.6 wl = 0.6 W.
Fig. 107 gives the moments over the supports and the shears
to the right of each support for the case of three equal spans.

G5B st

MOMENT 0 = 10) 10 0
SHEAR [£ 4] wl wl
[1? — -fﬁ‘ S
Fig. 107.
PROBLEMS.
1. Calculate the shear to the right of each support in Problem 2 of Article
78. Hnis B 11 wl 8ok 15wl S, = 13 wl 3, - 17 wl

28 ! 28 DR 28 °
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2. Calculate the shear at the right of each support in Problem 3 of Article
78. Ans. 0.62 wl, 0.48 wl.

The shear at the left of any support is obtained from the shear
at the right of the preceding support by subtracting the inter-
vening load, according to the definition of vertical shear. The
shear at the left of the second support in Fig. 107 is — 0.6 wl, at
the left of the third support, — 0.5 wl, and at the left of the fourth
support, — 0.4 wl. '

The reaction at any support is computed by subtracting the
shear at the left from the shear at the right of the support.

2 3
2 12 “swl?2 . - wl?
25 W 28 25 0
MORERT T T T T L T T O T O T OO LT T T T T
v 13 H T
seaR Wt ~Fwillwl -Buwlffwr -BerHwr -Zuw
I
REACTIONZ] wl 2w L wl 2w Aoy

Fig. 108 gives moments, shears and reactions for a beam with
four equal spans uniformly loaded with no overhang.

PROBLEMS.

3. Show that with three equal spans, uniformly loaded, the reactions are

0.4 wl, 1.1 wl, 1.1 wl, and 0.4 wl.
4. Calculate the reactions at the supports in Problem 3, Article 78.
© Ans. 1.22 wl, 0.86 wl, 0.92 wl.
5. In Problem 4, Article 78, calculate the shears and find the reactions.
Ans. Reactions, 8.45 w, 7.30 w, 8.80 w, 5.45 w.
6. Draw the shear diagrams for Problem 5. From this diagram find all
dangerous sections and calculate the moment at each.
Ans. At 4.55 feet to the right of the third support M = 3.95 w.
7. A beam carrying a uniformly distributed load rests on three supports
spaced 10 feet apart. How much should it overhang the outer supports in
order that the reactions at all the supports shall be the same? Ans. 4.4 feet.






BEAMS WITH MORE THAN TWO SUPPORTS 135

At support B, dy is the same for (3) and (2). Substituting

' dx
= 0in (2) and ¢ = [, in (3) and substituting the value of S, in
the latter, we get:

Mo+ M)l + Pi[A—k) — 1 - k)G +2C =2 K. (15)

To eliminate the two unknowns C and K from (13), (14), and
(15), multiply (15) by 3, and multiply (13) by — 1 and add the
results to (14).

My +2My b+ 1) + Ml + PiB[2(1 — k) — 3 (1 — ky)?
+ (1 = k)% + PB[(1 — k) — (1 — k2)*]=0. (16)

Equation (16) is the equation of three moments for a single
concentrated load in each span.

PROBLEMS.

1. A beam is supported at the ends and at the middle and carries a load P
at the middle of each span. Find the moment at the middle support and the
3Pl

reactions at each support. Moment at the middle, -6

Ans.

Reaction at end, 1 6

Compare these results with a beam fixed at one end, supported at the other,
and loaded at the middle, Article 70.

2. A shaft 30 feet long is supported at the ends and the middle. A load
of 600 pounds is applied at the middle of the left span and a load of 400 pounds
at the middle of the right span. Find reactions, the moment at each dan-
gerous section, and the points of inflection.

81. Superimposed Loads. — In many cases we have concen-
trated loads superimposed on distributed loads. In the case of
a cantilever we get the deflection and stress at any point by
adding the deflections or stresses due to the separate loadings.
The same is true of a beam supported at the ends. In the case
of a beam supported at the ends with a concentrated load not
at the middle and a distributed load, the sum of the separate
deflections at any point gives the resulting deflection at that
point, but the point of maximum deflection is between the posi-
tion of the concentrated load and the middle of the beam. The
dangerous section is either between the dangerous sections for
the separate loads or under the concentrated load.

We have already learned to locate these dangerous sections
by means of the shear diagram. It is seldom necessary to
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locate exactly the point of maximum deflection. For a single
concentrated load the maximum’ deflection is between the point
of application and the middle of the beam and is nearer the
latter. For a uniformly distributed load the maximum deflec-
tion is at the middle. There is little error in using the deflection
at the middle in place of the maximum. If the maximum deflec-
tion due to the concentrated load is added to the deflection at
the middle due to the distributed load the sum will be a trifle
larger than the actual maximum resulting deflection.

PROBLEMS.

1. A 6-inch by 10-inch beam 20 feet long is supported at'the ends and
carries a distributed load including its own weight of 100 pounds per foot.
If E is 1,000,000, find the maximum deflection and fiber stress.

Ans. 600 pounds per square inch, 0.72 inch.

2. If the beam of Problem 1 carries a concentrated load of 800 pounds
14 feet from the left end, what is the fiber stress under the load and at the
middle due to this load alone? What is the deflection under the load and at
the middle and what is the maximum deflection due to the conecentrated load
alone?

Ans. Stress under load, 403.2; at middle, 288 pounds; deflection under
load, 0.325 inch; at middle, 0.365 inch; at 11 feet, 0.369 inch.

3. In Problems 1 and 2, if both loads are applied at the same time, what
is the maximum fiber stress? Ans. 922.6 pounds per square inch.

In Problem 3, if we wish to find the exact value of the maxi-
mum deflection we may solve the differential equation for dis-
tributed and concentrated loads combined. The equation for
finding the point of maximum deflection is a cubic in z. The
solution of this cubic for Problem 3 gives x = 124 inches. The
maximum deflection is 1.086 inches which is practically the sum
of the separate deflections at the middle.

PROBLEM.

4, Take the case of a beam fixed at the left end and supported at the right
end. Solve the differential equations for a distributed load, a load concen-
trated at the middle, and for the two combined and compare the last with the
sum of the others. i

The reactions, moments, shears and deflections at any point
due to a combination of loads may be obtained by taking the
sum of the similar quantities for the loads separately. If we
want the maximum moment we construct the shear diagram for
the combined loads. We can generally locate the position of

-
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maximum deflection approximately by inspection and determine
the deflection for a few points. In Problem 3, above, the
maximum deflection for the distributed load is at 10 feet, and
for the concentrated load at 11 feet. We might compute the
deflection for every 2 inches between these points and plot the
curve for the maximum.

82. Moments in Different Planes. — It frequently happens
that the forces acting upon a beam are not all in the same plane.
A horizontal shaft may be subjected to a vertical load due to
its weight and the weight of the pulleys, and to a force in some
other direction due to the tension on belts. If a beam thus
loaded has the same moment of inertia in all directions it is only
necessary to find the resultant moment at any section, making
use of the fact that moments are vector quantities and may be
combined like forces or other vectors.

PROBLEMS.

1. A shaft 3 inches in diameter and 10 feet long weighs 24 pounds per
foot. The shaft is supported at the left end and 2 feet from the right end.
It carries a pulley weighing 64 pounds 1 foot from the right end, and a pulley
weighing 40 pounds 2 feet from the left end. With these loads only, find
the dangerous sections and the moment at each.

Ans. 3 feet from the left support, 188 foot pounds; at right support,
112 foot pounds. )

2. If there is a horizontal pull of 80 pounds on the right pulley perpendicular
to the shaft, what is the resulting moment at the right bearing?

Ans. 137.6 foot pounds.

3. In Problem 2 what is the resultant moment 3 feet from the left support?

Ans. 190.4 foot pounds.

The maximum resulting moment is a little to the right of the dangerous
section for the vertical loads. Its exact position in this case involves the
solution of a cubic equation.

4, Write the expression for the square of the resultant moment for points
between the left pulley and the right bearing. Find the expression for the
position of the resultant dangerous section and solve by method of trial to
two significant figures.

5. Solve Problems 2 and 3 if the pull of 80 pounds is 30 degrees below the
horizontal.

Find the resultant of two couples at 60 degrees with each other, or resolve
the 80 pounds into its vertical and horizontal components, adding the vertical
component to the vertical loads and using the horizontal component as you
used the pull when it was horizontal.

When a beam is subjected to forces which are not parallel to
one of the principal axes of inertia (and perpendicular to the
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other), it is necessary to resolve these forces parallel to the prin-
cipal axes. Then find the unit stress at any point in the section
separately for both sets of forces and add the results.

PROBLEMS.

6. A 6-inch by 8-inch beam 15 feet long is supported at the ends and carries
a load of 800 pounds at the middle. The load is 30 degrees from the vertical
in a plane normal to the length of the beam. Find the unit stress at each
corner at the dangerous section.

The principal axes of inertia are horizontal and vertical. The vertical
component of the load is 692.8 pounds and the horizontal component is 400
pounds. Using the horizontal component as applied at D (Fig. 110, I), we
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Fig. 110.

find a unit stress of 375 pounds per square inch which is tensile on the left
side, 1-4, and compressive on the right side. Using the vertical component as
applied at A, with CD as the axis of inertia, we get 487 pounds which is com-
pressive at the top. The unit stress at corner 2 is 862 pounds per square inch
compression. At corner 1 it is 112 pounds compression.

7. A 6-inch by 6-inch by l-inch standard angle, 10 feet long, is used as a
beam supported at the ends. The angle is placed with legs horizontal and
vertical (Fig. 110, IT), and a load of 1000 pounds is applied at the middle, over
the center of gravity of the section. Find stresses at corners.

Here the principal axes are 4B for which I is 14.78, and CD for which I is
56.14. The external moment for each axis is 15,000 v'2-

15,000 X V2 X 1.86 X V2
14.78

The unit tensile stress at 3 due to the moment about the axis AB is 3329

pounds. The tensile stress due to the moment about CD is 1336 pounds. The

total tensile stress at this corner is 4665 pounds. What is the total unit stress

at corner 2? How do you know that the stress at 4 isless than at 37 Compute

the stress at 1.

8. Find the horizontal and vertical components of the deflection at the
middle in Problem 7 if £ is 30,000,000.

Solve for each axis separately, then resolve deflections horizontally and
vertically and add.

Unit stress at C =

= 3775 pounds.



CHAPTER IX.
SHEAR IN BEAMS.

83. Direction of Shear. — The total vertical shear in beams
is calculated by the methods of Article 45. We have learned
nothing so far in regard to distribution of the shearing stress.
In Article 30, we learned that shearing stresses occur in pairs,
that a small block subjected to a shearing stress of a given inten-
sity along two parallel vertical faces is subjected to a shearing
stress of the same intensity along two horizontal faces.

Fig. 111, I, represents a beam made by placing one plank on
top of another. Fig. 111, II, is the same beam under load,

B

|

Fig. 111.

provided that the planks are held from slipping with reference
to each other by being glued or bolted together to form a single
beam. If the planks are free to move, they take the form III,
in which the upper plank is moved outward over the lower one
at each end. Consider a small block B in the upper portion of
the lower plank. The plank above this block has been displaced
to the left. If they were glued together, the upper plank would
have exerted a horizontal shearing stress upon the upper surface

of the block. To prevent rotation there must be a vertical shear
139 y
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upwards at the left side. The actual shearing stresses upon this
block from the surrounding material, if the upper plank were
glued to the lower, would take the directions of the arrows.

The shear at the left of the block is vertically upward, which
is the direction of the external shear. If we used a small block
to the right of the load P we would find that the shear on its
left side was vertically downward. This is the direction of the
external shear in this half of the beam. One of the planks in
Fig. 111 may be thicker than the other, which shows that the
results apply to all parts of a vertical section in so far as they
effect the direction of the shearing stress.

84. Intensity of Shearing Stress. — To determine the inten-
sity of the shearing stress we will consider Fig. 112. This
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Fig. 112. — Horizontal Shear in a Beam.

represents a part of a beam. Imagine a small block extending
across the beam between planes dx apart and extending from
the top of the beam to a plane at a distance »; from the neutral
surface. This block is in equilibrium under the action of the
direct stress, tension or compression, acting on the ends (the
rectangles whose diagonals are CB and GF) and a shearing stress
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from the material below acting on the bottom (on the rectangle

whose diagonal is GE).
Consider a small area dA in the left end of this block. The

: 4 : " . M
unit tensile (or compressive) stress on this area is —71— where
1

M, is the bending moment at the section and I; is the moment
of inertia of the entire cross section of the beam with respect to
the neutral axis. -The total tension (or compression) on the left
end of this block is the integral of the unit stress over the left end
of the block:

Total tension on left end = —— f vdA. (1)

In the same way, the total tension (or compression) on the
right end of the block is:

Total tension on right end = -J;—[": f n vdA. (2)
2 vy

The resultant horizontal pull (or push) on the. block in the
direction of the length of the beam is the difference of these
integrals (1) and (2). If the section of the beam is uniform
I, = I, and v; and v are the same for both expressions. The
resultant horizontal pull (or push) becomes:

Resultant force = M—“’—%AI—I f “pdd. 3)

This resultant horizontal force must be balanced by the hori-
zontal shear at the bottom of the block. If the breadth CE at
the bottom of the block is b, the total area in horizontal shear
is bdz, and the total shear is s,b dr. Equating these forces:

sebdz =Mf’vd/1; @)
i le
s =22 "vaa. )
Since M, — M, is equal to dM, ’
My— My dM _
dr = dz =) Q)

where S is the total vertical shear.

s % f "vdA, Formula XVIIL (7)
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where s, equals the unit horizontal shear at a distance v; from the
neutral axis and also equals the unit vertical shear at the same

place. The term *»dA is the moment of the area of the end

Jo,

of the block with respect to the neutral axis.
l—,_jv:vdA.fzvdA=5A. b
S 485 A

When the area and location of the center of gravity of the por-
tion of the plane section above the line CE are known, the integral
may be replaced by the equivalent expression of (8).

PROBLEMS.
1. Find the unit shearing stress in a 4-inch by 6-inch beam at points 1 inch

above the neutral axis, if the total vertical shear is 1440 pounds. Find f vdA
both ways and check.
3
Ans. [Tvdd=4 [ odv =217 = 16;
1 1

74 =2 X 8 = 16;
1440

T X 16 = 80 pounds per square inch.

Ss

2. In Problem 1, find the unit shearing stress at the neutral surface.
Also find the average shearing stress by dividing the total vertical shear by
the cross section.

Ans. Unit shear at the neutral surface, 90 pounds per square inch.
Average shearing stress 60 pounds per square inch.

3. Show algebraically that in Deams of rectangular section the average
unit shear is two-thirds as great as the shear at the neutral surface.

4. A 6-inch by 8-inch beam 10 feet long, supported at the ends, carries a
load of 6000 pounds 4 feet from the left cnd. Find the unit shearing stress
at the neutral surface just to the right of the left support, using the result of
Problem 3. Ans. 112.5 pounds per square inch.

5. In Problem 4 find the unit shearing stress 1 inch from the top and
2 inches from the top near the left support.

Ans. 49.21 and 84.37 pounds per square inch.

6. In Problem 4 find the unit shearing stress 3 inches from the top and
five inches from the top.

7. In a beam of solid circular section what is the ratio of the unit stress at
the neutral surface to the average unit shearing stress? Ans. 4:3.

8. What is the maximum load which can be placed on a short 6-inch by
6-inch beam supported at the ends, if the allowable unit shearing stress parallel
to the grain is 150 pounds per square inch?

Ans. 7200 pounds if placed at the middle; 3600 pounds if placed near
the end.
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9. Calculate the unit shearing stress in terms of the total shear in the web
of a 10-inch 25-pound I-beam at the neutral surface and at the bottom of the
flange. Ans. s; = 0.368 S at the neutral surface.

] ss = 0.291 S at the bottom of the flange.

10. In practice, engineers calculate the unit shearing stress in I-beams by
dividing the total shear by the area of cross section of web regarded as extend-
ing the entire depth of the beam (see Cambria). What is the average unit
stress by this method in the beam of Problem 9? Ans. 0.323 S.

11.* A 7-inch by 14-inch beam of long-leaf yellow pine, placed on supports
13 feet 6 inches apart, was subjected to equal loads at points 4 feet 6 inches
from the supports. When the total load was 57,500 pounds, the beam failed
by shear at the neutral axis at one end. Find the ultimate shearing strength
of this timber parallel to the grain. Compare the result with the figures given
by the United States Department of Agriculture (see Cambria).

Ans. 440 pounds per square inch.

12.* A 7-inch by 16-inch beam of Douglas fir, supported near the ends and
loaded at the third points with equal loads, failed by shear when the total
load was 45,000 pounds. Find the ultimate shearing strength of this timber
parallel to the grain. Ans. 301 pounds per square inch.

13. Timber having an allowable shearing stress of 100 pounds and an
allowable bending stress of 1000 pounds is used for beams supported near the
ends with uniformly distributed loads. Below what length will the shear
determine the load in a 6-inch by 6-inch beam? in a 4-inch by 8-inch beam?

Ans. For a 6-inch by 6-inch beam, 5 feet.
For a 4-inch by 8-inch beam, 6 feet 8 inches.

14. Using the allowable stresses of Problem 13, what is the total safe load
uniformly distributed, on a 6-inch by 6-inch beam supported at the ends
when the length is 4 feet? when the length is 6 feet?

Ans. 4800 pounds, 4000 pounds.

The total horizontal shear at any horizontal plane in a beam
is proportional to the area of the stress distribution diagram
(Article 54), above or below this plane; and the unit shearing
stress is proportional to the quotient of this area divided by b.
The unit stress at a distance » from the neutral axis varies as v;
the stress on an area dA is kvdA; and the total stress on an area
extending from a plane at a distance »; from the neutral axis to

the top of the beam, is & f 2valA.

In a rectangular section (Fig. 81) the stress-distribution

diagram is a triangle. If b is the breadth and v; the distance
ST o U

to the top from the neutral axis, the area of this triangle is % ; at

a point half way to the top, the area is reduced one-fourth so that

* Problems 11 and 12 are from tests made by Professor A. N. Talbot,
described in Bulletin 41 of the Engineering Experiment Station of The Uni-
versity of Illinois.
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it is evident that the unit shearing stress at the latter point is ¢
as great as at the neutral axis. In an I-beam (Fig. 82), most of
the shaded area representing the stress distribution is in the
flange. The small shaded area in the web measures the differ-
ence between the shearing stress at the neutral axis and that at
the bottom of the flange.

PROBLEM.

15. A beam of rectangular section, 10 inches deep, has a unit shearing
stress of 150 pounds per square inch at the neutral surface. Find the unit
shearing stress at each inch above the axis by means of the stress-distribution
triangle. ‘ Ans. 144, 126, 96, and 54 pounds per square inch.

85. Resultant of Shearing and Tensile Stress. — Fig. 113 rep-
resents a block of breadth dx, height dy, and length I, subjected

E F
8, Per Unit Arear"y
- &
5 Bpdiinlls ot 1 A
]
TENSION § // Vi N S, ldx dx
°r : ' TENSION dy
ckZ Mo ] S, Per Unit -€— 8 ‘2;
\ @5 \\\ dy Area S¢ldy : %
T \ b
SHEAR \
\‘}E—dz—#‘
L I

Fig. 113. — Combined Shear and Tension.

to tensile stresses of intensity s; perpendicular to the left and
right vertical faces, to shearing stresses of intensity s, parallel to
these faces, and to shearing stresses of equal intensity in the top
and bottom faces. The shear on the left face is upward and on
the top face toward the left. We wish to find the shearing stress
parallel to the diagonals BG or CF and the tensile stress normal
to the plane BCFG. We will consider the block as divided into
two equal triangular prisms by the plane BCFG and will take the
prism on the left of the plane as the free body in equilibrium.
The forces which act on this free body are five in number:
Total tension sldy, towards the left, applied at center of
BCED;
Total shear s,Jdy, upward, applied at center of BCED;
Total shear s,ldz, towards the left, applied at center of D EFG;
Total shear on BCFG, parallel to BG, applied at center of
BCFG,;
Total tension normal to BCFG at its center,
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We will represent the unknown unit shearing stress in the diagonal
plane by s/, and the unknown tensile stress by s,/. The total
shear on this plane is then s,’lds, where ds is the length of the
diagonal BG. The total tension on the diagonal plane is s,/Ids.
We will determine the magnitude of these unknown forces by
resolving parallel to BG and normal to the plane BCFG. These
five forces are represented in a single plane in Figure 113, II.
Resolving parallel to BG and dividing by [,

8dy cos 0 + s,dx cos 0 — s,dy sin- 0 = s,/ds, 1)
where 6 is the angle between the plane BCF@G and the horizontal.

Dividing by ds and substituting for(fi—as: and %:
8’ = s;8in 6 cos 6 + s, [cos? f — sin? 4], @)
SeA= s¢Sin22 g + s, cos 2 4. 3)
Resolving normal to ds:
8¢dy sin 6 + s,dx sin 8 + s,dy cos § = s/ds. 4)
8¢ = 8;8in% @ + 2 s, sin 4 cos 6, (5)
s/=s,1—-_——c29~s—2—-q+ s, 8in 2 6. (6)

These equations apply when the external shearing stresses in the
block have the directions of Fig. 113. If the shear is reversed
some of the signs are changed.

PROBLEMS.

1. With the unit shearing stress 100 pounds per square inch and the unit
tensile stress in the same direction 400 pounds per square inch (Fig. 114), find
the resultant unit shearing stress along a plane making an angle of 20 degrees
with the direction of the tension. Also find the unit tensile stress normal to
this plane. Ans. s, 205; s¢/, 111 pounds per square inch.

2. With unit shearing stress 100 pounds per square inch and unit tensile
stress zero, find the resultant tensile stress and shearing stress at 45 degrees.

Ans. s, 100; sg/, 0.

86. Maximum Resultant Stress. — To find the direction that
the plane BCFG should have in order that the shearing stress
along it shall be a maximum, differentiate the expression for s/,
Article 85, (3), with respect to 6:
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Fig. 114, — Shear and Tension.

2. With unit compressive stress of 200 pounds per square inch and unit
shearing stress of 160 pounds per square inch, find the maximum resultant
shear and compression (Fig. 115).

— 200
tan26, = T 0.625.

20, = 148° or 328°.
max sy’ = — 188.68 ¢ 188.68.
tan 2 6; = 1.600.

0= 29° or 119°,
max s/ = 88.68 ¢ — 288.68.

Fig. 115, II, shows the shearing stress. The shear at 74 degrees is negative
and is downwards towards the origin on the right side of the line. At 164
degrees the shear is positive, away from the origin on the upper side. We
have drawn the shear at — 16 degrees, instead of along the opposite line.
Fig. 115, 111, shows all the maximum shearing stresses acting on a block in the
solid.

The maximum stress along the 29-degree line is compressive, and the mini-
mum along the line at right angles to this is tensile (Fig. 115, IV).

To find the maximum resultant shearing stress without calculating the
angle 2 6, substitute in

88’ =%sin20-|—s,cos20,

the values of sin 2 6 and cos 2 9 calculated from the relation

Sl
tan26, = Dy
from which we get
2
max sy’ = \/sf, + (%) . Formula XIX.
In a similar way substitute the values of cos 26 and sin 2  from
2 Se

tan20;=—T‘—
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stress 5 inches from the left support and 3 inches from the bottom of the beam.
Find also the maximum resultant stresses.
ss = 210 pounds; s; = 200 pounds;
max s’ = 232.6 pounds; max s/ = 332.6 pounds; min s’ = — 132.6 pounds;
0s = 12° 44/; 6, = — 32° 16/ 6 = 57° 44",

87. Resultant Stress in Beams.— In beams, the maximum
tensile stress is in the outer fibers, while the maximum shearing
stress is at the neutral axis. The shear is a maximum where
the tension is zero and the tension is a maximum where the shear
is zero. For these reasons it is not generally necessary to com-
pute the resultant stress when the beam is made of material
which is equally strong in all directions. There are conditions,
however, where the maximum resultant stress becomes an im-
portant factor. We will, therefore, work out a problem to show
the ways in which these stresses act. :

PROBLEM. »

1. A 6-inch by 10-inch beam is supported at points 30 inches apart and
supports a load of 20,000 pounds midway between the supports. Find the
magnitude and direction of the maximum resultant tension, shear, and com-
pression, at sections 5 inches and 10 inches from the left support at points
0, 1, 2, 3, 4, and 5 inches from the neutral axis.

TABLE VI..
RESULTANT SHEAR AND TENSION IN A BEAM.

Shear. 3;2;:' Maximum shear. | Maximum tension. Ma;gg:;:) lfom-
Distance below i p
axis.

Pounds.| Pounds.| Pounds.| Angle. |Pounds.| Angle. Pounds.| Angle.
At 5 0 250 0| 250.0f 0° 0’| 250.0{—45° 0O (250 45° 0’
hcles 1 240 100 | 245.2| 5°53’ | 295.2|—39° 07’ |195.2 | 50° 53’
from 2 210 200 | 232.6( 12° 44’ | 332.6|—32° 16’ |132.6 | 57° 44’
Sl 3 160 300 | 219.3| 21° 35’ | 369.3/—23° 25’ | 69.3 | 66° 35’
R [ 90 | 400 | 219.0] 32° 53’ | 419.0—12°07’{ 19.0 | 77° 53’
5 0| 500 | 250.0{ 45° 0’| 500.0f 0° 0| O 90° 0’
At 10 0 250 0| 250.0f 0° 0’| 250.0/—45° 0'|250.0 | 45° 0’
inch 1 240 | 200 | 260.2] 11°49’ | 360.2|—33° 11’ |160.2 | 56° 49’
llflc Copl 210 400 | 290.0| 21° 48’ | 490.0(—23° 12’ | 90.0 | 66° 48’
|3 | 160 | 600 | 341.0) 30° 58| 641.0—14° 2’| 41.0 | 75° 58’
00s &1 90 800 | 410.0| 38° 40’ | 841.0{— 6° 20’ | 10.0 | 83° 40’
5 0 | 1000 | 500.0| 45° 0’ {1000.0/ 0° 0’| O 90° 0’

Above the neutral axis the shear is the same as below and the tension and
compression change places. The angles are numerically the same but are on
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opposite sides of the horizontal. Fig. 117 shows the direction and relative
magnitude of the maximum and minimum stresses for this problem. Near
the bottom where the maximum compression is small its direction is shown
by the dotted lines. In the same way the direction of the tension is indicated
near the top.
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g /L 2 410%
L 219 3ire
W= °\“
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H
g ]
57 o 10 W i \is
4 20" K

Fig. 117. — Resultant Stress in a Beam Section.

88. Failure of Beams. — The nature of the failure in a beam
depends principally upon the relative ultimate strength of the
material in the different directions and the value of the different
maximum stresses. In a beam which is short relative to its
depth, the unit tensile and compressive stresses at the danger- .
ous section are small compared with the unit shearing stress at
the neutral surface at the ends. Owing to the fact that timber
has a small shearing strength parallel to the grain such a beam,
if made of timber, will usually fail by shear. Fig. 118 shows
4 wooden beams each about 40 inches long. The upper beam isa
yellow pine beam glued to a white pine beam. The total depth
was 3.80 inches and breadth 1.57 inches. The beam was sup- |
ported at points 36 inches apart and loaded at the third points;
this beam failed by longitudinal shear at one end when the total
load was 1950 pounds. The failure followed the glued surface
but began in the white pine. .
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Fig. 118, — Failure of Timber Beams.

Fig. 119. — Failure of a Reinforced Concrete Beam.
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The second beam of white pine 3.81 inches by 1.68 inches,
loaded in the same way with the large dimension horizontal,
failed by tension under a total load of 2467 pounds.

The lower beam is hickory, 2.39 inches by 3.79 inches. It
failed by tension under a total load of 12,900 pounds. The beam
next to the bottom, 2.02 inches by 2.16 inches is also hickory.
It failed under a load of 5540 pounds.

PROBLEMS.

1. Find the ultimate shearing strength of the white pine of the upper
beam. What was the unit tensile stress when it failed?

2. Find the unit tensile stress at the middle and the unit shearing stress
at the ends for the white pine stick.

3. Find the ultimate bending strength of hickory from the two samples;
also find the lower limit for the shearing strength.

Fig. 119 shows a reinforced concrete beam supported near
the ends at points 12 feet apart and loaded at the third point.
The diagonal line shows the initial failure. This is frequently
called a shear failure. It is really failure by tension. The line
of failure is about normal to the direction of the maximum
resultant tensile stress. Of course,
as the direction of this stress is de-
termined by the magnitude of the
== e shear there is good reason for calling

it a shear failure. The upper part

é of this crack does not follow a direc-
tion normal to the resultant tensile
stress, but it must be remembered
that, as the crack extended up in the beam, the direction of the
resultant stress changed. In a beam loaded in this way, when
cracks develop in the portion between the loads where the shear
is zero, the line of fracture is vertical.

Fig. 120 shows failure of a concrete beam by compression.

Fig. 120.



CHAPTER X. ?4‘ i
BEAMS OF SPECIAL FORM.

89. Beams of Constant Strength. — A beam of ‘‘ constant

strength ”” is one in which the section modulus varies as the -7

moment, so that the extreme fiber stress in all sections is the fv it

same. To design such a beam, we write the moment expression
and solve for the section modulus in terms of this expression and
the allowable unit stress in the outer fibers. '

9o. Cantilever with a Load on the End. — If we regard the
cantilever as fixed at the right end and take the left end as
the origin of coordinates, the moment at a distance x from this
origin is Px. If s is the allowable unit stress, '

Pz = s multiplied by the section modulus.

2
For a rectangular section the section modulus is b%, and

sbd?
Rake gl
PROBLEMS.

1. A cantilever of constant strength with the load on the end is of rec-
tangular section of constant depth 6 inches. The allowable fiber stress is
800 pounds per square inch. Find the equation for the breadth. 5

T

Ans. b = m-

2. A cantilever beam of constant strength and rectangular section has a

constant breadth b. If the allowable unit stress is s, find the expression for

the depth for a load on the free end. et e 6:;1 ]

3. A cantilever of constant strength with load of 600 pounds at the free
end is 4 inches wide throughout. The section is rectangular. The allowable
fiber stress is 1200 pounds per square inch. If the length is 60 inches from
the load to the fixed point, find the depth at each 10 inches.

( Position: 10 20 30 40 50 60 inches.
Ans.y Depth:  2.74 3.87 4.74 5.48 6.12 6.71 inches.

4. A cantilever 5 feet long carries a load of 800 pounds at the free end.
The section is a rectangle with the depth twice the breadth. The allowable
stress is 1000 pounds per square inch. Find the depth at each 10 inches.

Position: 10 20 30 40 50 60 inches.
Ans.d Do by 458 5.77 6.60 7.27 7.83 §.32inches.
153
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5. A cantilever of constant strength 6 feet long carries a load at the free
end. The depth at the wall is 8 inches and the breadth is constant. Find the
depth at each foot. Ans. 3.27, 4.62, 5.66, 6.53, 7.30, 8.00 inches.

Fig. 121 shows some cantilevers of constant strength and
rectangular section. Fig. 121, I, is a beam of constant depth.
The breadth varies as x — the equation of a straight line. The
plan is a triangle. Fig. 121, II, represents a beam with breadth
constant. The depth varies as the square root of z — the equa-
tion of a parabola. One surface may be plane as in II or both
may be curved as in Fig. 121, III. In any case the equation
gives the total depth. Fig. 121, IV, represents a cantilever in
which both depth and breadth vary, all sections being similar
rectangles. The equation is that of the cubical parabola.

PROBLEM.

6. A circular steel post 20 inches long is used as a cantilever with a load
at the end. The allowable unit stress is 12,000 pounds per square mch Find
the diameter at each 5-inch interval, if the load is 600 pounds.

o1. Shearing and Bearing Stresses at the End. — In Fig. 121,
the load P is represented at the extreme ends of the beams.
Allowance must be made at the ends for
bearing and shearing stresses. For in-
stanee, in Problem 3 of Article 90, sup-
pose the allowable unit shearing stress to
be 200 pounds per square inch. The sec-
tion should never be less than 3 square
inches; the minimum depth should be £
Iclgrs?éTAm# inch. Suppos&? also that the allowable

bearing stress is 300 pounds per square

-inch, and that the center of the load must
be 5 feet from the wall; the bearing area
must be at least 2 square inches. If the
load extends the en- %Hx, :
tire width of the (¥l !
beam the bearing ||
IV SECTIONS SIMILAR area must be 4 inches
Y Vel by % inch. The ac-
Fig. 121. — Cantilevers of tual Bosim Mush 6x-
Constant, Strength. orid ‘Al TRl ek
beyond the center of the load. Flg. 122 shows the details for
these conditions. The dotted lines are the limits for the beam

I DEPTH
CONSTANT

II1 BREADTH
CONSTANT

=
=

2
i
i
'

—=——=de
—————|

Fig. 122.—Requirements
for Shear and Bearing.
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figured for bending only. The solid lines show the minimum
dimensions figured for all stresses. The actual beam should be
somewhat larger at the end than shown, as a great increase in
safety can be secured here with practically no increase in cost
and weight. Artistic appearance and convenience of construc-
tion may cause further modifications outside of the minimum
dimenstons.

PROBLEMS.

1. Design a cantilever of constant strength for a load of 500 pounds at a
distance of 40 inches from a wall: the maximum bending stress to be 800
pounds; the maximum shearing stress, 100°pounds; and the maximum bear-
ing stress, 200 pounds per square inch. The depth of the beam is constant,
4 inches.

2. Design the same cantilever with square section, all other conditions
remaining the same as in Problem 1.

92. Cantilever with Uniformly Distributed Load. — The only
difference between a cantilever with uniformly distributed load
and one with a concentrated load is in the expression for the
external moment. -

PROBLEMS.

1. A cantilever of constant strength has a rectangular section and constant
breadth b. The load is uniformly distributed and is w pounds per inch of
length. If s is the allowable unit stress, find the expression for the depth.

Ans. @ = 3::2.

2. Draw a cantilever of constant strength and constant breadth of 2
inches to carry a load of 180 pounds per foot uniformly distributed, with an
allowable unit stress of 1000 pounds per square inch. The length of the
cantilever is 40 inches.

3. A cantilever of constant strength of rectangular section is d inches deep.
If the load is uniformly distributed, find the expression for the breadth.

A
i sd?

4, Draw a cantilever to satisfy the conditions of Problem 3. The breadth
at the wall shall be 6 inches, and the length 30 inches.

5. A cantilever of constant strength, of rectangular section, carries a dis-
tributed load of 60 pounds per foot. The depth is 4 inches and the allowable
unit stress is 800 pounds per square inch. Find the breadth for every 10 inches
for a length of 5 feet.

6. A cantilever of square section for a uniformly distributed load is 6 inches
square at the wall 40 inches from the free end. Find the dimensions at each
10 inches. Ans. 2.38, 3.78, 4.95 inches.

7. Design and draw a cantilever of constant strength and constant breadth
of 2 inches to carry a distributed load of 100 pounds per foot and a load of
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400 pounds 2 feet from the free end. The length of the cantllever is 4 feet
and the allowable stress is 600 pounds per square inch.

8. A cantilever of constant strength for a uniformly distributed load has all
sections similar triangles. At 50 inches from the free end it is 8 inches wide
and 6 inches deep. Find the dimensions at each 10-inch interval.

03. Beams of Constant Strength Supported at the Ends. —
The methods of solution are the same as for cantilevers. For
a single load at the middle the problem is exactly the same as
that of a cantilever of one-half the length with a load at the end.
A beam with a single load at any point may be regarded as made
of two cantilevers fixed at that point with loads equal to the
respective end reactions. Beams with distributed loads are not
quite so simple. Allowance must be made in this beam for shear
and bearing at the supports, which was not necessary in the case
of cantilevers with uniformly distributed loads.

PROBLEMS.

1. A box girder is made of two 12-inch 35-pound channels riveted to a
pair of 10-inch by %-inch plates extending the entire length and other similar
plates extending part of the length on both sides of the middle. The load is
600 pounds per foot; the span is 40 feet; and the allowable unit stress is 10,000
pounds per square inch. Find the minimum length of these plates, making
no allowance for weakening due to rivet holes.

Ans. One pair of plates should be 22 feet 1 inch long.

2. Design a wooden beam of constant strength supported at the ends for
a span of 6 feet with a load of 600 pounds in the middle and a distributed load
of 120 pounds per foot. The allowable fiber stress is 1000 pounds per square
inch and the beam sections square. The allowable shearing stress is 100 pounds
per square inch and the bearing stress 120 pounds per square inch.

3. Solve Problem 2 if the concentrated load is 4 feet from one end.

04. Deflection of Beams of Constant Strength. — The prob-
lem of finding the deflection of a beam of constant strength
differs from that of a uniform section in that the moment of
inertia is no longer constant but is a function of . In beams
symme.iical with respect to the neutral surface,

2sI

d

where s is constant throughout the length and d may be con-
stant or variable. In the following discussions when the depth
is constant we will represent it by the capital D, and when the
breadth is constant we will use the capital B. This will enable
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us more readily to distinguish between constants and variables
in integrating.
95. Cantilever of Constant Depth with Load on the End. —

dtyion 228l
ELgAT - D &
Dividing by I:
QSN 2ls
Eol=rF @

where E, s, and D are constants. We will consider the beam as
fixed at the right end.

dy  2sz 28\,
EY -2 (e =T); 3)
dy 2s
E%__B(l_x)' 4)
Ey=—5(@ -2+ (C:=0). 5
sl?
ymax_—"—E"B' (6)

We have now the maximum deflection in terms of s and D.
We will calculate it in terms of the dimensions at the wall. If
I,, is the maximum value of the moment of inertia (at the wall):

_PDi
S T
PDI? PI3
Ymex == o@Dl ~  2EIL,. @)
Pl
=~ = (®)

From equation (7) we see that the deflection of a cantilever
of constant strength and constant depth, due to a load on the
free end, is one and one-half times as great as the deflection of a
cantilever of uniform section having the same maximum dimen-

sions.
96. Cantilever of Constant Breadth with Load on the End. —

dy 2s
T (1)
where d is a variable.
P 6 Px

sB’
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where B is the constant breadth. Equation (1) becomes:

dx2 T \/6 : ‘ )
L sBfp 24 U
Ey—4s\/6P(la: 3% §) 3)
45l /sB
Hlas 00 Vo 1t ®

Substituting the value of s in terms of the breadth and depth at

the wall:

2 PI?
Ymax = — ﬁl—m’ (5)

which is twice the deflection of a cantilever of uniform section
with the same maximum dimensions.

PROBLEMS.

1. Find the expression for the deflection at the middle for a beam of con-
stant strength and constant depth due to a load at the middle of the span,
Pp
T 32EIm’

2. Find the expression for the deflection of a beam of constant strength
and constant breadth, supported at the ends with a load at the middle.

the beam being supported at the ends. Ans.

PP
3. In the case of a cantilever of constant depth with a load of w pounds per
inch uniformly distributed, what is the deflection at the free end?
wlt

Ans. — ——
4 El,
4. Solve the case of a cantilever of constant strength and constant breadth
with a uniformly distributed load.

Ans. Ey=—23‘/3B (xlog ':c-{—l)-
LS g TRE
AT T Ao} /2
5. How do the deflections at the ends in Problems 3 and 4 compare with
those in uniform beams?

6. Find the expression for the deflection at the end of a cantilever of con-
stant strength, with sections similar rectangles, due to a load at the free end.

Ans. Ymax = —

o7. Cast-iron Beams.— Parts of machines are frequently
made of cast iron. Cast iron differs from most structural mate-
rials * in that the ultimate strength in tension is much less than

* There is a greater difference in concrete.
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in compression. A good sample of cast iron may have an ulti-
mate tensile strength of 25,000 pounds per square inch and a
compressive strength of as much as 100,000 pounds per square
inch. Working stresses in east-iron members subject to bending
should be about 3000 pounds per square inch on the tension side,
and may be 10,000 pounds per square inch on the compression
side. The ultimate strength in compression being four times as
much as in tension we would naturally expect that this ratio
should hold in designing cast-iron beams; but owing to the fact
that the neutral axis is shifted from the center of gravity of
the cross scction after the material passes the elastic limit, a
lower ratio should be used.

The cast-iron beam of rectangular section in Problem 3,
Article 56, showed a modulus of rupture of 44,000 pounds per
square inch. The same bar in tension broke under 27,000 pounds
per square inch, the shifting of the neutral axis and the devia-
tion of the tension and compression stress-strain diagrams from
straight lines accounting for this difference.

In order to use the material economically, cast-iron beams
are generally made of sections which bring the center of gravity
two or three times as far from the compression side as it is from
the tension side. The corresponding stresses in the outer fibers
bear approximately the same ratio.

PROBLEM.

1. A cast-iron beam 40 inches long is supported at the ends and carries a
load at the middle. The section is that of Fig. 123. If the allowable fiber
stress in tension is 3000 pounds per square inch and the
allowable stress in compression is 10,000 pounds per square L _2"
inch, what is the safe load with the flange at the top and f,
also with the flange at the bottom? Y

Ans. 595 pounds, 1390 pounds.

The above problem has been solved with the assump-
tion that the stress-strain diagram is a straight line and 15
that the modulus of elasticity is the same in compression 4
and in tension. How near these assumptions are true
may be seen from Fig. 124. This figure represents the
stress-strain diagrams for cast iron from the same heat,
tested at the Watertown Arsenal. (Tests of Metals,

885, pages 475-490.) The tension curve is drawn from Fig. 123.

the mean of four tests and the compression curve from

the mean of twelve tests. (Only a part of the compression curve is drawn.
The ultimate strength of this iron in compression was apparently 52,000 pounds
per square inch for bars 12 inches long and 1 square inch cross section. As
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the bars bent considerably before failure the actual compressive stress was
much above this figure.) '

The compressive diagram is a straight line up to 13,000 pounds per square
inch. The tension diagram is slightly curved in the neighborhood of 3000
pounds. The modulus of elasticity in tension is slightly greater than the
modulus in compression. The curves are so close together, however, that
little error is made in using the above assumptions for tensile stresses of 3000
pounds with compressive stresses of 10,000 pounds.
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Fig. 124, — Stress-strain Diagrams for Cast Iron.

When it comes to computing the unit stress at rupture, the case is different.

Let us consider a beam of rectangular section 1 inch wide with the outer
fibers in the tension side 1 inch from the neutral axis and determine the depth
of the compression side in order that the total compression shall equal the total
tension when the elongation in the outer fibers in tension is 0.0025. The
unit stress in these outer fibers from the curve is found to be 24,800 pounds
per square inch. The total tension is obtained from the average ordinate of
the curve. To get this average ordinate we divide the area measured by a pla-
nimeter by the length of the base. Or each ordinate may be regarded as the
mean altitude of a strip of width equal to the distance between the ordinates.
For instance, the ordinate which corresponds to the unit elongation of 0.001
i 16,100 pounds. This may be taken as the altitude of a strip of width 0.0001
extending from elongation 0.00095 to 0.00105. The sum of the ordinates
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from 0.0001 to 0.0024 inclusive multiplied by the width of the interval will
give the area from 0.00005 to 0.00245. The half intervals from 0 to 0.00005
and from 0.00245 to 0.0025C may be computed separately. Calling the inter-
val between the ordinates unity to avoid decimals,

AneastreIntObor ISR SMIE W o Eoe h s s S e Bt 131
Area from 0.5 to 24.5 (Sum of 24 ordinates)........ ..... 398,650
e O ZANDRIOR2 5 AR T e W SR b o s N o T - - 12,350

ORI 411,131
Dividing by*25 miad s = o SRl S E e Mean stress.. 16,445

If the width of the section is b and the height from the neutral surface is vy,
the total tension is the product of the area bv,

multiplied by the mean unit stress.

The total compression below the neutral surface T T.,
must equal the total tension above. If the width is 2y (1
unity as in Fig. 125, the total compression is the l l
average compressive stress multiplied by v;. But this PENTEIN 1\
product is the area of the compression diagram. It .88’
is only necessary, then, to find the ordinate which l

forms the right boundary of an area below the com-
pression curve which is 411,131 units. The curve Fig.125. — Neutral Axis
being a straight line to the deformation 0.00075, at  in Rectangular Cast
which the unit stress is 14,300 pounds, we get this  Tron Section.

much of the area from the triangle.

Area from 0 to 7.5 (taken as a triangle). ............... 53,625
Area from 7.5 to 20.5 (Sum of 13 ordinates)............. 309,570

' Total to 20.5.. 363,195

ORI L L e T R T T 30,850
Total to 21.5.. 394,045

Area required beyond 21.5. . .. ... ... ... ... ... ... 17,086

Total.. 411,131

Dividing 17,086 by 31,400 which is approximately the mean ordinate for
the remainder of the area, we get 0.56.

21.5 + 0.56 = 22.06.

The compression depth, »,, is to the tension depth, vs, as 22.06 to 25. In other
words, ; is practically 88 per cent of »; as shown in Fig. 125.

The moment of the total tension is obtained by multiplying each ordinate
by its abscissa and adding the products. The result for a section above the
neutral axis 1 inch square is 10,506 inch pounds. In the same way the moment
of the compression area for a section below the neutral axis 1 inch wide and

0.88 inch deep is 9541 inch pounds. The total moment of the section is 20,047
inch pounds.

If we take a beam 1 inch wide and 1.88 inches deep and compute the maxi-
mum fiber stress from s = #, we get 34,000 pounds per square inch for the
value of s corresponding to this moment instead of 24,800 pounds in tension
and 31,400 pounds in compression. Fig. 126 shows the difference between a
cast-iron beam of rectangular section having an ultimate tensile stress in the
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outer fibers of 24,800 pounds per square inch (II) and a similar beam subjected
to the same moment but with a straight line curve (I). These figures show
the shifting of the neutral axis and show why the modulus of rupture does not
agree with the maximum tensile strength.

Fig. 127 shows the stress distribution in a cast-iron T sectlon with a rela-
tively thick stem with the flange in tension.

S =24,800%
E———

8,=34,000%  §,=21,800% 88
; CENTER OF

GRAVITY

¢

TRUE NEUTRAL

3 T AXIS

468 d

i - 8,=35,180%
Fig. 126. — Stress Distribution in a Fig. 127.
Cast Iron Section.

In the case of cast-iron beams, where it is not practicable to test full-size
members, it is advisable to make small beams of similar sections and test
them. The strength of the large beam of similar cross section and the same
length may be computed from the cube of the like dimensions.

08. Beams of Two or More Materials. — Beams are fre-
quently made of two or more materials having different moduli
of elasticity. The most common cases are beams made by bolt-
ing iron or steel plates to wooden beams, and reinforced concrete
beams, in which steel rods are embedded in the concrete in the
tension side.

Fig. 128 represents a beam made by bolting a steel plate to
one side of a wooden beam. In calculating the section modulus
we must remember that the modulus of elasticity in the wood is
less than that in the steel, and that with a given deformation the
unit stress in the two materials is proportional to their respective
moduli. If the modulus of the steel is 30,000,000 and that of
the wood is 1,500,000 the stress in the steel corresponding to a
given unit elongation is 20 times as great as the stress in the
wood. To find the neutral axis in this case we may use Fig. 128,
IT, regarding the steel area A BCD as having a density 20, while
the wood area has a density unity; or we may use Fig. 128, III,
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regarding the steel area A BCD as replaced by the wood area
EFGH twenty times as wide as the steel and of the same thick-

ness.
PROBLEMS.

(Use E for steel, 20 times E for wood in these problems.)

1. A 6-inch by 8-inch wooden beam has a 6-inch by j-inch steel plate
fastened to the lower side. Find the neutral axis.
Ans. 1.64 inches from the bottom of the wood.
2. A 4-inch by 4-inch wooden beam has a 4-inch by 3-inch steel plate on
the lower side and a l-inch by l-inch bar embedded in the upper side, the top
of the bar being flush with the top of the timber. Find the neutral axis.
Ans. 1.18 inches from the bottom of the timber.

To calculate the stress in beams of this kind we may use the
timber as the unit and regard the steel as expanded into the equiv-
alent amount of wood as in Fig. 128, III. We may determine

WOOD
STEEL/
1
WOOD
L WOOD EQUIVALENT
AD £ STEEL iOF STEEL 2
o 111

Fig. 128.

the section modulus on this assumption and find the stress in the
outer fibers. To find the stress for steel at a given point, multi-
ply the stress calculated for wood by the ratio of the moduli of

elasticity. PROBLEMS

3. In Problem 1, what is the equivalent moment of inertia of the section?

Ans. 738.5 inchest.

4. In Problem 3, the beam is subjected to a bending moment of 120,000

inch pounds. What is the maximum fiber stress in the steel and in the wood?

Ans. 1033 pounds per square inch in the wood.

6955 pounds per square inch in the steel.

5. In Problem 2, the beam is 10 feet long and supported at the ends. What

is the greatest load which may be applied at the middle if the allowable unit

stress in the steel is 15,000 pounds per square inch? Ans. 1938 pounds.

6. A beam 10 feet long, supported at the ends and loaded at the middle,

is made of two i-inch by 8-inch plates of steel bolted to the vertical faces of

a 6-inch by 8-inch wooden beam. If the allowable unit stress in the steel is

15,000 pounds and in the wood is 1000 pounds, what is the maximum safe
load?
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7. In a beam of the form of Problem 6 what should be.the ratio of the
depth of the wooden beam to that of the steel plates if both reach their allow-
able load at the same time?

99. Reinforced Concrete Beams. — Reinforced concrete rep-
resents another form of combination beam. A reinforced con-
crete beam has steel rods embedded in the concrete near the-
surface in the tension side. Sometimes both tension and com-
pression sides are reinforced. These rods may be ordinary
round or square steel bars. Usually they are corrugated in
some way or made of cable or twisted square bar so that they
will not slip even if the grip of the concrete should be weakened.
Many designers use steel with a high yield point, 50,000 pounds
per square inch or more. Such steel may safely be subjected to
stresses of 18,000 pounds per square inch, provided it has not
been subjected to rough treatment causing short bends or kinks.

Fig. 129 represents a portion of a reinforced concrete beam 8
inches by 11 inches in cross section. The reinforcement consists

— g

of three rods with centers 1 inch from the bottom of the beam.
The photograph, Fig. 119, shows a beam of this size after failure.

In working out the theory of concrete beams, it is customary to
regard the steel as taking all the tension. If the unit stresses
are kept low, the concrete on the tension side of the neutral axis
does exert some tensile stress, but at loads of less than one third
of the ultimate strength of the beam fine cracks form in the ten-
sion side and tests show that the steel takes practically all the
tension at larger loads.

We are accustomed to speak of the per cent of reinforcement.
This is obtained by dividing the area of the steel by the area of
the beam section above the center of the steel. In Fig. 129 the
beam is regarded as an 8-inch by 10-inch section; the inch of con-
crete is considered as simply protecting the steel. If the rods in
Fig. 129 are § inch round, the reinforcement is 1.15 per cent.
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More or less elaborate formulas have been proposed for rein-
forced concrete beams. Any formula depends upon the form of
* the compression curve of the concrete. This curve varies greatly
with the material, the proportions, the care in mixing, the age,
and the stresses to which it has been subjected. The modulus
of elasticity of concrete is lowered greatly by slight overloads.
For these reasons there is little use for great refinement of calcu-
lation unless you have good experimental
data in regard to the concrete which you
are using.

The portion of the section above the
neutral axis is in compression. The line
OF, Fig. 130, represents the compression
curve. If the stresses are small, this
curve is a straight line. If they are
large, it is somewhat curved, as in Fig. é‘ﬁ' D
85. (Fig. 10 is the compression curve __ AT =
of one sample of concrete). If the sec- F’g't 0 g outionidf

i ress in a Reinforced Con-
tion of the beam is rectangular above crete Beam.
the neutral axis the total compression

may be represented by the triangular area OFC. If the angle of
bend in unit length of the beam is d6, the unit stress in the top
fibers at a distance v, from the neutral surface is

Vg Ec dé s

where E, is the modulus of the concrete in compression. The
total stress in a section of width b is given by
b3, do

2
If we take v; as the distance from the neutral surface to the center
of the steel, the total stress in the steel is given by

Total tension in steel = 4,0 K, df,

where A, is the steel area and E, its modulus in tension.

Since the total compression in the concrete equals the total
tension in the steel,

b3 E.
2

r—— b —

Total compression in concrete =

= AunkE, 1}=2n ‘gg‘ (1)

Also ve +v1 = h, @)
where % is the depth from the top of the beam to the center of
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reinforcement. These equations enable us to locate the neutral
axis in terms of h for any per cent of reinforcement.

It must be remembered that the theory above is on the simple
assumption that the concrete curve for the stresses used is prac-
tically a straight line. '

PROBLEMS.

1. If the modulus of elasticit}; of the steel is fifteen times as great as that
of the concrete and the area of the steel is 1 per cent of the area bk, find v,
in terms of h. i Ans. vo = 0.42 h.

2. If the modulus of elasticity of the steel is 30,000,000, and that of the
concrete 2,000,000, locate the neutral axis for reinforcements of 1 per cent,
1.2 per cent, 1.5 per cent. Ans. v; = 0.58 b, 0.55 h, 0.52 h.

3. In Problem 1 what is the average unit compressive stress in the concrete
if the unit tensile stress in the steel is 10,000 pounds per square inch, and
what is the unit compressive stress in the outer fibers?

Ans. 238, 476 pounds per square inch.

4. In Problem 2 what is the compressive stress in the top fibers of the
concrete when the unit tensile stress in the steel is 12,000 pounds per square
inch? Ans. 571, 640, 750 pounds per square inch.

The unit stresses in Problem 4 are too high to be allowed. The
results show that it is not economical to use too great a percentage
of steel, for with large percentage of steel the concrete reaches
its allowed value in compression while the stress in the steel is
still relatively small.

PROBLEMS.

5. With one-half of 1 per cent reinforcement, and with the modulus of
steel fifteen times as great as that of concrete, what is the maximum com-
pressive stress in the concrete when the tensile stress in the steel is 12,000
pounds per square inch? Ans. 375 pounds per square inch.

6. With 0.8 per cent of reinforcement and the modulus of the steel fifteen
times that of the concrete, what is the unit stress in the steel when the maxi-
mum stress in the concrete is 400 pounds per square inch?

100. Resisting Moment in Reinforced Concrete. — The com-
pressive stress in the concrete above the neutral axis and the ten-
sile stress in the steel form a couple. The moment of this couple
is the product of either total stress multiplied by the distance
between their resultants. The resultant stress in the steel is
taken as applied at the center of the steel section. The resultant
of the compressive stress is at the center of gravity of the tri-
angle OFC, Fig. 130. The moment arm is

n+t 3oy,
provided the compression diagram is a straight line. If the
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compression diagram is curved, the moment arm is slightly
smaller. Calculations from the compression curves of Fig. 10
show that the center of gravity of the area is 0.62 v, at the ultimate
stress and 0.64 v, when the stress is carried to 400 pounds per
square inch. There is, therefore, little error in assuming that
the resultant of the compressive stress is 0.67 v; above the neutral
axis in all cases.
PROBLEMS.

1. Using 1 per cent reinforcement and E; fifteen times E,, what is the
effective resisting-moment arm? Ans. 0.86 h.
2. In Problem 1, if the unit stress in the steel is 10,000 pounds per square
inch, what is the resisting moment? Ans. 86 bh2.
3. If the beam in Problem 2 is 8 inches wide and 10 inches deep from top

to center of reinforcement, what is the resisting moment?
Ans. 68,800 inch pounds.
4. In Problem 3 the beam is 10 feet long and supported at the ends. What
load at the middle will give the required moment, computing the concrete
at 150 pounds per cubic foot and neglecting the weight of the steel and of
the concrete below the reinforcement? Ans. 1877 pounds.

To get the resisting moment of a reinforced concrete beam,
we compute the moment of the couple of which the total tension
is one force and the total compression the other force. The
total tension in the steel is easily computed by multiplying the
area by the allowable unit stress. The moment arm must be
less than h; experiments and theory show that it is about 0.8 h.
To get the resisting moment, then, we multiply the area of the
steel by its allowable unit stress and multiply the total stress
thus obtained by 0.8 of the distance from the center of the steel
to the top of the beam. This gives a simple method of approz-
imate calculation for a beam of rectangular section. We must
not apply this, however, to beams with too great a per cent of
reinforcement, as these will fail by compression of the concrete
before the steel reaches a considerable stress. The allowable
amount of reinforcement may be computed for beams of rec-
tangular section by the methods of the preceding article, or may
be determined from the resulis of tests of large concrete beams.

PROBLEMS.

5. Assuming that the point of application of the resultant compression
is 0.8 of the depth from the steel and that the allowable unit stress in the steel
is 15,000 pounds, find the total safe load at the middle of an 8-inch by 10-inch
beam 10 fect long, supported at the ends, with a reinforcement of 1 per cent.

Ans. 3200 pounds if the weight of the beam is neglected.
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6. What must be the approximate depth of a rectangular beam 12 inches
wide and 15 feet long, supported at the ends, to carry a load of 600 pounds per
foot, including its own weight, if the reinforcement is 0.9 per cent and the
allowable stress 12,000 pounds per square inch?

101. Resultant Tensile Stress.— In Article 86 we learned
that the combined effect of a tensile and shearing stress produced
a resultant tensile stress at an angle with the direct tension. The
tensile strength of concrete is small relatively to the compressive
strength and is the same in all directions. A concrete beam is
likely to fail in tension along a line perpendicular to the direc-
tion of the maximum resultant tensile stress. The photograph,
Fig. 119, shows a failure of this kind. A concrete beam should
have some reinforcement along the direction of the resultant

tensile stress as well as longi-
® 48" &)

] 1 tudinally along the tension

\{ \‘\ side. Fig. 131 is a diagram
showing the cracks at failure
in a beam similar to Fig. 119
and loaded in the same way.
Notice that the cracks in the middle third where there is no
shear run nearly vertical, while the crack outside of the load is
inclined. This beam and the

one in Fig. 119 had longitudi-
nal reinforcement only. Un- »
less the shear is relatively Fig. 132. — Shear Bars for Reinforced
small, a concrete beam should Conarete:
have additional reinforcement
arranged as shown in Fig. 132. These inclined bars are called
shear bars. They may be rigidly attached to the tension bars or
may be separate.

When a beam is continuous over several supports, it follows,
of course, that the reinforcement must be placed near the top in
the portion where the moment is negative.

Fig. 131. — Failure of a Reinforced
. Concrete Beam.




CHAPTER XI.

BENDING COMBINED WITH TENSION OR
COMPRESSION.

102. Transverse and Longitudinal Loading. — It often hap-
pens that a beam is subjected to a direct tension or compression
in the direction of its length and a transverse force producing
a bending moment. The unit stress at any point in a given
section is the sum of the direct stress and the bending stress at
that point. For example, suppose a 4-inch by 4-inch post stands
vertical and supports a load of 4000 pounds at the top. The
direct compressive stress is 250 pounds per square inch. Sup-
pose this post is fixed at the bottom (Fig. 133), and that a hori-
zontal push of 200 pounds is
applied 2 feet from the bot-
tom. Thistransverse force pro-
duces a tensile stress of 450
pounds per square inch in the
outer fibers at the bottom on
the side of the push and a
compressive stress of the same
magnitude in the opposite side.
The resultant stress is 700
pounds per square inch in the
one side and 200 pounds per
square inch in the other. Fig.
133, IV, shows the distribution
of the stress, compression being
represented by the vertical dis-
tance downward. In Fig. 133,
11, we have the compression alone due to the direct load of 4000
pounds In Fig. 133, ITI, we have the stress due to bending; it
is 450 pounds compression on the left side and 450 pounds ten-
sion on the right. At the middle of the section it is zero. In
Fig. 133, IV, the two stresses are combined. The line EF, which

is the zero line for the bending stress, is placed on the line CD,
169

v 1" 0" 1

T

COMPRESSION 250%#
DIRECT STRESS

© ”
COMPRESSION 700

Fig. 133. — Post with Compression
and Bending.

e
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representing the compressive stress in II. At a point § inch from
the right of the diagram the resultant stress is 0.

The resultant stress, being the sum of the direct and the
bending stress, is given by the expression:

Unit stress = —g— + ]‘# ’ Formula XXI.

where P is the total load parallel to the length of the beam and
M is the bending moment from any source whatever. Since
v has the positive sign on one side of the neutral axis and the
negative sign on the other side, the second term may be positive
or negative, according to the position.

PROBLEMS.

1. A wooden post 6 inches square and 5 feet high is fixed at the lower end
and carries a load of 7200 pounds at the top. A horizontal push of 180 pounds
is exerted upon the north side of the post 50 inches from the bottom. Find
the maximum tensile and compressive stress at the bottom. 1

Ans. 50 pounds per square inch tension on the north side;
450 pounds per square inch compression on the south side.

2. A wooden post 6 inches by 8 inches is placed vertical, with the 8-inch
faces in the meridian. The post projects § feet from the ground. A load of
12,000 pounds is placed on the top and a horizontal push of 400 pounds directed
south is applied to the north face 1 foot from the top. Find (@) the unit stress
at the bottom on the north side; (b) the unit stress at the bottom on the south
side; (c) the location of the line of zero stress in the bottom section; (d) the
position of a section having zero stress on the north side.

Ans. (a) 125 pounds tension; (b) 625 pounds compression; (c) 1} inches
from the north side; (d) 4 feet 4 inches from the top.

3. A 2-inch solid shaft supported on bearings 4 feet apart carries a load
of 400 pounds at the middle and is subjected to a horizontal compression of
8000 pounds parallel to its length. Find the maximum and minimum unit
stress, neglecting the weight of the shaft.

Ans. 8662 pounds compression; 3570 pounds tension.

4. A concrete wall 10 feet high and 1 foot, thick is subjected to a horizontal
water pressure which varies as the depth and is 62.4 pounds per square foot
at a depth of 1 foot. The concrete weighs 150 pounds per cubic foot. Find
the maximum tensile and compressive stress at the bottom.

103. Eccentric Loading. — Let a rigid bar G, Fig. 134, be
supported by three equal and symmetrically placed rubber
bands (or springs) suspended from a fixed horizontal support.
Each of the bands will be stretched equally and the bar will
hang in a horizontal position (Fig. 134, I). Now attach a load
P at the middle of the bar. Each rubber band will receive the
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same elongation and the bar will remain horizontal in the posi-
tion of Fig. 134, II. If the load P be moved to the right, as in
Fig. 134, III, the middle band will receive the same elongation
as in the preceding case, while the left band will be elongated less
and the right band more. If we place the load still farther to the

di II 111
Fig. 134. — Eccentric Loading of Rubber Bands.

right, we finally reach a position where the left end is elevated
above the position which it occupied before the load was applied,
so that finally no load whatever comes on the left band. If
instead of the rubber bands, we use helical springs of relatively
large cross section, which are able to resist compression as well
as tension, we may secure compresstve stress in the spring which
is on the side of the center away from the load.

Instead of the rubber bands we might use a continuous body,
as a sheet of rubber or metal. If such a sheet is fastened to a
rigid body at the top and bottom and a load is
applied considerably to one side of the center, w1
there will be an elongation on that side and a
shortening or buckling on the other. A similar .
result obtains when a compressive load is ap-
plied to a body. Fig. 135 shows a block of soft V722222

rubber with the load central, and Fig. 135, II, m
shows the effect of moving this load a little to (B

one side.
If we consider the bar G of Fig. 134, ITI, we .
see that the effect of the eccentric load is a A

translation downwards, of the same magnitude

as that due to the central load in II, together F’g;esls?i’i‘l ;itgoll)x;:
with a rofation about the bottom of the middle  boct aod with Fo.
band as an axis. Taking moments about this centric Loading.
point C, we find that equilibrium occurs when

the moment of the load P with respect to C is equal to the
moment of the excess of tension in the right band plus the
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moment of the deficiency of tension in the left band. Suppose
that the bands are 4 inches apart, and that a load of 1 pound
stretches the bands 0.4 inch. One pound will stretch a single
band 1.2 inches. Now move the load of 1 pound 2 inches to
the right of the middle. The moment of the load is 2 inch
pounds, which is balanced by a force of 0.5 pound at 4 inches.
The tension in the right band is 0.25 pound more than that in
the middle, and the tension in the left band is 0.25 pound less.
If the load is moved more than 3 inches from the middle, the
tension in the left band becomes less than it was before the load
was applied.

We learned in Mechanics * that a force along any line may
be replaced by an equal force along any parallel line and a
couple whose moment is the product of the force multiplied by
the distance between the lines. In Fig. 136 the body is sub-

B
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Fig. 136. — Block with Eccentric Loading.

jected to a compressive force of P pounds along a line through
the point B. The force is parallel to the axis CC. The distance
of the line of force, BB, from the axis is called the eccentricity
of the load and is represented by the letter e. The force P at
B may be replaced by a force P at C and a couple of moment
eP tending to rotate the top of the block in a clockwise direction.
The two equal and oppositely directed forces which comprise
this couple may be regarded as having any magnitude, direction,
and position, provided only that the product of the magnitude of
either force multiplied by the distance between them is equal to
moment eP. We may consider the couple at the top as made of

* Hoskins’ Theoretical Mechanies, Art. 94; Maurer’s Technical Mechanics,
Art. 31.
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two horizontal forces Q at a distance b apart, provided bQ =eP.
In the same way, the opposite couple at the bottom may be
made of two horizontal forces R at a distance d apart, with a
moment dR = eP, tending to produce counterclockwise rotation.
It is evident, then, that the portion of the body between the
lower force @ and the upper force R is subjected to a bending
moment eP and a direct load P at C.  The forces R and Q may
be regarded as indefinitely large and the distances b and d in-
definitely small, so that the entire block may be considered as
subjected to the bending moment.

It will be noticed that the force P at the top of Fig. 136 is
really the resultant of a set of forces distributed over the entire
top, and varying uniformly from left to right. The cap at the
top and the support at the bottom are supposed to be relatively
very rigid. If the load is applied to a small area instead of over
the entire end of the body, the unit stress at some points near the
end will be larger than that indicated by the theory. Near the
middle of the length, the stress will be practically the same as
if the force were applied by means of a rigid cap and support.

Fig. 137 shows large eccentricity, the resultant load lying
entirely outside of the section. Here the existence of bending
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Fig. 137. — Large Eccentricity.

and direct stress together is almost self-evident. Consider the
portion above any section G. Resolving vertically, the vertical
reaction at the section is equal to the load P at the top. Taking
moments about an axis perpendicular to the plane of the paper
through the center of the section @, the resisting moment of the
section must equal the moment eP. Fig. 137, I1, shows the effect
of compression and Fig. 137, I11, the effect of tension.
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Compression combined with bending is shown in Fig. 138.
The forces P are applied to the wrenches by the screw clamp.
The wrenches as cantilevers transmit the bending moments and
direct compression to the bar. The experiment may easily be
performed by two wrenches and a steel or wooden bar, the force
being applied to the wrenches by hand. The bar will bend as
in Fig. 137, II, if the forces are towards each other, and as in
Fig. 137, I11, if the forces are from each other.

The clamp of Fig. 138 is subjected to tension and bending.
The eccentricity is the distance from the center of the screw to

Fig. 138.

the center of gravity of any section. In a hook the load line
joins the shank with the point which is immediately below it
when loaded. This point is, of course, the point in concave
portion which is farthest from the shank. The eccentricity is
the distance of this load line from the center of gravity of the
section.
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PROBLEMS.

1. A 4-inch by 6-inch short block is subjected to a compressive load of
6000 pounds, the line of the resultant load being i inch from the axis of the
block in the plane parallel to the 6-inch faces which passes through the axis.
Find the maximum compressive stress and the minimum stress.

Ans. Maximum, 375 pounds per square inch;
Minimum, 125 pounds per square inch compression.

2. In Problem 1 solve for the case when the load is 1 inch from the axis.

Ans. 500 pounds per square inch, 0.

3. A solid circular rod 1 inch in diameter is subjected to a pull of 4000
pounds. What is maximum and minimum unit stress when the line of pull
is 0.1 inch from the axis?

Ans. 9167 pounds tension, 1019 pounds tension.

4. Solve Problem 3 if the line of pull is 0.2 inch from the axis.

Ans. 13,241 pounds tension, 3055 pounds compression.

5. A block b wide and d thick, of rectangular section, has the load so
placed that the unit stress in the outer fibers on one side is zero. If the line
of load is in the plane of symmetry parallel to the faces of breadth d, what is
the eccentricity? ' Ans. g

6. What eccentricity in a solid circular section of radius a will make the

. . a
unit stress on one side zero? Ans. e = e

7. A hollow circular cylinder of outside radius @ and inside radius b is so
loaded that the unit stress on one side is zero. What is the eccentricity?
at + b
4a
8. In a hook of circular section the distance from the center of the section
to the line of the load is 3 inches.' The load is 1000 pounds and the diameter
of the sectionis 2 inches. What is the maximum tensile and compressive stress?
Ans. 4138 pounds tension, 3501 pounds compression.
9. A hook of circular section has the center of the section 4 inches from
the line of the load. What must be its diameter to carry a load of 6000 pounds
if the unit stress in tension shall not exceed 10,000 pounds per square inch?
Ans. 2.99 inches.
10. What is the minimum diameter of the shank in Problem 9, if the allow-
able unit stress is 6000 pounds per square inch?

The hooks of Problems 8 and 9 have circular sections and the
unit stress on the tension side is greater than on the compression
side. It is better to make the hook section of the form of Fig. 139,
I, so that the tensile stress and compressive stress are about
equal.

In the case of cast-iron hooks, since the allowable compressive
stress is about three times as great as the allowable tensile stress,
it is customary to use a modified T section (Fig. 139, II), which
will make the distance from the neutral axis to the outer fibers in
compression much larger than the distance to the tension side.

Ans. e =
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PROBLEMS.

11. The section of a steel hook at the maximum distance from the load
line consists of two semicircles with centers 1.5 inches apart joined by two
straight lines. The circle nearest the load line is 1 inch in diameter and the
other is 0.8 inch in diameter. The load line passes 1.5 inches from the center
of the larger circle. Calculate the maximum compressive stress when the
maximum tensile stress is 6000 pounds per square inch.

12. A post 6 inches square and 5 feet high with two faces in the meridian
carries a load of 1800 pounds 0.5 inch west of the middle on the top, and is
subjected to a horizontal push of 72 pounds from west toward east applied at
the top. What is the unit stress at the bottom on the east and west sides?

!
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Fig. 139.

104. Maximum Eccentricity without Reversing Stress. — A
brick pier laid in lime mortar has practically no tensile strength,
and the tensile strength of masonry laid in cement is not reliable.
For this reason the load on a masonry pier should always be
placed so that the stress over the entire section shall be com-
presstve. Problem 5 of Article 103 showed that a load on a
rectangular section at a distance from the center greater than
one-sixth of the dimension of the section in this direction pro-
duces a negative stress in the outer fibers in the opposite side.
For this reason it is a rule of architects and engineers that the
resultant load shall not fall outside of the middle third in the case
of rectangular columns or piers. From Problem 6 we see that,
with round piers of solid section, the load must not lie outside
of a circle whose diameter is one-fourth that of
the pier.

c, The statement that the load must lie inside

e ° the middle third means that if the load is on

: the line BD, Fig. 140, through the center of the

Fig o 7 rectangle parallel to the side d, it must lie in

Sotw the middle third of this line. In the same way,

if the load falls on the line F@, it must be between the points
C1Ci on this line. CC is one-third of the length BD.

G
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PROBLEMS.

1. A 12-inch square brick pier carries a load of 7200 pounds. What is
the unit stress when the resultant load lies 1 inch from the center of the section
on a line through the center parallel to one side?

Ans. 75 pounds per square inch.

2. Solve Problem 1 when the load is 1 inch from the center on the diagonal
of the square. Ans. 85.3 pounds per square inch.

3. In Problem 1 how far may the load be placed from the center and not
have tensile stress? Ans. 2 inches.

4. In Problem 2 how far may the load be placed from the center and not
reverse the stress? Ans. 1.41 inch.

5. Compare the strength of a 12-inch by 12-inch pier with the load in the
middle with that of a 12-inch by 16-inch pier with the load 2 inches from the
middle on a line through the middle parallel to the long side.

Ans. The square pier is stronger in the ratio 21 : 16.

6. A square section of side b has the resultant load at a point C, the codrdi-
nates of which are (z, y), Fig. 141, I. Show that when the unit stress at F is
zero, the position of C satisfies the equation

62+ 6y =b.
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Fig. 141. — Maximum Eccentricity without Reversing Stress.

SucGesTION. — The moment of inertia of a square section being-the same for
all axes through the center, the rotation will be about the axis OF perpendicular
to OC. The distance of the extreme fibers at F from this axis is equal to EB.

The distance EB = g (cos 6 + sin ).
bt
I6= B
For zero stress at the corner, F,
e (cos 6 + sin ) =g-
x + Yy = g .

105. Resultant Load not on a Principal Axis.— In all the
problems of the preceding articles, the resultant load fell on one
principal axis and rotation took place about the other principal
axis. In the case of a round or square section, the moment of
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inertia is the same for all axes through the center of gravity, and
any such axis may be regarded as a principal axis. In other sec-
tions, when the load does not fall on a

R principal axis, the axis of rotation is not
N R the line OF normal to°OC, but is some
ey 20 line OG (Fig. 142) between OF and the

& ONZ X axis for which I is a minimum.
To solve the problem, we use the
™ method of resolving the couple eP into

Fig. 142, — Eccentric Load-

d i ad- components producing rotation about
ing not on Principal Axis.

the two principal axes. These compo-
nents for Fig. 142 are the couple Pz tending to produce rotation
about the Y axis and the couple Py tending to produce rotation
about the X axis. The bending stress at any point z; in the
section due to the moment Pz is

P:EIB]
I,

where I, is the moment of inertia with respect to the ¥ axis. In
the same way the stress due to the couple Py may be calculated.
The resultant stress due to bending is the sum of the two com-
ponents.

5

ExaMPLE. — A rectangular block 12 inches long measured from east to
west and 10 inches wide is subjected to a load of 3600 pounds 2 inches from
the east edge and 2 inches from the north edge. Find the unit stress at each
corner.

The bending stress at the north and south edges due to the couple of 10,300
inch pounds is 54 pounds per square inch. The bending stress at the east
and west edges due to the couple of 14,400 inch pounds is 60 pounds per square
inch. The direct compression is 30 pounds per square inch. The unit stresses
at the corners are: 144 pounds compression at the northeast corner; 24 pounds
compression at the northwest corner; 84 pounds tension at the southwest -
corner; 36 pounds compression at the southeast corner.

PROBLEMS.

1. A rectangle 8 inches long and 6 inches wide has a load of 1200 pounds
applied 2} inches from one 8-inch side, and 3% inches from one 6-inch side.
Find the unit stress at each corner.

Ans. 50, 25, 0, 25 pounds per square inch.

2. A rectangle of length b and height d has a load applied at a point whose
cobrdinates are (z, y) with respect to axes through the center parallel to the

sides. Show that if this point lies on a line whose intercepts are (—I; and g, the

stress will be zcro at the opposite corner.






CHAPTER XII.
COLUMNS.

106. Definition. — In the discussion in the preceding chapter,
we said nothing in regard to the deflection of the body considered,
and the effect of this deflection in changing the amount of eccen-
tricity. In tension, the deflection is in the direction to diminish
the eccentricity (Fig. 137, III). In compression, on the other
hand, the deflection increases the eccentricity and consequently
increases the unit stress (Fig. 137, II). A yard stick may be
placed with one end on the floor and a compressive force applied
with the hand to the other end. When the force reaches a cer-
tain amount, the stick suddenly bends and may
deflect several inches from the straight line.
The original eccentricity of possibly 0.01 inch
is increased to several inches and the unit stress
may be sufficient to cause rupture. If the stick
is placed with one end on a platform scale, as
in Fig. 143, it is found that the load which pro-
duces a deflection of 2 inches is little, if any,
greater than the load which causes a deflection
of 1 inch. The resisting moment has been
nearly doubled, but the external moment has
likewise been doubled, owing to the increased
length of the moment arm. :

A compression member whose length is sev-
eral times as great as its smallest transverse
dimension is called a column. There is no def-
inite ratio of length to diameter at which a compression member
ceases to be a short block and becomes a column. We find,
however, that when the ratio of length to the smallest transverse
dimension is less than 10, the error made by neglecting the de-
flection is so small that it may ordinarily be neglected. Some
engineers call a compression member of length less than 15 diam-
eters a short block or pier and calculate it by the methods of the
preceding chapter.

v,

Fig. 143. — A Long
Column,

180
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Columns may be vertical, as the intermediate posts of bridges,
or horizontal, as the top chords of a bridge. The connecting rod
of an engine is a column during the forward stroke. When a
column is vertical, the only bending moment is that due to the
eccentricity of the load and the deflection. When a column is
horizontal or inclined, its own weight applied as a beam becomes
an appreciable factor. The rafters supporting
a roof act as columns and inclined beams.

A compression member of some length is
frequently called a strut.

107. Column Theory. — Fig. 144 represents
a vertical column with ends free to turn with-
out friction about horizontal axes perpen-
dicular to the plane of the paper. Fig. 144,
I, represents the actual column with deflec-
tion somewhat exaggerated, and Fig. 144, IT,
shows the central axis of the column with all
horizontal distances enlarged. The X axis is
taken vertical and positive upward. (In all
beam and column theory, the X axis is taken
parallel to the original length.) The Y axis
is horizontal and positive toward the left.
We might take the column horizontal and
neglect the bending moment due to its weight T ik
with the same result. The origin of coordi- I & ]gté'ec_ﬁi‘ﬂumn
nates is at the lower end at the center of the o
section. At a section at a distance z from the origin, the
moment arm with respect to the center of gravity of the section
is Yy +e
and the moment is

Py +e).

Before writing the differential equation we must determine
which sign to use with the moment expression. In Fig. 144, y is
positive throughout the entire length of the column. The first

77

Lo

X AXIS

derivative, %’, is positive at the beginning and negative at the

naL T !
end; consequently the second derivative, d—:z:z’ is negative. In

the same way, if the eccentricity were on the other side of the
column so that the deflection would come on the right (negative),
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Substituting the second condition in (6):

O=ecos\/ l+Cgs1n\/EIl e; @)
l
P ( cos\/ ) e sin? \/ %1 5
= sm\/ l s1n\/££cos\/££
EI Er 2 EI 2

Pl
= ctan)/ iEh (8)
P N ESY P
y=e(cos\/E1x+tan 5 sin \/EI 1)- 9)

Equation (9) gives the deflection at any point of a column with
ends free to turn but not free to move laterally. It is a sine
curve. To find the point of maximum deflection, differentiate

and set the first derivative equal to zero and find that = =%

is the position required. We might have assumed, from the
symmetry of the figure, that the maximum deflection is at the
middle and used this instead of the second condition in getting
the constant C,.

To get the maximum deflection at the middle:

Ymax = e("os \/EI Gy o EI zs’“ \/Ez 2~ >;

P 2\/Pl _
ymax—esec\/EI 2<cos2\/E12—|-1 E 2) e,

2l )

Ymax = e(sec \/—E,—I S 1), Formula XXII. (10)
Y]
Ymext e=esec\ 77 5 (11)
Maxi H="eP \/£ U 12)
aximum moment = eP sec\/ 57 5

3 er -
Max1mgm stress = \/ 5T 2 (13)
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P ev Pl
= (1+T—ZSGC\E,—I§

A .
L PY e Py
= A(l st psecy 1% 21*)’ (14)

where A is the area of the section and r is the radius of gyration.

Maximum stress

PROBLEMS.

1. A wooden bar 1 inch square and 5 feet long, as a column has the load
0.1 inch from the center of the section on a line through the center parallel to
one side. If K is 1,500,000, what is the deflection at the middle of the length
due to a load of 200 pounds?

Ans. E—I’JI % = 1.2 radian.
Ymax = 0.176 inch.
2. Find the maximum moment and fiber stress in Problem 1.
Ans. Maximum moment, 55.18 inch pounds;
[ Maximum compressive stress, 531 pounds per square inch.

3. Solve Problems 1 and 2 for a length of 75 inches.

Ans. Ymax = 1.311 inches; maximum compressive stress, 1894 pounds.

4. A 2-inch round steel rod 5 feet long is used as a column with ends free
to turn. Find the deflection at the middle, and the maximum fiber stress on
the concave side for a load of 10,000 pounds, if the eccentricity is 0.1 inch, and
E is 30,000,000.

AnS. Ymax = 0.0227 inch; maximum stress, 4744 pounds per square inch.

5. Solve Problem 4 if the eccentricity is 0.01 inch; also for 0.5 inch.

6. Solve Problem 4 for loads of 20,000 pounds, 30,000 pounds, 50, 000
pounds, 60,000 pounds, and 70,000 pounds for eccentricities of 0.01 inch and
0.1 inch.

Ans. Load: 20,000 30,000 50,000 60,000 70,000
Stress: 6,763 10,340 19,295 32,483 Infinite.
e 10,337 17,500 49,800 154,000 H

7. What load in Problem 6 will make \/l% é = 90 degrees?
' Ans. 64,570 pounds.

If we observe Problem 6, we find that a load of 50,000 pounds
with an eccentricity of 0.1 inch produces a maximum stress of
49,800 pounds per square inch. If the ultimate strength of this
steel in compression is 50,000 pounds per square inch, this is
practically the ultimate load. On the other hand, a load of
60,000 pounds with an eccentricity of 0.01 inch produces a stress
of 32,000 pounds, so that with the smaller eccentricity the load
can go considerably above 60,000 pounds. A load of 64,570
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pounds will cause failure with a column of these dimensions, no
matter how small the eccentricity; for this load makes the angle

\/ E% é equal to g , an angle whose secant is infinity. A shorter

column of the same dimensions will carry a greater load. A
column 10 feet long and 2 inches in diameter will carry less than
16,200 pounds. A long column with the load exactly central,

e bl
when the angle \/ITIT 5
equilibrium; the least vibration will start it to bend, and it will
continue to bend without increase of load till it fails.

The formulas of this article are calculated on the assumption
that -E is constant. This is the case below the true elastic limit
only. Beyond this limit the change in direction of the stress-
strain diagram is practically the same as a reduction of the
value of E. This reduction of E occurs in the outer fibers, which
are subjected to the greatest stress, so that it causes some change
in the location of the neutral axis and modifies the eccentricity.
Thése formulas are, therefore, strictly correct only to the true
elastic limit.

Within the true elastic limit these formulas are theoretically
and experimentally correct. When the dimensions of the col-
umn are given and the eccentricity is known, equation (13) gives
the unit stress. This equation may be used to determine whether
a given column will carry a given load with safety.

108. Application of Column Formulas. — When it comes to
computing the total load P which a given column will carry with
a certain allowable unit stress, or to computing the size of column
for a given load, these equations are not convenient, since neither
of these quantities is expressed explicitly. Such problems may
be solved by the method of trial. Choose some column and.
calculate the unit stress by equation (13) of Article 107; if it
comes too high, choose a larger column until you get one for
which the unit stress is equal to the allowable stress, or a little
under this figure.

Where a number of such problems are to be solved, it is a
great saving of time to represent equation (14) by means of a

curve or table. To determine the relative values of § and;l
which make the unit stress equal to the ultimate strength of the

= 90 degrees, is in a condition of unstable
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TABLE VII.
ULTIMATE UNIT LOADS ON A COLUMN WITH ROUND ENDS,
Calculated from: ultimate strength, 48,000 pounds per square inch; E,
29,000,000; £ equals 0.2.

gis ultimate unit load in pounds per square inch.

;l.is the ratio of the length of the column to its radius of gyration.

P P 1 20 P 1 i
T 0.2sec VTS sec\/ﬁé;- \/Z_E-ﬂ o
Pounds. g Degrees Radians,

1,000 47 235 . 89° 46’ 1.566 533
2,000 23 115 89 30 1.562 376
3,000 15 75 89 14 1.557 306
4,000 11 55 88 58 1.552 264
5,000 8.6 43 88 40 1.547 236
6,000 7.0 35 88 22 1.542 214
8,000 5.0 25 87 42 1.531 184
10,000 3.8 19 86 59 1.518 164
12,000 3.0 15 86 11 1.504 148
16,000 2.0 10 84 17 1.471 125
20,000 1.4 7.0 81 47 1.427 108.8
24,000 1.0 5.0 78 41 1.373 94.4
26,000 .8462 4.231 76 20 1.332 88.8
28,000 7143 3.571 73 44 1.387 82.8
30,000 .6000 3.000 70 32 1.231 76.6
32,000 5000 2.500 66 25 1.159 69.8
34,000 4119 2.059 60 57 1.064 62.2
36,000 3333 1.667 53 07 .927 51.4
37,000 2973 1.486 47 43 .833 46.6
38,000 2632 1.316 40 32 707 39.0
38,500 2468 1.234 35 51 .626 34.4
39,000 2308 1.154 29 55 .522 28.6
39,200 2244 1.122 27 01 .471 25.6
39,400 2182 1.091 23 36 412 22 .4
39,600 2121 1.061 19 27 .339 18.4
39,700 .2090 1.045 16 57 .296 16.0
39,800 .2060 1.030 13 53 242 13.0
39,900 .2030 1.015 9 52 172 9.2
40,000 .2000 1.000 0 .0 0
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Fig. 145 shows the values of the unit load, g, which make the

unit stress in the outer fibers on the concave side of a steel col-
umn 48,000 pounds per square inch (provided the elastic limit is
48,000 pounds, as in the case of cold-rolled steel, for instance).
The curves are calculated for a modulus of 29,000,000. Curve I

2
is plotted from Table VII where ¢ = 0—37:— . Curve II is plotted

for an eccentricity one-half as great, %= 0.1, column III of

Table VIII. Curve III is plotted from zero eccentricity, the
gecond column of Table VIII.

—
1

P . D

b ! STEEL COLUMNS WITH
T 3 ROUND ENDS;
g 50000 E=29,000,000;
& 8= 48,000
w
« IIT ev — ,.
< 40000 \b L S8
Sl N\ \ IL%:,;'.
(s 1 \ LI ECCENTRICITY ZERO
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30000 \
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4. 20300
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& 15000
-
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LENGTH--LEAST RADIUS OF GYRATION
Fig. 145. — Column Curves.

We notice that the eccentricity makes a large difference for
values of ; less than 100. For values greater than 160 the

eccentricity makes little difference.

We will now apply one of these curves to the solution of a problem. Sup-
pose we want a solid circular column 80 inches long with round ends to carry
a load of 40,000 pounds with a factor of safety of 4; and suppose that we.
are sure that the eccentricity of the load is not greater than one-twentieth of
the radius.

If a is the radius,

2 D G
T 200 2

Curve I may be used. We will find the column for which the ultimate
load ig 160,000 pounds.

a
v=a;r=5;e 0.2.
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A short block with this eccentricity will require an area of 4 square inches.
The diameter must be at least 2.2 inches (use table in Cambria to find diameters

from area,s)‘-l is less than 150 [80+ 0.55 = 145]. If we look on curve I, we
b r $

find the corresponding value of g is about 12,000 pounds per square inch, re-

quiring a section of about 13 square inches. The area required is between
4 square inches and 13 square inches. As the next step in this trial method,
take an area which is about midway between 4 and 13. This mean area has a

diameter of about 3.2 inches, which we will take because it gives ; equal to 100.

The work may be arranged as shown below.

Di&’gﬁgf in R“}_;“ti o‘;f ey~ B }14—) from curve. Area. Total load.
Square inches. Pounds.
3.2 .80 100 22,000 8.04 176,900
3.0 .75 107 20 500 7.07 145,000
(Interpolate for the diameter which gives 160,000. Result, 3. 09, )
3.09 772 104 21,000 7.50 157,500
3.10 775 103 21,200 7.55 160,060

Note that this calculation gives the column in which the total load is one-
fourth the ultimate load. If we take a column 3.1 inches in diameter and
compute the maximum stress when the total load is 40,000 pounds, we find it
to be about one-seventh of 48,000 pounds per square inch. The difference is
due to the fact that the secant is not proportional to the angle.

PROBLEMS.

8. Using curve I, find the diameter of a steel column 50 inches long to
carry a load of 10,000 pounds with a factor of safety of 3.

9.. Using curve I, find the Z-bar column 15 feet long to carry a load of
150,000 pounds with a safety factor of 4.

Ans. A column made of four 5-inch by f-inch Z-bars with one 7-inch by

S-inch plate.
, e Pl
109. Euler’s Formula. — As any column will fail when \/ F13

becomes 90 degrees, we have, as the upper limit of possible loading,
the condition:

from which

Formula XXIIIL
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the eccentricity is indefinitely small, and the length compared”
with the radius of gyration is sufficiently great for the column to
fail by bending, the value of the ultimate load does not depend
upon the form of the column except in so far as the form changes
the value of 1.

Curve III of Fig. 145 is Euler’s curve for a modulus of elasticity
of 29,000,000. As a mathematical curve it is of infinite length.
As an engineering curve it must not be used above the point B,
where the unit load is the ultimate compressive strength of the
material. :

Since Euler’s curve is derived on the assumption of a constant
modulus of elasticity, it is really good to the true elastic limit only.
For ordinary structural steel, the true elastic limit is about
30,000 pounds per square inch. Curve III of Fig. 145 is correct

below the point C for values of % greater than 98. From C to B

it gives too great values for the unit load. Above B, if 48,000
is the ultimate compressive strength, it is a mathematical fiction,
“out of bounds.”

We will see later that it is better to use Euler’s curve only for

values of ;l which make the ultimate load one-third of the ultimate

strength.

PROBLEMS.

1. A yard stick, with the ends slightly rounded, was placed vertical with
the lower end on a platform scale and a load was applied to the upper end
(Fig. 143). The load and deflection were measured.

Deflection at the

HORE g, middle, in inches.

OROUE SR R Ly B e 0.03
GACONSSENETE ol e 0.20
(00 e o € o 0 L A A R 0.25
QMBI L | T 1.00 (Load dropped to 6.28.)
(DE21T8 ¢, bk o' Sia oo Bk B FIT S e 2.50

Calculate EI from the last two readings by Euler’s formula. Ans. 851, 825,
2. The yard stick of Problem 1, supported as a beam at points 34 inches
apart, was deflected £} inch at the middle by a load of 1 pound at the middle.
Find EI and compare the result with Problem 1.
3. The yard stick above mentioned was 1.06 inch wide and 0.18 inch thick.

Find E and ;l .

4. Find the total load with a factor of safety of 4 on a round steel rod
2 inches in diameter for lengths of 20, 40, 60, 80, and 100 inches, if the ultimate
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“compressive strength of the steel is 50,000 pounds per square inch and E is
30,000,000.

Length. Ultimate unit load. Total safe load.
20 inches. ......... R0 e T I N afir o)
j R e N A0 00 Y e e T
Ans.t 6o @« ... 90500:- i e 16,148
R 3t oy AR 15865 o oo eh _ 9,000
A s il e Faoa s A 5,813

Why not use the results for the first two lengths?

5. Find the total safe load, with a factor of safety of 4, on a 4-inch by
4-inch wooden post, 12 feet long, if E is 1,500,000, and the ultimate strength
is 5000 pounds per square inch. ‘Ans. 3808 pounds.

6. Should Euler’s formula be applied to the post of Problem 5 if the length
is 6 feet? 4 feet? Why?

TABLE VIII.
ULTIMATE UNIT LOADS ON A COLUMN WITH ROUND ENDS.

Calculated by Euler’s formula and by equation (14) of Article 107 for
three values of sy, with fT;) = 0.1, and E = 29,000,000.

Uni}t} loads ;, Length divided by least radius of gyration.
4 Euler’s. 8, =48,000. 8, =40,000. s =32,000.
Pounds.
1,000 535 534 534 534
2,000 378 377 377 377
3,000 309 307 307 307
4,000 268 266 266 266
5,000 239 237 237 237
6,000 218 216 216 216
8,000 189 186 186 186
10,000 169 166 166 166
12,000 154 151 150 150
14,000 143 139 138 138
16,000 134 129 128 128
18,000 126 121 120 116
20,000 120 114 112 107
22,000 114 - 108 105 98
24,000 109 102 99 88
26,000 . 105 97 92 77
28,000 101 92 86 51
29,000 o 5% . 16
30,000 98 87 79
32,000 ! 95 Y 82 70
34,000 92 77 57
36,000 89 72 26
38,000 87 65
40,000 85 56
42,000 82 42
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110. Effect of Ultimate Strength of Material on Strength of
Columns. — We notice from Euler’s formula that the ultimate
load on a long column depends upon the modulus of elasticity
and the moment of inertia of the cross section and is independent
of the ultimate strength of the material. . The ultimate strength

of the material, however, determines the lower limit of 7—l‘ ,for which

Euler’s formula may be used.
Euler’s formula assumes zero eccentricity. From the curves
of Fig. 145 we see that the eccentricity makes little difference if

; is greater than 160. The effect of the ultimate strength and

small eccentricity together is shown in Table VIII. This table,
calculated like Table VII, gives the values of the unit load for
0.172 '

the eccentricity e = for three values of the ultimate strength.

The table also gives the results of Euler’s formula. We notice
that there is little difference when 7—{ is 140. When % becomes less

than 100 the difference is great.

111. Classification of Columns. — Columns may be divided,
according to the nature of the ends, into the following classes:

I. Both ends free to turn about horizontal axes but not free
to move laterally, Figs. 144 and 146, I.

II. One end fixed and the other end free to turn and free to
move laterally, Fig. 146, II. '

III. Both ends fixed so that the tangents at the ends do not
change, Fig. 146, 111,

IV. One end fixed and the other end free to turn about
one or more horizontal axes, but not free to move laterally,
Fig. 146, IV.

Case I is the only one so far considered. If L is the total
length of the column, and [ is the length of the sine curve A BC
as used in the theory of Articles 107 and 109, ! = L for case I.

In case II, the entire column of length L corresponds to the
upper half AB of the sine curve. Hence for case II we use
2 L for | in Formulas XXII and XXIII.

In case 111, % is zero at each end and at the middle. The

middle half ABC corresponds to the sine curve of case I. This
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portion of the sine curve is represented by ! in the formulas.
If L is the entire length DF, then [ = é - A column with both

ends rigidly fixed will carry as great a load as a column of half
its length with ends free to turn.

B

\p F B
=S o

1 I jei) IV v
Fig. 146. — Types of Ideal Columns.

The points A and C, at one-fourth the length from the ends,
are points of counterflexure. The portion AD is oune-half
of a sine curve. If revolved 180 degrees in the plane of the
paper about the point 4, the curve AD will coincide with A B.
The moment is zero at 4 and C. Case IV is fixed at one end
and free to turn at the other, but not free to move laterally.
The point of counterflexure is at C. As there is no moment at
C, the resultant force at A must be in the direction AC. The
portion ABC forms a sine curve similar to the preceding cases
with the line AC corresponding to the X axis in Fig. 144. The
lower portion CF forms a part of a sine curve as far as the plane
of the body which holds it. Below that plane it is straight.
The portion CG is less than one-half of AC. It is evident, there-
fore, that AC is more than two-thirds of L. The solution of the
dlfferentlal equation shows that AC is nearly 0.7 L.

l=07L 1?2 = 0.5 L? nearly.
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In Fig. 146, V, the top of the column has been displaced
laterally. If this displacement is such that the point B is as
far from the line AC as the top A is displaced from the vertical
line through F, then the line AC from the end to the point of
counterflexure becomes vertical. In this position AC is two-
thirds of L, there is no horizontal force at the top, and the
vertical force P is greater than in Fig. 146, IV. The position is
unstable and easily changes to the one in which the curves are
reversed, with C' and B deflected to the right of the vertical line
through F, in which position the load P, which produces a large
deflection, is less than in case IV.

PROBLEMS.

1. A yard stick, with ends rounded, was deflected a large amount by a
load of 6.1 pounds at the end, as in case I. Find ET by Euler’s formula.

2. The same yard stick was clamped 4 inches from one end and the load
was applied as in Fig. 146, IV. It was found that a load of 15.42 pounds pro-
duced a deflection of over 1.5 inches. Find EI by Euler’s formula.

3. The load in Problem 2 was displaced 1 inch south of the vertical line
through the bottom. The vertical component of this load was 17.12 pounds
with a deflection of 2 inches south. The horizontal component was found to
be zero. Find EI, using two-thirds of 32 inches as .

4. A solid circular steel rod stands in a vertical position with the lower
end fixed. A load of 100,000 pounds is applied at the free upper end at a
distance of 1 inch from the cénter. The diameter of the rod is 6 inches,
and its length from the fixed point is 15 feet. If E is 30,000,000, find the
deflection at the end and the maximum fiber stress by the formulas of Article
107. Ans. Maximum stress, 21,320 pounds per square inch.

112. End Conditions in Actual Columns. — The classification
of Article 111 represents tdeal conditions, which are only approx-
imated in practice. The columns in actual use are:

Round-end columns, which end with spherical or eylindrical
surfaces. They sometimes end with knife-edges, which may be
regarded as cylinders of small radius. The round surfaces roll
on plane surfaces with practically no friction. Round-end columns
are not used in structures and are rarely used in machines.
They are used in tests to check the accuracy of theory, as they
fulfill very closely the conditions of case I of ends free to turn.

A pin-end or hinged-end column ends with cylindrical surfaces
which turn in cylindrical bearings (Fig. 147). Fig. 148 shows one
end of a pin-connected column made of two channels latticed
together. This form of connection is commonly used in bridges.



196 STRENGTH OF MATERIALS

A column which ends with a ball and socket is practically the
same as a hinged-end column, except that it is free to turn in
any plane instead of in the single plane normal to the axis of
the hinge.

@ it

PPN
T @
ARty

=i

S RS 7S s

| 0001 \ P <
GG L S
re}( > s g

A\

N
|
“—m oo

gy oo b 4

Fig. 147. — A Pin- Fig. 148. — End of Pin-connected Bridge Post.
end Column.

If the pin of a hinged-end column rolled on a plane surface,
there would be little friction, and the case would be the same as
that of the round-end columns. Usually the pin turns in a close-
fitting bearing, so that the friction is considerable. A hinged-
end column may be anywhere between case I, with the ends free
to turn, and case III, with the ends fixed. If the pin is small,
the moment arm of the friction is small, and a slight eccentricity
will cause it to turn. If the pin is large, the opposite is true.
In the moving parts of machinery, the pin connections are lubri-
cated so that they turn easily. The connecting rod of an engine
is an example.

Fig. 149 shows, diagrammatically, the behavior of a pin-end
column. At first it acts as a column with fixed ends (Fig. 149, I).
When the moment at the end becomes greater than the product
of the starting friction at the surface of the pin multiplied by
its radius, the column turns at the end to some position similar
to Fig. 149, II. In this position, the points of counterflexure A
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and C are nearer the ends, and the moment on the pins is less.
The column may finally change to the position of Fig. 149, III,
which is that of case I. In this last position, it will support a
load mueh smaller than in the first position. If the ratio of the
length to least radius of gyration is 200 or more, so that Euler’s
formula applies to both the whole and the half length, the
column in the last position will carry a load
only one-fourth as great as in the first one.

Some interesting tests of columns were
made at the Pencoyd Iron Works in 1883
by James Christie.* In these tests, some
of the so-called hinged-end columns were
fitted with hemispherical balls turning in
sockets. The balls were located as nearly
as possible in the line of the axis of the.
column by careful measurements. Owing
to the fact that no column is absolutely
straight and perfectly uniform in section £ e
fmd h(?mogeneous in structur(.z throughout Fig, 149.—Deflection-of
its entire length, this method did not always  Hinged-end Column.
put the centers of the hémispheres exactly
on the axis of the column. The final adjustment was deter-
mined by trial in the testing machine; a small load was ap-
plied and the deflection measured. The hemispheres were then
moved a little and the test repeated, until a position was found
where a considerable load caused no appreciable deflection. The
column was then loaded to failure.

T “ When the point of greatest strength was reached, the
behavior of the specimen was peculiar. Under ordinary ecir-
cumstances the bar, while bending under strain, rotated from the
start on its hinged ends. When correctly centered, no such
rotation occurred at the beginning of the deflection, but the bar
bent like a flat-ended strut, till the point of failure was reached,
when it rotated on its ends suddenly, as sometimes to spring
from the machine.” These results could not be secured when the
balls or pins rolled on plane surfaces, and were difficult to get
when the pins were small.

The effect of the size of the pin was shown in these experi-

* Transactions of the American Society of Civil Engineers, 1883, pages
85-122. . -
t Ibid., page 87.
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ments. Two angles of the same length were cut from the
same bar. One of these tested with a 2-inch ball and socket
failed at 36,500 pounds per square inch; the other tested with a
l-inch ball and socket failed at 24,010 pounds. Similar results
were obtained in other experiments.

These tests and many others show that the friction at the
ends of a hinged-end column partially fixes the ends and increases
: the ultimate strength. It must be remem-
el | bered, however, that in the testing machine
the loads are applied with little vibration.
In structures such as railway bridges,
where there is large vibration, it is probable
that the friction of the pins gives little help,
and it is safest to regard hinged-end columns
as equivalent to round-end columns.

Square-end or flat-end columns end with
plane surfaces in contact with plane surfaces.
W /;)177777477/ They must be accurately fitted if eccentric

1 u loading is to be avoided. If a beam rest-
ing on a square-end column bends under its
load (Fig. 150, II), the load on the column
becomes eccentric. Footings which support columns often settle
unevenly and cause large eccentricity.

Pin-end columns are practically square-end with respect to
the axis of the pin.

A column with a pin connection at one end and a square
connection at the other is called a pin-and-square column. This
term includes columns with one end fized and the other hinged.
This column approximates the conditions of case IV..

Fized-end columns are riveted to the remainder of the struc-
ture in buildings and bridges. In machines they are fastened
in various ways. The connection can never be absolutely rigid,
and the member to which the column is fixed must suffer some
deflection, so that there is always some change in the slope of.
the tangent at the “ fixed ”” points. When the column is very
flexible compared with the body to which it is fixed, it may then
be regarded as an example of the ideal case and I may be taken
as equal to half the length L. In the case of the yard stick
described in Problem 2 of Article 111, the column was firmly

Fig. 150. — Square-
end Columns.

clamped to the 2-inch by 4-inch post and the value of % was
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over 800, making it relatively very flexible, so that this gave
consistent results when treated as an example of a column
fixed at one end. In machines this condition is sometimes met,
but it never occurs in structures.

113. Some Experiments Showing Effect of End Conditions. —
It is evident that the value of I to be used with “square-”’ and
“fixed-"’ end columns in calculating the unit load is greater than
-I2-J- and less than L. In the case of the “ pin-and-square”’ column,
it is less than L and (if the friction of the pin is small) greater
than 0.7 L. The best values to be used should be determined
from tests of full-size columns under a wide range of conditions.

The experiments of Christie, previously mentioned, are in-
structive in this regard. In Table IX are the results of these
experiments for angle and tee sections.*

In this table L is the total length of the column as in Fig. 146,
and r is the least radius of gyration. It was found that the
columns failed in the direction for which radius of gyration was
the minimum.

The figures in this table give us some idea of the relative value
of hinged, flat, and fixed ends, as compared with round ends.
In the case of the hinged ends, owing to the lack of "vibration,
the load was probably greater than would be found under the
conditions of railway bridges subjected to the jar of fast trains.
The fixed ends were clamped to the testing machine, which was
relatively rigid. Notice that with the short lengths, where the
columns were relatively stiff, the fixed-end columns were inferior
to the flat ends and only a little better than the.hinged ends.

With% greater than 100 the superiority of the fixed ends becomes

marked.

If we consider the table, we find that with gequal to 25,000

pounds per square inch, ér is 80 for round ends. For flat ends

this value of g lies between the values 120 and 140 for % If

* These figures are averages of the results for angles and tees from the
table on page 116 of the Transactions of the American Society of Civil Engi-
neers for 1883. The results for channels and I-beams are not included in
these averages, as these were used with the flat-end condition only,
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PROBLEMS.

1. Using % equals 60 for round ends, find the equivalent lengths of hinged,

flat, and fixed ends, and the corresponding values of ! in terms of the entire
length L. Ans. 1 =070L,1 =061 L, I =0.63 L.

2; Using% equals 100 for round-end columns, find the corresponding values
for hinged, flat, and fixed ends, and values of ! in terms of L.
Ans. 2 = 138, 160, 177,

If we take all the values for round ends from 40 to 200 inclu-
sive and determine the values of % which give the same unit load

for the other end conditions, we get the following ratios:

Hinged. Flat. Fixed.
IV P UITI g, T Py ) LT et e il Sl e 1.29 1.50 1.25
INTASI I . 2 el o= S 1.45 1.69 1.87
Medny offallesTil st o Sl ars 1.37 - 1.60 1.72

In the case of the fixed ends, only one value was below 1.50.

As far as these figures go, they indicate that a flat-end column
16 feet long, a fixed-end column 17.2 feet long, or a hinged-end
column 13.7 feet long, will carry the same total load as a round-
end column 10 feet long of the same cross section.



CHAPTER XIII.
COLUMN FORMULAS USED BY ENGINEERS.
114. Straight-line Formulas. — We have found that for large

values of ;, Fuler’s formula may be used, and a considerable

eccentricity makes little difference. For smaller values of g,

Euler’s formula must not be used, and a small eccentricity
makes a large difference with the results of the secant formula
of Article 107. In structures there is generally considerable
uncertainty in regard to the amount of eccentricity. This is
especially true. for flat- or fixed-end columns. It is, therefore,
not worth while to go through the labor of calculating with these
formulas (except in the case of a column with a relatively large
known eccentricity). Engineers make use of simpler working
formulas. Of these, Rankine’s formula was formerly most used.
At present, the straight-line formulas are preferred.

A straight-line column formula for the ultimate unit load

has the form:

P = 8y — kl- Formula XXIV.
A r

The student will recognize this as the equation of a straight
line through the point (0, s,) and sloping downwards. If we
draw a straight line through the point (0, s,) of Fig. 145, and
tangent to Euler’s curve III, we find that this straight line does
not deviate far from curves I and II. Except for small values

of ;, a small change in the eccentricity will cause the curve to

change from one side of this straight line to the other. Such a
straight line, then, will give a fair value of the unit load for the
uncertain eccentricities which occur in practice, for all values of

éto the left of the point of tangency except extremely small ones.

Fig. 151 shows the method of obtaining the constant of a
straight-line formula graphically, Curve I is Euler’s curve for
steel with E equal to 30,000,000, and s,, 50,000. The straight line

202
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IT is drawn from the point s,, whose codrdinates are (0, 50,000),
tangent to curve I. The cotrdinates of the point of tangency,
D, are 133 and 16,700. To get the equation of the straight line,

60000
= 11 I 5 [
S 55000 7
2 oo0ol3Y \! 1 euLER's cunvsf:"ﬁfi
o STRAIGHT LUINE
< 1L L II
3 15000 o ur f:so.ooo-zso%

@ 10000 )
e ! & \g TII STRAIGHT LINE WITH
g o) >4‘ =r, FACTOR OF SAFETY 4
2 m"""w“" 2 §=12,soo-sz.5_}.
3 4 \C FOR STEEL
£ o E230,000,000

b COMPRESSIVE STRENGTH
Zromt ] 50,000 PER 8Q.INCH
o
8 15000

[

& 10000fF P°'<g o N <]
2 . 7o, e I~~~

5000

— T
No H ‘T
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Fig. 151. — Straight Line and Euler’s Curves.

we notice that its ordinate is 25,000 when its abscissa is 100;
that is, it drops 25,000 in 100. The equation is then

iz l
) 50,000 — 250;' @)

Beyond D the straight line falls below Euler’s curve. It
should not be used for values of f—‘ greater than 140, as the results

beyond this limit are unnecessarily small.
The straight line should be used to the point of tangency (or a
little farther) and Euler’s equation beyond that point.

Curve III is the straight line for allowable values of g for a

factor of safety of 4. It stops at G where é is 133. Beyond that
point use Euler’s and divide the result by 4.

PROBLEMS.

1. Using equation (2), solve Problem 4 of Article 109 for the lengths of
20 inches, 40 inches, and 60 inches with a safety factor of 4.
Ans. Total safe loads, 31,400, 23,560, and 15,700 pounds.
2. Find the total load with a factor of safety of 4 on a 4-inch by 4-inch by
1-inch angle with ends free to turn, for lengths of 5 feet, 10 feet, and 15 feet.
Ans. 28,850, 11,730, and 5210 pounds.
3. Plot Euler’s curve for timber for E = 1,500,000. Draw straight line
if ultimate strength is 5000 pounds per square inch. Derive a working straight-
line equation with a factor of safety of 5.
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115. Algebraic Derivation of the Straight-line Formulas. —
While a straight-line formula may always be derived graphically
by plotting Euler’s curve and drawing the tangent, it may also
be derived by the methods of the Calculus, being the problem
of drawing a straight line through a given point tangent to a
given curve. We may write Euler’s formula:

¥ ¥ )
where Yy = g, z= %, and a‘ = 72E.

Our problem is to draw a tangent to the curve (1) which shall pass
through the point (0, s.). The equation of this tangent line is:
2a

Y, 5 A ?x + 84, (2)

1

where z, is the abscissa of the point of tangency.

Since the straight line (2) passes through the point of tangency
whose coordinates are (zs, ¥1), these codrdinates satisfy the equa-
tion of the line; hence ‘

2
=75 + s ®)
1 5

Also, since the point of tangenty is on the curve, these coérdi-
nates satisfy equation (1); and ‘

a
n=g 4)

Combining (3) and (4) for the codérdinates of this point of con-
tact:

% Formula XXV. (5)

Il
w|&

= (6)
We may substitute the value of z; in equation (2) and get the
desired straight-line equation. It is better simply to use the
easily remembered fact that the ordinate of the point of tangency
to Euler’s curve is one-third of the Y intercept of the straight
line (Formula XXV). Substitute this value in Euler’s equation
. and get the abscissa of the point of tangency. This gives the
codrdinates of two points on the straight line from which to write
its equation.

(VM)
213
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The abscissa of the point of contact is the lower limit of 1—l_ for

Euler’s formula. It is also the upper limit for the straight-line
formula, although, if it is exceeded by a small amount, the error is
small and on the safe side.

Referring to Fig. 151, Euler’s curve might be used, if there is
no eccentricity, up to the point C, the true elastic limit; but with
the uncertain eccentricity which occurs in practice it is best to
use it only to D. When you solve by Euler’s formula for the ulti-
mate unit load and get a result greater than one-third the ultimate
strength of the material, discard your work and solve by a straight-
line formula (or by Rankine’s formula). If the value of 71: by
Euler’s formula comes out less than one-third of s,, it may be
used when divided by suitable factor of safety.

PROBLEMS.

1. Find a straight-line equation with a factor of safety of 5 for long-leaf
yellow pine for which the ultimate compressive strength is 5000 pounds per
square inch and Z is 1,500,000.

When§ is @, l;in Euler’s formula is 30 = = 94.2.

The slope of the line is 3333 divided by 94.2 = 35.4.

For the ultimate load:

P l

Z A 5000 T 35.4; i
With a factor of safety of 5:

P 1

2. With the data of Problem 1, find the total safe load, with a factor of
safety of 5, on a 6-inch by 6-inch long-leaf yellow-pine post for lengths of
10 feet, 15 feet, and 20 feet. Ans. 18,500, 9870, and 5550 pounds.

3. Using timber having an ultimate strength of 5000 pounds per square
inch and a modulus of elasticity of 1,200,000, derive a working straight-line
formula with a factor of safety of 4.

Ans. g = 1250 — 10 é, for values oféup to 85.

4. Derive a straight-line formula for cast iron for which £ is 15,000,000
and the ultimate compressive strength is 50,000, with a factor of safety of 5.

Ans. g- = 10,000 — 70 ;, for values of;l_ up to 95.

5. Calculate the total safe load on a hollow cast-iron column 8 inches
diameter and 1 inch thick for lengths of 10 feet and 15 feet.

Ans. 146,000, 109,100 pounds.
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6. Using E = 29,000,000 and s, = 45,000, find the straight-line formula
with a safety factor of 3 for structural steel ecolumns with round ends.

Ans. g = 15,000 — 72l;, up to about 140.

116. The Ultimate Strength. — The straight-line formulas de-
pend upon s,, the ultimate compressive strength of the material
in a short block. In the Pencoyd tests of Table IX, this figure
seems to be about 49,000 pounds per square inch for wrought
iron. This is considerably above the yield point of the iron used.
These tests were made slowly, so that

E i 2 § there was ample time for the raising
Lo, hol db 8 of the elastic limit, which occurs when
| y L SRl é’ wrought iron and soft steel are loaded
L0 H & s beyond the yield point.  Also the
?EE !gi m€ S columns used in these tests were each
g I % made of a single piece, so that there was
%ﬂj % i’ 1“}* o not that opportunity for local failure
i & XA N which exists in columns built up of
.-':: h:“é ‘bﬁ’ several pieces riveted together.

i'!!l E:'g Té é £ For- built-up columns, the wultimate
Y T strength vs the yield point of the material.
ir1:1:Ji ‘I:'pi:il‘ @ - Fig. 152 shows one of a set of wrought-
b 0 iron columns tested at Watertown Ar-

senal in 1884 (‘““ Tests of Metals,” 1884,
page 17). The column was tested with
3.5-inch pins. The length center to
center of pins was 20 feet, and the def-
ormation was measured in a gauged
length of 200 inches. The average cross
section of channels and plates was de-
termined from the weight and specific gravity. The cross sections
were:

Fig. 152.— Column Tested at
Watertown Arsenal.

Square inches.

Channel A. ... ...ttt 3.00
Channel B. ...t v oo 3.05
Platei@. . . o e N o e 2.66
D23 F 10 B J S P PGS 2.60

11.31

The initial load was 5000 pounds. The set was determined by
returning to the initial load after each 50,000 pounds increment.
The deflection at the middle was measured perpendicular and
parallel to the pins. Some of the readings are given in Table X.
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TABLE X.

TEST OF WROUGHT-IRON PLATE AND CHANNEL COLUMN AT
WATERTOWN ARSENAL.

Deflection at the middle.
Total load. Compression in gauged {
length of 200 inches.
Perpendicular to pins. Parallel to pins.
Pounds. Inch. Inch. Inch.
5,000 .0 .0 .0
30,000 .0169 .0 .0
50,000 .0293 .01 .01
5,000 .0 .0 .0
80,000 .0482 .01 .01
100,000 .0610 .02 .01
5,000 .0 .0 .0
130,000 .0804 .03 .02
150,000 .0931 .03 © .02
5,000 .0010 .0 .01
180,000 J1118 .04 .03
200,000 .1247 .04 .03
5,000 .0016 .0 .02
230,000 1444 .06 .03
250,000 .1580 .07 . .03
5,000 .0041 0 .03
260,000 .1651 .09 .03
270,000 .1725 .10 .03
280,000 1797 o .03
290,000 L1870 .13 .03
300,000 .1954 17 .03
5,000 .0110 .03 .03
310,000 (Micrometer .20 .03
320,000 removed) .27 .03
325,000 e rr .32 .03
330,000 hag? 45 .03
330,100 At .48 .03

Failed by deflection perpendicular to the plane of the pins; with plate C
on the convex side.

““After reaching the maximum load, the deflection increased slowly till it
reached 0.75 inch, the load at the time being 320,000 pounds. From this
point the rate of deflection accelerated till it reached 1.80 inches under 310,000
pounds load, when sudden springing occurred, increasing the deflection to
3.35 inches, while the pressure fell to 155,000 pounds.

“Released to the initial load, the deflection was 2.08 inches.

¢ A sharp bend was found 20 inches from the middle of the post; the plate
on the concave side buckled between the riveting.  Pinholes elongated
0.01 inch.”
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In this test the maximum load was nearly 29,200 pounds
per square inch. The unit stress on the concave side was this
figure plus the stress due to bending. We get the maximum
bending moment by multiplying the load by the deflection 0.48
inch. The moment of inertia of the section with respect to an
axis parallel to the pins is about 86. This gives a bending stress
of 6100 pounds, making the total compressive stress at the
beginning of failure 35,300 pounds per square inch.

It is probable that at the beginning of failure the column was
in condition I of Fig. 149, the friction causing it to act as if the
ends were fixed. In this case the moment arm is only half the
deflection at the middle and the actual maximum stress is only
32,000 pounds per square inch.

Other columns of the same set gave similar results Other
sets of tests, notably those of Buchanan* for the Pennsylvania
Railroad, agree in indicating that the value of s, should not
exceed 35,000 for wrought iron and 40,000 for structural steel.

PROBLEMS.

1. Using E = 27,500,000 and s, = 35,000, derive a straight-line formula
for the ultimate load on wrought-iron columns, also a working formula with
a factor of safety of 2.5.

g— = 35,000 — 1531— ; point of tangency at 152.5;
Ans. P lr
o 14,000 —61;-

2. Using E = 29,000,000 and s» = 40,000 for structural steel, derive a
working straight-line formula with a factor of safety of 2.5.

Ans. it 16,000 — 73l— to about 150.
A r

The American Railway Engineering and Maintenance of Way

Association has adopted for structural steel
g = 16,000 — 70;l: Formula XXVI.

with a maximum of 14,000.

This formula, which we will call the American railway formula,
is practically the same as the results of Problem 2.

Fig. 153 shows the reason for having a maximum value and
not carrying the straight line entirely back to the Y axis. In

this figure, curve I gives the ’ultimate values of —E which make
\

* Engineering News, Dec. 26, 1907.
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the unit stress 40,000 pounds per square inch calculated in the
same way as the curves of Fig. 149 for i—g = 0.1 (column IV of

Table VIII). This curve is nearly horizontal at first, with a
maximum value of 36,360 pounds per square inch. Curve II is
the American railway formula multiplied by 2.5, which makes

50000
3
2 45000
w
& 40000 ~ STEEL COLUMNS WITH
2 35000 N F ROUND ENDS;
o N I, £=29,000,000
1 30000 84=40,000;
225000 L &L=1
@ [
g AN T3 ;
320000 1I, STRAIGHT UNE
e \\ L-t0,000-175 L.
% 15000 ~J Cd
S 10000 NG
E ]
Z 5000
= [ ——t—

°
Y7720 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

LENGTH-*LEAST RADIUS OF GYRATION
Fig. 153. — Straight Line and Secant Curves.

it pass through 40,000 on the Y axis. The horizontal line 35,000
is_ a little below curve I. (With a little greater eccentricity
curve I would fall below 35,000.) With the eccentricity used,

curve I falls above curve II for ;.l less than 110. For greater
values of ;l curve I is slightly below curve II.

PROBLEMS.

3. Calculate the total safe load by the American railway formula for a
steel post 20 feet long made of one 8-inch by #-inch plate and four 4-inch by
3-inch by Z-inch angles. (See Cambria.) Ans. 210,000 pounds.

4. Calculate the total safe load on a Z-bar column 16 feet long made of
four 4-inch by 4-inch by %-inch Z-bars and one 63-inch by 3-inch web plate.

5. Using the result of Problem 1 of Article 115 for safe loads, design a
square yellow-pine post 10 feet long to carry a total load of 18,000 pounds.

Ans. 5.94 inches square; use 6-inch by 6-inch.

6. Using the same formula, find the thickness of a yellow-pine post 8
inches wide and 10 feet long to carry a total load of 28,000 pounds.

Ans. 6.4 inches.

7. Solve Problem 6 for a load of 60,000 pounds. Ans. 11.8 inches.

8. Solve Problem 6 for a load of 1200 pounds, using the constants of
Problem 1, Article 115. Ans. 2.06 inches thick.
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9. Using the American railway formula, design a solid circular steel column

to carry a total load of 60,000, the length of the column being 80 inches.
Ans. Diameter, 3 inches nearly.
10. What formula would you use for Problem 9 if the length were doubled?

117. Straight-line Formulas for Square or Fixed Ends.—
In applying straight-line formulas to columns with square or
fixed ends, it is customary to modify the constant k and use the
entire length of the column as [/ in the formula. The American
Railway Engineering and Maintenance of Way Association
uses the one constant (70) for all cases, treating the so-called
fixed and square ends as no better than hinged ends. This is
good practice for bridges and similar structures. When a
bridge post is riveted to the floor beam, experiments show that
the deflection of the beam often produces a bending stress in
the post which is equivalent to a large eccentricity. In pin-
connected bridges, a slight difference in the length of the eye-
bars which form the diagonals of the truss sometimes causes
such concentration of stress in one side of the post that it is
weaker in the plane of the pins than perpendicular to that plane.
In buildings, where the floor beams are riveted to the posts,
there is likely to be considerable eccentricity in the end posts.
At intermediate posts with beams on both sides the eccentricity
is less.*

The American railway formula may well be used for all struc-
tures built of structural steel, provided, of course, due allowance
is made for live loads and impact in computing the total load.

The building laws of New York city require for structural
steel columns with square or fixed ends:

P L

7 =15,200 — 587- (1)
If we regard the length of the sine curve as 0.8 of the total
length of the column, we get from the American railway formula
0.8 X 70 = 56. If k is 70 for round ends, and the effect of
square or fixed ends is sufficient to make a 10-foot column
equal in strength to an 8-foot round-end column, the constant
58 may be taken as practically correct for the square and fixed
ends, if the total length of the column is taken as L (see experi-
ments, Table IX).

* See paper by C. T. Morris, Engineering- News, Nov. 2, 1911, p. 530.
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In Problem 1 of Article 115, we found the formula

o l
- 1000—7;;

(2)
for round-end columns of long-leaf yellow pine with a modulus
of 1,500,000, an ultimate strength of 5000, with a factor of safety
of 5. The New York building laws require

2 L
ik 1000—185- 3)
For solid columns of circular section D = 4 r, so that equation (2)

becomes

B l
he 1000—28—5- 3)
If the ends of the square-end columns used in buildings are suffic-
iently well fixed that 9 L is equal to 14 [, equations (2) and (3)
are consistent. :
The New York building formulas for timber posts are recom-
mended for square- or fixed-end conditions. They may be applied

to rectangular posts if D is taken as the-least dimension.

PROBLEMS.

1. If cast iron has an ultimate strength in compression of 80,000 pounds
per square inch and a modulus of 15,000,000, derive a formula for square-end
cast-iron columns with a factor of safety of 8, assuming that the ends are so
fixed that 3 L is equivalent to 4. (Compare with Cambria.)

2. Find the total safe load by the New York building laws for a 12-inch
31.5-pound I-beam as a column with square ends, for lengths of 10 feet and

15 feet. Ans. 76,940 pounds and 45,040 pounds.
3. Find the total safe load on a 6-inch by 6-inch yellow-pine post 10 feet
long by the New York building laws. Ans. 23,040 pounds.

4. Find the size of a square post of long-leaf yellow pine 10 feet in length,
to carry a load of 40,000 in accordance with the requirements of the New York
building laws. Ans. 7.49 inches square; use an 8-inch by 8-inch.

5. Solve Problem 4 for hemlock.

6. Find the total safe load by New York building laws on a column of
medium steel made of two 9-inch 15-pound channels and two 13-inch by 3-
inch plates, for lengths of 20 feet and 30 feet (see Cambria for constants).

Ans. 255,900 pounds and 218,000 pounds.

7. Solve Problem 6 by the American railway formula.

8. Select a plate and channel column of medium steel, 20 feet in length,
to carry a load of 100,000 in accordance with the New York building laws.
(Use Cambria tables to get the column approximately and then apply the
formula to see if the column thus selected will do.)

9. Solve Problem 8 by the American railway formula.



212 STRENGTH OF MATERIALS

10. Select a plate and angle column 20 feet long, to carry 300,000 pounds
safely in accordance with the American railway formula.
Ans. One 12-inch by {}-inch plate with four 6-inch by 3}-inch by 13-
inch angles carries 316,000 pounds.

118. Rankine’s or Gordon’s Formulas.— While the straight-
line formulas are coming into general use among engineers, on
account of the ease of application and the fact that they agree
as well with the results of tests as the more complicated expres-
sions, another type of formula formerly had the preference and
is still used considerably. This type is called Gordon’s or
Rankine’s formula. It is an empirical formula ‘which was first
derived from the results of tests. It has the advantage that it
applies to columns of any length. It is:

e Su
WA NP,
* t+(;)

where s, is the ultimate strength in compression in the case
of a short block, and ¢ is a coefficient determined from experi-
ments with columns of various lengths. To use the formula
with any given factor of safety, simply divide the numerator
by the factor; that is, use the allowable unit stress instead as
the ultimate strength.

The figures for structural steel columns with flat ends, given
in Cambria, were computed by this formula, using 50,000 as s,

e

Formula XXVII.

: 1 . .
for medium steel and 36,000 for g¢. (This value of ¢ is the-one

recommended by Rankine.)

PROBLEMS.

1. Find the total load, with a factor of safety of 4, on a 12-inch 40-pound

I-beam of medium steel, 12 feet in length, as a column with square ends.
Ans. 90,460 pounds.
1[Iy . P 12500
36,000 (r) R ey +0.625°
Compare the results with Cambria, “Safe Loads for I-Beams used as Columns.”’
- 1 "
Using s, = 50,000 and ¢ = 36,000 calculate the total load, with a sa\fety

factor of 4, on the following square-end columns ef medium steel.
2. A 10-inch 25-pound I-beam 15 feet long.
3. A 12-inch 31.5-pound I-beam 16 feet long.
4. A 12-inch 31.5-pound I-beam 32 feet long.
5. A 6-inch by 4-inch by 1-inch angle 12 feet long.
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6. A post made of two 10-inch 20-pound channels, latticed together 6 inches
back to back, for lengths of 15 feet and 20 feet.

7. A column made of two 10-inch 15-pound channels, 9 inches back to back,
and two 15-inch by %-inch plates, for lengths of 20 feet and 40 feet.

119. Ritter’s Rational Constant for Rankine’s Formula. —
While the constant ¢ was originally derived from a few tests of
columns, it may be obtained from the constants of the materials.
We know from experiments and theory that Euler’s formula
gives the ultimate load when the load is exactly central, the ends
either perfectly free to turn or absolutely fixed, and the value of

7—{ 80 great that the computedgis below the true elastic limit of
the material. Any curve which is to be used with all lengths

must coincide with Euler’s curve when;l becomes indefinitely
large, and must also pass through the point s, when ; = 0.

We see that when ; equals zero, il equals s,; Rankine’s for-

mula satisfies the second of the above-mentioned conditions. To
make it satisfy the first condition, we must find some value of

¢ which will make gthe same in Rankine’s and Euler’s formulas

for large values of ;:

2
§=W2E<%> e % (1)
t+q;)
r
For large values of 7—% the second term in the denominator of Ran-

kine’s formula is so large relatively that the first term (unity)
may be dropped. Then

wiE s )
O
0= 3)

This value of ¢ is Ritter’s rational constant.
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PROBLEMS.
1. Find the value of ¢ for steel having a modulus of 29,000,000 and ultimate
strength, in compression, of 40,000 pounds per square inch. Ans. %5—5-
2. Using the ultimate strength of steel in compression as 40,000 pounds
per square inch and the result of Problem 1 as ¢, find the ultimate loads in
pounds per square inch for round-end columns for values of ;{ , differing by 20,

from 20 to 200.

;l_, 20 40 60 80 100 120 140 160 180 200
Ans.
g, 37,900 32,700 26,600 21,100 16,700 13,300 10,700 8700 7200 6100
3. Solve for 5 in Problem 2 by Euler’s formula.

A
4. Using the constants of Problem 1, find the total safe load with a factor
of safety of 4 on a round-end solid circular steel column 2 inches in diameter
and 40 inches long. Ans. 16,600 pounds.
5. Using the constants of Problem 1, find the total load with a factor of
safety of 5 which may be placed on a 10-inch 25-pound I-beam 10 feet long,
used as a column with round ends. Ans. 18,800 pounds.

For the wrought iron used in Ritchie’s experiments, Table IX,
the modulus of elasticity was about 25,000,000 and the ultimate
strength about 49,000. If we take E as 24,800,000, making

w2 E = 245,000,000, we get —— 5000 as Ritter’s constant for these ex-

periments.

2 49,000
L @

l2
<o 5000()

gives the ultimate strength of wrought-iron struts with ends free
to turn.

PROBLEMS.
6. Calculate gfor all values of éfrom 0 to 400 at intervals of 20 by means
of equation (4), and plot curve with abscissas 1 inch = ;l_ = 40; ordinates

1 inch = g = 10,000.

Also on the same sheet with the same origin and coérdinates, plot the results
of Table IX for round ends.

7. With E = 24,800,000, calculate g by Euler’s formula from ;l_ = 60 to 400
at intervals of 20, and plot the results with those of Problem 6.
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8. Draw straight line tangent to Euler’s curve through the point (0, 49,000)
and determine its equation. Compare this straight line with the results of
the test.

9. With the results of Problems 6, 7, and 8 as a basis, write your conclusions
as to the merits of I}ankine’s, Euler’s, and the straight-line formulas.

Curve I of Fig. 154 is drawn from Rankine’s formula with
Ritter’s constant calculated from s, = 40 000 and E = 29,000,000,

which makes qg= Curve II is Euler’s. We see that

7155
curve I gradually approaches Euler’s curve and is always on the
T 50000 S 1
E s 15 81 L
g ¢ IT I, RANKINE'S CURVE,
2 b f £0,000
RNGHEE
4 35000 [ \\ A \ A 1*?75‘5(1‘)
£ 20000 hNRSAR II, EULER'S CURVE,
o N \\. o £=29,000,000;
8 25000 ALY III, SECANT CURVE FOR
3 0000 NEA L1,
“2Nd N\ 1< A _P_"og looao
Z 15000 ”\d\ Nt - A “Wa )
2 1000 NN v
b s eSS
5 I
Y720 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

LENGTH--RADIUS OF GYRATION
Fig. 154, — Column Curves. o

safe side. Curve III is drawn from the secant formula for

= 0.1 (curve I of Fig. 145). We notice that curve I is de-

cidedly below curve III, especially for the values 0f1—l‘ between 40

and 120, which values are most used in actual columns. Ran-
kine’s formula with Ritter’s constant gives correct values for
very long columns and for columns of zero length with no eccen-
tricity (these being the conditions under which the constants are
determined), but for columns of the usual length is not so good
as a straight line tangent to Euler’s.

Curve IV is computed by means of Rankine’s experimental
constant -———— i8] 000 It is not far off for short columns especially
if the eccentricity is very small, but it is too high with columns
which are relatively long.

Since the only advantage possessed by Rankine’s formula
over a straight-line formula is the fact that the former may be
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used with columns of all lengths, it fpllows, that if it is used at all
it should be used with Ritter’s constant, so that the errors will
be always on the safe side (except for very short posts) The

experimental constants for hinged ends and ——— for fixed

1
18,000 36, OOO
ends which were recommended by Rankine are based on a limited
number of tests. While they are not far off for short columns,
these constants give unsafe results in relatively long ones.

The column tables in Cambria are computed with these con-
stants. However, a larger factor of safety is taken than is used
by many engineers, 12,500 being employed as the numerator for
buildings and 10,000 recommended for bridges. On this account

the results given are safe, and especially for values of ;{ less than

100.

In adapting Rankine’s formula with Ritter’s constant to fixed
and square ends, the entire length L is used and ¢ is modified.
If the column were absolutely fixed at both ends the ¢ of Ritter’s

expression would be divided by 4; if ¢ were =——— for round ends,

7000

it would be ——— 38,000 000 for ends rigidly fixed. In actual columns, since
the ends are not perfectly fixed, we must use a ratio less than 4.

Suppose that [ is taken as 0.8 L (Table IX), then 1?2 = 0.64 L2

If we take ¢ for structural steel as (Problem 1),

7155
2

L2
7165 — 11,200 "eAY-

The Philadelphia laws use, for medium steel:

P 16,250
A et o, ®)

ol 11,000 r2

A few years ago several railroads used the same formula with
17,000 as the numerator instead of 16,250. Both are rather
high; 15,000 is better. This value of ¢ is good for square ends
where the eccentricity is small, but should not be used with pin
ends except with a large factor of safety.
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PROBLEMS.

10. Calculate the total safe load on a 4-inch by 4-inch by %-inch angle of
medium steel for lengths of 10 feet and 15 feet by the Philadelphia formula.

11. Compute the total safe load on a strut with flat ends, made of a 6-inch
by 6-inch by 1-inch angle of medium steel, by the New York building laws,
the Philadelphia building laws, and the American railway formula, for lengths
of 10 feet and 15 feet.

12. Find the Z-bar column of medium steel 20 feet long with flat ends to
carry a load of 400,000 pounds, by each of the formulas above mentioned.

13. Solve Problem 2 of Article 117 by the Philadelphia formula.

14. Find gfor medium steel for values of ;from 20 to 140 at intervals of

20, by the American railway formula, by the New York formula, and by the
Philadelphia formula. Compare the results with those of Cambria for square
ends with a factor of safety of 4.

15. Solve Problem 14 from 160 to 300 inclusive.

120. General Conclusions. — The calculation of columns is not
as satisfactory as that of beams. This is due to two reasons:
the location of the load, and the relative freedom of the ends.
In a beam, the location of the load is known with a large relative
accuracy. A l-inch displacement of the load in a horizontal
beam 10 feet long produces a very small effect upon the unit
stress; an equal displacement of the load at the end of a block 6
inches square will double the maximum stress on one face. Again,
we generally deal with beams entirely free to turn at the supports
or with cantilevers which are entirely free to move and turn at one
end and which are perfectly fixed at the other, so far as concerns
the moment arms. The results which we get in calculating beams
are correct inside the true elastic limit and approximately true
beyond that limit. If we take a column perfectly free to turn
at both ends and know the position of the load with the same
relative certainty as in the case of the beam supported at the ends,
we may calculate the unit stress with the aid of Formula XXII as
accurately as we can compute it in the beam by the use of For-
mula VIII. There is this apparent difference: in the beam the
unit stress varies as the load; in the column it increases more
rapidly. Again, a column fixed at one end and free at the other
(case II, Fig. 146) can be calculated with the same accuracy as
a cantilever with one end free, provided the load is located with
the same relative accuracy and the end is so well fixed that the
relative change in moment due to change in tangent at the “ fixed
end ” is the same in both cases. The change in moment due to
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change in the tangent at the ends is proportional to the rate of
change of the cosine of a small angle in the case of a beam and to
the rate of change of the sine of a small angle in the column.
The loads being much greater in a column than in a beam of the
same section, the effect of friction in partially fixing the ends is
greater in the column.

Beams fixed at both ends or fixed at one end and supported
at the other are indefinite, because it is not possible to fix the
beam perfectly so that it will not turn, or support it so that it
will not move. For these reasons the calculation of the unit
stresses in relatively stiff beams of these kinds is always open to
question. The same is true of columns fixed at both ends, or
fixed at one end with a hinge connection at the other.

Euler’s formula gives the ultimate load which will cause a
column with practically no eccentricity to deflect without limit.
Unless the column is relatively long, it will fail by crushing
before this load is reached (see Fig. 145). Euler’s formula must

never be used if the value of f—; comes out greater than the elastic
limit of the material. It is better to use the results of Euler’s
formula only when they give -5—: less than one-third of the ulti-

mate strength. In such case, divide the results by a suitable
factor of safety to get the allowed load.

For shorter columns, draw a straight line tangent to Euler’s
curve and passing through the ultimate strength of the material
on the Y axis. Divide the equation of this straight line by a
suitable factor of safety for a working formula. Use this straight
line to the ordinate of the point of tangency and use Euler’s
equation for the longer columns.

With hinged end columns the I of these formulas is the entire
length between hinges. With case II, [ is twice the length of the
column., With fixed ends or with pin-and-square ends, it is also
safest to take [ as the entire length of the column. If any allow-
ance is made, it should never be as great as that of the ideal
cases, which are never met in practice. The amount of allow-
ance depends upon the relative dimensions of the column and
the beams to which it is attached and the method of attach-
ment.

The effect of eccentricity is taken into account by using a
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limiting stress for short columns, as in the case of the American
railway formula, and by the use of a large factor of safety (well
called a factor of ignorance) to take care of any uncertainties
in this respect. (The real factor of safety in many columns
which are standing is probably much less than figured by the
designer.)

Rankine’s formula is used by some engineers. With Ritter’s

constants it is always safe — unnecessarily safe for columns of
moderate length. With Rankine’s constants it should not be
used for leng columns.
. If the eccentricity of the load were sufficiently well known,
the secant formulas of Article 107 are strictly correct for round
ends, below the true elastic limit. A set of curves like I and
II of Fig. 145, for the different relative eccentricities, could be
used for all cases of this kind.

121. Fajlure of Beams Due to Flexure on the Compression
Side. — The compression flange of a beam is really a column,
and may fail by buckling laterally. Fig. 155, II, is the plan of

] BOTTOM FLANGE
e e e o el
TOP FLANGE
I I PLAN
Fig. 155.

an I-beam supported at the ends. The top flange, being in
compression, may buckle as shown, while the bottom flange re-
mains straight. The unit stress in the top fibers computed as a

beam is the maximum value of the unit load g, of the column

theory. As only the very top fibers reach the maximum value
of the stress, and as these fibers are held from buckling laterally
by the fibers below, this unit load may be taken somewhat larger
than in simple columns. Suppose we use 18,000 pounds per
square inch as this maximum stress and use Rankine’s formula

with the constant for fixed ends. If b is the breadth of

35,000
the ﬂange, the square of the radius of gyration is —lb—;’ and
N 18,000 _ _ 18,000
A o 12 E

36,0007 T 300052
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PROBLEMS.

1. If I is the length of the beam (or the distance between stiffeners) and
16,000 per square inch is the maximum compressive stress due to bending,
find the maximum ratio of I to b in order that the flange will not buckle.

2. Solve Problem 1 if the maximum compressive stress due to bending
is 12,000 pounds per square inch.

3. What is the maximum compressive stress allowable by the above formula
if the stiffeners are placed at intervals of 60 times the breadth of the flange?

Compare the results of these problems with Cambria under “Lateral
Strength of Beams without Lateral Support.”

4. Solve Problem 2 by means of the American railway formula for columns
instead of the one given above.

5. Using the New York formula, find the maximum compressive stress in
a 15-inch 42-pound I-beam 10 feet long without stiffeners or other lateral
supports. Ans. 10,840 pounds per square inch.

6. Using the American railway formula, find the maximum distance
between stiffeners in an 18-inch 55-pound I-beam, when the maximum com-
pressive stress due to bending is 13,000 pounds per square inch.

122. Failure Due to Buckling of the Web. — We learned in
Article 31, that a vertical shear produces compression at 45

G

1\

Fig. 156. — Web of I-Beam as a Column.

degrees to the vertical, and that the intensity of this compres-
sive stress is equal to the unit vertical or horizontal shearing
stress. All parts of the web of an I-beam subjected to vertical
shear may be regarded as made up of a series of columns with
fixed ends placed 45 degrees to the vertical. In Fig. 156, FG
represents one such imaginary column. Small trusses are made
similar to Fig. 157. The riveted diagonals such as CD and F@G
transmit the shear from the top to the bottom chord. F@ is
in compression and acts as a column. Instead of single bars
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riveted at their intersections, a plate with part of the material
cut away might be used to connect the top and bottom chords.
Finally, if this plate is continuous it
becomes a plate girder or I-beam. b \,P*
Considering the column FG in Fig. [ Ry ARyA<TA<YTATH
156, its thickness is ¢, the thickness
of the web, and its length is V2¢, [°
where ¢ is the distance between the Jo[Z 6655
flanges (represented by [ in the Cam- %
bria sketches of I-beam sections). The Fig. 157
3 3 3 . 8. .
unit shearing stress in the web varies
slightly (see Article 84, Problems 9 and 10). It is customary
to find the mean vertical shear in the web of an I-beam by
dividing the total vertical shear by the area td, where ¢ is the
thickness of the web and d is the entire depth of the beam.
Since unit compressive stress is equal to the unit shearing stress,
RS

A dd )

where g is the unit load in the column formula and S is the

total vertical shear. To find the safe value for S, it is only

necessary to solve g by any column formula, remembering that
2

r2 = % for a rectangular section of thickness ¢. Using first

Rankine’s formula with 12,000 as the numerator and ¢ equal

to in order to compare with Cambria, we get:

R e
36,000
12,000
s e 2)
1+ 56,0007
12,000
: ®)

1 /c\?
i 1500(2)

PROBLEMS.

1. Find the maximum value of the unit shear, the total vertical shear,
and the total load uniformly distributed, on a 12-inch 31.5-pound I-beam, by

means of the above formula.
Ans. 7488 pounds per square inch, 31,450 pounds, and 62,900 pounds.

&
A

£
4






CHAPTER XIV
TORSION.

123. Torque. — A shaft or rod subjected to a pair of equal
and opposite couples in parallel planes at right angles to its
length is in torsion between these planes. In Fig. 158 we have
a rope wound around a shaft and carrying a
weight. Attached to the shaft is a pulley
upon which runs a belt. The tension on the
rope and the reactions of the bearings form
a counterclockwise couple, while the tension
on the belt and the reactions form a clock-
wise couple. If there is no friction at the
bearings, these couples are equal, provided
the shaft is stationary or moving in either B
direction with constant speed. The moment Fig. 158. — Shaft in
of either couple is the {wisting moment, or Torsion.
torque, in the portion of the shaft between the pulley and the
rope. We will represent torque by M,.

PROBLEMS.

1. An axle 8 inches in diameter is used to lift a load of 400 pounds which
is carried by a l-inch rope. If the axle is turned by a crank at one end, what
. is the torque? Ans. 1800 inch pounds.

2. A shaft carries a pulley 3 feet in diameter and a second pulley 2 feet in
diameter. At the 2-foot pulley the belt runs horizontally to the right, with
tension of 600 pounds in the upper portion and 100 pounds in the lower portion.
The belt on the 3-foot pulley runs vertically downward, with tension of 120
pounds on the right portion. Find the torque between the pulleys and the
tension on the left portion of the vertical belt.

Ans. 500 foot pounds, 453.3 pounds.

3. A bolt is turned by means of a wrench. The pull on the wrench is
applied 16 inches from the axis of the bolt. Find the torque when the pull is
80 pounds. Ans. 1280 inch pounds.

124. Shearing Stresses in a Shaft.— Let us consider a por-
tion of the shaft of Fig. 158, between the pulley and the rope.

Fig. 159 represents such a portion with axis vertical. We will
223 :
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suppose the lower end to be stationary with respect to the upper
end. When the shaft is twisted in a counterclockwise direc-
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Fig. 159. — Portion of Shaft in Torsion.

tion, the plane OBDC becomes the surface OB’DC, and the
radius OF B remains a straight line OF’B’ (in case the section
is circular). The displacement FF’ of any point is proportional
to its distance from the axis, and also proportional to its dis-
tance from the base regarded as stationary. Consider a hollow
cylinder of radius OF = r, the upper base of which is the ring
LFML. This cylinder developed gives the rectangle L GG, L, of
Fig. 159, II. When the shaft is twisted this developed cylinder
becomes the parallelogram L'GG:L,’. Every filament as EF in
the eylinder has suffered a shearing displacement FF’. Since
OF'B’ remains straight, this displacement varies as r, and the
unit’ shearing stress may be represented by kr, where & is the
unit shearing stress at unit distance from the axis. On a fila-
ment of area dA, the total shearing stress is the area times the
unit stress:

Shear on dA = krdA. (1)
The resisting moment of the shear on the filament EF’ of area
dA with respect to the axis of the eylinder OC is the product of
the shear on the area multiplied by the radius:

Resisting moment of filament = kr2dA. (2)

The total resisting moment of the entire portion, being the sum
of the moments of all the filaments, is the integral of (2) over
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the entire area of cross section, and is equal to the external
torque.

Torque = k | r2dA = kJ, 3

where J is the polar moment of inertia.
At a distance r from the axis,

Sy i=2kn
k=2
r

Torque = kJ = 8%15

IR torque X radius
" polar moment of inertia’

Ss

If a is the radius of the eylinder, the shearing stress in the outer
fibers is given by

S= ]l/:f;a' Formula XXVIII.
<Compare with s = #)

PROBLEMS.

1. A 2-inch solid shaft is twisted by means of a pipe wrench. The force
is 200 pounds applied 3 feet from the axis of the shaft. Find the maximum
shearing stress. Ans. 4583 pounds per square inch.

2. A 6-foot flywheel is driven by a 4-inch solid shaft. The tension on the
upper part of the belt running from the wheel is 1800 pounds and on the lower
part it is 300 pounds. Find the torque and the maximum unit stress.

Ans. sg = 4298 pounds per square inch.

3. Calculate the unit stress in a 2-inch solid shaft which is used to turn a
drum 30 inches in diameter which is lifting 800 pounds by means of a 1-inch
rope. Ans. 7894 pounds per square inch.

4. In Problem 2 what would be the unit stress if the shaft were hollow,
inside diameter 2 inches, outside diameter 4 inches?

Ans. 4583 pounds per square inch.

5. Solve Problem 2 with the shaft hollow, inside diameter 2 inches, and
outside diameter such that the weight per foot equals that of a 4-inch solid
shaft.

6. In Problem 2, if the wheel makes 240 revolutions per minute, what is
the horse power transmitted by the belt? Ans. 206 horse power nearly.

7. A 3-inch solid shaft running 250 revolutions per minute drives a wheel
4 feet in diameter. What is the difference in tension in the two parts of the
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belt when the unit shearing stress is 4000 pounds per square inch? What is
the horse power transmitted? Ans. 883 pounds; 85 horse power.
8. A key { inch wide unites a 6-inch shaft to a flywheel. What must be
the length of this key and the length of the hub of the wheel if the shearing
stress in the key is equal to the maximum shearing stress in the shaft, no

allowance being made for friction between hub and shaft?
Ans. 18.8 inches.

125. Relation of Torque to Angle of Twist. — In Fig. 159
the displacement FF’ at a distance r from the axis of the shaft
is 70, where 6 is the angle FOF’. This angle 6 is the displace-
ment of the top plane with reference to the bottom. The unit
displacement is the total displacement divided by the length of
the portion:

Unit displacement = %’: (1)
where [ is the length of the portion considered. If E, is the
modulus of elasticity in shear,

Unit shearing stress = E.lr(? . @)
Ay 20
Resisting moment = dA. 3)

Total resisting is the integral of (3) over the entire section,
remembering that 6 is constant for any given value of I:

M, = El‘—oferA =B, @)

_ M
 EJ
This theory applies rigidly to circular shafts only.- For other

sections the deformations and stresses are not exactly propor-
tional to the distance from the axis.

0

Formula XXIX. (5)

PROBLEMS.

1. A 4-inch solid steel shaft is twisted 2 degrees in a length of 12 feet. If
the modulus of shearing elasticity is 12,000,000, what is the torque?
Ans. 73,100 inch pounds.
2. In Problem 1 what is the unit shearing displacement of the extreme
fibers and what is the unit stress?
Ans. s, = 5818 pounds per square inch.
This problem should be solved from the geometry of the shaft without
using the formulas of this and the preceding articles.
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3. A 2-inch solid shaft is twisted 3 degrees in a length of 5 feet by a force
of 300 pounds applied at the ends of a lever 48 inches long. Find E,.

4. When a shaft of radius a and length ! is twisted an angle of 6 radians,
show from Fig. 159, without integrating, that

o
and from this result by means of Formula XXVIII derive Formula XXIX.

126. Relation of Torque to Work. — It is often convenient
to use the relation of torque to foot pounds of work per revolu-
tion. If a force P is applied at the end of an arm R feet in length
measured from the axis of the shaft, the work per revolution
is 27 RP foot pounds, since the force P displaces its point of
application a distance 2wR. But since PR is the torque, the
work per revolution is 2 7 ;.

In all problems involving work done by a shaft, solve first for
the torque. When the torque is obtained in a numerical or
literal equation, it may be used in Formulas XXVIII or XXIX.

PROBLEMS.

1. A shaft transmits 300 horse power at 200 revolutions per minute. What
is the torque in foot pounds? Ans. 7875 foot pounds.
2. In Problem 1 what must be the diameter of the shaft if the maximum
unit shearing stress is 4000 pounds per square inch? Ans. 4.93 inches.
3. Find the diameter of a solid shaft to transmit 1200 horse power at 150
revolutions per minute with a maximum shearing stress of 6000 pounds per
square inch. Ans. 7.54 inches.
. 4. A shaft coupling is made of two disks fastened together by six 1-inch
bolts. The axis of each bolt is 8 inches from the axis of the shaft. What
horse power will the coupling transmit if the allowable unit shearing stress in
the bolts is 9000 pounds per square inch?
Ans. 323 times the number of revolutions per second.

127. Torsion Combined with Bending or Tension. — In beams
the maximum bending stress exists in the upper and lower fibers,
while the maximum shearing stress is at the neutral surface,
so that the resultant is seldom much greater than the maximum
values of the separate stresses. On the other hand, in shafting
subjected to bending and twisting, the maximum shearing stress
is in the outer fibers, while the maximum tensile stress due to
bending comes in some of these same fibers, so that the resultant
is much larger than either stress. A similar condition exists
when torsion is combined with direct tension or compression.
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PROBLEMS.

1. A l-inch round rod projects from a vise. A wrench is applied to the
rod 8 inches from the vise, and a force of 60 pounds is applied to the wrench
12 inches from the axis of the rod. Find the unit tensile stress due to bending
at the vise (Fig. 160). Find the unit shearing stress due to twisting in all

the outer fibers.

8 = s £ F L 4889 pounds per square inch;

Ans.
= 3667 pounds per square inch.

o™
3840 X 3
Ve m™
2. In Problem 1 find the maximum resulting tensile and shearing stress.
Ans. 85/ = 1222 V/3? + 22 = 4407 pounds per square inch;
s¢ = 2444 4 4407 = 6851 pounds per square inch.

Observe since the section modulus used in torsion is twice that used in
bending and the load is the same for both, there is always a large common

6, factor which may be taken out to
reduce the work.

3. If the rod in Problem 1 were
twisted by two wrenches extending in
opposite directions with equal forces
of 30 pounds on each, what would be
the maximum resultant stress?

4. A 3-inch solid shaft is sup-
ported on bearings 4 feet apart. It
carries a 3-foot pulley 1 foot from the
left bearing and a 2-foot pulley 1 foot
from the right bearing. The 3-foot
pulley weighs 200 pounds and the
2-foot pulley weighs 150 pounds. The
belts run vertically downward. The
tension on the front on the 3-foot
pulley is 500 pounds and on the back
120 pounds. The tension on the front on the 2-foot pulley is 160 pounds.
Find the tension on the back on the 2-foot pulley and the horse power trans-
mitted at 300 revolutions per minute, assuming that there is no friction

Ans. 32.6 horse power.

5. In Problem 4 find the maximum resultant shearing and tensile stress
at the middle of the span, neglecting the weight of the shaft.

Ans. 2469 pounds per square inch; 4574 pounds per square inch.

6. In Problem 4 find the resultant tensile and shearing stress 18 inches
from the left bearing.

7. Solve Problem 5 if the belts on the 3-foot pulley run horizontally back-
wards, all other factors remaining the same.

8. A 4-inch vertical shaft is subjected to a direct compression of 6000
pounds and a twisting moment due to a force of 600 pounds at the end of a
4-foot lever. What is the resultant compressive stress in the outer fibers?

Ans. 2543 pounds per square inch.

Fig. 160. — Torsion and Bending.

128. Helical Springs. — An interesting example of torsion is
the stretching or compression of a helical spring, such as is shown
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in Fig. 161. A helical spring is made by winding a wire or rod
on a cylinder (in a single layer, usually). The radius of the coil
of the spring is the sum of the radii of wire and the cylinder
about which it is wound. The ends of the wire,
when the spring is to be used in tension, are turned
in to the center so as to apply the force in the line of
the axis.

The greater part of the elongation of a helical
spring is due to torsion. If we consider a section
at O, Fig. 161, II, we find that there is a twisting
moment PR due to the load P at the axis. (Fig.
161, II, is a plan of the lower turn; the force P is
normal to the plane of the paper.) The point C at
which the load P is applied being at the center of
the circle, it lies in the plane of the section and
therefore there is no bending moment. The effect
of a forece acting on an arm CBO is independent
of the form of the arm. As far as concerns the
stresses at the section, C BO might be a straight rod
from C to O. The point O is any point in the spring
except the portion CB and the similar portion at
the top. With these exceptions the entire spring
is subjected to a twisting moment PR. In addi-
tion to this torsion, there is a constant total shear P.
Also, since the turns of the coils are not exactly
horizontal, there is another slight correction. Both of these are
neglected in ordinary calculations.

To get the elongation of a helical spring due to a given load,
" multiply the angle of twist in the entire spring by the radius R.

PUVVRITYIY
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Fig. 161.
Helical Spring.

PROBLEMS.

1. A rod 0.4 inch in diameter is used to make a helical spring of 20 turns.
The radius from axis of coil to center of all sections is 2 inches. If E; is
12,000,000, find the elongation due to a load of 10 pounds Ans. }inch.

21 In Problem 1 what is the unit shearing stress in the outer fibers?

Ans. 1591 pounds per square inch.

3. If the same length of rod were used to make 40 turns of 1-inch radius,
what would be the elongation due to a load of 10 pounds? Ans. 7% inch.

4. What is the unit stress in Problem 3?

5. A wire 0.1 inch in diameter is bent into 40 turns of a helical spring of
0.5-inch radius. If E, is 12,000,000, how much will a load of 1 pound elongate
this spring? Ans. % inch.






CHAPTER XV.
RESILIENCE IN BENDING AND TORSION.

129. Resilience in Beams.—In Article 12 we learned that the

elastic resilience per cubic inch is and that the total energy

2 E’
is this quantity multiplied by the volume. In beams the same
relation holds, but the stress varies from the neutral axis to the
outer fibers, and also varies with the moment from one end to the
other.

We may calculate the total energy in either of two ways: we
may find the total work done by the external forces, or we may

P

dA

‘1

derive an expression for the internal work in each increment of
volume and integrate over the entire volume of the beam.
By external work, if a load P causes a deflection ymax at its

point of applieation, the work isf%nﬂ‘ (Fig. 162, IT). In a beam

with a single concentrated load, if we find the deflection under
the load for any particular case, the total work is easily cal-
culated. In a cantilever with a load on the end, the deflection at

the end is
P3

P S T
231
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this volume z, M, and I are constant. The integral of v2d A across
the beam from the bottom to the top is 1.

MZ
Work = f > EI dx. 3)

Equation (3) enables us to calculate the total work for any beam.
M and I are expressed in terms of x before integrating.
131. Cantilever with Uniformly Distributed Load. — The mo-

2
ment is %, if the origin is taken at the free end.

wit
Total work = f S EI dx. €))
For a beam of constant cross section for which I is constant,
w2l wegs
Total work = m g 4—071— (2)

In a rectangular section the maximum fiber stress at the wall is
given by

wi_2sl
RS D
272

W22 = 16;21 o (3)

Substituting in (2):

102E 30E

2

: : ey
Work per unit volume = 0E 4)

The total energy in a cantilever of uniform rectangular section
is only one-fifteenth as much as that in a block of the same volume
with constant compressive stress throughout.

PROBLEMS.

1. Find the expression for the work per unit volume in a solid circular
cantilever with a uniformly distributed load, in terms of the maximum fiber
s2
40E"°
2. Find the total work in a cantilever of uniform section by means of the
external work, using the expression of Article 129.

stress. Ans.
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3. By the method of internal work find the total work done by a load at
the end of a cantilever. Compare the result with equation (1), Article 129.
4. Find the work per unit volume in a cantilever with a load on the end,

3 ¥ i §
if the section is rectangular. A Ans. RE
5. Find the energy per unit volume in a cantilever of uniform circular sec-

4 % Ci
tion with load on the end. Ans. 55 H"

6. Show that the energy per unit volume in the case of a beam supported
at the ends with a load at the middle is the same as that of a cantilever with a
load on the end.

7. Find the work per unit volume in a beam of rectangular section sup-
ported at the ends and uniformly loaded.

Ans. Total work = for any section;

wep
240 E1
Work per unit volume for rectangular section = 4‘—1—5%-
132. Beams of Variable Section. — In beams of variable sec-
tion the moment of inertia is a variable. Take the case of a can-
- tilever beam of constant strength
P s 3 and constant depth d with a load
- Be N\ on the free end. If B is the
breadth at the wall, Fig.- 164, the

¢ breadth at a distance z from the
free end is Ex
Fig. 164. 2 1
Bzxd?
i ®
M = Px
6 lezx 3 P23
Total work = f TBd dz = EBd ()]
Since 6 Pl = sBd?,
8*Bdl _ s?
Total work = 7% 6 Evolume. 3)
PROBLEMS.

1. From equation (2) find the deflection at the end of a cantilever of con-
stant strength and constant depth with a load at the end. Compare result
with Article 95.
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2. Find the total resilience and the energy per unit volume in a cantilever
of constant breadth and constant strength with a load on the free end.
s2bDI .
9E’
SZ

k i - 0T
Work per unit volume 6 E

Ans. Total work =

3. By means of the external work and the total work of Problem 2, find
the deflection at the end of a cantilever of constant strength and constant
breadth due to a load at the end.

133. Leaf Springs.— The common leaf springs as used in
vehicles are beams of constant strength made of several parts or
leaves. Fig. 165, II, shows a

spring of this kind. Fig. 165, I, ‘I{P i '
represents the leaves straight ™= —
with a little distance between °?WF ®
them. In the upper beam the - 4

moment is constant from A to
B. In the second beam it is
constant from C to D.

With a constant moment M
the energy is

S M3 : .
m de = m’ (1) Fig. 165. — Leaf Sprmg.

if 1 is the length from the points of support (A and B for the top
leaf).

2s2]1 _ s?bdl 3
Enerey ~ 7 =55 @
for a rectangular section.

Since bdl is the volume between supports, the energy for the
2
portion having constant moment is GiE’ per unit volume. This

is the same as in the rectangular beams of constant strength in
the preceding article.

The portions of the top leaf to the left of A and to the right of
B are cantilevers with load on the end, and store only one-third
as much energy per cubic inch as the portion between A and B.
In the actual leaf spring as shown by Fig. 165, II, the contact
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takes place over a comsiderable area and the stresses are some-
what modified by the friction.

134. Resilience in Torsion. — The work done by a force P at
the end of an arm of length R when the arm is turned through an
angle 8 is 3

PRo _ Mo,
2 2

provided the force is applied gradually.
If we substitute in (1) the values of M; and 6 from Formulas

XXVIII and XXIX, we get for a rod of length I and radius r,

Total worle i ision = (e, Ba o oy @)
otal work o OFSIOD_QEJ?_éE,VO ume.

(1

The modulus of elasticity in shear is about two-fifths as great as
in tension or compression, so that for the same value of the unit
stress the total energy of -a rod in torsion is one-fourth greater
than that of the same rod in tension. However, since the elastic
limit of steel and similar materials is less in shear than in ten-
sion, the total energy which can be stored is about the same in
both cases.

Since torsion gives so much more energy than bending, it is to
be preferred in the design of springs. A helical spring in which
the stresses are chiefly torsional is the most convenient form to
take up energy. ’

PROBLEMS.

1. In Problem 8 of Article 128 find the total work in compressing the spring,
and the energy per cubic inch and per pound.
Ans. Total energy, 966.7 foot pounds.
2. A spring at the Watertown Arsenal was made of 36 pounds of steel rod
1.02 inches in diameter. The outside diameter of the coil was 4.30 inches.
A load of 11,000 pounds changed the length of this spring from 20.63 inches to
16.67 inches. After the load was removed the spring returned to its original
length to within 0.02 inch. Find the energy per cubie inch and the energy
per pound. Ans. 50.4 foot pounds per pound.
3. In Problem 2 what was the maximum shearing stress due to torsion?
Ans. 86,580 pounds per square inch.

135. Sections of Maximum Resilience. — To obtain the maxi-
mum resilience per unit volume, the stress in all portions of the
solid should be the maximum allowable stress. We can only
secure this condition of perfect efficiency when the material is
used in direct tension or compression, which is not practicable
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in the construction of springs on account of the small displace-
ment secured and the large force required (except in the case of
soft rubber).

In bending and torsion only the outer fibers are subjected to

the maximum stress, so that the energy per unit volume is always
2

s
less than 5E

In any section subjected to bending the unit stress = kv, and
the total energy in a portion of length dz, extending from the
neutral surface to the outer fibers at a distance v; from this
surface, is

kdr [
e 2
5% jo‘ v2dA. 1)
For a rectangular section of breadth b this becomes
k2b dx f”x o, _ Kbvidr
2 ok T e &

Since kv, = s and by, dxr = the volume, we get

Energy per unit volume = GiE

In a solid rectangular section used as a beam of constant
strength or as a beam of uniform section with a constant moment,
the efficiency as a spring is one-third.

In an I-beam section a relatively large portion of the section
is in the flange, where the unit stress approximates the maximum,
so that the energy per unit volume is greater than in the rec-
tangular section.

In a circular section which is twisted an angle 6 in a length [
the unit deformation at a distance r from the axis is BTT, and the
shearing force on a circular element of radius r and thickness dr

2
is gﬂ”lgﬂt The energy, being one-half the product of the

force by the deformation, is "ﬂolﬁajf

B8],  =E8 (af — bY)
410 = 41 (

Total energy =






CHAPTER XVI.
CENTER OF GRAVITY.

136. Center of Gravity.— When each of the particles which
compose a body or system of bodies is subjected to a force which
is proportional in magnitude to the mass of the particle and
parallel to the similar forces in every other particle, the line of
application of the resultant of these forces passes through the
center of gravity of the body or system.

The location of the center of gravity is determined from the
intersection of two such resultants.

Fig. 166 represents three particles of relative masses 2, 3,
and 4, united by weightless rods to form a single body. In

SN C

Fig. 166.

Fig. 166, I, these particles are subjected to forces directed ver-
tically downwards. The resultant of these forces is a force of
9 units along the line CD. The center of gravity is located at
some point on this line. In Fig. 166, I, the forces are horizontal,
and their resultant is a horizontal force of 9 units along the
line EF.. The point O at the intersection of EF with CD is the
center of gravity.

The center of gravity is also called the center of mass.

137. Determination of the Center of Gravity by Balancing. —
The force with which the earth attracts the particles of a body
is proportional * to the mass of each particle. These forces are

* There is a difference in the attraction of the earth due to difference in

the distance of the various particles from the center of the earth amounting
239
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directed toward the center of the earth, so that for bodies of
ordinary dimensions they may be regarded as parallel, within
the limits of accuracy of our measurement. The resultant
force of gravity on any body passes through the center of gravity.
A body may be held in equilibrium by a single force provided
that force is along the line of the resultant of all the other forces.

3 When a body is supported by a flexible

c cord or by a point about which it is free to

turn without friction, the center of gravity

+ must be on the vertical line through the

2 2 point of application of the cord or point

(provided, of course, no forces are acting
except gravity and the cord or point).

Fig. 167 shows the same body as Fig. 166.
In Fig. 167, I, it is supported at C by a
cord. A plumb line let fall from C passes
through the center of gravity. In Fig. 167,
II, it is supported on a point or knife edge
at E, and turns under the action of gravity
until its center of gravity comes directly
below the point of support. The intersec-
tion of the plumb line from E with the line
CD (previously marked in any convenient way) gives the center
of gravity O.

This method of finding the location of the center of gravity
is of little practical use, owing to the fact that the point to be
found is usually surrounded by solid
material, making it necessary to find Wc/ :
the intersection of three planes instead _, ¢ .

; . b . Fig.168. —Center of Gravity
of the intersection of two lines. It is by Balancing.
useful in relatively long bodies, espe-
cially if there are some plane surfaces to use as planes of
reference. Fig. 168 represents a beam balanced on a knife
edge. The center of gravity is in the vertical plane of the knife
edge.

138. Center of Gravity by Moments. — In theoretical dis-
cussions the center of gravity is usually located by moments.
The plane of application of the resultant of any set of forces

Fig. 167. — Location of
Center of Gravity.

to about one part in ten million for a difference of one foot. This is negligible
for ordinary bodies. It would not be negligible in the case of a mountain.
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can be determined by dividing the sum of the moments of all the
forces with respect to any axis by the magnitude of the resultant
force. This comes from the proposition of Mechanics that the
sum of the moments of any set of forces with respect to any
axis is equal to the moment of their resultant with respect to
that axis..

Fig. 169 represents a body made up of four particles of masses
My, Mg, ete., which are not all in one plane. The X axis is taken
in the usual way; the Y axis is vertical as in the analytics of two
dimensions; and the Z axis is horizontal with the positive direc-

II

z
Z
Fig. 169. — Center of Gravity by Moments.

tion toward the front. In Fig. 169, I, the codrdinates of the
particles in the direction of the Z axis are drawn in the YZ
plane; the Y codrdinates are in the Y axis; the X codrdinates are
perpendiculars let fall from the points m;, ms, etc., upon the
YZ plane.

We will first take moments about the Z axis, and we will con-
sider that the letters mi, ms, ete., represent relative masses as
well as the positions of the particles. If the forces which act
on these particles are vertically downward, the moment arm of
each force is the z of the particle. In the case of my, for instance,
the force is directed toward the point Ey in the XZ plane; its
moment arm is the line F,E; which is equal in length to x;. The
total moment of all these vertical forces is given by

Total moment = mx; -+ mexs + Mmaxs + MaZs. (1)

The total force is the sum of the separate forces, since they

are all parallel.
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The coordinate of the center of gravity, represented by x, is

Ty + MeTs + MsTs + Ma2y
my + mg + ms + my

T = 2
Since the forces are parallel to the YZ plane, if we used any
axis in that plane parallel to the Z axis, the moment arms would
remain the same, consequently we are accustomed to speak of
the moments in (1) as the momenis with respect to the YZ plane.

Equation (2) is the equation of a plane normal to the X axis,
which passes through the center of gravity. To locate the point
we must get the equations of two other planes.

If we were endeavoring to measure § (the distance of the
center of gravity above the XZ plane) experimentally, it would
be necessary to rotate the entire system 90 degrees, so as to make
the Y axis horizontal and give an effective moment arm to the
forces. In a theoretical calculation, we may ¢magine the forces
turned 90 degrees. In Fig. 169, II, the force upon m; is drawn
parallel to the X axis and we will suppose that all the other forces
are in the same direction. The moment arm of the force m;
with respect to the Z axis is the line m;E; which is y;,. Instead
of using the Z axis we might use any line in the XZ plane parallel
to the Z axis as the axis of moments. It is not necessary that
the forces be parallel to the X axis as they may be parallel to
the Z axis shown in Fig. 169, II, at ms, in which case the axis of
moments is some line in the XZ plane parallel to the X axis;
or the forces may be in any direction parallel to the XZ plane.
When we think of a moment with respect to a plane we do not
generally consider the direction of the forces, but concern our-
selves only with their magnitude and the distance from the plane
of reference.

70 Tt + Maye + Mays + My, @)
my + me + ms + my

A similar expression gives z, the moments being taken with re-
spect to the XY plane.

To get the distance of the center of gravity of a body from any
plane, divide the sum of the moments of all the particles which
compose the body with respect to the plane, by the total mass
of the body.
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PROBLEMS.
1. A body is composed of three particles in the same plane
Mass z Y
3 5 7
2 4 8
5 3 6
Find 7 and .
E=3X5+2X4+5X3—3—8—38
3+2+5 AT a2
IXT7T=21
2X8=16
5X6 =30
10y =67
y =6.7

The second form of solution is preferable, especially when the numbers are
large. Itis still better to arrange the data and results in a single table omitting
the multiplication and equality signs.

2. A body is composed of four particles of the following masses and coordi-
nates.

Mass z Y z mx my mz
3 5 4 3
5 2 6 5
6 4 =2 8
2 3 9) 4

Ans. y = 3, ete.

139. Center of Gravity of Continuous Bodies.— When a
body is made up of a great number of particles m;, m,, etc., at
distances x1, x; from the YZ plane, the expression for the moment
with respect to the plane is written Zmz, and the position of
the center of gravity is given by

r=""" =" (@)

When the number of particles is indefinitely great and their mag-
nitudes indefinitely small we write

fx aM fx aM
fdM i

z Formula XXX.
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If dV' is an element of volume and p is the density, dM = pdV.
If p is constant, Formula XXX becomes

5=pfde=f:vdV=fde' i
pde fdv Yo

In these expressions, x is the distance of the center of gravity
of the element of mass from the YZ plane. If the dimension of
the element of volume parallel to the X axis is infinitesimal (dx)
and the origin of moments is taken in the YZ plane, the “z”’
in the expressions above is the z of the Cartesian coordinates.
Where the element of volume has a finite length in the direction
parallel to the X axis, this is not the case, as will be seen in some
of the examples.

Y
U
Aav A
|/ 3
B>
1
Z Y

11

ey

Fig. 170. — Center of Gravity of a Prism.

PROBLEMS.

1. Find the center of gravity of a rod of uniform section and density, using
the plane of one end as the YZ plane.
If A is the area of any cross section parallel to the ends, Fig. 170, I,
dV = A dx,
7} AR
_a_::Afxdx:A[E?:L:—g

l
Afa AW A2
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The constant term A might have been canceled before integrating; but it
is best to retain all such constants until the limits are put into the integrals.
The denominator of the fraction is the volume of the solid, which we know in
many cases, so that if no constant terms are dropped we are enabled to check
that much of our work.

Fig. 170, I, is a rectangular parallelopiped, but there is nothing in the work
which limits us to a rectangular section. The results apply to right prisms
of any section whatever (Fig. 170, II). Nor are we limited to right prisms.
Fig. 170, III, shows an oblique prism with one end in the YZ plane and the
other end parallel to this plane and with all sections alike. The center of
gravity of this prism lies in a vertical plane midway between the planes of the
ends.

2. Solve Problem 1 with the XZ plane (and the origin of codrdinates) at
one-fourth the length of the prism from the left end. '

140. Center of Gravity of Plane Areas. — A plane area may
be regarded as a plate of uniform thickness t and uniform density.
If the faces of this plate are parallel to the XY plane

tf:ch fdi
A SR 1)

where dA is an element of area and A is the entire area of the

surface.
f ydA
T et T i3 2)
f 4 :

PROBLEM.

1. Find the center of gravity of a triangular area, of base b and altitude #,
by integration. We will take the origin at the vertex C and so place the base
ED of length b that it shall be parallel to the Y axis. The element of area
is a strip of width dz. From similar triangles, the length of this strip FF’ is
bz

¢
dA=’de;
b S B2
_3fee 5L ¥
i hf’”d” h[xz] 3‘25 i
=2n.

We recognize the denommator of the last term of (3) as the area of the triangle,
which shows that our increment of area was taken correctly and the proper
limits were used. :
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The center of gravity of a triangular area falls on the line JK parallel to
the base and at a distance from the base equal to one-third the altitude.

The triangle may be turned and the origin taken at E or D and another line
at one-third the altitude from the new base may be found.

In Fig. 171, II, the line CL, drawn from the vertex C to the
middle point of the base, passes through the center of gravity.
If we divide the triangle into narrow strips

i . 2 such as FF’ by lines parallel to the base,
T this median line bisects each of these strips.

—2 p—s] 1 The line CL passes through the center of
A% gravity of each strip and each strip could

4 Ag l be balanced on the line as a knife edge
F—y_ & support. This is also true of median lines
ey 4 from D and E. The center of gravity of a
triangular area ts at the infersection of the

o medians. We know from geometry that

| 3 the intersection of the medians of a tri-

; angle is two-thirds the length of any

5 | e median from its vertex. The center of
& gravity of the triangle of Fig. 171, II, is at

Fig. 171. — Center of
Gravity of a Trian-
gular Area.

G on the median CL at a distance from
L equal to one-third of CL.

If any plane area has a line of symme-
try, the area could be balanced on this line; consequently the
line of symmetry passes through the center of gravity of the area.
If a solid is symmetrical with respect to a plane, this plane passes
through the center of gravity of the solid. These facts enable
us to locate the center of gravity of many areas and volumes
without integrating.

PROBLEMS.
2. A triangle of base 6 inches and altitude 9 inches has its C
base on the upper edge of a 6-inch square. Knowing the loca-
tion of the center of gravity of the triangle and square, find the 9
distance of the center of gravity of the combined area from the l
base of the triangle. Prove the result by finding the distance D

from the base of the square used as the origin.
Ans. y = % inch when the origin is on ED of Fig. 172.
3. If the median line from C (Fig. 172) makes an angle of k—6—>
60 degrees with the horizontal, find Z, using two origins, and Fig. 172.
compare the results.
4. A circular area 4 inches in diameter is tangent to a rectangle 4 inches

L(—-G—)-“
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wide and 5 inches high at a point on the right side of the rectangle 2 inches
above the lower right corner. Locate the center of gravity.
Ans. T = 3.54 inches from the left side of rectangle;
y=2

5. A rectangular board 12 inches wide and 16 inches high has a circular
hole cut out. The center of the hole is 5 inches from the right edge and
5 inches from the bottom. Its diameter is 3 inches. Locate the center of
gravity of the remainder.

This is easiest solved by subtracting from the moment of the entire board
the moment of the area cut away.

6. Find the distance from the Y axis of the center of gravity of the plane
area bounded by the X axis, the parabola 32 =4 «, and the ordinate z = 9
(Fig 173, I).

Y C Y <
9
W2 I e
e——2
) b dy
y J
dx
L X X
o 9 DanC 9
I II
Y -~ 14
92
') A
dx
dy
2 III @ v

Fig. 173. — Center of Gravity of Area Bounded by a Parabola.

The element of area is ydz, and the moment arm is z of the curve

fxydx
fyda: .

Since there are two variables in the integrals of (1), we must eliminate one
of these by substituting its value in terms of the other from the equation of
the curve. Solve first by eliminating y and integrating between the proper
limits for z; then solve by eliminating = and dz and integrating between the
proper limits for y. Compare results. The result should be greater than
one-half of 9 and should be less than 6. Why?

7. Solve Problem 6 for 7, using the element of area of Fig. 173, II. The
result should be greater than 2 and less than 3. Why?

6}

=
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8. Solve Problem 7 for 7, using the element of area of Fig. 173, I.
9. Solve Problem 6 for z, using the horizontal element of Fig. 173, II.

10. Solve Problem 6 for z by double integration, using the element of area
dx dy. Integrate first with respect to y and compare the result of this inte-
gration with the original integral of Problem 6.

11. Solve Problem 6 for z by double integration, integrating first with
respect to x. Compare result of this integration with the integral of Prob-
lem 9.

12. Solve for y by double integration, integrating first with respect to y
S0 as to build up vertical strips extending from the X axis to the curve (Fig.
173, III). Compare the result of this first integration with the integral of
Problem 8. 1

13. Solve for 3 by double integration, integrating first with respect to z
(Fig. 173, 1V).

14. Find z of the area entirely bounded by the curve 2 = 4 z and the
straight line 3 y = 2z, by a single integration with element of area parallel
to the Y axis. ; Ans. = 3.6.

15. Solve Problem 14 by subtracting from the moment and area of Problem
6 the moment and area of the triangle bounded by OD and DC and the straight
line from O to C in Fig. 173, I.

16. Find 7 of the area bounded by the Y axis, the line y = 6, the hyperbola
zy = 12, theline z = 12, and the X axis, using a vertical strip as the increment
of area.

_12+fxydx_ 12+12fdx_ i

= = = =3.94.
12
12+ f ydz 12+ f—lf o 2t Ralloe

Ans. x

17. Solve Problem 16, using the element of area in the form of horizontal
strips.

18. Find Z of a 60-degree sector of a circle of radius a with the X axis as
one of the bounding lines (Fig. 174). Solve by polar coérdinates, integrating
first with respect to . (The order of integration is
immaterial in this case, as the limits of one variable
are independent of the other variable. Where this is
not the case, integrate first with respect to r.)

Ans. z = —‘%3—“ = 0.551a.

19. Using the value of z from Problem 18, find y

without integrating.

4 Oty
Fig. 174. — Center of TS

Gravity of a Sector  20. Solve Problem 18 for z if the sector is so placed

of a Circle. that the X axis bisects it. Compare with results of the

preceding problems.

21. Find the center of gravity of segment of a circle of radius 10 bounded
on one side by a straight line at a distance 5 from the center of the circle.
Solve by rectangular codrdinates, using strips parallel to the boundary line as
increments of area. Ans. T = 7.05.



CENTER OF GRAVITY 249

Using only the half above the X axis and calling the radius a:

X f:z:y dx f(a2 - z’)*a:dx

i=fydx —a2fsin20d6
3

i [az i xz]:
2 V3

3 8

T T o _sin2e|  [x_v3
3 1 g L

The independent variable is changed in the denominator and might also be
changed in the numerator. Why is the upper limit in the denominator 0
and not :3:? Explain the geometric meaning of each term in the denominator.

22. Solve Problem 21 by double integration with polar coérdinates (Fig.
175, 1I).

D

a v <2

g0 A
(4
¥4
I II
Fig. 175. — Center of Gravity of a Seg- Fig. 176. — An Angle
ment of a Circle. Section.

23. Find the center of gravity of a semicircular area of radius a.
Ans. T= g—“ = 04244 q.
T

24. A regular hexagon is bisected by a line joining opposite angles. Find
the distance of the center of gravity of the half hexagon from this line, without
integrating.

25. Fig. 176 represents a 6-inch by 4-inch by 1-inch standard angle. Find
the distance of the center of gravity from the back of each leg, and compare
the results with the tables in Cambria.
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26. Fig. 177 represents a standard 10-inch 15-pound channel section.
Find the distance of the center of gravity of the section from the back of the
web, and compare with Cambria under ‘‘Properties of Standard Channels.”

27. Look up dimensions of a 12-inch 30-pound channel and calculate the
area and the location of the center of gravity.

28. A section is made of two 10-inch 15-pound channels and one 12-inch
by 3-inch plate. How far is the center of gravity of the section from the center
of the channels (see Fig. 178)?

o
7
2
ol bee T =
5% o2 0 g S
E 8 g g
| LA E = s
¥ 10 1]
Fig. 177. — A Channel Section. Fig. 178. — A Plate and Chan-

nel Column Section.

29. Find the center of gravity of an area inclosed by the X axis, a circle
of 10 inches radius with center at the origin, the straight line y = 2 (x — 3),
and the circle 22 + 32 = 25.

30. Find the center of gravity of the area between the circle with center
at the origin and radius 6 and the rectangular hyperbola zy = 12.

31. A circular board 20 inches in diameter has a hole 5 inches in diameter
cut out, the center of the hole being 4 inches from the center of the board.
Find the center of gravity of the remainder.

32. Solve Problem 31 if the center of the hole is 8 inches from the center
of the board.



CHAPTER XVII
MOMENT OF INERTIA.

141. Definition.— The moment of inertia of a body with
respect to an axis is the sum of the products obtained by multi-
plying the mass of each particle of the body by the square of its
distance from the axis. If m is the mass of any particle, and r
is its distance from the axis,

I = Zmr2,

For a continuous body, the definition expressed mathematically
is
I = |rdM, . Formula XXXI.

where I is the moment of inertia and dM is any element of mass
(finite or infinitesimal), all parts of which are at a distance r from
the axis.
In Fig. 179, the Z axis is taken as the axis of inertia for the
solid. The element BB’ extending entirely through the body
v parallel to the Z axis is the element of
mass of Formula XXXI. The element
of mass might have the form of a hollow
cylinder of radius r, and thickness dr.

, % It could, of course, be of infinitesimal

. . dimensions in three directions, in which

) " case the volume would be represented by
dx dy dz in rectangular codrdinates, by

? rdfdrdz in cylindrical or mized coordi-
Fig. 179. nates, and by r2 sin 6 d6 d¢ dr in spherical

coordinates (with the Z axis as the axis of the sphere from which
6 is measured). When taking moment of inertia with respect
to the Z axis the values of 72 of Formula XXXI in terms of
the codrdinates of the element are

x? + y2for rectangular coérdinates,

72 for cylindrical coordinates,

r? sin? @ for spherical coérdinates.
251
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The element BB’ of Fig. 179 may be regarded as an example
of rectangular codrdinates after integration with respect to Z.
If its cross section were of the form of an element of area in polar
codrdinates it would be an example of the ecylindrical element
of volume after one integration. A second integration of this
element of volume with respect to 6 would give the hollow
cylinder of thickness dr.

PROBLEMS.

1. Find the moment of inertia of a rectangular parallelopiped of width b,
height d, and length [, with respect to an edge parallel to its length (Fig. 180)
by double integration. Y

p____

Ans. I = b +d?)= 3 (b2 -+ d2),

where p is the mass per unit volume and M is the total

\ § " mass.
A

) AN 2. Find I of a homo-
\ ’\-/%l \. | T geneous solid eylinder of
] v "length I and radius a with
respect to the axis of revo-
Fig. 180. —Moment lution- (00, Fig. 181).
of Inertia of Paral- v ¥
lelopiped. \ 2SR D!
This is a case of cylin-
-drical cobrdinates. Theelement of volumefordouble
integration has a length ! and a cross section
rdf dr. Integrating first with respect to r gives
a wedge-shaped clement between the planes whose
traces on the front are the dotted lines OF and OF.
The second integration builds up the cylinder of
a series of such wedges.
If 6 be integrated first between the limits 0 and 2 7, we get a hollow cylinder
of radius 7 and thickness dr. The vol-
ume of this hollow cylinder is 2 7l dr,
and its moment of inertia with respect
to the axis OO’ is 2 mplr® dr, which might
have been obtained directly without
O integrating.
3. Find the moment of inertia of
a right cone of height & and radius of
base a with respect to the axis of rev-

Fig. 182. — Moment of Inertia of ©lution, by a single integration using

2,
ams SEe

Fig. 181. — Moment of
Inertia of Cylinder.

a1

Right Cone. a hollow cylinder as the element of
' volume.
2 1E a _1‘_“ _7rpa4h_3Ma2'
Ans. I—27rpr’zdr—27rphj; (7’3 a)dr— Tt

4. Find the moment of inertia of a homogeneous solid sphere of radius a
with respect to a diameter by double integration. Use as the element of
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volume a ring of radiusr and cross section dr dz and integrate first with respect
to z. 3 Ans. I = % Ma?.

5. Solve Problem 4, integrating first with respect to r. Show that this
is the same as a single integration using a disk or short eylinder of length dx
as the element of volume, and applying the results of Problem 2.

6. Solve Problem 3 by ‘a single integration building the cone of flat disks
parallel to the base, the moment of inertia of each disk being from Problem 2,
Tors

B dz, where 7 is measured from the axis to the surface.

142. Radius of Gyration.— The radius of gyration may be
defined algebraically by the equations:

Mk =1, 1)
k2 = % @

where k is the radius of gyration.*

The radius of gyration is the distance from the axis at which
the entire mass could be concentrated and leave the moment of
inertia unchanged. In the case of a homogeneous solid eylinder
with respect to the axis of revolution,

Ma?
I—-——2—,

a?
Sl
k 5

a
k=7§=0.7071a

If the entire mass of a solid cylinder of radius a were condensed
into a hollow cylinder of radius 0.707 a and negligible thickness,
or into a single filament at a distance of 0.707 a from the axis,
the moment of inertia in each case would be the same as that of

the solid cylinder.
PROBLEMS.

1. Find the square of the radius of gyration of a homogeneous solid cylinder
of 12 inches radius. : Ans. k* = 72.
2. Find the radius of gyration of a parallelopiped of breadth 8 inches and
depth 10 inches with respect to an axis parallel to the length along one edge
(Problem 1, Article 141). Ans. k = 7.39 inches.
3. A solid eylinder of 6 inches radius weighing 40 pounds, is coaxial with
a solid sphere of 8 inches radius weighing 60 pounds. Find the radius of
gyration of the combination. Ans. k = 4.75 inches.

* Tn this chapter we shall represent radius of gyration by k to avoid con-
fusion. In the chapter on columns it is represented by r which is customary
in books on this subject.
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4. Find the radius of gyration of a homogeneous hollow cylinder of outside
radius a and inside radius b with respect to the axis of revolution.
2 B
Ans. k = \/a -g
5. By integration, find the moment of inertia of a homogeneous solid
cylinder with respect to an element of the curved surface as an axis (CC’,
Fig. 181). Ans. I = § Ma?.

143. Transfer of Axis. — When it is necessary to find the mo-
ment of inertia with respect to some axis for which the equation
of the solid is complicated the integration becomes laborious.
Usually it is best to first find the moment of inertia with respect
to an axis giving the simplest expression for the equation of the
solid and then transfer to the new axis. If CC’is an axis passing
through the center of gravity of a solid and OO’ is a parallel axis
at a distance d from it, we will prove that

I=1,4+ Md? Formula XXXII.

where I is the moment of inertia with respect to 00’ and I, is the
moment of inertia with respect to CC’.

Fig. 183. — Transfer of Axis.

Let BB’ (Fig. 183) be an element of mass parallel to the axes.
Its codrdinates with respect to the axis CC’ are (x, y). Let the
coordinates of the center of gravity with respect to the axis 00’
be (a, b) so that d = Va? 4 b% With respect to 00’ the value
of 72 in the expression

I=|r2dM
is r’=(a+2z)2+ b+ 9y
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With respect to OO0’ the expression for the moment of inertia is
I=f(a2+2ax+x2+b2+2by+y2)dM. (1)
I =f(x2.+ Y dM + (a2+b2)fdM+ 2afde—|—2bfy M. (2)

We recognize the first term of the second member of (2) as the
moment of inertia with respect to CC’. The second term is
(a? + b2) M, which is M d2.

The third term, 2a f xdM, is zero; x dM being the moment of

dM with respect to a vertical plane through CC’, and the sum of
these moments is zero when the center of gravity falls in this

vertical plane.
Also Y= yau,

M
When y is measured from the center of gravity ¥ =0 and

f Y Z/{M = 0, consequently the last term of (2) is zero and equa-

tion (2) becomes Formula XXXII.

PROBLEMS.

1. Solve Problem 5 of Article 142 by means of Formula XXXII and the
answer of Problem 2 of Article 141.
2. Find the moment of inertia of a homogeneous solid sphere of radius a
with respect to a tangent, and compute the square of the radius of gyration.
Ans. k? = 1.4 a2
3. Find the radius of gyration of a homogeneous solid cylinder of 6 inches
radius with respect to an axis 10 inches from the axis of revolution and parallel
to it. Ans. k = 10.86 inches.
4. Find the radius of gyration of a parallelopiped of breadth 8\nches, and
depth 10 inches with respect to an axis parallel to its length through the center
of gravity, by means of the result of Problem 2, Article 142, and Formula

¢ XXXII. v
144. Moment of Inertia of a Thin Plate. :
— In Fig. 184, if we take the moment of in-
ertia with respect to the vertical axis FF,  a ~
we get from Problem 1 of Article 141 N b l
bd, e Moy So :
gt i m L Fig. 184.
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If 1 is small relatively to b, 12 may be neglected and

_ v

s

In a similar manner in respect to an axis through the center if b
is small compared with [,

M2
1_12'

PROBLEMS.

1. A rectangular board 40 inches long and 1 inch thick weighs 6 pounds.
Find its moment of inertia with respect to an axis parallel to its breadth
through its center of gravity. Ans. I = 800.5.

2. In Problem 1 what is the moment of inertia if the thickness is neglected?

3. A rectangular rod 60 inches long is 1 inch square. Find its radius of
gyration with respect to an axis through the middle of one end perpendicular
to its length. What difference does it make if the thickness is neglected?

Fig. 185 represents a plate of uniform thickness ¢ and of any
form whatever. The axis O0’ is parallel to the plane surfaces.

7 The element of volume BB’ has

ot [ its long dimension parallel to

S 00’. 1f the thickness of the

A& \0A plate is so small relatively that

the radius r drawn from any
i point in it to the axis 00’ is
/ not appreciably greater than the
} smallest radius y, then the entire
element may be used as the

X AXIs mass element in f r2 dM, which

l\\o S

becomes f y2 dM for this figure.

If dA is the cross section of
the element parallel to the YZ plane its volume is tdA. The
moment of inertia of a thin plate with respect to an axis in one
of its surfaces or an axis between these surfaces is

1=ptfyraa, @

where dA is an element of the surface.

Fig. 185.
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145. Moment of Inertia of a Plane Area.* — If dA is an ele-
ment of an area at a distance r from some axis, f r2dA is called

the moment of inertia of the area with respect to the axis. If
the axis lies in the plane of the area, the moment of inertia of the
area is the same as that of a thin plate of such thickness and
density that its mass is unity per unit area. In equation (1) of
the preceding article, if the product pf is unity, the expression
gives the moment of inertia of a plane area with respect to a
horizontal axis. :

The moment of inertia of an area with respect to an axis in
its plane is a factor in all problems concerning the strength and
deflection of beams and columns.

The moment of inertia of a surface with respect to an axis
~normal to its plane is called the polar moment of inertia of the
surface. The polar moment of inertia of a surface is equivalent
to the moment of inertia of a solid plate of the same dimensions
as the surface and of such thickness and density that its mass
is unity per unit area.

In Problem 2 of Article 141 we found the moment of inertia
of a solid cylinder to be

_ wpla*
= "

If pl is unity this gives for the polar moment of inertia of a
circle with respect to an axis through its center
_mat _ da?
gl 12
where J represents the polar moment of inertia.
In a similar way we find the polar moment of inertia of a
rectangle of sides b and d, with respect to an axis through one
corner, to be

M2+ an) = 5 02+ ).

Formula XXXII holds for moment of inertia of areas.

* In reality this is not a true moment of inertia in the physical sense of the
term, as an area has no mass, but as the mathematical expression is similar
in form to a true moment of inertia, it is convenient and customary to call it
the moment of inertia of the area.
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PROBLEMS.
1. By integration find the moment of inertia of a rectangle of breadth b
and depth d with respect to the side b. Ans. I= bga

2. By transfer of axis find the moment of inertia of a rectangle of sides
b and d with respect to an axis in the plane of the area parallel to b and passing

through the center of the rectangle. Ans. I= li_d; ;
3. By integration find the moment of inertia of a circular area of radius a

4
with respect to a diameter. Ans. I= % .

The results of Problems 1, 2, and 3 should be memorized on account of .
their importance in the theory of beams and columns.

4. What is the radius of gyration of a circular area with respect to a
diameter?

5. Find the polar moment of inertia of a square with respect to one corner.
How does it compare with the moment of inertia with respect to a side of the
square? Ans. J =21.

6. Compare the polar moment of a circle with respect to an axis through
the center with the moment of inertia with respect to a diameter.

7. Find the moment of inertia of a triangle of base b and altitude h with
respect to a line through the vertex parallel to the base. From this result by

transfer of azes find the moment of inertia of the triangle with respect to the
3
base. Ans: T= I;i,) with respect to the base.

8. Find the moment of inertia of a 6-inch by 4-inch by 1-inch angle section
(Fig. 186) with respect to an axis (1-1) through the center of gravity parallel
to the longer leg. Divide the section into
two rectangles. Find the moment of inertia
of each with respect to a line through its
<1 center of gravity, then transfer to axis (1-1)

and add. As a check find the moment of
inertia of the entire figure with respect to
|D some axis which is a common base of both
= c rectangles (as BC, or a horizontal line
: g through D), then transfer to the center of

Fig. 186 —iVIoment of Inertia Sravity. Compare result with table in

. Cambria.
e 9. ¥ind the moment of inertia of the

above angle section with respect to an axis through the center of gravity
parallel to the shorter leg.

10. A ‘‘plate-and-angle column’ (see Cambria) is made of four 4-inch
by 3-inch by }-inch angles and one 12-inch by j-inch plate. The angles are
riveted to the plate, the back of the longer legs being one-eighth inch above and
below the edges of the plate. Taking the moments of inertia and location of
centers of gravity from Cambria tables of angle sections, find the moment
of inertia of the entire section with respect to the two lines of symmetry.

11. Look up in Cambria the “Diagram for Minimum Standard Channels”
and derive the formula for the moment of inertia there given.

2

" .
-

LY

LY
0 —t— g
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12. From the dimensions given in Cambria find the moment of inertia of
a 15-inch 33-pound standard channel with respect to an axis through the
center of gravity of the section perpendicular to the web.

13. A “plate-and-channel column’ is made of two 15-inch 40-pound
channels placed 12} inches back to back (with toes out), and two 20-inch by
3-inch plates. Taking the moments of inertia of the channels from the table
of the properties of channel sections, find the moment of inertia of the section
with respect to an axis parallel to the channel webs and midway between them
and also with respect to an axis parallel to the plates through the centers of
the channels.

14. Find the moment of inertia of an 8-inch by 3-inch by 3-inch Z-bar
section with respect to axes through the center of gravity parallel and per-
pendicular to the web.

15. Find the two principal moments of inertia of a 20-inch 65-pound stand-
ard I-beam section. Derive the formula used.

146. Change of Direction of Axis. — Formula XXXII en-
ables us to transfer moment of inertia from one axis to a parallel
axis. It is frequently necessary .,
to transform to an axis at an
angle with the original axis.

Fig. 187 represents an area in

X
the XY plane. The moment of
inertia of this area with respect to g
the X axis OX we will call I, and O=——r—— X
the moment of inertia with respect Fig. 187. — Change of Direction
to the Y axis we will call I,: of Axis.

I,=fy2dA;
I,=fx2dA.

Let OX’, OY’ be new axes making an angle 6 with the X and
Y axes respectively. The codrdinates of the element of area dA
with respect to these new axes are (z/, ¥').

The moment of inertia of the area with respect to OX’ is

I= fy'2 d4. 1)

From the geometry of the figure
y =ycosf —xsinb. (2)

Ik =f (y2 cos? § — 2 xy cos fsin 6 + z2sin? ) dA. 3)
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I=1,c0820+4 I,sin%20 —sin26 | zydA. (4)
I=I”‘_;lI”+I';I”eos2B—sin20 2y dA. (5)
PROBLEMS.

1. Find the moment of inertia of a rectangle 4 inches wide and 3 inches high
with respect to an axis in its plane which passes through the lower left corner
and makes an angle of 20 degrees with the horizontal.

¥ z = 36 inches?,
/X' I, = 64 inches*.
sl k—x—BdA 4 3
S fxydA =f f zydzr dy = 36 inches?.
0 0

Jv i I=150 — 14 cos 40° — 36 sin 40°
(6] 4" = 16.14 inches?.
Fig. 188. — Moment of Inertia
with Respect to 0X’.

2. Solve Problem 1 if the axis passes
through the lower left corner and makes
a negative angle of 20 degrees with the horizontal.

Ans. I = 6242 inchest.

3. Find the moment of inertia of a 3-inch by 4-inch rectangle with respect
to a diagonal by means of equation (5) and check by the moment of inertia
of two triangles with respect to the diagonal as a common base (Problem 7,
Article 145).

147. Product of Inertia.— The expression f 2y dA is called the

product of inertia of the area. It is represented algebraically by
the letter H. v

If an area ‘is symmetrical with respect to
either one of a pair of rectangular axes, its
product of inertia with respect to that pair
of axes is zero. Fig. 189 represents an area
symmetrical with respect to the Y axis. If
we integrate first with respect to z,

a=4 [l yay =3 et —alyay Fig. 180

If the area is symmetrical with respect to the Y axis, the lower
limit z; is numerically equal and: opposite in sign to the upper
limit x,, and the squares are the same in magnitude and sign;
consequently the term in the brackets vanishes and

H=0.
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When the product of inertia is known with respect to a pair
of rectangular axes through the center of gravity of an area, it
may be calculated for a second pair of
parallel axes in the plane of the area by a
formula similar to XXXII for the transfer
of moments of inertia.

Let OX, OY, Fig. 190, be the original
pair of axes through the center of gravity,
and let (z, y) be the codérdinates of an ele-
ment dA with reference to these axes. Fig. 190. — Transfer of
Let O'X’, O'Y’ be a new pair of parallel Axes for Product of
axes. Let (a, b) be the coordinates of Inertia.
the center of gravity of the area with respect to the new axes.

If H is the product of inertia with respect to the new axes,

H=f(a+x)(b+y)dA. )
H=abfdA+bfdi+afydA+fxydA. @)
H=abAd +0+0+ H, (3)

where H, is the product of inertia with respect to the axes
through the center of gravity. Equation (3) is easily remembered
from Formula XXXTI, replacing the square by the product.

If the center of gravity of an area falls in the first or third
quadrant with respect to the axes for which its product of iner-
tia is taken, H is positive; if the center of gravity falls in the
second or fourth quadrant, H is negative.

PROBLEMS.
1. Find the product of inertia of a rectangle 6 inches wide and 4 inches high
with respect to the lower and left edges as axes. Ans. H = 144 inches*.

2. Find the product of inertia of a rectangle 5 inches wide and 4 inches high
with respect to the lower edge and a vertical line 1 inch to the left of the right
edge. Ans. H = —60.

3. Find the product of inertia of the 6-inch by 4-inch by 1-inch angle
section of Fig. 186 with respect to the axes 1-1 and 2-2.

148. Transformation of Direction of Axes for Product of
Inertia. — To get the product of inertia for the axes OX’, OY' of
Fig. 187, we have:

= f oy dA, (1)
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H’=f(xcos0+ysin0) (ycos6 — zsinb) dA, (2)

H'= (cos?8 — sin?6) | rydA -+ cos 6sin 0./1(y2 —22)dA, (3)

H’=Hcos20+I’2_I"sin20. 4)
H' becomes zero when the right member of (4) = 0, when
2H :
tan26 = - (5)
PROBLEMS.

1. In the 4-inch by 3-inch rectangle of Fig. 188 what will be the angle
between OX’ and the 4-inch edge if the product of inertia with respect to 0X”
and the axis through O normal to it is zero? Ans. 0 = 34° 22,

2. Find the direction of the pair of axes through the center of gravity of
the 6-inch by 4-inch by 1-inch angle section of Fig. 186 for which the product
of inertia is zero.

149. Direction of Axis for Maximum Moment of Inertia. —
Equation (5) of Article 146 is written:

I=I’§I”+I’;I"cos20—Hsin20. 1)
Differentiating with respect to 6,
%g=(1,—1,)sinzo—2ﬂcoszo, @)
from which the condition of maximum or minimum is
2H
tan26 = T;—_:-I—z < (3)

Comparing (3) with (5) of Article 148, we find that the condition
of maximum or minimum moment of inertia is the condition
which gives zero product of inertia. There are two solutions for
(3), which give values of 2 6 differing by 180 degrees and values of
6 differing by 90 degrees. One of these positions is that of maxi-
mum moment of inertia and the other is that of minimum moment
of inertia.
PROBLEMS.

1. In the rectangle of Problem 1 of Article 148 find the maximum and
minimum moment of inertia for axes through one corner.

2. In Problem 2 of Article 148 find the maximum and minimum moment
of inertia and compare the minimum with the table in Cambria.
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3. What is the direction of the axis for which the moment of inertia is a
minimum for an angle section with equal legs? Why?

4. In the case of an 8-inch by 8-inch by 1l-inch angle section calculate the
distance of the center of gravity from the back of the leg. Find the moment
of inertia with respect to an axis through the center of gravity parallel to the
leg. Find the minimum and maximum moment of inertia for axes through
the center of gravity. When the work is complete compare with Cambria.

5. Solve the 8-inch by 3-inch by }-inch Z-bar section completely for the
least radius of gyration.

The maximum and minimum moments of inertia of an area for
axes through a given point are called the principal moments of
inertia, and the corresponding axes are the principal axes.

If the minimum moment of inertia is known, it is generally easy
to find the maximum by means of a simple relation

Imax+Imin=Iz+Iy=J.

The sum of the moments of inertia of a plane area for any pair
of rectangular axes in the plane is equal to the polar moment of
inertia for their point of intersection.

Let one of these axes be used as the X axis.

T =fy2dA.

If the other rectangular axis is used as the Y axis,

1, =fx2dA.

For the polar moment of inertia r2 = 22 + 2,
J =f(x2+y2)dA = (2244 +fy2dA.

PROBLEMS.

6. Using all the data you can find in Cambria, calculate the maximum
moment of inertia of a 5-inch by 3-inch by 3-inch angle section.

7. Find the least and greatest moment of inertia and radius of gyration of
a semicircular area of radius a with respect to axes in its plane passing through
the end of the diameter which bounds it.

150. The Moment of Inertia of a Prism or Pyramid. — The
moment of inertia of any solid may be found by triple integration
with an element which is infinitesimal in each direction, or by
double integration with an element which is infinitesimal in two
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directions and extends entirely through the mass in the direction
of the axis. )

It is often easier to use a thin plate or disk which is infinitesimal
in one direction only as the element of volume, provided the
moment of inertia of this element is known with respect to an
axis through its center of gravity parallel to the axis of inertia.

PROBLEMS.

1. Find the moment of inertia of a right
pyramid of height h, with a square base of
side b, with respect to an axis through the
vertex perpendicular to the base.

The element of volume is the square plate
of thickness dz. Its volume is A dz, where
A is the area of the section. From similar
solids (Fig. 191),

b2x?
; AR
As each side is b{—; , its polar moment of inertia with respect to the X axis is

Aed
pé)—hai dz. The total moment of inertia is the sum of that of the several plates.

30 ht 30 10.

2. Find the moment of inertia of a right pyramid, the base of which is a
hexagon of side a, with respect to an axis through the vertex perpendicular
to the base.

If in Fig. 191 we wished to find the moment of inertia with
respect to the Z axis OZ, we could find the moment of inertia of
the plate with respect to the parallel axis CC’ and then transfer
to the Z axis. The moment of inertia of the plate is the same as
that of the area of the plate with respect to a line in its plane
multiplied by the thickness dr and the density. The moment of
inertia of the plate about CC’ is

pbix?

Io = mdx,
2
Mz = g,

where I, and Md? have the meaning of Formula XXXII.

o b b2, Sipbthif bR
i p(60h4+W)_ 5 (12 +h2)’
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PROBLEMS.

3. Find the square of the radius of gyration of a right pyramid 24 inches
high with base 12 inches square with reference to an axis through the vertex
parallel to the base. Ans. k? = 352.8 inches?.

4. Find the moment of inertia of a right eylinder of radius a and length I
with respect to an axis perpendicular to the axis of the cylinder through the

2 2
center of one end. Ans. k2 = l§ +%.

Observing the answer of Problem 4, we see that the square of
the radius of gyration is made of two terms, the first of which is
k? for a long thin rod with respect to an axis through one end
perpendicular to its length, and the other is k2 for a circular area
with respect to a diameter. The moment of inertia of any solid
with a constant cross section and ending with parallel planes
normal to its length (any right prism or cylinder) may be calcu-
lated in the same way. Expressed algebraically,

B = k4 kg, M

where k; is the radius of gyration of the prism regarded as a thin
rod and k4 is the radius of gyration of a cross section. Fig. 192

z YL

(o]
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& | dx g 57
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3 N N 'TB ‘\\
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x |
1
o —1‘<
Fig. 192.

represents a triangular prism with its axis parallel to the X axis.
It is desired to find its moment of inertia with respect to the Z
axis. !

Using the element BB’ (Fig. 192) of cross section dzdy ex-
tending entirely through the body in the direction of the Z axis:

I=pff(x2+y2) dz dA, @)
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where d4 is an area of length BB’ and height dy.

I=pffx2ddi+pffy2ddi. ®)

When we integrate with respect to dA, # remains unchanged, as
we simply pile up elements of the form of BB’ from the bottom
of the top of the section EFG between vertical planes at a dis-
tance dx apart: :

I=pfx2Adx+prAdx, 4)

where A is the area of the section, and I4 is the moment of
inertia of the plane area with respect to the axis CC’ in the XZ
plane parallel to the Z axis.

Equation (4) applies to a solid of any form whatever, and is
not limited to a prism as shown in the figure. If the line OX
passed through the center of gravity of all the sections, we would
have an example of Formula XXXII as in Problems 3 and 4.

If the solid is a prism or cylinder with the axis parallel to the
X axis, A is constant and I 4 is constant; then

ol fxzdx-l-pIAfdx. )

The first term of the last member of (5) is the moment of inertia
of a thin rod with respect to an axis perpendicular to its length.
The second member is equal to plAk} = MEjZ, which proves
equation (1).

PROBLEMS.

5. Find the moment of inertia of a right cylinder 18 inches long and 12
inches in diameter with respect to an axis in the plane of one end and tangent
to the cylinder. Ans. I = 153 M.

6. Find the moment of inertia of a prism 6 inches square and 24 inches
long with respect to an axis in the plane of one end perpendicular to the end
of a diagonal. Ans. I = M (192 + 21).

MISCELLANEOUS PROBLEMS.

1. A homogeneous solid sphere 6 inches in diameter is placed at the end
of a homogeneous solid cylinder 2 inches in diameter and 40 inches long, the
center of the sphere being in the line of the axis of the eylinder. If the cylinder
and sphere have the same density, locate the center of gravity of the combina-
tion. Ans. 9.105 inches from the point of contact.

2. In Problem 1 what is the radius of gyration with respect to a diameter
of the cylinder in the end opposite the sphere? Ans. 34 inches nearly.






CHAPTER XVIII.

COMPUTATION WITHOUT INTEGRALS.

151. Areas Which Cannot be Integrated. — In order to inte-
grate a plane surface for area, center of gravity, or moment of
inertia, we must first know the equations of the curves which
form its boundary lines. It sometimes happens that sections
are used which are not conveniently expressed in simple equations.
More frequently the engineer is called upon to compute the con-
stants of some section designed in accordance with some more
or less simple expressions which ecannot easily be determined from
measurements of the finished product.

When a section is bounded by several curves having different
equations, it requires considerable labor to make the several
integrations and put in the appropriate limits.

For these reasons it is occasionally necessary, and often con-
venient, to determine center of gravity and moment of inertia
by approximate computations or physical experiments.

1 HI
1234567 101112131415 16 17 181920 21 2223 2425

Fig. 193. — Finite Increments of Area.

152. Approximate Computation.-— For approximate compu-
tations it is usually best to make an accurate drawing of the
section, preferably on squared paper. If the section is symmet-
rical with respect to any line, it is necessary to draw and calcu-
late only one-half, as in Fig. 193.

Each ordinate in Fig. 193 may be taken as approximately the

mean altitude of a strip one unit wide extending one-half unit
268
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on each side. The ordinate 3 is the mean altitude of the strip,
extending from 2.5 to 3.5 between the dotted lines. To get
the area, simply measure each ordinate (from 1 to 24 inclusive
in Fig. 193), and multiply the sum of these by the common
interval. This gives the entire area from 0.5 to 24.5. The
small triangles outside these limits may be computed separately.
To get the moment of the area in order to calculate the center
of gravity, multiply each ordinate by its abscissa and add.’

For the moment of inertia with respect to the origin, multiply
each ordinate by the square of its abscissa and add the results.
To this sum add one-twelfth of the product obtained by multi-
plying the sum of the ordinates by the square of the horizontal
interval. Also add in the moment of inertia of the limiting
triangles.

To get the moment of inertia with respect to a line through
the center of gravity, transfer by Formula XXXII.

At 0.5 the ordinate is 2, making the area of the triangle 0.5
square unit. The moment arm of this triangle is }, so that the
moment and moment of inertia are nearly negligible. At 24.5
the ordinate is 1; the area is 0.25; the moment arm is 24.67.

The quantity 8.9 which is added to the moment of inertia is
the sum of the moments of inertia of the strips about their
centers of gravity.

PROBLEMS.

1. In the figure of Table XI, how far is the center of gravity from the
origin? Ans. 13.66 units.
2. If each unit represents 1 inch, what is the moment of inertia of the
half of the figure above the X axis with respect to a vertical line through the
center of gravity? Ans. 5023.8 inches?.

3. If each unit represents } inch, what is this moment of inertia?

d Ans. 314 inches*.

4. Using the ordinates of Table X1, with the addition that 24 extends from
2.5 to 4.4, and 24.5 extends from 3.0 to 4.0, find the center of gravity of the
upper half of Fig. 193 from the X axis, using the vertical strips.

5. Find the moment of inertia of the upper half of the figure with respect
to the X axis.

6. Plot the curve y? = 4. Find the center of gravity of the area between
the positive part of this curve, the X axis, and the ordinate z = 4 by the
approximate method. Use paper ruled 10 lines to the inch and take the first,
third, fifth ordinate, etec. Compare result with that obtained by integration.

7. Solve Problem 6 for moment of inertia with respect to axes through the
center of gravity parallel to the X and Y axes.
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The calculation of the area of Fig. 193 is shown by Table XI,
taking each division as unity.

TABLE XI.

COMPUTATION OF AREA, CENTER OF GRAVITY, AND MOMENT OF INERTIA
OF FIGURE 193.

z v zy 2y
1 2.8 2.8 2.8
2 3.6 7.2 14.4
3 3.9 11.7 35.1
4 4.0 16.0 64.0
5 3.9 19.5 97.5
6 3.6 21.6 127.6
5 3.4 23.8 166.6
8 3.4 27.2 217.6
9 3.4 30.6 275.4
10 3.4 34.0 340.0
1 3.4 37.4 411.4
12 3.4 40.8 489.6
13 3.5 45.5 591.5
14 4.0 56.0 784.0
15 5.0 75.0 1,125.0
16 5.5 88.0 1,408.0
17 6.1 103.7 1,762.9
18 6.45 116.1 2,089.8
19 6.55 124 .4 2,364.5
20 6.5 130.0 2,600.0
21 6.25 131.3 2,756.3
22 6.0 132.0 2,904.0
23 5.3 121.9 2.803.7
24 1.9 45.6 1,094.4
105.25 1,442.1 24,526.1
24.5 o5+ 6.1 152.1
.5 i e L | W N R s A
106.0 1,448.2 24,678.2
s
24,6871

* The last two figures are areas of triangles.

153. Center of Gravity by Experiment. — The center of grav-
ity of a section may easily be determined by cutting it out of
uniform cardboard or sheet metal, and balancing on a knife
edge. A better method of finding the center of gravity is that
of balancing it on the beam of a platform scale or similar device.
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Fig. 194, I, represents a body on a beam balanced by the poise
in the position shown. If the body is turned end for end on
the beam with the edge O not changed, so as to come into the
position shown by the dotted lines, the center of gravity is moved
a distance GG', which is twice its distance from the 0. To get
a balance, the poise P must be moved to the dotted position P’.
If the mass of the body is known in terms of the poise, the dis-

(o]
“CLAMP

L I

Fig. 194. — Center of Gravity by Balancihg.

tance GG’ may easily be calculated. Instead of rotating about
the end O, any vertical line may be used as the line of reference
whose position on the beam is not changed.

PROBLEM.

1. A body weighing 4.50 pounds is balanced on a scale beam. When
turned about a vertical line through the end nearest the knife edge, the apparent
change in weight is 0.576 pound. The distance from the central knife edge
to the end knife edges is 10 inches. How far is the center of gravity from the
line about which it turned? Ans. 0.64 inch.

The method just given requires that we know the weight of
the poise and the value in inches of a division on the scale, or
that we know the distance from the central knife edge to the
knife edge, upon which 1 pound weighs 1 pound. Another
method is that shown by Fig. 194, II. The body is placed on
the beam as before and moved till equilibrium is secured with
some convenient weight on the opposite end. It is then turned
end for end and moved along the scale beam until the same
balance is secured, with all other weights unchanged. The
center of gravity is now in the same position which it occupied
before turning. If the position of any point such as 4 is noted
before turning and again after turning, the difference of these
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two positions is twice the horizontal distance of A from the
center of gravity. This may be done with great accuracy on
the beam of a platform scale by clamping to the beam a small
steel scale for determination of the displacement of the points as
shown in the figure.

PROBLEM.

2. A body is balanced on a scale beam. When turned around and again
balanced, it is found that the point originally at the left end is displaced 3.32
inches. How far is the center of gravity from this end? Ans. 1.66 inches.

154. Moment of Inertia by Experiment. — A common method
of finding the moment of inertia of an irregular body is that of
determining its effect upon the time of vibration of a torsion
pendulum. The time of vibration of a torsion pendulum varies
as the square root of the moment of inertia of its mass with
respect to the vertical line which is the axis of the supporting
wire. This relation may be expressed briefly:

: T: = KI,
where T may be the time of a complete period or of a single
vibration (with K varying accordingly), and K is a constant

- @ STEEL WIRE
AR e

Iv
Fig. 195. — Moment of Inertia by Torsional Vibration.

which depends upon the length, diameter, and modulus of shear-
ing elasticity of the supporting wire, The factors which make
up K need not be determined separately, as the entire term
may be obtained by substitution from the time of vibration of a
mass of known moment of inertia.

Fig. 195, I and II, shows a uniform solid circular steel or brass
rod in a horizontal position on a light support suspended by a
single steel wire. Fig. 195, III and IV, shows a second body
on the same support. It is desired to find the moment of inertia
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of this second body with respect to an axis through its center
of gravity perpendicular to the line AB. If the body can be so
supported that A B is horizontal, it will rotate about the desired
axis; for the center of gravity of the combined body and support
must fall directly under the axis of the wire, and if the support
is small relatively this combined center of gravity will practi-
cally coincide with that of the body, even if the support does
not hang in exactly the position which it occupies when it is
not loaded.

When the moment of inertia of the support is small, as in Fig.
195, the unknown moment of inertia is calculated from

Is T}

I~ Tg
where the subseript A refers to the body and the subscript C to
the cylinder.

Generally it is not practicable to use a
very light support and get the body in the
desired position. Fig. 196 shows a relatively
large support carrying the unknown body
in the side elevation of Fig. 196, I, and the
known cylinder in the other. In this case
we get the time of vibration with the sup-

I port alone; and then with the support and

1
Fig. 196. — Support for ¢q0}, Jad separately.
Torsional Vibration.
T3 = KI5,

T¢ =K (¢ + Ip),
Ti=K{Ia+ Ip),

where Tg is the time with support and cylinder; T's, with the
support alone, etc.

SE e = 3) o
g =T

PROBLEMS.

1. The time of vibration of a given torsion pendulum with the support
alone is 0.46 second; with the support loaded with a cylinder 10 inches long
and 1 inch in diameter it is 0.87 second; with an unknown body in place of
the cylinder it is 0.94 second. The cylinder weighs.0.556 poux}d and the body
1.25 pounds. Find the moment of inertia and radius of gyration of the body.

Ans. k = 2.14 inches,



274 STRENGTH OF MATERIALS

2. Under what conditions may the unknown moment of inertia be accu-
rately determined without getting the time of vibration of the support?

3. If any clamp screws are used in the support, they should be vertical.
Why?

155. The Moment of Inertia of a Plane Section. — The method
of the preceding article affords a method of obtaining the moment
of inertia of any plane section when the material can be cut up
into pieces. Suppose we have a beam of any irregular section.
Cut out a piece of some convenient length and finish the ends to
parallel planes perpendicular to the length of the beam. A con-
venient length for the finished piece is 1 inch. Determine the
area of cross section by calculation from the weight and the
specific gravity. Get the center of gravity by the method of
Article 153. Suspend, and compute the moment of inertia.
Divide by the weight for k2. This k2 is the square of the radius
of gyration of the solid prism 1 inch long.

From equation (1) of Article 150 we know that the square of
the radius of gyration of a prism is equal to the sum of the squares
of the radius of gyration as a thin section and the radius of gyra-
tion as a rod. In this case the square of the radius of gyration as
a rod is one-twelfth of the square of the length.

PROBLEMS.

1. In the case of the unknown section of Fig. 195, I11, and IV, the length I
is 1 inch, the weight in air 1.524 pounds, the weight in water 1.326 pounds.
The water was at the temperature at which the density is 62.2 pounds per
cubic foot. What is the area of cross section? Ans. 5.50 square inches.

2. On a torsion pendulum with a light support the body in the position
shown made 100 vibrations in 83.2 seconds. A rod % inch in diameter and
12 inches long weighing 0.668 pound makes 100 vibrations in 163.8 seconds.
What is the radius of gyration of the body and of its cross section?

Ans. k of eross section is 1.127 inches.

3. In Problem 2 what is the moment of inertia of the cross section?

Ans. 6.99 inches?.

4. The center of gravity of the section of Fig. 194, III, is 2.48 inches from
A. What is the section modulus? '



CHAPTER XIX.

REPEATED STRESSES.

156. Lag of Deformation behind Stress.— When force is ap-
plied to an elastic solid the deformation lagsia little behind the
stress. In the test of a rod in tension, if the machine is stopped
with the beam balanced, after a short time it is found to be no
longer in equilibrium. If the load is increasing when the ma-
chine is stopped, the beam drops, showing a continued elongation
with a slightly diminished stress. If the stress‘is below the yield
point, the beam drops slowly; if above the yield point, it comes
down quickly. If a little more load is applied so as to raise the
beam, it comes down more slowly the next time. In any case, an
equilibrium can finally be found at which there is no change.
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Fig. 197. — Effect of Time on Stress-strain Diagram.

As a result of this lag of deformation there is a considerable
variation in the form of the stress-strain diagram of any material
depending upon the rate of speed of the testing machine. If the
machine runs rapidly the diagram will be higher than if it goes
slowly. Frequently the machine is run at a rather high speed
until a given load is reached and then stopped to read the exten-

someters. Table XII gives the results for a bar of soft steel
275
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tested in this way. The poise was set at the load given in the
first column and the rod was stretched till equilibrium was secured.
It was then stopped for one minute, at the end of which time
the poise was moved to get a new balance.

Fig. 197 is plotted from Table XII (together Wlth some inter-
mediate points omitted from the table). If the steel were tested
by means of an autographic machine which draws the stress-
strain diagram, the curve would be still higher than the upper
one of the figure, depending upon the speed of the machine.

TABLE XII.
TEST OF SOFT STEEL IN TENSION.
Area of section, 0.600 square inch.

Total load. Unit stress per square inch. Elongatiggog‘gen' machine
Wh:cx:) lr)x;z;gl.line After x?t?: min- Wh;atx:, ll)npgsl.line Afteru(ir: min-| 1, g inches. Vnit.
Pounds. Pounds. Pounds. Pounds. - Inches. Inch.
30 30 50 50 0 0
6,150 6,000 10,250 10,000 .0027 .00034
9,000 8,650 15,000 14,420 -00405 -00051
12,200 11,800 20,330 19,670 .0055 .00069
15,000 14,400 25,000 24,000 .00675 .00084
18,000 17,100 30,000 28,500 .0082 .00102
19,200 18,250 32,000 30,420 .0085 .00106
19,800 18,600 33,000 31,000 .0087 .00109
20,400 19 150 34,000 31,920 .0092 .00115
21,000 19 200 35,000 32,000 .0121 .00151
20,600 19,350 34,330 32,250 .0450 .00562
20,600 20,000 34,330 33,330 .0530 .00662
21,000 19,000 35,000 31,670 .0733 .00916
21,000 19,200 35,000 32,000 .1740 .02175
21,600 20,900 36,000 34,830 2121 .02651
22,800 21,750 38,000 36,250 .2393 .02991
24,000 22 900 40,000 38,160 2773 .03466
26,400 25,050 44,000 41750 .3873 -04841
28,800 26,900 48,000 44,830 .5506 .06882
31,200 29,050 52,000 48,520 .83 .104
32,400 30,600 54,000 51,000 1.30 .162
32,800 30,850 54,670 51,420 1.62 .202
32,850 31,200 54,750 52,000 1.89 .236
32,750 30,950 54,580 51,580 2.08 .260
32,600 30,900 54,330 51500 | 2.52 315
23,400 1w Sl SOT000S Sal= 2 s 2.98 .372

Broke at 23,400 pounds. The area of the neck was 0.196 square inch.
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The static load which would produce a given deflection would
come below the lower curve. The apparent ultimate strength
of this steel is 54,750 pounds per square inch. The actual ulti-
mate strength in terms of the original area is less than 52,000
pounds per square inch. |

From this table and curve we see that in order to compare the
results of tests of materials the speed of the test is an important
factor. This is especially the case with very duectile materials.
The modulus of elasticity taken rapidly is much larger than if
taken slowly.

The form of the stress-strain diagram and the amount of lag
of deformation depend somewhat upon the previous treatment
of the material. A bar of hot-rolled steel when tested for the
first time will generally show some permanent set at loads below
the true elastic limit. If it is raised nearly to the yield point and
then reduced to zero and again raised, the second test will show
no set and will generally give a better curve than the first one.
If steel or wrought iron is carried beyond the yield point and the
load released, the second test will show a yield point above the
previous maximum stress.

TABLE XIII.
SOFT STEEL BEYOND THE YIELD POINT.
Original area, 0.600 square inch.

Total load. Unit stress per square inch. Elongatiga);;l;g:? machine

Wh:tx:) ‘!;;:;gl?ine After &x;? min- Wh:;:) ﬁz(él.ﬁne Afteru%x: min- T¥Stinchon: Unit.

Pounds. Pounds. Pounds. Pounds. Inch. } Inch.
23,400 | ...... 39,000 | ...... —.0576 | ......
24,000 23,300 40,000 38,830 | —.0441 | ......
24,600 23,500 41,000 39,170 | —.0148 | ......
25,200 .24.100 42,000 40,170 .01425 .00178
21,000 21,075 35,000 35,125 .01275 .00159
18,000 18,025 30,000 30,040 .0111 .00139
15,000 15,125 25,000 25,210 .0094 .00117
12,000 12,150 20,000 20,250 .00765 .00096
9,000 9,325 15,000 15,540 .00505 .00076
6,000 6,250 10,000 10,420 .00415 .00052
3,000 3,175 5,000 5,290 .0021 .00026
30 125 50 210 N0,1,0) LIRRRNN BEE AL 4 S

30 30 50 50 .0 .0

3,000 3,000 5,000 5,000 .00105 .00013
6,000 6,000 10,000 10,000 .0026 .00032
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TABLE XIII (Continued).

Elongation when machine

Total load. Unit stress per square inch. stopped.

When machine | After one min- | When machine |After one min- . .
stopped. ute. stopped. ute. In 8 inches. Unit.
Pounds. Pounds. Pounds. * Pounds. Inch. Inch.

9,000 8,900 15,000 14,830 .00435 .00054
12,000 11,900 20,000 19,830 .0061 .00076
15,000 14,950 25,000 24,920 .00785 .00098
18,000 17,825 30,000 29,710 .00965 .00121
21,000 20,900 35,000 34,830 .0116 - .00145
24,000 23,600 40,000 39,330 .01355 .00169
24,600 24,200 41,000 40,330 .0154 .00192
25,200 24,550 42,000 40,920 .01765 .00221
24,000 23,900 40,000 39,830 .01735 .00217
21,000 21,150 35,000 35,250 .0158 .00197
18,000 18,100 30,000 30,170 .0142 .00177
15,000 15,075 25,000 25,125 .0123 .00154
12,000 12,225 20,000 20,375 .0108 .00135
9,000 9,300 15,000 15,500 .0090 .00112
6,000 6,225 10,000 10,375 .0073 .00091
3,000 3,125 5,000 5,210 .0052 .00065
30 120 50 200 HOEE el a e

30 30 50 50 .0033 .00041

Test bar rested 40 hours without load.

30 30 50 50 .0033 .00041
3,000 2,970 5,000 4,950 .00455 .00057
6,000 6,000 10,000 10,000 .0059 .00074
9,000 8,900 15,000 14,830 .00745 .00093

12,000 11,850 20,000 19,750 .00895 .00112
15,000 14,825 25,000 24,710 .01035 .00129
18,000 17,850 30,000 29,750 .01185 .00148
21,000 20,800 35,000 34,670 .0134 .00167
24,000 23,850 40,000 39,750 .01505 .00188
21,000 21,000 35,000 35,000 .01365 .00171
18,000 18,100 30,000 30,170 .01215 .00152
15,000 15,100 25,000 25,170 .01075 .00134
12,000 12,100 20,000 20,170 .00925 .00116
9,000 9,050 15,000 15,080 .00785 .00098.
6,000 6,175 10,000 10,290 .00635 .00079
3,000 3,175 5,000 5,290 .00475 .00059
30 50 50 .0033 .00041

3,000 3,000 5,000 5,000 .00445 .00056
6,000 5,950 10,000 9,920 .00575 .00072
9,000 8,850 15,000 14,750 .00735 .00092
12,000 11,850 20,000 19,750 .0089 .00111
15,000 14,900 25,000 28,830 .01045 .00131
18,000 17,600 30,000 29,330 .0119 .00149
24,000 23,800 40,000 39,670 .0151 .00189
24,600 24,500 41,000 40,830 .0155 .00194

)
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TABLE XIII (Concluded).

Total load. Unit stress per square inch. Elongati:&gm machine

Wh:t’,lo ;np:ﬁl.xine After ‘?tl;e. min- Wl:al’ l:;);aé:.hine After lgl;e.; min- TR e nchions Unit.

Pounds. Pounds. Pounds. Pounds. Inch. Inch.
A5 200% l 2 SO 4250005% & wet s ol .01585 .00198
25,800 25,400 43,000 42,330 .0162 .00202
26,400 26,150 . 44,000 43,580 .0169 .00212
27,000 26,500 45,000 44170 .0174 .00217
27,600 26,500 46,000 44170 .01865 ¢ 00233

The unit stress was calculated from the original area of 0.600 square inch.
The actual area was 0.578 square inch. The actual length of the gauged por-
tion was 8.3 inches at zero elongation as read.

Table XIII gives some of the results for a test piece from the
same rod as Table XII. This test piece was loaded to 36,000
pounds per square inch, producing an elongation of about 0.3
inch in a gauged length of 8 inches. The zero of the extensom-
eter corresponds to 0.3 inch total elongation.
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Fig. 198. — Stress-strain Cycles.

Curve I of Fig. 198 is plotted from Table XII. Curve II is
plotted from Table XIII. The test of the piece used for Table
XIII showed that the curve up to the yield point was practically
the same as that of Table XII. The abscissas of curve 1I
begin with 0.0375, which corresponds with the 0 of Table XIII.

After passing the point D on curve II we notice that the
descending portion is concave toward the left. The same is
true of the descending portion from E to F. All of these lines




280 STRENGTH OF MATERIALS

are drawn from the readings at the time the machine stopped.
If we were to draw the curve for the end of one minute rest, the
descending portions from D and E would lie to the left of
the curves as drawn and would be less concave. If we observe
the table we notice that in going down from D the unit stress
with a given elongation ¢ncreases after a short.rest. The maxi-
mum inecrease occurs at the unit stress of 9000 pounds. When
soft steel is stretched it returns slowly to its original length after
the load is removed. The deformation lags behind the stress
in both the ascending and descending portions.

In coming from C to D, the maximum load at stopping the
machine was 42,000 pounds per square inch, but the maximum
load after one minute was only 40,170. We notice that the
curve coming up from zero load is practieally straight (except
at the lower end) until 40,000 pounds is reached, where its slope
drops suddenly. There is a considerable permanent deforma-
tion in passing from 40,000 to 42,000 pounds at E. While the
curve has the same ordinates at D and E the permanent stress
is 750 pounds greater at E. Below the 35,000-pound ordinate
the descending curves from D and E are the same.

The ascending curve is nearly straight up to 40,000 pounds
while the original yield point was less than 35,000 pounds. This
is an illustration of the fact, mentioned in Article 25, that stress
beyond the yield point raises the yield point of soft steel. The
new yield point is found at the permanent unit stress which was
previously reached.

From F to G and back to F is the cycle after 40 hours’ rest
without load. These curves are more nearly straight than the
others. The descending and ascending portions are close to-
gether, and the lag, as shown from the tables, is smaller. The
descending curve returns to zero, showing that the true elastic.
limit is not necessarily the limit of zero set. A stress-strain
diagram may be considerably curved and the material show no
permanent set.

Ascending from F to G the second time the curves coincide.
The effect of the rest is shown by the fact that the curve from G
to H lies considerably above the original curve to E.

The ascending portion of the first curve has a less slope than
the similar curve after rest, showing the effect of rest in raising
the modulus of elasticity. The curve FG has a slightly smaller
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slope than curve I, showing an apparent decrease in the mod-
ulus due to overstraining. The unit stresses for curve II are
computed from the original area of 0.600 square inch, while
the actual area at the new zero elongation was 0.578 square
inch. Also the unit elongations are computed from the original
length of 8 inches. If we use the actual area in computing the
stress and the actual length of 8.3 inches in calculating the unit
deformations the modulus is practically the same for curve I
and for curve II from F.

PROBLEMS.

1. From Table XII calculate E for at least three readings.

2. From Table XIIT calculate E for at least two readings beginning with
the initial load, and for two readings beginning with 3000 pounds, with the
actual area and original length.

157. Watertown Arsenal Tests of Eyebars. — An interesting
set of tests illustrating the behavior of steel and wrought iron
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Fig. 199.

was made at the Watertown Arsenal in 1886 (Tests of Metals,
1886, Part 2, pp. 1571-1617). These tests were made on eye-
bars about 25 feet long. The gauged length was 260 inches,
enabling the unit deformation to be read with great accuracy.
Table XIV gives some of the results for the first loading of test
piece No. 4136 (p. 1578). The initial load (as is customary in
the Watertown tests) was 1000 pounds per square inch. After
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each load the machine was reversed to the initial load to get the
permanent elongation which is given in the table as *“ Set under

TABLE XIV.
WATERTOWN TESTS OF STEEL EYEBAR.
3 Elongation.
Unit stress A
Set under | Net unit
Totalload: ¥liper square initial load.| elongation. &
inch. In 260 Unit,
inches. B
Pounds, Pounds. Inches. Inch. Inches. Inch.
5,250 f
26,250 5,000 .0456 .000175 .0065 .000150 | 26,670,000

52,500 10,000 | .0915 | .000352 | .0085 | .000319 | 28,210,000
78,750 15,000 | .1369 | .000526 | .0089 | .000485 | 28,860,000
105,000 20,000 | .1815 | .000698 .0096 | .000661 | 28,750,000

131,250 25,000 | .2264 | .000871 | .0101 | .000832 | 28,850,000
157,500 30,000 | .2720 | .001046 | .0109 | .001004 | 28,880,000
183,750 35000 | .3194 | .001229 | .0147 | .001172 | 29,010,000
196,000 37,330 | .3459 | .001330
198,000 37,710 | .3700 | .001423

200,000 38,090 | .5665 | .002179

204,750 | 39,000 | 1.07 -0041
210,000 | 40,000 | 2.35 -0090
3601000 | . 70,9864 SR IR AT . V.. 30.42

The bar was again tested to a total load of 262,500 pounds, or 50,000 pounds
per square inch in terms of the original area. After this load the set was
negative, and equal to 10 divisions. After a further rest of one hour at the
initial load the reading was — 0.0150 inch.

The micrometer was reset to zero and the bar was again loaded to 262,250
pounds. The elongation under this load was 0.6263 inch in the original length
of 260 inches. The immediate set was 0.0028 inch. After 10 minutes the set
was 0.0005 inch, and after 12 minutes it was zero.

The micrometer was reset to zero and the bar was tested the fourth time
to a load of 341,250 pounds'and back at intervals of 5000 pounds per square
inch in terms of the original area. The elongation was 0.8660 inch. The
immediate set was 0.0301 inch. After 20 minutes the set was 0.0215 inch.

The micrometer was reset and the bar was tested to 262,500 pounds. The
elongation in the gauged length was 0.6257 inch. The immediate set was
0.0041 inch and the set after 6 minutes was O.

~ The micrometer was reset to zero and the bar again tested to 262,500
pounds. At each load the elongation was taken immediately and again after
an interval of 3 minutes. The results are given in Table XV, which shows
the change in deformation with constant stress, while Tables XII and XIII
show the change in stress at nearly constant elongation. In computing the
unit stresses for this table the permanent area at the end of the first test is
used instead of the original area. This permanent area is given as 4.70 square
inches. Also in computing the unit elongations the length is taken as 290.4
inches.
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TABLE XV.

WATERTOWN TEST OF STEEL EYEBAR.
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Gauged length 290.4 inches.

Bar previously stretched from 260 inches by a load of 369,000 pounds.

Unit stress per

Elongation in 290.4 inches.

Immediate unit

Total load. square inch. ’ elongation
1 . After - ”
Immediate. [titgsfm“
Pounds. Pounds. Inch. Inch. Inch.
5,250 1,117 0
26,250 5,585 - .0503 .0504 .000173
52,500 11,170 .1093 .1099 .000376
78,750 16,755 .1685 .1690 .000582
105,000 22,340 .2299 .2309 .000792
131,250 27,925 .2922 .2935 .001006
157,500 33,510 . 3562 .3575 .001226
183,750 39,095 .4209 4222 .001449
210,000 44,680 . 4868 . 4885 .001676
236,250 50,265 .5533 .5549 .001905
262,500 55,850 .6209 .6230 .002148
236,250 50,265 .5660 .5659 .001949
210,000 44,680 .5082 .5080 .001750
183,750 39,095 .4491 .4489 .001546
157,500 33,510 . 3886 .3880 .001338
131,250 27,925 .3262 .3252 .001123
105,000 22,340 .2631 .2620 .000906
78,750 16,755 .1980 .1971 .000682
52,500 11,170 .1331 .1319 .000455
26,250 5,585 .0655 .0627 .000225
5,250 1,117 . .0048 .0030 .000016
Bar rested 15 hours under initial load.
972508 1Ll AR e —.0054
5,250 1,117 0 (Micrometer
26,250 5,585 .0504 reset to 0) .000173
52,500 11,170 (1 i R .000373 -
78,750 16,755 =19608 - [5, =k .000572
105,000 22,340 S2250WE | TR .000775
131,250 27,925 82870 S LT A .000988
157,500 33,510 SO LOMEN| Tl U35 .001209
183,750 39,095 A5 7N | SR S ) .001431
210,000 44,680 4839 | ...... .001666
236,250 50,265 2549355 | AT .001891
262,500 55,850 OSSN S .002128
236,250 50,265 A e .001935
210,000 44 680 Ao0A7eA ] | B . .001739
183,750 39,095 L G R .001535
157,500 33,510 e bl ] [ e .001328
131,250 27,395 2 I TN L .001082
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TABLE XV (Continued).

Total load. Unit Strﬁiﬁer Square Elong{:,;;::tl)]llesm 200.4 Unit elongation.
Pounds. Pounds. Inch. Inch.
105,000 22,340 .2609 .000898
78,750 16,755 .1973 5 .000679
52,500 11,170 .1321 .000455
26,250 5,685 .0644 .000222
5,250 1,117 .0065 .000023

initial load.” To get the net elongation we subtract this set
from the total elongation before dividing by the original length.
The results are given graphically by curve I of Fig. 199. The
net unit elongations are represented by the circles and the gross
unit elongations by the crosses.

Curve II of Fig. 199 represents the first portion of Table XV.
The curve is plotted from the immediate unit elongation. The
curve is practically straight from K to D. (D is considerably
below the maximum stress of Table XIV.) From O to K the
curve is nearly a straight line. A consideration of the table
shows that the bar continued to stretch at a constant stress when
the load was ascending and shortened under a constant stress
on the descending curve. The greatest difference in 3 minutes
in the descending portion occurred at the apparent unit stress
of 5000 pounds. The effect of the lag in deformation is further
shown by the fact that the zero fell 0.0102 inch in 15 hours
of rest.

PROBLEMS.

1. From the curve of unit stress and net unit elongation of Fig. 198, 1,
determine the modulus of elasticity of this steel.

‘2. Plot the stress-strain diagram from the second part of Table XV which
gives the results after 15 hours rest. Calculate E.

3. Using the original area and the original length calculate E from the last
part of Table XV.

158. Failure under Repeated Stress. — There is a consider-
able area between the ascending and descending portions of the
stress-strain diagram in Figs. 198 and 199. The greater the
limits of stress the greater this area. This inclosed area is a
measure of the work expended in stretching the bar which is
not recovered as mechanical work when the load is released.
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This energy is lost as mechanical energy, being transformed into
heat or expended in changing the molecular condition of the
material.

PROBLEMS.

1. From the readings of Table XIII find the lost energy in a portion of
the bar one inch in length in passing through the cycle from F to G and back
to F (Fig. 198, II). Ans. 0.8 inch pound.

2. From Table XV find the total energy expended in the entire gauged
length during one cycle. Also solve after 15 hours’ rest.

Since energy is lost in a cycle of this kind it is natural to expect
that a great number of repetitions of stress would cause failure
at a maximum stress less than the ultimate strength of the
material. The experiments of Wohler and others show that this
is the case.*

When the stress varied from zero to a maximum it was found
that if this maximum was less than one-half the ultimate strength
the piece would fail under a great number of repetitions of load.
If a steel bar having an ultimate strength of 60,000 pounds per
square inch is loaded from 0 to 40,000 pounds it will probably
break after a few thousand applications. If loaded from 0 to
35,000 it will last much longer. If from 0 to 30,000 it may fail
after several million repetitions. If loaded from 0 to 25,000 it
will last indefinitely.}

When the stress does not return entirely to zero the area of the
figure representing the lost energy is less. The experiments with
repeated stresses show that the maximum stress can be greater
without failure under an indefinite number of repetitions. Steel
having an ultimate strength of 60,000 pounds per square inch
will stand a stress varying from 25,000 to 40,000 pounds, or
from 20,000 to 35,000 without failure.

If the stress changes from compression to tension the maxi-
mum is less than for the case of one kind of stress only. Experi-

* See Goodman’s “Mechanics Applied to Engineering,” under the head
‘“Wohler’s Experiments.”” Unwin’s ‘ The Testing of Materials of Construc-
tion,” pages 356-394, gives an excellent discussion of this subject. Also see
paper by Henry B. Seaman, Transactions of the American Society of Civil
Engineers, Vol. XLVI (1899), pages 141 to 150, and discussion on pages 166
to 257. .-

t See paper by J. H. Smith entitled “Some Experiments on Fatigue of
Metals.” The Journal of the Iron and Steel Institute, 1910, Vol. II, pp. 246~
318.
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ments show that when a bar is tested in one direction its elastic
limit in the other is lowered, so that the raising of the elastic
limit which occurs when a bar of ductile material is overstrained
in one direction is lost when the reverse stress is applied. The
experiments of Wohler show that steel having an ultimate
strength of 60,000 pounds per square inch when tested in tension
will fail under a stress which changes from 16,000 compression
to 16,000 pounds tension. If the stress changes from 14,000
tension to 14,000 compression the piece will probably stand an
indefinite number of repetitions.

159. Design for Varying Stresses. — A number of methods
have been proposed for designing members subjected to repeated
stresses. 'This may be done by lowering the allowable unit stress
or adding a suitable increment to the applied load.

The formula of Launhardt is an empirical formula based on
Wohler’s experiments, which until recently was considerably
used for calculating the allowable working stress for varying
loads. This formula contains a factor depending upon the ratio
of the ultimate static strength to the ultimate repetition strength
when the load varies from 0 to the maximum. If we take this
ratio as 2 which coincides reasonably weil with the results of the
tests, the formula may be written

3 §,_,,< Y minimum Ioad),
Lz OO maximum load
where
s» = static allowable unit stress,
s, = maximum allowable unit stress with varying load.

When the minimum load is 0, s, = 821’

When the minimum load equals the maximum load, s, = su.

PROBLEMS.

1. If the allowable unit stress for a given steel for a static load is 15,000
pounds per square inch, what is the maximum allowable unit load and the
required area of cross section when the load varies from 20,000 to 30,000?

Ans. 12,500 pounds per square inch, 2.4 square inches.

2. Find the area of cross section to carry safely a load which varies from
120,000 to 360,000 pounds if the allowable static unit stress is 15,000 pounds
per square inch. Ans. 36 square inches.
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Launhardt’s Formula applies to stresses in one direction only.
Goodman * recommends a simple rule which is easy to remember
and convenient to apply. Add to the maximum load the difference
between the maximum and minimum load and treat the sum as a
static load.

PROBLEMS.

3. Solve Problem 1 by Goodman’s “dynamic’’ rule.
Ans. 2.67 square inches.

4. What is the cross section required to carry a load which varies from
30,000 pounds compression to 60,000 pounds tension if the allowable static
unit stress is 12,000 pounds per square inch? Ans. 12.5 square inches.

5. A shaft is supported between bearings 4 feet apart and carries a load
of 600 pounds at the middle. If the allowable static unit stress is 12,000
pounds, what is the minimum diameter of the shaft to allow for the alternate
tension and compression as the shaft rolls over?

If the shaft makes 100 revolutions per minute in what time will the stress
reverse one million times?

160. Impact Stresses. — In order to determine the magnitude
of the stress due to a given load it is necessary to know how the
load is applied.

Loads which are fixed in position and constant in magnitude
are dead loads. The weight of a structure is a dead load. A
load which is applied gradually, as the weight of falling snow, is
treated as a dead load. A load which varies in position, such as
the weight of a moving train on a bridge, is a live load. Any
load which changes in position or magnitude will produce tmpact
stresses. The magnitude of this impact factor depends upon the
speed of application.

Fig. 200, I, represents a suspended spring. In II a load is
attached to the spring but supported by B so that it exerts no
pull on the spring. In IIT the support B is lowered gradually; a
part of the weight W is carried by B and the remainder by the
spring S. In IV the spring supports the entire weight. The
upward pull exerted by the spring is equal to the weight. If P
is the pull required to stretch the spring unit distance, the total
pull in position IV is Py; where y; is the total elongation. If
the support. B is lowered gradually so that the average value of

* Goodman’s ‘“Mechanics Applied to Engineering,” page 535. For a
discussion of the various formulas see Johnson’s ‘“ Materials of Construction,”
Article 389.
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. the sum of the pull of the spring and the reaction of the support
is equal to W, the body will come to rest without vibration.

Py]_:W,
h =

w[%

The energy stored in the spring is P2 , which is only one-half

of the work of gravity on the mass W. The remaining half of
the energy is expended on the support B which moves a distance

y with an average push of Pyl

If the support B is suddenly removed from W in the position
II, the entire force of gravity is effective throughout the whole
distance. At first the spring offers no resistance and the entire
load goes to accelerate the mass (provided the mass of the spring
is negligible). As it is stretched, the resistance of the spring
increases. At the position IV the pull of the spring is equal to
the weight and the acceleration is zero. The mass has its highest
velocity at the point where it would come to rest under a gradu-
ally applied load. Beyond this point, represented by IV, the
upward pull of the spring is greater than the weight and the body
is negatively accelerated. It finally stops at the position of
Fig. 200, V, with an elongation of the spring y.. To calculate
this elongation, we have

2
Wy2=P2:
2W
.?/2=7)—=2y1,
Py2=2W.

The deflection due to a suddenly applied load is twice as great
as when the load is gradually applied, and the maximum force
is twice the load. After reaching the maximum elongation the
body vibrates back to its original starting point (provided the
spring is perfectly elastic).

Fig. 200, VI, shows the mass W lifted a distance h above the
position of II, in which it exerts no pull on the spring. If released
suddenly, it falls this distance before it begins to stretch the
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spring. The total work done by gravity is the weight multiplied
by the total distance h 4 y. At the lowest position VII this
work has been transformed to energy of the spring.

Py2
W(h+y)=—2y'°

VII .
Fig. 200. — Effect of Sudden Loads and Impact.

PROBLEMS.

1. A forece of 6 pounds stretches a given spring 1 foot. A 4-pound mass
is placed on the spring and gradually lowered. What is the elongation of the

spring when it comes to rest? Ans. 8 inches.
2. In Problem 1 the load is applied suddenly. What is the elongation of
the spring and the maximum pull? Ans. 16 inches; 8 pounds.

3. In Problem 1 the load is lifted 1 foot and then released suddenly. How

much does it stretch the spring, and what is the maximum tension?
Ans. 2 feet; 12 pounds.

4. A springboard is made of a plank 12 inches wide and 2 inches thick as
a cantilever 10 feet long. What is the maximum fiber stress when a boy
weighing 60 pounds steps on it suddenly from a point at the same level as the
end? Ans. 1800 pounds per square inch.

5. What is the maximum fiber stress in Problem 4, if the boy jumps down
from a point 6 inches above the end of the plank, if the modulus of the timber
is 1,200,000? J Ans. 5545 pounds per square inch.

In most cases a varying load requires some time for its applica-
tion, so that the stress produced by a live load is something less
than twice that of an equal static load. When a locomotive
runs on a bridge, the effective stress produced may be 50 per cent
greater than that due to its weight alone. We say then that an
impact factor of 50 per cent should be added to the live-load
stress. If the speed is reduced, the impact factor is smaller.
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For the impact factor which should be added to the live-load
stress in the case of bridges, consult the specifications of the
American Railway Engineering and Maintenance of Way Asso-
ciation.*

* The formula used is an empirical one based on experiments. For a
description of the experiments upon which the formula is based, see the paper
of ¥. E. Turneaure in the Transactions of the American Society of Civil
Engineers, Vol. XLI, pages 410-466.
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resultant, 137.
Moment of inertia, 251 et seq.
axis for maximum, 262.
by experiment, 272-274.
change of direction of axis, 259.
definition, 251.
in thin plate, 255.
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Moment of inertia, of plane area,
257-274.
polar, 257,

prineipal, 138, 263.
transfer of axis, 254.

N.-

Neutral axis, 85.
location of, 89-90, 161-162.
Neutral surface, 85.
New York building laws, 5, 92, 210,
211, 217, 222.
Notation, xi—xii.

P.

Pencoyd column tests, 197-200.

Philadelphia building laws, 216, 217,
222,

Pin-end connections, 195 et seq.

Poisson’s ratio, 11.

Polar moment of inertia, 257.

Product of inertia, 260-262.

Punching, 52.

IR

Radius of curvature, 99.

Radius of gyration, 253.

Railway Engineering and Mainte-
nance of Way Association, 5,
208-211, 290.

Rankine’s formula, 212-217.

Reduction of area, 23.

Reinforced concrete, 151, 164-168.

Repeated stress, 275-287.

Resilience, 9, 10, 231-238.

in beams, 234-238.
meodulus of, 10.
sections for maximum, 237.
torsion, 237.
Ritter’s constant, 213.
Riveted joints, 54-65.
butt joints, 58, 64.
efficiency, 63.
lap joints, 57.
tests, 59-61.
Round-end columns, 195 et seq.
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S.

Section modulus, 91.

Shear, 37-47, 68, 74, 139-150.
caused by tension, 41.
deformation in, 39, 45.
forces in pairs, 42, 43.
in beams, 68, 74, 132, 139-150,

154.
maximum resultant, 145.
modulus of elasticity, 39.
stress caused by torque, 223.

Shear diagrams, 74 et seq.
relation of area to moment, 81,

83.

Shearing stress, 37.
in beams, 69, 140, 144.
in shafting, 223-225.

Society of Civil Engineers, 197, 199,

285, 290.
Society for Testing Materials, 23,
33.

Specifications, Manufacturers’, 23.

Springs, 229, 234, 235, 289.

Square-end columns, 198.

Steel tests, 17, 35, 59-64, 276, 277,

282.
stress-strain diagrams, 18, 19, 275,
279, 281.

Stress, 2.
allowable unit, 4.
bearing, 3, 55-57.
beyond elastic limit, 96.
beyond yield point, 15, 33.
compressive, 3.
in beams, 67, 85 et seq.
in riveted joints, 54.
resultant, 144-150, 168.
shearing, 37, 139-150, 224.
tensile, 3.
unit, 3, 88.
working, 4.

Stress-strain diagrams, 15.
cast iron, 25, 160.
concrete, 29.

“steel, 18, 19, 279, 281.
yellow pine, 25, 29.
Strut, 181.

INDEX

T.
Tables, calculated:

VI. resultant stress in beams, 149.

VI1. eccentric loaded columns, 187.

VIII1. Euler’s formula, 192.

XI. computation of center of grav-
ity, ete., 270.

Tables, experimental:

1. machine steel, 17.

II. cast iron, 27.

II1. yellow pine, 28.

IV. concrete, 30.

V. cold-rolled steel, 35.

IX. Christie’s column tests, 200.

X. a wrought-iron column, 207.

XII. soft steel, 276.

XTII. soft steel, 277, 278,

XIV. structural steel, 282.

XV. structural steel, 283, 284.
Tensile stress, 3.

caused by shear, 43, 144, 168.
Tension, 1, 12, 47, 55.
Testing Materials, Society, 23, 32.
Theorem of three moments, 128-135.
Torque, 223-230.

relation to angle of twist, 225, 226.

relation to stress, 224, 225.

relation to work, 227.
Torsion, 223 et seq.

combined with bending, 227, 228.
Total stress, 2.

U.

Ultimate strength, 22.
effect of form on, 32, 33.
Unit stress, 3.
actual, 24.
apparent, 24.
in beams, 88.
United States Department of Agri-
culture, 4, 5, 32, 143.
Unwin’s ““Testing of Materials,” 285.

\a

Volume change, 12.
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