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PREFACE

IN preparing this book the author has had in mind

primarily the needs of his own students in strength of

materials. He hopes, however, that it will meet a real

want in other colleges and technical schools also.

This book has been written with the aim of making

intelligible the fundamental principles of the strength

of materials without the formal use of the calculus. The
works which do not use the ordinary calculus treatment

usually omit some important parts such as the deflec-

tion of beams, strength of columns, horizontal shear,

combined stresses, impact loads, etc. This book is

designed to give a fairly complete course in the subject

for students who have not had the calculus, or when

graphical presentations are preferred. However, a sepa-

rate chapter giving the derivation of the elastic curve

of beams by the calculus method has been included for

those who desire such treatment.

Effort has been made to present the derivation of the

formulas in a clear and concise manner, in such a way
as to enable the student to obtain an adequate compre-
hension of the principles involved. While the aim is

to emphasize the elementary principles and to develop

independent reasoning in the student, the ground covered

is that usually given in a college course for engineering
students. Many illustrative examples and problems are

given for the purpose of making clear the application of

the theory. Answers to some of the problems are given
in order that the student may occasionally check his
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IV PREFACE

numerical work. The order of the arrangement is one

that has given good satisfaction.

In the deduction of the shear formula it is brought out

at the first that the shearing stress is not uniformly dis-

tributed over the sectional area of the beam and that

the maximum stress is greater than that obtained by

dividing the vertical shear by that area. A chapter on

graphic integration is included and the graphical method

of determining the deflection of beams is utilized. The

graphical method appeals to the eye as well as to the

reason, and thus supplies an additional avenue of con-

ception. It also shows to advantage the meaning of the

constants of integration. The graphical method is also

much more readily applicable to beams carrying non-

uniform distributed loads, and to beams for which the

moment of inertia of the cross section is not constant.

When one set of curves is drawn for a given beam carry-

ing a given system of loading, those curves may be used

for all similar beams with similar loading. In the chapter

on the calculus method an attempt is made to give the

physical conception of the constants of integration

rather than to treat them simply as mathematical

symbols.
As the nature of the behavior of columns under load

is very uncertain, the treatment given to columns is

largely empirical. Emphasis is laid on the straight line

formula, although the Euler and the Rankine formulas

are also given.

The author wishes to acknowledge his indebtedness

to the following professors and instructors in the College

of Engineering of the University of Illinois: to Dr. N.

Clifford Ricker for the interest shown in the preparation

of this work, and the use of tables and data prepared

by him; to Professor A. N. Talbot and Professor H. F.

Moore for many suggestions as to the form, arrange-
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ment, and subject matter, and much assistance in the

preparation of the book; to Mr. G. P. Boomsliter for

his criticizing and checking the examples and problems;
to Mr. C. R. Clarke and Mr. C. E. Noerenberg for their

criticisms and help in preparing the manuscript for the

publishers.

Although the work has been carefully checked, errors

may exist, and for any intimation of these I shall be

obliged.

H. E. MURDOCK.
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STRENGTH OF MATERIALS

CHAPTER I

MATERIALS OF CONSTRUCTION

i. INTRODUCTION. Strength of Materials treats of

the action of the parts or members of structures or ma-

chines in resisting loads and other forces which come

upon them. By the use of the principles of mechanics

and the properties of materials, it determines the internal

forces or stresses which are developed in the simpler

forms of construction, as beams and columns, when they
are subjected to loads. The properties of the engineer-

ing materials are obtained through experimental tests.

Many of the formulas derived in strength of materials

are based on both theoretical analysis and experimental

data, and the subject, therefore, is of a semi-empirical

nature.

In architectural and engineering construction, sta-

bility, strength, durability, and economy are essential

elements. The proper proportioning, spacing, and con-

nection of the parts are important. Too little material

in a member would make the structure unsafe, and too

much would mean a waste. In general, one member
should not be designed in such a way that it will be

weaker than others in the structure. Proper design,

then, takes into account the properties and qualities of

materials and the mechanics of their action in a struc-

ture in such a way as to insure safety and economy.
i



2 MATERIALS OF CONSTRUCTION [CHAP. I

2. MECHANICAL AND PHYSICAL PROPERTIES. The
materials of construction possess characteristic proper-
ties known as mechanical and physical properties. These

properties measure the fitness and ability of the material

to sustain external loads or forces under given con-

ditions. Different materials possess these properties in

different degrees, and, of course, different grades of the

same material differ in their properties. Some of these

characteristic properties can be expressed quantitatively

between fairly well defined limits which are determined

by test, while others may be specified in terms of ability

to withstand certain tests and fulfill certain require-

ments. The mechanical properties include strength,

elasticity, stiffness, and resilience. Other physical prop-

erties frequently referred to are toughness, ductility,

malleability, hardness, fusibility, and weldableness.

When a load is applied to a piece or member of a

structure the material undergoes a change in size and

shape. If on the removal of the load the original size

and shape are resumed the material is said to be elas-

tic. Elasticity, then, is the property of a material by
which it will regain its original size and shape on the

removal of an applied load. A material which will not

recover its original dimensions after deformation is termed

plastic. If it will only partially recover its original di-

mensions after deformation it is said to be partially elastic

and partially plastic. Most constructional materials are

nearly or quite perfectly elastic up to a certain limit of

deformation, beyond which they are partly elastic and

partly plastic.

The ability to resist change in shape and size when a

load is applied is termed stiffness. In elastic materials

the amount of change in size and shape is generally

proportional to the amount of the load applied.

Materials will differ in their tensile, compressive,
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and shearing strengths. The strength of a material is

ordinarily determined under the application of a static

load applied in a slowly increasing amount. The effect

of permanent loads, of suddenly applied loads, and of

impact loads, and of the repetition of a load many times,

requires separate consideration.

A material possesses the property of ductility if the

length can be increased and the cross section decreased

considerably before rupture occurs. Toughness is that

property by which a material will not rupture until

it has deformed considerably under loads at or near

its maximum strength. This deformation may be pro-
duced by stretching, bending, twisting, etc. A tough
material gives warning of failure. It will resist impact
and will permit rougher treatment in the manipulations
which attend fabrication and use. A brittle material

will rupture without developing much deformation and
without giving warning. Brittle materials are unfitted

to resist shock or sudden application of load.

3. MASONRY. Masonry is mostly used to carry

compression loads, such as come on foundations, walls,

piers, chimneys, etc.

(a) Stone Masonry. The kinds of stone that are

best adapted to building and construction purposes are

those that can be worked satisfactorily, can be obtained

in suitable size, have great compressive strength, and
are durable. Sandstone, limestone, marble, granite, trap,

and slate are those in most common use. Stone masonry
is laid up in mortar, and the quality and character

specified will depend upon the purpose and need of the

structure. The weight of stone masonry is about
160 pounds per cubic foot.

(b) Brick Masonry. Many grades of brick are used.

This great variety affords the designer opportunity for
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selecting the kind specially adapted to his purpose.

Special kilns are required for burning bricks to fulfill

special requirements, such as paving brick, fire brick,

pressed brick, etc. The range in the quality of brick

is indicated in part by the compressive strength which

varies from 400 pounds per square inch to 15,000 pounds

per square inch. The strength of brick masonry depends

largely upon the kind of mortar used in the joints and

upon the workmanship, but it is much smaller than that

of the individual brick, ranging from one-sixth to one-

third as much. The weight of brick masonry is about

125 pounds per cubic foot.

(c) Concrete, Plain and Reinforced. In recent years

concrete has come into common use for building and

structural purposes. The convenience with which it

can be made into the required form, its durability, and

its fireproofing qualities make it a desirable material.

For foundations and for places where only compression
comes on the structure the plain concrete is more gener-

ally used, but where tension exists steel is embedded
in the concrete to take the tension.

4. TIMBER. Timber has been used extensively for

building purposes. There are many varieties and qual-

ities on the market, affording good opportunity for

the selection of the timber most suitable for the desired

purpose. The cost of timber is gradually increasing,

and some species have disappeared and others are dis-

appearing from the market for structural purposes.

The strength depends upon the species, the condition

of growth, the seasoning, the defects in the timber, etc.

5. CAST IRON. Cast iron is a brittle metal. Its

cheapness, the ease with which it is cast into special

forms and machined into exact shapes, and its high
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compressive strength make it valuable for a great many
purposes; but its low tensile strength, compared with

that of other metals, and its brittleness make it an

undesirable material for resisting shock or tension.

Cast iron is made by smelting ore in a blast furnace.

In its crude form it is called pig iron. The strength of

cast iron and its other properties vary widely and depend

upon the amount and condition of the carbon and other

ingredients which it contains.

6. WROUGHT IRON. Wrought iron is made from pig

iron in a reverberatory furnace by what is called the

puddling process. The puddled balls obtained in the

process are run through a squeezer and much of the

cinder expelled. The material is rolled into muck bars

which are cut, piled together, heated, and finally rolled

into the shapes desired. The strength and other qual-

ities depend upon the quality of the pig iron used, and

upon the details of manufacture. Because wrought
iron can be easily worked and welded it is adaptable
to many uses, but its use has diminished and steel has

taken its place until very little is now manufactured.

7. STEEL. The term steel covers a wide range of

material, soft steel, mild steel, medium steel, hard

steel, tool steel, etc., all being expressions used in con-

nection with the various steels. In structural steel

the element carbon is the one generally used to control

strength and hardness, though other elements like phos-

phorus, sulphur, and manganese exercise important in-

fluence upon other properties.

The best structural steel is made by the open-hearth

process. In this process pig iron, together with scrap

steel and some iron ore, are melted in an open-hearth

furnace, the carbon, silicon, and other elements are
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burned out, and a recarburizer is added to give the proper
carbon content and to remove the iron oxide and
increase the manganese, the final product being molded
into ingots. Acid open hearth steel is produced in a

furnace which has a siliceous lining; no reagent is added
to remove the phosphorus, and hence the phosphorus
content of the product is the same as that of the charge.
Basic open hearth steel is produced in a furnace having
a dolomitic lining (giving a basic chemical reaction),
and lime is added to remove the phosphorus.

In the Bessemer process, melted pig iron is placed
in a Bessemer converter and, by the action of air which
is blown through the charge, most of the carbon, silicon,

and manganese are burned out, and a recarburizer is

later added to give the proper carbon content and to

remove the iron oxide and to increase the manganese, the

final product being molded into ingots. As used in the

United States the Bessemer converters have siliceous

linings, and no phosphorus is removed. Relatively little

Bessemer steel is now used for structural purposes.
In the crucible process, crude wrought iron is fused

with a carbon flux in a sealed air-tight vessel. The
crucible process is in use for making hard steel, like

tool steel, spring steel, etc.

The carbon content of steel varies from less than one-

tenth per cent for the softest steels to more than one

and one-half per cent for the hardest carbon steels.

Metals like nickel, tungsten, vanadium, etc., are also

added to give special amounts of strength or hardness

and produce grades of steel which have special adapta-

bility for various purposes.

8. OTHER MATERIALS. Many other materials used

by the engineer and architect are specially adapted to

the purpose for which they are intended. Rope is made
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of fibrous materials such as hemp, manilla, cotton, etc.,

and of wire. Belting is made of leather, canvas and

rubber, and of metallic links. Several alloys having

copper as a basic element are made, such as phosphor
bronze, brass, etc. Several kinds of artificial stone are

manufactured, for most of which sand and hydraulic
cement are used as the basic constituents. Metals such

as lead and aluminum are also used for various purposes.

Table I gives average values of the weights of various

materials used in constructional work, but variation

from the tabulated values is to be expected.

TABLE i

WEIGHTS OF VARIOUS MATERIALS USED IN CONSTRUCTION

EXAMPLE

What is the weight of a solid stone masonry pier with uni-

formly sloping sides and rectangular section, 4 feet by 8 feet at

the top and 8 feet by 16 feet at the bottom and 20 feet high?
This example is most easily worked by using the prismoidal

formula to obtain the volume. This is V = - (A + 4 B + C) in
6

which V is the volume, h is the altitude, A and C are the areas of

the two bases, and B is the sectional area at the middle point.
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For the given example,

A =4X8 = 32 square feet.

5 = 6X12=72 square feet.

C = 8 X 16 = 128 square feet.

Therefore the weight of the pier is

= i6o X -2
S
-
(32 + 4 X 72 + 128) = 160 X i493l = 239,000 Ib.

PROBLEMS
1. What is the weight of a wrought iron rod of i square inch

sectional area i yard long? Ans. 10 Ib.

2. What is the weight of a hollow log 3^ feet in external diam-

eter, 2 feet in internal diameter, and 16 feet long?

3. What is the weight per lineal foot of a concrete dam 4 feet

high, i foot thick at the top, and 2 feet thick at the base?

4. What is the weight of a solid granite obelisk 40 feet high,

i foot square at the top, and 3 feet square at the base?

Ans. 29,500 Ib.

5. What is the weight of a square brick chimney 30 feet high,

the inside dimensions being 2 feet at the top and 2\ feet at the

bottom, and the thickness of the walls uniformly 8 inches?

6. A certain white oak log 12 feet long and 2 feet in diameter

weighed 1885 pounds, what was the weight of a cubic foot of that

white oak?



CHAPTER II

DIRECT STRESSES

9. DEFINITIONS. Force is an action of one body
upon another which tends to change its shape and to

produce a change of motion in the body. In this book

the use of the term will generally be restricted to forces

which are externally applied to the member.
Stress is an internal action which is set up between

the adjacent particles of a body when forces or loads

are applied to the body. It is developed whenever the

body undergoes a change in shape. Stress may be

considered an internal force.

A unit-stress is obtained by dividing the total stress

by the area over which it acts if the stress is uniformly
distributed. In the case of this uniform distribution

the unit-stress is the amount of stress per unit of area

of the sectional area. If the stress is not uniformly

distributed, the unit-stress, or the intensity of stress,

at a point of the sectional area is equal to the amount
of stress that would be developed upon a unit of area

if the stress were uniform over the area and if its

intensity were the same as that at the point.

Deformation is a change in a dimension of a specimen.

Shortening is a decrease in the length of a specimen.

Elongation is an increase in the length of a speci-

men.

Detrusion is a lateral deformation in which the par-

ticles apparently slip past each other. It is caused by a

shearing force.

9
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An axial load is one whose line of action coincides

with the axis of the member. The axial load may be

the resultant of several loads.

An axial stress is one developed by an axial load.

If a plane is passed perpendicular to the axis of a

bar, its intersection with the bar is called the cross

section, or the section, and its area the sectional area.

10. TENSION. When a load tends to pull the par-

ticles of a material directly apart in the direction of

the load the material is under tension and the load

is a tension load. The internal stresses developed
are tensile stresses. The resulting deformation is an

elongation. As long as rupture does not occur, the

forces acting on all, or on a part of the specimen, are in

equilibrium.

By the principles of theoretical mechanics it is shown

that the conditions of equilibrium are that there shall

be no resultant force and no resultant moment. These

conditions are expressed in three fundamental equations

2Fx
=

o, (i)

2 Fy = O, (2)

2 M = o. (3)

These conditions of equilibrium are essential for deter-

mining the internal stresses produced by external forces.

For a homogeneous specimen in direct tension, under

(a) (6)

FIG. i.

an axial load the stress is uniform over the entire sec-

tional area A. Let Fig. 1(0) represent the member

carrying the tension load P. Imagine the member

cut as indicated. Fig. i(b) shows the left portion of
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the member with the forces and stresses acting upon it

indicated.* The total resisting stress is jA, where /
is the tensile unit-stress developed. The resisting stress

is treated as an external force in the free-body diagram,

then by taking as the J^-axis the axis of the piece or

member, the summation of the ^-forces gives

2 Fx = fA - P = o,

If the load becomes great enough to cause rupture

the maximum unit-stress developed at any time before

rupture is called the ultimate tensile strength. In some

materials, such as wrought iron and soft steel, the load

will increase to a maximum value, then decrease before

rupture occurs. The ultimate strength differs for differ-

ent specimens of the same material, and for purposes of

design the value should be determined for each material

used in the structure.

The unit-stress at the point of rupture is called the

rupturing strength. The rupturing strength is of no prac-

tical value. For brittle materials the rupturing strength

and the ultimate strength are equal.

When a specimen is broken by a tension load, its

final length will be greater than its original length.

The ratio of the increase in length to the original length

is called the ultimate elongation. For ductile materials

the length of the specimen has an influence upon this

ratio. So for purposes of uniformity the ultimate

deformation is usually obtained for specimens of stand-

ard size, either two or eight inches in gauge length.

The average values of the ultimate tensile strength and

of the ultimate elongation for specimens of eight- inch

gauge length are given in Table 2.

*
Fig. i (&) is called a free-body diagram.
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TABLE 2

ULTIMATE TENSILE STRENGTH AND ULTIMATE ELONGATION
OF MATERIALS

II. COMPRESSION. When a force acting on a member
tends to push the particles closer together in the direc-

tion of the force the member is in compression. The
stresses arising are compressive stresses. For compres-
sion there is a shortening. If the load is axial and is

applied in such a manner that the stress developed is

uniformly distributed over a section of the member, the
p

compressive unit-stress developed is / = -j
The aver-

age values of the ultimate compressive strength are given
in Table 3. The table does not include values of the

ultimate compressive strengths of malleable materials.

Their values, however, should not be considered greater

than the ultimate tensile strengths.

TABLE 3

ULTIMATE COMPRESSIVE STRENGTH OF MATERIALS
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12. SHEAR. When external forces tend to cause two

adjacent sections of a member to slip past each other

the member is in shear. Stresses resisting such forces

are shearing stresses. When the two shearing forces

are near together the shear is considered as a simple

(a) (c)

FIG. 2.

stress. Fig. 2 shows cases of direct shear. If a force P
tends to shear a specimen along an area A the average

p
shearing unit-stress is s

values of the ultimate strength in shear.

~j'
Table 4 gives average

TABLE 4

ULTIMATE SHEARING STRENGTH OF MATERIALS

13. OBLIQUE SHEAR. Shearing stresses are developed
in structural members which are subjected to direct

tension or compression. Let Fig. 3 represent a speci-

men under the compression force P, and imagine it

cut along the plane AB. The two plane surfaces made
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by the cut would slip past each other under the action

of the force. This tendency of the sections to slip past

each other, which gives rise to shearing stresses, always
exists in members under load. To deduce the value of

0v,

FIG. 3. FIG. 4.

the shearing unit-stress developed along an oblique

plane making an angle 6 with the axis, let Fig. 4 repre-

sent the free-body diagram of one end of the specimen.

The resisting stresses acting on the fibers of the plane

may be resolved into their components Q and N parallel

and normal to the plane respectively. Taking the

X-axis along the plane there results

2 Fx
= P cos - Q =

o,

/. Q = Pcos0.

The component Q parallel to the plane is the force that

keeps this end from slipping past the other one, and

therefore Q is the resultant of the shearing stresses, which

act parallel to the plane. If A is the area of the cross

^
section of the specimen, -:

- is the area of the section
sin

cut. The shearing unit-stress then is

A P
s = P cos 6 -T- - - = -r sin 6 cos 6.

sm0 A

This is the value of the shearing unit-stress along any

oblique plane. To find the value of 6 for the maximum

shearing stress developed in a specimen the relation

sin2 6 + cos2 0=1 exists. It is shown by algebra that

when the sum of two variables is constant the product

of those variables is a maximum when they are equal;
*

* See "Higher Algebra," by John F. Downey, page 252.
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therefore for the maximum shearing unit-stress sin 6 =

cos 6 which is true when 6 = 45 then

_ P i i P_
Sm ~ '

~/=-
*

T=-
~

.

'

A V2 V2 2 A

14. STRESS-DEFORMATION DIAGRAMS. Whenever a

load is applied to a specimen of any material there is

a corresponding deformation. A graphical representa-

tion showing the values of the unit-stress developed in

60000

or Unit Deformation
,

0.3

Structural

Steel

FIG. 5.

the specimen along one axis and the corresponding
values of its unit deformation along the other axis is

called a stress-deformation diagram. Fig. 5 is such a

diagram for a specimen of soft steel. The unit-stress

p
f = -r is plotted along the vertical axis and the unit

g
deformation e =

j
is plotted along the horizontal axis.

i

In these equations P is the total load on the specimen,
A is the cross-sectional area, e is the total deformation
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at the load P, and / is the original length of the speci-

men. In the diagram shown, the stresses measured

upward from are tension and those measured down-

ward are compression, and the deformations measured

to the right are elongations and those measured to the

left shortenings.

15. ELASTIC LIMIT AND YIELD POINT. For stresses

between the two points A and A', Fig. 5, the deform-

ation is proportional to the stress, while for stresses

beyond these points the proportionality does not hold.

These points are the elastic limits, A in tension, A' in

compression. As long as the stress is between the two

values corresponding to A and A', the specimen will

return to its original length upon the removal of the

load. If the stress becomes greater than these values,

however, the length after removing the load will not

be the same as before; the difference or the change in

length is the permanent set. The elastic limit is the

point on the stress-deformation curve where the curve

departs from a straight line, or the elastic limit is that

unit-stress beyond which permanent set is developed.

At the point B, Fig. 5, the deformation increases markedly
with but little increase in the stress. That point is

the yield point. The yield point then may be defined

as the unit-stress at which there is a marked increase

in the deformation with but little or no increase in the

stress. Table 5 gives average values of the elastic

limits of wrought iron and steel as commonly determined

in the laboratory. The values for tension and compres-
sion are about the same. Values for timber and cast

iron have not been included on account of the uncer-

tainty in their determination, but when used they may
be taken to be about one-third to two-thirds of the

ultimate strength.
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TABLE 5

ELASTIC LIMIT OF WROUGHT IRON AND STEEL

i6. THE MODULUS OF ELASTICITY. For values of

the stress less than the elastic limit the rate at which
the unit deformation increases

with the increase in the unit-

stress is constant,* i.e., the

unit deformation is propor-
tional to the unit-stress (Fig.

6). This is commonly called

Hooke's Law. Then for

stresses below the elastic limit

the unit-stress divided by the

unit deformation gives a

constant. This ratio is the

modulus of elasticity or the

coefficient of elasticity.

Young's modulus is the

modulus of elasticity for

direct tension or compression.
FlGt 6>

If is the modulus of elasticity, / the unit-stress below

the elastic limit, and e the corresponding unit deform-

ation the value of the modulus of elasticity is

P

Ae

*
Experiments indicate that the increase of deformation is not abso-

lutely proportional to the increase in stress, but for practical purposes

they may be taken as varying directly with each other.
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In the formula for E, t is an abstract number; conse-

quently the unit for E is the same as that for /, pounds
per square inch, tons per square foot, etc. In Table 6

are given average values of the modulus of elasticity

in tension and compression for some materials.

TABLE 6

MODULUS OF ELASTICITY

17. RESILIENCE. The stress-deformation diagrams
show that a force acts through a distance and thus

does work on the speci-

men. When the load is

released the specimen
gives up energy stored in

it. This energy a speci-

men under stress is ca-

pable of giving up in

returning to its original

dimensions is called re-

silience.

18. THE SHEARING
MODULUS OF ELASTICITY.

Under shearing forces a

specimen will undergo a

detrusion. The unit de-
FIG. 7.

trusion is obtained by dividing the total detrusion by
the length over which it occurs. The ratio of the



ART. 20] REDUCTION OF AREA

unit-stress developed in the specimen to the unit de-

trusion is called the shearing modulus of elasticity.

It is also called the modulus of transverse elasticity,

and the modulus of rigidity. When a specimen is sub-

ject to shearing stresses as in Fig. 7 the unit-stress can

be calculated and the detrusion measured. If E 8 is

the shearing modulus of elasticity, es the unit detrusion,

s the shearing unit-stress,

In Table 7 are given average values of the shearing

modulus of elasticity.

TABLE 7

SHEARING MODULUS OF ELASTICITY

19. POISSON'S RATIO. As the length of a specimen
is increased by a tension load the lateral dimensions

decrease. For a compression load the lateral dimensions

increase. For stresses below the elastic limit the ratio

of the lateral unit deformation to the longitudinal unit

deformation is called Poisson's ratio. This ratio is

considerably less than I and for most metals ranges
between J and |.

20. REDUCTION OF AREA. When a specimen is rup-
tured by a tension force the final sectional area is less

than the original area. The ratio of the amount the
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section at rupture is decreased to the original area is

called the reduction of area. Thus, if A i is the original

area and A 2 is the final area at rupture, the reduction

f . AI A 2
of area is -=

---

21. USES OF THE MODULUS OF ELASTICITY. The
Pi

maximum unit-stress for which the formula E = -
AAe

may be used in calculations is the elastic limit. For

stresses below the elastic limit E may be calculated

from data observed in the laboratory; and the change
in length of a specimen may be calculated by the for-

Pl
mula e =

-j=,
. The modulus of elasticity has an impor-

tant application also in determining the deflection of

beams and the strength of columns.

22. STRESSES USED IN DESIGN. In making a design

safety and economy must be considered. Experiments
indicate that at stresses slightly beyond the elastic

limit there is a marked change in the structure of the

material, and therefore the working stresses should

not be carried beyond that value. At least there

should not be noticeable permanent set. Working
stresses are the allowable stresses used for designing;

they should always be well below the elastic limit. The
method of fixing upon values for allowable working
stresses is by making a set of experiments in which

the elastic limit and ultimate strength of a number of

specimens are determined, and then by taking a cer-

tain per cent either of the elastic limit or of the ulti-

mate strength as the working stress. A knowledge of

the behavior of the material under stress is essential for

a proper determination of working stresses.
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TABLE 8

SAFE WORKING STRESSES IN POUNDS PER SQUARE INCH FOR
STEADY LOADS

Table 8 is a modified extract from a table of allowable

working stresses compiled by Ricker from building or-

dinances. A few additions are given. A few changes
also have been made to agree with recent building

ordinances.

The factor of safety is defined as the ratio of the ulti-

mate strength to the working stress. This value varies
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for the different materials and for the kind of loading.

Variable loads produce higher stresses than steady loads

of the same magnitude. Suddenly applied loads and

shocks produce higher stresses than variable loads of

the same magnitude. Therefore the factor of safety

for variable loads is usually taken about one-half greater

than that for steady loads, and for sudden loads or shocks

it is two or three times that for steady loads. In speci-

fications and building ordinances the allowable stresses

are usually given and also the tests for the materials

specified. For such cases a factor of safety has been

considered.

PROBLEMS

1. What must be the height of a brick tower if the compressive

unit-stress on the lowest brick is one-tenth of its ultimate strength?

2. Determine the shearing unit-stress tending to shear off

the head of a i|-inch wrought iron bolt under a tension of 10,000

pounds, if the head is f inch deep.

3. A wrought iron plate \ inch thick requires a force of 80,000

pounds to punch a round hole | inch in diameter through it.

Find the ultimate shearing strength of the plate.

4. What force is required to punch a i-inch hole in a -inch

structural steel plate ?

5. In a tension test of a 0.19 per cent carbon steel specimen

the diameter was 0.5 inch, and the gauge length was 1.25 inches.

Each scale division on the extensometer represented inch.

125,000

P is the load in pounds and e is the reading on the exten-

someter in scale divisions. The following readings were made;

P 2000, e = 60; P = 6000, e = 180; P = 8000, e = 240;
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P = 8000 -|- ,
e = 290; P = 8100, e = 6 10. The maximum load

was 15,600 pounds, the corresponding length between punch marks

was 1.59 inches. The load at rupture was 12,000 pounds, and

the corresponding length was 1.76 inches. The diameter at the

fracture was 0.313 inch.

(a) Calculate the unit-stress for each load.

Ans. 30,600 Ib. per sq. in. 40,800 Ib. per sq. in.

(b) Calculate the unit elongations for each load.

Ans. 0.00115, 0.00154.

(c) Plot the stress-deformation diagram.

(d) What is the elastic limit ? Ans. 40,800 Ib. per sq. in.

(e) What is the reduction of area? Ans. 60.7%.

(f) What is the modulus of elasticity ?

Ans. 26,600,000 Ib. per sq. in.

6. A wrought iron rod 2 inches square and 10 feet long length-

ened 0.02 inch by suspending a load from its lower end. Determine

the load. -

7. How much will a roo-ft. steel tape, | inch wide and $V inch

thick, stretch under a pull of 40 pounds ? Ans. 0.16 in.

8. A vertical wooden bar 50 feet long and 6 inches square

carries a load of 18,000 pounds at its lower end. Find the unit-

stress at the upper end and the elongation of the bar due to the

combined weight of bar and load.

9. Determine the elongation of a i-inch wrought iron rod

10 feet long, under a tensile load of 20,000 pounds.

10. How many ^-inch square rods of strong steel would be

required for the suspension of a platform loaded with 15 tons,

if the stretching of the rods is limited to one-half their elon-

gation at the elastic limit? Each rod carries equal shares of the

load.

11. What shearing load will a rivet inch in diameter safely

carry ? A rivet f inch in diameter ?

12. What should be the depth of the head of a bolt f inch in

diameter to carry safely the shear ?

13. What must be the bearing area to carry safely a load of

20,000 pounds on a Washington fir beam ?

14. What should be the sectional area of a steel member (a x)
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of the truss shown in Fig. 8 ? If (a y) is a short compression

longleaf pine member, what should be its section ?

15. Member (a y), Fig. 9, is a steel rod i inches in diameter

stressed to its safe working stress. What should be the corre-

sponding sectional area of the short white cedar compression
members (a x) ?

FIG. 8 FIG. 9.

16. Design a cast iron washer for the member shown in Fig. 10

17. What must be the cross section of specimens of the follow-

ing materials in order that the unit-stress may be about one-third

the elastic limit under a load of 30,000 pounds in tension?

(a) Wrought iron; (b) Steel.

1 8. In a compression test of a 6-inch concrete cube the load

was 107,000 pounds at rupture. What was the shearing unit-

stress along a plane inclined 30 to the axis? What was the

maximum shearing stress developed ?

Ans. 1290 Ib. per sq. in. 1490 Ib. per sq. in.

19. What will be the elongation at the elastic limit and

at rupture of an 8-inch specimen of the following materials ?

(a) Wrought iron; (b) Structural steel; (c) Hard steel.

20. What should be the sectional area of a steel rod if it is to

take a tension load of 70,000 pounds ?

21. If a cast iron specimen 1X2 inches in sectional area

breaks under a tensile load of 42,000 pounds, what load will

probably break a cast iron rod 2 inches in diameter?



CHAPTER III

DIRECT STRESSES APPLICATIONS

23. SIMPLE CASES OF DIRECT STRESSES. The sim-

plest cases of direct stresses are such as exist in eyebars,

belts, ropes, cables, tension members in trusses, etc.

For such members the unit-stress developed is obtained

by dividing the load the member carries by the sectional

area of the member. There are other cases for which

the stresses developed are practically direct stresses

although the line of action of the load may not be along

the axis of the member that carries the load. Such

cases will be considered in this chapter.

24. STRESSES IN THIN CYLINDERS. When a thin

cylinder is under interior pressure, as a steam boiler,

water pipe, etc., the forces tending to burst the cylinder

act normally to the inside surface, Fig. n. These

forces develop internal tensile stresses in the metal of

the cylinder. In order to determine the magnitude of

these stresses, imagine the plane AB, Fig. n, passed

perpendicular to the page and containing the axis of

the cylinder. The portion ABD is in equilibrium under

the forces and stresses acting upon it, and if that half

of the cylinder were filled with some solid substance the

interior forces acting upon it would be normal to the

plane AB\ the resisting stresses also would be normal

to that plane. The internal stresses actually developed
in the cylinder are the same as would be developed under

the imaginary condition. Fig. 12 is a free-body diagram
of the part ABD. Let r be the radius, t the thickness,

25
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and / the length of cylinder, Q the interior pressure per
unit of area, and / the resisting unit-stress, which is

approximately uniform over the resisting area. Then
the force tending to rupture the cylinder is 2 Qlr, and the

FIG. ii.

resisting stress on one side is /// and on both sides is

2 ftl. Then for equilibrium

2 Qlr = 2 ftl,

.' Qr=fl.
This formula is true for thin cylinders.

25. STRESSES IN A HOOP. If hoops are heated and

then shrunk onto cylinders, the unit-stress can be ob-

tained by the application of the formula for the modulus

PI fl
of elasticity, E = -r- = - if the difference between the

Ac 6

normal diameter of the hoop when cool and the one to

which it is shrunk can be obtained. The effect is the

same as if the hoop is stretched from its normal diam-

eter di to the diameter d of the hoop when shrunk on the

cylinder. The difference in the length of the hoop will
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be TT (d di) and the unit elongation will be TT (d di)

d d\ d d\ . _ .

-T- irdi = -j
or

-j approximately, ror steel tires
CL i CL

a common rule is to make -,
- about Actually

d 1500
the final diameter d of the hoop and cylinder will be

slightly less than the original diameter of the cylinder,

as the metal of the cylinder will deform under the pres-

sure due to the hoop. The amount of this deformation

will depend upon the ratio of the moduli of elasticity of

the materials of the cylinder and the hoop, and upon the

thickness of each.

26. STRESSES DUE TO CHANGE IN TEMPERATURE.
When a material is heated it will expand if free, and

when cooled it will contract. If / is the change in

temperature and c is the coefficient of expansion, or

change per unit of length for one degree rise or fall,

the change per unit of length will be e = ct. If the

TABLE 9

COEFFICIENTS OF EXPANSION PER DEGREE FAHR.

member is brought back to its original length by an

external force the unit-stress developed will be/ = eE =
ctE. If, instead of being allowed to change in length
and then being brought back to its original length when
a change in temperature takes place, the specimen is

rigidly held in its original position, a unit-stress of

/ = ctE will be developed. The effect is the same as if
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the specimen were allowed to change in length and
then were brought back to its original length by an

external force. Table 9 gives the values of the

coefficient of expansion for each degree of change in

temperature Fahr.

27. STRESSES IN THIN SPHERES. Internal pressure
in domes or other thin spheres tends to cause rupture
around a circumference, (Fig. 13). By using the same
nomenclature as for thin cylinders, the force tending to

push off the dome is Qirr
2 and the stress resisting this

force is/27iT/,

.'. Qr =
2ft.

This formula also applies when an interior pressure acts

upon a cylinder head.

FIG. 13. FIG. 14.

28. THICK CYLINDERS UNDER INTERIOR PRESSURE.

If the metal is thick in comparison with the diameter

of the pipe the stresses developed are not direct stresses

and are not uniform throughout the thickness of the

metal of the wall of the cylinder, and the formulas of

the previous paragraphs cannot be used for such cases,

(Fig. 14). Various expressions for the value of the
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maximum stress developed have been deduced. For
the case when there are longitudinal and transverse

stresses due to the interior pressure Lame* gives the

formula for the maximum tensile stress developed, which

comes on the inner surface of the pipe, where r\ is the

internal radius and r2 is the external radius,

f = QW + n2
)

'

Calvarino* gives tor the same case,

f=

Birnie* gives the formula for thick guns when no longi-

tudinal stress is developed,

Any of these formulas may be used to investigate or

design thick pipes or guns.

29. CYLINDERS UNDER EXTERIOR PRESSURE. Recent

experiments on the collapse of tubes under exterior

pressure indicate that for a length of tube greater than

six times its diameter the rupturing pressure is indepen-
dent of the length. The formulas deduced by Carman
and Carr in the University of Illinois Engineering Exper-
iment Station Bulletin No. 5 are as follows: for thin

tubes where -. is less than 0.025,

And for thick tubes or ^ greater than 0.03,

Q-K'-C. (2)

* See "Strength of Materials," by A. Morley.
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In these formulas / is the thickness of the walls, d is the

outside diameter, Q is the external pressure in pounds
per square inch causing collapse, and K, K', and C are

experimental constants. Table 10 gives the values of

these constants.

TABLE 10

VALUES OP K, K'.AND C FOR PIPES UNDER EXTERIOR PRESSURE

EXAMPLES

1. What internal pressure will probably rupture a cast iroh

pipe 8 inches in diameter and inch thick ?

@4 = 20,000 X J,

Q = 1250 Ib. per sq. in.

2. If a steel rail of sectional area 8.8 square inches is subjected

to a drop in temperature of 50 Fahr. and is prevented from

shortening, what is the force exerted upon it if the initial force

was zero?

The unit-stress developed is

.0000065 X 50 X 30.000,000 = 9750 Ib. per sq. in. in tension.

The total force is 8.8 X 9750 = 85,800 Ib.
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PROBLEMS
1. What is the maximum tensile unit-stress in a pipe 24 inches

in diameter, the plate being f inch thick, and the internal pressure

80 pounds per square inch? Ans. 2560 Ib. per sq. in.

2. What internal pressure will rupture a 1 2-inch steel pipe

| inch thick? Ans. 3750 Ib. per sq. in.

3. What should be the thickness of the lower plates of a steel

stand-pipe 20 feet in diameter carrying a water pressure of 80

pounds per square inch? Use a unit-stress of 16,000 pounds per

square inch and the efficiency of the joint 75 per cent.

Ans. About 0.8 in.

4. What stress is developed in a spherical steam dome 10 inches

in diameter, \ inch thick, under a steam pressure of 120 pounds

per square inch ?

5. What external pressure will cause a 2-inch cold-drawn steel

tube | inch thick to collapse ?

6. What internal pressure will burst a wrought iron cylinder

of 48 inches inside diameter and f inch thickness?

7. Determine the thickness of a wrought iron steam pipe 18

inches inside diameter to resist a pressure of 200 pounds per square
inch with an allowable stress of 6000 pounds per square inch.

8. What should be the minimum thickness of a cast iron

sphere 12 inches inside diameter to withstand safely a steady
internal pressure of 200 pounds per square inch ?

9. What internal pressure will burst a cast iron sphere 24 inches

inside diameter and ^ inch thick?

10. A short wrought iron bar i inches in sectional area has

its ends fixed immovably between two walls with no stress when
the temperature is 50 Fahr. What pressure will be exerted on
the walls when the temperature is 1 20 Fahr. ?

11. Steel railroad rails, each 30 feet long, are laid at a temper-
ature of 40 Fahr. What space must be left between them in

order that their ends shall just meet when the temperature is

100 Fahr. ? If the rails had been laid with their ends in contact,
what would be the unit-stress in them at 100 Fahr. ?

12. A wrought iron tie rod 20 feet in length and 2 inches in

diameter is screwed up to a tension of 10,000 pounds in order to

tie together two walls of a building. Find the stress in the rod
when the temperature falls 30 Fahr, Also when it rises 20 Fahr.



CHAPTER IV

RIVETED JOINTS

30. RIVETED JOINTS. In pipes, tanks, and boilers

made of rolled plates, the plates are usually connected

by rivets, and stress is transmitted from one plate to

the other through the rivets. Such joints may be called

boiler, tank, or pipe joints. Connections of bridge

members, and connections between the members of

roof trusses, columns, beams, etc., are also made by
means of rivets. Such joints may be called structural

joints. Wherever pieces of metal are connected by
rivets the design should give the most efficient and

economical connection consistent with the given con-

ditions. A joint will fail at its weakest part, and the

most efficient design will have all parts of the joint of

equal strength.

Although the actual stresses developed in a riveted

joint may be complex, the usual method is to simplify

the calculation by assuming conditions giving direct

tensile, compressive, and shearing stresses. As such

the stresses are easily computed. The treatment of

boiler joints and of structural joints is essentially the

same.

31. KINDS OF RIVETED JOINTS. Riveted joints may
also be classified according to the method of connecting

the plates and the number of rows of rivets used. In

Fig. 15 are shown two styles of lap joints; the main

plates overlap each other and are connected by the

32
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rivets. Fig. 15 (a) and (b) represent a single riveted

lap joint, and (c) and (d) represent a lap joint with

two rows of rivets, with the rivets staggered. Fig. 18

shows two styles of butt joint; the edges of the main

plate almost or wholly butt against each other, and the

connection is made through cover plates. F.ig. 18 (b)

shows a butt joint with a single cover plate, and Fig. 1 8

.p

pH

(C)

(6)

FIG. 15.

(c) shows one with a double cover plate. There are other

styles of riveted joints, but the general method of treat-

ment is the same for all kinds.

32. METHODS OF FAILURE OF RIVETED JOINTS. The
three principal ways in which riveted joints may fail

are (i) (for tension loads) by tension in the plates along

AB, Fig. 15; (2) by crushing of the rivets along CD or

EF\ (3) by shear of the rivets along ED. Besides these,

failure may occur, (4), by shearing of the plate along GH
and //; (5) by bending of the rivets; (6) by bending
of the plates, thus allowing the rivet heads to shear off

or the rivets to fail in tension
; (7) by failure of the plate
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in tension along KL and MN for staggered rivets.

Failure by shear in the plates, number (4), is avoided

by making the lap GH large enough to insure safety.

A rule sometimes followed is to make the lap one and

one-half times the diameter of the rivet. Bending of

the rivets, and of the plates, numbers (5) and (6), may
occur in a single- riveted lap joint. Failure number (7)

(6) (d)

FIG. 16.

is avoided by making the distance between the rows of

rivets large enough so that KL + MN is somewhat

greater than QR.

Fig. 1 6 indicates the various ways in which a riveted

joint may fail.

(a) shows a failure due to tensile stress in the plate.

shows a failure due to bearing stress in the rivet.

shows a failure due to shearing stress in the rivet.

shows a failure due to the shearing stress in the

plate between the edge of the plate and the rivet

hole.

(e) shows a failure by tension along a staggered line.

(b)

(c)

(d)

33. COMPUTATION OF UNIT-STRESSES DEVELOPED
IN RIVETED JOINTS. The calculation of the unit- stresses

developed in a riveted joint is made by assuming that

the stress is uniformly distributed over the particular

area which is in tension, compression, or shear, and
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p
hence that the unit- stress is / = -r

,
where P is the totalA

load coming on the area A which resists tension, compres-

sion, or shear. In order to determine the tensile stress

developed, the area of the section subjected to tension

should be obtained. To determine the compressive or

bearing stress, the area subjected to bearing should be

found. For bearing it is assumed that the stress on

one rivet is uniformly distributed over an area equal
to that obtained by multiplying the thickness of the

plate by the diameter of the rivet. This area is the

projection of the rivet on the thickness of the plate.

If the entire stress transmitted by a rivet is taken by
a section of the rivet at one face of the plate the rivet

is said to be in single shear, and the resisting area is

equal to the cross-sectional area of the rivet. If the

stress transmitted is taken by sections at two faces of

a plate the rivet is said to be in double shear, and the

resisting area is equal to twice the cross-sectional area

of the rivet. The method of calculating the stresses

will be given for a few cases.

34. SINGLE-RIVETED LAP JOINT. Let Fig. 17 repre-

sent a single-riveted lap joint in which the load P is

to be transmitted from one plate to the other by n

rivets in one row. The load must be transmitted by
tension through the plate past the row of rivets. The

greatest tensile unit-stress developed will come along
the section AB. Let ft be the tensile unit-stress de-

veloped, t the thickness of the plate, d r

the diameter

of the rivet hole, and b the width of the plate. Then
the smallest area in tension taking the load is t (b nd'),

p
and the unit-stress is ft

=
. ,-, JTV
/ (b nd)

and P=ftt(b-nd'). (i)
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The load brings compression on the side of the rivet

as shown in Fig. 17 (b). If d is the diameter of the

rivet, the total area upon which the load is assumed to

be distributed in compression or bearing is ntd, and the

p
bearing unit-stress developed is /.

=
-?

and P = fcntd. (2)

The load tends to shear the rivets along the plane CD
between the two plates. If fa is the shearing unit-

D

(a) (6) (c*

FIG. 17.

stress, and A the sectional area of each rivet, the total

resisting area in shear is nA, and the shearing unit-

p
stress is fa

= j
and P=fsnA. (3)

By use of the three formulas just developed the unit-

stresses existing in a single- riveted lap joint under a

given load can be calculated, or the load a given joint

will carry can be determined, or a joint can be designed

to carry a given load. If the plates connected are of

different thickness the smaller value of t should be used

in the formulas.

35. DOUBLE-RIVETED LAP JOINT. The equations

representing the relation between the load transmitted
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and the unit-stress developed for a double- riveted lap

joint are similar to those given for the lap joint with a

single row of rivets.

For this case let n be the number of rivets in one row,

and HI the total number of rivets, then the formulas

become

P=ftt(b-nd') 9 (i')

P=fenitd, (2')

P = f8n 1A. (3')

(a)

(b)

(c)

FIG. 18.

36. LAP JOINT WITH MORE THAN Two Rows OF
RIVETS. If there are more than two rows of rivets the

assumption is generally made that the load is distributed

evenly among the rivets, and the load each rivet carries

is obtained by dividing the total load by the number
of rivets carrying the load. With the same nomen-
clature as in the last article the same formulas hold for



38 RIVETED JOINTS [CHAP. IV

this case (n would usually be the number of rivets in

the outside row).

37. BUTT JOINT. Fig. 18 (b) shows a butt joint with
a single cover plate, for which kind of joint the formulas

of Art. 34 may be applied, if n refers to the number of

rivets on one side of the seam. The similarity between
this joint and a lap joint is readily seen by considering
the cover plate with one side of the main plate.

For a butt joint with two cover plates, using the same
nomenclature as in Art. 35, the formulas become

P = ftt(b-nd'), (i")

P = fcn ld, (2"}

P = fsnl2 A. (3")

Two sections of each rivet are brought into shear.

38. COMPRESSION LOADS FOR RIVETED JOINTS. For

the foregoing analyses the loads have been considered

in tension. If the member is a compression member
the formulas for shear and for compression in the rivets

will remain unchanged; the formula for compression in

the rivet need not ordinarily be considered.

39. EFFICIENCY OF RIVETED JOINTS. The efficiency

of a riveted joint is the ratio of the strength of the joint

to the strength of the unpunched plate. In figuring
the strength working stresses are usually used in the

formulas to determine the load P. When a joint is de-

signed, its strength under tension in the plate calculated

by formulas (i) Art. 34, 35, and 37, the bearing strength
of the rivets calculated by formulas (2), and the shearing

strength of the rivets calculated by formulas (3) should

be obtained and the smallest value of the load P taken

as the strength of the joint; for if a greater load is put
on the joint one of the safe stresses would be exceeded.
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This value divided by the working strength of the un-

punched plate is the efficiency.

In boiler lap joints, for the pitch p, which is the

distance from center to center of adjacent rivets in

one row, the strength of the unpunched plate is fttp.

Therefore, the efficiency for tension is

p-d') = p-d'
fttp

_

P
_

The efficiency for compression in the rivets is

fcntd = fcnd

UP ftp

'

And the efficiency for shear in the rivets is

=

'

_f.nA
*'
~
UP

The actual efficiency of the joint is the smallest one of

the above values. Similar expressions for the various

other types of riveted joints may be deduced.

Table II gives the range of values for efficiency for

the types of boiler joints listed for ordinary design.

TABLE ii

EFFICIENCY OF JOINTS

Triple- riveted joints are frequently used and high effi-

ciencies are obtained.

40. DESIGN OF RIVETED JOINTS. For use with ordi-

nary thickness of plates in structural work f-inch and

f-inch rivets are the prevailing sizes. For light work
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^-inch and f-inch rivets are used. In specially heavy
sections larger rivets are used, ij-inch rivets being

occasionally used.

The pitch of the rivets to be used in a design depends

upon the kind of joint used and the purpose of the joint.

For tanks and boilers the joint must be tight as well as

strong; therefore the spacing should be small. For

structural members strength is the main object to be

accomplished.
The diameter of the rivet hole is somewhat larger than

the diameter of the rivet. In boiler joints the diameter

of the rivet hole is usually assumed equal to or TV inch

larger than that of the rivet, and in structural joints it

is assumed f inch larger.

The ideal joint for strength and economy would be

the one that would be of equal strength in tension in

the plate, bearing in the rivets, and shear in the rivets.

For this to be the case the three values of the allowable

resisting stresses as calculated by the three formulas,

Art. 34, 35, and 37, would be the same; therefore, for

single-riveted lap joints,

ftt(b-nd') = fentd,'
and

fcntd =fsnA,
and

ftt(b-nd') = fsnA.

Similar equations can be written for the other types of

riveted joints. *
In practice it is not usually necessary or practicable

to make such ideal joints, and the resulting efficiency

will be somewhat less than that of the ideal joint.

Limitations of the size of rivet, conditions for tight-

ness of joints, convenience for shop work, and many
other items may prevent making joints of equal strength
in tension, bearing, and shear, and small variations from
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the ideal conditions will not materially decrease the

efficiency.

For the design of boiler, tank, or pipe joints the follow-

ing procedure is a convenient one and is recommended.

(a) Decide upon the working stresses for tension,

shear, and bearing, and calculate f, :ft , a.ndfc :ft .

(b) Select the type of joint to suit the conditions.

(c) In the first calculations assume the efficiency,

calculate the necessary thickness, and then select a

commercial thickness of plate.

(d) Determine the limiting size of rivet for shear

or bearing. The general limiting size for any style

of joint may well be expressed in terms of the thick-

ness of the plate. For example, for fa 'ft
= 2:3 and

fc'-ft
=

3'- 2 in the design of riveted lap joints any
diameter of rivet less than 2.87 / will not involve a

question of bearing strength. Also in ordinary butt

joints having double cover plates, the bearing strength

of the rivet will not need consideration if the diameter

of the rivet does not exceed 1 .43 t.

(e) Select a working size of rivet within this limit.

(f) With / and d determined calculate the pitch by
equating the strength in tension and the strength in

shear or bearing, using shear or bearing according to

which controls the strength for the type of joint used.

Only in special or unusual types of joints will tension

and shear govern.

(g) Calculate the efficiency of the joint and the stresses

in the rivets and plate to see that the working stresses

are not exceeded.

Practice is not uniform in regard to the values of the

allowable unit-stresses to be used in design. The

following values may be used in solving problems in

this course: /, equals 8000 pounds per square inch,

ft equals 12,000 pounds per square inch, and fc equals
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18,000 pounds per square inch. The resulting ratios

are ~ = ~ = - The assumption made for the bearing
Jt Jc 3

area of the rivets is only approximate and experiments
show high values for the ultimate crushing strength

figured on that basis
; therefore a high value for the crush-

ing unit-stress can be assumed.

EXAMPLES

i. Select two channels for the lower chord of a truss in which

the maximum stress is 49,300 pounds in tension. Also determine

the number of f-inch rivets, if |-inch gusset plates are used, for the

connection. Use ft
= 15,000 pounds per square inch,/c

= 18,000

pounds per square inch, and / = 8000 pounds per square inch.

The net sectional area required is

A t
=

49,300-:- 15,000 =
3. 29 square inches.

By use of a hand book, the section is found first.

Try two 2-inch by 2-inch by ^-inch angles.

The gross area is

A g
= 2 X 1.75 = 3.5 square inches.

By counting the diameter of the hole -inch larger than that of

the rivet, the effective tension area will be reduced by the amount

Ai= 2 X f X \ = .875 square inch.

The effective area then would be

A e
= A g Ai = 3.500

-
.875

= 2.625 square inches.

This is too small. Try two 3^-inch by 3-inch by A-inch angles.

A g
= 2 X 1.94 = 3.88 square inches.

Ai = 2XjiXr5 =
.547 square inch.

The effective area then is

A e
= A g

- Ai = 3.88
-

.55
= 3.33 square inches.

This is a little in excess of the required area; therefore use two

3 1-inch by 3-inch by A-inch angles.

To determine the number of rivets necessary for bearing, the
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required bearing area is A c
= = 2.74 square inches. The

18,000

greatest bearing stress will be developed between the gusset plate

and the rivet, since the thickness of the two angles is greater than

that of the gusset plate. The bearing area for one rivet is

dt = f X f = .281 square inch.

Therefore, the number of rivets required for bearing is

2.74nc
= ~ = 10 rivets.

.281

To determine the number of rivets necessary for shear, the

required area for shear is

A 8
- = 6.16 square inches.
8000

Each rivet is in double shear and the total area of each rivet in

shear is

2 A = 2 X .442 = .884 square inch.

Therefore, the number of rivets required for shear is

6.16
n8 = - =

7 rivets.

.004

Since bearing requires 10 rivets that number must be used.

The shearing stress then is below the allowable.

2. Calculate the unit-stresses developed in a triple-riveted lap

joint of a boiler 4 feet in diameter carrying no pounds per square
inch pressure, if the pitch is 3 inches, the thickness of the plate

% inch, and the diameter of the rivets f inch. What is the effi-

ciency of the joint ?

The load transmitted through the three rivets in the pitch

length of 3 inches is

D QDp no X48 X 3P = - - = 7920 pounds.

The tension area carrying the load is found by assuming the diam-

eter of the rivet hole the same as that of the rivet.

*./<= = - = 7040 pounds per square inch.
At 1.125



44 RIVETED JOINTS [CHAP. IV

The bearing area is

Ac = 3/d = 3X^Xf = 1.125 square inches.

.*. fc
= -zi- = 7040 pounds per square inch.

The shearing area is

A 8
= 3 X .442 = 1.326 square inches.

.*. fs
= =5970 pounds per square inch.

1.326

By using for the allowable unit-stresses /.
= 8000 pounds per

square inch, ft
= 12,000 pounds per square inch, and/c

= 18,000

pounds per square inch, the efficiency of the joint can be calculated.

The load the unpunched plate would carry in the pitch length is

P = 12,000 X I X 3 = 18,000 pounds.

The load the punched plate will safely carry in the pitch length is

Pt 12,000 X 1.125 = I3.5oo pounds.

The load the rivets will carry in compression is

Pb = 18,000 X 1.125 = 20,250 pounds.

The load the rivets will carry in shear is

Pa
= 8000 X 1.326 = 10,600 pounds.

The allowable load will be the least of these three values, which is

10,600 pounds, and the efficiency is

10,600= ea
= - - = 59 per cent.

10,000

The efficiencies for tension and bearing are higher. A larger

rivet would give a higher efficiency.

PROBLEMS
i. A column bracket consists of a 6-inch X 6-inch X f-inch

angle, and is riveted to the column, which is a 1 2-inch, 30-pound

channel, whose thickness is 0.513 inch. It carries a load of

20,000 pounds and is riveted to the column with 5 rivets I inch
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in diameter. Determine the unit-stresses developed in bearing

and shear.

2. If two plates 4 inches wide and f inch thick are connected

by four f-inch rivets in two rows, what load will the joint safely

carry ?

3. Determine the required number of rivets for a joint to

carry 20,000 pounds, using -inch plates. What is the efficiency

of the joint ?

4. Determine the required number of rivets for a joint to carry

25,000 pounds, using f-inch plates. What is the efficiency of the

joint ?

5. Design an angle bracket to be riveted to a column which

consists of two 1 2-inch, 3o-pound channels latticed together with

the channel flanges extending outwards. The bracket is to

support one end of a simple beam which carries a total uniform

load of 60,000 pounds. Use rivets | inch in diameter. Neglect

bending in outstanding leg of the bracket angle.

6. Design a splice to connect two plates 10 inches wide and

f inch thick which are subjected to a tension of 78,000 pounds.

Use two splice plates and rivets which are | inch in diameter.

7. Select two angles to carry a tension load of 24,500 pounds
and determine the number of rivets necessary if f-inch gusset

plates are used. Use the allowable stresses given in example i.

Ans. 2 2 in. X 2 in. X A in. A n =
5.

8. Two f-inch plates are connected by three f-inch rivets.

What tension load will the joint safely carry ? If two of the rivets

are in one row what should be the width of the plates?

Ans. 10,600 Ib. 4.1 in.

9. In a butt joint with a double cover plate the main plates are

| inch thick and the cover plates are each ^ inch thick. Design
the joint to take a lension load of 20 tons. If the load is in com-

pression how will the design be changed ?

10. In a boiler 60 inches in diameter carrying steam pressure

at 120 pounds per square inch the plate is inch thick, the rivets

are inch in diameter and the pitch is 2\ inches. The joint

is a double-riveted lap joint. What are the tensile, shearing, and

the compressive unit-stresses coming in the joint? What is the

efficiency of the joint ?
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11. Determine the efficiency of a double-riveted lap joint

where / = ^ inch, p = 3^ inches, and the diameter of the rivet

is ^| inch.

12. Determine the efficiency of a single-riveted, two-strap

butt joint, if t = f inch, p = 2 inches, and the diameter of the

rivet is $ inch.

13. Determine the pitch for a double-riveted, two-strap butt

joint in which t = \ inch, and the diameter of the rivets is \\ inch,

so that the strength of the joint against tearing the plates between

the rivet holes shall equal the compressive strength of the rivets.

What is the efficiency of this joint?

14. Find the thickness of plates for a boiler shell 8 feet in

diameter to carry a pressure of 160 pounds per square inch, if

the efficiency of the joint is 80 per cent, and the stress in the plates

is 5 tons per square inch.

15. Determine the efficiency of a single-riveted lap joint if

t = \ inch, d = | inch, and p = 2& inches.

16. Calculate the efficiency of a double-riveted lap joint if

/ =^ inch, d = i inch, and p = 3 f inches.

17. Determine the pitch for a single-riveted, two-strap butt

joint in which / = f inch and d = i^ inches, so that the strength

of the joints against tearing the plates between the rivet holes

shall equal the compressive strength of the rivets. Determine

also the efficiency of the joint.

18. Design a double-riveted, two-strap butt joint for ^-inch

plates and find its efficiency.



CHAPTER V

BEAMS

EXTERNAL FLEXURAL FORCES

41. DEFINITIONS. Flexure occurs in a member when
the load has a component normal to the axis of the

member which causes the member to bend. A beam is

a bar subjected to flexure. Usually the applied forces

are normal to the axis of the beam, as when a horizontal

bar resting on supports at its ends sustains vertical loads

along its length. However, the term is also applicable

when the direction of the applied forces is not at right

angles to the axis. The loads on a beam cause it to

bend and thus produce internal stresses which resist

the bending. These stresses are called flexural stresses.

The curve assumed by the axis of the beam under load

is the elastic curve. The following treatment considers

the beam to be horizontal and the loads vertical, but

with slight modifications it may be adapted to beams
in any position and with loads in any direction. The
-XT-axis will be taken to coincide with the axis of the

beam before bending. The F-axis will be taken at right

angles to the X-axis through the left support or left end.

A cantilever beam is one which has one end free

and the other end fixed in such a manner that the tan-

gent to the elastic curve at the fixed end remains hori-

zontal. The elastic curve and the beam itself may be

spoken of as being horizontal at the fixed end.

A simple beam is one which rests upon two end

supports.

47
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An overhanging beam has one or both of its supports,

away from the ends of the beam.
A continuous beam is one that rests, on more than two-

supports.

The end of a beam is said to be fixed if it is restrained

in such a manner that the elastic curve remains hori-

zontal when the load is applied. It follows from the

FIG. 19. Concentrated load.

definitions above that a cantilever beam has one sup-

port, a simple beam has two supports, and a continuous

beam has more than two supports.

42. METHODS OF LOADING BEAMS. According to the

distribution of the loads, a beam may carry concentrated,

uniform, and nonuniform or varying loads. When the

load is transmitted to the beam through a comparatively
small area it is said to be concentrated. Fig. 19 shows

a concentrated load at the center of the span. If the

load is distributed evenly over the beam it is a uniform
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load. Fig, 20 shows a load that Is practically uniform.

If the load is distributed over the beam and is not of

the same intensity throughout, it is said to be non-

uniform or varying.

According to the method of application, loads are

said to be dead or live loads. A dead load is one that

the member always supports, such as its weight or

FIG. 20. Uniform load.

(Loaned by the Leonard Construction Company, Chicago.)

loads due to the weight of other portions of the struc-

ture of which the member is a part. Live loads are

those that come upon the member temporarily, such

as a train passing over a bridge, a crowd of people
assembled in an auditorium, or machinery or a stock of

goods. The loads shown in Fig. 19 and 20 are live loads.

43. FORCES ACTING ON A BEAM AS A WHOLE. The
external forces acting on a beam are in equilibrium.
The loads supported by the beam are usually known.
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The forces supporting the beam the reactions may
not be known at the start, but when possible should

be determined before making other calculations. The
loads and the reactions of the supports form a system
of parallel forces. From theoretical mechanics the con-

ditions of equilibrium for such a system are that there

shall be no resultant force and no resultant moment.
These conditions are expressed in two equations:

2^ =
0, (i)

S M = o. (2)

These formulas are used in determining the reactions.

ILLUSTRATIVE EXAMPLE

Let it be required to determine the reactions on a beam 8 feet

long, carrying a uniform load of 4000 pounds and a concentrated

load of 6000 pounds 3 feet from the left support. (See Fig. 21.)

6000*

-3-

4000*

-8'-

FlG. 21.

Let Ri be the reaction of the left support and R* the reaction

of the right support, then

S F = Ri + R* 4000 6000 =
o,

Ri + Rz = 10,000 pounds,
2Ma = Rz X 8 - 4000 X 4 - 6000 X 3 =

o,

R 2
= 34000 = 4250 pounds, and

Ri = 10,000 4250 = 5750 pounds.

As a check take moments about the right reaction,

2Mb
= 6000 X 5 + 4000 X 4 - Ri X 8 =

o,

Ki = 5750 pounds.

The line of action of the distributed load is taken through its

center of gravity.
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44. FORCES ACTING ON A PORTION OF A BEAM.

INTERNAL STRESSES. In Fig. 22 is shown a beam with

its loads. An effect of loading the beam is to produce

internal stresses in the beam at all sections. To study

the nature of these stresses imagine the beam to be cut

along the vertical section AB. Then in order that

equilibrium in the left portion of the beam be main-

tained with the external loads and reactions acting

upon it, forces such as Vi, Hi, and Hz must be supplied.

It is evident that before the section was cut internal

stresses must have existed at this section, which acted

upon the left portion of the beam. For present purposes
these stresses may be considered to be replaced by
Vi, HI, and Hz which will later be found to be the

resultants of the internal stresses. All the forces shown
in Fig. 22 (b) are external with respect to the left por-

tion, but when the whole beam is considered, FI, Hi,
and H2 are replaced by internal stresses. The reaction

and the loads on the left portion of the beam tend to
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cause motion upward (or downward) and rotation in

the clockwise direction about an axis in the section.

Both of these tendencies are counteracted by the internal

stresses at this section, or by their resultants, FI, HI,
and H2 . The right portion of the beam could be treated

in a similar manner, but the direction of FI, HI, and
H2 would be opposite to that shown for the left portion,

and the magnitude would be the same.

The system of forces acting to one side of the sec-

tion of the beam is coplanar, nonparallel, nonconcurrent.

The equations of equilibrium are,

2 Fy
=

o, (i)

2/^ =
0, (2)

2 M = o. (3)

To satisfy equation (i) the vertical resisting force FI

in Fig. 22 (b) must act downward (or upward). To

satisfy equation (2) HI must equal H2 . And to satisfy

equation (3) the resisting forces must produce an anti-

clockwise moment, hence there must be compression in

the top fibers of the simple beam shown. In other

cases, as in a cantilever beam, tension may exist in the

top and compression in the bottom of the beam.

45. VERTICAL SHEAR. From Art. 44 it is seen that

the external forces to the left of the section tend to cause

the left portion of the beam to slip upward (or downward)

past the portion on the right. Whenever this is the

case vertical shear is said to exist at the section. Ver-

tical shear is the force that tends to move the left por-

tion of a beam past the right portion or to cut the beam

along a vertical plane. The magnitude of this force is

measured by the summation of the vertical forces acting

on the beam to the left of the section. (The vertical

forces acting on the beam to the right of the section

could be used as well.)



ART. 47] VERTICAL SHEAR 53

(i)

-1-

If V represents the vertical shear at a section the

distance x from the left support,

in which 2 RL represents the sum of all the reactions

to the left of the section, and 2 WL is the sum of all

the loads to the left of the section. The magnitude
of V is equal to that of the resultant of all the external

forces acting on the left portion of the beam.

46. SIGN AND UNIT OF VERTICAL SHEAR. The sign

of the vertical shear depends upon the relative values of

the reactions and the loads to the left of the section. If

2 RL is the greater, the

IA 1sign is plus, in which

case the left portion

tends to slip in the

upward or positive di-

rection past the right

portion. The unit of

vertical shear is the

same as that used for

force, and is usually the

pound.

47. THE VALUES OF
THE VERTICAL SHEAR
AT THE SECTION AB,
DISTANT & FROM THE
LEFT END OR ORIGIN

FOR CANTILEVER AND
SIMPLE BEAMS, (i)

For a cantilever beam
with a concentrated

load W at the end (Fig.

23 (i)),

(2)

FIG. 23.
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(2) For a cantilever beam with a uniform load of

w pounds per inch of length (Fig. 23 (2)),

V = wx.

(3) For a simple beam with a concentrated load W
in the center of the span (Fig. 23 (3)),

WV = to the left of the center
2

or V = to the right of the center.

(4) For a simple beam with a uniform load of w pounds

per inch of length (Fig. 23 (4)),

T7 l

V = wx.
2

ILLUSTRATIVE EXAMPLES

1. If a cantilever beam of 8-ft. span carries a load of 500 pounds
at the free end, the value of the vertical shear at any section is

500 pounds. The left reaction is zero and the load to the left

is 500 pounds; therefore V = o 500 = 500 pounds.

2. For a simple beam of lo-ft. span carrying a uniform load

of 6000 pounds, the left reaction is 3000 pounds. If x is ex-

pressed in inches w = 6000 -f- 120 = 50 pounds per inch and the

expression for the vertical shear is

V = 3000 50 x.

By substituting values of x in this equation we obtain values of

the vertical shear for the sections considered; thus at 25 inches,

V = 3000 1250 = 1750 pounds. At the distance 6 feet or

72 inches from the left support the vertical shear is

V ="3000 3600 = 600 pounds.

48. LOAD AND SHEAR DIAGRAMS. It is convenient

and useful to indicate the value of the load and the shear

at all points along the beam by means of vertical dis-

tances measured from a horizontal axis. These verti-
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cal distances are called ordinates. With the length of

the beam and the loading known, the axis OX, Fig. 24,

can be drawn to scale to represent the length of the

beam. Thus, if the beam is 12 feet or 144 inches long,

and, if it is convenient to make the axis OX 3 inches

long, the scale of the length would be I inch equals

48 inches. From the axis in Fig. 24 at any point A a

FIG. 24.

length AB can be erected perpendicular to OX to repre-

sent the intensity of load at that point. If the load

at that point is 240 pounds per foot of length or 20 pounds

per inch of length, the ordinate AB can be made I inch,

in which case I inch would represent a load of 100 pounds

per inch. In the same way the value of the intensity

of load at all other points along the beam can be repre-

sented by ordinates. The continuous curve connecting
the ends of these ordinates is called the load curve,

and the whole figure the load diagram, because the inten-

sities of the load are shown at every point along the

beam. The locations of the concentrated loads are

indicated by arrows. Positive values are measured to

the right of and up from the origin 0, negative to the

left of and down from the origin O. Loads act down
and consequently are negative.

Knowing the loading, the reactions can be calculated

and the values of the vertical shear can be obtained

for all sections along the beam by the formula

V =
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By a procedure similar to that used in making the load

diagram the values of the vertical shear at all points

along the length of the beam can be indicated by ordi-

nates from a reference axis OX. Thus, Fig. 25 is the

shear diagram for the

loading shown in Fig.

24. In the shear dia-

gram the distance from

the axis OX to the

curve at any point A'

shows the value A'B'

of the shearing force

for that section of the

FIG. 25.
beam.

(a)

49. RELATION BETWEEN THE LOAD AND THE SHEAR.

For distributed loads there is a definite relation between

the load and the shear.

To deduce this relation

let Fig. 26 (a) be the

load diagram and Fig. 26

(b) the shear diagram
for a given case. Let u

be a small length (called

an element of length)

measured along the OX
axis, and let w be the

average load per unit of

length over this portion.

Let x be the distance

from the left support or

origin, and V the verti- FlG - 26 -

cal shear at the left end of the element of length. The
load over this length is wu, and is equal to the small

shaded area in the load diagram. Then the difference
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in the vertical shear at the two sides of the small length
is

v = wu.

50. THE RATE OF CHANGE OF THE VERTICAL SHEAR.
The rate at which the vertical shear changes is equal to

the amount of change divided by the length in which

the change is made, and is

wu = w.

u may be taken so small that A C in Fig. 26 (b) approaches
a straight line. When u is made indefinitely small AC
coincides with the tangent to the shear curve. It is

also seen that -
equals tan ACB, which represents the

slope of the shear curve at the given section when u is

indefinitely small, w is the intensity of the load at

that section. Therefore, the rate of change of the

vertical shear at any sec-

tion of abeam equals the R

intensity of the load at

that section. It is also

represented by the slope

of the shear curve at

that section.

51. RELATION BE-
TWEEN THE LOAD AND
SHEAR DIAGRAMS. The
relation given in Art. 49
affords a convenient

graphical method of de-

termining the change in

the vertical shear between any two sections AB and CD
of a beam, Fig. 27. Divide the length AC into several

FIG. 27.
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small lengths. Then v\ equals area ABn, vz equals area

1 122, va equals area 2233, etc. The total change v
r

be-

tween the two sections is the summation of all the w's

between them. This summation is equal to the area

under the load curve between the sections, which is the

total load between the two sections. Therefore, the

change in the vertical shear between any two sections

of a beam equals the area under the load curve between
the two sections. (Distributed loads.)

52. BENDING MOMENT. Moment of a force is the

product of the force and the perpendicular distance

from the line of action of

the force to the origin of

moments. The moment
measures the tendency of

the force to cause the ob-

ject acted upon by the

force to turn about an axis
FIG. 28. ,, 1^1 r

through the origin of mo-
ments. Fig. 28 indicates a force F acting upon an ob-

ject which it tends to turn about the point 0. The
moment in this case is Fa where a is the perpendicular
distance from the origin to the line of action of the force.

For a section of a beam the bending moment is the sum
of the moments of all external forces acting on the beam
to one side of the section about an axis in the section. A
result of a bending moment is a tendency to cause the

portion of the beam considered to rotate about an axis

in the section. In determining the bending moment,
the portion of the beam to the right or the one to the

left of the section may be used with the same results.

It is the common convention to use the left portion of

the beam and this convention will be followed in this

book. The bending moment at any section then is equal
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to the summation of the moments of all the forces acting

upon the beam to the left of the section about an axis

in the section. Since

the external forces are T1 Y2

^
Y3 Y4

made up of the reac-

tions and loads, the

bending moment M -

equals the moments R
i

of the reactions minus

the moments of the

loads to the left of the section, or expressed in a formula

(see Fig. 29), M = 2RLX- 2W(x-p),
in which %RLX is the summation of the moments of

the reactions, and 2W (x p) is the summation of the

moments of the loads to the left of the section.

53. SIGN AND UNIT OF BENDING MOMENT. When
there is compression in the top fibers of the beam at a

section the bending moment is positive at the section;

when there is tension in the top fibers the sign of the

bending moment is negative. The radius of curvature

of the elastic curve is positive for a positive bending
moment and negative for a negative bending moment.
The sign 'of the bending moment due to a force is posi-

tive when the force itself would produce compression
in the top fibers. Hence in all cases the bending
moment of a reaction is positive, and that of a load is

negative. The unit in which the bending moment
is measured will depend upon the units of force and

length employed. The pound-inch* is in most common
use for beams and will be employed here.

* The term "
inch-pound," which is also used for the unit of moment,

does not make a distinction between the unit of work and the unit of

moment.
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Ar,_WRrir

IB

(i)

-I-

54. THE VALUES OF THE BENDING MOMENT AT
THE SECTION AB, DISTANT a? FROM THE LEFT END
OR ORIGIN FOR CANTILEVER AND SIMPLE BEAMS.

(1) Cantilever beam,
concentrated load W at

the end

M = -Wx.
Left reaction is zero

(Fig. 30 (i)).

(2) Cantilever beam,

uniformly distributed

load of w pounds per

inch

ir X ^M = wx- = w
2 2

The left reaction is zero.

The load to the left of

the section is wx and its(2)

W

arm is
-

(Fig. 30 (2)).

(3) Simple beam, con-

centrated load Wat center.

W
The left reaction is

2

x for the left half,
2

(3)

FIG. 30.

M =

and

=
Wl Wx
2 2

for the right half (Fig.

30(3)).
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(4) Simple beam, uni-

form load of w pounds

per inch.

The left reaction is
2

,, wl xM = x wx -
2 2

_ wlx wx2

2 2

The load to the left of the

section is wx and its arm

is (Fig. 30 (4)).

M

FIG. 30.

ILLUSTRATIVE EXAMPLES

1. For a cantilever beam of g-it. span carrying a load of 2000

pounds at the free end the bending moment at the section distant

x from the free end is M = 2000 x. If x is 50 inches, M =
2000 X 50 = 100,000 Ib.-in.

2. For a simple beam of 2o-ft. span with a concentrated load

of 10,000 pounds at the center the left reaction is 5000 pounds
and the bending moment at 8 feet or 96 inches is

M ge
= 5000 X 96 = 480,000 Ib.-in.

At] 16 feet the bending moment is

Mm = 5o X 192 10,000 X 72 = 240,000 Ib.-in.

3. For a simple beam of i2-ft. span carrying a uniform load of

100 pounds per inch Rt = 7200 pounds and the bending moment
at the center is

IPO X 72 X 72M 72
= 7200 X 72

- - - = 259,200 Ib.-in.

55. BENDING-MOMENT DIAGRAMS. The bending-
moment diagram shows the value of the bending mo-
ment at all points along the beam. Fig. 31 (d) is

such a diagram. OX represents to scale the length of

the beam, and the ordinate M represents the bending
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moment at the section AB. The values of the bending
moment may be calculated by the formula

A C

B 6
(d)

FIG. 31.

or by the method of the

following article.

56. RELATION BE-
TWEEN THE VERTICAL
SHEAR AND THE BEND-
ING MOMENT. At a

section distant x from

the left support the

bending moment is M,
and at a section distant

x + u it is M + m, where

u is an element of length

along the OX- axis and

m is the difference in the

bending moment at the

two sections . In the free-

body diagram of the

element of length of the

beam between the two

sections shown in Fig.

31 (a) M is the bending
moment of the external

forces to the left of the

section AB. This mo-

ment is transferred to

the element of the beam, and the bending moment trans-

ferred from this element to the right portion is M + m.

The increase m is due to the external forces acting on the

small portion of the beam. The external forces with

respect to this portion acting upon it are V the vertical

shear at the left, wu the weight, where w is the weight
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per unit of length, and V + v the vertical shear at the

right, as shown in the diagram. Taking moments about

an axis in the section CD, there results

u uz

M + m = M -\-Vu wu- = M + Vu w ;

m = Vu w
2

u may be taken so small that the load over this elemen-

tary length may be considered uniform. From Fig. 31

(c) it is seen that Vu is the area of the rectangle EFHI
u2

and w is that of the triangle EGI.

Therefore, m = EFHI EGI, which is equal to the area

between the axis and the shear curve. If the sections

are taken far apart the distance between the two sec-

tions should be divided into a large number of elementary

lengths, and the total change in the bending moment
will equal the summation of all the elementary changes.
This leads to the conclusion that the change in the bend-

ing moment between two sections equals the area under

the shear curve between the two sections. Having
the vertical shear diagram drawn and knowing the value

of the bending moment for any section of the beam,
that for any other section may be obtained by getting
the area under the shear curve between the two sections

and adding it to the known moment. Areas above the

axis are positive and those below are negative.

57. THE RATE OF CHANGE OF THE BENDING MOMENT.
From the equation for the change of the bending moment

u?
between two sections, m = Vu w the expression

for the rate at which the bending moment changes at

any section may be deduced by allowing u to become
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so small that the two sections AB and CD will be con-

secutive ; then w is so small compared to Vu that it

may be considered equal to zero. Therefore the rate

of change is

m _ Vu _
w u

That is, the rate of change of the bending moment at

any section equals the vertical shear at that section.

58. THE MAXIMUM VERTICAL SHEAR AND BENDING
MOMENT. The greatest shearing stress will be at the

section for which the vertical shear is the greatest and

the greatest tensile and compressive moment stresses will

be where the bending moment is the greatest. In any
kind of beam the greatest shear occurs just to one side

of a support. Because beams usually fail at the sec-

tion of maximum bending moment, that section is

called the danger section. From the relation existing

between the shear area and

the bending moment there

is found a simple method
of locating the danger sec-

tion. By Art. 56 the area

under the shear curve be-

tween two sections repre-

sents the change in the

bending moment between

those two sections. As we

go along the beam the

(d) bending moment increases

FlG as long as the shear area

is positive, and when the

area becomes negative the moment grows less (Fig. 32).

Shear area above the axis is positive and that below is
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negative, the sign of the shear changing where the shear

curve crosses the axis. Therefore, the maximum bending
moment in a beam occurs where the shear curve crosses

the axis, i.e., where the vertical shear is zero. This

point may be obtained by plotting the shear curve. It

may also be obtained from the equation of the vertical

shear for the portion of the beam in which the shear

passes through zero, by equating]V to zero and solving

for x. Note that the equation representing V must be

for the portion of the beam in which the shear actually

does pass through zero. Whenever the shear passes

through zero at a concentrated load, the maximum bend-

ing moment will be under that load.

Since the bending moment is zero at both supports of a

simple beam the shear area above the axis is equal to that

below the axis.

59. LOAD, SHEAR, AND MOMENT DIAGRAMS FOR
CANTILEVER AND SIMPLE BEAMS. MAXIMUM SHEAR
AND MOMENT. For all

cases let x be the dis-

tance from the origin

to the section AB con-

sidered, W the total

load on the beam, / the

span, Vm the maximum
shear, and Mm the max-

imum moment.

(i) For a cantilever

beam with a load at ol

the end (Fig. 33),

M = -Wx.
The area in shear dia-

gram is negative and
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equals Wx. The maximum moment occurs at the

wall and equals the entire area in the shear diagram
which is

Mm = - Wl.

(2) For a cantilever beam with a uniform load

(Fig. 34) . The load per unit of length is

W

F =
-y*, Vm =-W,

which comes at the wall.

t

_ r2 __Wtf
2

s ' T 2"

This is equal to the shear area to the left of the section.
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The maximum moment comes at the wall and equals

the entire area under the shear curve and is

2 2

(3) For a simple beam with a concentrated load at the

center of the span (Fig. 35) ,

w

V=to the left of the load,

WV = to the right of the load,



68 BEAMS EXTERNAL FLEXURAL FORCES [CHAP. V

Vm =
w

wM = x to the left of the load

W w/ l \x- W(x
-

-j
= ^-

x)

to the right of the load. The shear passes through zero

under the load; therefore the maximum moment occurs

at the center of the beam.

The area under the shear

curve to the left of the

center is

W l = Wl
22 4

'

,, WlMm ='
4

(4) For a simple beam
with a uniform load (Fig.

x 36), the load per unit of

W
length is w = =-

= wl = W
2 2

wl W W
V = wx = j-Xj

2 2 I

v -
m

2

The average ordinate in

the shear area to the sec-

tion at the distance x from the left end is

wl wl_ wx_
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therefore the area under the curve to the section equals
wlx wx2

M
2 2

wlx wx2 Wx
2 2 2 2 /

The shear passes through zero at the center of the span ;

therefore the maximum moment occurs at that section

and equals the shear area to the left of the center.

.m~222~8 8

(5) For a simple beam with a concentrated load at

JM
FIG. 37.

any point distant kl from the left support, in which k

is less than i (Fig. 37),

Ri= W(i -k),
V = W(i -

k) to the left of load,

V = - Wk to the right of load,

M = W(i -
k) x to the left of load,

M= W(i - k)x -W(x-kl)
= Wk(l- x) to the right of load.
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The shear passes through zero under the load. The area

to the load is

(6) A uniform and a concentrated load on a simple
beam (Fig. 38). For cases of this kind the shear will be

a maximum at one of

the supports and will

pass through zero under

the concentrated load or

between that load and
the center of the beam.

The point at which it

passes through zero de-

x pends on the ratio of

the loads and the posi-

tion of the concentrated

load. The shear curve

should be plotted to

obtain that point, then

the area under that

curve above the axis

calculated for the maxi-

mum bending moment.

(7) For several concentrated loads the maximum
shear occurs at one of the reactions and it passes through
zero at one of the loads (Fig. 39). The point of zero

shear may be obtained by plotting the shear curve.

Then the maximum moment may be obtained by cal-

culating the area in the shear diagram above the axis.

(8) For the case of several concentrated loads and a

uniform load the shear may pass through zero at one

of the concentrated loads or between any two of them,

the position of zero shear depending upon the rela-

tive values of the loads and their positions (Fig. 40).
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LJ 1

(a)

(b)

(c)

FIG. 39.

r r
W vf/in.

(a)

(6)

(c)

FIG. 40.
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The shear diagram should be plotted to locate the section

of zero shear. To find the exact location when the sec-

tion of zero shear falls between two loads the shear

formula for a section between these two loads may be

equated _to zero and the corresponding value of x deter-

mined. Then the moment equation applied for that

point will give the value of the maximum moment, or

the area in the shear diagram above the axis may be

obtained for the maximum moment.

(9) For the case of a beam overhanging one or both

supports the general principles hold (Fig. 41). The

w,

(a)

(6)

|W3

IR,

maximum shear generally is not equal to a reaction, but

it may be obtained by the application of the general

equation for shear. It will come just to one side of a

support. The shear passes through zero at the supports,

and also between them, consequently the maximum
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bending moment may occur at any one of the three

points. The moment must be obtained for all three and

the greatest one taken for the maximum.

60. RELATIVE STRENGTHOF CANTILEVERAND SIMPLE
BEAMS. The shearing unit-stresses developed in a

beam are directly proportional to the vertical shear,

and the unit-stresses resisting the bending moment are

directly proportional to the bending moment; therefore

the shearing strength of a certain type of beam is in-

versely proportional to the maximum vertical shear

developed in that type, and the strength to resist bend-

ing is inversely proportional to the maximum bending
moment developed. Table 12 gives the values of the

maximum vertical shear and the maximum bending mo-

ment, and the relative strengths in shear and bending
for simple and cantilever beams.

TABLE 12

RELATIVE STRENGTHS IN SHEAR AND BENDING
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ILLUSTRATIVE EXAMPLES

Calculate the maximum bending moment developed in a beam
of 1 2-f t. span carrying a load of 800 pounds, (a) when used as a

cantilever with the load concentrated at the end; (b) if the load

is uniformly distributed on the cantilever; (c) when used as a

simple beam with the load concentrated at the center; (d) if the

load is uniformly distributed over the simple beam.

(a) Mm = 800 X 12 X 12 = 115,200 Ib.-in. at the wall.

(b) Mm = 8o x I2 x I2 = - 57,600 Ib.-in. at the wall.

(c) Mm = 8 X I2 X *- = 28,800 Ib.-in. at the center.
4

(d) Mm = 8 XI2 XI2 =

61. MOVING CONCENTRATED LOADS ON A BEAM.
When several concentrated loads pass over a beam the

beam must be strong enough to take the greatest shear

and the greatest bending moment caused by the loads.

Hence it is necessary to determine the maximum shear

and moment developed by the system of loads. The

greatest vertical shear will be developed at the- support
when one of the loads is very near it.

The greatest bending moment will occur under one

of the loads, since the moment curve for any position

of the loads consists of a series of straight lines. For

simple beams, when one of the loads is over a support
the bending moment under that load will be zero. As

the system of loads passes over the beam the bending
moment under each load will increase from zero, when
at the support, to a maximum value when it is at some

point between the supports, and then decrease to zero

at the other support. Let us determine the position

of the system of loads that will give the maximum bend-

ing moment under a particular load, as, for example,
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Wz in Fig. 42. Let R be the resultant of all the loads

and its line of action be at the distance x from load W%

w2 w3 ! w4 w5

FIG. 42.

and xi from the right support. Let the load be at the

distance x from the left support; then

Rxi
RI =

j- and xi = I x x.

The moment under the load then is

i o= -rXl --T X --TXXIII
By algebra it can be shown* that the value of x to

give the greatest value of a function of the form

ax2 + bx -\- c is

By substituting in this formula for x,

R n-
(I
-

x) . _

x =
2 T

2 x = I x or transposing x,

x = I x x =
Xi.

This shows that the position of one of a system of

moving concentrated loads, when the greatest bending
moment occurs under that load, is such that its distance

from the left support is
tl^e

same as the distance of the

center of gravity of all the loads from the right support.
* See "Higher Algebra," by John F. Downey, page 245.
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In order to obtain the maximum bending moment

produced by the system of moving loads the maximum
should be determined for each load and the highest
value taken.

ILLUSTRATIVE EXAMPLE

Let it be required to obtain the maximum bending moment

produced in a beam of 21 -ft. span by a system of three moving
loads of 4 tons, 2 tons, and 3 tons spaced 3 feet and 4 feet apart

respectively. (Fig. 43.)

The resultant is 9 tons. Its line of action with respect to the

loads may be obtained by taking moments about any load. The

4T 2T 3T

-21- i
FIG. 43.

line of action of the resultant passes through the 2-ton load.

For the maximum moment coming under the 4-ton load its

distance from the left end must be the same as the distance of

the resultant of the three loads from the right end. x for this

load is 3 feet; therefore, the distance of the load from the left

support is x = - = 9 feet. Placing the loads in this

position, obtaining the left reaction by taking moments about the

right support, and using the resultant instead of each load sepa-

rately, there results

Ri = X 9 X 2000 = 7710 pounds.

The moment under this load is

Mi = 7710X9X12 = 833,000 pound-inches.

The maximum moment will come under the 2-ton load when

it is at the center of the beam, since x for this load is zero; then

R! =4.5 X 2000 = 9000 pounds.

Mz= (9000 X io| - 8000 X 3) 12 = 846,000 Ib.-in.
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For the 3-ton load x = 4 feet,

T 2
.Ri = X 9 X 2000 = 10,710 pounds.

21.0

M3
= (10,710 X 12.5 8000 X 7 4000 X 4)12 = 744,000 Ib.-in.

The maximum moment for this system of loads then is devel-

oped under the 2-ton load and is 846,000 pound-inches.

EXAMPLES

i. Given a simple beam, i5-ft. span, with a load varying

uniformly from zero at the left end to 1000 pounds per lineal

foot at the right end, and a concentrated load of 9000 pounds
6 feet from the left end. Determine the reactions. (See Fig, 44.)

FIG. 44-

The average distributed load is (o + 1000) -r- 2 = 500 pounds

per foot. The total distributed load is 500 X 15 = 7500 pounds.
The center of gravity of this load is f X 15 = 10 feet from the

left support. Taking moments about the right support,

2 MB = 9000 X 9+ 7500 X 5
- R! X 15 =

o,

9000 X 9 + 7500 X ^
.'. Ri = - - = 7900 pounds.

Taking the summation of the forces to obtain R 2 ,

2 F = 7900 + R2
- 9000- 7500 = o; /. R 2

= 8600 pounds.
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For checking on R-2 take moments about Ri,

2 MA = RzX 15 9000 x 6 - 7500 x 10 = o;

D 0000X6 7500X10 ,
/. R 2

= - - = 8600 pounds.

2. Calculate the shear and bending moment at sections 2 feet

apart and draw the shear and moment diagrams for a simple
beam of i4-ft. span with a uniform load of 14,000 pounds and

a concentrated load of 7000 pounds 5 feet from left support.

RI = r
7
? X 14,000 + T\ X 7000 = 7000 + 45oo = 11,500 pounds.

R 2 21,000 11,500 = 9500 pounds.

Check R 2
= T? X 14,000 + t\ X 7000 = 9500 pounds.

From the definition V = R! - 2 WL,

V = 11,500 o = 11,500 pounds.

F 2
= 11,500 2000 = 9500 pounds.

F4
= 11,500 4000 = 7500 pounds.

F5

' = 11,500 5000 = 6500 pounds.

F6
" = 11,500 5000 7000 = 500 pounds.

V6
= 11,500 6000 7000 = 1500 pounds.

The values at the other sections were obtained in the same way.
The shear just to the left of the concentrated load is different from

that just to the right; consequently the shear at both sections must

be calculated.

The bending moment is obtained by taking the moment of

the reaction about an axis in the section and subtracting from it

the moment of the loads to the left of the section about the same

axis.

M =
O,

M 2
= 1 1, 500 X 24 2000 X 12 = 252,000 pound-inches,

M4
= 1 1, 500 X 48 4000 X 24 = 456,000 pound-inches,

Af6
= 1 1, 500 X 60 5000 X 30 = 540,000 pound-inches,

M6
= 1 1,500 X 72 6000X36 7000X12 = 528,000 pound-inches.

The bending moments at the other sections were obtained in

the same way. The shear passes through zero at 5 feet from the

left support; therefore the maximum moment occurs at that

point.
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In Fig. 45 are drawn the load, shear, and moment diagrams for

this beam.

3. In Example No. 2 obtain the bending moment at sections

5 feet and 8 feet from the left support by use of the shear diagram.

FIG. 45-

Let the first section be taken under the load; then the base of

the trapezoid is 5 X 12 = 60 inches; the average ordinate is

(11,500 + 6500)
-*- 2 = 9000 pounds. The area under the curve is

9000 X 60 = 540,000 pound-inches = M 6 . At 8 feet the negative

area must be taken from the positive. As obtained above, the

positive area is 540,000 pound-inches. The base of the negative area

is 3 X 12 = 36 inches. The average ordinate is ( 500 3500)

-T- 2 = 2000 pounds, therefore, the area is 36 X ( 2000) =

72,000 pound-inches.

M$= 540,000 72,000
= 468,000 pound-inches.
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PROBLEMS

1. A simple beam of i2-ft. span carries a uniform load of

6000 pounds, a concentrated load of 3000 pounds 4 feet from the

left support, and one of 6000 pounds 9 feet from the left support.

Calculate the reactions. Ans. RI = 6500 Ib.

2. A 24-ft. beam overhangs the right support 4 feet. It

carries a uniform load of 900 pounds per foot of length in addition

to a concentrated load of 10,000 pounds 9 feet from the left sup-

port and one of 4000 pounds at the right end. Determine the

reactions.

3. Calculate the vertical shear at points 2 feet apart for the

beams in Problems No. i and 2. Plot the shear diagrams.

4. Calculate the bending moment at points 2 feet apart for

the beams in Problems No. i and 2. Plot the moment diagrams.

5. If a simple rectangular timber beam of i4-ft. span and

depth 12 inches carries a uniform load of 1000 pounds per foot

and is cut in two 4 feet from the left support, what vertical force,

and what two_horizontal forces, if 8 inches apart, must act on the

left portion of the beam at the cut section in order to replace the

stresses acting between the two portions before the beam was cut ?

Ans. V = 3000 Ib. H = 30,000 Ib.

For the following beams locate the danger section, calculate max-

imum bending moment, and draw the load, shear, and moment dia-

grams. Determine the bending moment by getting the area in the

shear diagram.

6. A i5-ft. simple beam having a uniform load of 400 pounds

per foot and concentrated loads of 6000 pounds and 5000 pounds
at 5 feet and 8 feet respectively from the left support.

7. A 2o-ft. simple beam having concentrated loads of 2000

pounds, 4000 pounds, and 3000 pounds at 4 feet, 6 feet, and 12

feet respectively from the left support.

8. Simple beam of 2o-ft. span carrying a uniform load of

120 pounds per foot and concentrated loads of 400 pounds, 600

pounds, and 600 pounds at 4 feet, 6 feet, and 16 feet respectively

from the left support.

9. Cantilever beam of 8-ft. span with a load of 10,000 pounds

at the end. Ans. Mm = 960,000 Ib.-in.
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10. Cantilever beam of zo-ft. span with a uniform load of

15,000 pounds. Ans. Mm = 900,000 Ib.-in.

11. Simple beam of i2-ft. span with a concentrated load of

9000 pounds at the middle. Ans. Mm = 324,000 Ib.-in.

12. Simple beam of i5-ft. span with a uniform load of

15,000 pounds. Ans. Mm = 337,500 Ib.-in.

13. Simple beam of i4-ft. span with a concentrated load of

12,000 pounds 4 feet from left support.

14. Simple beam of 40-ft. span with a uniform load of 20 tons,

concentrated load of 100 tons at the center.

15. Simple beam of i6-ft. span with a uniform load of

32,000 pounds, and a concentrated load of 16,000 pounds at

4 feet from left support. Ans. Mm = 1,200,000 Ib.-in.

1 6. Simple beam of i8-ft. span with a concentrated load of

9000 pounds 4 feet from left support, one of 7000 pounds 8

feet from left support, one of 12,000 pounds 13 feet from left

support.

17. Simple beam of i2-ft. span with a uniform load of 18,000

pounds, two equal concentrated loads of 10,000 pounds each at the

one-third points.

1 8. Overhanging beam 18 feet long overhanging the left

support 4 feet, with a uniform load of 1500 pounds per foot.

19. Simple beam, same as in Problem No. 14, with an additional

load of 5000 pounds at the center of the beam.

20. A simple beam of 2o-ft. span weighing 12 pounds per

lineal foot, with a load of 240 pounds 5 feet from the left end.

21. A simple beam of 20-ft. span with concentrated loads of

2000 pounds 4 feet from the left end, and 1000 pounds 18 feet from

the left end, and also a uniform load of 100 pounds per lineal

foot.

22. An overhanging beam 12 feet long overhanging the right

end 2 feet carrying a uniform load of 2000 pounds per foot on

entire beam.

23. An overhanging beam 13 feet long overhanging the right

support 3 feet, carrying a uniform load of 1000 pounds per foot

between supports, and a uniform load of 500 pounds per foot on

the overhanging end.
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24. Two loads each of 3000 pounds, 5 feet apart, roll over a

simple beam of 15 -ft. span. Find the position of these loads

for the maximum bending moment and find its value.

Ans. 6| ft. from left support.

25. Two wagon wheels, 8 feet apart, roll over a simple beam of

24-ft. span. If the load on each wheel is 2000 pounds, find their

position for the maximum bending moment and determine its

value. Ans. Mm = 200,000 Ib.-in.

26. Compute the maximum bending moment due to two loads

of 1000 pounds each and 5 feet apart rolling over a 25-ft. simple

span.

27. Determine the maximum bending moment produced in

a beam of 24-ft. span by a system of three rolling loads of weight

10,000 pounds, 5000 pounds, and 12,000 pounds if the distance

between the first and second is 6 feet and the distance between

the second and third is 5 feet.



CHAPTER VI

BEAMS INTERNAL FLEXURAL STRESSES

62. FORCES AND STRESSES. In Chapter V the ex-

ternal forces acting on beams were considered. These

external forces tend to cause the beam to rupture, and

that tendency is resisted by the internal stresses set up
in the beam. The nature, distribution, and magnitude
of these stresses will be considered in this chapter.

(a)

FIG. 46.

The vertical shear tends to rupture the beam along a

vertical plane by causing one portion to slip past the

other. To illustrate this effect imagine a beam built

up of several blocks glued together as indicated in

Fig. 46 (a). If the glue becomes soft and sticky, the

inner portions will slide down past the others. Or
otherwise stated the outer portions will slide up past
the inner portions. The magnitude of the tendency of

83
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one portion to slip past the one to the right is measured

by the vertical shear at the plane between the two por-
tions. This vertical shear is resisted by internal resisting

stresses acting vertically at the section considered.

The bending moment at a section tends to cause the

end of the beam to rotate about an axis in that section.

Thus, at the section between the portions A and B of

the beam in Fig. 47 the external forces tend to cause A

FIG. 47

to rotate clockwise about an axis in the plane between

the two portions. The magnitude of this tendency is

measured by the bending moment at the section. This

is resisted by the moment of the internal stresses which

act on the section considered.

In the common theory of flexure the internal resist-

ing stresses are divided into their vertical and hori-

zontal components. The vertical components resist the

vertical shear and the moment of the horizontal com-

ponents resist the bending moment.

63. RESISTING SHEAR. THE SHEAR FORMULA. As

already defined the vertical shear V at a section is the

algebraic sum of the external forces acting on the por-

tion of the beam to the left of the section; and this ver-

tical shear is resisted by the stresses in the fibers between

the two portions of the beam. This stress, which re-

sists the vertical shear, represented in Fig. 48 by V,
is called the resisting shear. If the maximum shearing

unit-stress in the cross section is s the average value

will be ks, where k is a constant depending upon the
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shape of the cross section, and if A is the area of the

cross section the resisting shear equals ksA. Therefore,

since equilibrium exists, the vertical shear equals the

resisting shear and the shear formula is

V=ksA. (i)

w, w w,

LI"

FIG. 48.

64. THE VALUE OF & IN THE SHEAR FORMULA. As
shown in Chapter XIII, the intensity of the shearing

unit-stress is not the same at all points of the cross

section. The maximum stress from the shear formula

V
IS S =

kA

3 V
For a rectangular beam s = -

-j ,

2 ^T.

and & = -

For a circular beam i =
3l'

and
4

For I-beams and built-up sections it is approximately
assumed that the maximum stress is equal to that

obtained by dividing the shear by the area of the web;
then the maximum stress is-

y
s = -r

, where A\ is the area of the web.
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If k for this case is desired it is equal to -j . The assump-
A.

tion is only approximately correct but the values are near

enough the true ones to be used in design.

65. RESISTING MOMENT. If a beam were cut

through at a section, as at AB, Fig. 49, and the same
external forces were to continue to act on the left por-

tion, besides a vertical resisting shear ksA, forces equal
to the horizontal forces, as Hc and Ht ,

should be supplied
to produce equilibrium. These forces are the hori-

r r r

FIG. 49.

zontal components of the internal stresses acting on

the given section of the beam and make up the hori-

zontal resisting forces which produce the resisting

moment.

66. ASSUMPTIONS FOR THE RESISTING MOMENT.
The moment formula to be derived is for beams made
of materials that, have the same modulus of elasticity in

tension and compression. The formula is true only
for stresses less than the elastic limit of the material.

It is assumed that a transverse plane section of the beam

before bending remains a plane section after bending.

From these assumptions the nature, distribution, and

magnitude of the stresses producing Hc and Ht may be

found.
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67. DISTRIBUTION OF THE FIBER STRESSES. Two
sections of the beam, as AB and CD in Fig. 50 (a),

parallel before the beam is bent, assume positions shown

in Fig. 50 (&) after bending occurs. All fibers of the

beam, except those along the surface OX, will be length-

ened or shortened, thus having stresses developed in

them. The surface OX along which no tensile or com-

pressive stresses are developed is the neutral surface.

Its intersection // with a transverse section is the

(a)

'Fie. 50.

neutral axis. Since the modulus of elasticity E is

considered constant, all other fibers will have a stress

proportional to their deformation. Take the fiber EF
at a distance y from the neutral surface. Draw C'D'

parallel to AB in Fig. 50 (b) ; then ey represents the de-

formation of that fiber in the length EF after bending.
The deformation ey divided by the length EF gives the

unit deformation. If this be multiplied by the modulus
of elasticity of the material the result will give the

unit-stress fy coming on the fiber. The direction of

the stress is the same as that of the deformation which
is along the line EF and acts normal to the section.
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Since the greatest deformation occurs in the fiber

farthest from the neutral axis the greatest stress will

be in that fiber.

It is seen that the deformation of a fiber is propor-

tional to its distance from the neutral surface, conse-

quently the stress is proportional to the distance of the

fiber from the neutral axis. The ratio of the maximum
unit-stress in compression to the maximum unit-stress

in tension is the same as the ratio of the distance of the

most remote fiber in compression from the neutral axis

to the distance of the most remote fiber in tension

from the neutral axis, hence

jrl:

where fe and ft are the maximum stresses in compression

and tension, and cc and c t are the distances from the

neutral axis to the most remote fibers in compression

and tension respectively.

Fig. 51 (a) shows a free-body diagram of the left

portion of a beam, in which the resisting stresses in

tension and compression are indicated in intensity by
the length of the vectors representing them. Fig. 51 (b)

is an end view of the section, in which the stresses acting

normal to the section (also normal to the plane of the

paper) are indicated by crosses for compression and by
circles and dots for tension. The intensity of the stress

is indicated by the weight of the lines.

68. POSITION OF THE NEUTRAL SURFACE AND THE
NEUTRAL AXIS. Let Fig. 51 (a) represent a portion of

a beam under load and Fig. 51 (b) represent the cross

section. Let the maximum fiber stress developed be /,

which comes on the fiber most remote from the neutral

axis //. Call the distance of this fiber from the neutral
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axis c, then the unit- stress developed on a fiber at the

distance y is -/, and the total stress acting upon the

small area a is ^/a. The sum of the horizontal stresses

T
2I /CSA^

iff

RI

X I

X*
xxxvx

O O O
00

RI

FIG. 51.

acting upon the entire cross section is equal to the alge-

braic sum of all stresses on the elements of areas. Since

these are the only horizontal forces acting upon the left

portion of the beam this sum is equal to zero.

y = o.

2 ay is the moment of the area with respect to the

neutral axis and y is the distance of the centroid of

the cross section from the neutral axis. Therefore, the

neutral surface passes through the centroid of the cross

section of a beam.
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69. THE MOMENT FORMULA. In Fig. 51 let c be

the distance of the most remote fiber from the neutral

axis, / the tensile or compressive unit-stress developed
on that fiber. The unit-stress on a fiber at a distance y
from the neutral axis is

,
*-**

The total stress coming on a small area a is a -/. The

moment of this stress about the neutral axis is

a^-fy = -ay*.
c
j '

c

To get the moment of all the stresses developed in the

section all such expressions must be summed up, giving

the resisting moment equal to

2^a/ or i^ay*.
c c

The expression 2 ay* is called the moment of inertia of

the cross section for the neutral axis and is denoted by /.

(See Appendix A.) By substituting / for 2 ay* the re-

sisting moment becomes and as equilibrium exists

the bending moment M equals the resisting moment i* .

therefore, -,.

M = }
-j-

(2)

In the moment formula / is the maximum tensile or

compressive unit-stress existing in the section for

which the bending moment is M. This stress is developed
in the fiber most remote from the neutral axis, which

is at the distance c from that axis. A stress obtained

by the use of the moment formula is called a fiber stress.

The quantity
-
depends upon the size and shape of the

c

cross section of the beam and is called the section factor

or the section modulus.
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70. UNITS. The unit of / depends upon those of M
and - If M be in ton-inches, / is in tons per square

inch. If M is in pound-inches, / is in pounds per square
inch. The unit of 5 depends upon those of V and A.

The units used will be pounds per square inch for stresses,

pounds for loads, square inches for areas, pound-inches
for moments, (inches)

4 for moments of inertia, (inches)
3

for section factors, and inches for distances.

ILLUSTRATIVE EXAMPLE

As an illustration of the application of this formula let it be

required to determine the maximum fiber stress developed at a

certain section of a beam where M = 115,200 pound-inches as

calculated by the principles of Chapter V. / = 21.8 inches4 and

c = 3 inches as calculated by the methods of Appendix A. Then

, Me 115.200 X 3
/ - - -

2i8
- = 15,850 Ib. per sq. in.

71. TOTAL HORIZONTAL COMPRESSIVE AND TENSILE
STRESSES. From Art. 68, the stress on an element of

area a at the distance y from the neutral axis is

To obtain Hc ,
which is the resultant of the compressive

stresses, a summation of the stresses on the area in com-

pression must be made. Therefore,

Hc
= -2ay,

Hc
= S

-y'A',

in which y' is the distance from the neutral axis to

the centroid of the area A' which is in compression.
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A similar expression is obtained for the resultant of the

tensile stresses which is

If the bending moment is positive the compression area

is above the neutral axis. In the formula

Hc
= y'A',

-
y' is the unit-stress on a fiber at the centroid of the area

c

A' . Therefore, the resultant of the horizontal compres-
sive stresses equals the stress on the centroid of the area

in compression multiplied by the area in compression.
There is a similar principle for tension. This principle

is general and can be applied to any portion of a cross

section of a beam when the stresses are below the

elastic limit.

The line of action of the resultant of the compressive
or of the tensile stresses is obtained by the principle of

moments for a system of forces, which is, the moment

FIG. 52.

of the resultant of a system of forces about any axis

is equal to the summation of the moments of all the

forces about the same axis. Let d
r

be the distance
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from the neutral axis to the resultant of the compressive
stresses, then (see Fig. 52),

~

y'A' G'

as Hc
=

-y'd'j and I' is the moment of inertia of the

area in compression about the neutral axis, and G' is

the moment of that area about the same axis. A
similar expression is obtained for the distance to the

center of tension.

As Hc and Ht are equal they produce a couple. The
arm between the center of compression and the center

of tension multiplied by Hc or Ht equals the resisting

moment.
T/ 7

For a rectangular beam of depth d, -^-,
= - The dis-

tance between the center of compression and the center

of tension, then, is f d.

72. THE THREE PROBLEMS. In each one of the two

fundamental beam formulas, the shear formula V= ksA,

and the moment formula M=
> there are three vari-

c /
ables: V, s, and A in the former and M, /, and- in the

G

latter. Any one of the three variables in each equation

may be determined if the other two are known. This

gives rise to three problems that may be investigated

by the use of the shear and moment formulas.

PROBLEM I. Investigation of Beams. Given a beam
with its load, to calculate the maximum unit-stresses.
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By the principles developed in Chapter V the values

of the maximum vertical shear and the bending moment

may be calculated. A and - may be determined from
c

the dimensions of the cross section of the beam, by the

methods of Appendix A. To obtain the maximum
y

shearing stress, s = -7 T- may be used, and to obtain the

,,, , Me
fiber stress,/

=
-y- may be used.

ILLUSTRATIVE EXAMPLE

Calculate the maximum shearing stress and the maximum
fiber stress developed in a longleaf pine beam of lo-ft. span,

breadth 4 inches, depth 8 inches, when carrying a concentrated

load of 12,000 pounds 4 feet from the left support.

Ri = 720 pounds, Vm = 720 pounds,

Sm =
\ (720 -T- 32) = 33. 7 pounds per square inch,

Mm = 720 X 48 = 34, 560 pound-inches,

^4X8X8X8^512.
12 3

c = 4 inches,

... f = 34,56o X 4 X 3 = glo pounds per square inch<

PROBLEM II. Safe Loads for Beams. By the use of

the shear and moment formulas, the load which a given

beam will safely carry may be obtained. M= gives
c

the value of the maximum allowable bending moment,
from which values the load may be selected. After de-

termining the load by use of the moment formula, the

beam should be investigated for the maximum shearing

stress developed by that load by use of the shear formula

V= ksA. The allowable shearing stress or bending mo-

ment as calculated should not be exceeded.
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ILLUSTRATIVE EXAMPLE

What uniform load will a lo-inch, 25-pound I-beam carry

when used as a simple beam of i6-ft. span with an allowable fiber

stress of 16,000 pounds per square inch? From Table 20 which

gives values of section factors of I-sections,
- = 24.4 inches3

.

c

The maximum allowable resisting moment is 16,000 X 24.4 = 390,400

pound-inches. The maximum bending moment for the uniformly

Wl
distributed load on a simple beam occurs at the center and is

o

W X 192- = 390,400,
o

W = 1 6, 2 70 pounds.

To get the approximate shearing stress, the area of the web is

10 X 0.31 =
3.1 square inches. /. s = (16,270 -5-2)^- 3.1

= 2630

pounds per square inch, which is safe.

PROBLEM III. The Design of Beams. The loading

of a beam and the maximum allowable stress may be

specified, to select or design a beam to carry the load

safely. The design of beams is the problem most

generally met with by the engineer and architect. It

admits of many solutions, and the designer must use his

best judgment in choosing the form and size of the cross

section to be used. The material most remote from the

neutral axis is all that is stressed to the maximum, while

that at the neutral axis has no fiber stress in it. The
material is most efficiently used when the largest pro-

portion of it is stressed nearly to the maximum stress,

and obviously this condition exists in a section having
a large part of the material well away from the neutral

axis. -Necessarily there must also be such a distribu-

tion of the material as will insure safety against shear,

buckling, and twisting. In steel I-beams there is a

large portion of the material near the outside fiber,

and yet the web is large enough to resist the shear.
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Generally, rupture is due to bending rather than to

shear, and occurs at the danger section. In the deter-

mination of the safe loads for beams and the design of

beams, the moment formula M = is the governing
c

y
formula, the shear formula 5 = T-J being used after-

ward to investigate the beam for the shearing unit-

stress. If the shearing unit-stress developed is too large

another design must be made, but this is seldom neces-

sary, except for short deep beams.

ILLUSTRATIVE EXAMPLE

Design a square loblolly pine cantilever beam for a span of 8 feet

with a concentrated load of 500 pounds at the free end. From
the table of allowable stresses (No. 8) / = 1000 pounds per square

inch. Mm = 500 X 96 = - 48,000 pound-inches. (The nega-

tive sign may be neglected, as that simply means that the stress

in the top fibers is tension.) If b is the breadth of the section,

I- = -,
c 6'

73

.*. 48,000 = 1000 X >

6

b
3 =

288,

b = 6.6 1 inches.

The maximum shearing unit-stress for this load is

s = 3jf = 3 x 5oo = lb
.

2 A 2 43.7

which is safe. While the above beam satisfies the condition of

the problem it is not a standard section and probably would be

replaced by a 6-inch by 8-inch beam, for which case the fiber

stress is

= 48,000X4X12 =
6X8X8X8

The maximum shearing stress is

s = - X^ = 15.6 lb. per sq. in.
2 48
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73. MODULUS OF RUPTURE. The moment formula

M = is not applicable to beams of material for which

the stress is not proportional to the deformation, or for

non-homogeneous beams, or for beams under stresses

greater than the elastic limit of the material. However,
it is frequently used to calculate a nominal unit-stress

developed in a beam when the bending moment is great

enough to cause failure. The unit- stress thus calculated

is called the modulus of rupture. This usually lies

between the ultimate compressive strength and the ulti-

mate tensile strength of the material. Table 13 gives

average values for the modulus of rupture.

TABLE 13

MODULUS OF RUPTURE

74. MAXIMUM STRESS DIAGRAMS. The value of the

maximum shearing unit-stress for a section can be

obtained by dividing the vertical shear for the section

by kA, the product of the sectional area and a constant

k depending upon the shape of the section. The value

of the maximum fiber stress for the section can be ob-

tained by dividing the bending moment at that section

by -, the section modulus. If the shear and moment
c

diagrams are drawn, the values of V and M may be

taken directly from the diagrams; thus, in Fig. 53 (b),

CD divided by kA (assumed constant) gives the shear-

ing unit-stress. The stress is always proportional to
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the ordinate CD. in Fig. 53 (c) is the bending

moment at the section which divided by -
gives the

maximum fiber stress, which comes in the extreme fiber

of the beam at that section. The fiber stress is pro-

(a)

portional to the ordinate of the moment curve. Thus

for a beam of uniform section the ordinates to the

vertical shear curve represent the maximum shearing

stresses, and the ordinates to the bending moment curve

represent the maximum fiber stresses existing in the

beam. Consequently the shear and moment diagrams

may be considered stress diagrams. The above reason-

ing is for beams of constant section, but with modifica-

tions similar reasoning may be applied to beams in which

the section is not uniform.



EXAM.] BEAMS INTERNAL FLEXURAL STRESSES 99

75. BEAMS OF UNIFORM STRENGTH. If a beam is

of uniform section the maximum fiber stress occurs only
in the outside fiber at the section of the greatest bending
moment. The stress varies with the bending moment

along the length of the beam. In order to have the

most efficient beam all the material in it should be

stressed to the allowable stress, and to approach this

state, besides keeping the material near the outside

surface, the cross section is sometimes made to vary
with the bending moment. This is done in plate girders

where extra cover plates are added toward the center

of the span.

EXAMPLES

i. If a 4-inch by 6-inch by o.4-inch channel is used as a simple

beam of 8-ft. span with a concentrated load of 2000 pounds
three feet from the left support, (a) what is the maximum fiber

stress developed? (b) What is the stress developed on a fiber

2 inches from the top and 2 feet from the right support?

RI = 1 2 50 pounds.

(a) The maximum moment is under the load and is

Mm = 1250X3X12= 45,000 pound-inches.

The centroid is 1.29 inches from the back (see Fig. A 6 , Appen-
dix A). Therefore

c = 4 1.29 =
2.71 inches,

A =5.28 square inches,

/ = 8.41 inches4

,

, Me 45,000 X 2.71
f =: __ = ___ = I4?soo lb per sq m>

(b) Mn = 1250 X -8 X 12 - 2000 x 3 X 12 = 18,000 Ib.-in.

y = 2.71 2 =
.71 inch.

f 18.000 X 0.71
fv

= = 1520 lb. per sq. in.
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2. What uniform load will a 4-inch by 6-inch yellow pine

timber safely carry when used as a simple beam of lo-ft. span?

w;
/ 12 bd? 1X6x6-
C
= T = T = - -

2

The allowable stress is 1000 pounds per square inch. (Table 8),

= looo X 24 = 24,000 pound-inches,
c

which is the allowable resisting moment.

The maximum bending moment is

Wl W X 10 X 12= - - = 24,000,
o o

W = 1600 pounds.

The load per lineal foot is ^ a = 160 pounds per foot. Inves-

tigating for the shearing stress, s = f X -V?
=

5 pounds per

square inch.

3. Using the results of Example No. 2, what is the total com-

pressive stress at a section 30 inches from the left end, and where is

the line of action of the resultant ?

Ri = 800 pounds.

MM = 800 X 30 - -W X 30 X 15 = 18,000 Ib.-in.

The area in compression is 12 square inches. The stress on

the centroid of this area is

, 18,000 X i.<5

fv
= - = 375 ib. per sq. in.

The total compressive stress is 12X375 = 4500 pounds.

The line of action of the resultant is I the depth from the top or

i inch from the top or 2 inches above the neutral surface.

4. Design a simple cypress timber beam to carry a uniform

load of 8000 pounds on a span of 1 2 feet.

^.w/. 8000x144.
o o
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The beam must be large enough to take this moment without

exceeding the allowable stress which is 1000 pounds per square

inch. (Table 8),

M 144,000 . , , 7_ = _ _ = IAA inches3 = -

/ 1000 C

An indefinite number of cross sections will satisfy this, but the

one chosen should be economical and suited for the purpose. It

must be wide enough to prevent lateral bending. If 6 is assumed

equal to - then

7 bd? d*- = = = 144, <f = 1728, a = 12 inches, and = 6 inches.
C O 12

The maximum shearing stress is

^ = | X 4
?i

= 83! Ib. per sq. in.,

which is safe. Other dimensions to the nearest even inch above

the actual size required are 2 inches by 18 inches; 4 inches by
16 inches; 10 inches by 10 inches; or three, 3 inches by 10 inches.

The beam 2 inches by 18 inches would be too narrow and deep
unless well braced laterally. The one 4 inches by 16 inches might
be chosen in some cases if well braced laterally. The one 10 inches

by 10 inches would not be economical unless the two inches verti-

cal distance saved would be more valuable than the extra mate-

rial in the beam of this size.

PROBLEMS

i. If a i5-inch, 42-pound I-beam carries a uniformly dis-

tributed load of 39,270 pounds on a span of 16 feet, (a) What is

the maximum shearing stress? (b) Draw the load, shear, and

moment diagrams, (c) Calculate the maximum fiber stress,

(d) What is the resultant of the horizontal compressive or tensile
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stresses at the danger section? (e) What is the rate of change
of the vertical shear at any section? (f) What is the rate of

change of the bending moment at the left support, at the quarter

point, and at the center of the span ?

Ans. (c) 16,000 Ib. per sq. in.

2. (a) What uniform load will a simple rectangular Washing-
ton fir beam of breadth 8 inches and depth 12 inches carry on a

span of 12 feet? (b) With the calculated load on the beam what

is the maximum shearing stress? (c) What is the value of the

fiber stress 4 inches from the top of the beam and 4 feet from the

right support ? (d) What is the maximum shearing stress on that

section? (e) What is the resultant of the horizontal tensile

stresses at that section? (f) Where is the line of action of the

resultant of the tensile stresses ?

3. In a table giving the safe load in pounds uniformly distributed

for rectangular beams of white pine, cedar, and spruce for each

inch in thickness the following values are given: span 10 feet,

depth 14 inches, load 1524 pounds; span 16 feet, depth 21 inches,

load 2144 pounds; span 25 feet, depth 22 inches, load 1255 pounds.

What unit-stress was allowed in compiling that table ?

Ans. 700 Ib. per sq. in.

4. With an allowable unit-stress of noo pounds per square

inch what will be the allowable uniform loads per inch thickness

of the beam for the following spans and depths? Span 8 feet,

depth 12 inches; span n feet, depth 14 inches; span 20 feet,

depth 24 inches.

5. Solve Problem No. 4 if the allowable stress is 1200 pounds

per square inch. Ans. 2376 Ib.

6. A i2-inch, 40-pound I-beam of a span of 20 feet is used to

carry a uniform load of 500 pounds per foot and a concentrated

load of 5000 pounds 4 feet from the left end. What is the maxi-

mum stress developed?

7. Compute the maximum unit-stress in a 2 X 8 inch joist

carrying loads of 240 pounds 3 feet from the left end and of

360 pounds 4 feet from the right end of a simple span of 12

feet.

8. Determine maximum fiber stress in a 6-inch by 1 2-inch

simple beam of i2-ft. span which carries a uniform load of
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100 pounds per foot and three concentrated loads of 1300 pounds,

1500 pounds, and 1000 pounds at 3 feet, 5 feet, and 8 feet respec-

tively from the left support.

9. Compute the maximum fiber stress in a 1 5-inch, 42-pound

I-beam, over a simple span of 30 feet carrying a uniform load of

500 pounds per foot and two concentrated loads of 5000 pounds
and 10,000 pounds at 3 feet and 23 feet respectively from the left

support.

io! A rectangular, cantilever timber beam of i2-ft. span,

4 inches broad, and 8 inches deep carries a uniform load of 50

pounds per lineal foot. Find the maximum fiber stress.

11. A cantilever white cedar beam of 5-ft. span has a rectan-

gular section 2 inches broad and 3 inches deep. Find the total

uniform load it can safely carry.

12. Find the uniform load per lineal foot which a wooden

cantilever beam 6 feet in length, of rectangular section 2 inches

broad and 3 inches deep, can carry with a maximum fiber stress of

800 pounds per square inch.

13. A i5-inch, 4 2-pound I-beam is carrying a total uniform

load of 30,000 pounds on a simple span of 20 feet. Compute
the intensity of stress at a point 3 inches below the top flange

face and 6 feet from the left support.

14. Determine the total amount of horizontal compressive

stress at the section of maximum bending moment in a 6-inch by
1 2-inch wooden beam carrying a uniform load of 4000 pounds per

foot on a simple span of 1 2 feet.

15. Design a cypress beam of i8-ft. span to carry a load

that varies uniformly from zero at the ends to a maximum of

1800 pounds per foot at the center.

16. Select the proper I-beam 18 feet long which overhangs
both supports 3 feet that will carry concentrated loads of 5000

pounds at the left end, 10,000 pounds at the center, and 8000

pounds at the right end.

17. Determine the maximum fiber stress at the sections indi-

cated in an 8-inch by 1 2-inch simple beam of i2-ft. span which

carries a uniform load of 800 pounds per foot: (a) 2 feet from the

supports, (b) at the quarter points, (c) at the center.

Ans, 900" pounds per square inch.
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18. A 6-inch by 1 2-inch cantilever beam of g-ft. span carries a

load of 500 pounds per foot. Calculate the fiber stress (a) 2 inches

from the top at the wall, (b) on the bottom fiber at the wall,

(c) on the top fiber at the middle. Ans. 1687 Ib. per sq. in.

19. A 2-inch by 4-inch maple tirrfber 10 feet long is to be used

as a simple beam. What central load will it safely carry (a) when

it is laid flat, and (b) when placed on edge ? What is to be learned

from the results?

20. What should be the depth of a rectangular shortleaf pine

beam of i8-ft. span and 4 inches broad to sustain a uniformly

distributed load of 1000 pounds?
21. If a 4-inch by 4-inch timber is to carry a load of 50 pounds

per foot what will be the length as a simple beam to give the

maximum fiber stress of 1200 pounds per square inch?

22. Design a simple yellow pine beam of i2-ft. span carrying

concentrated loads of i, 2, and 3 tons at distances of 3, 6, and 7

feet respectively from the left support, and a uniform load of f ton.

23. Design a rectangular cast iron cantilever beam to carry

a load of 3000 pounds at the end of a 4-ft. span.

24. A rectangular hemlock cantilever beam 8 feet long and

6 inches deep is to support a load of 200 pounds at the free end.

What should be its width if the weight of the beam is neglected?

25. A load of 500 pounds is rolled over a simple beam of

2o-ft. span. Find the position of this load for the maximum

bending moment, compute its value, and design a longleaf pine

beam to take the load.

26. A round pin carries a load of 10,000 pounds at the center.

It may be considered as a simple beam of 6-in. span. Find the

diameter of the pin if the fiber stress is not to exceed 15,000 pounds

per square inch or the shear to exceed 7500 pounds per square inch.

27. Two loads 4000 pounds and 2000 pounds 6 feet apart roll

over a simple beam 12 feet long. Find the position of the loads

for the maximum moment and determine its value. Design a

shortleaf pine beam to carry this load.

28. Four loads, 1000, 2000, 3000, and 4000 pounds and spaced

2, 3, and 5 feet respectively, roll over a simple beam of i6-ft. span.

Determine position for maximum bending moment, and deter-

mine its value. Design a loblolly pine beam to carry this load.
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The following problems are to be solved by the use of

a steel company's handbook.

Find the missing terms by several methods (loads do

not include weight of beam). /= 16,000 pounds per

square inch.

Simple Beams

Cantilever Beams



CHAPTER VII

w

STRESSES IN SUCH STRUCTURES AS CHIMNEYS,
DAMS, WALLS, AND PIERS

76. KINDS OF STRESSES. For structures that sus-

tain a side thrust and a direct weight, as chimneys,

dams, etc., there is a combination

of direct and flexural stresses.

The treatment given in this

chapter is based upon the as-

sumption that the direct and

flexural stresses act independ-

ently of each other, and that the

side thrust does not cause ap-

preciable deflection. It is also

assumed that the stress is pro-

portional to the deformation and

that the material of the struc-

ture is elastic. For bearing on

soil this assumption may be only

approximately true.

When there is no side thrust

and the vertical section is sym-

metrical, the total weight above

a horizontal section is resisted

by direct compressive stresses

on the sections and the unit-

W
stress is/ = -j (Fig. 54 (a)). A

normal force P produces flexural

106

/A Ti mmm
(a)

w
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stresses. A shearing stress

p
of s = T-T acts along the sec-

Ks\.

tion. The bending moment due

to the load increases the com-

pression on the opposite side

from the force and decreases it

on the nearer side (Fig. 54 (6)).

This lateral pressure P may be

due to the wind, water, embank-

ments, etc. It may not be

horizontal, in which case the

horizontal and vertical compon-
ents of the resultant of the

weights and lateral forces should

be taken as producing the flex-

ure! stresses and the direct

stresses respectively.

77. ECCENTRIC LOADS ON
SHORT PRISMS. Let the load

W have the eccentricity e (Fig.

55 (a)). This load may be re-

placed by its components, W,
Wi, and Wz shown in Fig. 55 (6),

Wi and Wz being taken as acting

along the axis of the prism and

equal in magnitude to W. The
two equal and opposite forces

W and W2 form a couple, the

moment of which is We. The ef-

fect of this couple is to produce a

bending or moment stress. In Fig.

55 (c) W and W2 are replaced

by the equivalent moment C.
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The stresses developed by the eccentric load W will

be the same as those produced by its components which

are the axial load W and the couple We. The stress

due to the axial load is the same at all points of the sec-

W
tional area and is

-j-
. The stress developed by the

moment of the couple may be considered as a fiber

j Me Wee , . , ,.

stress and is equal to
-y-

=
j

,
where c is the distance

of the most remote fiber from the centroidal axis of the

section, and / is the moment of inertia of the section

about that axis. If r is the radius of gyration, / = Ar2
.

Fig. 55 (d) is a free-body diagram showing the stresses

developed by the eccentric load. The maximum stress

developed is in the fiber most remote from the centroidal

axis on the side nearer the load while the minimum stress

is developed in the most remote fiber on the opposite

side. The maximum stress equals the sum of the

direct and moment stresses, and the minimum stress

equals the difference. Therefore,

W . Wee W
f*=A+ =

A
W Wee W

Then, the stress developed in the outside fiber is

78. ECCENTRICITY OF A LOAD THAT WILL PRODUCE
ZERO STRESS IN THE OUTSIDE FIBER. If the eccentric-

ity is increased /2 becomes greater and/i becomes smaller.

After a certain point is passed /i reverses if the material

will take tension. If W is a compression load, just

before the tensile stresses act, /i becomes zero. To
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obtain the eccentricity e\ that will make j\ zero, equate

/i to zero. Then

W

where e\ is the greatest eccentricity the load may have

before tension is produced on the side away from the

compression load.

For a rectangle the eccentricity to give zero stress in

the outside fiber will now be found,

/ bd* d2 d
r ~7 ~n = and c = -

,A 12 bd 12 2

#
12 _ d

** Cl = 7 "
6

'

Therefore, as long as a compression load is kept on the

middle third of a solid rectangular prism the stress over

the entire area will be compression.
For a circle,

2
64 & A d

r2 = -j;
= and c = -

>

Trfir lo 2

4

*
16 _ d

ei ~~d~s'
2

Therefore, as long as the load is kept on the middle

quarter of a solid circular prism all the stress will be

compression.
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79- THE KERN. If the line of action of the load falls

within a certain part of the cross section of a prism,

all stresses in the section will be of one kind; and if the

line of action of the load

falls outside of that area

the stresses will be partly

tension and partly com-

pression. This area is

called the kern or kernel.

In a solid circular prism
the kern is a circular area

whose diameter is one-

fourth the diameter of

the prism. And for a

rectangular prism the kern

is a diamond-shaped fig-

ure whose diagonals are

one-third the lateral di-

f

FIG. 56.

mensions of the prism. (See Fig. 56.)

80. CASE OF ECCENTRIC LOADS CAUSED BY A COM-
BINATION OF THE WEIGHT OF THE MATERIAL AND
LATERAL PRESSURE. Call the weight of the material

above the section AB being considered, W, and call

the lateral pressure on the prism above the section P,

Fig. 57- The magnitude and direction of the resultant,

R, of these two forces depend upon the forces. Its

line of action passes through the intersection of W and P
and intersects the section AB in some point C usually

not at the centroid, thus producing an eccentric load on

the section AB. The eccentricity e is DC and can be

calculated by taking moments about the centroidal axis

at D. Resolve R into its vertical and horizontal com-

ponents, Y and H, at C where it intersects the cross sec-

tion for which the stresses are to be found. (Fig. 57
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H produces a shearing unit-stress along the plane of
TT

magnitude 5 = T-T ,
and F is an eccentric load producing

the stress

f-ifr.*59

in which the plus sign is used to obtain the maximum

compressive stress, /2, and the minus sign is used to

obtain the minimum stress, /i.

81. EFFECT WHEN THE LINE OF ACTION OF THE RE-

SULTANT FALLS OUTSIDE OF THE KERN. If the result-

ant of all loads above a section of a prism under

compression falls outside the kern, the minimum stress
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1

/i
=

f I A becomes negative or tension if the material

will take tension, Fig. 58. For materials that will not
take tension, such as masonry,
the joints on the side opposite the

eccentric load will tend to open, but

failure will not necessarily follow.

If the structure is subject to water

pressure the water may get into the

cracks and produce an upward pres-

sure which tends to help overturn

the structure. In chimneys and
walls where there is no upward
pressure due to water getting into

the cracks if they do form, the

tendency for them to form is not

FIG. 58.

so objectionable. The safe

limit for the compressive
stress should not be ex-

ceeded by the maximum
stress developed.

82. THE MAXIMUM
STRESS WHEN THE LINE

OF ACTION OF THE RE-

SULTANT FALLS OUTSIDE THE MIDDLE THIRD FOR
RECTANGULAR PRISMS WHICH TAKE NO TENSION.

The stresses will be distributed as shown in Fig. 59 forming

FIG. 59.
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a wedge-shaped prismatic stress volume BCDEFG, there

being no stress on the area ABGH. The vertical com-

ponent, F, of the resultant equals the summation of the

vertical resisting stresses. The line of action of F passes

through the centroid of the prism which is ^ (CB) from CF.

If b is the breadth CF, the area over which the resisting

stress is distributed is

If d is the depth AC, and e the eccentricity, F is at the

distance e from the edge CF. The length BC is

Id \
3! e]. If / is the maximum compressive stress, the

average on the stressed area is - and the total resisting

stress is

f-KH-t-">'
(d-2e),

4Y
/ =

EXAMPLES

i. Find the maximum stress at the foot of a stone wall 20 feet

high and 4 feet thick when there is a wind pressure of 35 pounds

per square foot; also when there is a wind pressure of 45 pounds

per square foot if the masonry weighs 150 pounds per cubic foot.

Consider a portion of the wall / feet long,

Y=W= isox 20X4X/ = i2,oooX/ pounds,

H=P = 35 X 2oX/ = 7ooX/ pounds,

3 X 7 X = Ie g pounds per square inch.

2X4X 144 XJ
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The eccentricity is found by taking moments about a centroidal

axis of the base.

e = 70QOX/XIO = _7 foot< Thig
.

g ^^ middle third
1 2,000 Xl 12

, _ F Fee _ 12,000 X /
, i2,ooo/7X i2X 24X 12

~A I 48X12x2 12 X 12 /x 48X48X48
= 21 + 1 8 =

39 pounds per square inch.

For second part,

F=i2,ooox/; H=gooxl; e ==
QO Xl = -g-

12,000 12

This is outside the middle third.

3 (--) = 3 (24
~

9)
= 45 inches.

.'. A' = 45 X 1 2 X / = 540 X / square inches.

, 2 F 2X 12,000 X / . ,

/ =
j
= - = 44 pounds per square inch.

A 540 X /

2. What should be the thickness of a rectangular wall 15 feet

high to resist a wind pressure of 40 pounds per square foot with-

out any tension in the windward side, if the material weighs

140 pounds per cubic foot?

Let d be the thickness.

The weight of each lineal foot isPF=i5XiX 140 d = 2100 d

pounds.
The wind pressure for each lineal foot is# = i5XiX4o = 600

pounds,
600 X 7-5 _ 15

For zero stress e\ = -
.

6

2iood 7 d

d is Jo oo
1
=

j d = = I2 -86
6 id 7

d =
3. 59 feet.
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PROBLEMS
1. Find the maximum and minimum unit-stress in a rod

2 inches in diameter under a tension load of 16,000 pounds if it

is applied at a point | inch from the center of the cross section.

2. What are the dimensions of the kern in a rectangle 3 inches

by 8 inches? In a hollow circular chimney of inner diameter

8 feet and outer diameter 10 feet?

3. In a brick wall 20 feet high and 4 feet thick, weighing

115 pounds per cubic foot, (a) What horizontal wind pressure

will cause zero stress on the windward side of the base ? (b) With

that wind pressure what will be the maximum stress? (c) If the

wind pressure is 40 pounds per square foot what will be the max-

imum and minimum stresses? (d) With a wind pressure of

40 pounds per square foot what will be the stress on the windward

side 10 feet above the ground?

4. A square compression piece 9X9 inches carries an eccen-

tric load of 16,200 pounds so applied that the stress on one edge

equals o. Determine the application point of the resultant load.

5. What must be the thickness of a wall 25 feet high, weighing

120 pounds per cubic foot, if a maximum unit-stress of 47.2 pounds

per square inch is developed when the wind pressure is 40 pounds

per square foot? Ans. 4.5 feet.

6. Would a brick wall 30 feet high, weighing 120 pounds per

cubic foot, 3 feet thick at the top and 4 feet thick at the base,

with one side vertical, be safe if subject to a wind pressure of 40

pounds per square foot?



CHAPTER VIII

GRAPHIC INTEGRATION*

83. DEFINITIONS. In Chapter V the relations be-

tween the load, shear, and moment diagrams are given
as follows : the difference

between the ordinates at

any two sections in the

moment diagram repre-

sents the area in the

shear diagram between

the two sections, and

the difference between

the two ordinates of the

shear diagram repre-

sents the area in the load

diagram between the or-

dinates at the same sec-

x tions; thus, in Fig. 60,

LN in the moment dia-

gram represents the area

EHIG of the shear diagram, and EF in the shear dia-

gram represents the area ABCD of the load diagram.
The first integrated curve is defined as one in which the

ordinates represent the area under a given curve. Thus,
the moment curve is the first integrated curve of the shear

curve, and the shear curve is the first integrated curve

of the load curve. Since the moment curve is the

* For students who have had integral calculus and who do not intend

to follow the graphical method of determining deflections of beams, this

chapter may be omitted.

116
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first integrated curve of the first integrated curve of

the load curve, it is called the second integrated curve

of the load curve. The second integrated curve is one

in which the ordinates represent areas under the first

integrated curve. The integrated curve of the second

FIG. 61. FIRST METHOD OF GRAPHIC INTEGRATION

integrated curve is the third integrated curve. Simi-

larly, the nth integrated curve is one in which ordinates

represent the area in the (n i)th integrated curve.

The graphical method of deriving the integrated curves

from given ones will be deduced before applying them to

the theory of beams.

84. THE FIRST METHOD OF OBTAINING THE SEC-

OND INTEGRATED CURVE. In the following methods, if

the given areas are not bounded by straight lines, the



n8 GRAPHIC INTEGRATION [CHAP. VIII

greater the number of points secured on the resulting

curve, the more nearly accurate that curve will be. The
equations representing the curves will be deduced by
making the number of points secured infinite.

Let Fig. 6 1 (a) be the given curve of which it is desired

to obtain the first and second integrated curves. The

A

FIG. 61. FIRST METHOD or GRAPHIC INTEGRATION.

curve is taken below the axis making the area between

the curve and the axis negative, which corresponds to

the load curves already described. To obtain the first

integrated curve, divide the area into a number of parts

as indicated, and measure each area by any method.

Then from an arbitrarily chosen axis O'X' in (b) lay off

AB to a selected scale to represent the area AI, then lay

off CD to represent the area A^. Continue this process

for the entire area under curve (a), then connect by a
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continuous curve O'G'D' all the points thus obtained.

This is the first integrated curve. Any ordinate to

this curve as G\G' represents the total area accumulated

from the left end to the section GH.
In physical problems there is always a constant as 00'

to be added to the area under the curve. This constant,

which is called the constant of integration is the value

of the ordinate to the integrated curve at the origin.

In the usual case it can be determined by the conditions

of the problem. It frequently is zero. In the shear

curve, the constant is the vertical shear at the left sup-

port as 00' in (b). In the moment curve it is the moment
at the left support. After determining the value of

this constant, draw the axis OX which is the true axis

of reference for the integrated curve (b) ;
the true value

of the function represented in curve (b) is then H'G' at

the section GH. The area to be considered in the

integrated curve is that between the curve and the

axis OX.
To obtain the second integrated curve, divide the area

between the curve O'G'D' and the axis OX into small parts
as indicated in Fig. 61 (b), and from some chosen axis

OX in (c) erect, to some scale, the ordinate A'B' equal to

the area A\ in (6), C'D' in (c) equal to the area AZ in

(b), and so on until the entire area in (b) is covered,

then the ordinate Gi'Hi represents the accumulated area

in (b) from the origin to the section G'H'. The con-

stant of integration will depend upon the conditions of the

problem. In the illustration it is assumed to be zero.

Curve (b) is the first integrated curve of (a), and (c)

is the first integrated curve of (b) and a second integrated
curve of (a). As long as the constant can be determined,
a higher integrated curve can be obtained by the fore-

going method, the nth process giving the nth integrated

curve.
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85. THE SECOND METHOD OF OBTAINING THE SEC-
OND INTEGRATED CURVE. The method given in the

previous article cannot be employed unless the constants

can be determined independently. For cases when the

FIG. 62. SECOND METHOD OF GRAPHIC INTEGRATION.

constants cannot be determined a second method must
be combined with the first. Draw the first integrated
curve Fig. 62 (b) in the same manner as in the first

method, using the arbitrary axis O'X'. Project the
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areas AI, A Zj A s , etc., in (b) to the vertical axis X'L as

indicated. If it is desired to obtain the integrated curve

for (b) referred to any axis as 0"X"
, thereby assuming

a constant of integration 0"0', take a pole P f on that

axis a distance H from the axis X'L. H, which is called

the pole distance, is measured in the same units and

to the same scale as distances along the axis OX. Con-

nect P' to the ends of the lengths representing the areas

on the line X'L, as P'X', P'B, P'C, etc. These lines

are called rays, and the polygon P'X'L is called the ray
or vector polygon. A i is to be replaced by its compon-
ents X'P f and P'B, A 2 by its components BP' and P'C,
etc. Draw through the mean ordinate of the area AI in

(a) a vertical line of indefinite length, as A\A' . Also draw

through the mean ordinate of the area A z in (a) the

vertical line A 2B', and draw through the mean ordinate

of A 3 the line A 3 C'. Continue this process for all the

elementary areas in curve (a). From the origin 0'

in (c
1

) draw O'A' parallel to P'X' in (b), and from the

point A
'

in (c'} where the line O'A '

intersects the vertical

line through the mean ordinate of A\ in (a) draw A'B'

parallel to P'B in (b), and from the intersection, B' in

(c'} of A'B' with the vertical through the mean ordinate

of A 2 ,
draw B'C' parallel to P'C in (b). Continue this

process until the entire polygon 'A'B' E' X' is

drawn. This polygon is called the string or funicular

polygon and the lines O'A', A'B', B'C', etc., are called

strings. The ordinate measured from the horizontal

axis O'X" in curve (c
r

) represents the integrated area

of diagram (b) between the curve and the axis OffX ff

,

i.e., the ordinate of a second integrated curve of (a),

The constant 0"0' of (b) for the axis 0"X" call AS.
Take any section MN, then y in (c

r

) represents the accu-

mulated or integrated area in (b) from the origin to the

section.
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Proof: From the similar triangles P'X'X" and O'Aid
Ai

in the ray and funicular polygons respectively, =
ri

(f^). from triangles P'X'B and A'AiBi, ^ = ^L?2
;H pi

from triangles P'BC and B'BiCi, jj
= (^lCl)

;
from

triangles P'CD and C'CiDi,-=j
=

;
from triangles

ri P3

P'DE and D'DiEi, ~ = *

By clearing the above

equations of fractions, the following are obtained:

Ai'x = H (Aid), (i)

(2)

(3)

(4)

Aip* = H(DiEi). (5)

By subtracting the left members of the last four equations
from the left member of the first equation, and the

right members of the last four equations from the right

member of the first equation there results the following

equation :

Ai'x Aip i Azpz A spz A 4p4 = PI (Aid AiBi
- BiCi - CiDi - DiEi), and

Ai'x- 2Ap = Hy,

since A\d AiBi Bid C\D\ DiEi =
y.

It can be seen from curve (b) that AI'X 2 Ap equals
the algebraic sum of the area under the curve repre-

sented by the shaded portion; therefore, Hy equals the

area between the axis and the curve from the origin to

the section, and by use of a proper scale y represents

the area. Hence, (c
r

) is a first integrated curve of (b)

and is a second integrated curve of (a).



ART. 85] OBTAINING SECOND INTEGRATED CURVE 123

The greater the number of parts into which the area

under the curve is divided the more nearly the true

curve will the funicular polygon be. When the number

of parts becomes infinite the funicular polygon becomes

FIG. 62. SECOND METHOD or GRAPHIC INTEGRATION.

a smooth curve inscribed within the broken funicular

polygon shown. This smooth curve is the true inte-

grated curve and can be drawn inscribed in the broken

funicular polygon. In Fig. 62 (b), by choosing the
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pole P' on the axis 0"X" it assumes the constant of

integration equal to 0"0'
',
and if this is not the true

value, curve (c
f

) is not the true curve, and the process
so far is only tentative.

86. THE CONSTANT OF INTEGRATION. The constant

of integration in every case depends on the conditions

of the given problem, and unless it has been determined

from the given conditions of the problem, the assumed

one as 0"0', Fig. 62 (b), generally is not the true value,

but the true value can be determined by use of the

curve (c
f

). Whatever quantity is represented by the

area under curve (b) or by its equivalent, the ordinate

of the curve (c
f

), Fig. 63, there will be two points along
the X-axis at which the values of the ordinates are known
or can be determined. For beams these points will

usually be at the ends, supports, or center. When the

constant AI in Fig. 63 (b) cannot be determined from

the curves (a) and (b) curve (c') must be employed.
For the arbitrary constant A\ chosen in Fig. 63 (b)

curve (c
f

) shows a value of zero at the left end and a

negative value X"X' at the right end. This shows that

the negative area exceeded the positive area by the

amount X"X''. Suppose that the values at each end

should have been zero, the curve then should end at Xn
',

as would the moment curve for a simple beam. For

this to be the case the negative area in curve (b) must

be decreased and the positive area increased. To ac-

complish this the reference axis must be lowered, thus

making the constant larger than the value assumed, A\ .

The method of obtaining the value of the constant

that will make the positive area equal to the negative

area in (b) is to draw O'X 1

the closing line of the funic-

ular polygon in (c
f

), then draw P'X in the vector polygon

parallel to O'X 1
in the funicular polygon. Then through
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X draw the horizontal axis OX, giving XX' or 00' in

(b) the true value of the constant.

FIG. 63. To DETERMINE THE CONSTANT OF INTEGRATION.

Proof: By lowering the reference axis in (b) to OX
the positive area is increased the amount O"X"XO
which equals / multiplied by XX" . This must equal H
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multiplied by X"X' in (<;') to have the positive and

negative areas in (b) equal. From similar triangles

P'X"X in (b) and 0'X"X' in (c
r

) :

TT I

vv" ~
X'X"

The difference between the two axes O'X" and O'X'

in (c') should be added to the ordinates in the original

curve to obtain the true curve. Proof: From similar

triangles P'X"X in (b) and O'SR in (c') :

r

H(RS) is the value represented by the ordinate (RS)
in (c

r

) and x(XX") is the shaded area in (b) which is

the increase over the former value. Each ordinate now

may be increased to its true value from a horizontal

axis, or the true curve may be obtained by taking a

new pole on the axis OX in (b) . (The pole distance may
be changed if desired.) Then by using the new pole P
and proceeding by the same method used in drawing

(c'), the true integrated curye (c) is obtained. The
student should supply the proof that the ordinates in

(c) represent the area between the curve and the axis

OX in (6).

87. UNITS. The units for the ordinates of the inte-

grated curves will depend on the units used for x and y,

and the units to be used for x and y will depend on the

problem to be solved. The unit for x is the same for

all curves. The unit for the ordinates of curve (b) is

the product of the x unit and the y unit or the unit

formed by the product xy; and that for curve (c) is the

product of the unit of the 'ordinate for (b) and the x

unit, i.e., the unit formed by the product x2
y. In

problems for beams x will represent a length.
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EXAMPLES

i. By the method of graphic integration draw the shear

and the moment curves for a simple beam of i2-ft. span carry-

ing a concentrated load of 2000 pounds 9 feet from the left

support.

The shear diagram is drawn in the usual way, Fig. 64. Select-

ing the pole P with the pole distance equal to 72 inches the moment

1000*

1167*

2000*

^_
-12-

(a)

(b)

Co)

FIG. 64.

curve (c] is drawn, (p a) in (c) is parallel to (P A} in (6),

(p
-

b) in (c) is parallel to (P - B} in (6), and (
-

c) in (c)

is parallel to (P C) in (6). To get the moment at any section

as at MN measure MN, using the same ^cale as is used in draw-

ing the shearing forces, and multiply by the pole distance, in

this case 72 inches. This gives the bending moment represented

by MN equal to 66,000 pound-inches.

2. Determine the vertical shear at the left support (constant

of integration) by the graphical method for a simple beam of

i4-ft. span carrying a uniform load of 500 pounds per foot

and a concentrated load of 3500 pounds 5 feet from the left

support.
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By using the O'X'-axis in Fig. 65 (b) lay off distances as AB to

represent the area in the load diagram to the left of the section.

Lay off the concentrated load BC to the same scale in pounds.

Select any pole Pf
with a pole distance say 60 inches' and draw

(c
r

) as described in the text. Draw P'X in (b) parallel to the

closing line O'X' in (c
r

). Then draw OX horizontal giving 00'

equal to 5750 pounds which is the vertical shear at the left support.

PROBLEMS

i. By the graphical methods draw the shear and moment

diagrams for the following cases:

(a) Cantilever beam of Q-ft. span, concentrated load of 5000

pounds at the free end and one of 6000 pounds at the center.

(b) Simple beam of i6-ft. span with a total uniform load of

18,000 pounds.
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(c) Simple beam of i6-ft. span, uniform load of 1000 pounds

per foot and a concentrated load of 10,000 pounds 8 feet from the

left support.

2. By the graphical methods determine the vertical shear at

the left end for each of the following systems of loading:

(a) Simple beam of lo-ft. span with a uniform load of 400

pounds per foot and a concentrated load of 1000 pounds 3 feet

from the left support.

(b) Simple beam of 2o-ft. span, concentrated loads of 5000

pounds 7 feet, 2500 pounds 10 feet, and 10,000 pounds 15 feet

from left support.

(c) A beam 16 feet long overhanging the right support 4 feet

with a uniform load of 1 500 pounds per foot.

(d) A cantilever beam of lo-ft. span with a uniform load of

300 pounds per foot and a concentrated load of 800 pounds at the

free end.

(NOTE. The value of the moment at the free end is zero, and that

at some other point should be calculated and laid off to scale to draw

the closing line. The vertical scale for the moment curve equals the

product of the vertical scale of the shear curve multiplied by the pole

distance.)



CHAPTER IX

DEFLECTION OF BEAMS

ELASTIC CURVE

88. BENDING. The elastic curve is the curve assumed

by the neutral surface of a beam under load. The deflec-

tion of beams can be obtained only from the elastic curve.

For certain kinds of beams the reactions, the maximum
shear and the maximum moment can be obtained only

by the use of the elastic curve, while for cantilever,

simple, and overhanging
o'v beams the reactions, the

shear, and the moment may
be obtained without its use,

also for beams fixed at both

ends and loaded sym-
metrically the reactions

and shear may be obtained

without its use.

89. THE RADIUS OF
CURVATURE OF BEAMS.
In Fig. 66 let l\ be an ele-

ment of length of a beam
under load. The loads

FIG. 66. cause a bending moment
M at the section CE. This

bending moment may be considered constant over the

element of length /i. The deformation due to the shear-

ing stresses will not be considered in this discussion.

130
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The neutral surface AB, which was straight before the

load was applied, is bent to a curve under the influence

of the bending moment M. Assume that a normal sec-

tion of the beam before bending remains a normal section

after bending, that the moduli of elasticity of the material

in compression and in tension are equal, and that the

stresses developed are below the elastic limit. Let CE
and DF be two sections normal to the beam and parallel

to each other before bending. After bending, their planes

will intersect at some point 0, the center of curvature of

AB. Let the radius of curvature BO be r, and the dis-

tance of the most remote fiber from the neutral surface

BF be c. Draw GH parallel to CE, then DG is the short-

ening of the top fiber in the length l\ and HF is the

elongation of the bottom fiber in that length. For a

symmetrical section these deformations are equal. Let

this deformation be e
f

'. Then the unit deformation is

e' e
f

r and the unit-stress developed is/ = T E. From the
/i k

f 1 * Me
moment formula / = -y-

e' Me e' Me
Therefore, T& = ~T' or T~~^J'

l\ 1 l\ rLl

Since h is very small the triangles OAB and BHF may
be considered to be similar.

HF BF e' c
Hence

'

=
>

r = '

Mc _~
(

=

In this equation M is the bending moment for the

element of length /i, r is the radius of curvature of AB,
E is the modulus of elasticity of the material, and / is

the moment of inertia of the cross section of the beam
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about the neutral axis. It is seen from the equation
that the radius of curvature of a portion of a beam varies

inversely with the bending moment.

90. THE SLOPE OF THE NEUTRAL SURFACE. The

slope of a curve at a given point is the measure of the

tangent of the angle the curve makes with the hor-

izontal axis. Thus, in Fig. 67, tan a is the slope of the

FIG. 67.

curve AB at the point P. In Fig. 68, which is greatly

exaggerated, let a be the angle the neutral surface of

a beam at A makes with the horizontal, a' is the

increase in the angle over the element of length AB.
Since the angles are very small for ordinary beams, the

tangents or slopes of the angles may be considered

equal to the angles themselves without appreciable

error; therefore, the increase in the slope is equal to the

increase in the angle measured in radians, and the slope

and the angle may be interchanged. From the figure it

7 /

is seen that a' = ; hence, the increase in the slope over
r\

the element of length // is

, l^ M'h' . El
a = =

-prr- since r = T7 '

TI El M
Similarly the increase in the slope a" over the element of

M"l "

length BK is
*

. The increase in the slope over
ILL
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any element of length has a similar form. The total

increase of the slope between any two sections of the

FIG. 68.

beam is obtained by adding all the increases between the

sections, which is

KA I

~^- + .

El El El

If the slope at any section is known, the slope at another

section may be found by adding the increase,

between the two sections.
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91. THE SLOPE CURVE. The relation in the last

article affords the means of deriving the graphical method

of determining the slope curve for a beam. The slope

curve (a curve) is one in which the ordinates show the

values of the slope at every point along the beam. In

<a
f

)

FIG. 69.

Fig. 69 let (a') represent a beam, (c) the moment curve,

and (d) the slope curve. The element of length /i is meas-

ured along the beam and u is measured along the hori-

zontal axis. Since the length /i is very small it may be

considered a straight line, then u =
l\ cos a where a is the

angle the beam at the point P makes with the X-axis.

Since a is almost zero cos a may be taken equal to I,

and u equal to /i, and then the increase in the slope

between any two sections becomes -^rr
Ll

From Fig. 69

(c) it is seen that Mu equals one of the small shaded

portions of the area under the moment curve, and SMu
is the sum of all the small areas between the sections.
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Therefore, to obtain the increase in the slope of the

elastic curve of a beam between two sections, divide

the area under the moment curve between the two sec-

tions by the product of the modulus of elasticity of the

material and the moment of inertia of the cross section

of the beam about the neutral axis.

If the moment of inertia of the cross section is not

the same throughout the length of the beam, a modified

curve may be obtained from the moment curve by divid-

ing the ordinates in the moment curve by El for several

sections, / being the value of the moment of inertia

at the section where the ordinate to the moment curve

is measured, and then taking the area under this modi-

fied curve for the change in slope between the two sec-

tions. When the second method of integration is used,

the pole distance may be varied with J.

92. THE RATE OF CHANGE OF THE SLOPE. The rate

Mu

of change of the slope at a section is =
> which

14? lj I

is the bending moment for the section divided by the

product of the modulus of elasticity of the material and

the moment of inertia of the cross section about the

neutral axis.

93. THE DEFLECTION OF BEAMS. THE ELASTIC

CURVE. In Fig. 70 (e) let APB represent the position

assumed by a portion of the neutral surface of a beam
under load. Divide the length of the curve into the ele-

ments //, /i", /i'", etc. If at any point P the value of the

deflection y is known, that for any other point Q may be

determined by calculating the increase in the deflection be-

tween the two points. Let the angles made with the hori-

zontal by the lengths //, //', /i'", etc., be a', a", a"', etc.
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Then the increase in y over the length // is y'
= u' tan a!

where u' is the horizontal projection of //, y" = u"
tan a", y'" = u'" tan a", etc. The tangent of the angle
the elastic curve makes with the horizontal axis is the

O r

FIG. 70

slope of the curve at that point; therefore, the increase

in y between the two points is

= M'tana'+ u" tan a"
=ua u"a"

+

From Fig. 70 (d) it is seen that ua equals a small shaded

area under the slope curve, and the summation of all

the areas, 2 ua, equals the total area under the slope

curve between the two points. Therefore, the increase

in the deflection of the elastic curve of a beam between

any two points is equal to the area under the slope curve

between those two points. The deflection at the sup-

ports is usually known.
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94. THE RATE OF INCREASE OF THE DEFLECTION.

The rate of increase of the deflection is = a. The
u

rate of increase in the deflection at a section is equal
to the slope of the elastic curve at the section.

95. RELATIONS BETWEEN THE FIVE CURVES. Com-

bining the relations between the load, shear, and moment
curves deduced in Chapter V, with those between the

moment, slope, and elastic curves, important results

are obtained. Since these five curves are the principal

ones for beam problems, and since they form a con-

tinuous chain between the load and the deflection of a

beam, they will be referred to as the five curves. The
relation existing between them may be stated as follows :

Between any two sections of the beam :

(1) The increase in the vertical shear equals the area

under the load curve between the sections.

(2) The increase in the bending moment equals the

area under the shear curve between the sections.

(3) The increase in the slope equals the area under

the moment curve between the sections divided by El.

(4) The increase in the deflection equals the area under

the slope curve between the sections.

Thus it follows that the question of determining the

elastic curve is one of determining constants of integration
and of obtaining areas under curves. These principles will

be applied to various kinds of beams, and the constants

determined and the areas obtained.

96. THE UNITS FOR THE FIVE CURVES. In the fol-

lowing discussions (a) will refer to the load curves,

(b) the vertical shear curves, (c) the bending moment
curves, (d) the slope curves, and (e) the deflection or

elastic curves. The modulus of elasticity E will be



138 DEFLECTION OF BEAMS [CHAP. IX

taken in pounds per square inch, / in (inches)
4

. For

all the five curves and for the pole distances one inch

along the X-axis will represent m inches of length
measured parallel to the beam. The scale of ordinates

of the curves will be:

Curve (a) i inch = w' pounds per inch run. I square
inch area = w'm pounds.

Curve (b) i inch = n square inches from (a)
= nw'm

pounds. I square inch area = nw'm2
pound-inches.

Curve (c) i inch = p square inches from (b)
= pnw'm2

pound-inches. I square inch area = pnw'm3
pound-

(inches)
2

.

r- /j\ 1. Q. square inches from (c) qpnw'm*Curve (d) I inch = * H
pr -" = ^ ^ T
Ll L1

,. , . ,. . , pqnw'm* .
,

which is a ratio. I square inch area = ^ r inches.
Ll

Curve (e) I inch = r square inches from (d)
=

iLl

inches.

For an illustration of the method of determining the

scales of the curve see Example I at the end of the next

chapter.

EXAMPLE

i. What will be the increase in the slope from the left end to

the middle of a Q-inch, 2i-pound I-beam of i2-ft. span with the

concentrated load at the center that will produce a maximum
fiber stress of 16,000 pounds per square inch?

The maximum moment is developed at the center and is

M = J = 16,000 X 18.9 = 302,400 pound-inches.

Since the moment increases directly from zero at the end to the

maximum, the moment curve is as drawn in Fig. 71. The area
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under the moment curve to the left of the center is | X 72 X
302,400 = 10,886,400 pound-inches

2
. Therefore the change in the

slope over this length is

10,886,400

30,000,000 X 84.9

= -0043.

302

FlG. 71.

PROBLEMS

1. What is the radius of curvature at the ends and at the

center of a 3-inch X 4-inch stick 8 feet long used as a simple beam
with a load of 350 pounds concentrated at the center?

Ans. 2860 inches.

2. What is the change in the slope from the left end to the

center in the beam in Problem No. i ? What is the change in the

slope over the first two feet?

3. What is the total change in the slope over the entire length
of a cantilever beam of

ip-ft. span carrying a concentrated load

of 3000 pounds at the end, if the beam- is of a standard I-section

and the stress does not exceed 12,000 pounds per square inch?

4. What is the rate of increase of slope at every two feet of

length along the beams in Problems No. 2 and 3 ?



CHAPTER X

CANTILEVER AND SIMPLE BEAMS AND BEAMS FIXED AT

BOTH ENDS

97. CANTILEVER BEAM, CONCENTRATED LOAD AT
THE END. By use of the method analyzed in Art. 85
and 86 the curves in Fig. 72 are drawn for a cantilever

beam with a load W at the end. From these curves the

shear, moment, slope, and deflection at any section may
be scaled off directly. Algebraic expressions for these

quantities will now be deduced. From the definition

of vertical shear,

V = -W.

Since the bending moment at the left end is zero, that

at the section AB is equal to the area under the shear

curve between the origin and the section, which is Wx.

M = -Wx.

The increase in the slope from the left end is equal to

the area in the moment diagram from the origin to the

Wx2

section divided by El, and equals =rT
- The free end

2 JtltjL

of the beam deflects. The beam remains horizontal at

the wall, thereby making the slope zero at the wall.

Wl2

The total area under the moment curve is This
2

divided by El gives the total change in the slope from

one end to the other.

If the slope at the left end of the beam is a\, it is

140
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changed from this value to zero at the right end. There-

fore,

FIG. 72. CANTILEVER BEAM, CONCENTRATED LOAD

To get the slope at the section AB add to ai the change
from the left end to the section which gives

W
2EI
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The change in the deflection of the elastic curve is

equal to the area under the slope curve. The change
in the deflection is shown in (d) by the area OO'HI

-.x areawhich equals area OO'GI area O'GH or
Wl2 2

O'GH since OO' =
pj' Fig. 73 represents the area

O'GH drawn to a large scale. Divide the length x into

FIG. 73-

a great number of parts n parallel to GH and let ABCD
be any division such as the pth from the apex 0'.

/v*

The distance of this strip from 0' is p-t the breadth is

x W /px\
2 n

- and the depth is =rT { )
. The area of the stripn 2 El \n /W p2x*

then is ABCD = .. ~"|" In this p represents any and

all numbers to n. The area O'GH, then, is the sum of

all such areas as ABCD.

W

By algebra it can be shown that

2 ^ + 3^ + n
_.

* See "Higher Algebra," by John F. Downey, page 373.
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W_
Area GH=

2 El

W

x*/2n* + i>n* + n\
-;(
-

^
-

n*\ 6 /

Since the side O'H is a continuous curve, as n is increased

the assumed broken line will approach the actual curve

and they will coincide when n equals infinity. By
assuming this to be the case, the actual area O'GH is

obtained, and and 7 -become zero; therefore

Wx3

Area O'GH

and Area 00'HI

6 El

Wl2x Wx3

2 El 6 El

Since the area under the slope curve represents the change
in the deflection the expression for the area OO'HI is

the increase in the deflection from the left end to the

section AB. In Fig. 72 (e) if the J^'-axis were used as

reference, the deflection at the left end would be zero,

and the above equation would give the value of the deflec-

tion at any section AB. The axis of reference is usually

taken in the position of the neutral surface before any
load is on the beam, for which case the deflection at the

left end is 00' equal to XX', Fig. 72 (e), which equals
the total change in the deflection over the entire length
of the beam. This change is obtained by letting x equal
/ in the expression for the area under the slope curve,

WPx Wy? WP

oo> = - wp

=y

3 El
/2 -y \A/ /Y'3 lA/Iv *v rvJt W v

2 El 6EI
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which is the equation of the elastic curve of a cantilever

beam with a load W at the free end. The maximum
deflection occurs at the free end and is

WP
A =

3 El

98. .' CANTILEVER BEAM, CONCENTRATED LOAD AWAY
FROM THE FREE END. The solution of the problem for

a concentrated load at the end of a cantilever beam can

be extended to cover the problem when the load is

away from the end. The dotted lines in Fig. 72 indicate

the extension of the solution for the previous case to

cover this case. The load, shear, and moment curves

would be similar to those given. The slope has the con-

stant value 00' from the free end to the load. The addi-

tional deflection of the free end equals the area KJO'O.
The student may deduce the equations for this case.

99. CANTILEVER BEAM, UNIFORM LOAD. In Fig. 74
are

'

drawn the curves for a cantilever beam with a

uniform load. The expressions for the values repre-

sented by the different curves at the section AB the

distance x from the free end will be deduced.

The load per unit of length of the beam equals w.

Vertical shear V= wx.

Bending moment M=
The slope at the right end is zero as the elastic curve

there is horizontal. The area under the moment curve

to the section AB is (see Art. 97). The total area
o

*2)J^ *7P)J^

is ,
hence the total change in the slope is -r^-r mak-

D O ILL

>7fjJ3

ing the slope at the left end a\ equal to ^=r^ ; therefore,
O JLLJ.

Q1
wl3

blope a ~
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FIG. 74. CANTILEVER BEAM, UNIFORM LOAD.
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The deflection at the right end is zero. In order to find

the deflection at any section AB it is necessary to obtain

the area under the slope curve since the change in the

deflection is equal to that area which is O'HIO. In

Fig. 74 W,
area O'HIO = area O'GIO - area O'GR

ivfix

6 El
- area O'GH.

FIG. 75-

Let Fig. 75 represent the area O'GH drawn to a larger

scale. Divide it into a great number of strips n parallel

to GH as ABCD. The width of each strip is - Let
n

this be any strip as the pth from 0', then its distance

X IV /'tflx^\
from 0' is p and its depth is

'T~pT\~r)'
Therefore

the area ABCD equals l! r 4 p represents all numbers

from i to n. The total area O'GH equals the sum of all

such small areas.

Area O'GH =Area u uw

From algebra S (n)
s

w4 + 2 w3 + w2

* See
"
Higher Algebra," by John F. Downey, page 373.
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Area O'GH - * ("
4 + 2 **

3 +O
'6EM 4

WX* /I .__I~ ~~

since and 5 reduce to zero when n equals infinity.
2 n 4 n2

Therefore area O'GIO =~ - -^ This equals the
O Ll 24 &

change in the deflection from the free end to the section

AB. The total change over the entire length is obtained

by letting x equal / in the expression for the change.

This reduces to

wl* wl* wl*

wl* WP
8 El

~
8 El

which is the maximum deflection and occurs at the free

end. W is the total load.

w/4 wlsx wx*

~8^E7 + 6^E7~247'
which is the equation of the elastic curve for a cantilever

beam with a uniform load.

100. CANTILEVER BEAM, VARIOUS LOADING. If the

end projects beyond the uniform load, the load, shear,

and moment diagrams will be similar' to those of Fig. 74.

The slope will be constant from the free end to the load

as indicated by the dotted lines OJKO', Fig. 74 (d).

The additional deflection will be equal to the area O'OJK.

If the beam has a concentrated load at the end and a

uniform load the equations for the two cases may be

combined. Any other combination of uniform and

concentrated loads may be made, and corresponding

equations derived similarly to the foregoing deductions.
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loi. SIMPLE BEAM, CONCENTRATED LOAD AT THE
CENTER. The curves in Fig. 76 are drawn for a simple
beam with a load W at the center. The vertical shear

to the left of the load is

W
V = --

2

The bending moment to the left of the load is

MM = --
2

The slope curve must pass through the axis at the center

of the beam, since the elastic curve is horizontal there,

making the slope at that point equal to zero. The

change in the slope from the end to the middle equals the

area to the left of the center in the moment diagram
Wl2

divided by El, which is , ^ r ; therefore, the slope at

Wl2

the left end is --T~^T and the slope at the section AB
lo Li

to the left of the center is

Wx2 Wl2

4 El i6EI

The deflection at the end is zero. The change in the

deflection from the end to the section AB to the left

of the center can be obtained by calculating the area

under the slope curve (d).

Area OABO' = area OACO' - area O'BC

/Wl2x wx* \ WVx . wx*\_ WPx
I ,t T? r i

\i6EI 12 ElI 16EI '

12 El

(see Art. 97). Since the area is below the axis it is

negative.

WPx Wx*
y ~i6EI^i2El'
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o k

FIG. 76. SIMPLE BEAM, CONCENTRATED LOAD AT THE CENTER.
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The maximum deflection occurs at the center and

equals the area below the axis in the slope diagram,

which may be found by letting x equal
- in the expres-

sion for the deflection; therefore the maximum deflection

is

WP
A =-

48 El

The foregoing equations are for a section to the left

of the center. Equations representing the curves to

the right of the center may be deduced similarly to the

above. The student may derive those equations.

102. SIMPLE BEAM, UNIFORM LOAD. The curves in

Fig. 77 are drawn for the case of a simple beam with a

uniform load. For the section AB the vertical shear is

V = -- wx.
2

The bending moment is

wlx wx2

M= -----22 x

The slope at the center is zero; the change in the slope

from the end to the center equals the area under the

moment curve to the left of the center divided by El,

which is

^.-.^ wl2
^ I ~vn P WP WP

Area ODG = X - - area OFD = - =82 ID 48 24

(see Art. 97). The slope is changed from <*i at the left

end to zero at the center; therefore,

wl3

1

24 El 24 El

The change in the slope to the section AB equals the



ART. 102] SIMPLE BEAM, UNIFORM LOAD 151

FIG. 77. SIMPLE BEAM, UNIFORM LOAD,
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area OBC divided by El. By referring to Fig. 78 we see

that

Area OBC = area ODG - area CBDG
wl*

24
-area CBDG.

*

Area CBDG = area. CEDG - area BED = -- - x

- area BED = ~ area BED.

The ordinate BE represents the triangular area MNQ
in Fig. 77 (6).

A D777-Area BED =
2X3

w/l V=
[ X]

6\2 J

6 \ 4

Area OJ5C = area ODG - area CEDG + area BED,
wl3 wl3

~

24~T6
_ wlx2

_ wx3

~4~ ~&

wl2x wl3

_ wl2x wlx2

_ wx*

~8~ h
48

"
"8~" "~4~ '"6"

The slope at the section AB then is

wl3

a =
24E7

'

4 7 6 El

Since the deflection at the end is zero, that at the

section AB equals the area under the slope curve between
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the origin and that section. In Fig. 77 (d) the deflec-

tion is shown by

Area 00'BC= -(area OO'AC-area O'AB)

area 'AB\
,24 El

Divide the area O'AB into a great number of strips n.

OC

The width of each strip is - If the strip shown is

px
the pth strip its distance from 0' is > and its depth

. wl (pW\ w tp*x*\ _u
is ^7^-1 ^^7 M-T-j- The small area then is

4 El \ n2
/ 6EI \nz

I

wl /^\ w /p
3
x*\ .

Z^\ w3
/

~
6~EI I*?/

1
m P represents all num-

bers to n, and to obtain the total area O'BA all such

areas must be added
;
therefore

4EM 6EM
wlx3

(2
n3 + 3 n

2 + n\

rv ~6~ )

+ 2n3 + ri

_
2 ^ 4 V

12 El 24 El

When n is infinitely large 7 5 and - reduce to
2 n o n A.n2

zero.
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\24EI 12 El 24 El

wl3x wly? ivx*

24 El
'

12 7 24 El

The maximum deflection occurs at the center or when

x = - in the expression for y. Substituting this value

for x the maximum deflection is found to be

~^/ =

~^El'

103. BEAM FIXED AT BOTH ENDS, CONCENTRATED
LOAD W AT THE CENTER. A beam with fixed ends

has restraining moments at the walls which keep the

beam horizontal at those points. These moments must

be determined in the solution of the problem. From
the symmetry of the beam the reactions at the walls

are equal, and the restraining moments are equal. In

Fig. 79 the shear and moment curves are drawn in the

usual manner; then by using the pole P' in Fig. 79 (c)

a slope curve (d') is drawn. Since the beam is hori-

zontal at the ends and at the center the true slope curve

must pass through the axis at those three points. There-

fore connect the ends by O'X'. Now in (c) draw P'X

parallel to O'X' in (d
f

), and through X draw the hori-

zontal axis OX which is the true moment axis giving the

moment OO' at the left support, which equals XX'', the

moment at the right support. Then with a new pole P
on the true axis in the moment diagram the true slope

curve (d) is drawn. To prove that the slope in (d)

will be reduced to zero at the right end, draw the closing

line OX in (d) and draw OZ parallel to O'X' in (d'), then

the angle ZOX must be equal to a = a' in (d') because

Z"X' and O'X" are both parallel to P'X' in (c) ; i.e., hori-
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FIG. 79. BEAM FIXED AT BOTH ENDS, CONCENTRATED LOAD AT THE
CENTER,

zontal. Y'XO and VOX in (d) are equal because Y'X
and YO are drawn parallel to PX in (c).

X'UXm(c) = YOZin(d),
YOX'm (d)

= X'PX'm (c),

UX'P' + UP'X' in (c)
= X'PX + ^ rP r^ in (c)

= 70^ in (d) + a in (rf'),
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/. YOZ in (d)
= VOX in (d) + a
= YOX in (<*)+ XOZ in (d),

.: ZOX in (d) =a'm (d
f

)
= X'P'X in (c).

To obtain the bending moment at the walls and at the

center of the beam, it is known that the slope is zero

at the ends and at the center. Hence the total change
in the slope from the end to the center is zero; there-

fore, the positive and negative areas to the left of the

center are equal. As the moment varies directly along

the length of the beam that at the end is equal to

minus the moment at the center. The total change
in the moment equals the area under the shear curve

Wl
to the left of the center which is -- Consequently,

4

11 Wl , ,

the moment at the wall is and that at the center
o

Wl
is -5-- The deflection at the ends is zero. Since the

o

constants have been determined the equations of the

curves for a section AB to the left of the center can be

written :

WV=
2

'

Wl . Wx

Wlx Wx*~

Wlxz

_
Wx*

I6EI* I2EI'

In order to obtain the deflection y the area under the

slope curve is determined by the same method as that

by which the area under the moment curve for a simple
beam uniformly loaded was determined (Art. 102).

The maximum deflection is at the center and equals
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the area under the slope curve to the left of the center,

which is f

that area :

which is found by letting x = - in the expression for

WP Wl* WP
64 El

'

96.E7 192 El

104. POINTS OF INFLECTION. In Fig. 79 (c) are

shown two points marked / where the moment is zero.

At these points the moment changes from negative to

positive in going toward the center of the beam. The

stresses also change from tension to compression in the

top fibers and from compression to tension in the bottom

fibers. These points where the fiber stresses change are

called the points of inflection or points of contraflex-

ure. Outside these points the beam curves downward,
and inside them it curves upward. Since there are no

flexural stresses at the points of inflection, the beam
could be hinged at those points without affecting the

stresses at the other sections of the beam.* For a beam
fixed at both ends with a concentrated load at the

center the inflection points occur at the two outside

quarter points, hence it may be considered as a simple

beam of length
- with the load W at the center and two

/ W
cantilevers each of length

- with the load of at the

ends. The simple beam may be considered as resting

on the two cantilevers. Wherever the tensile stresses

in a beam are to be taken by steel, as in reinforced con-

crete beams, part of the steel is bent down somewhere near

the inflection points. The inflection points are located

where the greatest positive and negative slopes occur.

* On account of secondary stresses and horizontal shear which have

not yet been considered, the behavior of the beam may be somewhat

different if hinged at the points of inflection.
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105. BEAM FIXED AT BOTH ENDS, UNIFORM LOAD.
The reactions equal one-half the total load for a beam
fixed at both ends and carrying a uniform load. The

restraining moments at the ends keep the beam hori-

zontal at these points. It is also horizontal at the center.

In Fig. 80 curves (a), (b), and (c) are drawn in the usual

manner. The curve (d') is then drawn by using the pole

P' in (c). Connect O'X' in (d'), then, in (c), P'X is drawn

parallel to O'X' in (d
f

) ,
and OX, which is the true moment

axis, is drawn, giving the bending moments 00' and XX'
at the walls. By selecting a new pole P on the moment
axis the true slope curve (d) is drawn, from which in

turn the elastic curve (e) is drawn.

In order to determine the bending moment at the

wall and at the center it is known that the slope is zero

at both sections, and, therefore, that the positive moment
area ABC equals the negative area OA 0' . The total

change in the moment from the end to the center equals

the area under the shear curve between those two sec-

tuft

tions, which is By methods similar to those already
o

given,

A ^ A r\tArea OAO =
4 3

and
Area ABC = areaABCD - areaACD,

(BC) = (AD) =
W

(area HIF in (b)).

Area ABC = w

(DC) = - - *

Area 0.40'= area^^C,

W_Xi_ _ WXi_ m I ^1
_|__J?ll

_ 2X1* \.

4 3 6[8 42 J



ART. 105] BEAM FIXED AT BOTH ENDS 159

Collecting and reducing,

#1= - Vi2, which is the distance from the end to

the inflection point.

FIG. 80. BEAM FIXED AT BOTH ENDS, UNIFORM LOAD.

(AD) in (c) represents the area FHI in (6), and (O'E)
in (c) represents the area FGO in (b) ;
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therefore

II V
(AD) (DC) 2

\z
Xl

)

(Q'E)
~

(EC}'

(AD)

(O'E)
~

//

//y

Hence, the bending moment (BC)-at the center is J of

= ' and that at the ends is --- The deflec-

tion at the ends is zero.

Since all the constants are determined, by methods

similar to those already given the following equations
for the curves at the section AB are deduced.

The load per unit of length of the beam equals w,

ir wlV = -- wx,

,, wl2
. wlx wx2M = --- -

12 2 2

wlzx wlx2 wx*~ +

wl2x2 wlx3

~

The deflection is the greatest at the center and is ob-

tained by letting x = - in the value for y, or

=
w/4 Wl3

384 / 384^

106. RELATIVE STRENGTH AND STIFFNESS OF BEAMS.

The strength of a beam is proportional to the load it
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will carry with an assigned value of the maximum stress.

For a beam of given section the allowable resisting shear

and resisting moment are fixed by the allowable stresses.

If the shearing stress or the deflection is not the con-

trolling factor in the design of a beam, the strength

depends upon the allowable resisting moment The

allowable bending moment is equal to this resisting

moment. The strength of a certain type of beam is

inversely proportional to the maximum bending moment

produced in the beam by a given load. For a beam of

length /, the load W to develop the fiber stress / may be

obtained by use of the moment formula M = in which

M is the maximum bending moment, here to be expressed

in terms of W and /, and - is the section modulus, which
c

is fixed for a given section. For example, in a cantilever

beam with a concentrated load at the end M = Wl

(the sign being neglected) ; hence, Wl = and W '

c cl

Column two in Table 14 contains the expressions for

the maximum bending moment developed in the various

types of beams given, and column two in Table 15 gives

the value of the load to produce the fiber stress /. If

beams of the same material for the various types given
are of equal length and section, their relative strengths

will be proportional to the coefficients of
7 given in

cl

Table 15, as , will be the same for all the beams.
cl

The stiffness of a beam is proportional to the load

necessary to produce a given maximum deflection. The
load W to cause a maximum deflection may be obtained

by solving for W in terms of the maximum deflection A.
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For example, the maximum deflection of a cantilever

beam with a concentrated load at the end is A =
Wl3 El

(the sign being neglected) ; hence, W = 3
-- A.

TABLE 14

MAXIMUM MOMENTS AND MAXIMUM DEFLECTIONS

Column three in Table 14 gives the expression for

the maximum deflection of each type of beam there

shown, and column three of Table 15 gives the value

of the load to produce the deflection A. If beams of

the same material for the types given are of equal length

and section their relative stiffnesses will be proportional
7? T T?T

to the coefficients of
-^-

A, since
-^-

A is the same for all

types, assuming equal deflections.
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TABLE 15

LOAD TO CAUSE A GIVEN MAXIMUM STRESS AND A GIVEN
MAXIMUM DEFLECTION

107. MAXIMUM STRESS ANIJ DEFLECTION. From

Art. 106 it is seen that if a given beam used as a canti-

lever will safely carry a given load at the end, it would

carry twice that load uniformly distributed on the

cantilever, four times that load if used as a simple beam

with the load concentrated at the center, eight times

that load if used as a simple beam with a uniform load,

eight times that load if both ends are fixed and the load is

concentrated at the center, and twelve times that load if

both ends are fixed and the load is uniformly distributed.

It is also seen that if a given load at the end of a canti-

lever beam will cause a given maximum deflection, to
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cause the same maximum deflection it will take two and

two-thirds times that load uniformly distributed over

the cantilever, sixteen times that load if the beam is

used as a simple.beam with the load concentrated at the

center, twenty-five and one-fifth times that load if uni-

formly distributed over a simple beam, sixty-four times

that load if concentrated at the center of a fixed-ended

beam, and one hundred and twenty-six times that load if

uniformly distributed over a beam with both ends fixed.

In all the above cases the stresses are supposed not to

exceed the elastic limit.

108. RELATION BETWEEN THE MAXIMUM STRESS
AND THE MAXIMUM DEFLECTION. In column 2 of

Table 15 appears the maximum stress / developed under

the load W, and in column 3 the maximum deflection.

By equating these two expressions for the load the rela-

tion of the maximum deflection to the maximum stress

for a given load W is obtained. Let a represent the co-

fT 77 T

efficients of^y > and let/3 represent the coefficients of -=- A.
cl l

Then by equating the two expressions for W there results

The last equation gives the maximum deflection in terms

of the maximum stress.





A=0.63 in.

(e)

Scale Inches
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FIG. 81. xj* X 2" SIMPLE OAK BEAM, SPAN 6', LOAD 150! 2' FROM

LEFT SUPPORT.
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EXAMPLE

Draw the elastic curve for a if-inch by 2-inch oak beam of

6-ft. span carrying a load of 150 pounds 2 feet from the left

support.

Solution: / -^ - '* X ** 2 X 2 = x (inch)',

E = 1,500,000 pounds per square inch.

In Fig. 8 1 the horizontal scale is i inch equals 12 inches. (On
the diagram the length representing i inch is indicated at the

bottom.) (a) represents the beam, (b) is the shear diagram in

which the vertical scale is i inch equals 100 pounds. To draw

the moment curve the pole distance is taken equal to 24 inches;

the vertical scale of the moment curve then is i inch equals 24 X
100 = 2400 pound-inches. In drawing the slope curve the pole

distance was taken equal to 20 inches; the vertical scale of the

slope curve then is i inch equals 20 X 2400 -5- El = 20 X 2400 -j-

1,500,000 X i =
0.032. As yet the slope is not known for any

point along the beam; consequently an arbitrary axis O'X' is

assumed in curve (d) and the pole P' taken with a pole distance

equal to 3 1 \ inches giving values of the deflection scale to be i inch

equal to 0.032 X 31! = i.o inch. With the pole Pt
the curve

(e'} is drawn. This gives a deflection at the right support equal

to 0.53 inch. It should be zero. The closing line O'X' in (e
f

)

is drawn, and parallel to this line the ray P'X in (d) is drawn,
then the true axis OX in (d) is drawn, and with the pole P on this

axis, with a pole distance of 32! inches, draw the true elastic

curve (e}. The deflections can be measured directly from this

curve. The maximum deflection occurs at the point of zero

slope which is 31 inches from the left support. The deflection

at that point is A = 0.63 inch.

If it is desired to find the maximum deflection for a 5o-pound
load divide the value for 150 pounds by 3; this gives 0.21 inch.

For any beam with any concentrated load at the one-third point
this set of curves can be used simply by changing the scale to agree

with the data of the given beam.
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PROBLEMS

1. Draw the load, shear, moment, slope, and deflection curves

and determine the maximum deflection and the maximum fiber

stress for the following beams:

(a) A 4-inch by 8-inch timber beam used as a cantilever of

8-ft. span with a concentrated load of 500 pounds at the end.

(b) A i5-inch, 42-pound, cantilever I-beam of zo-ft. span

carrying a uniform load of 15,700 pounds.

(c) A simple timber beam of i4-ft. span, 8 inches wide and

14 inches deep carrying a load of 1550 pounds concentrated at

the center.

(d) Same as (c) with an additional uniform load of 200 pounds

per foot.

(e) A i2-inch, 31.5-pound I-beam of i6-ft. span when fixed

at both ends and carrying a concentrated load of 2400 pounds
at the center.

(f) An 1 8-inch, 55-pound I-beam used as a simple beam of

2o-ft. span carrying a uniform load of 60,000 pounds.

(g) A simple timber beam of lo-ft. span, 10 inches wide and

12 inches deep carrying a uniform load of 8000 pounds and a

concentrated load of 2000 pounds at the center.

2. In a test of a i^-inch by 2-inch yellow pine beam of 6-ft.

span the following maximum deflections for the corresponding

loads at the center were observed:

What is the modulus of elasticity of the yellow pine ?

Ans. 2,040,000 Ib. per sq. in.

3. What is the bending moment at the walls and at the center

of a beam fixed at both ends of i6-ft. span, and carrying a con-

centrated load of 8300 pounds at the center ? What is the maxi-

mum fiber stress developed if a zo-inch, 25-pound I-beam is
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used? What is the fiber stress 4 feet from the walls? What is

the shearing stress at the section 4 feet from the walls ?

4. Design a longleaf pine beam with both ends fixed to carry

a uniform load of 6000 pounds on a span of 12 feet. What will

be the maximum fiber stress developed at the center of the span ?

Locate the inflection points.

5. What steel I-beam with fixed ends is required for a span of

20 feet to support a uniform load of 20,000 pounds, with a maximum
unit-stress of 15,000 pounds per square inch ? Find also the maxi-

mum deflection.

6. For a simple beam with a load concentrated at the distance

kl from the left support, k being a fraction, show that the equation

of the elastic curve to the left of the load is

6/ v 6/ v

7. Designabeamof 2o-ft.spanto carry 18,000 pounds, fixed ends.

8. Calculate the maximum deflection of a steel bar, supported at

its ends, i in. sq., 6 ft. long, with a load of 100 pounds at its center.

9. A floor is to support a uniform load of 100 pounds per

square foot. The lo-inch, 2 5-pound I-beams have a span of 20

feet and are spaced 6 feet apart between centers. Does the maxi-

mum deflection of the beams exceed alo of the span?
10. Deduce the equation of the elastic curve and the expression

for the maximum deflection for a beam on which the load varies

uniformly from zero at the ends to w pounds per lineal unit at

the center. Given 2 (n
4 = [n (n + i) (6 n

3 + 9 n
2 + n i)] -f- 30.

Ans. To the left of the center,

wlx? wx* $wPx .
WP

y ~ '

24 E7 60 Ell 192 El 60 El
In the following problems write the special equations

of the elastic curve and obtain the maximum deflections.

11. Ai2-in.,3if-poundl-beamusedasacantileverbeamof 20-ft.

span and carrying a concentrated load of 1000 pounds at free end.

12. A lo-inch, 25-pound I-beam used as a cantilever beam of

i5-ft. span and carrying a uniform load of 500 pounds per foot.

13. A 20-inch, 65-pound I-beam used as a simple beam of 24-ft.

span carrying a concentrated load of 20,000 pounds at the center.

14. An i8-inch, 55-pound I-beam used as a simple beam of

i5-ft. span carrying a uniform load of 4000 pounds per foot.



CHAPTER XI

OVERHANGING, FIXED AND SUPPORTED, AND
CONTINUOUS BEAMS

109. OVERHANGING BEAM, CONCENTRATED LOADS.
In Fig. 82 are drawn the shear, moment, slope, and deflec-

tion diagrams for two concentrated loads on an overhang-

ing beam, W\ at the left end which overhangs the support,
and W2 between the supports. After drawing curve (b),

curve (c) is obtained by use of the pole P in (b). The

bending moment is zero at the ends and also at the point
of inflection 7. By use of the pole P in (c) the slope

curve (d) is drawn. Since the value of the slope is not

known at any point, the curve (e
r

) is drawn by using the

pole P' in (d), thus assuming the slope at the left end to

be O'A. The supports A' and B' should be on a hori-

zontal line. Therefore, to obtain the true elastic curve

and the correct value of the slope at the left end, connect

A'B' in (e
r

), then draw P'X in (d) parallel to A'B'\

through X draw the horizontal axis OX, which is the

true axis of reference for the slope curve. This gives

the slope at the left end to be OA . Then by use of any

pole P on the axis OX in (d) the true elastic curve (e)

is drawn. This method is general and may be employed
for any system of loading for cases in which the beam
rests on two supports. If desired, the equations for

the different parts of the elastic curve can be obtained

by methods similar to those in Chapter X and the ex-

pressions for the maximum moment, the maximum de-

flection, and the location of the inflection point may
be obtained.

170



FIG. 82. OVERHANGING BEAM, CONCENTRATED LOADS. 171



172 BEAMS, OVERHANGING, FIXED, ETC. [CHAP. XI

no. OVERHANGING BEAM, UNIFORM LOAD. In Fig.

83 are drawn the curves for a beam overhanging both sup-

ports and carrying a uniform load . The bending moment
is zero at both ends and at two points between the

supports. These points, marked I in curve (c), are the

points of inflection. The value of the slope is not known
for any point, so the curve (e

f

) is drawn by using the

pole P' in (d). The supports should be on the same
horizontal line. By connecting A' and B', the points of

support, it is seen thatA 'B
r

is horizontal and thus the true

axis in the slope curve was assumed correctly. The equa-
tions of the elastic curve, and the expression for the maxi-

mum moment, the maximum deflection, and the position

of the points of inflection may be determined.

in. BEAM FIXED AND SUPPORTED, CONCENTRATED
LOAD AT THE CENTER. For beams of this kind the

values of the reactions cannot be obtained without resort

to the elastic curve. Referring to Fig. 84 the curves

marked by letters with the subscript I are drawn as if

the beam were a simple beam. To make the beam hori-

zontal at the right end the restraining moment at that

end must be great enough to make the deflection /i

for the first element of length in Fig. 84 (ei) equal to zero,

in which case the slope <*i at the right end is reduced to

zero. The resisting moment at the wall decreases the

left reaction and changes the shear, moment, slope, and

elastic curves; from the definition of bending moment,
the fixing moment at the wall is due to a force at the left

reaction equal to the amount that reaction is decreased

by the fixing moment. In order to determine the amount
of this force, a force W\ is assumed to be acting at the

left end of the beam. The shear, moment, slope, and

elastic curves marked by the letters with the subscript 2

are drawn for the load W\. Since the two ends remain on
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a horizontal line the beam would curve upward. For
this case the deflection would be /2 for the first element
of length shown in the curve (e2), and the slope at the

right end would be a 2 . If the assumed force W\ is of

FIG. 84. BEAM FIXED AND SUPPORTED, CONCENTRATED LOAD AT THE

CENTER.

the proper magnitude so that when the effect of this

force is combined with the effect of W on the simply

supported beam, /2 of curve (e%) would be equal to /i of

(ei) in order that the deflection of the first element of

length be zero. Or, expressed otherwise, 0:2 would be

equal in magnitude to ai in order that the slope at the
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right end be zero under the combination. The true force

W necessary to make the moment at the wall great

enough to bring the beam horizontal at that point is to

the force W\ as the ratio of the slopes OL\ to a2 ; therefore

the true force is

W' = Wi.

By use of the definitions and equations in the previous

chapters, the shear, moment, slope, and deflection of a

given beam are directly proportional to the load causing

them. Consequently, the reaction at the left end of the

beam is lessened by the amount W. The fixing moment
at the wall is W'l, or it is equal to the moment M2

multiplied by the ratio Therefore, the fixing moment
0:2

is

M'= M2 =Wl l=
2 0=2

For the true reaction at the left end of the beam with

one end fixed and the other supported, the left reaction

of the simple beam is reduced by the amount W
,
after

which the true curves (&), (c), (d), and (e) may be drawn.

In the foregoing solution the pole distances were

taken equal, for which case the actual lengths for i and

2 may be taken for the reduction ratio. If all the pole

distances were not taken equal, the actual values repre-

sented by ai and 0.1 must be used in the ratio.

To obtain the values of the reactions, the moment
under the load, and the restraining moment at the wall,

it is known that the positive area and negative area in

Fig. 84 (J2) are equal, since the total change in deflection

over the entire length of the beam is zero. In order

that these areas be equal;
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2
= 20:3 (Art. 105).

2 -f 0:3
=

jjj
X - =

,(area in (c2) divided by El).

Wl2

(area -4-B-X" in (ci) divided by 7).

0:2

16 16

' Mf

=-^-rWl(at the wall).
ID

M = Wl (under the load).

The inflection point occurs at the point of zero moment
which is f\ I from the fixed end.

112. BEAM, BOTH ENDS FIXED, CONCENTRATED LOAD
AT ANY POINT. The method of the last article may be

followed for a beam fixed at one end and supported at the

other with any system of loading. When both ends are

fixed and the loading is not symmetrical a method quite

similar to that of the last article may be followed, but

instead of finding the fixing moment at one end only, it

is necessary to determine' the fixing moment at both

ends. In Fig. 85 draw the curves (61), (ci), (</i), and

(ei) as for a simple beam. The resisting moments at the
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walls are proportional to ai and 0.% if the slopes at these

points are reduced to zero by the resisting moments.

Assume a force W\ acting at the left end, producing a

moment at the right wall, and draw the curves ( 2),

(c z), and (dz) for this load. If the assumed force were

0)

FIG. 85. BEAM FIXED AT BOTH ENDS, CONCENTRATED LOAD AT

ANY POINT.

enough to make the beam horizontal at the right end

a 3 would have been equal to a 2 . If the force were taken

at the other end and had been of the right magnitude
to make the beam horizontal at the left end, 0:3 would

have been equal to ai. Therefore, the amount the force

or reaction acting on the left end is lessened to make



178 BEAMS, OVERHANGING, FIXED, ETC. [CHAP. XI

the beam horizontal at the right end with the left ojie

simply supported is

and the amount the right reaction would be decreased in

order to have the left end horizontal with the right end

simply supported is

The sum of the two reactions in every case equals the

given load on the beam. To have both ends horizontal

with the load in the given position, the right reaction

of the simple beam must be decreased as the left reaction

is increased, by the amount

ray - Wt = 212* WL

By making this reduction the true shear diagram (b)

may be drawn. The moment curve may then be drawn.

The value of the moment is not known for any point,

but it is known that the slope is zero at both ends, so by
use of the pole P' in the moment curve, (d') is drawn.

Through P f

in (c), parallel to O'X' in (d
1

) P'X is drawn

giving the point X through which the true moment
axis OX is drawn. By use of the pole P in (b) the true

slope curve (d) is drawn from which, by the use of the

pole P, the deflection curve {e) is drawn.

113. CONTINUOUS BEAMS. The definitions and gen-

eral equations given in the foregoing chapters are ap-

plicable to continuous beams as well as the general

method of determining the elastic curves. The reactions

of continuous beams are determined by the use of the

principles involved in determining the elastic curve,
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For a given beam the reactions may be determined

graphically, but that is left for a more advanced treat-

ment of the subject. In the analytical treatment of

continuous beams two spans are usually considered.

Let Fig. 86 (a) represent two spans of a continuous

FIG. 86.

beam, and (6) and (c) represent the shear and moment
curves for the same two spans. The spans are taken

equal to /i and /2 ;
the uniform loads are w\ and w z per

unit of length, with several concentrated loads. Let the

vertical shear just to the right of the left support be

Vi and that just to the right of the second support be

V%. Let the bending moment at the supports be MI, M2 ,

and Ms .

From the definition of the vertical shear for a section,
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the vertical shear for the section AB in the first span is

V = Vi - wix - 2 W,

and that for a section in the second span is

From the definition of bending moment the bending
moment at the section AB in the first span is

M = Mi

and that at a section in the second span is

In the moment equation for the first span if x equals

M equals Mz. Then

-
p),

v ,

/l 2

Likewise

v
k 2

By comparing the value of Vi with the value of the

vertical shear just at the right of the left support of a

simple beam it is seen that when there are bending
moments over the supports the value of the vertical shear

is increased by the amount -
-,

--- The value of

V\ obtained shows that if the bending moments at the

supports are known the vertical shear to the right of

each support may be obtained, and the value of the

vertical shear and the bending moment for any section

then may be found. If the dimensions of the beam and

the load are given, by use of the shear and moment
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formulas the stresses developed in the beam may be

calculated, or, if the load is given, a beam may be de-

signed to carry the load. The points of inflection may
also be obtained by finding where the bending moment

equals zero. Consequently, the subject of the investi-

gation and design of continuous beams consists primarily

of determining the bending moments at the supports.

114. THE THEOREM OF THREE MOMENTS. Instead

of giving the graphical method of determining the reac-

tions of continuous beams, the theorem of three moments
will be discussed. In order to determine the bending
moments at the supports of a continuous beam, or the

relation between them, the system of loading must be

known. The relation between the bending moments at

three consecutive supports may be deduced for various

systems of loading. (See Example 7, Chapter XII.)
The "theorem of three moments" which expresses this

relation for beams with uniform loads over each span is

where Mi, Mz, and Ms are the moments over the sup-

ports, wi and w2 are the values of the uniform loads, and

f- -*- -f- -V- ^
FIG. 87.

/i and /2 are the spans. (See Fig. 87.) In applying the

theorem to a given beam, unless restrained, it is known
that the bending moment at the end support is zero.

As many equations as there are bending moments may
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be written and those equations solved simultaneously
to determine the bending moments at the supports.

For beams of equal spans and a uniform load over

the entire length of the beam the theorem reduces to

ILLUSTRATIVE EXAMPLE

Given a beam carrying a uniform load over three equal spans,

to determine the bending moment at the supports, the vertical

shear at the supports, the reactions, the maximum positive bend-

ing moment, and the inflection points. See Fig. 88.

From symmetry Mi = Mt =
o, and Mz

= M3 . Making these

substitutions in the theorem of three moments:

~

1̂0

T7 wl wl _
v i

-- H-- --
10 2 IO

T7 wl . wl 6wl
V 3
= --

1

-- =-
10 2 10

The shear to the left of the second, third, and fourth supports

is-- j > and -
, respectively. The reaction equals

10 2 10

the algebraic difference of the shear to the right and to the left

of the support. Therefore,

K _ _ 4 wl
j\i j\i >

10
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The maximum positive bending moment occurs between the

supports where the vertical shear is zero. To obtain the position

of zero shear let V equal zero.

T/V =
10

o. 1,
10

4^v 4/ ^/4A 2 _A
10 10 2 \IO/ 200

Since the moment is zero at the left support it will be zero

again where the shear areas above and below the axis are equal,
o

which is at the distance 2x1 or / from the left support. This
10

gives the inflection point. In the middle span the shear is

FIG. 88.

zero at the center. The area under the shear curve to the center

;
then the bending moment at the center isis -- X -22

---
1

-- =-
. The inflection points occur where the bend-

10 4 20

ing moment passes through zero. Therefore, the distance from



184 BEAMS, OVERHANGING, FIXED, ETC. [HAP. XI

the second support to the inflection point is found from:

W?
,
Wl WXi

The slope and the deflection may be obtained by graphical methods

or by the calculation of areas as is done in the previous chapters.

In Fig. 88 (6) is drawn the shear diagram and in Fig. 88 (c) is

drawn the moment diagram for this beam.

By a method similar to that employed in the fore-

going example the coefficients for wl for the vertical

shears at each side of the supports for continuous beams

TABLE 16

COEFFICIENTS OF wl FOR THE VERTICAL SHEAR AT THE
SUPPORTS OF CONTINUOUS BEAMS.

carrying uniform loads over the entire length were ob-

tained as given in Table 16. The negative coefficients

of wl2 for the bending moments at the supports were also

obtained as given in Table 17.

Tables 16 and 17 may be extended in the following

manner: By following down to the right or to the left a

line of similar supports for the different spans, to obtain
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the coefficients for a beam having an odd number of

spans, as five, for the second support, the moment coeffi-

cient is ^V The 4 is obtained by adding the 3 of ^ to

the i of TV- The 38 is obtained by adding 28 of ft- to

the 10 of TV. This method may be employed for any

TABLE 17

COEFFICIENTS OF -rf FOR THE BENDING MOMENT AT
THE SUPPORTS OF CONTINUOUS BEAMS. No.

Spans

K

-1 H< 1 H
Ho Ho o
a

j o

^28 ^8 ^28
o 2 2 J 4

^ 3
/^8 Hj

Moi M(M
1
Mo4 Q

G

^-.^^-^^-t-^^-^-^

support of any beam with an odd number of spans.

For a beam with an even number of spans, as four, the

coefficient is gV The 3 is obtained by multiplying the

i of TV by 2 and adding the i of \. The 28 is obtained

by multiplying the 10 of T
T

o by 2 and adding the 8 of \.

This method can be followed for extending either

Table 16 or 17.

115. HINGING POINTS FOR CONTINUOUS BEAMS. If

a continuous beam is to be made of several parts, it is

necessary to know at what points the various parts

should be hinged, in order that the
"
continuous

"
effect

may be secured, as a continuous beam is stronger than

several simple beams over the various spans. Any
given continuous beam may be hinged at the inflection

points, and the bending moment would be unchanged

along the beam.
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An economical method is to hinge the beam at such

points as to make the maximum negative bending
moments at the supports and the maximum positive

bending moments in the spans equal in magnitude. The
portion of the beam between the hinges in a span acts

as a simple beam and the portions from the support to

the hinges act as cantilever beams. For the case of

Hinge-.

Wf/m.

FIG. 89.

uniform loads and equal spans, Fig. 89, each hinge
carries one-half the load on the intermediate length.
If / is the length of one span, /i the distance between the

hinges, 12 the distance from the support to a hinge, and
w the load per unit of length, the maximum bending

7 2

moment in the center is -~- and the maximum bending
o

moment at "the support is (
-

-\
-- 1- For equal

maximum bending moments

II---
T= = .14644 /.

2 -v/8

-
-J=

= r= .70712 .

4 + v 8 v 2
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From this relation the maximum bending moment is

found to be
,, _ wlS _ Wl

~8~
=

76"

Thus it is seen that if the beams are hinged at the proper

points the efficiency is increased from thirty to sixty per
cent. To use beams hinged in this way they should be

fixed at the end supports. With uniform load the beams
would remain horizontal at the supports, but if the load

is not uniform at any time, the beam should be fixed

at all the supports. Two lengths of beams could be

used, one length about three-tenths the length of one

span, to be used over the supports, and the other length

about seven-tenths the length of one span, to be used

between the hinges. If the loads are concentrated at

the middle of the spans the lengths should be made

equal.

PROBLEMS

1. Draw the shear, moment, slope, and elastic curves for a

9-inch, 2i-pound I-beam of length 20 feet, overhanging each

support 4 feet, carrying concentrated loads of 10,000 pounds at

the left end, 12,000 pounds 8 feet from the left support, and

15,000 pounds at the right end. From the curves determine the

deflection at each load and the maximum deflection.

2. What are the maximum shearing and fiber stresses developed
in the beam of Problem No. i ?

3. Design a rectangular Washington fir beam 18 feet long,

overhanging one support 4 feet, to carry a total uniform load of

9000 pounds. The shearing unit-stress is not to exceed 100 pounds
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per square inch, the maximum fiber stress is not to exceed 1200

pounds per square inch, and the maximum deflection is not to

exceed sl& of the span between the supports.

4. Draw the shear, moment, slope, and elastic curves of a

beam fixed at one end and supported at the other, of length /,

carrying a uniform load of w pounds per lineal inch, and determine

the value of the reactions, the restraining moment at the wall,

the maximum positive moment, and the elastic curve.

WX* wlx
~r

24 El i6EI 48 El

5. Draw the shear, moment, slope, and elastic curves for an

8-inch by lo-inch beam of 12 -ft. span fixed at one end and sup-

ported at the other, carrying a concentrated load of 8000 pounds

7 feet from the restrained end. What are the maximum shearing

and fiber stresses developed in the beam?

6. Solve Problem No. 5 if both ends are fixed.

7. A continuous beam of two spans carries a load of 100 pounds

per foot over one span of 1 2 feet and 200 pounds per foot over the

other span of 8 feet. Determine the moment at the middle

support and the reactions.

Ans. Mz 20,640 lb.-in., Ri =457 lb., R% = 1758 lb., R3
= 585 lb.

8. Determine the bending moment at the middle support

and the maximum positive bending moments in each span of a

beam 24 feet long, one span being 10 feet and the uniform load

for that span 24,000 pounds, the other span being 14 feet and the

uniform load for that span 28,000 pounds. Select the proper

I-beam for this loading.

9. Select the proper continuous I-beam to carry a uniform load

of 144,000 pounds uniformly distributed over six spans of 12 feet

each.

10. If the beam of Problem No. 9 were fixed at the supports

and hinged so as to make the bending moment at the supports

equal to that at the middle of the span, what I-beam would be

required ? What would be the length of each section ?



CHAPTER XII

ELASTIC CURVE OF BEAMS DETERMINED BY THE
ALGEBRAIC METHOD*

116. THE ALGEBRAIC RELATIONS BETWEEN THE FIVE

CURVES. As deduced in Art. 89 the expression for the

radius of curvature of a beam is

El

where E is the modulus of elasticity, / is the moment
of inertia of the cross section about the neutral axis,

and M is the bending moment. The algebraic expression

for the radius of curvature for a curve as deduced in

the calculus is

r = (2)

where x and y are the coordinates of the point of the

given curve, for which r is the radius of curvature and

f is the slope of the tangent to the curve at the given

point. For beams the X-axis is horizontal and the

F-axis is vertical, and since the slope of the elastic

curve is small at all points of the beam the value of f

-^-

* This chapter introduces the calculus method for the only time and

is intended only for students who have had courses in differential and

integral calculus.

180
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generally is very small, and in comparison with i may be

neglected, with which approximation

dr*

By substituting this value of r in equation (i) there

results

/g = Jf. (4)

By combining this relation with those given in Chapters
V and IX the following values for the section distant x
from the origin result:

The ordinate to the elastic curve is

*=/(*)- (a)

The slope of the elastic curve is

<=. o.)

The bending moment is

(C)

The vertical shear is

The load per unit of length is

=
dx

~
dr* dx* dx*

If the value of any one of the variables is known for

the above equations, the values of those lower in the

scale may be determined by differentiation as indicated.

but usually it is necessary to start with the lower equa-
tions and derive the higher ones by integration. In

problems concerning beams the operation of integration
between definite limits is not generally applied, con-

each operation introduces a constant of
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integration which must be determined born the known

conditions governing: the case- For deriving higher

curves the equations may be written in the following

form:

The load per unit of length is

= (i)

The vertical shear is

The bending moment is

M =
fvd*+Ml =ffwd**+fvjx+ Mi. (3)

The slope is

_,

The deflection is

5

The method of evaluating these expressions will be

given later.

The latter set of equations is the one to be employed
in determining the elastic deflections. Any one of the

equations may be used to start with, if the variables

can be expressed in terms of -jr. The load, shear, and
moment equations can usually be written by applying
the definitions. If the moment equation is used to

start with, one integration and the determination of
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constant of integration are avoided, but since these

operations are of the simplest in calculus there is no

advantage in starting with any other than the load or

shear equation. The constants should be determined

as they appear if convenient. In the case of concen-

trated loads the equation of the load curve is zero, and
the shear curve probably would be the best with which

to start.

117. THE CHOICE OF COORDINATE AXES. In the

deduction of the formula for the radius of curvature
Tf-r

r =
-jj

the X-axis was taken parallel to the axis of

the beam before bending, and the F-axis at right angles
to the X-axis. The origin may be chosen arbitrarily,

and for some particular cases it is more convenient to

take the origin at the center of the beam, but in this

book the X-axis will be taken to coincide with the axis

of the beam before the beam is bent, and the F-axis

will be taken at right angles to the X-axis at the left

end of the span under consideration. In the solutions

the proper algebraic signs should be observed.

118. THE CONSTANTS OF INTEGRATION. In all cases

an approximate diagram of the deflected beam will

be of value in determining the constants of integration.

For problems in the determination of the deflection of

beams, the constant of integration for any curve is the

value of the variable at the origin, as here treated.

Thus, Fi, introduced in equation (2), Art. 116, is the

value of the vertical shear at the origin. See Fig. 90.

Mi introduced in equation (3) is the value of the bending
moment at the origin; ai introduced in equation (4)

is the value of the slope at the origin; y\ introduced in

equation (5) is the value of the deflection at the origin.
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119. DETERMINATION OF THE CONSTANTS OF INTE-

GRATION. If the values of the constants can be deter-

mined, they may be inserted into the equations at once;

thus, Vi and MI can be determined in many cases at

first. For other cases it may be known where the

shear is zero, and then the value of zero, for V and the

corresponding value of x may be substituted in equation

(2) to give the value of V\. If the position of zero

bending moment is known, the value of M and the

corresponding value of x substituted in equation (3)

will give MI. Likewise to determine a\ it may be

known where the slope is zero, i.e. where the beam is

horizontal, and that value of a and the corresponding

value of x substituted in equation (4) will give the
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value of a\. For determining y\ it is known where

the deflection is zero, which is at the supports for the

usual cases.

ILLUSTRATIVE EXAMPLE

Deduce the equation of the elastic curve and the value of the

maximum deflection for a cantilever beam with a concentrated

load at the end. See Fig. 91.

FIG. 91.

The load per unit of length = o.

V = V l
= -W,

M = _ J Wdx -f M l
= - Wx + Mi,

M = o when x = o, .*. MI = o. (Zero moment),

= -
1=7 f Wxdx + <*!=- --Wx* + ai .

Ll J 2 rLl

The slope a equals zero when x equals /, as the beam is horizontal

at the wall, therefore

Wl 2

2 El
Wl 2

2 El (Zero slope) ,

Wfx

y = o, for x = /,

WP WP
6EI

+
2EI

Wx* .
Wl2x

o =
w/3

- -^~- (Zero deflection),
3 El

wi*

6 El 2 El
The maximum deflection occurs where x =

o, and is

WP
A =
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When there are concentrated loads on the beam the

shear equation changes at every concentrated load,

consequently the equations for the moment, slope, and

elastic curves have different expressions on each side

of the load, and for each of the curves there is one more

equation than there are concentrated loads on the

beam. Care should be taken in substituting values of

x in these equations to see that the equation is true for

the particular value of x used. With concentrated

loads the two sections of the beam on each side of the

load have a common slope at the load, and also a com-

mon deflection. For continuous beams and overhanging
beams the two sections on each side of a support have a

common slope and a common deflection at the support.

FIG. 92.

Thus, in Fig. 92 the portions of the elastic curve AB and

BC have a common tangent (i.e. a common slope) and

a common deflection at the point B. Also the portions

BC and CD have a common tangent and a common
deflection at the point C. The beam is fixed at the

point D, hence the slope of the portion CD is zero at

the wall.

The following principles, then, may be used in the

determination of the constants of integration:

(a) The section of zero vertical shear can be obtained

by drawing the shear diagram, and if it occurs at a
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point where there is no concentrated load or reaction

the corresponding value of x may be used in the shear

equation, with V equal to zero and the value of the

constant Vi determined. However, this substitution will

seldom be necessary, as the value of V\ will usually be

determined by other methods.

(b) The section of zero bending moment will be at the

free ends of beams, as at A, Fig. 92, and at the ends

supported without restraint; also at the points of inflec-

tion for overhanging, continuous, and restrained beams,

as at /, Fig. 92, but the inflection points in such beams

cannot be obtained by inspection.

(c) The section of zero slope is at the horizontal por-

tion of the beam, as at D, Fig. 92. For symmetrical
beams carrying symmetrical loads the beam is hori-

zontal at the axis of symmetry (at the center). By
definition beams with fixed ends are horizontal at the

fixed ends.

(d) For the axes chosen the section of zero deflection

is at the supports. For overhanging and continuous

beams there may be one or two positions in a span

where the deflection is zero, but these points cannot be

determined by inspection.

120. ESSENTIAL QUANTITIES TO BE KNOWN ABOUT
BEAMS. In all kinds of beams the important things to

be obtained are the position and magnitude of the

maximum stresses and the maximum deflection. For

overhanging, continuous, and fixed beams the inflection

points need to be found. When the maximum vertical

shear is determined, the maximum shearing stress is

y
then obtained by use of the shear formula J = rr ' When

the maximum bending moment is found the maximum
fiber stress developed may be obtained by use of the
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moment formula/ = =- These formulas may be used

to determine the safe load for a given beam, and also

to design beams. Building specifications usually state

that the maximum deflection shall not exceed a given

amount, therefore it is necessary to be able to determine

the maximum deflection for beams.

EXAMPLES

i. Deduce the equation of the elastic curve and the maximum
deflection for a cantilever beam with a uniform load of w pounds

per lineal unit. See Fig. 93.

The load per lineal unit is w.

FIG. 93.

When x = l, a =
o,

/. o =

When x o, V =
o, /.

M

When x = o, 1,1 = o, .

Fx
= o. (Zero shear),

=- Cwxdx +M l
= -

*

+J 2

x
= o. (Zero moment),

gj + i and
i=^gj--

(Zero slope),

'*' a
6EI

+
6EI'
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/, C wxfdx . C
AH-* J -67+J

When x = /, y = o,

6EI

wl*=

and yl
= - - (Zero deflection),

8 hii

SEI (Elastic curve).

The maximum deflection is at the end, where x = o, and is

w^__ WP_
&EI SEI'

2. Deduce the equation of the elastic curve and the maximum
deflection for a simple beam with a uniform load. See Fig. 94.

The load per lineal unit is w.

o '*

FIG. 94.

When s = o the vertical shear is equal to the left reaction, which

. wl

\ wxdx + \
- 22

When oj = o, M =
o, .'. Jkfj

= o. (Zero moment) .



EXAM.] ELASTIC CURVE ALGEBRAIC METHOD 199

The beam is horizontal at the center, hence

w?

when x = -, a = o.
2

^f wx?dx ~ m
_ wx* wlx* wPx~

24EI i2EI~ 24EI
yi '

When x = o the deflection is zero, or y = o, /. y{
= o. (Zero

deflection),

wx* wlx?

The maximum deflection occurs at the center and is obtained by

letting x = - in the equation for y, and it is found to be

_^ ^ = J. WL
384 El 384 El

'

3. Deduce the equation of the elastic curve, and the value of

the maximum deflection for a simple beam with a concentrated

FIG. 95.

load at the distance kl from the left support in which k is a fraction.

See Fig. 95.

Ri = W(i- k}.

The load curve is at zero. To the left of the load,

V = W(i-k}.

U = f W(i - k} dx + M, = W (i
-

k) x + Mi,

when x =
o, M =

o, /. M:
=

o,

... M = W(i-k)x. (b)

(c)
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The beam is horizontal between the load and the center but for

what value of x it is not known, hence we must let on remain in

the equations till enough conditions are obtained to determine its

value.

y =
-gj

(i
-

k)
^
dx +

J"
aidx + yi,

When x = o, y =
o, .: y^

=
o,

W
(d)

This is all that is known about the equations to the left of the

load, hence we must use those to the right of the load.

To the right of the load,

V=-Wk. (i)

M = -f Wkdx + M/ = - Wkx + MS.

When x = l, M =
o, /. MS = Wkl, and M = Wk (I

-
x) (2)

Wkr n /=
J (l-xJdx + aS,

The value of a. for this curve is not known for any value of

x. Hence / must be kept in the equation till its value can be

determined.

TTTl 7 / I* &V ItWhen x = /, y = o, .: y t
= -- ai I,

3 El

, Wkl3
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To determine i and / it is known that the slope of both

portions of the elastic curve at the load are the same. Therefore

(c) and (3) are equal when x equals kl.

W, .v*
1
/
1

This gives one relation between <xi and /. To obtain another

relation between them, it is known that the deflection of both

portions of the elastic curve are the same at the load. Therefore

(d) and (4) are equal when x equals kl.

w m*

Solving equations (A) and (B) for i and a/,

Wl2

6EI
WP

(2

To the left of the load, then,

To the right of the load,

Wkx3

,

Wklx* WPx, i.^
""6E/

4"^E7""6E7 (2/ k)

The value of x for the maximum deflection is obtained by equating

a to zero and solving for x. If k is greater than -
,
the value of x

2

is found to be

3 (i
~

*)

This value of x substituted in the expression for y gives the

maximum deflection to be
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4. Deduce the equation of the elastic curve and determine

the value of the maximum deflection and the maximum moment,
and locate the inflection points for a beam fixed at both ends with

a concentrated load at the center. See Fig. 96.

From symmetry both

reactions are equal.

The load curve is zero.

To the left of the load,FIG. 96.

The bending moment at the wall, which is the restraining

moment and keeps the beam horizontal at that point, is not

known at the start. The position of zero moment is not known

either, so Mi must be retained at the present.

Wx2

4 El El

By definition of restrained beam the slope at the wall is zero,

therefore when x =
o, a =

o, and ai = o. From symmetry it

is seen that the beam is also horizontal at the center, therefore

when x = -
,
a o.

2

o = Wl2 MJ
Ti6EI 2 El

and
Wl
8

_ Wx Wl

Wxz

4EI
Wx3

12 El i6EI

.Wlx
'

8EI'

Wlx2

When o, y = o, .'.
;

Wx* Wlx2

12 El i6EI
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The maximum deflection occurs at the center and is found to be

Wl3 Wl3 WP
96 El 6^EI 192 El

Similar equations can be deduced for the right half of the beam.

Wl
The bending moment at the wall is -- , and at the middle

8

of the beam it is +
o

The inflection point is the point at which the bending moment

is zero, and is found by equating M to zero and solving for the

corresponding value of x, which may be called x\.

Wx, Wl

5. Determine the left reaction, the maximum bending moment,
and the equation of the elastic curve, and locate the inflection

FIG. 97.

point for a beam fixed at one end and supported at the other

end, carrying a uniform load. See Fig. 97.

The load per lineal unit is w
t

Since the reactions cannot be determined at the start, the value

of Vi cannot be determined at first. The left reaction is less

than it would be if the beam were not restrained at the right end.

When

2

M =
o, /.

Wx3 V&*
6E7 2EI

Afi-o,
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When * = /,
= o.

wP_ <Vjtf wl* Fi/
2

6EI 2EI 6EI 2 EI'

wxz V&\ wl3
Fi/

2

6EI 2EI 6EI 2EI'

VJx
24EI

"*"
6 El 6 El 2EI~

t yi '

When x = o, y = o, /. y\
= o.

Also when x = I, y = o,

w/4 FiP wl*

2EI'

wx* wlo?~
- i6El

The maximum positive moment is at the distance f / from

the left support, and is Mm =
T| B wl

z
. The maximum negative

moment is at the wall and is Mm =
| wl2

. The inflection point

is at II from the left end. The point of maximum deflection

occurs where the slope is zero between the supports.

6. Determine the relation between the bending moments over

the three supports of two consecutive spans of a continuous

beam carrying uniform loads on both spans. See Fig. 98.

FIG. 98.

Using the relations deduced in Art. 116 we have for the first

span:

The load per unit of length is - Wi.

V = - W& + Fi. (No relations yet to determine Fj). (a)

M= -=r +Fj#+ MI. (No relations yet to determineM \). (b)
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a = + + +ai . (No relations yet to determine ,) . (c)
6 / 2 El El

MVX
Z

. xjv

When x = o, y = o. /. y^
= o.

When of = lit y =
o,

6EI 2 EI

By the same process we obtain equations for the second span.

For the second span,

The load per unit of length is w2 .

V = w2x + F2 . (No relations yet to determine F2). (i)

M = ^- + V2x + MI. (No relations to determine M2). (2)

w x3 V x2 M xa=- ~ + - + -- + 2 . (No relations to determine a,) . (3)

When x = o, y =
o, /. yz

= o

Also when x = 1 2 , y =
o, and

2/2
3 F2/2

2

24 / 6/ 2.E/

It is known that the slope of each portion of the elastic curve

is the same at the middle support. By letting x =
l^ in equation

(c), and letting x = o in equation (3), and equating (c) to (3),

and remembering the value of V and F2 from Art 113, there

results the theorem of three moments,

MA + 2 M2 (/! + /,) + MA = - H^! -^ .

4 4

7. What is the maximum deflection of an 8-inch, 18-pound
cantilever I-beam 10 feet long carrying a load of 1800 pounds
concentrated at the end?

Wl3 1800X120X120X120A =
.
= -- = 0.608 inch.

3 El 3 X 30,000,000 X 56.9
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PROBLEMS
i. For a simple beam with a concentrated load at the center

show that the equation of the elastic curve to the left of the

center is

and show that the maximum deflection is

48 EI
2. Deduce the equation of the elastic curve for a cantilever

beam carrying a load W concentrated at the end and a uniform

load w per lineal unit. Also determine the maximum deflection.

Wl* wV
Ans , A _-_.

3. Deduce the value of the maximum deflection for a simple

beam carrying a load W concentrated at the center and a uniform

load w per lineal unit. Wl3
: wl*

Ans. A = ------
48 7 384^7

4. (a) Deduce the equation of the elastic curve for a beam
fixed at both ends carrying a uniform load, (b) Determine the

value of the maximum bending moment, (c) Determine the value

of the maximum deflection, (d) Locate the inflection points.

Ans. (a)

/UN Ttf Wl*
(b) Mm = --

,

(d) x, =

5. For a beam fixed at both ends and carrying a concentrated

load at the distance kl from the left support show that:

The left reaction is ^ = W (i
-

3 k2 + 2 yfc

3

).

The moment at the left support isM l
= - Wlk (i 2 k + k2

).

The moment under the load is M3
= Wltf (2 4 k + 2

2

).

Also determine the value of the deflection y.
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6. For a beam fixed at one end and supported at the other,

and carrying a concentrated load at the center, show that:

The left reaction is ^ W.

The moment at the wall is T\ Wl.

. The moment at the load is -fa Wl.

The values of y are:

O

The inflection point is / from the free support.

7. For a beam fixed at the right end and supported at the left

carrying a concentrated load of W at the distance kl from the

left support show that:

W A
The reaction at the left end is (2

-
3 k + /?).

Wl
The moment at the wall is - -

(k
- k3

).
2

Wlk
The moment at the load is - -

(2
-

3 k + k3
}.

8. For equal spans and equal uniform loads on all spans show

that the theorem of three moments reduces to

9. Solve the problems at the end of Chapters IX and X.



CHAPTER XIII

SECONDARY STRESSES

121. HORIZONTAL SHEAR IN BEAMS. When one

board is placed on top of another one and the two are then

used as a beam the upper board will slip over the lower one

in one direction at one end and in the opposite direction

at the other end. To prevent this motion and to make
the beam stronger the boards may be nailed together,

the nails taking shear. In all beams there is the tendency

r 1/1 Z\

A IB

D,

S h XiS l

Vl Zl

FIG. 99.

of the upper part to slip past the lower part along any
horizontal plane, a horizontal shearing stress thus being

produced.
It is the object of this article to show that the vertical

shearing unit-stress and the horizontal shearing unit-

stress at any point in a beam are the same. Proof: In a
208
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beam let a small parallelepiped ABDC, of dimensions %i,

3?i, Zi, be imagined cut from the beam. Neglecting the

effect upon the shearing stress of any load for the element

of length xi t
the vertical shearing unit-stress will be the

same on both vertical faces, and the horizontal shearing

unit-stress will be practically the same on the top and

bottom faces. The forces acting upon the element as

shown in Fig. 99 are sv y\z\ on the vertical faces, and

ShXiZi on the top and bottom faces, in which sv is the

vertical shearing unit-stress, and sh is the horizontal

shearing unit-stress. By taking moments about any

point, as A, the relation between the two unit-stresses

is deduced.

2 MA = ShX&iyi svyiZiXi
=

o,

.'. sh = sv .

122. THE MAGNITUDE OF THE HORIZONTAL AND
VERTICAL SHEARING UNIT-STRESSES AT A POINT. In

Art. 63 it was assumed that the maximum vertical shear-

ing unit-stress for a section is greater than the average, and

values of the ratio between the two were given for several

standard sections. To determine those ratios the value

of the horizontal shearing unit-stress must be deduced.

The expression for the horizontal shearing unit-stress will

now be deduced. Let Fig. 100 (a) represent a beam with a

portion ABCD imagined cut from the beam. The stresses

on the fibers of the section AD in general will not be equal
to the stresses on the fibers of the section BC, because

the bending moments at the two sections are usually
different. If the bending moment at the section AD is

less than that at the section BC, the resultant HI of the

stresses acting upon the face AD is less than H2 ,
which

is the resultant of the stresses acting upon the face BC.
To maintain equilibrium a horizontal shearing force

snub must act upon the face CD, sh is the horizontal
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shearing unit-stress, u is an element of length, AB, and
b is the thickness of the beam.

FIG. ioo.

By Art. 71 #1 is equal to the area of the section above

the plane multiplied by the unit-stress on the centroid

of that area.

Likewise

/i is the unit-stress developed on the outside fiber at the

section AD, and /2 is the unit-stress on the outside fiber

/I JVI 1

at the section BC. From the moment formula, =
-y-

and = ~~- For equilibrium of the element:
c J.

H2 HI = shub,

f

l

A'y
r

--

MI At -, ,

-A'y' = shub,

A'

* =
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M2
- Ml

is the rate of change of the bending moment,

and this equals V when u is made indefinitely small.

A'y' is zero for y equal to c and is a maximum for y

equal to zero. Therefore the shearing unit-stress is

zero at the outside fiber of beams, and is greatest at the

neutral surface.

The maximum shearing stress, both horizontal and

vertical, developed in a rectangular beam of breadth b

and depth d where V is the vertical shearing force, is

"*m "nrT *i r ^~7^" ^> '

S^> 7 7
"~~ '

A

Ib bd3b 2 4 2bd 2A
12

This is one-half greater than the average vertical shear-

ing stress.

For circular sections the maximum shearing stress is

V

64
This is one-third greater than the average vertical

shearing stress.

For built-up and I-sections the maximum shearing

stress is approximately equal to that obtained by divid-

ing the vertical shear by the area of the web AI.

Rectangle
I-Section

The variation in the intensity of the shearing unit-

stress for various sections is shown by the diagrams of

Fig. 1 01.
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Because of their small strength in shear parallel to the

grain, timber beams frequently fail by shearing along

the neutral surface. Beams should always be investi-

gated for the maximum shearing stress developed.

123. PLATE GIRDERS, FIRST METHOD. One method

of the design of plate girders is to consider all plates

and angles acting as a homogeneous beam. The girder

may then be designed by the use of the moment and

shear formulas, and the pitch of the rivets can be

determined by the use of the formula for horizontal

y
shear. In Sh = jrA'y',

sh is the stress developed upon a

unit of area of the horizontal plane. Multiplying this

by b gives the total force which would be transmitted

from the upper section to the lower one in one unit of

length of the girder. For built-up sections the stress

must be transmitted from the upper plates to those next

below, through the rivets connecting the plates. If p is

the pitch of the rivets, and there are n rivets in the dis-

tance p, the force that each rivet must carry will be

.

n In

The greatest number of rivets will be required where the

product VA' is greatest.

124. PLATE GIRDERS, SECOND METHOD. Another

method of design for plate girders is to assume that all

the tensile and compressive stresses are taken by the

flanges, and that the stress is uniform over the section

of the flanges, and that the shear is taken by the web.

The stresses calculated in this way are probably a little

in excess of those actually developed, but the error is on

the side of safety.
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FIG. 102.

Let Fig. 1 02 be the cross section of a girder, A the

effective area of one flange, d the distance between the

centroids of the flanges, and / the

unit-stress developed in the flanges,

then the compressive and tensile

forces equal Af and the resultants

act at the centroids of the flanges.

The moment of these internal

stresses resists the bending mo-

ment due to the external forces.

For equilibrium, then,

M = Afd,

where M is the bending moment and Afd is the resisting

moment.

The bending moment increases toward the center of

the span, and to increase the resisting moment with

the same unit-stress the

area A is increased by add-

ing cover plates in the

center. The pitch p of

the rivets connecting the

flanges to the web may now
be found. (See Fig. 103.)

The change in the stress

FIG. 103.
in the flanges between any
two sections must be trans-

mitted through the rivets to the web. This difference

in a unit of length is

- Mi V
d d'

since Mt MI is the rate of change of the bending

moment, as the distance between the sections was taken

as unity. If the rate of change of the bending moment,
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or F, is constant, the change for the distance p is p -j-

If there are n rivets in the pitch p, and R is the allowable

force one rivet will transmit,

_nRd
P "

125. COMBINED FLEXURE AND TENSION OR COM-
PRESSION. When a beam is subject to axial loads in

connection with the flexural loads the maximum stress

developed may be considered as made up of two parts

that due to bending and
J Load L that due to the axial load.

The axial load increases

R
i

R!S the tensile oj compressive

B & F stress due to the bending.

"/ Fig. 104 (b) is a free-body

diagram of a portion of the

c D E. beam under a compression
(b) load P. If the deflection

FIG. 104. of the beam is small the

moment due to P may be

neglected. IfM is the bending moment due to the flexural

loads, A the sectional area, and - the section modulus,

Me
the maximum flexural stress developed is /i

=
-j-

(indicated by AB in compression). The compressive
p

unit-stress due to the axial load is /2 = -r (indicated byA
FA). It is seen that the maximum compressive stress

is developed in the most remote fiber in compression
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and equals the sum of the flexural and direct stres"s

and is

Me P

If P is a tension load the maximum tensile stress is

of the same form as that given for compression.
In longer beams, where the deflection is appreciable,

there is an additional moment M' due to the load P.

The moment is decreased if
P /-"-^

P is tension and increased

if P is compression. (See

Fig. 105.) If Ai is the max-

imum deflection due to both pIGi I05

the transverse and longi-

tudinal loads the moment of P is PAi, and the total

moment is

M M' = M PAi.

, MIC (M PAi)ch= ~T ~T
The plus sign is for a compression load and the minus
is for a tension load. In order to find the stress AB,or
/i due to the moment of both loads, Ai must be expressed
in terms of /i, the maximum stress for the deflection AI.

From Art. 107, Ai = ^j~ -

pJlLC

Me

from which fi
-

p
To this add the direct stress -j due to the axial load.
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Then the maximum stress developed is found to be

f f .P Me i i \ . p
J-Ji + A-~T7

! \

-s
The minus sign is used for P in compression and the

plus for P in tension.

126. COMBINED SHEARING STRESSES AND TENSILE
OR COMPRESSIVE STRESSES. Let Fig. 106 represent a

small portion of a beam where the

c ;<

x-*~~
>[ B

known unit-stresses are s in shear~
anc^ / m tension or compression, 5

fvz
\\^^'^r

uz
and / being at right angles to each

ATJfcu*^ other. Along all diagonal planes,

FIG. 106. as AB, there are normal and tan-

gential components of the stresses.

sp is the shearing unit-stress along the plane and / is

the tensile or compressive unit-stress normal to the plane.
In more advanced texts it is shown that the value of

to give the maximum sp is such that tan 2
<$>
=

,
and

2 S

the corresponding maximum shearing stress is

S-o

The value of < to give the maximum fn is such that

cot 20= , and the maximum tensile stress is

In the latter equation the maximum stress will be

obtained with the plus sign, and if fn is a tensile stress,

the maximum /n will be a tensile stress. If / is a com-

pressive stress the maximum / will be a compressive
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stress. If the minus sign is used before the radical

the resulting fn will be negative, which indicates that

it is of opposite sign from/, i.e., / is compression for/
tension, and/n is tension for/ compression.

EXAMPLES.

i. Determine the maximum horizontal shearing unit-stress

in a timber beam 8 inches by 14 inches under a load of 24,000

pounds applied at the third points.

Ri = jR2
= 1 2,ooo pounds.

2. Compute the pitch of |-inch rivets for a plate girder of

72-ft. span and 7 feet 2 inches deep, the cover plates being 14 inches

wide with a total thickness of | inch at the center, being connected

to angles | inch thick. (NOTE: This girder was designed to carry

a live train load together with the weight of the tracks and the

girder.)

The maximum vertical shear at the ends was found to be 137,000

pounds; at 5 feet from the ends, 121,000 pounds; at 10 feet from

the ends, 102,000 pounds, etc.

Each rivet will carry .601 X 8000 =4810 pounds in shear, and

f X | X 18,000 = 5900 pounds in bearing. The shear governs in

this case.

Taking 2 rivets in the pitch p,

2 X 4810 X 86
p =- - = 6 inches at the ends.

137,000

p = 6.8 inches at 5 feet,

p = 8.05 inches at 10 feet, etc.

For concentration of the loads on the girder the maximum
allowable pitch would be about 6 inches.
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3. A timber 8 inches by 10 inches is used as a simple beam of

i2-ft. span to carry a uniform load of 4000 pounds and end com-

pression loads of 40,000 pounds. What is the maximum stress

developed?

By assuming the deflection negligible,

,. P Me _ 40,000 4000 X 144 X 5 X 12

-~ A ~T 80 8X8X loXioX 10'

= 500 + 540 = 1040 pounds per square inch.

By use of the formula assuming the deflection not negligible,

= 500 + 540
8 X 40,000 X I44

2 X 3 I

76.8 X 1,500,000 X 2000'

= 500+ 54o( ^-37- )
= 5+ -^~z

V i -.08647 9 I36

= 500 + 590 = 1090 pounds per square inch.

Thus it is seen that the moment of the axial load about the

central section increases the stress about 5 per cent.

4. A bolt i inch in diameter is subjected to a tension of 3000

pounds and at the same time to a cross shear of 5000 pounds.

Determine the maximum tensile and shearing unit-stresses.

5 = 5000 4- .7854 = 6370 pounds per square inch.

/ = 3000 -5- .7854 = 3820 pounds per square inch.

By substitution in the formulas for the maximum tensile and

shearing stresses,

i/Vfn = + i63702 + - = 8560 Ib. per sq. in., tension.

,-v/6370* -f-
= 6650 Ib. per sq. in., shear.
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PROBLEMS
1. A simple rectangular timber beam 8 inches by 12 inches and

of lo-ft. span carries a uniform load of 2000 pounds per foot.

Determine the horizontal shearing unit-stress at the following

points: (a) At the neutral surface over a support, (b) 3 inches

from the neutral surface over a support, (c) 4 inches from the

neutral surface at a quarter point.

2. What is the maximum shearing unit-stress developed in an

I-beam of the largest standard section which carries a uniform load

over a span of 20 feet if the maximum fiber stress does not

exceed 16,000 pounds per square inch?

3. A girder of 55^-ft. span is built up of -inch by 4 feet

lo-inch web plate, four 5-inch by 6-inch by f-inch angles, with the

5-inch leg riveted to the web, and four cover plates at the quarter

points 14 inches by \ inch. The rivets are | inch in diameter and

spaced 3 inches apart, and there are two rows in each 5-inch leg.

Determine the maximum shearing and bearing unit-stresses that

would probably come on the rivets. (Section is similar to that

shown in Fig. 102 with cover plates added. Girder is to carry a

train load.)

4. Determine the maximum stress developed in a 6-inch,

15-pound I-beam of 6-ft. span with both ends fixed, carrying a

uniform load of 8 tons and tension loads at the ends of 6 tons.

5. What will be the maximum fiber stress developed in a simple

timber beam 6 inches by 8 inches of 8-ft. span, with a concen-

trated load of 1500 pounds at the center and end compression
loads of 10,000 pounds?

6. A i2-inch, 4O-pound I-beam of 6-ft. span carries a uniform

load of 1 200 pounds per foot, and is subjected to an axial compres-
sion of 60,000 pounds. Find the maximum stress developed.

7. Find the size of a square maple simple beam for a simple

span of 12 feet to carry a load of 500 pounds at the middle, when
it is also subjected to an axial compression of 2000 pounds.

8. A bar of iron is under a direct tensile stress of 4000 pounds
per square inch and a shearing stress of 3500 pounds per square
inch. Find the maximum tensile and shearing unit-stresses.

9. Design a white oak beam with both ends fixed, for a span of
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12 feet, which is to carry a concentrated load of 4 tons at the

center and a tension load of 5 tons.

10. What I-beam would be required for the loading given in

Problem No. 6 if the unit-stress is not to exceed 16,000 pounds

per square inch?

n. What will be the maximum shearing and tensile unit-

stresses developed in a |-inch bolt if it is subjected to a tension

load of 5000 pounds and a cross shearing load of 5000 pounds?



CHAPTER XIV

COLUMNS AND STRUTS

127. DISCUSSION. The terms columns and struts

are usually applied to prismatic members designed to

carry compression loads when the length

has an effect on the strength of the

member. For short compression mem-

bers, lateral deflection is inappreciable

under load, while for longer ones (i.e.

columns) it may be of consequence.

Long columns will not carry so great

loads as shorter ones of the same mate-

rial and section, since the lateral bend-

ing of the column causes the stress to

be distributed unevenly over the cross

section of the column and makes it

greater on the concave side than the

value obtained by dividing the load by
the sectional area (see Fig. 107). The
formulas used in designing columns,

and in calculating the stress developed
in them, are to a large extent empirical.

' I07 '

A large number of formulas have been developed by
different investigators, and those in most common use

will be given.

128. STIFFNESS OF COLUMNS. If a flat board is used

as a column, bending will occur about an axis parallel

to the longer side of a section. In all columns free to

221
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bend in any direction bending will occur in the direction

in which the column is least stiff. In other words, the

bending will occur about the axis for which the moment
of inertia and the radius of gyration are the least. The
most economical column section, therefore, would be

one for which the tendency to bend would be the same
for all axes.

The slenderness ratio is the ratio of the length of

a column to the least radius of gyration of the cross

section, and equals
- where / is the length of the column

and r is the least radius of gyration as determined by
the principles of Appendix A. / and r should be in the

same units, and the inch is the unit most commonly
employed.

129. THE STRENGTH OF COLUMNS. The yield point

of the material, which is somewhat higher than the

elastic limit, is practically the ultimate strength for col-

umns built of structural steel or other similar material.

When a column is sensibly bent, the bending moment at

the section of greatest deflection increases rapidly with

a small increase of load. The moment of the load at

the danger section will cause the column to fail under a

load somewhat greater than that load which will develop
a stress equal to the elastic limit of the material.

Fig. 108 shows characteristic failures for compression

specimens of timber. The short one shows oblique

shear failure, the intermediate ones show failure in com-

pression, and the longest one shows failure due to bend-

ing of the column.

The condition of the ends also has an effect on the

strength of a column. Fig. 109 shows the position

assumed by long homogeneous columns under load, with

different end conditions: (a) with both ends round
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FIG. 108.
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or pivoted, (b) with one end round and the other end

fixed, and (c) with both ends fixed. Fixing the ends

increases the strength of a column. In Fig. 109 it may be

seen that about two-thirds of the column in () is in a

condition similar to that in (a), and that half of the

column in (c) is in a condition similar to that in (a).

(a) (b) (c)

FIG. 109.

It is commonly assumed that fixing one end is equivalent
to decreasing the length to f and leaving the ends

round, and fixing both ends is equivalent to decreasing
the length to f and leaving both ends round.

In very long columns the column may fail by sidewise

deflection without any portion of the material being

injured. This action occurs at a lower slenderness

ratio in a material like, timber than in a material like

steel. The phenomenon of sidewise failure can be

illustrated by the blade of a tee-square.
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130. THE STRAIGHT-LINE FORMULA. By examining

the data of tests of columns it is found by plotting points

p
to represent the average stress -7 at rupture, for various

values of the slenderness ratio - that a straight line

can be drawn which will fairly represent average ulti-

p
mate values of -j for the different slenderness ratios.

A
p

Thus, in Fig. no values of
-j

are given along the vertical

axis and values of - are given along the horizontal axis.

An equation representing this straight line is of the

P C* I

form r =/i In this formula PI is the load at
A f

rupture. A similar formula may be used to determine

the safe load for a given column or to determine the

proper sectional area

to carry a given load.

Of course, the safe load

P will be considerably -

lower than the rup-

turing load PI. The

straight-line formula

for the average stress
~

over the section of the FlG- IIO<

P Cl
column is -r = / where P is the safe load and theA T

values of / and C are to be specified. In the straight-

line formula / C- is considered as the allowable safe

unit-stress. This formula shows that the strength of a

column becomes less as the length increases and as the

radius of gyration decreases. It is purely empirical, as
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it is based entirely upon experimental data, but it is con-

sidered to be as reliable as any and is quite generally

employed.
The values of /i and C\ for various materials can be

derived from experimental data, and they may be used

as a guide to determine values of / and C to be used in

design.

The greatest value of the slenderness ratio to be used

in the application of the straight-line formula is usually

given as Ioo to 125. In any case it should not be greater

than 150.
P I

Cooper gives the formula -r = 17,000 90- as safe
yl T

for soft steel columns of a through railroad bridge.

p i

Ketchum gives the formula
-j
= 16,000 70- for steel

A. T

columns in building frames. The limit of - is 125.

The Chicago building ordinance as revised in 1910

may be taken to be illustrative of architectural practice.

Its requirements are as follows :

P I

For steel columns -r = 16,000 70
-

J\. T

p I

For wrought iron columns . . . -r = 12,000 6o-
^T. T

p I

For cast iron columns -r = 10,000 40 -

A T

The maximum allowable compressive stress shall not

exceed the values given in Table 18. - shall not exceed

120.

For timber columns the following is a modification

of the formula used by Ricker and of that given in the

Chicago building ordinance :

P I

For timber columns. . . . -r =/ .00367
-
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in which / is the value of the allowable compressive

stress parallel to the grain given in Table 8. The

ordinance provides that the slenderness ratio - shall not

exceed 120. The original form of this formula was for

columns of rectangular section.

TABLE 1 8

MAXIMUM ALLOWABLE COMPRESSIVE STRESS
IN POUNDS PER SQUARE INCH, CHICAGO

BUILDING ORDINANCE, 1910.

Two problems can be solved by the use of the straight-

line formula, (i) the safe load a given column will

carry, and (2) the design of columns. For these problems
the above formulas may be used unless the specifications

state otherwise. Of these problems the design of col-

umns is the One most commonly met by the engineer

and the architect, and it admits of many solutions.

ILLUSTRATIVE EXAMPLES

i. What load would a 1 5-inch, 42-pound I-beam 9 feet long

safely carry if used as a column in a bridge ?

From Table No. 21 giving properties of I-sections, A = 12.48

square inches, the least r = 1.08 inches.

/ _ QX 12 _ 108

r
~

i.08
~

i.08
"

By the use of Cooper's formula

P = A
^17,000

-
90A

P = 12.48 X (17,000 9000) = 12.48 X 8000 = 99,840 pounds.
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2. Design a square shortleaf pine column n feet long to carry

a load of 10,000 pounds.

Let d be the dimension of a side and r the radius of gyration.

A = d*.

The least value of r may be such that

/ 12 X ii 132- = 120, least r = = -*- = i.i inch.
r 120 120

= v7 +A V -r n fll

12

Least d = r Vi2 = i.i X 3.46 = 3.81 inches.

P I
For the formula = / .00367

-
,A T

/ = 1200 from Table 8.

= 1200 - .0036 X 1200 X /IX X I2>

10,000 = i2oodz
igjod,

d2 -
i.64</ =

8.33,

d 3.82 inches.

The 3.8 2-inch by 3.8 2 -inch timber would do, but a 4-inch by

4-inch would generally be used.

In this example the size of the column is the same, determined

both by the slenderness ratio and by the allowable stress. This

is seldom the case.

131. ECCENTRIC LOADS ON COLUMNS. The fore-

going formulas are to be used only for axial loads. As
shown in Art. 77, a load when eccentric produces a greater

unit-stress than when axial, and when the load on a col-

umn is eccentric the formulas used must take account of

the effect of the eccentricity. If the load P has the eccen-

tricity e, the stress due to the eccentricity alone, as de-

P ec
rived in Art. 77, is -j

- Consequently the allowable
A. Y

unit-stress for design of a column must be equal to
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P P ec
+ -r -t

,
and by equating this to the allowable stress,

^T. ./I T

the straight-line formula for columns carrying eccentric

loads becomes

The second member of this equation is the allowable

stress as given in the formulas of Art. 130.

ILLUSTRATIVE EXAMPLE

What load would a solid round cast iron column 6 inches in

diameter and 10 feet long safely carry if the load has the eccen-

tricity of 1.5 inches?

For this column the formula isfi+ = 10,000
- 40--

A = = 28.3 square inches, e = 1.5 inches, c = 3 inches,
4

r2 = I + A = r--^ = -r=^7 =
2.25, r = 1.5 inches.

64 4 16 16

/ _ IPX 12 _
ou,

r 1.5

1 1 +
T ' 5 X 3

)
= 10,000

- 40 X 80 = 6800.
.3V 2.2.=; /28.3 V~ 2.25

P = X 6800 = 64,200 pounds.

132. THE METHODS OF TRANSMITTING LOADS TO
COLUMNS. In the columns of such structures as bridges

the load is usually transmitted to the column through

pins or rivets and plates, in such a manner that the load

is axial or so that the eccentric stress will oppose any
moment stress that may be developed by the weight of

the member when not vertical. For buildings and many
other structures, however, the load may be transmitted
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through angles and rivets on one, two, three, or four

sides of the column, thus producing large eccentric

stress which should be provided for in the design of the

column. Beams and girders are usually supported on

caps or brackets, and for purposes of design the load is

considered as acting at the centroid of the area support-

ing the member. The resultant of all the loads may be

found and dealt with, or the effect of each load may be

determined separately and the resulting stresses com-

bined. In making the combination of the loads it

should be borne in mind that loads on opposite sides

of the column will partly neutralize the eccentric effect.

OTHER COLUMN FORMULAS

133. COMPARATIVE STRENGTH AND STIFFNESS OF LONG,
IDEAL COLUMNS. Condition of the Ends. From analogy with

beams the maximum deflection for a given stress in the outer

fiber is taken to vary directly with the square of the length

of the column (Art. 108).

B

(a) (6) (c)

Consequently the maxi-

mum moment and the

maximum moment stress

in columns are assumed

to vary with the square

of the length. For very

long, ideal, homogeneous
columns the assumptions

are approximately true.

Columns under load will

deflect approximately, as

shown in the curves of

Fig. in. Curve (a) is for

both ends round or hinged;

curve (b) is for one end

round or hinged and the other end fixed; curve (c) is for both

ends fixed; curve (d) is for one end fixed and the other end round

FIG. in.
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and free to move; curve (e) is for both ends fixed in direction

but free to move laterally.

If /i is the moment stress developed in a column of length h with

both ends round or hinged (represented by curve (a)) under a given

load, the moment stress developed in the same column under the

same load with its ends fixed in the various ways will now be found.

Fixing one end is equivalent to shortening the column to f h

and leaving the ends round. The portion AB of the column

shown in curve (b) is in a condition similar to a round-ended column.

For this case, one end fixed and one end round, therefore, the

moment stress developed will be

/s-

Fixing both ends is equivalent to shortening the column to h

and leaving both ends round. The portion AB may be considered

as a round-ended column. The maximum moment stress devel-

oped for this case will be

pyW , i,- ~TT^ =
-Ji'

The column with one end fixed and the other end round or hinged
is in the same condition as half of a column with both ends round,
and for this case the moment, stress developed will be

By keeping both ends restrained in direction but one end free

to move laterally, as in (e}, is equivalent to having two columns

similar to the condition shown in (d) but one-half as long; there-

fore the moment stress developed in this case is

134. RANKINE'S FORMULA. Columns of Intermediate Length.
Rankine derived an empirical formula for columns of interme-

diate lengths, such as are found most commonly in engineering
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practice. The following is the derivation (see Fig. 112): Let

the column have the maximum deflection A, then the maxi-

|p
mum stress, which is due to compression and

flexure, will be at the point of maximum
deflection and is / =/x +/2,

where fv is the

p
direct compressive stress which equals and

A

f2 is the bending stress and is -
(Art. 69).

Therefore

, _ P Me _ P
J A + I ~A + ~T

From analogy with the maximum deflection of

beams (Art. 108) it is assumed that A varies

I
2

with -
. If ^ is a factor depending upon the

material of the column and the condition of

the ends, A =
</>-, then

c

Af

I = Ar2
,
and - is the slenderness ratio. The factor is a fraction

TABLE 19

VALUES OF
</>

USED IN RANKINE'S FORMULA
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which is determined partly by experiment and partly from the

theory of Art. 133. Having experimental data available and

assuming the relative strengths as given in Art. 133 the values

of were found to be as given in Table 19. It may be noted that

trie numerator of the fraction indicates the condition of the ends

and the denominator is the characteristic for the material. / should

be the allowable working stress for problems in design.

135. EULER'S FORMULA. Long Columns. Euler deduced a

formula for long, ideal, homogeneous columns. For such columns

it has been found that when the load reaches a certain limit, if

a lateral deflection occurs the load will hold the column in equi-

librium in that position. If the load is decreased the column

will come back to a straight position, and if the load is increased

the deflection increases until failure finally follows. From analogy

with beams, the deflection of a column from the straight position

varies inversely with the modulus of elasticity and the moment

of inertia of the section, and directly as the square of the length

(Art. 108); consequently the load a given long column will carry

is directly proportional to the modulus of elasticity and to the

moment of inertia and. is inversely proportional to the square of

the length. Therefore the formula based on these principles has

the general form P = -

For n Euler deduced the theoretical value ir
z for columns with

both ends round, 2|7r
2
for columns with one end fixed and the

other end round, 4?r
2
for columns with both ends fixed. Therefore,

the values of the load P which will cause failure as determined by
Euler's formula, are:

Both ends round,

ir*EA

\
r

i

One end fixed, the other end round,
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Both ends fixed,

\
r)

One end fixed, the other round and free to move,

In these formulas E is the modulus of elasticity, 7 = Ar2 is the

least moment of inertia of the cross section, r is the least radius

of gyration of the cross section, and - is the slenderness ratio.

Euler's formula as given is for the critical load, and it should

be modified before being used for design, and it should be used

only for columns of which the slenderness ratio is not less than

about 200. For design the formula would be modified by intro-

ducing a
"
factor of safety." (See Example 4.)

136. THE THREE PROBLEMS. Three typical problems may
be investigated by the use of the column formulas: (i) The in-

vestigation of columns, which consists of determining the maxi-

mum unit-stress developed in a given column under a given load.

(This can be done only with Rankine's formula, for which case the

stress is only nominal.) (2) The load which a given column will

carry safely. (3) The design of a column to carry a given load.

137. ECCENTRIC LOADS ON COLUMNS. Rankine's and Euler's

formulas as given above are to be used only when the load is

axial. In Rankine's formula,

p
for axial loads, the part of the stress is due to direct compres-

jrL

P /A 2

sion and the part X
<t>{-)

is due to the bending moment in the
A \rj

column. If the load has the eccentricity e, the increase in the

stress due to this eccentricity by Art. 77 is
; consequentlyA Y
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the stress developed in a column under an eccentric load will be

the sum of the three stresses and is

P
,

P /A2
,

P ec P

which may be used for columns to which Rankine's formula would

ordinarily be applied for an axial load.

For columns of large slenderness ratio a nearer approximation

may be made as follows: If P is the load with the eccentricity e

and the maximum deflection A, the total eccentricity of
p

the load at the point of maximum deflection is ei = e + A

(Fig. 113), and by considering the stress on the cross sec-

tion at that point as the result of the eccentric load P,

the maximum unit-stress from Art. 77 is

in which ei must be calculated. Let P be the load ob-

tained by the use of Euler's formula for the column, and

imagine it placed concentric with the column when the

deflection is A, then the column will be in equilibrium

under that load. As the column is in equilibrium under

either the eccentric load P or the concentric load P
,
the

moments at the danger section for both loads may be

equated, hence

P A=P(*+A) or, A--**

and

and / = -

{ i + _ gP
*L . ,-

II3 .

This formula for eccentric loads on columns may be used for

long columns for which Euler's formula could be applied for

axial loads.

EXAMPLES

i. If two 8-inch, 18-pound I-beams, latticed together so that

the distance between their centroids is 6^ inches, are used as a
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column 20 feet long with both ends round, what is the unit-stress

developed by an axial load of 40 tons ?

By Rankine's formula

/-5(.+.mA\ VJ I

P = 80,000 pounds, A = 10.66 square inches,

= , / = 20 X 12 = 240 inches,
25,000

/ _^tl+^-fw}
1

}
_ 7500 x 1.86

10.66 V 25,000 \3.27/ /

= 14,000 pounds per square inch.

2. If the load in Example No. i is applied 2 inches from the cen-

troid of the section what would be the maximum stress developed ?

For this case the formula is

c = (x -\- width of flange) -5- 2 = (6.32 + 4) -5- 2 = 5.18 inches.

= So.ooo/ + 4 /^4Q\
2

+
2 X 5 .i8\

,

10.66 V 25,ooo\3.27/ (3-27)* /

/ = 7500 (i -f- .86 + .96)
= 7500 X 2.82 = 21,200 pounds per

square inch.

These results show that when a load is axial the stress may be

within the safe limit, while a slight shifting of the load may cause

dangerously high stresses.

3. Design a square timber column 10 feet long with one end

fixed and the other end round to carry a load of 5000 pounds safely.

Let d be one dimension of the section, then A = d 2

I "d* d
r = i/ = = 7 inches, / = 10 X 12 = 120 inches.

V 12 -r- d 2 via
For Rankine's formula

<t>
= ^J and / = 800 pounds per square inch.

3000

5000 800 = 800 d 2

d*

"
1.78 X 120 X 120 X 12 d2 + 102.5

3000 Xd2

8d4
50 d

2

5125 = o.
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Solving this as a quadratic equation,

d z =
29.4,

d =
5.4 inches.

For Euler's formula, by using a factor of safety of 10,

5000 X io =
2 ' 25 X 9 '87 X I

- 5 '
000 X = 192 d',

120 X 120 X 12

d* = 260,

d = 4+ inches.

As the slenderness ratio of the column is in the neighborhood

of 100, the result obtained by Euler's formula is not so reliable

as the other.

4. What will be the maximum stress developed in a cast iron

column 4 inches in diameter and 1 2 feet 6 inches long, with both

ends round, carrying a load of 70x30 pounds placed i inches from

the center of the end?

By the use of Rankine's modified formula for eccentric loading,

we find the stress.

i inch,

/ = 150 inches, A =
12.57 square inches,

, 7000 / T 4 /i5oA , 1.5 X 2\ 7000 / T T Q . .\
Jf
= i + 1 ) H 1

= -
(i + io + 3)

12. 57V 5000 V i / i / 12.57

= 12,300 pounds per square inch.

138. BEHAVIOR OF COLUMNS UNDER LOAD. In

columns of ordinary length used in construction the

stresses set up by eccentricity of loading due to non-

straightness, unevenness of bearing at ends, and other

causes due to shop and erection processes, often are so

great that the effect of the length of the column is almost

negligible. This is especially true of columns built up
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of several parts (e.g., a column built up of two channels

connected by lattice work). Due to bends in the com-

ponent parts of such built-up columns, slip of rivets

and other causes, the extreme fiber stress, even in short

columns, may be as much as 50 per cent greater than the

average stress.* Furthermore, in designing columns

great care should be taken that they are not built up
of so thin metal that there is danger of failure by
"wrinkling" of plates under load. So much uncer-

tainty exists as to the action of built-up columns that

low stresses should be used in designing them, and care

should be taken to see that any new column is not

built up of parts relatively thinner and more liable

to "wrinkling" failure than are the parts of existing

successful columns.

A formula depending upon experimental data for its

constants should be used only in designing columns

similar to those from which the data were derived. For

example, if a series of experiments is made upon columns

of one shape of cross section, the data should not be re-

lied upon in designing columns of a different shape of

cross section, although the material and slenderness ratio

may be the same. Whether the results of tests of small

columns can be used for determining the allowable stresses

in similar large columns is a disputed question among
engineers. Such a procedure is sometimes necessary, and

in such a case working stresses in the large columns should

be low.

* See Bulletin No. 44 of the Engineering Experiment Station of the

University of Illinois.
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EXAMPLES

1. What should be the distance from center to center of two

8-inch, 18-pound I-beams latticed together for a column section

to make the radii of gyration equal for the

two principal axes? (Fig. 114.)

The moments of inertia about the X and

Y axes must be made equal. From the

table of properties of I-sections, the mo-

ment of inertia of one of the sections

about the X-axis is 56.9 (in.)
4
,
and the

moment of inertia about the F'-axisis 3.78

(in.)
4

,
and the area of one section is 5.33 pjG

square inches. The moment of inertia of

one section about the F-axis is I+Ad and equals 3.78 + 5.33 f-.l .

(fx\*\3.78 + 5.33 f
-

J j.
For equal moments of

inertia of the built-up section about the X and F axes,

2 (56.9) = 2
(3-78

+ 5-33
(-J,

.'. x = 6.32 inches.

2. A column built up of two io-in., i5-lb. channels laced

together with a distance of 6.33 inches between the backs, is

1 8 feet long. Determine the load the column will carry with eccen-

tricities of o inch, i inch, 2 inches, 4 inches, 6 inches, 8 inches,

10 inches, 12 inches, and 14 inches, respectively, the point of

application of the load being on the centroidal axis which is per-

pendicular to the web of the channel, and plot the curve showing
the relation between the load and the eccentricity.

The moments of inertia about both principal axes are equal

for the given spacing and r = 3.87 inches, A = 8.92 square inches,

/ = 12 X 18 = 216 inches,
l =^ =

55.8, c =
6 '33 + 2 X 2 '6

r 3.87 2

=
5.77 inches, - &S'.

.385.

By the use of Ketchum's formula,

( i +
J

= 16,000
- 70 - = 16,000

-
70 X 55.8 = 12,100 pounds

per square inch,
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P (i + .385 e)
= 8.92 X 12,100 = 107,800 pounds.

.'. P = 107,800 pounds,

P! = 107,800 -T- 1.385
= 78,000 pounds,

P 2
=

107,800 -T- 1.77 = 60,900 pounds,

P 4
= 107,800 -j- 2.54 = 42,500 pounds,

P 6
= 107,800 -7-3.31 = 32,600 pounds,

P 8
= 107,800 -T- 4.08 =

26,400 pounds,

P 10
= 107,800 -7- 4.85 = 22,200 pounds,

P12
= 107,800 -T- 5.62

= 19,200 pounds,

P 14
= 107,800 -7- 6.39 = 16,900 pounds.

These results are plotted in Fig. 115.

2 i 6 8 10 12 1

Eccentricity hi Inches.

FIG. 115.

3. Design the upper chord of a roof truss hi which the maxi-

mum stress is 65,100 pounds compression, and the length between

supported points is 5 feet. Use two angles connected by f-in.

gusset plates and f-in. rivets.
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Since the member is in compression the rivet holes need not

be deducted.

The least allowable r is
5 X I2 = - inch.
I2O 2

By use of a handbook we find the properties of the angles.

For direct compression alone the required area is 65,100 *

16,000 = 4.07 square inches. For the column section the area

must be somewhat greater. Try two 5-inch by 3-inch by A-inch

angles placed with the short legs outstanding. The least r is

1.22 inches, A = 4.82 square inches. The allowable stress is

= 16,000 70 X - - = 1 2, 560 pounds per square inch. The
/I 1.22

actual stress is = 5>I = 13,500 pounds per square inch.
A. 4- 20

This is not safe.

Try two 5-inch by 3^-inch by ^-inch angles.

The least r is 1.47 inches, A =
5.12 square inches.

The allowable stress is

- = 16,000
- 70 X = 13,140 pounds per square inch.

A 1.47

The actual stress is

= 5> IO = 12,750 pounds per square inch.
A. 5- 12

This is safe.

The actual average unit-stress is nearly equal to the allowable,

so use two 5-inch by 3^-inch by ^-inch angles with short legs

outstanding.

4. Draw the diagrams representing the relation between the

load and the length of columns of hemlock for the common rec-

tangular sections.

P I

By use of the formula = / .00367- the values are obtained.
A T

From Table 8, / = 1000 pounds per square inch. For a 2-inch

by 2-inch column, A = 4 square inches, d = 3.46 r. The maxi-

mum length for which this section may be used is / = 1 20 r =

When - =
o, P = 4000 pounds. When / = 5 feet = 60 inches,
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Safe Loads for Hemlock
Columns by
=1000-3.64

10 15

Length of Column in Feet.

Fig. 116.

(I000
_

> I000 x/ = 6o X 346 = IQ3

= 2500 pounds.
The other values given in the diagram, Fig. 116, were obtained

in the same manner as those for a 2-inch by 2-inch column.
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PROBLEMS

1. Determine the distance between the backs of two 9-in.,

i3.25-lb. channels latticed back to back, for equal radii of gyration.

Ans. 5.62 in.

2. What will be the radii of gyration with respect to the two

principal axes of a column section built up of two io-in., 25-lb.

I-beams and two f-in. cover plates 12 inches wide?

3. In a compression test of specimens of different lengths of

the same piece of red oak of cross section i| inches by 2 inches

the following values were obtained :

Plot a curve showing the relation between the average unit-

stress and the slenderness ratio, and determine the value of /i

and Ci at rupture, in the straight-line formula.

Ans.fi = 8000 Ib. per sq. in.

Ci = 63 Ib. per sq. in.

4. Design a square longleaf pine column 14 feet long to carry

a load of 6 tons.

5. Design a latticed column 18 feet long built up of two steel

channels to carry a load of 20 tons.

6. What safe load will a hollow cast iron column 10 feet long

carry if the outside dimensions are 6 inches by 7 inches and the

inside dimensions are 4 inches by 5 inches ?

7. Design a steel column 14 feet long to carry an eccen-

tric load of 20 tons applied 2 inches from the outside of the

column.

8. What should be the spacing of 2-inch by 4-inch timber

posts 6 feet long to carry a platform on which the maximum load

is to be 200 pounds per square foot ?
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9. Find the load by Rankine's formula that would probably

rupture a cast iron column with fixed ends, 18 feet long and 6 inches

in diameter.

10. By the use of Rankine's modified formula for eccentric

loads on columns calculate the load that would develop a unit-

stress of 1000 pounds per square inch in a 6-inch by 6-inch column

10 feet long with round ends for the following eccentricities:

(a), o; (b), i inch; (c), 2 inches; (d), 4 inches; and (e), 6 inches.

Plot a curve showing the relation between the load and the

eccentricity.

11. By use of the straight-line formula solve Problem No. 10

if the column is of Washington fir.

12. If a i2-in., 4o-lb. I-beam 18 feet long is used as a column

with round ends, what is the slenderness ratio? According to

Euler's formula, what load would cause rupture ?

13. What safe load will a column 27 feet long built up of two

g-in., 13.25-^. channels latticed together and placed 6 inches

back to back, safely carry if used in a bridge? Ans. 67,300 Ib.

14. What should be the greatest length for which timber

columns of the following sections may be used? 2 inches by
2 inches, 4 inches by 4 inches, 4 inches by 6 inches, 6 inches by
6 inches, 6 inches by 10 inches, 6 inches by 12 inches, 8 inches

by 8 inches, 10 inches by 12 inches, 12 inches by 12 inches.

Ans. I = 34.7 where d is the least lateral dimension. 4 in. X
4 in., n ft., 7 in. 54 in. X 6 in., n ft., 7 in.; 10 in. X 12 in., 28 ft,

11 in.

15. Determine the safe load for 4-inch by 4-inch red oak

columns, which are 3 feet, 7 feet, and n feet, 7 inches long

respectively. Plot a curve showing the relation between the load

and the length of the column. Do the same for various other

sections of oak columns carrying the curves to the maximum
allowable length of column. (This set of curves may be made
to include all commercial sizes of sections and put on one diagram.

Then the red oak column necessary for any load and any length

can be selected directly from the diagram.)

16. Determine the safe load for various lengths and various

sections of columns of the different kinds of timber given in

Table 8, and plot the curves as in Problem No. 15.
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17. Design a strut 12 feet, 9 inches long in a roof truss to carry

a compression load of 12,000 pounds. Use two angles with a f-in.

gusset plate between them, and f-in. rivets.

Ans. 4 in. X 3 in. X TS in. [s_.

1 8. Design a strut 5 feet, 9 inches long in a roof truss to carry

a load of 20,800 pounds.

Ans. Two 2 \ in. X 2 in. X T\in - ls_, short legs outstanding,

f-in. gusset plate.

19. What four angles with the long legs outstanding would be

required to be riveted to a iVin. plate for a column 18 feet long to

carry a load of 27,370 pounds?
Ans. 4 in. X 3 in. X T'S in. [s_, width of plate 8 in.

20. A wooden stick 3-inch by 4-inch in cross section and 10

feet long is used as a column with fixed ends. Find by Rankine's

formula the unit-stress developed under a load of | ton.

21. Find the safe load for a hollow cast iron column of outside

dimensions 8 inches by 6 inches, inside dimensions 6 inches by

4 inches and 12 feet long.

22. A hollow yellow pine column of square section, 5 inches

outside dimensions, and 4 inches inside dimensions, has a length

of 16 feet. What load could the column safely carry?

23. A cylindrical steel column with round ends is 36 feet long

and 6 inches in diameter. Calculate by Euler's formula the axial

load that would probably produce rupture.

24. Determine the safe load for a hollow round cast iron

column of external diameter 1 2 inches, thickness i inch, and length

12 feet.

25. A square white oak column 12 feet long is to support a

load of 16 tons. What must be the size of the column?

26. Determine the size of a rectangular loblolly column 20 feet

long to carry safely a load of 24 tons. Ans. 8 in. by 10 in.

27. A round solid cast iron strut 15 feet long carries a load of

10 tons. What should be its diameter?



CHAPTER XV

TORSION

139. STRESS AND DEFORMATION. ROUND SHAFTS.
When a couple, as indicated by Pa in Fig. 117, in a

FIG. 117.

plane perpendicular to the axis of a shaft acts upon the

shaft, it is twisted, and one cross section tends to slip

by the section next to it. This tendency is resisted by
the torsional stresses set up in the shaft. The stresses

developed are shearing stresses. If AB in Fig. 115 is

the original position and AB' the final position of an

element of the surface of the shaft, the end of the shaft

has twisted through the angle < or BOB'
,
which is pro-

portional to the couple acting on the shaft and to the

length of the shaft, when the stresses developed are

within the elastic limit. The element will have twisted

through the angle 6 or BAB', which is proportional

to the couple but independent of the length of the

shaft.

246
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140. THE TORSION FORMULA. ROUND SHAFTS. In

Fig. 118 let the forces producing the couple be P and the

arm between them be p, then the couple C equals Pp.
Under the influence of this couple the radius OA will

have swept through the angle AOA' to the position OA
'

while it still remains a straight line. The deformation

FIG. 1 1 8.

of a fiber of the section is proportional to the distance

from the center of the shaft to the fiber. Therefore

the unit-stress developed on the fibers when the greatest

stress is below the elastic limit is proportional to the dis-

tance of the fiber from the center. If s is the maximum
unit-stress developed upon the outer fiber of the shaft,

and r is the radius of the shaft, the unit-stress on the
A/

fiber a distance y from the axis is sy
= s - The total

stress on the elementary area a is -
ya, and the moment

of this stress about the axis of the shaft is - yay = -
ay

2
.

r r

The moment of the stresses acting on the entire cross

section is the sum of all such expressions, and for equi-

librium,

sJ Cr
C -

,
or 5 =

-j ,
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where C = Pp and is the twisting moment, and 2 ay
z = J

and is the polar moment of inertia of the section about

the axis.

For solid circular shafts, Fig. 119,

r ird* Trf
4

, A . . A xJ = = (Appendix A),

c
2r 2 16

i6C

FIG. 119. FIG. 1 20.

For hollow circular shafts of outer radius r and inner

radius ri, Fig. 120,

STT -
ri 57T -

s

2r 16 d

i6Cd
7T

-

Three typical problems may be investigated by the

use of the torsion formula: (i) The investigation,

(2) determining the allowable couple, and (3) the design
of a shaft to transmit a given couple.

141. STIFFNESS OF SHAFTS. The relation between

the angle of twist and the shearing modulus of elasticity
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may now be deduced. Since BB '

in Fig. 121 is small,

BB' = r$ =
Id, <f>

and 6 being in radians. The detru-

sion of a fiber on the surface in the length I is BB'', the

FIG. 121.

D T3t i

unit detrusion is
j

=
-y-

The shearing modulus of

elasticity is

Cr

Unit-stress s J Cl
E.

Unit detrusion e r$anut

In the formulas, Ea is in pounds per square inch, C is

in pound-inches, / is in inches, /is in (inches)
4

, and <j> is in

radians. In tests, if the angle of twist is measured

in degrees the value must be reduced to radians by the

relation

One radian = 57.3 degrees.

142. OTHER SHAPES OF CROSS SECTION OF SHAFTS.

For any other than circular sections the foregoing

formulas cannot be applied. Experiment has shown

that if the section has two axes of symmetry the fibers
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at the ends of the shorter axis have the greatest dis-

tortion, and consequently the greatest unit-stress will

occur at those points. Along the cor-

ners of rectangular shafts there is no

relative distortion of the fibers, and

those fibers have no stress developed in

them. Saint Venant has investigated

the subject and devised formulas which

reduce to the following forms for the

maximum stress, where C is the twisting

moment and s is the maximum stress:

(a) Square shaft,* C 0.208 d3
s. s is at

the middle of the side.

(a)

C = 1- atfs.
16

(b) Elliptical shaft,*

at the end of the shorter axis.

(c) Rectangular shaft
,

*C= (

s s

i.Sb

s is at the middle of the longer side.

Merrimanf gives for rectangular cross sections the

formula C = f ab2
s.

143. POWER TRANSMITTED BY SHAFTS. The pri-

mary purpose of shafting is the transmission of power.
The pulleys are frequently fastened to the shaft by keys
and keyways, in which case the formula for the relation

between the maximum stress and the twisting moment
is complex. However, the power a circular shaft with-

out a keyway will transmit can easily be obtained if

the allowable stress is known. If C is the couple acting

on the shaft the work done by turning the shaft through
an angle B is CO. Proof: Let P be the force of the couple

*
See "History of Elasticity," Vol. II, parti, by Todhunter and

Pearson.

t See Merriman's "Mechanics of Materials."
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and p the arm. The distance through which P will

move in turning through an angle is pd, and the work

done is PpB, or C6, as Pp = C. If the shaft makes N
revolutions per minute the work done in one minute

will be C2wN.

C2irN sJ2irN = sJN
~
33,000 X 12

~
396>oo r

~
63,030 r

'

144. COMBINED TWISTING AND BENDING. If a bend-

ing moment is developed in the shaft as well as a twist-

ing moment, there is a combination of stresses. The
maximum fiber stress developed by the bending moment

may be obtained by the use of the moment formula

/ =
,
and the maximum shearing stress may be ob-

tained from the torsion formula s = -=- . These stresses

may be combined to obtain the maximum shearing

stress and the maximum tensile or compressive stress

by the formulas

Sr,
=

EXAMPLES

i. A solid circular steel shaft 10 feet long and 2 inches in

diameter has a couple of 126,000 pound-inches acting upon it.

(a) What is the maximum unit-stress developed in the shaft?

(b) What is the unit-stress f-inch from the axis of the shaft?

(c) At 300 R.P.M. what is the horse power developed ? (d) What
is the angle through which one end would twist past the other?

(e) Through what angle would a line on the surface twist?
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(a) , = = l6 X >
6 = 8000 Ib. per sq. in.

(b) sv
= X = 6000 Ib. per sq. in.

i 4

(c) H.P. = ",6QXarX3oo . go. H.P.
33,000 X 12

(e)
= i X(4 35') -120 =

2^'.

2. What should be the diameter of a solid shaft to transmit

500 horse power at 80 revolutions per minute if the maximum
torsional stress is not to exceed 9000 pounds per square inch?

sJN
H.P. =

500 =

63,030 r

9000 Trtf X 80

63,030 X 1 6

d = 6 inches.

PROBLEMS

1. What maximum unit-stress will be developed in a hollow

shaft of 3 inches outside and 2 inches inside diameter when twisted

by a force of 3000 pounds at a distance of i foot from the axis?

What is the minimum stress developed ?

Ans. 8460 Ib. per sq. in.

2. What horse power will be transmitted by the shaft in

Problem No. i when making 90 revolutions per minute?

3. What must be the diameter of a solid steel shaft to transmit

1 20 horse power at 80 revolutions per minute if the allowable unit-

stress is 10,000 pounds per square inch. Ans. 3.6 in.
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4. If the shaft of Problem No. 2 is 20 feet long between the

pulleys, what will be the angle of twist when transmitting the re-

quired power?

5. A wrought iron shaft 7 feet, 6 inches long and 2 inches in

diameter twists through an angle of 10 30' under the influence

of a couple produced by a force of 2500 pounds at a distance

of i foot from the axis. Compute the shearing modulus of

elasticity.

6. What are the maximum shearing and tensile stresses de-

veloped in a shaft 2\ inches in diameter under a twisting moment
of 12,000 pound-inches and at the same time under a bending

moment of 800 pound-feet ?

7. What will be the maximum stress developed in a rectangular

shaft of dimensions i inch by i \ inches if the twisting moment is

400 pound-feet?

8. Determine the maximum stress developed in a shaft i inch

square if the twisting moment is produced by a force of 75 pounds
at a distance of 14 inches from the axis.

9. What stress will be developed in an elliptical shaft of dimen-

sions i inch by i \ inches if the twisting couple is 400 pound-feet?

10. What should be the diameter of a steel shaft to transmit

safely 500 horse power at 150 revolutions per minute?

11. Calculate the horse power that a round, wrought iron

shaft 8 inches in diameter and making 150 revolutions per minute

will safely transmit.

12. A hollow steel shaft of outside diameter 6 inches safely

transmits 450 horse power at 100 revolutions per minute. Find

the inside diameter. Ans. di = 3.82 in.

13. Find the shearing modulus of elasticity of a cast iron bar

10 inches long and 0.82 inch in diameter if twisted through an

angle of 1.3 by a twisting moment of 50 pound-feet.

14. A structural steel shaft 120 feet long and 16 inches in diam-

eter transmits 8000 horse power at 20 revolutions per minute.

Find the angle of twist and the stress developed.

15. A solid shaft 6 inches in diameter is coupled by bolts i inch

in diameter on a flange coupling. The centers of the bolts are

5 inches from the axis. Find the required number of bolts.

16. A wrought iron shaft is subjected simultaneously to a



254 TORSION [CHAP. XV

bending moment of 10,000 pound-inches and a twisting moment
of 12,000 pound-inches. Determine the least diameter of the

shaft if the maximum tensile stress is not to exceed 10,000 pounds

per square inch and the shearing stress is not to exceed 8000

pounds per square inch.

17. Find the horse power that can be transmitted safely by a.

cast iron shaft 3 inches in diameter and making 60 revolutions per
minute.

18. A steel wire 0.18 inch in diameter and 10 inches long is

twisted through an angle of 9.2 by a moment of 20 pound-inches.

Determine the shearing modulus of elasticity of the wire.



CHAPTER XVI

REPEATED STRESSES, RESILIENCE, HYSTERESIS, IMPACT

145. REPEATED STRESSES. The behavior of mate-

rials under repeated stresses and impact is somewhat

different from that for static or slowly applied stresses.

The experiments of Wohler, Bauschinger, and others

for repeated stresses show that a material will fail

TABLE 20

TESTS ON WROUGHT IRON

[Wohler.]

under stresses lower than the ultimate strength of the

material. For an enormous number of applications of

a stress about equal to the elastic limit, the material

ruptured. When the stress was reversed and carried to

about one-half to two-thirds the elastic limit for each

reversal, an enormous number of applications of the

stress caused rupture. These experiments were carried

on in such a manner that the time between each appli-

cation or reversal of stress was so short that the specimen
had no time to rest. It is interesting to note in Table 20

the variation in the maximum applied stress with the

255
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number of applications for wrought iron. Fig. 123
shows graphically the number of applications of a given
stress necessary to produce rupture in wrought iron.

100000 200000 300000 400000 500000

Number of Applications of Stress.

FIG. 123.

Instances in which repeated stress and reversed stresses

would influence the design of the members would be

shafting, car axles, piston rods, all rolling or vibrating

members, etc.

146. RESILIENCE. When a load is applied to a

member it will deform. On removing the load the mem-
ber will resume its former size and shape for stresses

below the elastic limit. And when the elastic limit has

been exceeded the material will partly recover its original

size and shape. The load applied to the material does

work on it, and in turn when the load is being released

the material gives out energy. Resilience is the amount

of potential energy stored in a material when it is under

stress. Elastic resilience is the amount of potential

energy stored in a member when the stress is within

the elastic limit. The modulus of resilience is the

amount of energy stored in a unit of volume of a member
when the stress is at the elastic limit. Resilience can be

recovered to do work.



ART. 146] RESILIENCE 257

When the stress is carried beyond the elastic limit

permanent set is developed. In such cases a larger

amount of work has been done upon the specimen than

it will give out upon releasing the load. The work that

cannot be recovered is used in permanently distorting

the material, and is converted into heat. Fig. 124 shows

G H F

FIG. 124.

a typical soft steel stress-deformation diagram. In this

diagram the ordinates represent the unit-stress and the

abscissas represent the unit deformation . The work done
on the material is the average force times the distance

through which the force acts. Since the stress-deforma-

tion diagram shows the unit-stress developed in a speci-

men and the corresponding unit deformation under that

stress, the area between the curve and the horizontal

axis represents the work done on a unit of volume of

the material. When the stress is not carried beyond
the elastic limit all the work done can be recovered.

The triangular area ACB represents the modulus of

resilience. When the point D is reached the work done

on a unit of volume of the material is represented by the

area ACDH, and the work that can be recovered (the

resilience) for that point is represented by the area

GJDH. When the point of rupture E is reached, the
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total work done on a unit of volume of the material is

represented by the area A CDEF.

147. RESILIENCE OF A BAR UNDER DIRECT STRESS.

For tension or compression, let the load on the bar be P,
the sectional area A, the length /, the deformation e.

For stresses below the elastic limit the work done is

Pe _fAfl_P_ A1
2
"
2E 2E

This work done on the specimen equals the resilience

stored in the specimen. Therefore the resilience is

f
2

The resilience per unit of volume is ^~- If / is equal to

the elastic limit the resilience per unit of volume is the

modulus of resilience.

148. RESILIENCE OF A BEAM. An expression for the

resilience of a beam may be deduced similarly to the

following method. Take the case of a cantilever beam
of length / with a concentrated load W at the end,

W
Fig. 125. The average force will be and the deflec-

FIG. 125.

tion will be A. The work done on the beam which is

equal to the resilience is

W W

wv
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This can be expressed in terms of the maximum stress

on the outer fiber from the formula

, Me Wlc ,J7 fl/-- or
fF-jg.

fz
-~ is the same expression as obtained in Art. 147.

In the case of a uniform load each elementary load

does an amount of work equal to one-half the load times

the distance it deflects, and is -
y where w is the load

per unit of length, u is an element of length, and y is

the deflection at the point (see Fig. 126). As the load

is uniform the work done

by each element is pro-
0|

portional to its deflection

y. From Fig. 126 it is

seen that uy is a small FlG I26

area between the X-axis

and the elastic curve of the bent beam. The total work

done is the summation of all such expressions as y

and equals

^ wu w^ w ^ , .

7, y 2^uy = X (area between the X-axis^^ 22 2

and the elastic curve)

since 2 uy is the area between the X-axis and the elastic

curve. This area may be determined by the same method
as is used in finding the deflection curves.

149. MECHANICAL HYSTERESIS. In Fig. 127 is shown
the stress-deformation curve for the case where the

elastic limit has been exceeded. After the point A had

been reached the load was removed. The curve is convex

downward, asADC indicates. On reapplying the load the
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curve will be convex upward, as CEA. The resilience

or work obtained from the

material isABCD, and that

put into it is ABCE. The

energy represented by the

loop ADCE is lost as heat

and is called mechanical

hysteresis.

150. LAG. For some
~"

materials at stresses be-

yond the elastic limit when
c

FIG. 127.

the load is stopped the specimen will continue to deform

for some time. The metal

yields while the load is

not increased. This phe-

nomenon is known as lag,

and Fig. 128 is a stress-

deformation diagram in

which lag is shown.

151. THE EFFECT OF
REST. By allowing a FIG. 128.

specimen to rest after being stressed beyond the elastic

limit, it will partly re-

cover its elastic prop-
erties. Fig. 129
shows the stress-def-

ormation curves for

steel before and after

resting. In the one

marked "before rest-

ing" the stress had

been carried beyond
the elastic limit, and reversed several times, the speci-

men being heated by the work done on it.

FIG. 129.
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152. SUDDENLY APPLIED LOADS. In the foregoing

portion of the book the load was considered to be grad-

ually applied to the specimen or member. If the load

is suddenly applied the stresses are much higher than

when the load is gradually applied. In order to get the

relation between the stress produced by a gradually

applied and a suddenly applied load let the deforma-

tion under the load gradually applied be e, and when

suddenly applied be e\. Having the deformation, the

corresponding unit-stress developed can be determined,
since the stress below the elastic limit is proportional to

the deformation. The work done on the member when
the load is gradually applied is equal to the product of

We
the average force and the deformation and is - . The

force varies from o to W. The area OAB in Fig. 130

w

represents the work done. When the load is suddenly

applied the total load acts through the entire deforma-

tion, as indicated by the line AB in Fig. 131, but the

internal resisting stresses vary from zero to the value

of FB along the line OB. When the point B is reached

the external work done is We, while the work stored in

We
the member or the resilience is -

. According to the

principle of the conservation of energy the load will not

stop until the resilience equals the work done, conse-

quently the deformation and the stress in the member
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will still increase. When the deformation is e the work
done in excess to the resilience stored in the material is

represented by the area OAB which equals^. There-

fore the excess of resilience over the work done beyond

w

FIG. 131.

the point B which is represented by the area BCD, must

We
be equal to . The external work done is represented

by the area A CEO and the resilience stored in the mate-

rial is represented by the area ODE. As the two triangles

BOA and BDC are similar and equal, the similar sides

must be equal, therefore,

BC = AB =
e,

and consequently f\
= 2 f where /i is the stress due to

the suddenly applied load and / is the stress developed
when the load is gradually applied. This shows that

the deformation and the stress developed by a load when

suddenly applied are twice what they would be if the

load is gradually applied.

153. IMPACT LOADS. A load W moving horizontally

Wv2

with a velocity v possesses the kinetic energy
-

,
which
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is equal to Wh, where g is the acceleration due to gravity

and h is the vertical distance the weight would fall to

acquire the velocity v. This energy must be overcome

by the resilience stored in the member. This energy may
be equated to the resilience of the member for any given

case to obtain the stress developed. For example, if the

member is in direct tension or compression

, 4
12 WhE

f== \-^T J

fl
l E'

A method more generally applied is to obtain the

relation between the deformation the load would pro-

duce when gradually applied and the deformation pro-

duced under impact. The stress is proportional to the

deformation. Let Q be the maximum total resisting force

under the impact load and e\ the deformation produced

by the impact load. The work done by the resisting

force is
L

since the resisting force varies directly from

zero to Q. This work is the resilience and equals the

external work,

2

If the deformation under the static load W is e the

following proportion results:

e e\

Solving these two equations for Q and e\,

e\= A/2 he,

(3
= 1
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From these equations it is seen that the deformation,
and the resisting force, and the unit-stress developed,
increase directly with the velocity of the load, or with

the square root of the height h.

154. DROP LOADS. If the impact load falls verti-

cally onto a member through the height h before im-

pinging upon it, the load also does work through the

deformation of the member. Then, using the same

nomenclature as given in the previous article we have,

Q W
and - =

d e

Solving these equations for e\ and Q,

e\ = e + \/2 he + e2
,

n TJ/ ,
WA/2 he + e2

and Q =W H-- -
c

It is seen from these two equations that a drop of a short

distance develops a high stress compared with that

developed under the static load W.

EXAMPLE.

i. Find the amount of work necessary to stress a bar of

wrought iron 5 feet long and i inch in diameter, from zero to

the elastic limit 100 times.

P = 25,000 X .7854 = 19,635 pounds.

25,OOO,OOO

Work = - PeN = 1^35 x >005 x I00 = 4009 ft> .lb>
2 2
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2. If a force of 50 pounds is suddenly applied at the center of

a 2-inch by 2 -inch simple timber beam of 6-ft. span what will

be the deflection and what will be the maximum stress developed ?

bd3

_ 2 X8 4
L - =

j C = I.
12 12 3

The deflection and stress developed are the same as those

developed by twice the static load, or 100 pounds.

3 *>"*

f Me 100 X 72 X i X 3
/i.- - - ' ^ = 1350 lb. per sq. in.

i 4X4
3. If the weight in Example No. 2 falls i inch before impinging

on the beam what stress will be developed and what will be the

maximum deflection?

Ai = .194 + A2 X.IQ4 X i +.04 = .194 + .65
= .844 inch.

The stress developed is proportional to the deflection and is

844
/i

= 1350 X ^ = 2920 pounds per square inch.

Or the stress is the same as that developed by a static load of

194

218 X 72 X 3----- = 2920 pounds per square inch.
4X4

PROBLEMS

i. What is the resilience stored in a cubic inch of the follow-

ing materials when the stress is at the elastic limit (modulus of

resilience)? (a) Wrought iron, (b) Structural steel.

Ans. 12. $ in.-lb.; 20.4 in.-lb.
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2. What horse power is required to stress a structural steel

rod 2 inches in diameter and 6 feet long from zero to the elastic

limit 120 times per minute?

3. Solve Problem No. 2 if the stress is carried from one-half

the elastic limit to the elastic limit each time.

4. If a load of 2000 pounds is suddenly applied to the end of a

steel rod 3 feet long and 1.5 inches in diameter, what will be the

deformation and the unit-stress developed?

5. If the load in Problem No. 4 is moving horizontally with

a velocity of 5 feet per second at the instant of impinging on the

rod, what deformation and unit-stress will be developed ?

6. If the load in Problem No. 4 is falling with a velocity of

5 feet per second at the instant of impinging on the rod, what will

be the deformation and the unit-stress developed ?

7. What is the work required to deflect a 2-inch by 4-inch timber

beam of 8-ft. span by a central load that will produce a maximum
stress equal to 1 200 pounds per square inch ? Solve this problem
for both cases, when the beam is on the edge and when it is

lying flat.

8. If a load of 2 tons falls through a distance of ^ foot, and

strikes at the center of a io-in., 25-lb. I-beam of i6-ft. span, what

deflection and stress will be developed ?

9. A structural steel rod is required to support a suddenly

applied load of 10,000 pounds. What is the minimum diameter

of the rod if permanent set is avoided?
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CENTROIDS AND MOMENTS OF INERTIA OF AREAS

AI. Such expressions as S ay and S ay
2 will occur in

finding the stresses developed in beams under load,

where a is an element of area and y is the distance of

that element from a reference line or axis. It is neces-

sary to be able to evaluate these expressions for the

various shapes of cross sections found in beams.

A 2 . CENTROIDS OF AREAS. The centroid of an area

is the point at which a very thin homogeneous plate

FIG.

of the shape of the area would balance: it is the point

at which, if the area were concentrated, its moment
about any axis would be equal to the moment of the

area as originally distributed. Calling y the distance

from the ^T-axis to the centroid of the area A, a an element

267
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of the area, and y the distance of that element from

the X-axis :

Ay = 2 ay,

And calling x the distance of the centroid of the area

from the F-axis, and x the distance of an element of the

area from that axis,

~ S ax
Ji .

A
The axes may be chosen arbitrarily (Fig. AI). For

solids the term "centroid" is synonymous with "center

of gravity," and the latter term is also frequently used

with areas.

A 3 . AXIS OF SYMMETRY. If a straight line can be

drawn through an area dividing it into two exactly

similar halves, that line is called an axis of symmetry,
and an area that can be divided in this manner is called

a symmetrical area. The areas shown in Fig. A 2 are

FIG. A 2 .

symmetrical areas and the axes shown are axes of sym-

metry. If there is an axis of symmetry in an area, the

centroid is located on that axis. This fact simplifies the

solution for locating the centroids of a large number of

areas.

A4 . CENTROID OF A TRIANGLE. Imagine the triangle

to be made up of a large number of strips of very small
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width parallel to the base. Each strip may be considered

an element of the area. The centroid of any strip CD,

Fig. AS, is at the middle point of its length. The cen-

troids of all the other strips parallel to the base come at

the middle of their lengths. The line joining the centers

of all these strips is a straight line and is called a median.

FIG. A 3 .

The centroid of the entire triangle falls on the median

AB, since the centroids of all its elements fall on that

line. If the triangle is considered as being made up of

strips parallel to another side it is shown by the same

reasoning that the centroid of the triangle lies on another

median. Therefore, the centroid of a triangle is at the

intersection of the medians, which is at a distance of one-

third the altitude from the base.

A 5 . CENTROID OF A SECTOR OF A CIRCULAR AREA.

The centroid of a circular sector may be located in the

following manner: Let the angle at the center subtended

by the radii be 2 a, and r be the radius (Fig. A 4). Take
the Jf-axis as the axis of symmetry. Then ~y

= o. Con-

sider the sector as being made up of a great number of

triangular elements, as OAB. The distance of the cen-

troid of the triangle from is f r, and the distance from

the F-axis or x is f r cos 6. Draw the arc CED with

radius equal to f r. The centroids of all elements of the

sector fall on this arc. The total area of the sector may
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be represented by the length of the arc CED, and the

area OAB may be represented in the same way by the

arc GF. The centroid

of the sector would be

the same as if the en-

tire area were concen-

trated on the arc CED.
Draw GH perpendicu-
lar to the X-axis and

HF parallel to that

axis. Since FG is very
small it may be taken

as a straight line.

The angle FGH equals

6. The -moment of the

area of the triangle

OAB about the F-

axis is x (GF) =

f rcos0(G70,andthe
moment of the total

sector equals the sum-

mation of all such expressions, and is 2 r cos 6 (GF) .

This sum divided by the total area gives x. The area

of the sector equals CED, which equals f r 2 a = f ra,

-
= 2%rcos6(GF) = 2 (GF) cos _ g_(gg) m

%ra 2 a 2 a

(GH) ,
and the summation of all such lengths

FIG. A4 .

(GF) cos 6

equals

(CD) = 2-f rsina r sn a,

_ _ 2 (GF) cos _ | sin a _ 2 sin a= - r
2 a 2a 3 a

The angle a must be expressed in radians in applying this

formula.
7T

* 4. 7"

When a = - the sector is a semicircle and x
2 3^
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A6 . CENTROIDS OF COMPOSITE AREAS. For such

sections as often occur in practice, where they are built up
of several different parts, or when the area may be divided

into simpler areas, the centroid of the area can be ob-

tained by applying the fundamental formula y =
-p-

to the section. The method is most readily understood

from an example. Let it be required to locate the cen-

troid of the channel section shown in Fig. A 5 . Divide

A"

tfL.

FIG. A 6 .

the section into three rectangles A, B, and C. The

following tabulated values are then found:

A = 5.28 square inches,

6.816

2ay= 6.816,

y =
5-28

= 1.29 inch.

Since the F-axis is an axis of symmetry x = o.

Another method easily applied for certain sections

results from subtracting moments. The solution of the

above example by this method is to consider the whole
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rectangle 4 inches by 6 inches with the rectangle 3.6

inches by 5.2 inches cut away from the top as indicated

FIG. A6 .

in Fig. A6 . The following table is then obtained :

A =
5.28, S ay = 6.816, y = -^-r = 1.29 inches.

A7 . MOMENT OF INERTIA. The moment of inertia of

an area is the summation of the products obtained by

FIG. A 7 .

multiplying each elementary part of the area by the

square of its distance from an axis. The axis taken is
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called the inertia axis. Thus the moment of inertia of

an area shown in Fig. A? with respect to the X-axis is:

Ix = 2 ay
2

,

and the moment of inertia with respect to the F-axis is

Iy = 2 ax2
.

These expressions are for the moment of inertia of the

area about axes in the plane of the area.

Since the moment of inertia is the product of an area

and a length squared, the units in which it is expressed
are L2 X L2 = L4

,
a length to the fourth power.

A8 . THE RADIUS OF GYRATION. The radius of gyra-

tion with respect to an axis is denned as the square root

of the quotient obtained by dividing the moment of

inertia of the area with respect to the same axis by the

area. Thus, if / is the moment of inertia and A is the

area, the radius of gyration is

v/i
It is seen that the radius of gyration gives the position

for which a concentration of the area would give the

same moment of inertia as is found for the distributed

area. The value of r should not be confused with the

distance to the centroid of the area.

A9 . POLAR MOMENT OF INERTIA. THE RELATION
BETWEEN THE POLAR MOMENT OF INERTIA AND Ix

AND Iy . The moment of inertia of an area about an axis

perpendicular to the plane of the area is the polar mo-
ment of inertia and is obtained by taking the sum of the

products formed by multiplying each element of the area

by the square of its perpendicular distance to the axis.

If the axis is perpendicular to the plane at in Fig. AS,

the distance to an element is

p = Vy2 + x2
.
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The polar moment of inertia of the area equals 2 ap
2
. If /

is the polar moment of inertia of the area about that axis,

j = 2 ap
2 = 2 a (y

2 + x2
)
= S ay

2 + S ax*,

since S a/ = 7* and 2 ax2 = Iv .

A" A'"
= r,=

2 + r 2
.

FIG. A8 .

The polar moment of inertia

of a plane area about an axis

perpendicular to the plane of

the area equals the sum of

the moments of inertia of the

area about two rectangular
axes in the plane of the area

intersecting the given axis.

This is the relation between

the moments of inertia about

three mutually perpendicular

axes, two of which lie in the

plane of the area.

Aw. RELATION BETWEEN MOMENTS OF INERTIA

ABOUT PARALLEL AXES IN THE PLANE OF THE AREA. In

Fig. A9 let be the centroid of the area, / the moment
of inertia of the area about the J^f-axis, and I' the moment
of inertia of the area about the Jf'-axis at a distance d

from the centroidal axis. Then

/' = S ay
2 + 2 ad

2 + 2 d S ay,

2 ay
2 = I, S aJ

2 = yl^
2

,
and

2 d 2 03;
= 2 <14y = o, since y =

o,

ft T /I j2

.-./' = 7+ A'/.
' - 1
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The moment of inertia of an area about an axis parallel to

a centroidal axis in the plane of the area is equal to the

FIG. A9 .

moment of inertia about the centroidal axis plus the area

times the square of the distance between the two axes.

If the moment of inertia of an area about any axis is

given, that for any other parallel axis can be obtained.

First, the moment of inertia about the centroidal axis

must be obtained by the formula 7 = /' Ad . Second,

the moment of inertia about the parallel axis can be

obtained by the use of the formula I" = /+ Ad .

An. THE MOMENT OF INERTIA OF A PARALLELO-

GRAM ABOUT A CENTROIDAL Axis IN THE PLANE OF

THE AREA. The inertia axis is taken parallel to opposite

sides, b is the breadth of the parallelogram and d is the

depth perpendicular to the chosen axis, Fig. AID. Let the

area be divided into a large number n, of equal strips par-

allel to the axis, each strip being taken so small in width

that it is an element of the given area. The width of

each strip is -
, and the area of each strip is

d,
a = -b.

n

Let the strip shown be the pth one from the axis in which

p is any number up to -
,
then the distance from the axis
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to the element of the area shown is

[App. A

The moment of inertia of the parallelogram about the

centroidal axis is

FIG. Aw.

To obtain the moment of inertia for the area of the paral-

lelogram above the axis, p must represent all numbers up

to -
. The same is true for the area below the axis,

therefore,
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From algebra,

_ n3 + 3 n
2
-f 2 n

~^~
+ 3 n*_=

12
>

The greater w is made the more nearly is the true value

for / obtained, and when n becomes infinitely great the

exact value of the moment of inertia is obtained. For

^ 2
this condition - and

2
become zero,

- _ bd*
"

12*

The radius of gyration with respect to the centroidal

axis is

II /bd* ,. /d
2

= \/-r = I/
'- bd = I/ =

V A V 12 V 12 2

The moment of inertia of a parallelogram about one

of its sides is often needed, and by the application of the

formula

Ir =I + Ad\

The corresponding radius of gyration is

d
r =
^'

The rectangle is the usual form of parallelogram for

which the moment of inertia is needed.
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FIG. An.

x'

FIG, A 12 ,
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Ai 2 . THE MOMENT OF INERTIA OF A TRIANGLE
ABOUT ITS CENTROIDAL AXIS. The moment of inertia

bd?
of the parallelogram about the J^'-axis, Fig. An ,

is

The rectangle may be considered as being made up of

two triangles ABC and ABD, both equal and similar.

Consequently the moments of inertia of the two tri-

angles about the ^'-axis are equal. Therefore, the

moment of inertia of one of the triangles about that

axisis
r ,

U* U*
Ix

' = --
-T- 2 =

12 24

This axis is at the distance - from the centroidal axis
o

of the triangle (Fig. Ai2),

/. Jx = Ix
r - Ad\

j _ bd3 bd d* _ bd3

J. x X ~^ ~^
*

24 2 36 36

The corresponding value of the radius of gyration is

d
' =

3 V2
;

b is the base of the triangle and d is the altitude.

Ais. THE MOMENT OF INERTIA OF A CIRCULAR AREA.

Let d be the diameter of the circle. Let the area be

divided into a great number, n, of elementary annular

strips concentric with the entire area, Fig. Ai 3 . The

width of each strip will be --- Let the strip shown in
2 n

Fig. A 13 be the pih strip from the center, then the radius

of this strip is

2 = M.
2 n

The area of the element is

*d d -K&
n 2n
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The polar moment of inertia of the entire area about the
axis perpendicular to the area at O is

in which p represents all numbers up to n.

= S (I
3 + 2 3 + - -

'

+ p* +

FIG. AM.
From algebra,

2 (l
3 + 2 3 + ' + P* + + W2

)

n2 (n + i)
2 w4 + 2w3 + w2

= - =
>

4 4

... / = ^4
/rc

4 + 2rc3 + rc
2
\ = 7rJ4 /I

[

T

[

r

Since w should be made infinitely great to obtain the true

- and
2 n 4 n

moment of inertia,
- - and r reduce to zero, and

2

32
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From Art. A 9 J = Ix -(- Iy and from the symmetry of

the figure Ix = Iy ,

- - J *#

rx TV = -

Ix is the moment of inertia of the circle about a diameter.

9.4"

Ai4 . MOMENT OF INERTIA OF COMPOSITE AREAS.

In order to obtain the moment of inertia of a built-up

section (composite area) for a given axis the area should

be divided into its simpler parts, and the moment of

inertia of each part with respect to the given axis ob-

tained. The moment of inertia of

the entire area with respect to the

axis equals the sum of the moments
of inertia of its component parts

with respect to the axis. The ap-

plication can be understood by an

example.
Let it be required to determine

the moment of inertia and the

radius of gyration of a T-section

8 inches by 9.4 inches by 0.4 inch

with respect to a centroidal axis parallel to the flange of

the T, Fig. A 14 .

By taking moments about the X-axis,

_ 8 X .4 X 9.2 + 9 X .4 X 4.5
y '-

8 X 4 + 9X4
= 6 '71 mches -

For the part A ,

bd* :

X

FIG. A]

12

8 X .064

12
X 2.492

.04 + 19.84 = 19.88 inches.



282

For the part B,

APPENDIX [App. A

+ 3-6 X 2.2I 2 = 24.3 + 17.58

= 41.88 inches4
.

Therefore, the moment of inertia of the section about the

centroidal axis is

7 = 19.88 -f 41.88 = 61.76 inches4
.

3.01 inches.
6.8

EXAMPLE

i. Determine the moment of inertia and the radius of gyration

with respect to the axis through the base and the centroidal axis,

of a channel section, 4 inches by 6

inches by 0.4 inch, Fig. Ai 6 .

The moment of inertia can be ob-

tained for either axis and then trans-

ferred to the other, or it can be

obtained for each one independently.

That for the axis through the base

will be obtained, then the transfer to

the centroidal axis made.
FIG. Ai 6 .

Ix = 17.176 inches4

, say 17.18, and r* = \ n
= 1.8 inches.

> 5.28

d = y = 1.29 inches. (Ex. p. 271.)

1 = 1- Ad* = 17.18
-

5.28 X i.2Q
2 = 17.18

-
8.77

= 8.41 inches4 and r = \/ ^
= 1.26 inches.

V 5 >2
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PROBLEMS

1. Find the distance of the centroid of a trapezoid with one

base a, the other b, and the altitude h, from the base whose

length is a.

An,. y=^\h.
3<* + 3&

2. Determine the moment of inertia and radius of gyration
with respect to the Jf-axis arid with respect to the F-axis passing

through the centroid of the area shown in Fig. A 16 .

Ans. Ix = $9.3 in.4
,
Iy = 29.8 in. 4

,
ry

= 1.68 in.

:0.4'

5"9.75*Is-

0.4:

JW

LLL.

FIG. An.

3. Locate the centroid and determine the moment of inertia

and the radius of gyration with respect to the X and Y axes

through the centroid for the T-section shown in Fig. An.
Ans. y = 4.01 in.,/x = 17.4 in.

4

4. Calculate the moment of inertia and radius of gyration of

a circular area of diameter 4 inches with respect to the diameter

and with respect to a tangent. Also find the polar moment of

inertia with respect to the center.

5. A section is built up of two 15 -in.. 33-lb. channels placed

back to back. What should be the distance between them to

have the moments of inertia of the section equal with respect

to the two rectangular axes passing through the centroid of the

section? Ans. 9.5 in. from back to back.
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6. Find the moment of inertia and radius of gyration with

respect to the centroidal X and Y axes of the I-section shown

in Fig. Ai 8 .

7. A girder is built up of four 6-inch by 6-inch by i-inch

FIG. A is. FIG. A 19. FIG. A 20 .

angles and a 30-inch by i-inch plate; determine the moment of

inertia of the section with respect to the centroidal X and Y
axes. See Fig. A 19 .

8. Locate the centroid of the shaded area shown in Fig. A 20 ,

and find the moment of inertia with respect to the axis parallel

to a side and passing through the centroid.

Ans. x=y = .776 r in., IX =IV
= .1368 r* in.

4
,
Ix =Jy

= .0075 r
4
in.

4

Prove that the moment of inertia of each of the following areas

about the centroidal axis and the corresponding radius of gyration are

as given :

9.
/* =

bd3 - Mi3

12

bd3 - Mi3

12 (bd -MO
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Ix =
64

285

-Si ::
(b

13.

L _ J bd* -k*(b- t)
Tx V I2 [bd-h(b-)]

14.
+ hf

2 sb
3 + /i/

3
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TABLE 21

PROPERTIES OF STANDARD LIGHT STEEL I-BEAM SECTIONS

TABLE 22

PROPERTIES OP STANDARD LIGHT STEEL CHANNEL SECTIONS
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TABLE i

WEIGHTS OF VARIOUS MATERIALS USED IN CONSTRUCTION

TABLE 2

ULTIMATE TENSILE STRENGTH AND ULTIMATE ELONGATION
OF MATERIALS
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TABLE 3

ULTIMATE COMPRESSIVE STRENGTH OF MATERIALS

TABLE 4

ULTIMATE SHEARING STRENGTH OF MATERIALS

TABLE 5

ELASTIC LIMIT OF WROUGHT IRON AND STEEL
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TABLE 6

MODULUS OF ELASTICITY

TABLE 7

SHEARING MODULUS OF ELASTICITY
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TABLE 8

SAFE WORKING STRESSES IN POUNDS PER SQUARE INCH FOR
STEADY LOADS
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TABLE 9

COEFFICIENTS OF EXPANSION PER DEGREE FAHR.

TABLE 10

VALUES OF K, K,' AND C FOR PIPES UNDER EXTERIOR PRESSURE

(For use in the Carman and Carr Formula.)

TABLE ii

EFFICIENCY OF JOINTS
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TABLE 12

RELATIVE STRENGTHS IN SHEAR AND BENDING

TABLE 13

MODULUS OF RUPTURE
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TABLE 14

MAXIMUM MOMENTS AND MAXIMUM DEFLECTIONS
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TABLE 15

LOAD TO CAUSE A GIVEN MAXIMUM STRESS AND A GIVEN
MAXIMUM DEFLECTION
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TABLE 16

COEFFICIENTS OF wl FOR THE VERTICAL SHEAR AT THE
SUPPORTS OF CONTINUOUS BEAMS

No.
4"& SpansQI o g *^

-H. i 4

l jollo" iollo" To"000 O

1JL -HIM 13'13 _15|J
2& 28|28 28;28 28 U

t< i

1

4ii_5^ 53_!J3_ _JI|Ji. __55.!_CL _ JL
104' i 104 104; 104 104! H)4 104; 104 101,

2 2 O

TABLE 17

COEFFICIENTS OF -w/2 FOR THE BENDING MOMENT AT
THE SUPPORTS OF CONTINUOUS BEAMS

No.

Spans

=
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TABLE 18

MAXIMUM ALLOWABLE COMPRESSIVE STRESS
IN POUNDS PER SQUARE INCH, CHICAGO

BUILDING ORDINANCE, 1910.

TABLE 19

VALUES OF < USED IN RANKINE'S FORMULA

TABLE 20

TESTS ON WROUGHT IRON UNDER REPEATED STRESSES

[Wohler.}
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TABLE 21

PROPERTIES OF STANDARD LIGHT STEEL I-BEAM SECTIONS

TABLE 22

PROPERTIES OF STANDARD LIGHT STEEL CHANNEL SECTIONS
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investigation of 93
methods of loading 48
of uniform strength 99
radius of curvature of 130

299
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safe loads for 94
the three problems 93

Bending 130
combined twisting and 251

Bending moment 58

diagrams 61

diagrams for cantilever, and simple beams 65
relation between the vertical shear and the 62

sign and unit of 59
the maximum 64, 65, 74

the rate of change of 63
the values of 60

values of the maximum 64, 74, 164

Brittleness 3

Butt joint 33, 38

Cantilever beam 47, 65, 73, 140, 144, 147

Cast iron 4

Centroid, of a triangle 268

of a sector of a circular area 269

Centroids, of areas 267

of composite areas 271

Chimneys 106

Circular area, centroid of sector of a 269

moment of inertia of a 279

Closing line 124

Coefficients of expansion 27

Columns and struts 221

behavior of, under load 237

comparative strength of; condition of the ends 230

eccentric loads on 228, 234

long, Euler's formula 233

Rankine's formula 231

stiffness of 221

the methods of transmitting loads to 229

the straight-line formula 225

the strength of 222

the three problems 234

Combined stresses 216, 251

Comparative strength of columns 230

Composite areas, centroids of 271
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Compression 12
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Concentrated load 48

Concrete, plain and reinforced 4
Constant of integration 119, 124, 192

determination of 193

Continuous beam 48

Contraflexure, points of 157

Coordinate axes, choice of 192

Curve, elastic 47, 130, 135
load 55

Cylinders, thick, under interior pressure 28

under exterior pressure 29

Dams 106

Danger section 64
Dead loads 49
Deflection of beams 135

maximum 162

rate of increase of
"

137

relation between the maximum stress and maximum deflection. . 164

Deformation 9

Design of riveted joints 39
Detrusion 9

Diagrams, bending moment 61

free-body 1 1

load and shear 54

load, shear, and moment, for cantilever and simple beams 65

maximum stress 97
relation between the load and shear 57

stress-deformation 15

Direct stresses 9

simple cases of 25

Drop loads 264
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Eccentric loads on columns 228

Eccentric loads on short prisms 107



302 INDEX

PAGE

Eccentricity of a load that will produce zero stress in the outside

fiber 108

Efficiency of riveted joints 38
Elastic curve 47, 130, 135
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coefficient of 17
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Euler's formula, long columns 233

Expansion, coefficients of 27

Factor of safety 21

Fiber stresses, distribution of 87

First integrated curve 116

Five curves, relation between the 137

Flexure, combined, and tension or compression 214

Force 9

Free-body diagram ,
1 1

Funicular polygon 121

Girders, plate 212

Gyration, radius of 273

Hinging points for continuous beams 185

Hooke's law 17

Hoop, stresses in a 26

Horizontal shear in beams 208

Hysteresis, mechanical 259

Impact loads 262

Inertia axis 273

Inflection points 15?

Integrated curves 116, 117

Integration, constant of 119, 124, 192

Internal stresses 5 1

Joints, riveted 3 2

boiler 3 2

butt.. 33. 38
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lap, single-riveted 35

lap, double-riveted 36

lap, with more than two rows of rivets 37
methods of failure of riveted 33

pipe 32

structural 32
tank 32

Kern, the no
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the maximum stress when the line of action of the resultant falls
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no tension 112

Lag 260

Lap joint 32

Live loads 49

Load, axial 10

case of eccentric, caused by a combination of the weight of the

material and lateral pressure no
diagrams 54

diagrams for cantilever and simple beams 65

Loads, drop 264

eccentric, on columns 228

eccentric, on short prisms 107

moving, on beams 74

impact 262

suddenly applied 261

Masonry 3

brick 3

concrete 4
stone 3

Mechanical hysteresis 259

Mechanical properties 2

Modulus of elasticity 17

uses of 20

Modulus, shearing 18
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Modulus, section go

Young's 17

Moment, assumptions for the resisting 86

bending 58
maximum 64, 74, 162

resisting 86

resisting, assumptions for the 86

Moment formula, the . go
Moment of inertia 272

of a circular area 279

of composite areas 281

of a parallelogram about a centroidal axis 275

of a triangle about a centroidal axis 27g

polar 273

relation between, about parallel axes 274

Moments, the theorem of three 181, 205

Moving concentrated loads on a beam 74

Neutral axis 87

position of the 88

Neutral surface 87, 132

position of the 88

slope of the 132

Non-uniform loads 4g

Overhanging beam 48, 168, 1 70

Parallelogram, moment of inertia of 275

Permanent set 16

Physical properties 2

Piers 106

Pipe, stresses in a thin 25

Plasticity 2

Plate girders 212

Points, of inflection 157

hinging, for continuous beams 185

Poisson's ratio ig

Polar moment of inertia 273
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Properties, mechanical and physical 2

Radius of curvature of beams 130
Radius of gyration 273

Rankine's formula 231

Ray polygon 121

Rays 121

Reduction of area 19

Relations between the five curves 137

algebraic 189
Relative strength and stiffness of beams 160

Repeated stresses 255

Resilience 18, 256
elastic 256
modulus of 256
of a bar under direct stress 258
of a beam 258

Resisting moment 86

Resisting shear 84

Rest, the effect of 260

Riveted joints 32

computation of unit-stresses developed in 34

efficiency of 38
kinds of 32
methods of failure of 33

Rupture, modulus of 97

Second integrated curve, the first method of obtaining the 117
the second method of obtaining the 119

Section, cross 10

Section modulus 90

Shafts, round, stress and deformation 246

other shapes of cross section of 249

power transmitted by . . 250
stiffness of 248

Shear formula, the . 84
values of k in the 85

Shear 13

double 35
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oblique 13
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single 35

vertical 52

vertical, sign and unit of 53

vertical, values of 53

Shearing modulus of elasticity 18

Shearing stress, the maximum 209

combined, and tensile or compressive stress 214

Shell, stresses in a thin 25

Shortening 9

Simple beam 47, 65, 73, 148, 150

Slenderness ratio 222

Slope curve 134

Slope of the neutral surface 132

Slope, the rate of change of 135

Spheres, stresses in thin 28

Steel 5

Stiffness 2

Stiffness of beams, relative 160

Stiffness of shafts 248

Straight-line formula, the 225

Strength of beams, relative 73

Strength, rupturing 1 1

ultimate compressive 12

ultimate shearing 13

ultimate tensile n
Stress 9

axial 10

combined shearing and tensile, or compressive 216

fiber 90

maximum, diagrams 97

maximum horizontal and vertical shearing unit, at a point 209

relation between the maximum stress and the maximum deflection 164

Stress-deformation diagrams 15

Stresses, compressive 12

due to change in temperature 27

fiber, distribution of : 87

flexural 47

in a hoop 26

internal 5 1
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repeated 255

shearing 13

tensile 10
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used in design 20

working 20

String polygon 121

Strings 121

Struts, columns and 221

Suddenly applied loads 261

Surface, neutral 87, 88

Symmetry, axis of 268

Temperature, stresses due to change in 27

Tension 10

combined flexure and, or compression 214

Theorem of three moments 181. 205

Timber
'

4

Torsion 246

the, formula 247

Toughness 3

Triangle, centroid of a 268

moment of inertia of a 279

Twisting, combined, and bending 251

Uniform load 49

Unit-stress 9

Units for the five curves 137

Varying load 49

Vector polygon 121

Vertical shear 52

diagrams 54

diagrams for cantilever and simple beams 65

maximum, the 64, 65

rate of change of 57

relation between, and the bending moment 62

sign and unit of 53

values of 53

values of the maximum 64, 65
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Young's modulus
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Zero vertical shear, the section of 195
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