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PREFACE

IN preparing this book the author has had in mind
primarily the needs of his own students in strength of
materials. He hopes, however, that it will meet a real
want in other colleges and technical schools also.

This book has been written with the aim of making
intelligible the fundamental principles of the strength
of materials without the formal use of the calculus. The
works which do not use the ordinary calculus treatment
usually omit some important parts such as the deflec-
tion of beams, strength of columns, horizontal shear,
combined stresses, impact loads, etc. This book is
designed to give a fairly complete course in the subject
for students who have not had the calculus, or when
graphical presentations are preferred. However, a sepa-
rate chapter giving the derivation of the elastic curve
of beams by the calculus method has been included for
those who desire such treatment.

Effort has been made to present the derivation of the
formulas in a clear and concise manner, in such a way
as to enable the student to obtain an adequate compre-
hension of the principles involved. While the aim is
to emphasize the elementary principles and to develop
independent reasoning in the student, the ground covered
is that usually given in a college course for engineering
students. Many illustrative examples and problems are
given for the purpose of making clear the application of
the theory. Answers to some of the problems are given
in order that the student may occasionally check his
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v PREFACE

numerical work. The order of the arrangement is one
that has given good satisfaction.

In the deduction of the shear formula it is brought out
at the first that the shearing stress is not uniformly dis-
tributed over the sectional area of the beam and that
the maximum stress is greater than that obtained by
dividing the vertical shear by that area. A chapter on
graphic integration is included and the graphical method
of determining the deflection of beams is utilized. The
graphical method appeals to the eye as well as to the
reason, and thus supplies an additional avenue of con-
ception. It also shows to advantage the meaning of the
constants of integration. The graphical method is also
much more readily applicable to beams carrying non-
uniform distributed loads, and to beams for which the
moment of inertia of the cross section is not constant.
When one set of curves is drawn for a given beam carry-
ing a given system of loading, those curves may be used
for all similar beams with similar loading. In the chapter
on the calculus method an attempt is made to give the
physical conception of the constants of integration
rather than to treat them simply as mathematical
symbols. ‘

As the nature of the behavior of columns under load
is very uncertain, the treatment given to columns is
largely empirical. Emphasis is laid on the straight line
formula, although the Euler and the Rankine formulas
are also given.

The author wishes to acknowledge his indebtedness
to the following professors and instructors in the College
of Engineering of the University of Illinois: to Dr. N.
Clifford Ricker for the interest shown in the preparation
of this work, and the use of tables and data prepared
by him; to Professor A. N. Talbot and Professor H. F.
Moore for many suggestions as to the form, arrange-
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ment, and subject matter, and much assistance in the
preparation of the book; to Mr. G. P. Boomsliter for
his criticizing and checking the examples and problems;
to Mr. C. R. Clarke and Mr. C. E. Noerenberg for their
criticisms and help in preparing the manuscript for the
publishers.

Although the work has been carefully checked, errors
may exist, and for any intimation of these I shall be
obliged.

H. E. MURDOCK.
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STRENGTH OF MATERIALS

CHAPTER 1
MATERIALS OF CONSTRUCTION

1. INTRODUCTION. Strength of Materials treats of
the action of the parts or members of structures or ma-
chines in resisting loads and other forces which come
upon them. By the use of the principles of mechanics
and the properties of materials, it determines the internal
forces or stresses which are developed in the simpler
forms of construction, as beams and columns, when they
are subjected to loads. The properties of the engineer-
ing materials are obtained through experimental tests.
Many of the formulas derived in strength of materials
are based on both theoretical analysis and experimental
data, and the subject, therefore, is of a semi-empirical
nature.

In architectural and engineering" construction, sta-
bility, strength, durability, and economy are essential
elements. The proper proportioning, spacing, and con-
nection of the parts are important. Too little material
in a member would make the structure unsafe, and too
much would mean a waste. In general, one member
should not be designed in such a way that it will be
weaker than others in the structure. Proper design,
then, takes into account the properties and qualities of
materials and the mechanics of their action in a struc-

ture in such a way as to insure safety and economy.
I
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2. MECHANICAL ‘AND PHYSICAL PROPERTIES. The
materials of construction possess characteristic proper-
ties known as mechanical and physical properties. These
properties measure the fitness and ability of the material
to sustain external loads or forces under given con-
ditions. Different materials possess these properties in
different degrees, and, of course, different grades of the
same material differ in their properties. Some of these
characteristic properties can be expressed quantitatively
between fairly well defined limits which are determined
by test; while others may be specified in terms of ability
to withstand certain tests and fulfill certain require-
ments. The mechanical properties include strength,
elasticity, stiffness, and resilience. Other physical prop-
erties frequently referred to are toughness, ductility,
malleability, hardness, fusibility, and weldableness.

When a load is applied to a piece or member of a
structure the material undergoes a change in size and
shape. If on the removal of the load the original size
and shape are resumed the material is said to be elas-
tic. Elasticity, then, is the property of a material by
which it will regain its original size and shape on the
removal of an applied load. A material which will not
recover its original dimensions after deformation is termed
plastic. If it will only partially recover its original di-
mensions after deformation it is said to be partially elastic
and partially plastic. Most constructional materials are
nearly or quite perfectly elastic up to a certain limit of
deformation, beyond which they are partly elastic and
partly plastic.

The ability to resist change in shape and size when a
load is applied is termed stiffness. In elastic materials
the amount of change in size and shape is generally
proportional to the amount of the load applied.

Materials will differ in their tensile, compressive,



Arr. 3] MASONRY 3

and shearing strengths. The strength of a material is
ordinarily determined under the application of a static
load applied in a slowly increasing amount. The effect
of permanent loads, of suddenly applied loads, and of
impact loads, and of the repetition of a load many times,
requires separate consideration. :

A material possesses the property of ductility if the
length can be increased and the cross section decreased
considerably before rupture occurs. Toughness is that
property by which a material will not rupture until
it has deformed considerably under loads at or near
its maximum strength. This deformation may be pro-
duced by stretching, bending, twisting, etc. A tough
material gives warning of failure. It will resist impact
and will permit rougher treatment in the manipulations
which attend fabrication and use. A brittle material
will rupture without developing much deformation and
without giving warning. Brittle materials are unfitted
to resist shock or sudden application of load.

3. MASONRY. Masonry is mostly used to carry
compression loads, such as come on foundations, walls,
piers, chimneys, etc.

(a) Stone Masonry. The kinds of stone that are
best adapted to building and construction purposes are
those that can be worked satisfactorily, can be obtained
in suitable size, have great compressive strength, and
are durable. Sandstone, limestone, marble, granite, trap,
and slate are those in most common use. Stone masonry
is laid up in mortar, and the quality and character
specified will depend upon the purpose and need of the
structure. The weight of stone masonry is about
160 pounds per cubic foot.

(b) Brick Masonry. Many grades of brick are used.
This great variety affords the designer opportunity for
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selecting the kind specially adapted to his purpose.
Special kilns are required for burning bricks to fulfill
special requirements, such as paving brick, fire brick,
pressed brick, etc. The range in the quality of brick
is indicated in part by the compressive strength which
varies from 400 pounds per square inch to 15,000 pounds
per square inch. The strength of brick masonry depends
largely upon the kind of mortar used in the joints and
upon the workmanship, but it is much smaller than that
of the individual brick, ranging from one-sixth to one-
third as much. The weight of brick masonry is about
125 pounds per cubic foot.

(c) Concrete, Plain and Reinforced. In recent years
concrete has come into common use for building and
structural purposes. The convenience with which it
can be made into the required form, its durability, and
its fireproofing qualities make it a desirable material.
For foundations and for places where only compression
comes on the structure the plain concrete is more gener-
ally used, but where tension exists steel is embedded
in the concrete to take the tension.

4. TIMBER. Timber has been used extensively for
building purposes. There are many varieties and qual-
ities on the market, affording good opportunity for
the selection of the timber most suitable for the desired
purpose. The cost of timber is gradually increasing,
and some species have disappeared and others are dis-
appearing from the market for structural purposes.
The strength depends upon the species, the condition
of growth, the seasoning, the defects in the timber, etc.

5. CAST IRON. Cast iron is a brittle metal. Its
cheapness, the ease with which it is cast into special
forms and machined into exact shapes, and its high
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compressive strength make it valuable for a great many
purposes; but its low tensile strength, compared with
that of other metals, and its brittleness make it an
undesirable material for resisting shock or tension.
Cast iron is made by smelting ore in a blast furnace.
In its crude form it is called pig iron. The strength of
cast iron and its other properties vary widely and depend
upon the amount and condition of the carbon and other
ingredients which it contains.

6. WROUGHT IRON. Worought iron is made from pig
iron in a reverberatory furnace by what is called the
puddling process. The puddled balls obtained in the
process are run through a squeezer and much of the
cinder expelled. The material is rolled into muck bars
which are cut, piled together, heated, and finally rolled
into the shapes desired. The strength and other qual-
ities depend upon the quality of the pig iron used, and
upon the details of manufacture. Because wrought
iron can be easily worked and welded it is adaptable
to many uses, but its use has diminished and steel has
taken its place until very little is now manufactured.

7. STEEL. The term steel covers a wide range of
material, — soft steel, mild steel, medium steel, hard
steel, tool steel, etc., all being expressions used in con-
nection with the wvarious steels. In structural steel
the element carbon is the one generally used to control
strength and hardness, though other elements like phos-
phorus, sulphur, and manganese exercise important in-
fluence upon other properties.

The best structural steel is made by the open-hearth
process. In this process pig iron, together with scrap
steel and some iron ore, are melted in an open-hearth
furnace, the carbon, silicon, and other elements are
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burned out, and a recarburizer is added to give the proper
carbon content and to  remove the iron oxide and
increase the manganese, the final product being molded
into ingots. Acid open hearth steel is produced in a
furnace which has a siliceous lining; no reagent is added
to remove the phosphorus, and hence the phosphorus
content of the product is the same as that of the charge.
Basic open hearth steel is produced in a furnace having
a dolomitic lining (giving a basic chemical reaction),
and lime is added to remove the phosphorus.

In the Bessemer process, melted pig iron is placed
in a Bessemer converter and, by the action of air which
is blown through the charge, most of the carbon, silicon,
and manganese are burned out, and a recarburizer is
later added to give the proper carbon content and to
remove the iron oxide and to increase the manganese, the
final product being molded into ingots. As used in the
United States the Bessemer converters have siliceous
linings, and no phosphorus is removed. Relatively little
Bessemer steel is now used for structural purposes.

In the crucible process, crude wrought iron is fused
with a carbon flux in a sealed air-tight vessel. The
crucible process is in use for making hard steel, like
tool steel, spring steel, etc.

The carbon content of steel varies from less than one-
tenth per cent for the softest steels to more than one
and one-half per cent for the hardest carbon steels.
Metals like nickel, tungsten, vanadium, etc., are also
added- to give special amounts of strength or hardness
and produce grades of steel which have special adapta-
bility for various purposes.

8. OTHER MATERIALS. Many other materials used
by the engineer and architect are specially adapted to
the purpose for which they are intended. Rope is made
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of fibrous materials such as hemp, manilla, cotton, etc.,
and of wire. Belting is made of leather, canvas and
rubber, and of metallic links. Several alloys having
copper as a basic element are made, such as phosphor
bronze, brass, etc. Several kinds of artificial stone are
manufactured, for most of which sand and hydraulic
cement are used as the basic constituents. Metals such
as lead and aluminum are also used for various purposes.

Table 1 gives average values of the weights of various
materials used in constructional work, but variation
from the tabulated values is to be expected.

TABLE 1
WEIGHTS OF VARIOUS MATERIALS USED IN CONSTRUCTION
. Weight, - Weight,
Material. b ey UEIEEAE 1b. per eu. ft.
Timber.... ... 25 t0 45 Sandstone e . ¢ S 150
Cast iron..... 450 GTaNTle Ak e a5 Lo 3 170.
Wrought iron . 480 MarbhlesSdei i yea o' L) 170
Dleel Ayl 490 Slatel= SO diiig =o [ 175
Brass......... 515 Terra cotta, facing. ... 110
Copper,Bronze 550 Terra cotta, fireproof-
Aluminum. . .. 160 Tot 2 I I N P 50
Bk £ an S Toort ol so b e B obkitile | s h T Ao 60
Limestone. ... 165 Concreter i aiv ey 150
ExaMpLE

What is the weight of a solid stone masonry pier with uni-
formly sloping sides and rectangular section, 4 feet by 8 feet at
the top and 8 feet by 16 feet at the bottom and 20 feet high?

This example is most easily worked by using the prismoidal

formula to obtain the volume. This is V= % (44+4B+C)in

which V is the volume, % is the altitude, 4 and C are the areas of
the two bases, and B is the sectional area at the middle point.
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For the given example,
4 =4 X 8 = 32 square feet.
B =6 X 12 = 72 square feet.
C = 8 X 16 = 128 square feet.
Therefore the weight of the pier is

W =160 X 22 (32 + 4 X 72 + 128) = 160 X 1493} = 239,0001b.

PROBLEMS

1. What is the weight of a wrought iron rod of 1 square inch
sectional area 1 yard long? Ans. 10 1b.

2. What is the weight of a hollow log 3% feet in external diam-
eter, 2 feet in internal diameter, and 16 feet long?

3. What is the weight per lineal foot of a concrete dam 4 feet
high, 1 foot thick at the top, and 2 feet thick at the base?

4. What is the weight of a solid granite obelisk 40 feet high,
1 foot square at the top, and 3 feet square at the base?

Ans. 29,500 lb.

5. What is the weight of a square brick chimney 3o feet high,
the inside dimensions being 2 feet at the top and 2 feet at the
bottom, and the thickness of the walls uniformly 8 inches?

6. A certain white oak log 12 feet long and 2 feet in diameter
weighed 1885 pounds, what was the weight of a cubic foot of that
white oak?



CHAPTER 11

DIRECT STRESSES

9. DEFINITIONS. Force is an action of one body
upon another which tends to change its shape and to
produce a change of motion in the body. In this book
the use of the term will generally be restricted to forces
which are externally applied to the member.

Stress is an internal action which is set up between
the adjacent particles of a body when forces or loads
are applied to the body. It is developed whenever the
body undergoes a change in shape. Stress may be
considered an internal force.

A unit-stress is obtained by dividing the total stress
by the area over which it acts if the stress is uniformly
distributed. In the case of this uniform distribution
the unit-stress is the amount of stress per unit of area
of the sectional area. If the stress is not uniformly
distributed, the unit-stress, or the intensity of stress,
at a point of the sectional area is equal to the amount
of stress that would be developed upon a unit of area
if the stress were uniform over the area and if its
intensity were the same as that at the point.

Deformation is a change in a dimension of a specimen.

Shortening is a decrease in the length of a specimen.

Elongation is an increase in the length of a speci-
men.

Detrusion is a lateral deformation in which the par-
ticles apparently slip past each other. It is caused by a
shearing force.
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An axial load is one whose line of action coincides
with the axis of the member. The axial load may be
the resultant of several loads.

An axial stress is one developed by an axial load.

If a plane is passed perpendicular to the axis of a
bar, its intersection with the bar is called the cross
section, or the section, and its area the sectional area.

10. TENSION. When a load tends to pull the par-
ticles of a material directly apart in the direction of
the load the material is under tension and the load
is a tension load. The internal stresses developed
are tensile stresses. The resulting deformation is an
elongation. As long as rupture does not occur, the
forces acting on all, or on a part of the specimen, are in
equilibrium.

By the principles of theoretical mechanics it is shown
that the conditions of equilibrium are that there shall
be no resultant force and no resultant moment. These
conditions are expressed in three fundamental equations

= F,=o, (1)
=F,=o, (2)
ZM=o. (3)

These conditions of equilibrium are essential for deter-
mining the internal stresses produced by external forces.
For a homogeneous specimen in direct tension, under

i d
pe—i . p—p P<— A
—
(a) (b
F1G. 1.

an axial load the stress is uniform over the entire sec-
tional area A. Let Fig. 1(a) represent the member
carrying the tension load P. Imagine the member
cut as indicated. Fig. 1(b) shows the left portion of
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the member with the forces and stresses acting upon it
indicated.* The total resisting stress is f4, where f
is the tensile unit-stress developed. The resisting stress
is treated as an external force in the free-body diagram,
then by taking as the X-axis the axis of the piece or
member, the summation of the X-forces gives

SF,=fA—P=o,
P
f.—_Z.

If the load becomes great enough to cause rupture
the maximum unit-stress developed at any time before
rupture is called the ultimate tensile strength. In some
materials, such as wrought iron and soft steel, the load
will increase to a maximum value, then decrease before
rupture occurs. The ultimate strength differs for differ-
ent specimens of the same material, and for purposes of
design the value should be determined for each material
used in the structure.

The unit-stress at the point of rupture is called the
rupturing strength. The rupturing strength is of no prac-
tical value. For brittle materials the rupturing strength
and the ultimate strength are equal.

When a specimen is broken by a tension load, its
final length will be greater than its original length.
The ratio of the increase in length to the original length
is called the ultimate elongation. For ductile materials
the length of the specimen has an influence upon this
ratio. So for purposes of uniformity the ultimate
deformation is usually obtained for specimens of stand-
ard size, either two or eight inches in gauge length.
The average values of the ultimate tensile strength and
of the ultimate elongation for specimens of eight-inch
gauge length are given in Table 2.

* Fig. 1(b) is called a free-body diagram.
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TABLE 2

[Crap. 1T

ULTIMATE TENSILE STRENGTH AND ULTIMATE ELONGATION

OF MATERIALS

Material. Ultimi'«ng: ;:l;séée. sitl:‘-ength, Ultim:;::ceggagation,
Rimberiry. w3 s Rl 6,000 t0 10,000 %15
(CHT o) wo) s T R P 20,000 -3
Wrought iron............ 50,000 30.0
Structural steel.......... 60,000 25.0 to 30.0
Sfeeliwires J . e Nk s 60,000 to 250,000 10.0 t0 25.0

11. COMPRESSION. When a force acting on a member
tends to push the particles closer together in the direc-
tion of the force the member is in compression. The
stresses arising are compressive stresses. For compres-
sion there is a shortening. If the load is axial and is
applied in such a manner that the stress developed is
uniformly distributed over a section of the member, the

: : : 72
compressive unit-stress developed is f = o The aver-

age values of the ultimate compressive strength are given
in Table 3. The table does not include values of the
ultimate compressive strengths of malleable materials.
Their values, however, should not be considered greater
than the ultimate tensile strengths.

TABLE 3
ULTIMATE COMPRESSIVE STRENGTH OF MATERIALS

Material Ultimate compressive

131 strength, lb. per sq. in.
TAMDEr S SOl e 7,000
Casthront= 8. ol Ll e 00,000
BraCkiatg s ig: b KL s 6,000
Brick masonry.......... 1,500
Richiconcrete: A% s 2,500
SHONE % =4 e e 10,000
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12. SHEAR. When external forces tend to cause two
adjacent sections of a member to slip past each other
the member is in shear. Stresses resisting such forces
are shearing stresses. When the two shearing forces
are near together the shear is considered as a simple

P
P
f ] ] 2P u’-/ij s
= e > ] I S ]
(@) 2 (¢)
P
F1G. 2.

stress. Fig. 2 shows cases of direct shear. If a force P
tends to shear a specimen along an area A the average

4 l | 2 :
shearing unit-stress is § = T Table 4 gives average

values of the ultimate strength in shear.

TABLE 4
ULTIMATE SHEARING STRENGTH OF MATERIALS
. Ultimate shearing
Material. strength, 1b. per sq. in.

Timber:

Along ot AINHETERI IS 400

ACHOSSIgTATYS SRt 3,000
Castiron Tly. fErds SR e 20,000
Wrought iron........... 40,000
Structural steel......... 50,000
Rivet steel............. 45,000

13. OBLIQUE SHEAR. Shearing stresses are developed
in structural members which are subjected to direct
tension or compression. Let Fig. 3 represent a speci-
men under the compression force P, and imagine it
cut along the plane AB. The two plane surfaces made
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by the cut would slip past each other under the action

of the force. This tendency of the sections to slip past

each other, which gives rise to shearing stresses, always

exists in members under load. To deduce the value of
B

g eats 158

A

F1c. 3. F1G. 4.

the shearing unit-stress developed along an oblique
plane making an angle 6 with the axis, let Fig. 4 repre-
sent the free-body diagram of one end of the specimen.
The resisting stresses acting on the fibers of the plane
may be resolved into their components Q and N parallel
and normal to the plane respectively. Taking the
X-axis along the plane there results |

2F,=Pcosd— Q=o,

<+ Q = Pcosé.
The component Q parallel to the plane is the force that
keeps this end from slipping past the other one, and
therefore Q is the resultant of the shearing stresses, which
act parallel to the plane. If 4 is the area of the cross

S Y Ayl :
section of the specimen, b= is the area of the section

cut. The shearing unit-stress then is

SN e e
_s—Pcose—.-;m—Zsm()coso.

This is the value of the shearing unit-stress along any

oblique plane. To find the value of @ for the maximum

shearing stress developed in a specimen the relation

sin?f 4+ cos?f = 1 exists. It is shown by algebra that

when the sum of two variables is constant the product

of those variables is a maximum when they are equal; *
* See “Higher Algebra,” by John F. Downey, page 252.



ART. 14] STRESS—DEFORMATION DIAGRAMS 15

therefore for the maximum shearing unit-stress sin § =
cos 0 which is true when 6 = 45° then

e

RIS g g

14. STRESS-DEFORMATION DIAGRAMS. Whenever a
load is applied to a specimen of any material there is
a corresponding deformation. A graphical representa-
tion showing the values of the unit-stress developed in

60000
Tension
40000+ B
A
~ 200004
7
&
| @ o Unit Deformation & §
L s 0.1 0.2 0.3
5
Structural
Steel

FiG. 5.

the specimen along one axis and the corresponding
values of its unit deformation along the other axis is
called a stress-deformation diagram. Fig. 5 is such a
diagram for a specimen of soft steel. The unit-stress

f= g is plotted along the vertical axis and the unit

: e . A ;
deformation e =7 is plotted along the horizontal axis.

In these equations P is the total load on the specimen,
A 1is the cross-sectional area, e is the total deformation
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at the load P, and ! is the original length of the speci-
men. In the diagram shown, the stresses measured
upward from O are tension and those measured down-
ward are compression, and the deformations measured
to the right are elongations and those measured to the
left shortenings.

15. ELASTIC LIMIT AND YIELD POINT. For stresses
between the two points 4 and A4’, Fig. 5, the deform-
ation is proportional to the stress, while for stresses
beyond these points the proportionality does not hold.
These points are the elastic limits, 4 in tension, 4’ in
compression. As long as the stress is between the two
values corresponding to 4 and A’, the specimen will
return to its original length upon the removal of the
load. If the stress becomes greater than these values,
however, the length after removing the load will not
be the same as before; the difference or the change in
length is the permanent set. The elastic limit is the
point on the stress-deformation curve where the curve
departs from a straight line, or the elastic limit is that
unit-stress beyond which permanent set is developed.
At the point B, Fig. 5, the deformation increases markedly
with but little increase in the stress. That point is
the yield point. The yield point then may be defined
as the unit-stress at which there is a marked increase
in the deformation with but little or no increase in the
stress. Table 5 gives average values of the elastic
limits of wrought iron and steel as commonly determined
in the laboratory. The values for tension and compres-
sion are about the same. Values for timber and cast
iron have not been included on account of the uncer-
tainty in their determination, but when used they may
be taken to be about one-third to two-thirds of the
ultimate strength.
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TABLE 5
ELASTIC LIMIT OF WROUGHT IRON AND STEEL
Material. Elastic limit,
1b. per sq. in.
Wrought iron.......... 25,000
Structural steel........ 35,000
Hard steel ¥ Ws{ =~ 50,000

16. THE MODULUS OF ELASTICITY. For values of
the stress less than the elastic limit the rate at which
the unit deformation increases
with the increase in the unit-
stress is constant,* i.e., the
unit deformation is propor-
tional to the unit-stress (Fig.
6). This is commonly called
Hooke’s Law. Then for
stresses below the elastic limit o
the unit-stress divided by the
unit deformation gives a
constant. This ratio is the
modulus of elasticity or the
coefficient of elasticity.
Young’s modulus is the A
modulus of elasticity for
direct tension or compression.

If E is the modulus of elasticity, f the unit-stress below
the elastic limit, and ¢ the corresponding unit deform-
ation the value of the modulus of elasticity is

F1c. 6.

P
ey s
E_e—g_Ae
/

* Experiments indicate that the increase of deformation is not abso-
lutely proportional to the increase in stress, but for practical purposes
they may be taken as varying directly with each other.
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In the formula for E, e is an abstract number; conse-
quently the unit for E is the same as that for f, pounds
per square inch, tons per square foot, etc. In Table 6
are given average values of the modulus of elasticity
in tension and compression for some materials.

TABLE 6
MODULUS OF ELASTICITY
. Modulus of elasticity,

Material. 1b. per sq. in.
FIDET I AR TN SN 1,500,000
@astiiron' s el et 15,000,000
Wrought iron........... 25,000,000
ST o R e L8 M T 30,000,000

17. RESILIENCE. The stress-deformation diagrams
show that a force acts through a distance and thus
does work on the speci-

men. When the load is

/ released the specimen
gives up energy stored in

it. This energy a speci-

men under stress is ca-

L/ pable of giving up in
As( returning to its original
dimensions is called re-

P\/ ' silience.
i
|

18. THE SHEARING
/ : MODULUS OF ELASTICITY.

Under shearing forces a
specimen will undergo a
detrusion. The unit de-

trusion is obtained by dividing the total detrusion by
the length over which it occurs. The ratio of the

<

FiG. 7.
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unit-stress developed in the specimen to the unit de-
trusion is called the shearing modulus of elasticity.
It is also called the modulus of transverse elasticity,
and the modulus of rigidity. When a specimen is sub-
ject to shearing stresses as in Fig. 7 the unit-stress can
be calculated and the detrusion measured. If E, is
the shearing modulus of elasticity, e, the unit detrusion,
s the shearing unit-stress,

0 it 2

El

In Table 7 are given average values of the shearing
modulus of elasticity.

TABLE 7
SHEARING MODULUS OF ELASTICITY

Shearing modulus of

Material. elasticity, 1b. per sq. in.

Timber, across grain. . .. 400,000
CASTHEONT (Syotard i b b 6,000,000
Wrought iron........... 10,000,000
SR ] L A Ll A B S 12,000,000

19. POISSON’S RATIO. As the length of a specimen
is increased by a tension load the lateral dimensions
decrease. For a compression load the lateral dimensions
increase. For stresses below the elastic limit the ratio
of the lateral unit deformation to the longitudinal unit
deformation is called Poisson’s ratio. This ratio is
considerably less than 1 and for most metals ranges
between % and %.

20. REDUCTION OF AREA. When a specimen is rup-
tured by a tension force the final sectional area is less
than the original area. The ratio of the amount the
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section at rupture is decreased to the original area is
called the reduction of area. Thus, if 4; is the original
area and A, is the final area at rupture, the reduction
of area is %—1—43

21. USES OF THE MODULUS OF ELASTICITY. The
maximum unit-stress for which the formula E =A££
may be used in calculations is the elastic limit. For
stresses below the elastic limit £ may be calculated
from data observed in the laboratory; and the change
in length of a specimen may be calculated by the for-

mula e = % The modulus of elasticity has an impor-

tant application also in determining the deflection of
beams and the strength of columns.

22, STRESSES USED IN DESIGN. In making a design
safety and economy must be considered. Experiments
indicate that at stresses slightly beyond the elastic
limit there is a marked change in the structure of the
material, and therefore the working stresses should
not be carried beyond that value. At least there
should not be noticeable permanent set. Working
stresses are the allowable stresses used for designing;
they should always be well below the elastic limit. The
method of fixing upon values for allowable working
stresses is by making a set of experiments in which
the elastic limit and ultimate strength of a number of
specimens are determined, and then by taking a cer-
tain per cent either of the elastic limit or of the ulti-
mate strength as the working stress. A knowledge of
the behavior of the material under stress is essential for
a proper determination of working stresses.
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TABLE 8
SAFE WORKING STRESSES IN POUNDS PER SQUARE INCH FOR

STEADY LOADS

21

Compression.
Bending
Material. Tension. | Shear. P : (fiber).
e'iginégc' Parallel
ugrain. to grain.
Timber:
Cedar, white........ 800 100 180 1,100 | 1,000
Cypressiitltis. 5. 600 100 180 1,100 [ 1,000
Fon 0 i A 4 1,000 240 300 1,200 | 1,200
Fir, Washington ....| 1,200 100 300 1,600 | 1,200
Guinlelsp IshTse TNl 1,000 200 340 1,300 | 1,100
Fenmlockl Sl S, 8oo 8o 180 1,000 800
IR S T G A 800 120 240 1,200 | 1,300
Maple, sugar (hard).| 1,000 200 800 1,800 | 1,800
Maple (average)..... 800 160 500 1,400 | 1,200
QakyiredsMisstome . oo 160 500 1,200 | 1,200
whiite)/ L5 et 1,000 200 600 1,750 [ I,400
Pine, longleaf....... 1,000 125 240 1,400 | 1,200
160 o3 o l byl bt b e e 100 200 1,000 | 1,000
shiortleaf ™ el 100 200 1,200 | 1,100
yellow, (Ark.,
1S ok ihae ok 8oo 100 200 1,200 | 1,000
SPIUTE: s Sl 800 100 200 1,200 | 1,000
East rionstnt  EnAaA 3,000 | 2,500 12,000 6,000
Wrought iron’. ........ 12,000 [ 9,500 12,000 12,000
Steel, structural....... 15,000 | 10,000 12,000 | 16,000
51 A o eyt e Al O { 8,000 18,000 (Bearing)|.......
10,000

Brickwork (in lime). ..

Brickwork (in Portland
CEmentfak o= My o

Concrete (Portland
cement): i inritn e

110
250

350

Table 8 is a mbdiﬁed extract from a table of allowable
working stresses compiled by Ricker from building or-

dinances. A few additions are given.

A few changes

also have been made to agree with recent building

ordinances.

The factor of safety is defined as the ratio of the ulti-

mate strength to the working stress.

This value varies
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for the different materials and for the kind of loading.
Variable loads produce higher stresses than steady loads
of the same magnitude. Suddenly applied loads and
shocks produce higher stresses than variable loads of
the same magnitude. Therefore the factor of safety
for variable loads is usually taken about one-half greater
than that for steady loads, and for sudden loads or shocks
it is two or three times that for steady loads. In speci-
fications and building ordinances the allowable stresses
are usually given and also the tests for the materials
specified. For such cases a factor of safety has been
considered.

PROBLEMS

1. What must be the height of a brick tower if the compressive
unit-stress on the lowest brick is one-tenth of its ultimate strength?

2. Determine the shearing unit-stress tending to shear off
the head of a 1}-inch wrought iron bolt under a tension of 10,000
pounds, if the head is § inch deep.

3. A wrought iron plate } inch thick requires a force of 80,000
pounds to punch a round hole } inch in diameter through it.
Find the ultimate shearing strength of the plate.

4. What force is required to punch a 1-inch hole in a -inch
structural steel plate ?

5. In a tension test of a 0.19 per cent carbon steel specimen
the diameter was o.5 inch, and the gauge length was 1.25 inches.
1

Each scale division on the extensometer represented inch.

tl

P is the load in pounds and ¢ is the reading on the exten-
someter in scale divisions. The following readings were made:
P = 2000, ¢ = 60; P = 6ooo, ¢ = 180; P = 8000, € = 240;
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P = 8000+, ¢ = 200; P = 8100, ¢ = 610. The maximum load
was 15,600 pounds, the corresponding length between punch marks
was 1.59 inches. The load at rupture was 12,000 pounds, and
the corresponding length was 1.76 inches. The diameter at the
fracture was 0.313 inch.

(a) Calculate the unit-stress for each load. .
Ans. 30,600 Ib. per sq. in. 40,800 lb. per sq. in.
(b) Calculate the unit elongations for each load.
Ans. 0.00115, 0.00154.
(c) Plot the stress-deformation diagram.
(d) Whatis theelasticlimit?  Ans. 40,800 Ib. per sq. in.
(e) What is the reduction of area? Ans. 60.7 %.
(f) What is the modulus of elasticity ?
Ans. 26,600,000 lb. per sq. in.

6. A wrought iron rod 2 inches square and 10 feet long length-
ened o0.02 inch by suspending a load from its lower end. Determine
the load. .

7. How much will a 1oo-ft. steel tape, } inch wide and ¥ inch
thick, stretch under a pull of 40 pounds ? Ans. 0.16 in.

8. A vertical wooden bar so feet long and 6 inches square
carries a load of 18,000 pounds at its lower end. Find the unit-
stress at the upper end and the elongation of the bar due to the
combined weight of bar and load.

9. Determine the elongation of a 1-inch wrought iron rod
10 feet long, under a tensile load of 20,000 pounds.

10. How many 3%-inch square rods of strong steel would be
required for the suspension of a platform loaded with 15 tons,
if the stretching of the rods is limited to one-half their elon-
gation at the elastic limit? Each rod carries equal shares of the
load. :
. 11. What shearing load will a rivet  inch in diameter safely
carry ? A rivet § inch in diameter ?

12. What should be the depth of the head of a bolt % inch in
diameter to carry safely the shear ?

13. What must be the bearing area to carry safely a load of
20,000 pounds on a Washington fir-beam ?

14. What should be the sectional area of a steel member (a — %)



24 DIRECT STRESSES [CHaP. IT

of the truss shown in Fig. 8? If (¢—y) is a short compression
longleaf pine member, what should be its section?

15. Member (¢ — ), Fig. 9, is a steel rod 13 inches in diameter
stressed to its safe working stress. What should be the corre-
sponding sectional area of the short white cedar compression
members (¢— x) ?

” ”,
8x 10: Y. P,
i

10T
Fic. 8. Fic. 9. F16. 10.

16. Design a cast iron washer for the member shown in Fig. 10

17. What must be the cross section of specimens of the follow-
ing materials in order that the unit-stress may be about one-third
the elastic limit under a load of 30,000 pounds in tension?
(a) Wrought iron; (b) Steel.

18. In a compression test of a 6-inch concrete cube the load
was 107,000 pounds at rupture. What was the shearing unit-
stress along a plane inclined 30° to the axis? What was the
maximum shearing stress developed ?

Ams. 1290 Ib. per sq. in. 1490 Ib. per sq. in.

19. What will be the elongation at the elastic limit and
at rupture of an 8-inch specimen of the following materials ?
(a) Wrought iron; (b) Structural steel; (c) Hard steel.

20. What should be the sectional area of a steel rod if it is to
take a tension load of 70,000 pounds ?

21. If a cast iron specimen 1 X 2 inches in sectional area
breaks under a tensile load of 42,000 pounds, what load will
probably break a cast iron rod 2 inches in diameter?



CHAPTER III
DIRECT STRESSES — APPLICATIONS

23. SIMPLE CASES OF DIRECT STRESSES. The sim-
plest cases of direct stresses are such as exist in eyebars,
belts, ropes, cables, tension members in trusses, etc.
For such members the unit-stress developed is obtained
by dividing the load the member carries by the sectional
area of the member. There are other cases for which
the stresses developed are practically direct stresses
although the line of action of the load may not be along
the axis of the member that carries the load. Such
cases will be considered in this chapter.

24. STRESSES IN THIN CYLINDERS. When a thin
cylinder is under interior pressure, as a steam boiler,
water pipe, etc., the forces tending to burst the cylinder
act normally to the inside surface, Fig. 11. These
forces develop internal tensile stresses in the metal of
the cylinder. In order to determine the magnitude of
these stresses, imagine the plane 4B, Fig. 11, passed
perpendicular to the page and containing the axis of
the cylinder. The portion ABD is in equilibrium under
the forces and stresses acting upon it, and if that half
of the cylinder were filled with some solid substance the
interior forces acting upon it would be normal to the
plane AB; the resisting stresses also would be normal
to that plane. The internal stresses actually developed
in the cylinder are the same as would be developed under
the imaginary condition. Fig. 12 is a free-body diagram
of the part ABD. Let r be the radius, ¢ the thickness,

25
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and !/ the length of cylinder, Q the interior pressure per
unit of area, and f the resisting unit-stress, which is
approximately uniform over the resisting area. Then
the force tending to rupture the cylinder is 2 Qlr, and the

A A

B

Fi1c. 11. F1c. 12.

resisting stress on one side is f#/ and on both sides is
2 ftl. ‘Then for equilibrium
2 Qlr = 2 fil,
Qr = ft.

This formula is true for thin cylinders.

-

25. STRESSES IN A HOOP. If hoops are heated and
then shrunk onto cylinders, the unit-stress can be ob-
tained by the application of the formula for the modulus
of elasticity, E = % =f;l,’ if the difference between the
normal diameter of the hoop when cool and the one to
which it is shrunk can be obtained. The effect is the
same as if the hoop is stretched from its normal diam-
eter d; to the diameter d of the hoop when shrunk on the

cylinder. The difference in the length of the hoop will
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be 7 (d — d1) and the unit elongation will be = (d — dy)

4 ; G2 or ¢ Ti @ approximately. For steel tires
ol

' d
a common rule is to make

+wdy =

o .
d about S Actually

the final diameter d of the hoop and cylinder will be
slightly less than the original diameter of the cylinder,
as the metal of the cylinder will deform under the pres-
sure due to the hoop. The amount of this deformation
will depend upon the ratio of the moduli of elasticity of
the materials of the cylinder and the hoop, and upon the
thickness of each.

26. STRESSES DUE TO CHANGE IN TEMPERATURE.
When a material is heated it will expand if free, and
when -cooled it will contract. If £° is the change in
temperature and ¢ is the coefficient of expansion, or
change per unit of length for one degree rise or fall,
the change per unit of length will be ¢ = ¢t°. If the

TABLE ¢
COEFFICIENTS OF EXPANSION PER DEGREE FAHR.
Material. Coefficient of expansion.
MasonTyed S eaissse { s, .0000050
CaSt IO R R .0000062
Wrought iron........... 0000067
SteelT 3 eSS T Ces 1) 00000065

member is brought back to its original length by an
external force the unit-stress developed will be f = ¢E =
ct°E. If, instead of being allowed to change in length
and then being brought back to its original length when
a change in temperature takes place, the specimen is
rigidly held in its original position, a unit-stress of
f = o°E will be developed. The effect is the same as if
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the specimen were allowed to change in length and
then were brought back to its original length by an
external force. Table 9 gives the values of the
coefficient of expansion for each degree of change in
temperature Fahr.

27. STRESSES IN THIN SPHERES. Internal pressure
in domes or other thin spheres tends to cause rupture
around a circumference, (Fig. 13). By using the same
nomenclature as for thin cylinders, the force tending to
push off the dome is. Q72 and the stress resisting this
force is f2rri,

: Qr = 2ft.

This formula also applies when an interior pressure acts
upon a cylinder head.

F16. 13.

28. THICK CYLINDERS UNDER INTERIOR PRESSURE.
If the metal is thick in comparison with the diameter
of the pipe the stresses developed are not direct stresses
and are not uniform throughout the thickness of the
metal of the wall of the cylinder, and the formulas of
the previous paragraphs cannot be used for such cases,
(Fig. 14). Various expressions for the value of the
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maximum stress developed have been deduced. For
the case when there are longitudinal and transverse
stresses due to the interior pressure Lamé* gives the
formula for the maximum tensile stress developed, which
comes on the inner surface of the pipe, where 7; is the
internal radius and 7, is the external radius,
PR _Q (rs® + 7’12).
(et iraf)
Calvarino* gives for the same case,
f= Qre+n?)
(rg = i)
Birnie* gives the formula for thick guns when no longi-
tudinal stress is developed,
foQUritar
3(rdd — 1)
Any of these formulas may be used to investigate or
design thick pipes or guns.

29. CYLINDERS UNDER EXTERIOR PRESSURE. Recent
experiments on the collapse of tubes under exterior
pressure indicate that for a length of tube greater than
six times its diameter the rupturing pressure is indepen-
dent of the length. The formulas deduced by Carman
and Carr in the University of 1llinois Engineering Exper-
iment Station Bulletin No. 5 are as follows: for thin

is less than 0.025,
& (Y
0-x(3)" o

And for thick tubes or é greater than 0.03,

{
tubes where 3

Q=K'7-C. @)

* See ‘““Strength of Materials,” by A. Morley.
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In these formulas ¢ is the thickness of the walls, d is the
outside diameter, Q is the external pressure in pounds
per square inch causing collapse, and X, K’, and C are
experimental constants. Table 10 gives the values of
these constants.

TABLE 10
VALUES OF K, K’,AND C FOR PIPES UNDER EXTERIOR PRESSURE
Material. K. RS C.
Cold-drawn seamless steel...... 50,200,000 05,520 2,090
IBrassmal) 1ol b I 91 ndata e (e 25,150,000 93,365 2,474
IFan-weldedisteelts: S N s JUIRIRER 1Fy  SHiE % 83,270 1,025
ExAMPLES

1. What internal pressure will probably rupture a cast iron

pipe 8 inches in diameter and % inch thick ?
Q4 = 20,000 X %,
Q = 1250 lb. per sq. in.

2. If a steel rail of sectional area 8.8 square inches is subjected
to a drop in temperature of 50° Fahr. and is prevented from
shortening, what is the force exerted upon it if the initial force
was zero?

The unit-stress developed is

.0000065 X 50X 30,000,000 = 9750 lb. per sq. in. in tension.

The total force is 8.8 X 9750 = 85,800 Ib.
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PROBLEMS

1. What is the maximum tensile unit-stress in a pipe 24 inches
in diameter, the plate being § inch thick, and the internal pressure

80 pounds per square inch? Ans. 2560 1b. pér sq. in.
2. What internal pressure will rupture a 12-inch steel pipe
3 inch thick? Ans. 3750 1b. per sq. in.

3. What should be the thickness of the lower plates of a steel
stand-pipe 20 feet in diameter carrying a water pressure of 8o
pounds per square inch? Use a unit-stress of 16,000 pounds per
square inch and the efficiency of the joint 75 per cent.

Ans. About 0.8 in.

4. What stress is developed in a spherical steam dome 10 inches
in diameter,  inch thick, under a steam pressure of 120 pounds
per square inch? i

5. What external pressure will cause a 2-inch cold-drawn steel
tube % inch thick to collapse? ‘

6. What internal pressure will burst a wrought iron cylinder
of 48 inches inside diameter and £ inch thickness?

7. Determine the thickness of a wrought iron steam pipe 18
inches inside diameter to resist a pressure of 200 pounds per square
inch with an allowable stress of 6000 pounds per square inch.

8. What should be the minimum thickness of a cast iron
sphere 12 inches inside diameter to withstand safely a steady
internal pressure of 200 pounds per square inch?

9. What internal pressure will burst a cast iron sphere 24 inches
inside diameter and % inch thick?

10. A short wrought iron bar 1} inches in sectional area has
its ends fixed immovably between two walls with no stress when
the temperature is 50° Fahr. What pressure will be exerted on
the walls when the temperature is 120° Fahr.?

11. Steel railroad rails, each 3o feet long, are laid at a temper-
ature of 40° Fahr. What space must be left between them in
order that their ends shall just meet when the temperature is
100° Fahr.? If the rails had been laid with their ends in contact,
what would be the unit-stress in them at 1oo® Fahr.?

12. A wrought iron tie rod 20 feet in length and 2 inches in
diameter is screwed up to a tension of 10,000 pounds in order to
tie together two walls of a building. Find the stress in the rod
when the temperature falls 30° Fahr. Also when it rises 20° Fahr.



CHAPTER 1V
RIVETED JOINTS

30. RIVETED JOINTS. In pipes, tanks, and boilers
made of rolled plates, the plates are usually connected
by rivets, and stress is transmitted from one plate to
the other through the rivets. Such joints may be called
boiler, tank, or pipe joints. Connections of bridge
members, and connections between the members of
roof trusses, columns, beams, etc., are also made by
means of rivets. Such joints may be called structural
joints. Wherever pieces of metal are connected by
rivets the design should give the most efficient and
economical connection consistent with the given con-
ditions. A joint will fail at its weakest part, and the
most efficient design will have all parts of the joint of
equal strength.

Although the actual stresses developed in a riveted
joint may be complex, the usual method is to simplify
the calculation by assuming conditions giving direct
tensile, compressive, and shearing stresses. As such
the stresses are easily computed. The treatment of
boiler joints and of structural joints is essentially the
same.

31. KINDS OF RIVETED JOINTS. Riveted joints may
also be classified according to the method of connecting
the plates and the number of rows of rivets used. In
Fig. 15 are shown two styles of lap joints; the main
plates overlap each other and are connected by the

32
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rivets. Fig. 15 (@) and (b) represent a single riveted
lap joint, and (¢) and (d) represent a lap joint with
two rows of rivets, with the rivets staggered. Fig. 18
shows two styles of butt joint; the edges of the main
plate almost or wholly butt against each other, and the
connection is made through cover plates. Fig. 18 (d)
shows a butt joint with a single cover plate, and Fig. 18

A A

Koy Q

el S,

P. P

& LD '°
s R M

e N

(a) l B

el
O NN N SN NN
UM VDo mm—v
q SN,
(b) (d)
F1c. 15.

(c) shows one with a double cover plate. There are other
styles of riveted joints, but the general method of treat-
ment is the same for all kinds.

32. METHODS OF FAILURE OF RIVETED JOINTS. The
three principal ways in which riveted joints may fail
are (1) (for tension loads) by tension in the plates along
AB, Fig. 15; (2) by crushing of the rivets along CD or
EF; (3) by shear of the rivets along ED. Besides these,
failure may occur, (4), by shearing of the plate along GH
and IJ; (5) by bending of the rivets; (6) by bending
of the plates, thus allowing the rivet heads to shear off
or the rivets to fail in tension; (7) by failure of the plate
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in tension along KL and MN for staggered rivets.
Failure by shear in the plates, number (4), is avoided
by making the lap GH large enough to insure safety.
A rule sometimes followed is to make the lap one and
one-half times the diameter of the rivet. Bending of
the rivets, and of the plates, numbers (5) and (6), may
occur in a single-riveted lap joint. Failure number (7)

@
(d) te)

is avoided by making the distance between the rows of
rivets large enough so that KL + MN is somewhat
greater than QR.
Fig. 16 indicates the various ways in which a riveted
joint may fail.
(@) shows a failure due to tensile stress in the plate.
(b) shows a failure due to bearing stress in the rivet.
(c) shows a failure due to shearing stress in the rivet.
(d) shows a failure due to the shearing stress in the
plate between the edge of the plate and the rivet
hole.
(e) shows a failure by tension along a staggered line.

1

\ESIRE  ,

(@) (€)) (c)

F1G. 16.

33. COMPUTATION OF UNIT-STRESSES DEVELOPED
IN RIVETED JOINTS. The calculation of the unit-stresses
developed in a riveted joint is made by assuming that
the stress is uniformly distributed over the particular
area which is in tension, compression, or shear, and



ART. 34] SINGLE-RIVETED LAP JOINT 35

; : J2 :
hence that the unit-stress is f = 1 where P is the total

load coming on the area 4 which resists tension, compres-
sion, or shear. In order to determine the tensile stress
developed, the area of the section subjected to tension
should be obtained. To determine the compressive or
bearing stress, the area subjected to bearing should be
found. For bearing it is assumed that the stress on
one rivet is uniformly distributed over an area equal
to that obtained by multiplying the thickness of the
plate by the diameter of the rivet. This area is the
projection of the rivet on the thickness of the plate.

If the entire stress transmitted by a rivet is taken by
a section of the rivet at one face of the plate the rivet
is said to be in single shear, and the resisting area is
equal to the cross-sectional area of the rivet. If the
stress transmitted is taken by sections at two faces of
-a plate the rivet is said to be in double shear, and the
resisting area is equal to twice the cross-sectional area
of the rivet. The method of calculating the stresses
will be given for a few cases.

34. SINGLE-RIVETED LAP JOINT. Let Fig. 17 repre-
sent a single-riveted lap joint in which the load P is
to be transmitted from one plate to the other by =
rivets in one row. The load must be transmitted by
tension through the plate past the row of rivets. The
greatest tensile unit-stress developed will come along
the section AB. Let f, be the tensile unit-stress de-
veloped, ¢ the thickness of the plate, d’ the diameter
of the rivet hole, and b the width of the plate. Then
the smallest area in tension taking the load is ¢ (b — nd’),

75
t (b — nd’)
and P =fit(b—nd). (1)

and the unit-stress is f; =
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The load brings compression on the side of the rivet
as shown in Fig. 17 (b). If d is the diameter of the
rivet, the total area upon which the load is assumed to
be distributed in compression or bearing is n{d, and the

£
ntd
and P = fontd. (2)

The load tends to shear the rivets along the plane CD
between the two plates. If f, is the shearing unit-

bearing unit-stress developed is f. =

A A

p<—oy

B B

(@) : (0) (e
F1c. 17.

stress, and 4 the sectional area of each rivet, the total
resisting area in shear is #4, and the shearing unit-

: P
stress is f, = Fir]
and P = fmnA. (3)

By use of the three formulas just developed the unit-
stresses existing in a single-riveted lap joint under a
given load can be calculated, or the load a given joint
will carry can be determined, or a joint can be designed
to carry a given load. If the plates connected are of
different thickness the smaller value of ¢ should be used
in the formulas.

35. DOUBLE-RIVETED LAP JOINT. The equations
representing the relation between the load transmitted
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and the unit-stress developed for a double-riveted lap
joint are similar to those given for the lap joint with a
single row of rivets.

For this case let # be the number of rivets in one row,
and »;, the total number of rivets, then the formulas
become

P=fg(b—nd), (1)
P=fmdd, (2")
P=fmA. 3"
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36. LAP JOINT WITH MORE THAN TwWO ROWS OF
RIVETS. If there are more than two rows of rivets the
assumption is generally made that the load is distributed
evenly among the rivets, and the load each rivet carries
is obtained by dividing the total load by the number
of rivets carrying the load. With the same nomen-
clature as in the last article the same formulas hold for
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this case (# would usually be the number of rivets in
the outside row).

37. BUTT JOINT. Fig. 18 (b) shows a butt joint with
a single cover plate, for which kind of joint the formulas
of Art. 34 may be applied, if » refers to the number of
rivets on one side of the seam. The similarity between
this joint and a lap joint is readily seen by considering
the cover plate with one side of the main plate.

For a butt joint with two cover plates, using the same
nomenclature as in Art. 35, the formulas become

P=fib— nd), (T
P= fnd, 2"
P=fm 2 A. (3"

Two sections of each rivet are brought into shear.

38. COMPRESSION LOADS FOR RIVETED JOINTS. For
the foregoing analyses the loads have been considered
in tension.” If the member is a compression member
the formulas for shear and for compression in the rivets
will remain unchanged; the formula for compression in
the rivet need not ordinarily be considered.

39. EFFICIENCY OF RIVETED JOINTS. The efficiency
of a riveted joint is the ratio of the strength of the joint
to the strength of the unpunched plate. In figuring
the strength working stresses are usually used in the
formulas to determine the load P. When a joint is de-
signed, its strength under tension in the plate calculated
by formulas (1) Art. 34, 35, and 37, the bearing strength
of the rivets calculated by formulas (2), and the shearing
strength of the rivets calculated by formulas (3) should
be obtained and the smallest value of the load P taken
as the strength of the joint; for if a greater load is put
on the joint one of the safe stresses would be exceeded.



ART. 40] DESIGN OF RIVETED JOINTS 39

This value divided by the working strength of the un-
punched plate is the efficiency.

In boiler lap joints, for the pitch p, which is the
distance from center to center of adjacent rivets in
one row, the strength of the unpunched plate is fiup.
Therefore, the efficiency for tension is

LSl —d) _p=d

g fap p
The efficiency for compression in the rivets is
A4 fentd -, fend
O fap  fp
And the efficiency for shear in the rivets is
. =L
t fap

The actual efficiency of the joint is the smallest one of
the above values. Similar expressions for the various
other types of riveted joints may be deduced.

Table 11 gives the range of values for efficiency for
the types of boiler joints listed for ordinary design.

TABLE 11
EFFICIENCY OF JOINTS

Efficiency,

Kind of joint. per cent,
Single-riveted lap joint....... 50-65
Double-riveted lap joint...... 65-75
Single-riveted butt joint...... 65-75
Double-riveted butt joint..... 70-80

Triple-riveted joints are frequéntly used and high effi-
ciencies are obtained. :

40. DESIGN OF RIVETED JOINTS. For use with ordi-:
nary thickness of plates in structural work §-inch and
#-inch rivets are the prevailing sizes. For light work
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3-inch and $-inch rivets are used. In specially heavy
sections larger rivets are used, I}-inch rivets being
occasionally used. '

The pitch of the rivets to be used in a design depends
upon the kind of joint used and the purpose of the joint.
For tanks and boilers the joint must be tight as well as
strong; therefore the spacing should be small. For
structural members strength is the main object to be
accomplished.

The diameter of the rivet hole is somewhat larger than
the diameter of the rivet. In boiler joints the diameter
of the rivet hole is usually assumed equal to or % inch
larger than that of the rivet, and in structural joints it
is assumed § inch larger.

The ideal joint for strength and economy would be
the one that would be of equal strength in tension in
the plate, bearing in the rivets, and shear in the rivets.
For this to be the case the three values of the allowable
resisting stresses as calculated by the three formulas,
Art. 34, 35, and 37, would be the same; therefore, for
single-riveted lap joints,

St (b — nd') = fonid,”
and
fentd = fnA,

ft (0 —nd’) =fnd.:

Similar equations can be written for the other types of
riveted joints. »

In practice it is not usually necessary or practicable
to make such ideal joints, and the resulting efficiency
will be somewhat less than that of the ideal joint.

Limitations of the size of rivet, conditions for tight-
ness of joints, convenience for shop work, and many
other items may prevent making joints of equal strength
in tension, bearing, and shear, and small variations from

and
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the ideal conditions will not materially decrease the
efficiency.

For the design of boiler, tank, or pipe joints the follow-
ing. procedure is a convenient one and is recommended.

(a) Decide upon the working stresses for tension,
shear, and bearing, and calculate f,: f;, and f.: f.

(b) Select the type of joint to suit the conditions.

(c) In the first calculations assume the efficiency,
calculate the necessary thickness, and then seclect a
commercial thickness of plate.

(d) Determine the limiting size of rivet for shear
or bearing. The general limiting size for any style
of joint may well be expressed in terms of the thick-
ness of the plate. For example, for f,:f. = 2:3 and
fe:ft = 3:2 in the design of riveted lap joints any
diameter of rivet less than 2.87¢ will not involve a
question of bearing strength. Also in ordinary butt
joints having double cover plates, the bearing strength
of the rivet will not need consideration if the diameter
of the rivet does not exceed 1.43 ¢.

(e) Select a working size of rivet within this limit.

(f) With ¢ and d determined calculate the pitch by
equating the strength in tension and the strength in
shear or bearing, using shear or bearing according to
which controls the strength for the type of joint used.
Only in special or unusual types of joints will tension
and shear govern.

(g) Calculate the efficiency of the joint and the stresses
in the rivets and plate to see that the working stresses
are not exceeded.

Practice is not uniform in regard to the values of the
allowable unit-stresses to be used in design. The
following values may be used in solving problems in
. this course: f, equals 8000 pounds per square inch,
fe equals 12,000 pounds per square inch, and f. equals
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18,000 pounds per square inch. The resulting ratios

Ly e
o iafe 3
area of the rivets is only approximate and experiments
show high values for the ultimate crushing strength
figured on that basis; therefore a high value for the crush-
ing unit-stress can be assumed.

are The assumption made for the bearing

EXAMPLES

1. Select two channels for the lower chord of a truss in which
the maximum stress is 49,300 pounds in tension. Also determine
the number of -inch rivets, if 3-inch gusset plates are used, for the
connection. Use f: = 15,000 pounds per square inch, f. = 18,000
pounds per square inch, and f; = 8ooo pounds per square inch.

The net sectional area required is

At = 49,300 + 15,000 = 3.29 square inches.

By use of a hand book, the section is found first.

Try two 2-inch by 2-inch by %-inch angles.

The gross area is

A, =2 X 1.75 = 3.5 square inches.

By counting the diameter of the hole }-inch larger than that of
the rivet, the effective tension area will be reduced by the amount
A= 2 X § X % = .875 square inch.

The effective area then would be
A, = A, — A; = 3.500 — .875 = 2.625 square inches.
This is too small. Try two 33-inch by 3-inch by {5-inch angles.
A, =2 X 1.94 = 3.88 square inches.
Ay =2 X § X 15 = .547 square inch.
The effective area then is
A.= A, — A, = 3.88 — .55 = 3.33 square inches.
This is a little in excess of the required area; therefore use two
33-inch by 3-inch by fs-inch angles.
To determine the number of rivets necessary for bearing, the
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49,300
18,000
greatest bearing stress will be developed between the gusset plate
and the rivet, since the thickness of the two angles is greater than
that of the gusset plate. The bearing area for one rivet is

required bearing area is A.= = 2.74 square inches. The

dt = $ X § = .281 square inch.
Therefore, the number of rivets required for bearing is

2% 2
Ne = 1= g 10 rivets.

.281
To determine the number of rivets necessary for shear, the
required area for shear is

" Ay =493% _ 616 square inches.
8ooo

Each rivet is in double shear and the total area of each rivet in
shear is
24 =2 X .442 = .884 square inch.

Therefore, the number of rivets required for shear is

Ns = 6—2 = 7 rivets.
884

Since bearing requires 1o rivets that number must be used.
The shearing stress then is below the allowable.

2. Calculate the unit-stresses developed in a triple-riveted lap
joint of a boiler 4 feet in diameter carrying 110 pounds per square
inch pressure, if the pitch is 3 inches, the thickness of the plate
% inch, and the diameter of the rivets ¢ inch. What is the effi-
ciency of the joint?

The load transmitted through the three rivets in the pitch
length of 3 inches is

P___QDp _ I10X48X3
2

2 = 7920 pounds.

The tension area carrying the load is found by assuming the diam-
eter of the rivet hole the same as that of the rivet.

Y fe= A£ Vb i 7040 pounds per square inch.

I.125
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The bearing area is
Ac=31td =3 X} X § = 1.125 square inches.
fo= -17'%;% = 7040 pounds per square inch.
The shearing area is
A, = 3 X .442 = 1.326 square inches.
= :?—3235 = 5970 pounds per square inch.

By using for the allowable unit-stresses f, = 8ocoo pounds per
square inch, f; = 12,000 pounds per square inch, and f, = 18,000
pounds per square inch, the efficiency of the joint can be calculated.
The load the unpunched plate would carry in the pitch length is

P = 12,000 X } X 3 = 18,000 pounds.
The load the punched plate will safely carry in the pitch length is

P¢ = 12,000 X 1.I125 = 13,500 pounds.
The load the rivets will carry in compression is

Py = 18,000 X 1.125 = 20,250 pounds.
The load the rivets will carry in shear is

P, = 8000 X 1.326 = 10,600 pounds.
The allowable load will be the least of these three values, which is
10,600 pounds, and the efficiency is

€ =€ = M = 59 per cent.
18,000

The efficiencies for tension and bearing are higher. A larger
rivet would give a higher efficiency.

PROBLEMS

1. A column bracket consists of a 6-inch X 6-inch X 3-inch
angle, and is riveted to the column, which is a 12-inch, 30-pound
channel, whose thickness is o.513 inch. It carries a load of
20,000 pounds and is riveted to the column with 5 rivets § inch
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in diameter. Determine the unit-stresses developed in bearing
and shear.

2. If two plates 4 inches wide and § inch thick are connected
by four Z-inch rivets in two rows, what load will the joint safely
carry ?

3. Determine the required number of rivets for a joint to
carry 20,000 pounds, using }-inch plates. What is the efficiency
of the joint?

4. Determine the required number of rivets for a joint to carry
25,000 pounds, using -inch plates. What.is the efficiency of the
joint?

5. Design an angle bracket to be riveted to a column which
consists of two 12-inch, 3o0-pound channels latticed together with
the channel flanges extending outwards. The bracket is to
support one end of a simple beam which carries a total uniform
load of 60,000 pounds. Use rivets § inch in diameter. Neglect
bending in outstanding leg of the bracket angle.

6. Design a splice to connect two plates 10 inches wide and
3 inch thick which are subjected to a tension of 78,000 pounds.
Use two splice plates and rivets which are  inch in diameter.

7. Select two angles to carry a tension load of 24,500 pounds
and determine the number of rivets necessary if §-inch gusset
plates are used. Use the allowable stresses given in example 1.

Ans. 2 —21in. X 2in. X fsin. £ en = 3.

8. Two %-inch plates are connected by three 3-inch rivets.
What tension load will the joint safely carry? If two of the rivets
are in one row what should be the width of the plates?

Ans. 10,600 1b. 4.1 in.

9. Ina butt joint with a double cover plate the main plates are
1 inch thick and the cover plates are each 1% inch thick. Design
the joint to take a‘tension load of 20 tons. If the load is in com-
pression how will the design be changed?

10. In a boiler 6o inches in diameter carrying steam pressure
at 120 pounds per square inch the plate is £ inch thick, the rivets
are § inch in diameter and the pitch is 2} inches. The joint
is a double-riveted lap joint. What are the tensile, shearing, and
the compressive unit-stresses coming in the joint? What is the
efficiency of the joint?
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11. Determine the efficiency of a double-riveted lap joint
where { = & inch, p = 3¢ inches, and the diameter of the rivet
is }2 inch. _

12. Determine the efficiency of a single-riveted, two-strap
butt joint, if £ = $inch, p = 2 inches, and the diameter of the
rivet is 13 inch.

13. Determine the pitch for a double-riveted, two-strap butt
joint in which ¢ = } inch, and the diameter of the rivets is 13 inch,
so that the strength of the joint against tearing the plates between
the rivet holes shall equal the compressive strength of the rivets.
What is the efficiency of this joint?

14. Find the thickness of plates for a boiler shell 8 feet in
diameter to carry a pressure of 160 pounds per square inch, if
the efficiency of the jointis 8o per cent, and the stress in the plates
is 5 tons per square inch.

15. Determine the efficiency of a single-riveted lap joint if
t = 3 inch, d = % inch, and p = 2 inches.

16. Calculate the efficiency of a double-riveted lap joint if
t =7 inch, d = 1 inch, and p = 3§ inches.

17. Determine the pitch for a single-riveted, two-strap butt
joint in which # = § inch and d = 14 inches, so that the strength
of the joints against tearing the plates between the rivet holes
shall equal the compressive strength of the rivets. Determine
also the efficiency of the joint.

18. Design a double-riveted, two-strap butt joint for f-inch
plates and find its efficiency.



CHAPTER V
BEAMS
EXTERNAL FLEXURAL FORCES

41. DEFINITIONS. Flexure occurs in a member when
the load has a component normal to the axis of the
member which causes the member to bend. A beam is
a bar subjected to flexure. Usually the applied forces
are normal to the axis of the beam, as when a horizontal
bar resting on supports at its ends sustains vertical loads
along its length. However, the term is also applicable
when the direction of the applied forces is not at right
angles to the axis. The loads on a beam cause it to
bend and thus produce internal stresses which resist
the bending. These stresses are called flexural stresses.
The curve assumed by the axis of the beam under load
is the elastic curve. The following treatment considers
the beam to be horizontal and the loads vertical, but
with slight modifications it may be adapted to beams
in any position and with loads in any direction. The
X-axis will be taken to coincide with the axis of the
beam before bending. The Y-axis will be taken at right
angles to the X-axis through the left support or left end.

A cantilever beam is one which has one end free
and the other end fixed in such a manner that the tan-
gent to the elastic curve at the fixed end remains hori-
zontal. The elastic curve and the beam itself may be
spoken of as being horizontal at the fixed end.

A simple beam is one which rests upon two end
supports. &>

2 47
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An overhanging beam has one or both of its supports
away from the ends of the beam.

A continuous beam is one that rests on more than two
supports.

The end of a beam is said to be fixed if it is restrained
in such a manner that the elastic curve remains hori-
zontal when the load is applied. It follows from the

F1c. 19. Concentrated load.

definitions above that a cantilever beam has one sup-
port, a simple beam has two supports, and a continuous
beam has more than two supports.

42. METHODS OF LOADING BEAMS. According to the
distribution of the loads, a beam may carry concentrated,
uniform, and nonuniform or varying loads. When the
load is transmitted to the beam through a comparatively
small area it is said to be concentrated. Fig. 19 shows
a concentrated load at the center of the span. If the
load is distributed evenly over the beam it is a uniform
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load.. Fig. 20 shows a load that is practically uniform.
If the load is distributed over the beam and is not of
the same intensity throughout, it is said to be non-
uniform or varying.

According to the method of application, loads are
said to be dead or live loads. A dead load is one that
the member always supports, such as its weight or

0 e |

F16. 20. Uniform load.
(Loaned by the Leonard Construction Company, Chicago.)

loads due to the weight of other portions of the struc-
ture of which the member is a part. Live loads are
those that come upon the member temporarily, such
as a train passing over a bridge, a crowd of people
assembled in an auditorium, or machinery or a stock of
goods. The loads shown in Fig. 19 and 20 are live loads.

43. FORCES ACTING ON A BEAM AS A WHOLE. The
external forces acting on a beam are in equilibrium.
The loads supported by the beam are usually known.
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The forces supporting. the beam — the reactions — may
not be known at the start, but when possible should
be determined before making other calculations. The
loads and the reactions of the supports form a system
of parallel forces. From theoretical mechanics the con-
ditions of equilibrium for such a system are that there
shall be no resultant force and no resultant moment.
These conditions are expressed in two equations:
ZF=o, (1)
ZM=o. (2)
These formulas are used in determining the reactions.

ILLUSTRATIVE EXAMPLE
Let it be required to determine the reactions on a beam 8 feet
long, carrying a uniform load of 4000 pounds and a concentrated
load of 6000 pounds 3 feet from the left support. (See Fig. 21.)

6000 *
<____3’—-1
4000*
A B
Z P
10 (e ontty

Let R, be the reaction of the left support and R, the reaction
of the right support, then
ZF = R1+R2 —'4000— 6000 = o,
R, + R: = 10,000 pounds,
ZM,=R; X8 — 4000 X 4 — 6000°X 3 =0,
R, = 34§20 = 4250 pounds, and
R, = 10,000 — 4250 = 5750 pounds.
As a check take moments about the right reaction,
2 My =6000 X 54 4000 X4 —R, X8 =o,
R, = 5750 pounds.
The line of action of the distributed load is taken through its
center of gravity.
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44. FORCES ACTING ON A PORTION OF A BEAM.
INTERNAL STRESSES. In Fig. 22 is shown a beam with
its loads. An effect of loading the beam is to produce
internal stresses in the beam at all sections. To study
the nature of these stresses imagine the beam to be cut
along the vertical section 4B. Then in order that
equilibrium in the left portion of the beam be main-
tained with the external loads and reactions acting
upon it, forces such as Vi, H;, and H; must be supplied.

wl w2 ? w3 w4 w6
b L ey |
l
R; Ry
(a)"
W, W, v,
kv
e
——>H,
R, |
|
g (p)
35 Tk ok

It is evident that before the section was cut internal
stresses must have existed at this section, which acted
upon the left portion of the beam. For present purposes
these stresses may be considered to be replaced by
Vi, Hy, and H, which will later be found to be the
resultants of the internal stresses. All the forces shown
in Fig. 22 (b) are external with respect to the left por-
tion, but when the whole beam is considered, V,, H;,
and H, are replaced by internal stresses. TkLe reaction
and the loads on the left portion of the beam tend to
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cause motion upward (or downward) and rotation in
the clockwise direction about an axis in the section.
Both of these tendencies are counteracted by the internal
stresses at this section, or by their resultants, V;, H;,
and H,. The right portion of the beam could be treated
in a similar manner, but the direction of V,, H;, and
H, would be opposite to that shown for the left portion,
and the magnitude would be thée same.

The system of forces acting to one side of the sec-
tion of the beam is coplanar, nonparallel, nonconcurrent.
The equations of equilibrium are,

ZF,=o, (1)
ZF,=o0, (2)
ZM=o. (3)

To satisfy equation (1) the vertical resisting force V;
in Fig. 22 (b) must act downward (or upward). To
satisfy equation (2) H; must equal H,. And to satisfy
equation (3) the resisting forces must produce an anti-
clockwise moment, hence there must be compression in
the top fibers of the simple beam shown. In other
cases, as in a cantilever beam, tension may exist in the
top and compression in the bottom of the beam.

45. VERTICAL SHEAR. From Art. 44 it is seen that
the external forces to the left of the section tend to cause
the left portion of the beam to slip upward (or downward)
past the portion on the right. Whenever this is the
case vertical shear is said to exist at the section. Ver-
tical shear is the force that tends to move the left por-
tion of a beam past the right portion or to cut the beam
along a vertical plane. The magnitude of this force is
measured by the summation of the vertical forces acting
on the beam to the left of the section. (The vertical
forces acting on the beam to the right of the section
could be used as well.)
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If V represents the vertical shear at a section the

distance x from the left support, :
V =2Ryp— ZW;y,

in which Z Ry represents the sum of all the reactions
to the left of the section, and = Wy is the sum of all
the loads to the left of the section. The magnitude
of Vis equal to that of the resultant of all the external
forces acting on the left portion of the beam.

46. SIGN AND UNIT OF VERTICAL SHEAR. The sign
of the vertical shear depends upon the relative values of
the reactions and the loads to the left of the section. If
2 Ry, is the greater, the
sign is plus, in which
case the left portion
tends to slip in the
upward or positive di-
rection past the right
portion. The unit of
vertical shear is the.
same as tl'lat used for PR
force, and is usually the [
pound.

w

(1)

wym
(2)

47. THE VALUES OF 5
THE VERTICAL SHEAR
AT THE SECTION AB,
DISTANT a2 FROM THE
LEFT END OR ORIGIN @
FOR CANTILEVER AND i
SIMPLE BEAMS. (1)
For a cantilever beam
with a concentrated
load W at the end (Fig. |- (4)
23 (1)),

V==W. F1G. 23.

w|g

(3)

<—— 2 — wfyin.
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(2) For a cantilever beam with a uniform load of
w pounds per inch of length (Fig. 23 (2)),

V =— wx.

(3) For a simple beam with a concentrated load W
in the center of the span (Fig. 23 (3)),

7= %/ to the left of the center

w ’ ;
or V=- 5 to the right of the center.

(4) For a simple beam with a uniform load of w pounds
per inch of length (Fig. 23 (4)),

V=El-—'wx.
2

ILLUSTRATIVE EXAMPLES

1. If a cantilever beam of 8-ft. span carries a load of 500 pounds
at the free end, the value of the vertical shear at any section is
— soo pounds. The left reaction is zero and the load to the left
is 500 pounds; therefore V = o — 500 = — 500 pounds.

2. For a simplé beam of 1o-ft. span carrying a uniform load
of 6oco pounds, the left reaction is 3000 pounds. If x is ex-
pressed in inches w = 6ooo <+ 120 = 50 pounds per inch and the
expression for the vertical shear is

V = 3000 — 50x.

By substituting values of x in this equation we obtain values of
the vertical shear for the sections considered; thus at 23 inches,
V = 3000 — 1250 = 1750 pounds. At the distance 6 feet or
72 inches from the left support the vertical shear is

V ="3000 ~ 3600 = — 6oo pounds.

48. LOAD AND SHEAR DIAGRAMS. It is convenient
and useful to indicate the value of the load and the shear
at all points along the beam by means of vertical dis-
tances measured from a horizontal axis. These verti-
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cal distances are called ordinates. With the length of
the beam and the loading known, the axis OX, Fig. 24,
can be drawn to scale to represent the length of the
beam. Thus, if the beam is 12 feet or 144 inches long,
and, if it is convenient to make the axis OX 3 inches
long, the scale of the length would be 1 inch equals
48 inches. From the axis in Fig. 24 at any point 4 a

Wy W,

l

i)

X
/TRE

F1G. 24.

length AB can be erected perpendicular to OX to repre-
sent the intensity of load at that point. If the load
at that point is 240 pounds per foot of length or 20 pounds
per inch of length, the ordinate 4B can be made } inch,
in which case 1 inch would represent a load of 100 pounds
per inch. In the same way the value of the intensity
of load at all other points along the beam.can be repre-
sented by ordinates. The continuous curve connecting
the ends of these ordinates is called the load curve,
and the whole figure the load diagram, because the inten-
sities of the load are shown at every point along the
beam. The locations of the concentrated loads are
indicated by arrows. Positive values are measured to
the right of and up from the origin O, negative to the
left of and down from the origin 0. Loads act down
and consequently are negative.

Knowing the loading, the reactions can be calculated
and the values of the vertical shear can be obtained
for all sections along the beam by the formula

V = 2R — ZWyg.
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By a procedure similar to that used in making the load
diagram the values of the vertical shear at all points
along the length of the beam can be indicated by ordi-
nates from a reference axis OX. Thus, Fig. 25 is the

shear diagram for the

e g loading shown in Fig.
24. In the shear dia-

R, W gram the distance from
the axis OX to the

i g X curve at any point 4’

shows the value 4’B’
of the shearing force
for that section of the
beam.

W, R

F1G. 25.

49. RELATION BETWEEN THE LOAD AND THE SHEAR.
For distributed loads there is a definite relation between
the load and the shear.

To deduce this relation o B X
let Fig. 26 (a) be the b
load diagram and Fig. 26
X k— T—y

(b) the shear diagram ()
for a given case. Letu
be a small length (called
an element of length)
measured along the OX e
axis, and let w be the u

. O X
average load per unit of
length over this portion.
Let x be the distance
from the left support or
origin, and V the verti-
cal shear at the left end of the element of length. The
load over this length is wu, and is equal to the small
shaded area in the load diagram. Then the difference

F1G. 26.
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in the vertical shear at the two sides of the small length
is
v = wu.

50. THE RATE OF CHANGE OF THE VERTICAL SHEAR.
The rate at which the vertical shear changes is equal to
the amount of change divided by the length in which
the change is made, and is

v U

-_——— = Y

u u

u may be taken so small that A Cin Fig. 26 (&) approaches
a straight line. When % is made indefinitely small AC
coincides with the tangent to the shear curve. It is

also seen that 1—7: equals tan A CB, which represents the

slope of the shear curve at the given section when % is
indefinitely small. w is the intensity of the load at
that section. Therefore, the rate of change of the

vertical shear atanysec- S

intensity of the load at
that section. It is also
represented by the slope
of the shear curve at
that section.

tion of abeam equalsthe o] %%§ 4
A
B

12

AL
3 D

(@)

51. RELATION BE-
TWEEN THE LOAD AND
SHEAR DIAGRAMS. The
relation given in Art. 49 )
affords a convenient
graphical method of de-
termining the change in
the vertical shear between any two sections 4B and CD
of a beam, Fig. 27. Divide the length AC into several

RIGW27.
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small lengths. Then v; equals area AB11, v; equals area
1122, 93 equals area 2233, etc. The total change v’ be-
tween the two sections is the summation of all the v's
between them. This summation is equal to the area
under the load curve between the sections, which is the
total load between the two sections. Therefore, the
change in the vertical shear between any two sections
of a beam equals the area under the load curve between
the two sections. (Distributed loads.)

52. BENDING MOMENT. Moment of a force is the
product of the force and the perpendicular distance
from the line of action of
the force to the origin of
- moments. The moment
measures the tendency of
the force to cause the ob-
ject acted upon by the
force to turn about an axis
through the origin of mo-
ments. Fig. 28 indicates a force F acting upon an ob-
ject which it tends to turn about the point 0. The
moment in this case is Fa where a is the perpendicular
distance from the origin O to the line of action of the force.
For a section of a beam the bending moment is the sum
of the moments of all external forces acting on the beam
to one side of the section about an axis in the section. A
result of a bending moment is a tendency to cause the
portion of the beam considered to rotate about an axis
in the section. In determining the bending moment,
the portion of the beam to the right or the one to the
left of the section may be used with the same results.
It is the common convention to use the left portion of
the beam and this convention will be followed in this
book. The bending moment at any section then is equal

F1c. 28.
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to the summation of the moments of all the forces acting
upon the beam to the left of the section about an axis
in the section. Since
the external forces are
made up of the reac-

tions and loads, the i 5
bending moment M
equals the moments R
of the reactions minus
the moments of the
loads to the left of the section, or expressed in a formula
(see Fig. 29),

W, W, A W; W

o~

B
F1c. 29.

M = ZRix — ZW (x — p),
in which ERrx is the summation of the moments of

the reactions, and ZW (x — ) is the summation of the
moments of the loads to the left of the section.

53. SIGN AND UNIT OF BENDING MOMENT. When
there is compression in the top fibers of the beam at a
section the bending moment is positive at the section;
when there is tension in the top fibers the sign of the
bending moment is negative. The radius of curvature
of the elastic curve is positive for a positive bending
moment and negative for a negative bending moment.
The sign ‘of the bending moment due to a force is posi-
" tive when the force itself would produce compression
in the top fibers. Hence in all cases the bending
moment of a reaction is positive, and that of a load is
negative. The unit in which the bending moment
is measured will depend upon the units of force and
length employed. The pound-inch* is in most common
use for beams and will be employed here.

* The term “inch-pound,” which is also used for the unit of moment,

does not make a distinction between the unit of work and the unit of
moment,



60 BEAMS — EXTERNAL FLEXURAL FORCES [CHaPp. V

54. THE VALUES OF THE BENDING MOMENT AT
THE SECTION AB, DISTANT o FROM THE LEFT END
OR ORIGIN FOR CANTILEVER AND SIMPLE BEAMS.

o~

w#/in,

le I

(1) Cantilever beam,

‘ T w concentrated load W at
% the end
] (1) // M =— Wx.

Left reaction is zero
(Fig. 30 (1)).

(2) Cantilever beam,
uniformly distributed
load of w pounds per
inch

2
M=—wxi=—nX.
2 2
The left reaction is zero.

/// The load to the left of

the section is wx and its
arm is > (Fig. 30 (2)).

(3) Simple beam, con-
centrated load Wat center.

il AV
The left reaction is e

M= gx for the left half,

and
l
M=—2—x—-W(x—5>
_w_Wwx
gD 2

for the right half (Fig.
30 (3))-
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(4) Simple beam, uni-
form load of w pounds

A
per inch. i
) :
The left reaction is %
o 5 w#/in.
= —2—x &= 'wx—z—
_wl A
_whe_wa? SRR | Y
PR 2 l 1
The load to the left of the g
G. 30.

section is wx and its arm
i o
is ~ (Fig. 30 (4).

ILLUSTRATIVE EXAMPLES

1. For a cantilever beam of ¢-ft. span carrying a load of 2000
pounds at the free end the bending moment at the section distant
x from the free end is M = — 2000 x. If xis 5o inches, M =
— 2000 X 50 = — 100,000 lb.-in.

2. For a simple beam of 20-ft. span with a concentrated load
of 10,000 pounds at the center the left reaction is sooo pounds
and the bending moment at 8 feet or g6 inches is

My = 5000 X 96 = 480,000 1b.-in.
At 16 feet the bending moment is
Mg, = 5000 X 192 — 10,000 X 72 = 240,000 lb.-in.

3. For a simple beam of 12-ft. span carrying a uniform load of
100 pounds per inch R, = 7200 pounds and the bending moment
at the center is

oo X 72 X 72
Mi; = 7200 X 72 — foo X 72 X1

B = 250,200 lb.-in.

55. BENDING-MOMENT DIAGRAMS. The bending-
moment diagram shows the value of the bending mo-
ment at all points along the beam. Fig. 31 (d) is
such a diagram. OX represents to scale the length of
the beam, and the ordinate M represents the bending
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moment at the section AB. The values of the bending
moment may be calculated by the formula

Ry

-~

i
i
1
! ()
I
]
]
|

S
E |
Gj
i
e
F IH
(c)
|
4 ; ]
IS A
7
%‘r |
T:
by
R @)
Fic. 31.

M=ZRpx—ZW(x—p),
or by the method of the
following article.

56. RELATION BE-
TWEEN THE VERTICAL
SHEAR AND THE BEND-
ING MOMENT. At a
section distant x from
the left support the
bending moment is M,
and at a section distant
x + uitis M + m, where
u is an element of length
along the OX-axis and
m is the difference in the
bending moment at the
twosections. In the free-
body diagram of the
element of length of the
beam between the two
sections shown in Fig.
31 (@) M is the bending
moment of the external
forces to the left of the
section AB. This mo-
ment is transferred to

the element of the beam, and the bending moment trans-
ferred from this element to the right portion is M + m.
The increase m is due to the external forces acting on the
small portion of the beam. The external forces with
respect to this portion acting upon it are V the vertical
shear at the left, wu the weight, where w is the weight
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per unit of length, and ¥V 4 v the vertical shear at the
right, as shown in the diagram. Taking moments about
an axis in the section CD, there results
' 7 1?
M+m=M+Vu—wu5=M+ Vu—wz—;
2
m=Vu—w.
2

# may be taken so small that the load over this elemen-
tary length may be considered uniform. From Fig. 31
(c) it is seen that Vu is the area of the rectangle EFHI

2
and wg— is that of the triangle EGI.

Therefore, m = EFHI — EGI, which is equal to the area
between the axis and the shear curve. If the sections
are taken far apart the distance between the two sec-
tions should be divided into a large number of elementary
lengths, and the total change in the bending moment
will equal the summation of all the elementary changes.
This leads to the conclusion that the change in the bend-
ing moment between two sections equals the area under
the shear curve between the two sections. Having
the vertical shear diagram drawn and knowing the value
of the bending moment for any section of the beam,
that for any other section may be obtained by getting
the area under the shear curve between the two sections
and adding it to the known moment. Areas above the
axis are positive and those below are negative.

57. THE RATE OF CHANGE OF THE BENDING MOMENT.

From the equation for the change of the bending moment
; : u? ;
between two sections, m = Vu — e the expression

for the rate at which the bending moment changes at
any section may be deduced by allowing # to become
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so small that the two sections AB and CD will be con-
2
secutive; then w u; is so small compared to Vu that it

may be considered equal to zero. Therefore the rate
of change is
m_Vu_

g V.

w u

That is, the rate of change of the bending moment at
any section equals the vertical shear at that section.

58. THE MAXIMUM VERTICAL SHEAR AND BENDING
MOMENT. The greatest shearing stress will be at the
section for which the vertical shear is the greatest and
the greatest tensile and compressive moment stresses will
be where the bending moment is the greatest. In any
kind of beam the greatest shear occurs just to one side
of a support. Because beams usually fail at the sec-
tion of maximum bending moment, that section is
called the danger section. From the relation existing
between the shear area and
the bending moment there
is found a simple method
of locating the danger sec-
tion. By Art. 56 the area
() under the shear curve be-
tween two sections repre-
sents the change in the
bending moment between
those two sections. Aswe
go along the beam the
(d) bending moment increases
as long as the shear area
is positive, and when the
area becomes negative the moment grows less (Fig. 32).
Shear area above the axis is positive and that below is

Fig. 32.
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negative, the sign of the shear changing where the shear
curve crosses the axis. Therefore, the maximum bending
moment in a beam occurs where the shear curve crosses
the axis, i.e., where the vertical shear is zero. This
point may be obtained by plotting the shear curve. It
may also be obtained from the equation of the vertical
shear for the portion of the beam in which the shear
passes through zero, by equating’V to zero and solving
for x. Note that the equation representing V must be
for the portion of the beam in which the shear actually
does pass through zero. Whenever the shear passes
through zero at a concentrated load, the maximum bend-
ing moment will be under that load.

_ Since the bending moment is zero at both supports of a
simple beam the shear area above the axis is equal to that
below the axis.

59. LOAD, SHEAR, AND MOMENT DIAGRAMS FOR
CANTILEVER AND SIMPLE BEAMS. MAXIMUM SHEAR
AND MOMENT. Forall
cases let x be the dis-
tance from the origin }
to the section 4B con- 7
sidered, W the total
load on the beam, / the [T* (@)
span, V,, the maximum ¢
shear, and M, the max-
imum moment.

(1) For a cantilever )
beam with a load at o
the end (Fig. 33), ~Wa

M,i=Wl
V==W, V.=-—W,
M =—Wx. :
(e)

The area in shear dia-
gram is negative and Fie. 33.

o~

—-W
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equals — Wx. The maximum moment occurs at the
wall and equals the entire area in the shear diagram
which is
M, =—WI.
(2) For a cantilever beam with a uniform load
(Fig. 3¢4). The load per unit of length is

w

— = — —

l

=T, V=W,

which comes at the wall.

A

w ’Vin.

(@)

NIRRT

-

—wx V==l

This is equal to the shear area to the left of the section.



ARrT. 30] - LOAD, SHEAR, AND MOMENT 67

The maximum moment comes at the wall and equals
the entire area under the shear curve and is

(3) For a simple beam with a concentrated load at the

center of the span (Fig. 35),
W

; L
=W =W
R T (a) Ry~%
W
2
e AL
2
(v)
w
;3o
)
o X
E
(e)
F1e. 35.

]
I

AN

to the left of the load,

14
W g
V=— St the right of the load.
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Ty
2
w
M= & to the left of the load
M=V—Vx—W<x—£>=—n-/(l—x)
2 2 2

to the right of the load. The shear passes through zero
under the load; therefore the maximum moment occurs
at the center of the beam.

il The area under the shear

w #/in, curve to the left of the
— — center is
R s
4 R T
e,
4
(4) For a simple beam
with a uniform load (Fig.
N x 36), the load per unit of
' - w
E(b) length is — w = i
I
, R L)
1 2 2
i pow_ L W W
W, wa? | 1 wllwl ST Jar R AT R K
2% 2 18 s
o - X Vi = _W_/ 3
g (€ 2 ; ;
Hic 6. The average ordinate in

the shear area to the sec-
tion at the distance x from the left end is
! w
<_w_ll g wx) g o s

2 2
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therefore the area under the curve to the section equals
wlx  wx?

The shear passes through zero at the center of the span;
therefore the maximum moment occurs at that section
and equals the shear area to the left of the center.

T L T St TRV L
ik AW Sy g
(5) For a simple beam with a concentrated load at
e i
¥
R=W(1-k) : (a) R=WH]
|
|
Wk | ;
(o} I X
‘ ,l -wk
|
) :
' |
I |
1 !
| [
W(l—k) 2 | |

o } X
4 (e)
F1c. 37.

any point distant k/ from the left support, in which %
is less than 1 (Fig. 37),
R1 — W(I = k),
V =W (1 — k) to the left of load,
V = — Wk to the right of load,
M=WI(1 — k)x to the left of load,
M=W(—kx—W(x—Ekl)
=Wk (I — x) to the right of load.
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The shear passes through zero under the load. The area
to the load is
W (1 — k)R,
M, =W(1 — k)L

(6) A uniform and a concentrated load on a simple
beam (Fig. 38). For cases of this kind the shear will be
¢ a maximum at one of
l the supports and will
pass through zero under
w %in. the concentrated load or
i =} between that load and

1 (a) 2
1 the center of the beam.
The point at which it
w 3 passes through zero de-
x pends on the ratio of
() the loads and the posi-
tion of the concentrated
load. The shear curve
should be plotted to
obtain that point, then
ot x the area under that
(e) curve above the axis
Fie. 38. calculated for the maxi-
mum bending moment.
(7) For several concentrated loads the maximum
shear occurs at one of the reactions and it passes through
zero at one of the loads (Fig. 39). The point of zero
shear may be obtained by plotting the shear curve.
Then the maximum moment may be obtained by cal-
culating the area in the shear diagram above the axis.
(8) For the case of several concentrated loads and a
uniform load the shear may pass through zero at one
of the concentrated loads or between any two of them,
the position of zero shear depending upon the rela-
tive values of the loads and their positions (Fig. 40).

Mm
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The shear diagram should be plotted to locate the section
of zero shear. To find the exact location when the sec-
tion of zero shear falls between two loads the shear
formula for a section between these two loads may be
equated to zero and the corresponding value of x deter-
mined. Then the moment equation applied for that
point will give the value of the maximum moment, or
the area in the shear diagram above the axis may be
obtained for the maximum moment.

(9) For the case of a beam overhanging one or both
supports the general principles hold (Fig. 41). The

W1 lW2 W3
TR! (@) Re
]
i R4 v R W
o X
Wi

o
\/ (c)
F16. 41.

maximum shear generally is not equal to a reaction, but
it may be obtained by the applicatior of the general
equation for shear. It will come just to one side of a
support. The shear passes through zero at the supports,
and also between them, consequently the maximum
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bending moment may occur at any one of the three
points. The moment must be obtained for all three and
the greatest one taken for the maximum.

60. RELATIVE STRENGTH OF CANTILEVER AND SIMPLE
BEAMS. The shearing unit-stresses developed in a
beam are directly proportional to the vertical shear,
and the unit-stresses resisting the bending moment are
directly proportional to the bending moment; therefore
the shearing strength of a certain type of beam is in-
versely proportional to the maximum vertical shear
developed in that type, and the strength to resist bend-
ing is inversely proportional to the maximum bending
moment developed. Table 12 gives the values of the
maximum vertical shear and the maximum bending mo-
ment, and the relative strengths in shear and bending
for simple and cantilever beams.

TABLE 12

RELATIVE STRENGTHS IN SHEAR AND BENDING

Kind of b Maximum | Maximum | Relative Relative
ROCIOLESILTS vertical bending | strength in | strength in
shear. moment shear. bending.
Wi
4 w —Wi 1 1
- v
wi
[ w/L#/in. w TG 1 2
7
<._12 w
w wi 4
P T 2 4 4
w/1%in. —K-V %/—l 2 8
2
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ILLUSTRATIVE EXAMPLES

Calculate the maximum bending moment developed in a beam
of 12-ft. span carrying a load of 8oco pounds, (a) when used as a
cantilever with the load concentrated at the end; (b) if the load
is uniformly distributed on the cantilever; (c) when used as a
simple beam with the load concentrated at the center; (d) if the
load is uniformly distributed over the simple beam.

(@) M, = —800 X 12 X 12 = —115,200 lb.-in. at the wall.

(b) M = B2 XI2XIZ gy 600 Ib.-in. at the wall
(c) M, = 800_)(:&3 = 28,800 lb.-in. at the center.
d) My, = 829)—(—;32—)—(—1—2 =14,400 lb.-in. at the center.

61. MOVING CONCENTRATED LOADS ON A BEAM.
When several concentrated loads pass over a beam the
beam must be strong enough to take the greatest shear
and the greatest bending moment caused by the loads.
Hence it is necessary to determine the maximum shear
and moment developed by the system of loads. The
greatest vertical shear will be developed at the. support
when one of the loads is very near it. .

The greatest bending moment will occur under one
of the loads, since the moment curve for any position
of the loads consists of a series of straight lines. For
simple beams, when one of the loads is over a support
the bending moment under that load will be zero. As
the system of loads passes over the beam the bending
moment under each load will increase from zero, when
at the support, to a maximum value when it is at some
point between the supports, and then decrease to zero
at the other support. Let us determine the position
of the system of loads that will give the maximum bend-
ing moment under a particular load, as, for example,
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W, in Fig. 42. Let R be the resultant of all the loads
and its line of action be at the distance x from load W,

W, W Wa W
i““i*b*iH*d*i
7 @
3 o A T
Ry l 3 Rg
F16. 42.

and x; from the right support. Let the load be at the
distance x from the left support; then

R1=R—xlandx1=l—x—i

!
The moment under the load then is
Mrl%x—wﬂ_§ﬂ—§ﬁ—§m—um

Mz——x-l— (l—x)x—Wla

By algebra it can be shown* that the value of x to
give the greatest value of a function of the form

: b
ax? 4 bx + cis S

By substituting in this formula for x,

R 4
A SR A e
X = 25 = 2)
l

2x =] — x or transposing x,
x=1]—=%x—x=x.

This shows that the position of one of a system of
moving concentrated loads, when the greatest bending
moment occurs under that load, is such that its distance
from the left support is the same as the distance of the
center of gravity of all the loads from the right support.

* See “Higher Algebra,” by John F. Downey, page 245.
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In order to obtain the maximum bending moment
produced by the system of moving loads the maximum
should be determined for each load and the highest
value taken.

ILLUSTRATIVE EXAMPLE

Let it be required to obtain the maximum bending moment
produced in a beam of 21-ft. span by a system of three moving
loads of 4 tons, 2 tons, and 3 tons spaced 3 feet and 4 feet apart
respectively. (Fig. 43.)

The resultant is g tons. Its line of action with respect to the
loads may be obtained by taking moments about any load. The

4T 2T 8T
e
TR; 21 2
F16. 43.

line of action of the resultant passes through the 2-ton load.
For the maximum moment coming under the 4-ton load its
distance from the left end must be the same as the distance of
the resultant of the three loads from the right end. % for this
load is 3 feet; therefore, the distance of the load from the left
support is x = l——;x e e 2_ 3 - 9 feet. Placing the loads in this
position, obtaining the left reaction by taking moments about the
right support, and using the resultant instead of each load sepa-

rately, there results

R, = % X 9 X 2000 = 7710 pounds.

The moment under this load is
M, = 7710 X 9 X 12 = 833,000 pound-inches.

The maximum moment will come under the 2-ton load when
it is at the center of the beam, since x for this load is zero; then

R, = 4.5 X 2000 = gooo pounds.
M;= (gooo X 10} — 8000 X 3) 12 = 846,000 lb.-in.
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For the 3-tonload ¥ = — 4 feet,

x = m = 12} feet.
2
Ri= 125 % 9 X 2000 = 10,710 pounds.
21.0

M; = (10,710 X 12.5 — 8000 X 7 — 4000 X 4)12 = 744,000 lb.-in.

The maximum moment for this system of loads then is devel-
oped under the 2-ton load and is 846,000 pound-inches,

EXAMPLES

1. Given a simple beam, 15-ft. span, with a load varying
uniformly from zero at the left end to 1000 pounds per lineal
foot at the right end, and a concentrated load of gooo pounds
6 feet from the left end. Determine the reactions. (See Fig, 44.)

l 9000
cl
A B
R
2 o Ry
w,= 1000
< 5
4 i
Fi16. 44.

The average distributed load is (o + 1000) + 2 = soo pounds
per foot. The total distributed load is 500 X 15 = 7500 pounds.
The center of gravity of this load is § X 15 = 10 feet from the
left support. Taking moments about the right support,

2 MpB =9000 X 9+7500 X 5 —R; X 15 =0,
R, = 990X 9+7500X 5
15
Taking the summation of the forces to obtain R,,
2 F = 17900 + R; — gooo—~ 7500=0; . R;= 8600 pounds.

= 7900 pounds.
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For checking on R, take moments about R;,
ZMa=R:X 15— goooX 6 — 7500X 10 = 0;
L 9ooo X 6 — 7500 X 10
15

2. Calculate the shear and bénding moment at sections 2 feet
apart and draw the shear and moment diagrams for a simple
beam of 14-ft. span with a uniform load of 14,000 pounds and

a concentrated load of 7000 pounds 5 feet from left support.

= 8600 pounds.

Ry = 7z X 14,000 + Tz X 7000 = 7000 + 4500 = 11,500 pounds.
R, = 21,000 — 11,500 = 9500 pounds.
Check R: = 1% X 14,000 + 1z X 7000 = 9500 pounds.
From the definition V=R, —ZWg,
Vo = 11,500 — 0 = 11,500 pounds.
Vs, = 11,500 — 2000 = g500 pounds.
V4 = 11,500 — 4000 = 7500 pounds.

Vs = 11,500 — 5000 = 6500 pounds.
Vs’ = 11,500 — 5000 — 7000 = — 500 pounds.
Ve= 11,500 — 6000 — 7000 = — 1500 pounds.

The values at the other sections were obtained in the same way.
The shear just to the left of the concentrated load is different from
that just to the right; consequently the shear at both sections must
be calculated.

The bending moment is obtained by taking the moment of
the reaction about an axis in the section and subtracting from it
the moment of the loads to the left of the section about the same
axis.

M 0= 0O,

M;= 11,500X 24 — 2000X 12 = 252,000 pound-inches,

M= 11,500 X 48 — 4000 X 24 = 456,000 pound-inches,

M;= 11,500 X 60 — 5000 X 30 = 540,000 pound-inches,

M= 11,500 X 72 — 6000 X 36 —7000 X 12 = 528,000 pound-inches.

The bending moments at the other sections were obtained in
the same way. The shear passes through zero at 5 feet from the
left support; therefore the maximum moment occurs at that
point.
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In Fig. 45 are drawn the load, shear, and moment diagrams for
this beam.

3. In Example No. 2 obtain the bending moment at sections
s feet and 8 feet from the left support by use of the shear diagram.

7000 #
i=\
% w=_1%g‘i #/in. w=14 000"
Q
~
z Vd pouMnd- gg“‘"‘)
feet. pounds. inches. v 11 500%
o 11,500 ¥ _5\ ’
2 9,500 252,000 | & 6500
4 | 7,500 | 456,000 | &
& 6,500 540,000 | 7@
5" |— 300 540,000
6 |—1,500 | 528,000 LS
8 |—3,500 | 468,000 | (b)
10 |—35,500 360,000 | g
12 |—7%,500 204,000 | &
R o' 7%
3 #
S 540 0007 -in.,
3
=]
&
(e)
F16. 4s.

Let the first section be taken under the load; then the base of
the trapezoid is 5 X 12 = 6o inches; the average ordinate is
(11,500 + 6500) + 2 = gooo pounds. The area under the curve is
gooo X 60 = 540,000 pound-inches = M;. At 8 feet the negative
area must be taken from the positive. As obtained above, the
positive areais 540,000 pound-inches. The base of thenegative area
is 3 X 12 = 36 inches. The average ordinate is (— 500 — 3500)
+ 2 = — 2000 pounds, therefore, the area is 36 X (— 2000) =
— 72,000 pound-inches.

M= 540,000 — 72,000 = 468,000 pound-inches,
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PROBLEMS

1. A simple beam of 12-ft. span carries a uniform load of
6000 pounds, a concentrated load of 3000 pounds 4 feet from the
left support, and one of 6000 pounds g feet from the left support.
Calculate the reactions. Ans. Ry = 6500 Ib.

2. A 24-ft. beam overhangs the right support 4 feet. It
carries a uniform load of goo pounds per foot of length in addition
to a concentrated load of 10,000 pounds g feet from the left sup- .
port and one of 4000 pounds at the right end. Determine the
reactions.

3. Calculate the vertical shear at points 2 feet apart for the
beams in Problems No. 1 and 2. Plot the shear diagrams.

4. Calculate the bending moment at points 2 feet apart for
the beams in Problems No. 1 and 2. Plot the moment diagrams.

5. If a simple rectangular timber beam of 14-ft. span and
depth 12 inches carries a uniform load of rooo pounds per foot
and is cut in two 4 feet from the left support, what vertical force,
and what two horizontal forces, if 8 inches apart, must act on the
left portion of the beam at the cut section in order to replace the
stresses acting between the two portions before the beam was cut?

Ans. V =—3000lb. H = 30,000 lb.

For the following beams locate the danger section, calculate max-
imum bending moment, and draw the load, shear, and moment dia-
grams. Determine the bending moment by getting the area in the
shear diagram.

6. A 135-ft. simple beam having a uniform load of 400 pounds
per foot and concentrated loads of 6oco pounds and soco pounds
at 5 feet and 8 feet respectively from the left support.

7. A 20-ft. simple beam having concentrated loads of 2000
pounds, 4000 pounds, and 3000 pounds at 4 feet, 6 feet, and 12
feet respectively from the left support.

8. Simple beam of 20-ft. span carrying a umform load of
120 pounds per foot and concentrated loads of 400 pounds, 6oo
pounds, and 600 pounds at 4 feet, 6 feet, and 16 feet respectively
from the left support.

9. Cantilever beam of 8-ft. span with a load of 10,000 pounds
at the end. Ans. My = 960,000 Ib.-in.
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10. Cantilever beam of 1o-ft. span with a uniform load of

15,000 pounds. Ans. M = goo,000 lb.-in.
11. Simple beam of 12-ft. span with a concentrated load of

gooo pounds at the middle. Ans. Mpn = 324,000 Ib.-in.
12. Simple beam of 15-ft. span with a uniform load of

15,000 pounds. Ans. M, = 337,500 lb.-in.

13. Simple beam of 14-ft. span with a concentrated load of
12,000 pounds 4 feet from left support.

14. Simple beam of go-ft. span with a uniform load of 20 tons,
concentrated load of 1oo tons at the center.

15. Simple beam of 16-ft. span with a uniform load of
32,000 pounds, and a concentrated load of 16,000 pounds at
4 feet from left support. Ans. Mn = 1,200,000 lb.-in.

16. Simple beam of 18-ft. span with a concentrated load of
gooo pounds 4 feet from left support, one of 7000 pounds 8
feet from left support, one of 12,000 pounds 13 feet from left
support.

17. Simple beam of 12-ft. span with a uniform load of 18,000
pounds, two equal concentrated loads of 10,000 pounds each at the
one-third points.

18. Overhanging beam 18 feet long overhanging the left
support 4 feet, with a uniform load of 1500 pounds per foot.

19. Simple beam, same as in Problem No. 14, with an additional
load of 5000 pounds at the center of the beam.

20. A simple beam of 20-ft. span weighing 12 pounds per
lineal foot, with a load of 240 pounds 5 feet from the left end.

21. A simple beam of 20-ft. span with concentrated loads of
2000 pounds 4 feet from the left end, and 1000 pounds 18 feet from
the left end, and also a uniform load of 100 pounds per lineal
foot. ]

22. An overhanging beam 12 feet long overhanging the right
end 2 feet carrying a uniform load of 2000 pounds per foot on
entire beam.

23. An overhanging beam 13 feet long overhanging the right
support 3 feet, carrying a uniform load of 1000 pounds per foot
between supports, and a uniform load of 500 pounds per foot on
the overhanging end.
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24. Two loads each of 3000 pounds, 5 feet apart, roll over a
simple beam of 15-ft. span. Find the position of these loads
for the maximum bending moment and find its value.

Ans. 6% ft. from left support.

25. Two wagon wheels, 8 feet apart, roll over a simple beam of
24-ft. span. If the load on each wheel is 2000 pounds, find their
position for the maximum bending moment and determine its
value. Ans. My = 200,000 Ib.-in.

26. Compute the maximum bending moment due to two loads
of 1000 pounds each and 5 feet apart rolling over a 25-ft. simple
span.

27. Determine the maximum bending moment produced in
a beam of 24-ft. span by a system of three rolling loads of weight
10,000 pounds, 5000 pounds, and 12,000 pounds if the distance
between the first and second is 6 feet and the distance between
the second and third is 5 feet.



CHAPTER VI

BEAMS —INTERNAL FLEXURAL STRESSES

62. FORCES AND STRESSES. In Chapter V the ex-
ternal forces acting on beams were considered. These
external forces tend to cause the beam to rupture, and
that tendency is resisted by the internal stresses set up
in the beam. The nature, distribution, and magnitude
of these stresses will be considered in this chapter.

Ry (a) Re
A B D E
C
Ry (Z)) R2
Fi1G. 46.

The vertical shear tends to rupture the beam along a
vertical plane by causing one portion to slip past the
other. To illustrate this effect imagine a beam built
up of several blocks glued together as indicated in
Fig. 46 (a). If the glue becomes soft and sticky, the
inner portions will slide down past the others. Or
otherwise stated the outer portions will slide up past

" the inner portions. The magnitude of the tendency of
83
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one portion to slip past the one to the right is measured
by the vertical shear at the plane between the two por-
tions. This vertical shear is resisted by internal resisting
stresses acting vertically at the section considered.

The bending moment at a section tends to cause the
end of the beam to rotate about an axis in that section.
Thus, at the section between the portions 4 and B of
the beam in Fig. 47 the external forces tend to cause 4

F1c. 47

to rotate clockwise about an axis in the plane between
the two portions. The magnitude of this tendency is
measured by the bending moment at the section. This
is resisted by the moment of the internal stresses which
act on the section considered.

In the common theory of flexure the internal resist-
ing stresses are divided into their vertical and hori-
zontal components. The vertical components resist the
vertical shear and the moment of the horizontal com-
ponents resist the bending moment.

63. RESISTING SHEAR. THE SHEAR FORMULA. As
already defined the vertical shear V at a section is the
algebraic sum of the external forces acting on the por-
tion of the beam to the left of the section; and this ver-
tical shear is resisted by the stresses in the fibers between
the two portions of the beam. This stress, which re-
sists the vertical shear, represented in Fig. 48 by V’,
is called the resisting shear. If the maximum shearing
unit-stress in the cross section is s the average value
will be ks, where k is a constant depending upon the
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shape of the cross section, and if 4 is the area of the
cross section the resisting shear equals ks4. Therefore,
since equilibrium exists, the vertical shear equals the
resisting shear and the shear formula is

V = ksA. (1)

W, V= ksA

[e——H,

—>H

3 T1G. 48.

64. THE VALUE OF % IN THE SHEAR FORMULA. As
shown in Chapter XIII, the intensity of the shearing
unit-stress is not the same at all points of the cross
section. The maximum stress from the shear formula
iss = 124
kA

For a rectangular beam s = , and k& =

I e
= A<
B0 WIN

For a circular beam s = , and kB ==2.
34

For I-beams and built-up sections it is approximately
assumed that the maximum stress is equal to that
obtained by dividing the shear by the area of the web;
then the maximum stress is

ISE= % , where 4, is the area of the web.
X
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4,
Z .
tion is only approximately correct but the values are near
enough the true ones to be used in design.

If % for this case is desired it'is equal to The assump-

65. RESISTING MOMENT. If a beam were cut
through at a section, as at 4B, Fig. 49, and the same
external forces were to continue to act on the left por-
tion, besides a vertical resisting shear ksA4, forces equal
to the horizontal forces, as H, and H,, should be supplied
to produce equilibrium. These forces are the hori-

‘Ix

’

S
(—3
>

<

& H

>Hy

F16. 49.

zontal components of the internal stresses acting on
the given section of the beam and make up the hori-
zontal resisting forces which produce the resisting
moment.

66. ASSUMPTIONS FOR THE RESISTING MOMENT.
The moment formula to be derived is for beams made
of materials that have the same modulus of elasticity in
tension and compression. The formula is true only
for stresses less than the elastic limit of the material.
It is assumed that a transverse plane section of the beam
before bending remains a plane section after bending.
From these assumptions the nature, distribution, and
magnitude of the stresses producing H, and H; may be
found.
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67. DISTRIBUTION OF THE FIBER STRESSES. Two
sections of the beam, as 4B and CD in Fig. 50 (a),
parallel before the beam is bent, assume positions shown
in Fig. 50 (b) after bending occurs. All fibers of the
beam, except those along the surface OX, will be length-
ened or shortened, thus having stresses developed in
them. The surface OX along which no tensile or com-
pressive stresses are developed is the neutral surface.
Its intersection IJ with a transverse section is the

* F16. s0.

neutral axis. Since the modulus of elasticity E is
considered constant, all other fibers will have a stress
proportional to their deformation. Take the fiber EF
at a distance y from the neutral surface. Draw C'D’
parallel to AB in Fig. 50 (b); then e, represents the de-
formation of that fiber in the length EF after bending.
The deformation e, divided by the length EF gives the
unit deformation. If this be multiplied by the modulus
. of elasticity of the material the result will give the
unit-stress f, coming on the fiber. The direction of
the stress is the same as that of the deformation which
is along the line EF and acts normal to the section.
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Since the greatest deformation occurs in the fiber
farthest from the neutral axis the greatest stress will
be in that fiber.

It is seen that the deformation of a fiber is propor-
tional to its distance from the neutral surface, conse-
quently the stress is proportional to the distance of the
fiber from the neutral axis. The ratio of the maximum
unit-stress in compression to the maximum unit-stress
in tension is the same as the ratio of the distance of the
most remote fiber in compression from the neutral axis
to the distance of the most remote fiber in tension
from the neutral axis, hence

fo_c

ft Ce

where f, and f, are the maximum stresses in compression
and tension, and ¢, and ¢, are the distances from the
neutral axis to the most remote fibers in compression
and tension respectively.

Fig. 51 (a) shows a free-body diagram of the left
portion of a beam, in which the resisting stresses in
tension and compression are indicated in intensity by
the length of the vectors representing them. Fig. 51 (b)
is an end view of the section, in which the stresses acting
normal to the section (also normal to the plane of the
paper) are indicated by crosses for compression and by
circles and dots for tension. The intensity of the stress
is indicated by the weight of the lines.

¥

68. POSITION OF THE NEUTRAL SURFACE AND THE
NEUTRAL AXIS. Let Fig. 51 (@) represent a portion of
a beam under load and Fig. 51 (b) represent the cross
section. Let the maximum fiber stress developed be f,
which comes on the fiber most remote from the neutral
axis I.J. Call the distance of this fiber from the neutral
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axis ¢, then the unit-stress developed on a fiber at the

distance y is %, f, and the total stress acting upon the

small area a is % fa. The sum of the horizontal stresses

by
>
o]
R

Ry

f - — O
1
.

x b4
"*LLLILI%MQ
<

© | XF XA

| {CNONONCNG)

R,

F16. 510

acting upon the entire cross section is equal to the alge-
braic sum of all stresses on the elements of areas. Since
these are the only horizontal forces acting upon the left
portion of the beam this sum is equal to zero.

&

y
E— =—2 =
cfa  2ay =0,

! SRR
zan —EAy ='Q,

y = 0.
Zay is the moment of the area with respect to the
neutral axis and y is the distance of the centroid of
the cross section from the neutral axis. Therefore, the
neutral surface passes through the centroid of the cross

section of a beam.
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60. THE MOMENT FORMULA. In Fig. 51 let ¢ be
the distance of the most remote fiber from the neutral
axis, f the tensile or compressive unit-stress developed
on that fiber. The unit-stress on a fiber at a distance y
from the neutral axis is

S
fo=21.

The total stress coming on a small area a'is a-c:! f. The

moment of this stress about the neutral axis is

Yoo o b
ach =
To get the moment of all the stresses developed in the
section all such expressions must be summed up, giving
the resisting moment equal to
sd f
c c
The expression X ay? is called the moment of inertia of
the cross section for the neutral axis and is denoted by 1.
(See Appendix A.) By substituting I for X ay? the re-

fI

sisting moment becomes % and as equilibrium exists

ay?.

ay? or =Zay.

the bending moment M equals the resisting moment 2 :

therefore, <

M=J—;—I- (2)

In the moment formula f is the maximum tensile or
compressive unit-stress existing in the section for
which the bending moment is M. This stress is developed
in the fiber most remote from the neutral axis, which
is at the distance ¢ from that axis. A stress obtained
by the use of the moment formula is called a fibér stress.

The quantity g depends upon the size and shape of the

cross section of the beam and is called the section factor
or the section modulus.
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7o. UNITS. The unit of f depends upon those of M
and ;I If M be in ton-inches, f is in tons per square

inch. If M isin pound-inches, f is in pounds per square
inch. The unit of s depends upon those of V and 4.
The units used will be pounds per square inch for stresses,
pounds for loads, square inches for areas, pound-inches
for moments, (inches)* for moments of inertia, (inches)?
for section factors, and inches for distances.

ILLUSTRATIVE EXAMPLE

As an illustration of the application of this formula let it be
required to determine the maximum fiber stress developed at a
. certain section of a beam where M = 115,200 pound-inches as
calculated by the principles of Chapter V. I = 21.8 inches' and
¢ = 3 inches as calculated by the methods of Appendix A. Then

71. TOTAL HORIZONTAL COMPRESSIVE AND TENSILE
STRESSES. From Art. 68, the stress on an element of
area a at the distance y from the neutral axis is

Yy
fua = Ef a.
To obtain H., which is the resultant of the compressive

stresses, a summation of the stresses on the area in com-
pression must be made. Therefore,

Hj =J£an,
Jig =I_’A',
c

in which ¥’ is the distance from the neutral axis to
the centroid of the area 4’ which is in compression.
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A similar expression is obtained for the resultant of the
tensile stresses which is

Ht = f&{A 1’.

c
If the bending moment is positive the compression area
is above the neutral axis. In the formula

H, = f—lA’y
c
{5/ is the unit-stress on a fiber at the centroid of the area

A’. Therefore, the resultant of the horizontal compres-
sive stresses equals the stress on the centroid of the area
in compression multiplied by the area in compression.
There is a similar principle for tension. This principle
is general and can be applied to any portion of a cross
section of a beam when the stresses are below the
elastic limit.

The line of action of the resultant of the compressive
or of the tensile stresses is obtained by the principle of
moments for a system of forces, which is, the moment

\1V1 Vi/, ks A7
He XXXXXX)
B ' f, | XXXXXX
J XXXXXX
X | J
000000
H, 000000
000000
7
F 1
F16. s52.

of the resultant of a system of forces about any axis
is equal to the summation of the moments of all the
forces about the same axis. Let d’ be the distance
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from the neutral axis to the resultant of the compressive
stresses, then (see Fig. 52),

f_zé’
Hd = Cfay,
f." "—Z 2
CyAd —can,
A Zay I
T yIAI _Gl

as H, = {&’a’ , and I’ is the moment of inertia of the

area in compression about the neutral axis, and G’ is
the moment of that area about the same axis. A
similar expression is obtained for the distance to the
center of tension.

As H. and H, are equal they produce a couple. The
arm between the center of compression and the center
of tension multiplied by H. or H; equals the resisting
moment.

For a rectangular beam of depth d, G' = g The dis-
tance between the center of compression and the center
of tension, then, is % d.

72. THE THREE PROBLEMS. In each one of the two
fundamental beam formulas, the shear formula V= ks4,

fI

and the moment formula M = L there are three vari-
ables: V, s, and 4 in the former and M, f, and% in the

latter. Any one of the three variables in each equation
may be determined if the other two are known. This
gives rise to three problems that may be investigated
by the use of the shear and moment formulas.

ProBLEM I. Investigation of Beams. Given a beam
with its load, to calculate the maximum unit-stresses.



04 BEAMS— INTERNAL FLEXURAL STRESSES [CHAP, VI

By the principles developed in Chapter V the values
of the maximum vertical shear and the bending moment

may be calculated. A4 and % may be determined from

the dimensions of the cross section of the beam, by the
methods of Appendix A. To obtain the maximum

shearing stress, s = 73% may be used, and to obtain the
fiber stress, f = % may be used.

ILLUSTRATIVE EXAMPLE

Calculate the maximum shearing stress and the maximum
fiber stress developed in a longleaf pine beam of 1o-ft. span,
breadth 4 inches, depth 8 inches, when carrying a concentrated
load of 12,000 pounds 4 feet from the left support.

Rl = 720 pounds, V., = 720pounds,
Sm = § (720 + 32) = 33.7 pounds per square inch,
M, = 720 X 48 = 34,560 pound-inches,

I = ERCAO RN 8 X8X8 _ 512 inches’,
12 3
¢ = 4inches,
o f= 34,560 X 4 X 3 = 810 pounds per square inch.

512

ProBLEM II. Safe Loads for Beams. By the use of
the shear and moment formulas, the load which a given

beam will safely carry may be obtained. M =f?I gives
the value of the maximum allowable bending moment,
from which values the load may be selected. After de-
termining the load by use of the moment formula, the
beam should be investigated for the maximum shearing
stress developed by that load by use of the shear formula
V=ksA. The allowable shearing stress or bending mo-
ment as calculated should not be exceeded.
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ILLUSTRATIVE EXAMPLE

What uniform load will a 1o-inch, 25-pound I-beam carry
when used as a simple beam of 16-ft. span with an allowable fiber
stress of 16,000 pounds per square inch? From Table 20 which

gives values of section factors of I-sectionms, £= 24.4 inches®.

The maximum allowable resisting moment is 16,000 X 24.4 = 390,400
pound-inches. The maximum bending moment for the uniformly

distributed load on a simple beam occurs at the center and is oA

W X 192
8
W = 16,270 pounds.

= 399,400,

To get the approximate shearing stress, the area of the web is
10 X 0.31 = 3.1 squareinches. .. s = (16,270 + 2)+ 3.1 = 2630
pounds per square inch, which is safe.

ProsrLEM III. The Design of Beams. The loading
of a beam and the maximum allowable stress may be
specified, to select or design a beam to carry the load
safely. The design of beams is the problem most
generally met with by the engineer and architect. It
admits of many solutions, and the designer must use his
best judgment in choosing the form and size of the cross
section to be used. The material most remote from the
neutral axis is all that is stressed to the maximum, while
that at the neutral axis has no fiber stress in it. The
material is most efficiently used when the largest pro-
portion of it is stressed nearly to the maximum stress,
and obviously this condition exists in a section having
a large part of the material well away from the neutral
axis. :Necessarily there must also be such a distribu-
tion of the material as will insure safety against shear,
buckling, and twisting. In steel I-beams there is a
large portion of the material near the outside fiber,
and yet the web is large enough to resist the shear.
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Generally, rupture is due to bending rather than to
shear, and occurs at the danger section. In the deter-
mination of the safe loads for beams and the design of

fI

beams, the moment formula M = 2y is the governing

formula, the shear formula s = being used after-

14
kA
ward to investigate the beam for the shearing unit-
stress. If the shearing unit-stress developed is too large
another design must be made, but this is seldom neces-

sary, except for short deep beams.

ILLUSTRATIVE EXAMPLE

Design a square loblolly pine cantilever beam for a span of 8 feet
with a concentrated load of 500 pounds at the free end. From
the table of allowable stresses (No. 8) f = 1000 pounds per square
inch. M,, = — 500 X 96 = — 48,000 pound-inches. (The nega-
tive sign may be neglected, as that simply means that the stress
in the top fibers is tension.) If b is the breadth of the section,

)

SN
SRS

b3
48,000 = 1000 X ]
HE=22 3RS
b = 6.61 inches.
The maximum shearing unit-stress for this load is
poe s X TVE )
2PAN IR O 3
which is safe. While the above beam satisfies the condition of
the problem it is not a standard section and probably would be
replaced by a 6-inch by 8-inch beam, for which case the fiber
stress is

= 17.2 lb. per sq. in.,

fie 48,000 X 4 X 12
6X8X8xX8

The maximum shearing stress is
500
48

= 7501b. per sq. in.

s=% 5 = 15.6 lb. per sq. in.
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73. MODULUS OF RUPTURE. The moment formula
M= f?l is not applicable to beams of material for which
the stress is not proportional to the deformation, or for
non-homogeneous beams, or for beams under stresses
greater than the elastic limit of the material. However,
it is frequently used to calculate a nominal unit-stress
developed in a beam when the bending moment is great
enough to cause failure. The unit-stress thus calculated
is called the modulus of rupture. This usually lies
between the ultimate compressive strength and the ulti-
mate tensile strength of the material. Table 13 gives
average values for the modulus of rupture.

TABLE 13
MODULUS OF RUPTURE
Material. i L
Timbertiot b oy Sebye: 7000 t0 gooo
Cast inompdig gt - e T 35,000

74. MAXIMUM STRESS DIAGRAMS. The value of the
maximum shearing unit-stress for a section can be
obtained by dividing the vertical shear for the section
by kA4, the product of the sectional area and a constant
k depending upon the shape of the section. The value
of the maximum fiber stress for the section can be ob-
tained by dividing the bending moment at that section

by EI-, the section modulus. If the shear and moment

diagrams are drawn, the values of V and M may be
taken directly from the diagrams; thus, in Fig. 53 (b),
CD divided by k4 (assumed constant) gives the shear-
ing unit-stress. The stress is always proportional to
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the ordinate CD. C.D; in Fig. 53 (c) is the bending
moment at the section which divided by g gives the

maximum fiber stresé, which comes in the extreme fiber
of the beam at that section. The fiber stress is pro-

(a)
]
o 5 23
(b)
cl
o 3 X
D tey
FiG. 53.

portional to the ordinate of the moment curve. Thus
for a beam of uniform section the ordinates to the
vertical shear curve represent the maximum shearing
stresses, and the ordinates to the bending moment curve’
represent the maximum fiber stresses existing in the
beam. Consequently the shear and moment diagrams
may be considered stress diagrams. The above reason-
ing is for beams of constant section, but with modifica-
tions similar reasoning may be applied to beams in which
the section is not uniform,
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‘vs. BEAMS OF UNIFORM STRENGTH. If a beam is
of uniform section the maximum fiber stress occurs only
in the outside fiber at the section of the greatest bending
moment. The stress varies with the bending moment
along the length of the beam. In order to have the
most efficient beam all the material in it should be
stressed to the allowable stress, and to approach this
state, besides keeping the material near the outside
surface, the cross section is sometimes made to vary
with the bending moment. This is done in plate girders
where extra cover plates are added toward the center
of the span.

ExaMpPLES ..

1. If a 4-inch by 6-inch by o.4-inch channel is used as a simple
beam of 8-ft. span with a concentrated load of 2000 pounds
three feet from the left support, (a) what is the maximum fiber
stress developed? (b) What is the stress developed on a fiber
2 inches from the top and 2 feet from the right support?

R, = 1250 pounds.
(a) The maximum moment is under the load and is
M, = 1250 X 3 X 12 = 45,000 pound-inches.

The centroid is 1.29 inches from the back (see Fig. A;, Appen-
dix A). Therefore
¢ = 4 — 1.29 = 2.71 inches,
A = 5.28 square inches,
I = 8.41 inches,

=" =222 = 14,500 lb. per sq. in.
(b) My = 1250 X8 X 12 — 2000 X 3 X 12 = 18,000 lb.-in.
¥y = 2.71 — 2 = .71 inch.

fu= 18’008.;:50'7_—1 = 1520 1b. per sq. in.
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2. What uniform load will a 4-inch by 6-inch yellow pine
timber safely carry when used as a simple beam of 10-ft. span?

bd’
L o2 TNb s SIS G ONOTE S s
e e e = 24 inches®.

The allowable stress is 1000 pounds per square inch. (Table 8),

ui

e 1000 X 24 = 24,000 pound-inches,

which is the allowable resisting moment.
The maximum bending moment is

Wi W X10Xi12

g 8 = 24,000,

W = 1600 pounds.

The load per lineal foot is *¢§® = 160 pounds per foot. Inves-
tigating for the shearing stress, s = § X 8% = 50 pounds per
square inch.

3. Using the results of Example No. 2, what is the total com-
pressive stress at a section 30 inches from the left end, and where is
the line of action of the resultant?

R; = 800 pounds.
30 = 800 X 30 — 182 X 30 X 15 = 18,000 lb.-in.

The area in compression is 12 square inches. The stress on
the centroid of this area is

fy'= 18,000 X 1.5
72
The total compressive stress is 12 X 375 = 43500 pounds.
The line of action of the resultant is § the depth from the top or
1 inch from the top or 2 inches above the neutral surface.
4. Design a simple cypress timber beam to carry a uniform
load of 8ooo pounds on a span of 12 feet.

= 375 lb. per sq. in.
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The beam must be large enough to take this moment without
exceeding the allowable stress which is 1000 pounds per square
inch. (Table 8),

I

= 144 inches® = -
f 1000 c

An indefinite number of cross sections will satisfy this, but the
one chosen should be economical and suited for the purpose. It
must be wide enough to prevent lateral bending. If b is assumed

equal to l;i then

g = %iz = % = 144, & = 1728, d = 12inches, and b = 6 inches.

The maximum shearing stress is
s =§ X 493° = 831 Ib. per sq. in.,

which is safe. Other dimensions to the nearest even inch above
the actual size required are 2 inches by 18 inches; 4 inches by
16 inches; 10 inches by 10 inches; or three, 3 inches by 10 inches.
The beam 2 inches by 18 inches would be too narrow and deep
unless well braced laterally. The one 4 inches by 16 inches might
be chosen in some cases if well braced laterally. The one 10 inches
by 10 inches would not be economical unless the two inches verti-
cal distance saved would be more valuable than the extra mate-
rial in the beam of this size.

PROBLEMS

1. If a 15-inch, 42-pound I-beam carries a uniformly dis-
tributed load of 39,270 pounds on a span of 16 feet, (a) What is
the maximum shearing stress? (b) Draw the load, shear, and
moment diagrams. (c) Calculate the maximum fiber stress.
(d) What is the resultant of the horizontal compressive or tensile

2

v
9
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stresses at the danger section? (e) What is the rate of change
of the vertical shear at any section? (f) What is the rate of
change of the bending moment at the left support, at the quarter
point, and at the center of the span?

Ans. (c) 16,000 Ib. per sq. in.

2. (a) What uniform load will a simple rectangular Washing-
ton fir beam of breadth 8 inches and depth 12 inches carry on a
span of 12 feet? (b) With the calculated load on the beam what
is the maximum shearing stress? (c) What is the value of the
fiber stress 4 inches from the top of the beam and 4 feet from the
right support? (d) What is the maximum shearing stress on that
section? (e) What is the resultant of the horizontal tensile
stresses at that section? (f) Where is the line of action of the
resultant of the tensile stresses?

3. Ina table giving the safe load in pounds uniformly distributed
for rectangular beams of white pine, cedar, and spruce for each
inch in thickness the following values are given: span 10 feet,
depth 14 inches, load 1524 pounds; span 16 feet, depth 21 inches,
load 2144 pounds; span 25 feet, depth 22 inches, load 1255 pounds.
What unit-stress was allowed in compiling that table? »

Ans. 700 lb. per sq. in.

4. With an allowable unit-stress of 1100 pounds per square
inch what will be the allowable uniform loads per inch thickness
of the beam for the following spans and depths? Span 8 feet,
depth 12 inches; span 11 feet, depth 14 inches; span 20 feet,
depth 24 inches.

5. Solve Problem No. 4 if the allowable stress is 1200 pounds
per square inch. Ans. 2376 b,

6. A 12-inch, g4o-pound I-beam of a span of 20 feet is used to
carry a uniform load of soo pounds per foot and a concentrated
load of 5000 pounds 4 feet from the left end. What is the maxi-
mum stress developed?

7. Compute the maximum unit-stress in a 2 X 8 inch joist
carrying loads of 240 pounds 3 feet from the left end and of
360 pounds 4 feet from the right end of a simple span of 12
feet. ;

8. Determine maximum fiber stress in a 6-inch by 12-inch
simple beam of 12-ft. span which carries a uniform load of
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100 pounds per foot and three concentrated loads of 1300 pounds,
1500 pounds, and 1oco pounds at 3 feet, 5 feet, and 8 feet respec-
tively from the left support.

9. Compute the maximum fiber stress in a 15-inch, 42-pound
I-beam, over a simple span 6f 30 feet carrying a uniform load of
500 pounds per foot and two concentrated loads of sooo pounds
and 10,000 pounds at 3 feet and 23 feet respectively from the left
support.

10. A rectangular, cantilever timber beam of 12-ft. span,
4 inches broad, and 8 inches deep carries a uniform load of 50
pounds per lineal foot. Find the maximum fiber stress.

11. A cantilever white cedar beam of 5-ft. span has a rectan-
gular section 2 inches broad and 3 inches deep. Find the total
uniform load it can safely carry.

12. Find the uniform load per lineal foot which a wooden
cantilever beam 6 feet in length, of rectangular section 2 inches
broad and 3 inches deep, can carry with a maximum fiber stress of
800 pounds per square inch.

13. A 15-inch, 42-pound I-beam is carrying a total uniform
load of 30,000 pounds on a simple span of 20 feet. Compute
the intensity of stress at a point 3 inches below the top flange
face and 6 feet from the left support.

14. Determine the total amount of horizontal compressive
stress at the section of maximum bending moment in g 6-inch by
12-inch wooden beam carrying a uniform load of 4000 pounds per
foot on a simple span of 12 feet.

15. Design a cypress beam of 18-ft. span to carry a load
that varies uniformly from zero at the ends to a maximum of
1800 pounds per foot at the center. )

16. Select the proper I-beam 18 feet long which overhangs
both supports 3 feet that will carry concentrated loads of 5000
pounds at the left end, 10,000 pounds at the center, and 8oco
pounds at the right end.

17. Determine the maximum fiber stress at the sections indi-
cated in an 8-inch by 12-inch simple beam of 12-ft. span which
carries a uniform load of 8oo pounds per foot: (a) 2 feet from the
supports, (b) at the quarter points, (c) at the center.

Ans. 9oé pounds per square inch,
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18. A 6-inch by 12-inch cantilever beam of g-ft. span carries a
load of 500 pounds per foot. Calculate the fiber stress (a) 2 inches
from the top at the wall, (b) on the bottom fiber at the wall,
(c) on the top fiber at the middle.  A4ns. 1687 Ib. per sq. in.

19. A 2-inch by 4-inch maple tiniber 10 feet long is to be used
as a simple beam. What central load will it safely carry (a) when
it is laid flat, and (b) when placed on edge? Whatis to be learned
from the results?

20. What should be the depth of a rectangular shortleaf pine
beam of 18-ft. span and 4 inches broad to sustain a uniformly
distributed load of 1000 pounds?

21. If a 4-inch by 4-inch timber is to carry a load of so pounds
per foot what will be the length as a simple beam to give the
maximum fiber stress of 1200 pounds per square inch?

22. Design a simple yellow pine beam of 12-ft. span carrying
concentrated loads of 1, 2, and 3 tons at distances of 3, 6, and 7
feet respectively from the left support, and a uniform load of £ ton.

23. Design a rectangular cast iron cantilever beam to carry
a load of 3000 pounds at the end of a 4-ft. span.

24. A rectangular hemlock cantilever beam 8 feet long and
6 inches deep is to support a load of 200 pounds at the free end.
What should be its width if the weight of the beam is neglected?

25. A load of 300 pounds is rolled over a simple beam of
20-ft. span. Find the position of this load for the maximum
bending moment, compute its value, and design a longleaf pine
beam to take the load.

26. A round pin carries a load of 10,000 pounds at the center.
It may be considered as a simple beam of 6-in. span. Find the
diameter of the pin if the fiber stress is not to exceed 15,000 pounds
per square inch or the shear to exceed 7500 pounds per square inch.

27. Two loads 4000 pounds and 2000 pounds 6 feet apart roll
over a simple beam 12 feet long. Find the position of the loads
for the maximum moment and determine its value. Design a
shortleaf pine beam to carry this load.

28. Four loads, 1000, 2000, 3000, and 4000 pounds and spaced
2, 3, and 5 feet respectively, roll over a simple beam of 16-ft. span.
Determine position for maximum bending moment, and deter-
mine its value. Design a loblolly pine beam to carry this load.
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The following problems are to be solved by the use of

a steel company’s handbook.

Find the missing terms by several methods (loads do
not include weight of beam). f = 16,000 pounds per

square inch.

o
| g8 | ge| 84 | 34
g | B | B9 | %49 vy | 389 ¢
s 28 | 28% | BE | £E8 | 82 | #3e 8
A [ =] [ A %] [a] o]
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SOFRIL AT 12 % o o o o 10" 254
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Z0mg s . B 18 o 12,000 4 7,000 9 !
FYNPI 18 o 9,000 3 § 9 7" 204
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CHAPTER VII

STRESSES IN SUCH STRUCTURES AS CHIMNEYS,
DAMS, WALLS, AND PIERS

76. KINDS OF STRESSES. For structures that sus-
tain a side thrust and a direct weight, as chimneys,

G

e T

dams, etc., there is a combination

" of direct and flexural stresses.

(@)
w
S S
F S ksa
E
D 33 A
®) e
FiG. 54.

The treatment given in this
chapter is based upon the as-
sumption .that the direct and
flexural stresses act independ-
ently of each other, and that the
side thrust does not cause ap-
preciable deflection. It is also
assumed that the stress is pro-
portional to the deformation and
that the material of the struc-
ture is elastic. For bearing on

‘'soil this assumption may be only

approximately true.

When there is no side thrust
and the vertical section is sym-
metrical, the total weight above
a horizontal section is resisted
by direct compressive stresses
on the sections and the unit-

stress is f = ].:1! (Fig. 54 (a)). A

normal force P produces flexural
106
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stresses. A shearing stress

P
of s= A acts along the sec-

tion. The bending moment due
to the load increases the com-
pression on the opposite side
from the force and decreases it
on the nearer side (Fig. 54 (9)),
This lateral pressure P may be
due to the wind, water, embank-
ments, etc. It may not be
horizontal, in which case the
horizontal and vertical compon-
ents of the resultant of the
weights and lateral forces should
be taken as producing the flex-
ural stresses and the direct
stresses respectively.

77. ECCENTRIC LOADS ON
SHORT PRISMS. Let the load
W have the eccentricity e (Fig.
55 (@)). This load may be re-
placed by its components, W,
Wy, and W, shown in Fig. 55 (b),
W, and W, being taken as acting
along the axis of the prism and
equal in magnitude to W. The
two equal and opposite forces
W and W, form a couple, the
moment of which is We. The ef-
fect of this couple is to produce a
bending or moment stress. In Fig.
55 (¢) W and W, are replaced
by the equivalent moment C.

107
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The stresses developed by the eccentric load W will
be the same as those produced by its components which
are the axial load W and the couple We. The stress
due to the axial load is the same at all points of the sec-

tional area and is V—V The stress developed by the

A
moment of the couple may be considered as a fiber
stress and is equal to MTC = @ , where ¢ is the distance

of the most remote fiber from the centroidal axis of the
section, and I is the moment of inertia of the section
about that axis. If 7 is the radius of gyration, I = A2
Fig. 55 (d) is a free-body diagram showing the stresses
developed by the eccentric load. The maximum stress
developed is in the fiber most remote from the centroidal
axis on the side nearer the load while the minimum stress
is developed in the most remote fiber on the opposite
side. The maximum stress equals the sum of the
direct and moment stresses, and the minimum stress
equals the difference. Therefore,

A B ey

W We W ¢

=g a3

Then, the stress developed in the outside fiber is
w ec
=5 (=%)

78. ECCENTRICITY OF A LOAD THAT WILL PRODUCE
ZERO STRESS IN THE OUTSIDE FIBER. If the eccentric-
ity is increased fs: becomes greater and f; becomes smaller.
After a certain point is passed fi reverses if the material
will take tension. If W is a compression load, just
before the tensile stresses act, fi becomes zero. To
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obtain the eccentricity e; that will make f; zero, equate
f1 to zero. Then
w (214
Ji= Z(I _75):0’

7’2
1= —
c

where e, is the greatest eccentricity the load may have
before tension is produced on the side away from the
compression load.

For a rectangle the eccentricity to give zero stress in
the outside fiber will now be found,

pI el ity e g
ATl T NE T 3
d2
Tt d ),
himine
2

Therefore, as long as a compression load is kept on the
middle third of a solid rectangular prism the stress over
the entire area will be compression.

For a circle,

wd?

64 d? d
2 = ——— = -y
7 16 and ¢ =

4

d2
MR s
1—4—8

2

Therefore, as long as the load is kept on the middle
quarter of a solid circular prism all the stress will be
compression.
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79. THE KERN. If the line of action of the load falls
within a certain part of the cross section of a prism,
all stresses in the section will be of one kind; and if the
line of action of the load
falls outside of that area Vi’
the stresses will be partly
tension and partly com-
pression. This area is
called the kern or kernel.
In a solid circular prism
the kern is a circular area
whose diameter is one-
fourth the diameter of
the prism. And for a
rectangular prism the kern
is a diamond-shaped fig-
ure whose diagonals are
one-third the lateral di-
mensions of the prism. (See Fig. 56.)

!

e —>]

80. CASE OF ECCENTRIC LOADS CAUSED BY A COM-
BINATION OF THE WEIGHT OF THE MATERIAL AND
LATERAL PRESSURE. Call the weight of the material
above the section AB being considered, W, and call
the lateral pressure on the prism above the section P,
Fig. 57. The magnitude and direction of the resultant,
R, of these two forces depend upon the forces. Its
line of action passes through the intersection of W and P
and intersects the section AB in some point C usually
not at the centroid, thus producing an eccentric load on
the section AB. The eccentricity e is DC and can be
calculated by taking moments about the centroidal axis
at D. Resolve R into its vertical and horizontal com-
ponents, ¥ and H, at C where it intersects the cross sec-
tion for which the stresses are to be found. (Fig. 57 (8)).
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H produces a shearing unit-stress along the plane of

magnitude s = }% , and Y is an eccentric load producing

1-36=R)

the stress

in which the plus sign is used to obtain the maximum
compressive stress, f;, and the minus sign is used to
obtain the minimum stress, f;.

81. EFFECT WHEN THE LINE OF ACTION OF THE RE-
SULTANT FALLS OUTSIDE OF THE KERN. If the result-
ant of all loads above a section of a prism under
compression falls outside the kern, the minimum stress
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fi= %/ (I — -er—i) becomes negative or tension if the material
will take tension, Fig. 58. For materials that will not
take tension, such as masonry, Y

the joints on the side opposite the J,

eccentric load will tend to open, but
failure will not necessarily follow.
If the structure is subject to water
pressure the water may get into the
cracks and produce an upward pres-
sure which tends to help overturn
the structure. In chimneys and
walls where there is no upward
pressure due to water getting into
the cracks if they do form, the
tendency for them to form is not

fli\

e

h

2/

Fic. 38.
so objectionable. The safe
H G ¢ limit for the compressive
g T stress should not be ex-
1\1 ceeded by the maximum
¥ I | (| stress developed.

82. THE MAXIMUM
STRESS WHEN THE LINE
Fic. s9. P OF ACTION OF THE RE-

SULTANT FALLS OUTSIDE THE MIDDLE THIRD FOR
RECTANGULAR PRISMS WHICH TAKE NO TENSION.
The stresses will be distributed as shown in Fig. 59 forming
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a wedge-shaped prismatic stress volume BCDEFG, there
being no stress on the area ABGH. The vertical com-
ponent, Y, of the resultant equals the summation of the
vertical resisting stresses. The line of action of ¥ passes
through the centroid of the prism which is 3 (CB) from CF.
If b is the breadth CF, the area over which the resisting
stress is distributed is

d
V= e
v 3(2 ¢)e.
If d is the depth AC, and e the eccentricity, ¥ is at the
distance g — e from the edge CF. The length BC is

d < : ;
3(5 — e). If f is the maximum compressive stress, the

g

average on the stressed area is = and the total resisting

stress is
} 3(‘2— ) ==2;fb(d—2e),

o Y=3fb(d—2e),
PR TR
f_3b(d-—2e)

EXAMPLES

1. Find the maximum stress at the foot of a stone wall 20 feet
high and 4 feet thick when there is a wind pressure of 35 pounds
per square foot; also when there is a wind pressure of 45 pounds
per square foot if the masonry weighs 150 pounds per cubic foot.

Consider a portion of the wall / feet long,

Y =W= 150X 20X4X ! = 12,000X / pounds,
H=P = 35X 20X [ = 700X Il pounds,
3X 700X 1!

=90 (727 — 1.8 pounds per square inch.
2X 4X 144X 1 4 o
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The eccentricity is found by taking moments about a centroidal
axis of the base.

¢ = 100X X 10 =Ilz foot. This is in the middle third,

12,000 X /
7 =Z+Y_ec= 12,000X ! | 12,000l7X 12X 24X 12
20, 0 48X 12X1 12X 121X 48X 48X 48

- = 21 + 18 = 39 pounds per square inch.

For second part,
9oo X 10
12,000

YV =12,000X1l; H=9ooXl; e=
This is outside the middle third.

=2 foot.
12

3 (% - e>= 3 (24 — 9) = 45 inches.
A" = 43X 12X I = 540X I square inches.

=Z_ =20 52" = 44 pounds per square inch.

2. What should be the thickness of a rectangular wall 15 feet
high to resist a wind pressure of 40 pounds per square foot with-
out any tension in the windward side, if the material weighs
140 pounds per cubic foot?

Let d be the thickness.

The weight of each lineal foot is W= 15X 1X 140d = 2100d
pounds.

The wind pressure for each lineal footis H = 15 X 1 X 40 = 600
pounds,

o= D00 WL AT
2100d 7d
For zero stress el=%.
g =15. 2= 2 _ 1,86,
OSST 7
d = 3.59 feet.
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PROBLEMS

1. Find the maximum and minimum unit-stress in a rod
2 inches in diameter under a tension load of 16,000 pounds if it
is applied at a point } inch from the center of the cross section.

2. What are the dimensions of the kern in a rectangle 3 inches
by 8 inches? In a hollow circular chimney of inner diameter
8 feet and outer diameter 10 feet?

3. In a brick wall 20 feet high and 4 feet thick, weighing
115 pounds per cubic foot, (a) What horizontal wind pressure
will cause zero stress on the windward side of the base? (b) With
that wind pressure what will be the maximum stress? (c) If the
wind pressure is 40 pounds per square foot what will be the max-
imum and minimum stresses? (d) With a wind pressure of
40 pounds per square foot what will be the stress on the windward
side 10 feet above the ground?

4. A square compression piece g X ¢ inches carries an eccen-
tric load of 16,200 pounds so applied that the stress on one edge
equals o. Determine the application point of the resultant load.

5. What must be the thickness of a wall 23 feet high, weighing
120 pounds per cubic foot, if a maximum unit-stress of 47.2 pounds
per square inch is developed when the wind pressure is 40 pounds
per square foot? Ans. 4.5 feet.

6. Would a brick wall 30 feet high, weighing 120 pounds per
cubic foot, 3 feet thick at the top and 4 feet thick at the base,
with one side vertical, be safe if subject to a wind pressure of 40
pounds per square foot?



CHAPTER VIII
GRAPHIC INTEGRATION *

83. DEFINITIONS. In Chapter V the relations be-
tween the load, shear, and moment diagrams are given
P (% ) « asfollows: the difference

faih J between the ordinates at

L any two sections in the

e (a) moment diagram repre-
sents the area in the
shear diagram between
the two sections, and
e W the difference between
the two ordinates of the

L shear diagram repre-
/ sents theareain the load

diagram between the or-
dinates at the same sec-
QP X tions; thus, in Fig. 60,
Moment () LN in the moment dia-

F16. 6o. ;
gramrepresents the area
EHIG of the shear diagram, and EF in the shear dia-
gram represents the area ABCD of the load diagram.
The first integrated curve is defined as one in which the
ordinates represent the area under a given curve. Thus,
the moment curveis the first integrated curve of the shear
curve, and the shear curve is the first integrated curve
of the load curve. Since the moment curve is the

* For students who have had integral calculus and who do not intend
to follow the graphical method of determining deflections of beams, this
chapter may be omitted.

116



ARrT. 841 OBTAINING SECOND INTEGRATED CURVE 117

first integrated curve of the first integrated curve of
the load curve, it is called the second integrated curve
of the load curve. The second integrated curve is one
in which the ordinates represent areas under the first
integrated curve. The integrated curve of the second

X

(o] Al ci

F1c. 61, FIRST METHOD OoF GRAPHIC INTEGRATION

integrated curve is the third integrated curve. Simi-
larly, the nth integrated curve is one in which ordinates
represent the area in the (# — 1)th integrated curve.
The graphical method of deriving the integrated curves
from given ones will be deduced before applying them to
the theory of beams.

84. THE FIRST METHOD OF OBTAINING THE SEC-
OND INTEGRATED CURVE. In the following methods, if
the given areas are not bounded by straight lines, the
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greater the number of points secured on the resulting
curve, the more nearly accurate that curve will be. The
equations representing the curves will be deduced by
making the number of points secured infinite.

Let Fig. 61 (a) be the given curve of which it is desired
to obtain the first and second integrated curves. The

Px e, A X

F16. 61. FIRST METHOD OF GRAPHIC INTEGRATION.

curve is taken below the axis making the area between
the curve and the axis negative, which corresponds to
the load curves already described. To obtain the first
integrated curve, divide the area into a number of parts
as indicated, and measure each area by any method.
Then from an arbitrarily chosen axis O’X’ in (b) lay off
AB to a selected scale to represent the area A4;, then lay
off CD to represent the area 4,. Continue this process
for the entire area under curve (¢), then connect by a
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continuous curve O'G’D’ all the points thus obtained.
This is the first integrated curve. Any ordinate to
this curve as G1G’ represents the total area accumulated
from the left end to the section GH.

In physical problems there is always a constant as 00’
to be added to the area under the curve. This constant,
which is called the constant of integration is the value
of the ordinate to the integrated curve at the origin.
In the usual case it can be determined by the conditions
of the problem. It frequently is zero. In the shear
curve, the constant is the vertical shear at the left sup-
portas OO’ in (b). In the moment curve it is the moment
at the left support. After determining the value of
this constant, draw the axis OX which is the true axis
of reference for the integrated curve (b); the true value
of the function represented in curve (b) is then H'G’ at
the section GH. The area to be considered in the
integrated curve is that between the curve and the
axis OX.

To obtain the second integrated curve, divide the area
between the curve O'G’D’ and the axis OX into small parts
as indicated in Fig. 61 (b), and from some chosen axis
OX in (c) erect, to some scale, the ordinate 4’B’ equal to
the area 4, in (b), C'D’ in (¢) equal to the area A4, in
(b), and so on until the entire area in (b) is covered,
then the ordinate Gi'H,' represents the accumulated area
in (b) from the origin to the section G’'H’. The con-
stant of integration will depend upon the conditions of the
problem. In the illustration it is assumed to be zero.

Curve (b) is the first integrated curve of (@), and (c)
is the first integrated curve of () and a second integrated
curve of (a). As long as the constant can be determined,
a higher integrated curve can be obtained by the fore-
going method, the nth process giving the nth integrated
curve.
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85. THE SECOND METHOD OF OBTAINING THE SEC-
OND INTEGRATED CURVE. The method given in the
previous article cannot be employed unless the constants
can be determined independently. For cases when the

U
/

\":co;\ \ \\\
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F16. 62. SECOND METHOD OF GRAPHIC INTEGRATION.

constants cannot be determined a second method must
be combined with the first. Draw the first integrated
curve Fig. 62 (b) in the same manner as in the first
method, using the arbitrary axis O’X’. Project the
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areas A, Aq, A4z, etc., in (b) to the vertical axis X'L as
indicated. If it is desired to obtain the integrated curve
for (b) referred to any axis as O"’X”, thereby assuming
a constant of integration O”0’, take a pole P’ on that
axis a distance H from the axis X’'L. H, which is called
the pole distance, is measured in the same units and
to the same scale as distances along the axis OX. Con-
nect P’ to the ends of the lengths representing the areas
on the line X'L, as P'X’, P'B, P'C, etc. These lines
are called rays, and the polygon P'X’L is called the ray
or vector polygon. A; is to be replaced by its compon-
ents X'P’ and P'B, A; by its components BP’ and P’C,
etc. Draw through the mean ordinate of the area 4, in
(@) a vertical line of indefinite length, as 4:4’. Also draw
through the mean ordinate of the area A, in (a) the
vertical line 4,B’, and draw through the mean ‘ordinate
of A; the line A43C’. Continue this process for all the
elementary areas in curve (a). From the origin O’
in (¢’) draw O’A’ parallel to P’X’ in (b), and from the
point A’ in (¢’) where the line 0’4’ intersects the vertical
line through the mean ordinate of A4, in (a¢) draw 4’B’
parallel to P'B in (), and from the intersection, B’ in
(¢") of A’B’ with the vertical through the mean ordinate
of A, draw B’C’ parallel to P'C in (b). Continue this
process until the entire polygon O’A’B' — E'— X' is
drawn. This polygon is called the string or funicular
polygon and the lines O’4A’, A’B’, B'C’, etc., are called
strings. The ordinate measured from the horizontal
axis O'X" in curve (¢’) represents the integrated area
of diagram (b) between the curve and the axis 0”X",
i.e., the ordinate of a second integrated curve of (a),
The constant 0”0’ of (b) for the axis O”X" call 4,'.
Take any section M N, then y in (¢’) represents the accu-
mulated or integrated area in (b) from the origin to the
section.
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Proof: From the similar triangles P’X’X"" and 0’'4,G;

’
in the ray and funicular polygons respectively, & =

H
TR
(Al bt ; from triangles P'X’B and A’AIBl, (A i ),
H b,
from triangles P’BC and B’Blcl, H (B;Cl) ; from
2
triangles P’CD and C’ ClDl,;lia (C;Dl) from triangles
3
P'DE and D’DlEl, H (D;El) By clearing the above
y a
equations of fractions, the following are obtained:
. A'x = H (4:Gy), (1)
Aipr = H (41By), (2)
Aspe = H (B1(y), (3)
Asps = H (C1Dy), 4)
A4P4 =NrT (DlEl) (5)

By subtracting the left members of the last four equations
from the left member of the first equation, and the
right members of the last four equations from the right
member of the first equation there results the following
equation:

Ay’ — Aspr — Asps — Asps — Asps = H (A1Gy — A1By

= BIC1 C1D1 TV 1E1) and
A'x — 2 Ap = Hy,

since A]G1 = A]Bl == Blcl = Clpl = D1E1 =9

It can be seen from curve (b) that 4,'x — Z 4p equals
the algebraic sum of the area under the curve repre-
sented by the shaded portion; therefore, Hy equals the
area between the axis and the curve from the origin to
the section, and by use of a proper scale y represents
the area. Hence, (¢) is a first integrated curve of (b)
and is a second integrated curve of (a).
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The greater the number of parts into which the area
under the curve is divided the more nearly the true
curve will the funicular polygon be. When the number
of parts becomes infinite the funicular polygon becomes

7]
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F16. 62. SECOND METHOD OF GRAPHIC INTEGRATION.

a smooth curve inscribed within the broken funicular
polygon shown. This smooth curve is the true inte-
grated curve and can be drawn inscribed in the broken
funicular polygon. In Fig. 62 (b), by choosing the
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pole P’ on the axis O’X" it assumes the constant of
integration equal to 0’0’ and if this is not the true
value, curve (¢’) is not the true curve, and the process
so far is only tentative.

86. THE CONSTANT OF INTEGRATION. The constant
of integration in every case depends on the conditions
of the given problem, and unless it has been determined
from the given conditions of the problem, the assumed
one as 0"0’, Fig. 62 (b), generally is not the true value,
but the true value can be determined by use of the
curve (¢’). Whatever quantity is represented by the
area under curve (b) or by its equivalent, the ordinate
of the curve (¢’), Fig. 63, there will be two points along
the X-axis at which the values of the ordinates are known
or can be determined. For beams these points will
usually be at the ends, supports, or center. When the
constant A4, in Fig. 63 (b) cannot be determined from
the curves (@) and (b) curve (¢) must be employed.
For the arbitrary constant 4’ chosen in Fig. 63 (&)
curve (¢’) shows a value of zero at the left end and a
negative value X" X’ at the right end. This shows that
the negative area exceeded the positive area by the
amount X"'X’. Suppose that the values at each end
should have been zero, the curve then should end at X"/,
as would the moment curve for a simple beam. For
this to be the case the negative area in curve (b) must
be decreased and the positive area increased. To ac-
complish this the reference axis must be lowered, thus
making the constant larger than the value assumed, 4,’.

The method of obtaining the value of the constant
that will make the positive area equal to the negative
area in (b) is to draw O’X’ the closing line of the funic-
ular polygon in (¢’), then draw P’X in the vector polygon
parallel to O’X’ in the funicular polygon. Then through
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X draw the horizontal axis 0X, giving XX’ or OO0’ in '
(b) the true value of the constant.

M
|
T
|

| Az As Ay As

(¢)

Fic. 63. To DETERMINE THE CONSTANT OF INTEGRATION.

Proof: By lowering the reference axis in (b) to OX
the positive area is increased the amount O”X”XO0
which equals / multiplied by XX”’. This must equal H
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: multiplied by XX’ in (¢’) to have the positi\;e and
negative areas in (b) equal. From similar triangles
P'X"X in (b) and O'X"'X" in (¢'):

o+ L HXX") = [(XX"),

XX~ XX

The difference between the two axes O’X’"" and O'X’

in (¢’) should be added to the ordinates in the original

curve to obtain the true curve. Proof: From similar
triangles P’X"’X in (b) and O'SR in (¢'):

i or H(RS) = x(XX").

x
XX7 (RS
H(RS) is the value represented by the ordinate (RS)
in (¢’) and x(XX") is the shaded area in (b) which is
the increase over the former value. .Each ordinate now
may be increased to its true value from a horizontal
axis, or the true curve may be obtained by taking a
new pole on the axis OX in (). (The pole distance may
be changed if desired.) Then by using the new pole P
and proceeding by the same method used in drawing
(¢’), the true integrated curye (¢) is obtained. The
student should supply the proof that the ordinates in
(¢) represent the area between the curve and the axis
OX in (b).

87. UNITS. The units for the ordinates of the inte-
grated curves will depend on the units used for x and y,
and the units to be used for x and y will depend on the
problem to be solved. The unit for x is the same for
all curves. The unit for the ordinates of curve (b) is
the product of the x unit and the y unit or the unit
formed by the product xy; and that for curve (¢) is the
product of the unit of the ordinate for (b) and the x
unit, i.e., the unit formed by the product x%y. In
problems for beams x will represent a length.
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EXAMPLES

1. By the method of graphic integration draw the shear
and the moment curves for a simple beam of r2-ft. span carry-
ing a concentrated load of 2000 pounds ¢ feet from the left
support.

The shear diagram is drawn in the usual way, Fig. 64. Select-
ing the pole P with the pole distance equal to 72 inches the moment

1090# . 2000 #
S ) Py
12" K)
(a) A
1167+ t‘-H Seu e
- 167 # s
P X
(v) 18337 N\ Je
B M
p
a k ¢
(g 14 P X
N
(c)
F16. 64.

curve (¢) is drawn, (p — @) in (c) is parallel to (P — 4) in (b),
( — b) in (c) is parallel to (P — B) in (b), and (p — ¢) in (c)
is parallel to (P — C) in (b). To get the moment at any section
as at M N measure M N, using the same scale as is used in draw-.
ing the shearing forces, and multiply by the pole distance, in
this case 72 inches. This gives the bending moment represented
by MN equal to 66,000 pound-inches.

2. Determine the vertical shear at the left support (constant
of integration) by the graphical method for a simple beam of
14-ft. span carrying a uniform load of 500 pounds per foot
and a concentrated load of 3500 pounds 5 feet from the left
support.
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By using the O0’X’-axis in Fig. 65 (b) lay off distances as 4B to
represent the area in the load diagram to the left of the section.
Lay off the concentrated load BC to the same scale in pounds.

3500%
(o] X
w=500%/£t. T
(@)
o 2 14 fts X
i
5J50" B 6°
OI/ P, x/l
O c \X
(b)
OI
() X
F16. 65.

Select any pole P’ with a pole distance say 60 inches and draw
(c’) as described in the text. ' Draw P’X in (b) parallel to the
closing line O'X’ in (¢/). Then draw OX horizontal giving 00’
equal to 5750 pounds which is the vertical shear at the left support.

PROBLEMS

. By the graphical methods draw the shear and moment
dlagrams for the following cases:
(a) Cantilever beam of o-ft. span, concentrated load of 5000
pounds at the free end and one of 6000 pounds at the center.
(b) Simple beam of 16-ft. span with a total uniform load of
18,000 pounds,
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(c) Simple beam of 16-ft. span, uniform load of 1000 pounds
per foot and a concentrated load of 10,000 pounds 8 feet from the
left support.

2. By the graphical methods determine the vertical shear at
the left end for each of the following systems of loading:

(a) Simple beam of 1o0-ft. span with a uniform load of 400
pounds per foot and a concentrated load of rooo pounds 3 feet
from the left support.

(b) Simple beam of 20o-ft. span, concentrated loads of soco
pounds 7 feet, 2500 pounds 10 feet, and 10,000 pounds 15 feet
from left support.

(c) A beam 16 feet long overhanging the right support 4 feet
with a uniform load of 1500 pounds per foot.

(d) A cantilever beam of 1o-ft. span with a uniform load of
300 pounds per foot and a concentrated load of 8oo pounds at the
free end.

(Note. The value of the moment at the free end is zero, and that
at some other point should be calculated and laid off to scale to draw
the closing line. The vertical scale for the moment curve equals the
product of the vertical scale of the shear curve multiplied by the pole
distance.)



CHAPTER IX
DEFLECTION OF BEAMS

ELASTIC CURVE

88. BENDING. The elastic curve is the curve assumed
by the neutral surface of a beam under load. The deflec-
tion of beams can be obtained only from the elastic curve.
For certain kinds of beams the reactions, the maximum
shear and the maximum moment can be obtained only
by the use of the elastic curve, while for cantilever,

simple, and overhanging

o} beams the reactions, the

/ shear, and the moment may

be obtained without its use,

also for beams fixed at both

ends and loaded sym-

metrically the reactions

and shear may be obtained
without its use.

8. THE RADIUS OF
CURVATURE OF BEAMS.
In Fig. 66 let /, be an ele-
ment of length of a beam
under load. The loads

F1G. 66. cause a bending moment

M at the section CE. This

bending moment, may be considered constant over the
element of length Z;. The deformation due to the shear-

ing stresses will not be considered in this discussion.
130
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The neutral surface 4B, which was straight before the
load was applied, is bent to a curve under the influence
of the bending moment M. Assume that a normal sec-
tion of the beam before bending remains a normal section
after bending, that the moduli of elasticity of the material
in compression and in tension are equal, and that the
stresses developed are below the elastic limit. Let CE
and DF be two sections normal to the beam and parallel
to each other before bending. After bending, their planes
will intersect at some point O, the center of curvature of
AB. Let the radius of curvature BO be 7, and the dis-
tance of the most remote fiber from the neutral surface
BFbec. Draw GH parallel to CE, then DG is the short-
ening of the top fiber in the length /; and HF is the
elongation of the bottom fiber in that length. For a
symmetrical section these deformations are equal. Let
tpis deformation be ¢’. Then the unit deformation is

7
., and the unit-stress developed is f = ;—E. From the
1

L
moment formula f= %

¢ Mc ¢ Mc
Therefore, l—lE == or 7= El

Since /; is very small the triangles OAB and BHF may
be considered to be similar.

Pk VLT CAT X
¥ AR VOR e S LY

¢ _ Mc 3B

PRy T il R T

In this equation M is the bending moment for the
element of length 4, 7 is the radius of curvature of AB,
E is the modulus of elasticity of the material, and I is
the moment of inertia of the cross section of the beam
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about the neutral axis. It is seen from the equation
that the radius of curvature of a portion of a beam varies
inversely with the bending moment.

9o. THE SLOPE OF THE NEUTRAL SURFACE. The
slope of a curve at a given point is the measure of the
tangent of the angle the curve makes with the hor-
izontal axis. Thus, in Fig. 67, tan a is the slope of the

-

A

F1G6. 67.

curve AB at the point P. In Fig. 68, which is greatly
exaggerated, let a be the angle the neutral surface of
a beam at A makes with the horizontal. o' is the
increase in the angle over the element of length AB.
Since the angles are very small for ordinary beams, the
tangents or slopes of the angles may be considered
equal to the angles themselves without appreciable
error; therefore, the increase in the slope is equal to the
increase in the angle measured in radians, and the slope
and the angle may be interchanged. From the figure it

: I’ : 3
is seen thata’ = == ; hence, the increase in the slope over

71
the element of length I, is
W MY L B
of = o- =gy Since £.= o

Similarly the increase in the slope &'’ over the element of

1y 1
length BK is ede 1

El The increase in the slope over
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any element of length has a similar form. The total
increase of the slope between any two sections of the

Fi1c. 68.

beam is obtained by adding all the increases between the
sections, which is

Mllll Mllllll M/Illllll i, Mll

T R R TR Ry T
If the slope at any section is known, the slope at another
section may be found by adding the increase, ]l}::[_?’

between the two sections.
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91. THE SLOPE CURVE. The relation in the last
article affords the means of deriving the graphical method
of determining the slope curve for a beam. The slope
curve (a curve) is one in which the ordinates show the
values of the slope at every point along the beam. In

P

Al e |

(a’) T
R1 Ry

(d)

Fic. 69g.

Fig. 69 let (a’) represent a beam, (¢) the moment curve,
and (d) the slope curve. The element of length I; is meas-
ured along the beam and # is measured along the hori-
zontal axis. Since the length /; is very small it may be
considered a straight line, then # = I; cos @ where « is the
angle the beam at the point P makes with the X-axis.
Since « is almost zero cos @ may be taken equal to I,
and % equal to /;, and then the increase in the slope

between any two sections becomesz%l—%. From Fig. 69

(c) it is seen that Mwu equals one of the small shaded
. A}

portions of the area under the moment curve, and Z Mu

is the sum of all the small areas between the sections.
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Therefore, to obtain the increase in the slope of the
elastic curve of a beam between two sections, divide
the area under the moment curve between the two sec-
tions by the product of the modulus of elasticity of the
material and the moment of inertia of the cross section
of the beam about the neutral axis.

If the moment of inertia of the cross section is not
the same throughout the length of the beam, a modified
curve may be obtained from the moment curve by divid-
ing the ordinates in the moment curve by EI for several
sections, / being the value of the moment of inertia
at the section where the ordinate to the moment curve
is measured, and then taking the area under this modi-
fied curve for the change in slope between the two sec-
tions. When the second method of integration is used,
the pole distance may be varied with 7. -

92. THE RATE OF CHANGE OF THE SLOPE. The rate
Mu

of change of the slope at a section is -Eztz- = ?Z-[I' which

is the bending moment for the section divided by the

product of the modulus of elasticity of the material and

the moment of inertia of the cross section about the

neutral axis.

93. THE DEFLECTION OF BEAMS. THE ELASTIC
CURVE. In Fig. 70 (¢) let APB represent the position
assumed by a portion of the neutral surface of a beam
under load. Divide the length of the curve into the ele-
ments l\/, ", 1", etc. If atany point P the valueof the
deflection y is known, that for any other point Q may be
determined by calculating the increase in the deflection be-

_tween the two points. Let the angles made with the hori-
zontal by the lengths I\, I,”/, I,’, etc., be o/, &'/, &”, etc.
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Then the increase in y over the length ;' is y' = #/ tan o/
where #' is the horizontal projection of I/, ¥ = u'
tan o', """ = 4" tan o’”, etc. The tangent of the angle

the elastic curve makes with the horizontal axis is the

(o]
I
=Y
.
U
el 3
!
A > B
|p1are
PA y,al’l
(o] Y X

(e)
F16. 70

slope of the curve at that point; therefore, tke increase
in y between the two points is

y/ +y/r +y/1/ 4+ - .. =u'tano/+ o' tan o’
Dt A s wao! + u'd + u'a
40 = Sua

From Fig. 70 (d) it is seen that a equals a small shaded
area under the slope curve, and the summation of all
the areas, 2 uea, equals the total area under the slope
curve between the two points. Therefore, the increase
in the deflection of the elastic curve of a beam between
any two points is equal to the area under the slope curve
between those two points. The deflection at the sup-
ports is usually known. g
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04. THE RATE OF INCREASE OF THE DEFLECTION.
The rate of increase of the deflection is ﬁuo—‘ = «. The

rate of increase in the deflection at a section is equal
to the slope of the elastic curve at the section.

05. RELATIONS BETWEEN THE FIVE CURVES. Com-
bining the relations between the load, shear, and moment
curves deduced in Chapter V, with those between the
moment, slope, and elastic curves, important results
are obtained. Since these five curves are the principal
ones for beam problems, and since they form a con-
tinuous chain between the load and the deflection of a
beam, they will be referred to as the five curves. The
relation existing between them may be stated as follows:

Between any two sections of the beam:

(1) The increase in the vertical shear equals the area
under the load curve between the sections.

(2) The increase in the bending moment equals the
area under the shear curve between the sections.

(3) The increase in the slope equals the area under
the moment curve between the sections divided by EI.

(4) The increase in the deflection equals the area under
the slope curve between the sections.

Thus it follows that the question of determining the
elastic curve is one of determining constants of integration
and of obtaining areas under curves. These principles will
be applied to various kinds of beams, and the constants
determined and the areas obtained.

96. THE UNITS FOR THE FIVE CURVES. In the fol-
lowing discussions (a) will refer to the load curves,
(b) the vertical shear curves, (c) the bending moment
curves, (d) the slope curves, and (e) the deflection or
elastic curves. The modulus of elasticity E will be



138 DEFLECTION OF BEAMS [Crar. IX

taken in pounds per square inch, I in (inches):. For
all the five curves and for the pole distances one inch
along the X-axis will represent m inches of length
measured parallel to the beam. The scale of ordinates
of the curves will be:

Curve (¢) 1inch = w’ pounds per inch run. 1 square
inch area = w'm pounds. ;

Curve (b) 1 inch = % square inches from (a) = nw'm
pounds. I square inch area = nw'm? pound-inches.

Curve (¢) 1 inch = p square inches from (b) = pnw'm?
pound-inches. 1 square inch area = pnw'm® pound-
(inches)?.

Curve (d) 1inch = ¢ square inches from (c) N gpnw'm?

EI ET
G
which is a ratio. I square inch area = ﬁ%inches,
a3
Curve (e) 1 inch = 7 square inches from (d) = ZZJPZ:_’L;’_"L

inches. )

For an illustration of the method of determining the
scales of the curve see Example 1 at the end of the next
chapter.

ExXAMPLE

1. What will be the increase in the slope from the left end to
the middle of a g-inch, 21-pound I-beam of 12-ft. span with the
concentrated load at the center that will produce a maximum
fiber stress of 16,000 pounds per square inch?

The maximum moment is developed at the center and is

M=Lcl = 16,000 X 18.9 = 302,400 pound-inches.

Since the moment increases directly from zero at the end to the
maximum, the moment curve is as drawn in Fig. 71. The area
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under the moment curve to the left of the center is § X 72 X
302,400 = 10,886,400 pound-inches?. Therefore the change in the
slope over this length is
10,886,400
L SRR = GGGy
30,000,000 X 84.9

302 400%-in.

14472

FI1G. 171,

PROBLEMS

1. What is the radius of curvature at the ends and at the
center of a 3-inch X 4-inch stick 8 feet long used as a simple beam
with a load of 350 pounds concentrated at the center?

. Ans. 2860 inches.

2. What is the change in the slope from the left end to the
center in the beam in Problem No.1? What is the change in the
slope over the first two feet?

3. What is the total change in the slope over the entire length
of a cantilever beam of 1o-ft. span carrying a concentrated load
of 3000 pounds at the end, if the beam. is of a standard I-section
and the stress does not exceed 12,000 pounds per square inch?

4. What is the rate of increase of slope at every two feet of
length along the beams in Problems No. 2 and 3?



CHAPTER X

CANTILEVER AND SIMPLE BEAMS AND BEAMS FIXED AT
BOTH ENDS

97. CANTILEVER BEAM, CONCENTRATED LOAD AT
THE END. By use of the method analyzed in Art. 85
and 86 the curves in Fig. 72 are drawn for a cantilever
beam with a load W at the end. From these curves the
shear, moment, slope, and deflection at any section may
be scaled off directly. Algebraic expressions for these
quantities will now be deduced. From the definition

of vertical shear, !

V=—-W.

Since the bending moment at the left end is zero, that
at the section 4B is equal to the area under the shear
curve between the origin and the section, which is — Wx.

M =—Wx.

The increase in the slope from the left end is equal to

the area in the moment diagram from the origin to the
2

section divided by EI, and equals — EW%CI The free end

of the beam deflects. The beam remains horizontal at

the wall, thereby making the slope zero at the wall.
2
The total area under the moment curve is — g This

divided by EI gives the total change in the slope from
one end to the other.
If the slope at the left end of the beam is a, it is
140
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changed from this value to zero at the right end. There-

fore, . Wiz Wiz
(04— Z—E_I =0 or ai = Z_E—.l:
A
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Fi1g. 72. CANTILEVER BEaM, CONCENTRATED LOAD

To get the slope at the section 4B add to «; the change
from the left end to the section which gives

o, W W e

Pl AT R

a
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The change in the deflection of the elastic curve is
equal to the area under the slope curve. The change
in the deflection is shown in (d) by the area OO'HI

which equals area O0’'GI — area O'GH or ZVI;l;x — area
O'GH since 00’ = ﬂ Fig. 73 represents the area

2 EI
O’GH drawn to a large scale. Divide the length x into

Fic. 73.

a great number of parts # parallel to GH and let ABCD
be any division such as the pth from the apex O'.

The distance of this strip from O’ is ;b—: the breadth is

—, and the depth is _ME/'j (p x> The area of the strip

W_
2El n*
all numbers to n. The area O'GH, then, is the sum of
all such areas as ABCD.

AreaO’GH=22EI?——mﬁz(ﬂ-[-z?_}_sz
W

G lea 4 PN e +n2)—5—E_In3E( n),
By algebra it can be shown that
3 2
= (n): = ElLi%’_‘l‘_ﬁ_

then is ABCD = In this p represents any and

* See ‘‘Higher Algebra,” by John F. Downey, page 373.
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3 3
Area O'GH = W x <2n +3n2+n)

2 EI n? 6

w
T 2EI ( +2n+6n2>
Since the side O’H is a continuous curve, as 7 is increased
the assumed broken line will approach the actual curve
and they will coincide when 7z equals infinity. By
assuming this to be the case, the actual area O'GH is

obtained, and 6 2become zero; therefore
W«
" = b
Area OGH = 6Bl
; Wkx _ Wxd
and Area OO'HI = >EI ~GEl

Since the area under the slope curve represents the change
in the deflection the expression for the area OO'HI is
the increase in the deflection from the left end to the
section AB. In Fig. 72 (e) if the X’-axis were used as
reference, the deflection at the left end would be zero,
and the above equation would give the value of the deflec-
tion at any section AB. The axis of réference is usually
taken in the position of the neutral surface before any
load is on the beam, for which case the deflection at the
left end is 00" equal to XX’, Fig. 72 (e), which equals
the total change in the deflection over the entire length
of the beam. This change is obtained by letting x equal
! in the expression for the area under the slope curve,
Whe' WS . wip

2Bl 6Bl BV TEp

WP
DT

Lo _Wex We W

e S EIN G Rd 3 &L

00'=—
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which is the equation of the elastic curve of a cantilever
beam with a load W at the free end. The maximum
deflection occurs at the free end and is
wis
3EI

98.. CANTILEVER BEAM, CONCENTRATED LOAD AWAY
FROM THE FREE END. The solution of the problem for
a concentrated load at the end of a cantilever beam can
be extended to cover the problem when the load is
away from the end. The dotted lines in Fig. 72 indicate
the extension of the solution for the previous case to
cover this case. The load, shear, and moment curves
would be similar to those given. The slope has the con-
stant value OO’ from the free end to the load. The addi-
tional deflection of the free end equals the area KJO'O.
The student may deduce the equations for this case.

A=—

99. CANTILEVER BEAM, UNIFORM LOAD. In Fig. 74
are ‘drawn the curves for a cantilever beam with a
uniform load. The expressions for the values repre-
sented by the different curves at the section AB the
distance x from the free end will be deduced.

The load per unit of length of the beam equals —w.

Vertical shear V=—wx.
wx?
Bending moment M = — R

The slope at the right end is zero as the elastic curve
there is horizontal. The area under the moment curve

3
to the section 4B is —% (see Art. 97). The total area

3
is~— 6 ,hence the total change in the slope is — 3 Ell 7' mak-
ing the slope at the left end a; equal to a4 ; therefore,
6EI
3
Slope a= L B

6EI 6EI
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The deflection at the right end is zero. In order to find
the deﬂectlon at any section 4B it is necessary to obtain
the area under the slope curve since the change in the
deflection is equal to that area which is O'HIO. In

Fig. 74 (),
area O'HIO = area O'GIO — area O'GH
- lE 7 —area O'GH.
;, AN a
<———Pﬁ

D 3
6_15 p3x3 () 1:_9”_‘

H

FiG. 75.

Let Fig. 75 represent the area O'GH drawn to a larger
scale. Divide it into a great number of strips # parallel

to GH as ABCD. The width of each strip is ?—9; Let
this be any strip as the pth from O’, then its distance

from O is p— and its depth is 6723 I(P x) Therefore

ot
the area A BCD equals 8 Ep T p represents all numbers

from 1 to #n. The total area O'GH equals the sum of all
such small areas.
T B Sy L, < AR S
Area O'GH _26EIn4_ SElA 2(1 i
. 3 3
) =g S
ntta2nt+

4
* See “ Higher Algebra,” by John F. Downey, page 373.

From algebra = (n)3 =
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wyt (A4 20+ n?)
6 EIn* 4

wxt
6EI(4+2 n+4n2> 24 EI

I
since 2 and —; i reduce to zero when # equals infinity.

Area O'GH =

7 _whx _ wxt :
Therefore area O'G10 SEF TRl This equals the

change in the deflection from the free end to the section
AB. The total change over the entire length is obtained
by letting x equal ! in the expression for the change.
This reduces to

wit 06 S g
6EI 24EI 8EI
AW el

8EI 8EI

which is the maximum deflection and occurs at the free
end. W is the total load.
41 i whe  wx!
Y =T S8EIT6EI 24EI
which is the equation of the elastic curve for a cantilever
beam with a uniform load.

100. CANTILEVER BEAM, VARIOUS LOADING. If the
end projects beyond the uniform load, the load, shear,
and moment diagrams will be similar to those of Fig. 74.
The slope will be constant from the free end to the load
as indicated by the dotted lines OJKO’, Fig. 74 (d).
The additional deflection will be equal to the area 0’OJK.
If the beam has a concentrated load at the end and a
uniform load the equations for the two cases may be
combined. Any other combination of uniform and
concentrated loads may be made, and corresponding
equations derived similarly to the foregoing deductions.
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101. SIMPLE BEAM, CONCENTRATED LOAD AT THE
CENTER. The curves in Fig. 76 are drawn for a simple
beam with a load W at the center. The vertical shear
to the left of the load is

14

2
The bending moment to the left of the load is

R e
2

The slope curve must pass through the axis at the center

of the beam, since the elastic curve is horizontal there,

making the slope at that point equal to zero. The

change in the slope from the end to the middle equals the

area to the left of the center in the moment diagram

2
dlvideds by EE ahich 1?%‘ R S

Y ;
the left end is — 6 FIL’ and the slope at the section AB
to the left of the center is
LW )
Nl o7 AT

The deflection at the end is zero. The change in the
deflection from the end to the section AB to the left
of the center can be obtained by calculating the area
under the slope curve (d).

Area OABO’ = area OACO’ — area O'BC

__(Wl2x_ wx*) _ W we
~ \16EI 12EI/ 16EI ' 12EI

(see Art. 97). Since the area is below the axis it is
negative,

Wix Wx?3
7 12EI

S0k 4 R




ART. 101] SIMPLE BEAM, LOAD AT CENTER 149

A J,w
(a)
: :
(0] —VQ—V- g
! ® A
[}
i |
|
l ]
T
;@————w—*———-—————)
l
wa
2 P
? | l (c) 5 X
1
o : A [ /4 X
wiz SSSaa |
~ 161 B \
o' Z
c @ g
i
|
i
i
]
[l
o X
__wi?
, A== 2gET
| (e)
B

Fic. 76. SmMpiE BEaM, CONCENTRATED LoAD AT THE CENTER.



150 CANTILEVER AND SIMPLE BEAMS [Cmap. X

The maximum deflection occurs at the center and
equals the area below the axis in the slope diagram,

which .may be found by letting x equaléin the expres-

sion for the deflection; therefore the maximum deflection
is

St e

e ARl )

The foregoing equations are for a section to the left
of the center. Equations representing the curves to
the right of the center may be deduced similarly to the
above. The student may derive those equations.

102. SIMPLE BEAM, UNIFORM LOAD. The curves in
Fig. 77 are drawn for the case of a simple beam with a
uniform load. For the section 4B the vertical shear is

V=1~0—%—>wx.
2

The bending moment is

u= Y _wd
2 %
The slope at the center is zero; the change in the slope
from the end to the center equals the area under the
moment curve to the left of the center divided by EI,
which is
w1 wlk  wi  wB

AreaODG——8~XE—areaOFD—I—()-—Z—s-—-z
(see Art. 97). The slope is changed from a; at the left
end to zero at the center; therefore, -
o AP 0 SR A
24 ET ~ ot 24 EI

The change in the slope to the section 4B equals the

a3 +
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area OBC divided by EI. By referring to Fig. 78 we see
that
Area OBC = area ODG — area CBDG

3
= ﬂ— — area CBDG.
24

Area CBDG = area CEDG — area BED = %(é - x)

8
3 2
— area BED = 1IU—l — zilf — area BED.

Frc. 78.

The ordinate BE represents the triangular area MNQ
in Fig. 77 (b).

3 3
Area BED = XL — z_v(é - x)

Area OBC = area ODG — area CEDG + area BED,
wh  wl | wlx | wP wlx | wix®  ws?

T A LT W
Vel g B
b z
The slope at the section A B then is
e +wlx2_wx3-
T T 24EI T 4EI T 6EI

Since the deflection at the end is zero, that at the
section 4 B equals the area under the slope curve between
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the origin and that section. In Fig. 77 (d) the deflec-
tion is shown by

Area O0’'BC= — (area OO’AC—area O’AB)

o U S /
(24 ] area 0 AB).
Divide the area O’AB into a great number of strips 7.

The width of each strip is :—i If the strip shown is

the pth strip its distance from O’ is & and its depth
i P_“’xf) s O (PE) ;
is 3 EI( 2 CEI\ 8 The small area then is

p2x3> w (ﬁxf) : . -
4EI( 6EI\ 4t ) in which p represents all num
bers to n, and to obtain the total area O’BA all such
areas must be added; therefore

AreaO’BA—4EI 52124224324 - - -2+ - -4 n?)

621242(13—1-23“{-334- ---+p3+---+n3)
wlx?
=125 " 55D R )

wlx® (2 n 4+ 3n 4 n)

= 4EIn 6
wxt [nt 420+ n?
" 6 EIn* ( 4 )
_ wix?

I
=Bl ( Rk 6n2)

wxt (1 il I
T 6EI (;+a+rnz>
MR ARt - i
ra EE 8RR
When # is infinitely large %1 atisy and —— reduce to

6 n? 2
Zero. 4%
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Area O'OCB = —( s il s I):

24EI 12 EI+24E

LS wlx ) wlxd S
Y e Bl 1Al 2nid

The maximum deflection occurs at the center or when

x = ~in the expression for y. Substituting this value
for x the maximum deflection is found to be

P A T NS |
384 EI 384 EI

A=

103. BEAM FIXED AT BOTH ENDS, CONCENTRATED
LoAD W AT THE CENTER. A beam with fixed ends
has restraining moments at the walls which keep the
beam horizontal at those points. These moments must
be determined in the solution of the problem. From
the symmetry of the beam the reactions at the walls
are equal, and the restraining moments are equal. In
Fig. 79 the shear and moment curves are drawn in the
usual manner; then by using the pole P’ in Fig. 79 (¢)
a slope curve (d’) is drawn. Since the beam is hori-
zontal at the ends and at the center the true slope curve
must pass through the axis at those three points. There-
fore connect the ends by O'X’. Now in (¢) draw P'X
parallel to O’X’ in (d’), and through X draw the hori-
zontal axis OX which is the true moment axis giving the
moment OO0’ at the left support, which equals XX, the
moment at the right support. Then with a new pole P
on the true axis in the moment diagram the true slope
curve (d) is drawn. To prove that the slope in (d)
will be reduced to zero at the right end, draw the closing
line OX in (d) and draw OZ parallel to O’X’ in (d’), then
the angle ZOX must be equal to @ = o in (d’) because
Z""X" and O'X" are both parallel to P’X’ in (c); i.e., hori-
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zontal. ¥’XO and YOX in (d) are equal because ¥V’X
and YO are drawn parallel to PX in (c).
X'UX in (¢) = YOZ in (d),
Y0X in (d) = X'PX in (c),
UX'P'4+ UP'X'in (¢) = X’PX + X'P'X in (c)
= YOX in (d) + a in (d'),
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YOZ in (d) = YOX in (d) +
= YOX in (d)+ XOZ in (d),
Z0X in (d) = ain (d') = X'P’X in (¢).

To obtain the bending moment at the walls and at the
center of the beam, it is known that the slope is zero
at the ends and at the center. Hence the total change
in the slope from the end to the center is zero; there-
fore, the positive and negative areas to the left of the
center are equal. As the moment varies directly along
the length of the beam that at the end is equal to
minus the moment at the center. The total change
in the moment equals the area under the shear curve

to the left of the center which is Li43 Consequently,

- Wi
the moment at the wall is ik and that at the center

. Wi 1 . ¢
is 5 The deflection at the ends is zero. Since the
constants have been determined the equations of the

curves for a section AB to the left of the center can be
written:

i
2
wi  Wx

g A

Wik | W
e BTN AL
Wi | WR
V=T 16EI T 12El

In order to obtain the deflection y the area under the
slope curve is determined by the same method as that
by which the area under the moment curve for a simple
beam uniformly loaded was determined (Art. 102).

The maximum deflection is at the center and equals
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the area under the slope curve to the left of the center,

which is found by letting x = é in the expression for
that area:
wip wi wp

N Rl oG BT i0a BT

104. POINTS OF INFLECTION. In Fig. 79 (¢) are
shown two points marked I where the moment is zero.
At these points the moment changes from negative to
positive in going toward the center of the beam. The
stresses also change from tension to compression in the
top fibers and from compression to tension in the bottom
fibers. These points where the fiber stresses change are
called the points of inflection or points of contraflex-
ure. Outside these points the beam curves downward,
and inside them it curves upward. Since there are no
flexural stresses at the points of inflection, the beam
could be hinged at those points without affecting the
stresses at the other sections of the beam.* For a beam
fixed at both ends with a concentrated load at the
center the inflection points occur at the two outside
quarter points, hence it may be considered as a simple

beam of lengthi—)with the load W at the center and two

cantilevers each of length :i with the load of —I;K at the

ends. The simple beam may be considered as resting
on the two cantilevers. Wherever the tensile stresses
in a beam are to be taken by steel, as in reinforced con-
crete beams, part of the steel is bent down somewhere near
the inflection points. The inflection points are located
where the greatest positive and negative slopes occur.
* On account of secondary stresses and horizontal shear which have

not yet been considered, the behavior of the beam may be somewhat
different if hinged at the points of inflection.
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105. BEAM FIXED AT BOTH ENDS, UNIFORM LOAD.
The reactions equal one-half the total load for a beam
fixed at both ends and carrying a uniform load. The
restraining moments at the ends keep the beam hori-
zontal at these points. It is also horizontal at the center.
In Fig. 80 curves.(a), (b), and (¢) are drawn in the usual
manner. The curve (d’) is then drawn by using the pole
P’in (¢). Connect O'X’in (d’), then, in (¢), P'X is drawn
parallel to O’'X’ in (d), and OX, which is the true moment
axis, is drawn, giving the bending moments OO0’ and X X’
at the walls. By selecting a new pole P on the moment
axis the true slope curve (d) is drawn, from which in
turn the elastic curve () is drawn.

In order to determine the bending moment at the
wall and at the center it is known that the slope is zero
at both sections, and, therefore, that the positive moment
area ABC equals the negative area OAQ’. The total
change in the moment from the end to the center equals.
the area under the shear curve between those two sec-

tions, which isw—P- By methods similar to those already

8
given,
Area QA0 = Lty
4 3
and
Area ABC = area ABCD — area ACD,
(BC)=(4D)= 2 (D R s LT in(h)):
Keka AP Y (DC)2(DC) _w(DC)? _w (DC)“’
2 6 3
(DC) = é — X1,

Area OAQ’ = area ABC,

whe?  wx,® w[2_l_'°: _ 60x +§li‘2 = 2x1‘°‘]-

4 3=38 4 2
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Collecting and reducing,
l e ;
L8 e =+ —1% V12, which is the distance from the end to

the inflection point.
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(AD) in (c) represents the area FHI in (b), and (O'E)
in (c) represents the area FGO in (b);
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therefore

(4D) _ (DCy _ <_l_i_)
(O7B). .. (ECsT <l>2

2
by et
O'E) G
2

Hence, the bending moment (BC)-at the center is 1 of
ol | STy and that at the ends is il The deflec-
8 24 12

tion at the ends is zero.

Since all the constants are determined, by methods
similar to those already given the following equations
for the curves at the section AB are deduced.

The load per unit of length of the beam equals — w,

wl?x wix? wx3
T 12EI " 4EI  6EI’
SN W wix? wx!
Y = T 24EI T 12El 24EI

a =

The deflection is the greatest at the center and is ob-

tained by letting x = é in the value for y, or

_uwl _ wB
384 EI 384 EI

=

106. RELATIVE STRENGTH AND STIFFNESS OF BEAMS.
The strength of a beam is proportional to the load it
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will carry with an assigned value of the maximum stress.
For a beam of given section the allowable resisting shear
and resisting moment are fixed by the allowable stresses.
If the shearing stress or the deflection is not the con-
trolling factor in the design of a beam, the strength
depends upon the allowable resisting moment J—;{ - The
allowable bending moment is equal to this resisting
moment. The strength of a certain type of beam is
inversely proportional to the maximum bending moment
produced in the beam by a given load. For a beam of
length /, the load W to develop the fiber stress f may be

) Iy g
obtained by use of the moment formula M = f? in which
M is the maximum bending moment, here to be expressed
; JE : .
in terms of W and I, andz 1s the section modulus, which

is fixed for a given section. For example, in a cantilever
beam with a concentrated load at the end M = Wi
i, and W= .
G cl
Column two in Table 14 contains the expressions for
the maximum bending moment developed in the various
types of beams given, and column two in Table 15 gives
the value of the load to produce the fiber stress f. If
beams of the same material for the various types given
are of equal length and section, their relative strengths

(the sign being neglected); hence, Wi =

will be proportional to the coefficients of % given in

Table 15, as g will be the same for all the beams.

The stiffness of a beam is proportional to the load
necessary to produce a given maximum deflection. The
load W to cause a maximum deflection may be obtained

by solving for W in terms of the maximum deflection A,
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For example, the maximum deflection of a cantilever
beam with a concentrated load at the end is A =
Ll (the sign being neglected); hence, W = 3 2L A.
2B : ' ; i
TABLE 14
MAXIMUM MOMENTS AND MAXIMUM DEFLECTIONS

Maximum Maximum
Kind of beam. moment deflection
M. A.
Wl g y
I wp
i‘ ! s K 3EI
| W/ 1#/in. E e El e wis
8EI
w 7 2
g
T wi _wp
4 48 EI
WiV, Wi _swp
8 384 EI

W
/ l g wi _ws
8 192 EI

#in. A B LA
%f Vaiher ‘% 12’ + 24 384 EI

Column three in Table 14 gives the ‘expression for
the maximum deflection of each type of beam there
shown, and column three of Table 15 gives the value
of the load to produce the deflection A. If beams of
the same material for the types given are of equal length
and section their relative stiffnesses will be proportional

to the coefficients of %—IA, since%[ A is the same for all

types, assuming equal deflections.
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TABLE 15

LOAD TO CAUSE A GIVEN MAXIMUM STRESS AND A GIVEN
MAXIMUM DEFLECTION

Kind of beam. Load W to cause | Load W to cause
. stress f. | deflection A
W |
| |
L 1 f—I ‘ g—IA
I\ l e ¢/ ‘ 3 B
y |
I W/l Vin. % 2 f—[ ! 8 E-IA
cl a0
\'Y %
)
il EI
T 4. % 48. —la_ A
w/1#in. g s EI
8. d 76%. 0 A
Y w ;
! Z e BT,
o 192. &
- /I ‘ EI
% w/1%/in, 4% 12. {—l 384 F A
] 7
General type. a% B % A

107. MAXIMUM STRESS AND DEFLECTION. From
Art. 106 it is seen that if a given beam used as a canti-
lever will safely carry a given load at the end, it would
carry twice that load uniformly distributed on the
cantilever, four times that load if used as a simple beam
with the load concentrated at the center, eight times
that load if used as a simple beam with a uniform load,
eight times that load if both ends are fixed and the load is
concentrated at the center, and twelve times that load if
both ends are fixed and the load is uniformly distributed.
It is also seen that if a given load at the end of a canti-
lever beam will cause a given maximum deflection, to
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cause the same maximum deflection it will take two and
two-thirds times that load uniformly distributed over
the cantilever, sixteen times that load if the beam is
used as a simple.beam with the load concentrated at the
center, twenty-five and one-fifth times that load if uni-
formly distributed over a simple beam, sixty~four times
that load if concentrated at the center of a fixed-ended
beam, and one hundred and twenty-six times that load if
uniformly distributed over a beam with both ends fixed.
In all the above cases the stresses are supposed not to
exceed the elastic limit.

108. RELATION BETWEEN THE MAXIMUM STRESS
AND THE MAXIMUM DEFLECTION. In column 2 of
Table 15 appears the maximum stress f developed under
the load W, and in column 3 the maximum deflection.
By equating these two expressions for the load the rela-
tion of the maximum deflection to the maximum stress
for a given load W is obtained. Let « represent the co-

efficients of JZ, and let 8 represent the coefficients of 2 A,
c (3

Then by equating the two expressions for I there results

i EL

a T e
_afl,

A—-BEC

The last equation gives the maximum deflection in terms
of the maximum stress.
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LEFT SUPPORT.
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EXAMPLE

Draw the elastic curve for a 1}-inch by 2-inch oak beam of
6-ft. span carrying a load of 150 pounds 2 feet from the left
support. :
Solution: o= L2 o e e N A 1 (inch)?,

12 12

E = 1,500,000 pounds per square inch.

In Fig. 81 the horizontal scale is 1 inch equals 12 inches. (On
the diagram the length representing 1 inch is indicated at the
bottom.) (a) represents the beam. (b) is the shear diagram in
which the vertical scale is 1 inch equals 100 pounds. To draw
the moment curve the pole distance is taken equal to 24 inches;
the vertical scale of the moment curve then is 1 inch equals 24 X
100 = 2400 pound-inches. In drawing the slope curve the pole
distance was taken equal to 20 inches; the vertical scale of the
slope curve then is 1 inch equals 20 X 2400 + EI = 20 X 2400 +
1,500,000 X I = 0.032. As yet the slope is not known for any
point along the beam; consequently an arbitrary axis O'X’ is
assumed in curve (d) and the pole P’ taken with a pole distance
equal to 311 inches giving values of the deflection scale to be 1 inch
equal to 0.032 X 31% = r.oinch. With the pole 7 the curve
(¢/) is drawn. This gives a deflection at the right support equal
to o.53 inch. It should be zero. The closing line O'X’ in (¢')
is drawn, and parallel to this line the ray P’'X in (d) is drawn,
then the true axis OX in (d) is drawn, and with the pole P on this
axis, with a pole distance of 32% inches, draw the true elastic
curve (¢). The deflections can be measured directly from this
curve. The maximum deflection occurs at the point of zero
slope which is 31 inches from the left support. The deflection
at that point is A = 0.63 inch.

If it is desired to find the maximum deflection for a 50-pound
load divide the value for 150 pounds by 3; this gives o.21 inch.
For any beam with any concentrated load at the one-third point
this set of curves can be used simply by changing the scale to agree
with the data of the given beam.
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PROBLEMS

1. Draw the load, shear, moment, slope, and deflection curves
and determine the maximum deflection and the maximum fiber
stress for the following beams:

(a) A g-inch by 8-inch timber beam used as a cantilever of
8-ft. span with a concentrated load of soo pounds at the end.

(b) A 15-inch, g42-pound, cantilever I-beam of 10-ft. span
carrying a uniform load of 15,700 pounds.

(c) A simple timber beam of 14-ft. span, 8 inches wide and
14 inches deep carrying a load of 1550 pounds concentrated at
the center.

(d) Same as (c) with an additional uniform load of 200 pounds
per foot.

(e) A 12-inch, 31.5-pound I-beam of 16-ft. span when fixed
at both ends and carrying a concentrated load of 2400 pounds
at the center.

(f) An 18-inch, 55-pound I-beam used as a simple beam of
20-ft. span carrying a uniform load of 60,000 pounds.

(2) A simple timber beam of 10-ft. span, 1o inches wide and
12 inches deep carrying a uniform load of 8000 pounds and a
concentrated load of 2000 pounds at the center.

2. In a test of a 1}-inch by 2-inch yellow pine beam of 6-ft.
span the following maximum deflections for the corresponding
loads at the center were observed:

Load, pounds. Deflection, inches.
50 .218
100 -374
150 .562
200 718
250 005

What is the modulus of elasticity of the yellow pine?
Ans. 2,040,000 lb. per sq. in.
3. What is the bending moment at the walls and at the center
of a beam fixed at both ends of 16-ft. span, and carrying a con-
centrated load of 8300 pounds at the center? What is the maxi-
mum fiber stress developed if a 10-inch, 25-pound I-beam is
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used? What is the fiber stress 4 feet from the walls? What is
the shearing stress at the section 4 feet from the walls?

4. Design a longleaf pine beam with both ends fixed to carry
a uniform load of 6000 pounds on a span of 12 feet. What will
be the maximum fiber stress developed at the center of the span?
Locate the inflection points.

5. What steel I-beam with fixed ends is required for a span of
20 feet to support a uniform load of 20,000 pounds, with a maximum
unit-stress of 15,000 pounds per square inch? Find also the maxi-
mum deflection.

6. For a simple beam with a load concentrated at the distance
kl from the left support, % being a fraction, show that the equation
of the elastic curve to the left of the load is

y= o =B = ek — g+ B P,

7. Designabeamof 20-ft.span to carry 18,000 pounds, fixed ends.

8. Calculate the maximum deflection of a steel bar, supported at
its ends, 1 in. sq., 6 ft. long, with a load of 100 pounds at its center.

9. A floor is to support a uniform load of 1oo pounds per
square foot. The 10-inch, 25-pound I-beams have a span of 20
feet and are spaced 6 feet apart between centers. Does the maxi-
mum deflection of the beams exceed sés of the span?

10. Deduce the equation of the elastic curve and the expression
for the maximum deflection for a beam on which the load varies
uniformly from zero at the ends to w pounds per lineal unit at
the center. Given S (n*=[n(n + 1) (6#* +9n®+n — 1)] + 30.

Ans. To the left of the center,

ol wet D swlx JENEDR, L
1 24EI 60Ell 192EI 60 EI °

In the following problems write the special equations
of the elastic curve and obtain the maximum deflections.

11. A12-in.,313-poundI-beamused asa cantilever beam of 20-ft.
span and carrying a concentrated load of 1ooo pounds at free end.

12. A 10-inch, 25-pound I-beam used as a cantilever beam of
15-ft. span and carrying a uniform load of 500 pounds per foot.

13. A 20-inch, 65-pound I-beam used as a simple beam of 24-ft.
span carrying a concentrated load of 20,000 pounds at the center,

14. An 18-inch, 55-pound I-beam used as a simple beam of
15-ft. span carrying a uniform load of 4000 pounds per foot.




CHAPTER XI

OVERHANGING, FIXED AND SUPPORTED, AND
CONTINUOUS BEAMS

109. OVERHANGING BEAM, CONCENTRATED LOADS.
In Fig. 82 are drawn the shear, moment, slope, and deflec-
tion diagrams for two concentrated loads on an overhang-
ing beam, W, at the left end which overhangs the support,
and W, between the supports. After drawing curve (b),
curve (¢) is obtained by use of the pole P in (b). The
bending moment is zero at the ends and also at the point
of inflection I. By use of the pole .P in (¢) the slope
curve (d) is drawn. Since the value of the slope is not
known at any point, the curve (¢’) is drawn by using the
pole P’ in (d), thus assuming the slope at the left end to
be O’A. The supports A’ and B’ should be on a hori-
zontal line. Therefore, to obtain the true elastic curve
and the correct value of the slope at the left end, connect
A'B’ in (¢'), then draw P'X in (d) parallel to A'B’;
through X draw the horizontal axis OX, which is the
true axis of reference for the slope curve. This gives
the slope at the left end to be O4. Then by use of any
pole P on the axis OX in (d) the true elastic curve (e)
is drawn. THhis method is general and may be employed
for any system of loading for cases in which the beam
rests on two supports. If desired, the equations for
the different parts of the elastic curve can be obtained
by methods similar to those in Chapter X and the ex-
pressions for the maximum moment, the maximum de-
flection, and the location of the inflection point may

be obtained.
170
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110. OVERHANGING BEAM, UNIFORM LOAD. In Fig.
83 are drawn the curves for a beam overhanging both sup-
ports and carrying a uniform load. The bending moment
is zero at both ends and at two points between the
supports. These points, marked I in curve (c), are the
points of inflection. The value of the slope is not known
for any point, so the curve (¢’) is drawn by using the
pole P’ in (d). The supports should be on the same
horizontal line. By connecting A’ and B’, the points of
support, it is seen that A’ B’ is horizontal and thus the true
axisin the slope curve was assumed correctly. The equa-
tions of the elastic curve, and the expression for the maxi-
mum moment, the maximum deflection, and the position
of the points of inflection may be determined.

111. BEAM FIXED AND SUPPORTED, CONCENTRATED
LoAD AT THE CENTER. For beams of this kind the
values of the reactions cannot be obtained without resort
to the elastic curve. Referring to Fig. 84 the curves
marked by letters with the subscript 1 are drawn as if
the beam were a simple beam. To make the beam hori-
zontal at the right end the restraining moment at that
end must be great enough to make the deflection f;
for the first element of length in Fig. 84 (e;) equal to zero,
in which case the slope «; at the right end is reduced to
zero. The resisting moment at the wall decreases the
left reaction and changes the shear, moment, slope, and
elastic curves; from the definition of bending moment,
the fixing moment at the wall is due to a force at the left
reaction equal to the amount that reaction is decreased
by the fixing moment. In order to determine the amount
of this force, a force W, is assumed to be acting at the
left end of the beam. The shear, moment, slope, and
elastic curves marked by the letters with the subscript 2
are drawn for the load W;. Since the two ends remain on
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a horizontal line the beam would curve upward. For
this case the deflection would be f, for the first element
of length shown in the curve (e,;), and the slope at the
right end would be a,. If the assumed force Wi is of

et it
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Fic. 84. BEAM FIXED AND SUPPORTED, CONCENTRATED LOAD AT THE
CENTER.

the proper magnitude so that when the effect of this
force is combined with the effect of W on the simply
supported beam, f, of curve (e») would be equal to f; of
(e1) in order that the deflection of the first element of
length be zero. Or, expressed otherwise, a; would be
equal in magnitude to «; in order that the slope at the
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right end be zero under the combination. The true force
W' necessary to make the moment at the wall great
enough to bring the beam horizontal at that point is to
the force Wi as the ratio of the slopes a; to az; therefore
the true force is

ai
l/]/’ = — [/[/ 1.
a2

By use of the definitions and equations in the previous
chapters, the shear, moment, slope, and deflection of a
given beam are directly proportional to the load causing
them. Consequently, the reaction at the left end of the
beam is lessened by the amount W’. The fixing moment
at the wall is W', or it is equal to the moment M,

multiplied by the ratio %- Therefore, the fixing moment
2

1s

M= M2 =w,21 =Wl
g (¢ 7))

For the true reaction at the left end of the beam with
one end fixed and the other supported, the left reaction
of the simple beam is reduced by the amount W, after
which the true curves (b), (¢), (d), and (¢) may be drawn.

In the foregoing solution the pole distances were
taken equal, for which case the actual lengths for «; and
az may be taken for the reduction ratio. If all the pole
distances were not taken equal, the actual values repre-
sented by a3 and a; must be used in the ratio.

To obtain the wvalues of the reactions, the moment
under the load, and the restraining moment at the wall,
it is known that the positive area and negative area in
Fig. 84 (d) are equal, since the total change in deflection
over the entire length of the beam is zero. In order
that these areas be equal;
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a2 = 2 az (Art. 105).

M I W2 2 B
az + az = EI2 X == 2lf:I,(area in (c;) divided by EI).
W
el T
ay = s ———s (area ABX in (c)d1v1dedb EI).
16 EI A y
wi
7 ai I6EI_§_
o _Wlaz_Wlx Wil? —I6W'
3EI
TN R
it 2 16W— 16W
a7 M) ey L
Bl ey 16W 16W

M = % Wi (at the wall).

M= 3—52- Wi (under the load).

The inflection point occurs at the point of zero moment
which is %  from the fixed end.

112. BEAM, BOTH ENDS FIXED, CONCENTRATED LOAD
AT ANY POINT. The method of the last article may be
followed for a beam fixed at one end and supported at the
other with any system of loading. When both ends are
fixed and the loading is not symmetrical a method quite
similar to that of the last article may be followed, but
instead of finding the fixing moment at one end only, it
is necessary to determine the fixing moment at both
ends. In Fig. 85 draw the curves (b:1), (c1), (d1), and
(e1) as for a simple beam. The resisting moments at the
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walls are proportional to a; and «, if the slopes at these
points are reduced to zero by the resisting moments.
Assume a force W, acting at the left end, producing a
moment at the right wall, and draw the curves (b,),
(ce), and (dg) for this load. If the assumed force were
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ANY POINT.

enough to make the beam horizontal at the right end
a3 would have been equal to az. If the force were taken
at the other end and had been of the right magnitude
to make the beam horizontal at the left end, a3 would
have been equal to a;. Therefore, the amount the force
or reaction acting on the left end is lessened to make
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the beam horizontal at the right end with the left ope
simply supported is

(23]

’

W1 = Wl,
a3

and the amount the right reaction would be decreased in
order to have the left end horizontal with the right end
simply supported is
Wz’ = ﬂ Wl.
as

The sum of the two reactions in every case equals the
given load on the beam. To have both ends horizontal
with the load in the given position, the right reaction
of the simple beam must be decreased as the left reaction
is increased, by the amount

, ;_ QL— a3

Wz == W1 = T W1.
By making this reduction the true shear diagram ()
may be drawn. The moment curve may then be drawn.
The value of the moment is not known for any point,
but it is known that the slope is zero at both ends, so by
use of the pole P’ in the moment curve, (d’) is drawn.
Through P’ in (c), parallel to O'X’ in (d') P'X is drawn
giving the point X through which the true moment
axis OX is drawn. By use of the pole P in (b) the true
slope curve (d) is drawn from which, by the use of the
pole P, the deflection curve {¢) is drawn.

113. CONTINUOUS BEAMS. The definitions and gen-
eral equations given in the foregoing chapters are ap-
plicable to continuous beams as well as the general
method of determining the elastic curves. The reactions
of continuous beams are determined by the use of the
principles involved in determining the elastic curve.
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For a given beam the reactions may be determined
graphically, but that is left for a more advanced treat-
ment of the subject. In the analytical treatment of
continuous beams two spans are usually considered.
Let Fig. 86 (a) represent two spans of a continuous
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beam, and (b) and (¢) represent the shear and moment
curves for the same two spans. The spans are taken
equal to /; and Iy; the uniform loads are w; and w, per
unit of length, with several concentrated loads. Let the
vertical shear just to the right of the left support be
V1 and that just to the right of the second support be
V.. Let the bending moment at the supports be M, Mo,
and Ms.

From the definition of the vertical shear for a section,
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the vertical shear for the section AB in the first span is
V=V —wx—-2ZW,
and that for a section in the second span is
L V= V2"'"ZU2x—2W.
From the definition of bending moment the bending
moment at the section AB in the first span is
M=M+ le—m——ZW(x——p),
and that at a section in the second span is
Waex?

M=M2+ sz——z———EW(x—p)

In the moment equation for the first span if x equals /;,
M equals M,;. Then

Mo= M+ Vit =2 _ 3w (1, — p),
V1=M2_Ml+'w1l1+2W(ll p).
o b b
Likewise
v, = Ms - M, +w212 +2W<l2 - p).
2 3

By comparing the value of V, with the value of the
vertical shear just at the right of the left support of a
simple beam it is seen that when there are bending
moments over the supports the value of the vertical shear
M‘Z s Ml‘
l
V, obtained shows that if the bending moments at the
supports are known the vertical shear to the right of
each support may be obtained, and the value of the
vertical shear and the bending moment for any section
then may be found. If the dimensions of the beam and
the load are given, by use of the shear and moment

is increased by the amount The value of
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formulas the stresses developed in the beam may be
calculated, or, if the load is given, a beam may be de-
signed to carry the load. The points of inflection may
also be obtained by finding where the bending moment
equals zero. Consequently, the subject of the investi-
gation and design of continuous beams consists primarily
of determining the bending moments at the supports.

114. THE THEOREM OF THREE MOMENTS. Instead
of giving the graphical method of determining the reac-
tions of continuous beams, the theorem of three moments
will be discussed. In order to determine the bending
moments at the supports of a continuous beam, or the
relation between them, the system of loading must be
known. The relation between the bending moments at
three consecutive supports may be deduced for various
systems of loading. (See Example 7, Chapter XII.)
The “theorem of three moments’ which expresses this
relation for beams with uniform loads over each span is

My 42 My (0 4 1e) + Mals = — 1 (wili® + walo?),
o 3 et i‘ (I’V1ll2 + Wzlz2)

where M, M,, and M; are the moments over the sup-
ports, w; and w, are the values of the uniform loads, and

M, ?\cg M,
i WA W, \
1 1 45 1 <
[ T I o

F1c. 87.

!/, and I, are the spans. (See Fig. 87.) In applying the
theorem to a given beam, unless restrained, it is known
that the bending moment at the end support is zero.
As many equations as there are bending moments may
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be written and those equations solved simultaneously
to determine the bending moments at the supports.

For beams of equal spans and a uniform load over
the entire length of the beam the theorem reduces to

i wi
M1+4M2+M3=*w7=——'

ILLUSTRATIVE EXAMPLE

Given a beam carrying a uniform load over three equal spans,
to determine the bending moment at the supports, the vertical
shear at the supports, the reactions, the maximum positive bend-
ing moment, and the inflection points. See Fig. 88.

From symmetry M; = M, = o, and M, = M;. Making these
substitutions in the theorem of three moments:

0-1—11,M2+M.-,=—w—2l2

M2+4M3+0=—%f—2

o ‘nlz';'Ma='—ﬂ2

10

V-_-_.Kl wl _ gwl

: FO 2 10
V2=£l
2

yowl , ul_ Gul

10 2 I0

The shear to the left of the second, third, and fourth supports

A I L e, g , respectively. The reaction equals
10 2 10

the algebraic difference of the shear to the right and to the left
of the support. Therefore,

Rl=R‘=4_wl,
10

B R 1t wl
o
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The maximum positive bending moment occurs between the
supports where the vertical shear is zero. To obtain the position
of zero shear let V equal zero.

=4—wl—-wx1'=o. som=2

10 10
Momo 4 48 41 _w(ul)_sb0F
it 1o " 10 2\10 200

Since the moment is zero at the left support it will be zero
again where the shear areas above and below the axis are equal,

which is at the distance 2 x; or—gél from the left support. This
I

gives the inflection point. In the middle span the shear is

My Mg Mg My
‘w#/Unitof length
. : 0 : 0 ’
R1 Rq 3 R4
(a)

|
6]
) J«yxowz i%me%awz
o Rl A
| W
| |
M &1y~ . M
*_%%Z_HW ‘ W/ 1
(c)
Fic. 88.

zero at the center. The area under the shear curve to the center
: 2 ? A

is %l 5% é = wT ; then the bending moment at the center is
wl | wl wl

wh | wP_gul
10 4

ing moment passes through zero. Therefore, the distance from

The inflection points occur where the bend-
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the second support to the inflection point is found from:
_w wlx_w:)cl2 2.

The slope and the deflection may be obtained by graphical methods
or by the calculation of areas as is done in the previous chapters.

In Fig. 88 () is drawn the shear diagram and in Fig. 88 (¢) is
drawn the moment diagram for this beam.

By a method similar to that employed in the fore-
going example the coefficients for wl for the vertical
shears at each side of the supports for continuous beams

TABLE 16

COEFFICIENTS OF 7] FOR THE VERTICAL SHEAR AT THE
SUPPORTS OF CONTINUOUS BEAMS.

No.
S 4 /5] 53 A Spans
8’8 Phng
B 0 — v g - - - 2
1 T &
LS T Y
1 — 85 —-bBi6 —y
10 10/10 10,10 10
] D e o e 3
1‘ 3 1 1 T‘
by B S I >
n SES{7lp. 1318 _ 117 1
28 28128 8128 28128 28 ;
5 = e oo o L
¢ 1 1 T -] 2 \IP
L3 & X T 35 is >
RLY — 28120 18119 o8 20128 o 250
38 8: 33 38/38 38/38 38138 38 =
= 2 o s == 5
[) 1 %3 1 1 z ib =
I~ 4 25 X L 1 < I 1
4 83! 55 49151  __ 53153  __51!49  __ 55!63 e Tl
104 1041104 1041104 1041104 104104 1041104 l()iti
(] o
% P 1 1 P) I
I Py 1§ A T £ L A

carrying uniform loads over the entire length were ob-
tained as given in Table 16. The negative coefficients
of wi? for the bending moments at the supports were also
obtained as given in Table 17.

Tables 16 and 17 may be extended in the following
manner: By following down to the right or to the left a
line of similar supports for the different spans, to obtain
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the coefficients for a beam having an odd number of
spans, as five, for the second support, the moment coeffi-
cient is 4. The 4 is obtained by adding the 3 of % to
the 1 of {§;. The 38 is obtained by adding 28 of #5 to
the 10 of {%. This method may be employed for any

TABLE 17
COEFFICIENTS OF —wl2 FOR THE BENDING MOMENT AT
THE SUPPORTS OF CONTINUOUS BEAMS. No.
Spans
0 % (0.2 + o p e R
T, o e
r L k x 1
3 Yo o Rl e
S R a9 (A
< T 20 I a - 3
0 348 %s 348 O %, Ol 4
ek
0 448 %48 ) Y 8, o
0 k13—
0 Wos 404 Yos S o 04
e — ] 1
| I T A1

support of any beam with an odd number of spans.
For a beam with an even number of spans, as four, the
coefficient is ¢%. The 3 is obtained by multiplying the
1 of ¥y by 2 and adding the 1 of 3. The 28 is obtained
by multiplying the 10 of {; by 2 and adding the 8 of }.
This method can be followed for extending either
Table 16 or 17.

115. HINGING POINTS FOR CONTINUOUS BEAMS. If
a continuous beam is to be made of several parts, it is
necessary to know at what points the various parts
should be hinged, in order that the *‘ continuous " effect
may be secured, as a continuous beam is stronger than
several simple beams over the various spans. Any
given continuous beam may be hinged at the inflection
points, and the bending moment would be unchanged
along the beam.
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An economical method is to hinge the beam at such
points as to make the maximum negative bending
moments at the supports and the maximum positive
bending moments in the spans equal in magnitude. The
portion of the beam between the hinges in a span acts
as a simple beam and the portions from the support to
the hinges act as cantilever beams. For the case of

(Hingej Hinge
Y X w#/in. 4 F w#/m. f §

1 1
13 ) 13

4+

F1c. 8¢.

uniform loads and equal spans, Fig. 89, each hinge
carries one-half the load on the intermediate length.
If I is the length of one span, /; the distance between the
hinges, I, the distance from the support to a hinge, and -
w the load per unit of length, the maximum bending

wl 12

moment in the center is and the maximum bending

8
2
moment at ‘the support is — (%2— + Zilz-ll—z) For equal
maximum bending moments
wh? _ wly? | whis
§ % 2
l12 = 4122 ) 4.l]l2 = 0.
itk iy
T e
é—l= (2 +\/§)=4.284.
2
_ll + 2 lz =e
l l
l = = — — —==,14644 1
A=Y e RV bt
ll—z+—\/8— @i 70712
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From this relation the maximum bending moment is

found to be AT
Wiy

MoToer e
Thus it is seen that if the beams are hinged at the proper
points the efficiency is increased from thirty to sixty per
cent. To use beams hinged in this way they should be
fixed at the end supports. With uniform load the beams
would remain horizontal at the supports, but if the load
is not uniform at any time, the beam should be fixed
at all the supports. Two lengths of beams could be
used, one length about three-tenths the length of one
span, to be used over the supports, and the other length
about seven-tenths the length of one span, to be used
between the hinges. If the loads are concentrated at
~ the middle of the spans the lengths should be made
equal.

PROBLEMS

1. Draw the shear, moment, slope, and elastic curves for a
o-inch, 21-pound I-beam of length 20 feet, overhanging each
support 4 feet, carrying concentrated loads of 10,000 pounds at
the left end, 12,000 pounds 8 feet from the left support, and
15,000 pounds at the right end. From the curves determine the
deflection at each load and the maximum deflection.

2. What are the maximum shearing and fiber stresses developed
in the beam of Problem No. 1?

3. Design a rectangular Washington fir beam 18 feet long,
overhanging one support 4 feet, to carry a total uniform load of
gooo pounds. The shearing unit-stress is not to exceed 100 pounds
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per square inch, the maximum fiber stress is not to exceed 1200
pounds per square inch, and the maximum deflection is not to
exceed 3¢v of the span between the supports.

4. Draw the shear, moment, slope, and elastic curves of a
beam fixed at one end and supported at the other, of length 7,
carrying a uniform load of w pounds per lineal inch, and determine
the value of the reactions, the restraining moment at the wall,
the maximum positive moment, and the elastic curve.

4
g S gk o U B C T
BT R
y wxt wix® wlx

N g By BT T B ET

5. Draw the shear, moment, slope, and elastic curves for an
8-inch by 10-inch beam of 12-ft. span fixed at one end and sup-
ported at the other, carrying a concentrated load of 8ooo pounds
7 feet from the restrained end. What are the maximum shearing
and fiber stresses developed in the beam?

6. Solve Problem No. 5 if both ends are fixed.

7. A continuous beam of two spans carries a load of 100 pounds
per foot over one span of 12 feet and 200 pounds per foot over the
other span of 8 feet. Determine the moment at the middle
support and the reactions.

Ans. Mai=20,6401b.-in., Ri=4571b., R,=17581b., R;=5851b.

8. Determine the bending moment at the middle support
and the maximum positive bending moments in each span of a
beam 24 feet long, one span being 10 feet and the uniform load
for that span 24,000 pounds, the other span being 14 feet and the
uniform load for that span 28,000 pounds. Select the proper
I-beam for this loading.

9. Select the proper continuous I-beam to carry a uniform load
of 144,000 pounds uniformly distributed over six spans of 12 feet
each.

10. If the beam of Problem No. 9 were fixed at the supports
and hinged so as to make the bending moment at the supports
equal to that at the middle of the span, what I-beam would be
required? What would be the length of each section?



CHAPTER XII

ELASTIC CURVE OF BEAMS DETERMINED BY THE
ALGEBRAIC METHOD *

116. THE ALGEBRAIC RELATIONS BETWEEN THE FIVE
CURVES. As deduced in Art. 89 the expression for the
radius of curvature of a beam is

r=% (1)

where E is the modulus of elasticity, I is the moment
of inertia of the cross section about the neutral axis,
and M is the bending moment. The algebraic expression
for the radius of curvature for a curve as deduced in

the calculus is
PR
[+ @]
% e .. e (2)

where x and y are the coordinates of the point of the
given curve, for which 7 is the radius of curvature and
dy . :

53; is the slope of the tangent to the curve at the given
point. For beams the X-axis is horizontal and the
Y-axis is vertical, and since the slope of the elastic

2
curve is small at all points of the beam the value of <Z_3yc)

* This chapter introduces the calculus method for the only time and
is intended only for students who have had courses in differential and
integral calculus.

189






AxT. 116] ALGEEBRAIC RELATIONS OF FIVE CURVES 191

integration which must be determined from the known
conditions governing the case. For deriving higher
curves the equations may be written in the following
form:
The load per unit of length is
w=w. (1)
The vertical shear is

V=fwrlx+V1. (2)
The bending moment is
M=dex+M;=ffmlx’+andx+Jﬁ- 3

The slope is

- G ot f e o) oo

The deflection is
y=fﬂdx+)‘n

B[ f ot ff e [

+ f adx+y, (5)

The method of evaluating these expressions will be
given later.

The latter set of equations is the one to be emploved
in determining the elastic deflections. Any one of the
equations may be used to start with, if the variables
can be expressed in terms of-x. The load, shear, and
moment equations can usually be written by applying
the definitions. If the moment equation 1s used to
start with, one integration and the determination of one
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constant of integration are avoided, but since these
operations are of the simplest in calculus there is no
advantage in starting with any other than the load or
shear equation. The constants should be determined
as they appear if convenient. In the case of concen-
trated loads the equation of the load curve is zero, and
the shear curve probably would be the best with which
to start.

117. THE CHOICE OF COORDINATE AXES. In the
deduction of the formula for the radius of curvature

r= EHI: the X-axis was taken parallel to the axis of

the beam before bending, and the Y-axis at right angles
to the X-axis. The origin may be chosen arbitrarily,
and for some particular cases it is more convenient to
take the origin at the center of the beam, but in this
book the X-axis will be taken to coincide with the axis
of the beam before the beam is bent, and the Y-axis
will be taken at right angles to the X-axis at the left
end of the span under consideration. In the solutions
the proper algebraic signs should be observed.

118. THE CONSTANTS OF INTEGRATION. In all cases
an approximate diagram of the deflected beam will
be of value in determining the constants of integration.
For problems in the determination of the deflection of
beams, the constant of integration for any curve is the
value of the variable at the origin, as here treated.
Thus, V;, introduced in equation (2), Art. 116, is the
value of the vertical shear at the origin. See Fig. go.
M, introduced in equation (3) is the value of the bending
moment at the origin; «; introduced in equation (4)
is the value of the slope at the origin; y; introduced in
equation (5) is the value of the deflection at the origin.
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A w
T
i (a) R4
R ! ( Load
V=
P ¥ X
®
| Shear
1 1
!
le——-c |
M M
(o] X
(¢)
Moment ———
A
o}— = X
0: a, /‘ XI
c
(d)
Slope
O.yl\ 3
Yy
B (o)
Deflection
F16. go.

119. DETERMINATION OF THE CONSTANTS OF INTE-
GRATION. If the values of the constants can be deter-
mined, they may be inserted into the equations at once;
thus, V, and M, can be determined in many cases at
first. For other cases it may be known where the
shear is zero, and then the value of zero, for V and the
corresponding value of x may be substituted in equation
(2) to give the value of V;. If the position of zero
bending moment is known, the value of M and the
corresponding value of x substituted in equation (3)
will give M,. Likewise to determine «; it may be
known where the slope is zero, i.e. where the beam is
horizontal, and that value of « and the corresponding
value of x substituted in equation (4) will give the
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value of a;. For determining'r y; it is known where
the deflection is zero, which is at the supports for the
usual cases.

ILLUSTRATIVE EXAMPLE

Deduce the equation of the elastic curve and the value of the
maximum deflection for a cantilever beam with a concentrated
load at the end. See Fig. g1.

:S
i
R
]

K

F1c. g1.
The load per unit of length = o.
V=V=-W,
M=— (Wiz+M=—Wsz+ M,
M =owhenx=o0, .. M,=o0. (Zero moment),

I I
a=—ﬁfodx+a1=—2—MWx2+a1.

The slope « equals zero when x equals /, as the beam is horizontal
at the wall, therefore
_wr
2 EJ

2 YLl 2 =T 2
y=— g S WHds+ 5 [ Whds + 3,

Wit | Wik
6 El LK. 2EI Sieh
y=o,forx =1,
oG AV
~TG6EI T2 EI
|y WE W WP
6EI 2EI 3EI
The maximum deflection occurs where x = o, and is
we

SEI

wie .
+ a;; ay= SEl (Zero slope),

y=.—

135 i =" (Zero deflection),

il
3 EI
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When there are concentrated loads on the beam the
shear equation changes at every concentrated load,
consequently the equations for the moment, slope, and
elastic curves have different expressions on each side
of the load, and for each of the curves there is one more
equation than there are concentrated loads on the
beam. Care should be taken in substituting values of
x in these equations to see that the equation is true for
the particular value of x used. With concentrated
loads the two sections of the beam on each side of the
load have a common slope at the load, and also a com-
mon deflection. For continuous beams and overhanging
beams the two sections on each side of a support have a
common slope and a common deflection at the support.

WiHfin, W /
[—\\ v
~3= _'1‘7“/

Fic. g2.

Thus, in Fig. 92 the portions of the elastic curve 4B and
BC have a common tangent (i.e. a common slope) and
a common deflection at the point B. Also the portions
BC and CD have a common tangent and a common
deflection at the point C. The beam is fixed at the
point D, hence the slope of the portion CD is zero at
the wall. ; ‘

The following principles, then, may be used in the
determination of the constants of integration:

‘(@) The section of zero vertical shear can be obtained
by drawing the shear diagram, and if it occurs at a
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point where there is no concentrated load or reaction
the corresponding value of ¥ may be used in the shear
equation, with V equal to zero and the value of the
constant V, determined. However, this substitution will
seldom be necessary, as the value of V; will usually be
determined by other methods.

(b) The section of zero bending moment will be at the
free ends of beams, as at 4, Fig. 92, and at the ends
supported without restraint; also at the points of inflec-
tion for overhanging, continuous, and restrained beams,
as at I, Fig. 92, but the inflection points in such beams
cannot be obtained by inspection.

(c) The section of zero slope is at the horizontal por-
tion of the beam, as at D, Fig. 92. For symmetrical
beams carrying symmetrical loads the beam is hori-
zontal at the axis of symmetry (at the center). By
definition beams with fixed ends are horizontal at the
fixed ends.

(d) For the axes chosen the section of zero deflection
is at the supports. For overhanging and continuous
beams there may be one or two positions in a span
where the deflection is zero, but these points cannot be
determined by inspection.

120. ESSENTIAL QUANTITIES TO BE KNOWN ABOUT
BEAMS. In all kinds of beams the important things to
be obtained are the position and magnitude of the
maximum stresses and the maximum deflection. For
overhanging, continuous, and fixed beams the inflection
points need to be found. When the maximum vertical
shear is determined, the maximum shearing stress is

then obtained by use of the shear formula s = };}/4— When
the maximum bending moment is found the maximum
fiber stress developed may be obtained by use of the
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moment formula f = MI—C These formulas may be used

to determine the safe load for a given beam, and also
to design beams. Building specifications usually state
that the maximum deflection shall not exceed a given
amount, therefore it is necessary to be able to determine
the maximum deflection for beams.

ExAMPLES

1. Deduce the equation of the elastic curve and the maximum
deflection for a cantilever beam with a uniform load of w pounds
per lineal unit. See Fig. 93.

The load per lineal unit is — w.

Fic. 93.

V= (wdz+V,=—wx+V,
When x=0, V=0, .. V;=o0. (Zero shear),
2
M=dex+M1=—fwxdx+M1=_.w2ﬁ+Mb

When x=o0, il =0, .. M,=o0. (Zeromoment),
L P W i __
a—EIfde+a‘ ) T dta=— St
When z=1, a=o, g
0=——£0£+a1 and « i A (Zero slope)
6 EI ¥ .7 !
iy wy? £ wP

" 6EI" 6EI
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widx wldx
y=fadx—l—y1=—f G6EIT +f6EI+yl’
wxt wlx

Yo~ wEm Tem T

When =1/, y=o,

wit wit
o=~ nEl Tem T
and gy =-— S—IZZI (Zero deflection),
wPx  wit

= 24 E 7 ——+ 65l 3EI (Elastic curve).

The maximum deflection is at the end, where x = o, and is

8EI SEI

2. Deduce the equation of the elastic curve and the maximum
deflection for a simple beam with a uniform load. See Fig. 94.
The load per lineal unit is — w.

Ve— [ wds+V,=~wz+V.

When x = o the vertical shear is equal to the left reaction, which

wl
lS —
2

L

2

wix

M=—f'owcdx+fwlderM,=—-—+_+Ml
When x =0, M =0, .. M1=o (Zero moment).

2
a———f’”x 7 ’”—Z—”‘d %+ o = g"—gﬁ%wl
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The beam is horizontal at the center, hence

l
whenx= -, a=o.
2

‘ A R wP
eeftol= 4TE—I+ 16EI+ 1, 1= Wil (Zero slope),
fE R 1L 2 I 3
y = 6EIf 'wx’dx—i— fwx dx — Elfwldx+yl,
wxt wix® wl“x
;i 24EI+ 12El 24EI+yl'
When x =o the deflection is zero, or y=o0, ..y =o. (Zero
deflection),
4
PR st L L L ) R

24EI+ 12El  24EI
The maximum deflection occurs at the center and is obtained by

letting x = & in the equation for y, and it is found to be
2

384 EI 384 EI
3. Deduce the equation of the elastic curve, and the value of
the maximum deflection for a simple beam with a concentrated

kil ! X

§
amizw Ry

F1c. 9s.

load at the distance %/ from the left support in which % is a fraction.
See Fig. 9s.

=W (z — k).
The load curve is at zero. To the left of the load,
V=WI(a-k). i

M= fWa-Bdet M, =W~ B+ My

when 2xz=o0, M=o, & M;=o0,
Y M=W(@Ga—-k)=x. (b)

2
a=vEij(1—k)xdx+a1=—]Ig—/I(x—k)i——l—a;. ©
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The beam is horizontal between the load and the center but for
what value of x it is not known, hence we must let «; remain in
the equations till enough conditions are obtained to determine its
value.

w xt
—E?f(l —le)—z—dx+f¢x1dx+y1,

w 2
y_—E_I(I — k) E+a1x+yl-
When CRS LT = L 6
=_— (I - k) + . (d)
This is all that is known about the equations to the left of the

load, hence we must use those to the right of the load.
To the right of the load,

V=—WE (1)
M=—fWkdx+M;’=—ka+M1’.
When x =1, M=o, .. M) =Wkl, and M =Wk (- x) (2)

a—mkf(l—x)dx-{—oq,

o= Zk( ——>+a1 (3)

The value of « for this curve is not known for any value of
x. Hence «;’ must be kept in the equation till its value can be

determined.
A Igf(lx—%z)dx-l—falldx-l—yl,
y-%lf!(%xg—f)+alx+y:
When x=1I y=o0, & ' =— EV;:I; - al,
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To determine a; and a’ it is known that the slope of both
portions of the elastic curve at the load are the same. Therefore
(c) and (3) are equal when x equals /.

272
(I—k)kl atx—-%llg(kl2 —Eglf)+a1 (A)

This gives one relation between o, and ai’. To obtain another
relation between them, it is known that the deflection of both
portions of the elastic curve are the same at the load. Therefore
(d) and (4) are equal when x equals £l.

Wkl RBP Wkl

W B ¢ , ,
E—I(I—k)T+a1kl-———(—2— 7)+ R L)

Solving equations (A) and (B) for e; and a1,

a1=—6EI(2k+k3—3k?),
s LT e 3
al 6EI(2k+k)
To the left of the load, then,
g Witx AT
= 6EI(I k)~ g @RHE-3E).
To the right of the load,
__ Wkt  Whkix» WPy o , WEP
Y AR T R A SR

The value of x for the maximum deflection is obtained by equating
a to zero and solving for x. If % is greater thanl—, the value of x
2

is found to be 3
E+B— 3k \/2k—-k’
x _z\/2 =1 :
. 3(—k) 3

This value of x substituted in the expression for y gives the
maximum deflection to be
e et oly
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4. Deduce the equation of the elastic curve and determine
the value of the maximum deflection and the maximum moment,
and locate the inflection points for a beam fixed at both ends with
a concentrated load at the center. See Fig. g6.

> % . A From_ symmetry both
— W reactions are equal.
i l {7 The load curve is zero.
Fic. 96. To the left of the load,
p2 5
2
M= Il/;_a_c + M.

The bending moment at the wall, which is the restraining
moment and keeps the beam horizontal at that point, is not
- known at the start. The position of zero moment is not known

either, so M; must be retained at the present.
= Wa? M 1X
s R

By definition of restrained beam the slope at the wall is zero,
therefore when x = o0, a = o, and a; = 0. From symmetry it
is seen that the beam is also horizontal at the center, therefore

7
when x ==, « = o.
2

_weR | M) P
ATy g S e Sk v
L We Wi

2 8
W Wik
BEEPY 7 S P
§ AW Sl Wix? +
Y= 12EI  16EI' ™
When x=0, y=0, . Yy1=0,

Wa' Wix?
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The maximum deflection occurs at the center and is found to be

y s Wty IR S e R v
96 EI 64 EI 192 EJ

Similar equations can be deduced for the right half of the beam.

The bending moment at the wall is —%l , and at the middle

of the beam it is +K;_l.

The inflection point is the point at which the bending moment
is zero, and is found by equating M to zero and solving for the
corresponding value of x, which may be called x..

5. Determine the left reaction, the maximum bending moment,
and the equation of the elastic curve, and locate the inflection

F16. 97.

point for a beam fixed at one end and supported at the other
end, carrying a uniform load. See Fig. 97.
The load per lineal unit is — w,

V=—‘va+V1.

Since the reactions cannot be determined at the start, the value
of V, cannot be determined at first. The left reaction is less
than it would be if the beam were not restrained at the right end.

2
M=—ZV—;x—+V1x+M1

When x2=o0, M=o, .. M;=0,
o W VA 10
R TG s
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When =V 0 =10
~ le B wl’ 53 Vllz
P 6EI+2E1+“" * = 6EI 2EI
i & ooy s Wity a0k V2
il 6EI+2EI+6EI 2EI
e 'wx‘ wlx V112x+
Ry g 6EI 68 \aEl
When X=0, y=0, . y=o0.

Also when x=1l y=o,

oo VP wlt VP

24EI ' 6EI ' 6EI 2EI
V1 = %'H)l = Rl,
) wxt wia? wi*x

24EI+ 16 EI  48EI

The maximum positive moment is at the distance $/ from
the left support, and is M, = 35 w/’. The maximum negative
moment is at the wall and is M,, = — } wi®. The inflection point
is at 2/ from the left end. The point of maximum deflection
occurs where the slope is zero between the supports.

6. Determine the relation between the bending moments over
the three supports of two consecutive spans of a continuous
beam carrying uniform loads on both spans. See Fig. g8.

< JI;TZT

Ry

Using the relations deduced in Art. 116 we have for the first

span:
The load per unit of length is — w,.

V =—wax+V, (No relations yet to determine V). (a)

M= v’ +Vix+ M. (Norelations yet to determine M,). (b)

6 El



Exam.] ELASTIC CURVE — ALGEBRAIC METHOD 263

= %}+ ng}- Aé‘;c+a1 (No relations yet to determine a,). (c)
& w,xt Vi Mt d
ity i Q50 5 Ml @
When x=0, y=0. .. y=o0.
When x=4L,y=o0,

Cowld Vi My
24EI 6EI 2EI
By the same process we obtain equations for the second span.
For the second span,
The load per unit of length is — w,.
V =—wx+V, (Norelations yet to determine V). (1)

'wzoc2

M=— +Vyx + M,. (No relations to determine M,).  (2)

wzx“ £ V,x M X

a=— 2 ta, (Norelations todetermine a;). (3)

6 EI 2EI EI
_wxt | VA sz’
Y T B GEL 2Bl O “)
When Go i (o) A=) =
Also when x=1l,, y=o0, and

_ wily Vils* Mo,
24EI 6EI 2EI
It is known that the slope of each portion of the elastic curve
is the same at the middle support. By letting x =/, in equation
(c), and letting x = o in equation (3), and equating (c) to (3),
and remembering the value of V, and V, from Art 113, there
results the theorem of three moments,

H
Mlll+2M2(l1+lz)+Mslz——w—if1‘"M-

7. What is the maximum deflection of an 8-inch, 18-pound
cantilever I-beam 10 feet long carrying a load of 1800 pounds
concentrated at the end?

WP _ 1800 X 120 X 120 X 120

A= — =
3EIl 3 X 30,000,000 X 56.9

= 0.608 inch.
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PROBLEMS

1. For a simple beam with a concentrated load at the center
show that the equation of the elastic curve to the left of the
center is

y= %EI(M? - 37,
and show that the maximum deflection is
ol ¥
48 EI
2. Deduce the equation of the elastic curve for a cantilever

beam carrying a load W concentrated at the end and a uniform
load w per lineal unit. Also determine the maximum deflection.

3. Deduce the value of the maximum deflection for a simple
beam carrying a load W concentrated at the center and a uniform
load w per lineal unit.

48 EI 384 EI

4. (a) Deduce the equation of the elastic curve for a beam
fixed at both ends carrying a uniform load. (b) Determine the
value of the maximum bending moment. (c) Determine the value
of the maximum deflection. (d) Locate the inflection points.

w

Ans. (a) y=2—EI(—lzx’-’+ 208 — at),

wit
(b) Mm—__;!

wit
(C) A—_—384EI’

@ m=tlx ).
5. For a beam fixed at both ends and carrying a concentrated
load at the distance &/ from the left support show that:
The left reaction is R, = W (x — 3 k2 + 2 ).
The moment at the left supportis M, = — Wik (x — 2 k + £?).
The moment under the load is M; = Wik* (2 — 4 k + 2 k?).
Also determine the value of the deflection y.
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6. For a beam fixed at one end and supported at the other,
and carrying a concentrated load at the center, show that:
The left reaction is ¥ W.
The moment at the wall is — & Wi,
. The moment at the load is % Wi.
The values of y are:
sWx , Witx 5 Wik
96EI ' 8EI ~ 32EI
1itWx* | Wix* sWix , W

ight of the load, y = — iy 3
To the right of the load, y 96EI+4EI 32 EI T8 EI

To the left of the load, y =

The inflection point is 18—11 from the free support.

7. For a beam fixed at the right end and supported at the left
carrying a concentrated load of W at the distance %/ from the
left support show that:

The reaction at the left end is V—Z (2—3k+ l;’).
o )
The moment at the wall is — s (kB — B).

The moment at the load is KV? (2'—- 3k +k3).

8. For equal spans and equal uniform loads on all spans show
that the theorem of three moments reduces to

wi

M, + 4 M.+ M, =——2—'

9. Solve the problems at the end of Chapters IX and X.



CHAPTER XIII .
SECONDARY STRESSES

121. HORIZONTAL SHEAR IN BEAMS. When one
board is placed on top of another one and the two are then
used as a beam the upper board will slip over the lower one
in one direction at one end and in the opposite direction
at the other end. To prevent this motion and to make
the beam stronger the boards may be nailed together,
the nails taking shear. Inall beams there is the tendency

S Y12,y
A B A 3
<~ 1—>] Sh®; 2,

A

_l‘_ Sy®1 21
0 2 L

Sy yl zl
F1c. 99.

of the upper part to slip past the lower part along any
horizontal plane, a horizontal shearing stress thus being
produced.

It is the object of this article to show that the vertical
shearing unit-stress and the horizontal shearing unit-
stress at any point in a beam are the same. Proof: In a

208
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beam let a small parallelopiped ABDC, of dimensions x1,
1, 21, be imagined cut from the beam. Neglecting the
effect upon the shearing stress of any load for the element
of length x;, the vertical shearing unit-stress will be the
same on both vertical faces, and the horizontal shearing
unit-stress will be practically the same on the top and
bottom faces. The forces acting upon the element as
shown in Fig. 99 are s,y:2: on the vertical faces, and
sax12; on the top and bottom faces, in which s, is the
vertical shearing unit-stress, and s is the horizontal
shearing unit-stress. By taking moments about any
point, as A4, the relation between the two unit-stresses
is deduced.
: b MA = SpX121)1 — $,Y181%1 = O,
S = Sy

122. THE MAGNITUDE OF THE HORIZONTAL AND
VERTICAL SHEARING UNIT-STRESSES AT A POINT. In
Art. 63 it was assumed that the maximum vertical shear-
ing unit-stress for a section is greater than the average,and
values of the ratio between the two were given for several
standard sections. To determine those ratios the value
of the horizontal shearing unit-stress must be deduced.
The expression for the horizontal shearing unit-stress will
now be deduced. Let Fig. 100 (a) represent a beam with a
portion A BCD imagined cut from the beam. The stresses
on the fibers of the section 4D in general will not be equal
to the stresses on the fibers of the section BC, because
the bending moments at the two sections are usually
different. If the bending moment at the section AD is
less than that at the section BC, the resultant H, of the
stresses acting upon the face AD is less than H,, which
is the resultant of the stresses acting upon the face BC.
To maintain equilibrium a horizontal shearing force
syub must act upon the face CD. s is the horizontal
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shearing unit-stress, # is an element of length, 4B, and
b is the thickness of the beam.

A B
ok

cl—FH

o

Neutral

(a) surface
fl/_\lA A
D mb o]
(b)
F16. 100.

By Art. 71 H, is equal to the area of the section above
the plane multiplied by the unit-stress on the centroid
of that area.
i VA’
= fl —C—

5,‘1
LikeWiSC H2 = fQFA'.

f1is the unit-stress developed on the outside fiber at the
section AD, and f, is the unit-stress on the outside ﬁber

at the section BC. From the moment formula, Lo —T
and J%= For equilibrium of the element:
fIz H1 = shub

fa flA’y =D,

a2

=0

£ 3. g Ml) ry/>

455 u Io )
KA/—/

SR
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ﬂé—u_——% is the rate of change of the bending moment,
and this equals V when % is made indefinitely small.
A’y is zero for y equal to ¢ and is a maximum for y
equal to zero. Therefore the shearing unit-stress is
zero at the outside fiber of beams, and is greatest at the
neutral surface.

The maximum shearing stress, both horizontal and
vertical, developed in a rectangular beam of breadth b
and depth d where V is the vertical shearing force, is

__I_/_ A e TN L e R
~n4Y T
112

b4 =Ty 4 2bd 24
This is one-half greater than the average vertical shear-
ing stress.

For circular sections the maximum shearing stress is

14 @2 i2d 4V

= —4 x 1.r_—- X —_— ﬂ-—-— .

wd SR
This is one-third greater than the average vertical
shearing stress.

For built-up and I-sections the maximum shearing

stress is approximately equal to that obtained by divid-
ing the vertical shear by the area of the web 4.

B O
B sl R I

Rectangle Circle I-Section

F16. ro1.

The variation in the intensity of the shearing unit-
stress for various sections is shown by the diagrams of
Fig. 101.
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Because of their small strength in shear parallel to the
grain, timber beams frequently fail by shearing along
the neutral surface. Beams should always be investi-
gated for the maximum shearing stress developed.

123. PLATE GIRDERS, FIRST METHOD. One method
of the design of plate girders is to consider all plates
and angles acting as a homogeneous beam. The girder
may then be designed by the use of the moment and
shear formulas, and the pitch of the rivets can be
determined by the use of the formula for horizontal
shear. In s = YVZAIS’,’ s» is the stress developed upon a
unit of area of the horizontal plane. Multiplying this
by b gives the total force which would be transmitted
from the upper section to the lower one in one unit of
length of the girder. For built-up sections the stress
must be transmitted from the upper plates to those next
below, through the rivets connecting the plates. If »is
the pitch of the rivets, and there are z rivets in the dis-
tance p, the force that each rivet must carry will be

= 0bsh _ VP 4
A n —InAy'

The greatest number of rivets will be required where the
product VA’ is greatest.

124. PLATE GIRDERS, SECOND METHOD. Another
method of design for plate girders is to assume that all
the tensile and compressive stresses are taken by the
flanges, and that the stress is uniform over the section
of the flanges, and that the shear is taken by the web.
The stresses calculated in this way are probably a little
in excess of those actually developed, but the error is on
the side of safety.
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Let Fig. 102 be the cross section of a girder, 4 the
effective area of one flange, d the distance between the
centroids of the flanges, and f the
unit-stress developed in the flanges, . :
then the compressive and tensile I_]_ _f_l
forces equal Af and the resultants
act at the centroids of the flanges.

The moment of these internal ,_I_ _L,
stresses resists the bending mo- f ]
ment due to the external forces.
For equilibrium, then,

M = Afd,

where M is the bending moment and Afd is the resisting
moment.
The bending moment increases toward the center of
the span, and to increase the resisting moment with
the same unit-stress the
0 b e | area A is increased by add-
VS CFpr v, | ing cover plates in the
center. The pitch p of
the rivets connecting the
flanges to the web may now
be found. (See Fig. 103.)
The change in the stress
in the flanges between any
two sections must be trans-
mitted through the rivets to the web. This difference
in a unit of length is
Hz [ H1 =f2A —f]_A
_M,— M, V
Yo i g
since M, — M, is the rate of change of the bending
moment, as the distance between the sections was taken
as unity, If the rate of change of the bending moment,

F16. 102.

F16. 103.
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or V,is constant, the change for the distance p is p %

If there are # rivets in the pitch p, and R is the allowable
force one rivet will transmit,

nR=p%
Rd
. 2 P=n7"

125. COMBINED FLEXURE AND TENSION OR COM-
PRESSION. When a beam is subject to axial loads in
connection with the flexural loads the maximum stress
developed may be considered as made up of two parts —

that due to bending and

] Toad k that due to the axial load.
The axial load increases

R, (a) R:  the tensile or compressive
i s stress due to the bending.

Fig. 104 (b) is a free-body

P / diagram of a portion of the
CHDEMTE beam under a’compression

o (v) load P. If the deflection
F1G. 104. of the beam is small the

moment due to P may be
neglected. If M isthe bending momentdue to the flexural

1 I ]
loads, A the sectional area, and ¥ the section modulus,

the maximum flexural stress developed is fi =MI—C

(indicated by AB in compression). The compressive

unit-stress due to the axial load is f, = g (indicated by

FA). It is seen that the maximum compressive stress
is developed in the most remote fiber in compression
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and equals the sum of the flexural and direct stress
and is '

f=hitfi= 2t

If P is a tension load the maximum tensile stress is
of the same form as that given for compression.

In longer beams, where the deflection is appreciable,
there is an additional moment M’ due to the load P.
The moment is decreased if

P is tension and increased B = AlBAF
if P is compression. (See 7\_%_0
Fig.105.) If A, is the max- CbE

imum deflection due to both FI16. 105.

the transverse and longi-
tudinal loads the moment of P is PA;, and the total
moment is

M+ M =M+ PA,.

f _ M _ (M £ PAyc
* 1 I

The plus sign is for a compression load and the minus
is for a tension load. In order to find the stress 4B, or
f1 due to the moment of both loads, A; must be expressed
in terms of f;, the maximum stress for the deflection A;.

af i
BEc

i Mc _aPfilc
TG ) BEcI '

from which fi= M—C( : ) .

From Art. 107, A; =

i PP
BET

To this add the direct stress g due to the axial load.
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Then the maximum stress developed is found to be

P M i /2
f=fl+z=7(m)+z.
\ BEIL

The minus sign is used for P in compression and the
plus for P in tension.

126. COMBINED SHEARING STRESSES AND TENSILE
OR COMPRESSIVE STRESSES. Let Fig. 106 represent a
small portion of a beam where the

ck——=®*— 1 known unit-stresses are s in shear
syzyg /'\\ and f in tension or compression, s
sz e and f being at right angles to each
other. Along all diagonal planes,
FIG. 106. as AB, there are normal and tan-
gential components of the stresses.

sp is the shearing unit-stress along the plane and f, is
the tensile or compressive unit-stress normal to the plane.
In more advanced texts it is shown that the value of ¢

to give the maximum s, is such that tan 2 ¢ = 2—f§, and

the corresponding maximum shearing stress is

The value of ¢ to give the maximum f, is such that

f

cot 2 ¢p=— e and the maximum tensile stress is

]

In the latter equation the maximum stress will be
obtained with the plus sign, and if f, is a tensile stress,
the maximum f, will be a tensile stress. If fis a com-
pressive stress the maximum f, will be a compressive
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stress. If the minus sign is used before the radical
the resulting f, will be negative, which indicates that
it is of opposite sign from f, i.e., f. is compression for f
tension, and f, is tension for f compression.

EXAMPLES.

1. Determine the maximum horizontal shearing unit-stress
in a timber beam 8 inches by 14 inches under a load of 24,000
pounds applied at the third points. S

R, = R, = 12,000 pounds.

_V = _3V _3X12000 _ X
s;.—IbA Py S s 160.7 Ib. per sq. in.

2. Compute the pitch of f-inch rivets for a plate girder of
72-ft. span and 7 feet 2 inches deep, the cover plates being 14 inches
wide with a total thickness of § inch at the center, being connected
to angles § inch thick. (NorE: This girder was designed to carry
a live train load together with the weight of the tracks and the
girder.)

The maximum vertical shear at the ends was found to be 137,000
pounds; at 5 feet from the ends, 121,000 pounds; at 10 feet from
the ends, 102,000 pounds, etc.

Each rivet will carry .60o1 X 8ooo = 4810 pounds in shear, and
3 X % X 18,000 = 5900 pounds in bearing. The shear governs in
this case. '

Taking 2 rivets in the pitch p,

_2X 4810 X 86
137,000

= 6 inches at the ends.

?

p = 6.8 inches at 5 feet,

p = 8.05 inches at 10 feet, etc.

For concentration of the loads on the girder the maximum
allowable pitch would be about 6 inches.
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3. A timber 8 inches by 10 inches is used as a simple beam of
12-ft. span to carry a uniform load of 4000 pounds and end com-
pression loads of 40,000 pounds. What is the maximum stress
developed?

By assuming the deflection negligible,

f_=}_’+_ﬂic=4o,ooo+4oooxl44><5><12
A I 8o 8X8X10X10X 10

= 500 + 540 = 1040 pounds per square inch.

By use of the formula assuming the deflection not negligible,

P Mc 1
f’Z+T( __aPl’)
BEI

= 500 + 540 - :
_ 8X 40,000 X 144* X 3
76.8 X 1,500,000 X 2000
¥ I A 540
i s 540(1 - .0864) S .9136

= 500 + 590 = 1090 pounds per square inch.

Thus it is seen that the moment of the axial load about the
central section increases the stress about 5 per cent.
4. A bolt 1 inch in diameter is subjected to a tension of 3000
pounds and at the same time to a cross shear of 5000 pounds.
" Determine the maximum tensile and shearing unit-stresses.

s = 5000 + .7854 = 6370 pounds per squ:ire inch.
f = 3000 + .7854 = 3820 pounds per square inch.

By substitution in the formulas for the maximum tensile and
shearing stresses,

2
fa= §§2_29 + \/6370z + 38% = 8560 lb. per sq. in., tension.

2
Sp= \ / 6370 + 3’8% = 6650 Ib.-per sq. in., shear.
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PROBLEMS

1. A simple rectangular timber beam 8 inches by 12 inches and
of 10-ft. span carries a uniform load of 2000 pounds per foot.
Determine the horizontal shearing unit-stress at the following
points: (a) At the neutral surface over a support. (b) 3 inches
from the neutral surface over a support. (c) 4 inches from the
neutral surface at a quarter point. \

2. What is the maximum shearing unit-stress developed in an
I-beam of the largest standard section which carries a uniform load
over a span of 20 feet if the maximum fiber stress does not
exceed 16,000 pounds per square inch?

3. A girder of 55i-ft. span is built up of }-inch by 4 feet
10-inch web plate, four s-inch by 6-inch by §-inch angles, with the
s-inch leg riveted to the web, and four cover plates at the quarter
points 14 inches by § inch. The rivets are § inch in diameter and
spaced 3 inches apart, and there are two rows in each s-inch leg.
Determine the maximum shearing and bearing unit-stresses that
would probably come on the rivets. (Section is similar to that
shown in Fig. 102 with coverplates added. Girder is to carry a
train load.)

4. Determine the maximum stress developed in a 6-inch,
15-pound I-beam of 6-ft. span with both ends fixed, carrying a
uniform load of 8 tons and tension loads at the ends of 6 tons.

5. What will be the maximum fiber stress developed in a simple
timber beam 6 inches by 8 inches of 8-ft. span, with a concen-
trated load of 1500 pounds at the center and end compression
loads of 10,000 pounds?

6. A 12-inch, g0-pound I-beam of 6-ft. span carries a uniform
load of 1200 pounds per foot, and is subjected to an axial compres-
sion of 60,000 pounds. Find the maximum stress developed.

7. Find the size of a square maple simple beam for a simple
span of 12 feet to carry a load of 500 pounds at the middle, when
it is also subjected to an axial compression of 2000 pounds.

8. A bar of iron is under a direct tensile stress of 4000 pounds
per square inch and a shearing stress of 3500 pounds per square
inch. Find the maximum tensile and shearing unit-stresses.

9. Design a white oak beam with both ends fixed, for a span of
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12 feet, which is to carry a concentrated load of 4 tons at the
center and a tension load of 5 tons.

10. What I-beam would be required for the loading given in
Problem No. 6 if the unit-stress is not to exceed 16,000 pounds
per square inch? ’

11. What will be the maximum shearing and tensile unit-
stresses developed in a f-inch bolt if it is subjected to a tension
load of 5000 pounds and a cross shearing load of 5000 pounds?



CHAPTER XIV

COLUMNS AND STRUTS

127. DISCUSSION. The terms columns and struts
are usually applied to prismatic members designed to

carry compression loads when the length
has an effect on the strength of the
member. For short compression mem-
bers, lateral deflection is inappreciable
under load, while for longer ones (i.e.
columns) it may be of consequence.
Long columns will not carry so great
loads as shorter ones of the same mate-
rial and section, since the lateral bend-
ing of the column causes the stress to
be distributed unevenly over the cross
section of the column and makes it
greater on the concave side than the
value obtained by dividing the load by
the sectional area (see Fig. 107). The
formulas used in designing columns,
and in calculating the stress developed
in them, are to a large extent empirical.

5 P

P

F16G. 107.

A large number of formulas have been developed by
different investigators, and those in most common use

will be given.

128. STIFFNESS OF COLUMNS. If a flat board is used
as a column, bending will occur about an axis parallel
to the longer side of a section. In all columns free to

221
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bend in any direction bending will occur in the direction
in which the column is least stiff. In other words, the
bending will occur about the axis for which the moment
of inertia and the radius of gyration are the least. The
most economical column section, therefore, would be
one for which the tendency to bend would be the same
for all axes.

The slenderness ratio is the ratio of the length of
a column to the least radius of gyration of the cross

section, and equals fy where / is the length of the column

and 7 is the least radius of gyration as determined by
the principles of Appendix A. [ and 7 should be in the
same units, and the inch is the unit most commonly
employed.

129. THE STRENGTH OF COLUMNS. The yield point
of the material, which is somewhat higher than the
elastic limit, is practically the ultimate strength for col-
umns built of structural steel or other similar material.
When a column is sensibly bent, the bending moment at
the section of greatest deflection increases rapidly with
a small increase of load. The moment of the load at
the danger section will cause the column to fail under a
load somewhat greater than that load which will develop
a stress equal to the elastic limit of the material.

Fig. 108 shows characteristic failures for compression
specimens of timber. The short one shows oblique
shear failure, the intermediate ones show failure in com-
pression, and the longest one shows failure due to bend-
ing of the column.

The condition of the ends also has an effect on the
strength of a column. Fig. 109 shows the position
assumed by long homogeneous columns under load, with
different end conditions: (a) with both ends round
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F16. 108.
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or pivoted, (b) with one end round and the other end
fixed, and (c) with both ends fixed. Fixing the ends
increases the strength of a column. In Fig. 109 it may be
seen that about two-thirds of the column in (b) is in a
condition similar to that in (a), and that half of the
column in (¢) is in a condition similar to that in (a).

(@) : ®) (0

F16. 109.

It is commonly assumed that fixing one end is equivalent
to decreasing the length to 2 and leaving the ends
round, and fixing both ends is equivalent to decreasing
the length to £ and leaving both ends round.

In very long columns the column may fail by sidewise
deflection without any portion of the material being
injured. This action occurs at a lower slenderness
ratio in a material like, timber than in a material like
steel. The phenomenon of sidewise failure can be

illustrated by the blade of a tee-square.
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130. THE STRAIGHT-LINE FORMULA. By examining
the data of tests of columns it is found by plotting points

J& ;
to represent the average stress = at rupture, for various

A
values of the slenderness ratio é, that a straight line
can be drawn which will fairly represent average ulti-

P g 3
mate values of = for the different slenderness ratios.

A

i e ; ;
Thus, in Fig. 110 values of  aregiven along the vertical

y /) : : :
axis and values of 5 are given along the horizontal axis.

An equation representing this straight line is of the
form —?4—1 =f; — —C%E In this formula P, is the load at
rupture. A similar formula may be used to determine
the safe load for a given column or to determine the
proper sectional area
to carry a given load.
Of course, the safe load
P will be considerably £
lower than the rup-
turing load P;. The
straight-line formula
for the average stress
over the section of the F16. 110.

150

Y
r

column is § =f- —Cr;l where P is the safe load and the
values of f and C are to be specified. In the straight-
line formula f — C lr is considered as the allowable safe

unit-stress. This formula shows that the strength of a
column becomes less as the length increases and as the
radius of gyration decreases. It is purely empirical, as
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it is based entirely upon experimental data, but it is con-
sidered to be as reliable as any and is quite generally
employed.

The values of f; and C; for various materials can be
derived from experimental data, and they may be used
as a guide to determine values of f and C to be used in
design.

The greatest value of the slenderness ratio to be used
in the application of the straight-line formula is usually
given as 100 to 125. In any case it should not be greater
than 150.

Cooper gives the formula = = 17,000 — 90% as safe

4

for soft steel columns of a through railroad bridge.

Ketchum gives the formula e 16,000 — 70% for steel

4

columns in building frames. The limit of é is 125.

The Chicago building ordinance as revised in 1910
may be taken to be illustrative of architectural practice.
Its requirements are as follows:

7z l
For steel columns. .......... g 16,000 — 70 5
: P l
For wrought iron columns .. - = 12,000 — 60;,
. &
For cast iron columns ....... > el 10,000 — 40 -

The maximum allowable compressive stress shall not

exceed the values given in Table 18. é shall not exceed
120.

For timber columns the following is a modification
of the formula used by Ricker and of that given in the
Chicago building ordinance:

For timber columns. ... g =f- .0036f-f—,
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in which f is the value of the allowable compressive
stress parallel to the grain given in Table 8. The

; ; )
ordinance provides that the slenderness ratio . shall not

exceed 120. The original form of this formula was for
columns of rectangular section.

TABLE 18

MAXIMUM ALLOWABLE COMPRESSIVE STRESS
IN POUNDS PER SQUARE INCH, CHICAGO
BUILDING ORDINANCE, 1910.

Compressive stress,

Material. pounds per square inch.

14,000
10,000
10,000

Two problems can be solved by the use of the straight-
line formula,— (1) the safe load a given column will
carry, and (2) the design of columns. For these problems
the above formulas may be used unless the specifications
state otherwise. Of these problems the design of col-
umns is the one most commonly met by the engineer
and the architect, and it admits of many solutions.

ILLUSTRATIVE EXAMPLES

1. What load would a 15-inch, 42-pound I-beam g feet long
safely carry if used as a column in a bridge?

From Table No. 21 giving properties of I-sections, 4 = 12.48
square inches, the least r = 1.08 inches.

I _oXi12 _ 108
r 1.08 1.08

By the use of Cooper’s formula
P=4 (17,000 — go ;),

P =12.48 X (17,000 — gooo) = 12.48 X 8000 = 99,840 pounds.
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2. Design a square shortleaf pine column 11 feet long to carry
a load of 10,000 pounds.
Let d be the dimension of a side and 7 the radius of gyration.

4 =da.
The least value of r may be such that

B 120, least r = ps 3. 1 LMl s 1.1 inch.
r 120 1
= d
= '\/I +A= \/ i s =
4 12 +d /1,

Least d =7 V12 = 1.1 X 3.46 = 3.81 inches.
For the formula § =f— .0036ff—_ )
f = 1200 from Table 8.

205000 [ 5200 .0036 X 1200 X(—H s 12) B

az d

3-46

10,000 = 1200d? — 1970d,
42— 1.64d = 8.33,
d = 3.82 inches.
The 3.82-inch by 3.82-inch timber would do, but a 4-inch by
4-inch would generally be used.
In this example the size of the column is the same, determined
both by the slenderness ratio and by the allowable stress. This
is seldom the case.

131. ECCENTRIC LOADS ON COLUMNS. The fore-
going formulas are to be used only for axial loads. As
shown in Art. 77, a load when eccentric produces a greater
unit-stress than when axial, and when the load on a col-
umn is eccentric the formulas used must take account of
the effect of the eccentricity. If the load P has the eccen-
tricity e, the stress due to the eccentricity alone, as de-

rived in Art. 77, is g% Consequently the allowable

unit-stress for design of a column must be equal to
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Pt Rlec
At
the straight-line formula for columns carrying eccentric
loads becomes

and by equating this to the allowable stress,

12 ec l
aliEgs o

The second member of this equation is the allowable
stress as given in the formulas of Art. 130.

ILLUSTRATIVE EXAMPLE

What load would a solid round cast iron column 6 inches in
diameter and 10 feet long safely carry if the load has the eccen-
tricity of 1.5 inches?

For this column the formula is g—(x “+ -;g) = 10,000 — 4of—’-

2
= '54@- = 28.3 square inches, ¢ = 1.5 inches, ¢ = 3 inches,

y d*  wdt @ 6 P
gE— - =L_'_.__..=—=3_= = 5
r=I+4 S 616 T 1.5 inches
I _10X12 %o,
r 1.5
L(I+M)=IO,OOO—4OX80=6SOO.
28.3 2.25

P = &33 X 6800 = 64,200 pounds.

132. THE METHODS OF TRANSMITTING LOADS TO
COLUMNS. In the columns of such structures as bridges
the load is usually transmitted to the column through
pins or rivets and plates, in such a manner that the load
is axial or so that the eccentric stress will oppose any
moment stress that may be developed by the weight of
the member when not vertical. For buildings and many
other structures, however, the load may be transmitted
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through angles and rivets on one, two, three, or four
sides of the column, thus producing large eccentric
stress which should be provided for in the design of the
column. Beams and girders are usually supported on
caps or brackets, and for purposes of design the load is
considered as acting at the centroid.of the area support-
ing the member. The resultant of all the loads may be
found and dealt with, or the effect of each load may be
determined separately and the resulting stresses com-
bined. In making the combination of the loads it
should be borne in mind that loads on opposite sides
of the column will partly neutralize the eccentric effect.

OTHER COLUMN FORMULAS

133. COMPARATIVE STRENGTH AND STIFFNESS OF LONG,
IDEAL COLUMNS. Condition of the Ends. From analogy with
beams the maximum deflection for a given stress in the outer
fiber is taken to vary directly with the square of the length
of the column (Art. 108).
Consequently the maxi-
mum moment and the
maximum moment stress
in columns are assumed
to vary with the square
of the length. For very
long, ideal, homogeneous
columns the assumptions
are approximately true.
Columns under load will
deflect approximately, as
shown in the curves of
Fig. 111, Curve (a) is for

FiG. 111. both ends round or hinged;

curve (b) is for one end

round or hinged and the other end fixed; curve (¢) is for both
ends fixed; curve (d) is for one end fixed and the other end round

@ ®
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and free to move; curve (e) is for both ends fixed in direction
but free to move laterally.

If f, is the moment stress developed in a column of length % with
both ends round or hinged (represented by curve (2)) under a given
load, the moment stress developed in the same column under the
same load with its ends fixed in the various ways will now be found.

Fixing one end is equivalent to shortening the column to %4
and leaving the ends round. The portion AB of the column
‘shown in curve (b) is in a condition similar to a round-ended column.
For this case, one end fixed and one end round, therefore, the
moment stress developed will be

_am . 4
o= S h= 3

Fixing both ends is equivalent to shortening the column to } 4
and leaving both ends round. The portion 4B may be considered
as a round-ended column. The maximum moment stress devel-
oped for this case will be

7\
fi= (];z"‘) fi= if»

The column with one end fixed and the other end round or hinged
is in the same condition as half of a column with both ends round,
and for this case the moment stress developed will be

fo= (2—}1}:‘)“2](1 = 4 fi.

By keeping both ends restrained in direction but one end free
to move laterally, as in (e), is equivalent to having two columns
similar to the condition shown in (d) but one-half as long; there-
fore the moment stress developed in this case is

A )

134. RANKINE'S FORMULA. Columns of Intermediate Length.
Rankine derived an empirical formula for columns of interme-
diate lengths, such as are found most commonly in engineering
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practice. The following is the derivation (see Fig. 112): Let
the column have the maximum deflection A, then the maxi-

P P

0
1
]
1
i
|
|

==

I"AA coleA]

b+

F1G. 112.

i

el «

mum stress, which is due to compression and
flexure, will be at the point of maximum
deflection and is f =f, + f,, where f, is the

direct compressive stress which equals g and

f2 is the bending stress and is ylf (Art. 69).

Therefore

P M G W EAG

SR T e
From analogy with the maximum deflection of
beams (Art. 108) it is assumed that A varies

2
with l; If ¢ is a factor depending upon the
material of the column and the condition of

2
the ends, A = ¢l;, then

I = A7, and . is the slenderness ratio. The factor ¢ is a fraction
r

TABLE 19
VALUES OF ¢ USED IN RANKINE'S FORMULA
Conditions of the ends. Timber. | Cast iron. W{r‘:;lg_ht Steel
Both ends round.,....... 48 o 2 4
3000 5000 36,000 25,000
A 1.78 1.78 1.78 1.78
Fixed end round......... 13660 9066 ey Gt
1 i 1
Both ends fixed.......... ;
3000 5000 36,000 25,000
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which is determined partly by experiment and partly from the
theory of Art. 133. Having experimental data available and
assuming the relative strengths as given in Art. 133 the values
of ¢ were found to be as given in Table 19. It may be noted that
the numerator of the fraction indicates the condition of the ends
and the denominator is the characteristic for the material. fshould
be the allowable working stress for problems in design.

135. EULER'S FORMULA. Long Columns. Euler deduced a
formula for long, ideal, homogeneous columns. For such columns
it has been found that when the load reaches a certain limit, if
a lateral deflection occurs the load will hold the column in equi-
librium in that position. If the load is decreased the column
will come back to a straight position, and if the load is increased
the deflection increases until failure finally follows. From analogy
with beams, the deflection of a column from the straight position
varies inversely with the modulus of elasticity and the moment
of inertia of the section, and directly as the square of the length
(Art. 108); consequently the load a given long column will carry
is directly proportional to the modulus of elasticity and to the
moment of inertia and.is inversely proportional to the square of
the length. Therefore the formula based on these principles has
the general form P = "TEI .

For n Euler deduced the theoretical value #? for columns with
both ends round, 23#* for columns with one end fixed and the
other end round, 47 for columns with both ends fixed. Therefore,
the values of the load P which will cause failure as determined by
Euler’s formula, are:

Both ends round,

7El _1'EA

LK

Pl
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Both ends fixed,
ARl mEA
P—4————l2 =4 X _(f)’ 5
7,

One end fixed, the other round and free to move,

In these formulas E is the modulus of elasticity, I = Ar* is the
least moment of inertia of the cross section, 7 is the least radius

of gyration of the cross section, and é is the slenderness ratio.

Euler’s formula as given is for the critical load, and it should
be modified before being used for design, and it should be used
only for columns of which the slenderness ratio is not less than
about 200. For design the formula would be modified by intro-
ducing a “ factor of safety.” (See Example 4.)

136. THE THREE PROBLEMS. Three typical problems may
be investigated by the use of the column formulas: (1) The in-
vestigation of columns, which consists of determining the maxi-
mum unit-stress developed in a given column under a given load.
(This can be done only with Rankine’s formula, for which case the
stress is only nominal.) (2) The load which a given column will
carry safely. (3) The design of a column to carry a given load.

137. ECCENTRIC LOADS ON COLUMNS. Rankine’s and Euler’s
formulas as given above are to be used only when the load is
axial. In Rankine’s formula,

P AV
r-5(++()
for axial loads, the part of the stress = is due to direct compres-

A

2
sion and the part lz) X ¢ (é) is due to the bending moment in the

column. If the load has the eccentricity e, the increase in the

stress due to this eccentricity by Art. 77 is g :’:—Z; consequently
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the stress developed in a column under an eccentric load will be
the sum of the three stresses and is

r=2+2 ()+§§ rf=§@+¢ey+§)

which may be used for columns to which Rankine’s formula would
ordinarily be applied for an axial load.

For columns of large slenderness ratio a nearer approximation
may be made as follows: If P is the load with the eccentricity e
and the maximum deflection A, the total eccentricity of L
the load at the point of maximum deflectionis ¢, = ¢ + A
(Fig. 113), and by considering the stress on the cross sec-
tion at that point as the result of the eccentric load P,
the maximum unit-stress from Art. 77 is

s ce\_ P c(e +4)
‘Z<‘+r2>‘A(‘+ ’ )

in which ¢; must be calculated. Let P, be the load ob-
tained by the use of Euler’s formula for the column, and
imagine it placed concentric with the column when the
deflection is A, then the column will be in equilibrium
under that load. As the column is in equilibrium under
either the eccentric load P or the concentric load P,, the
moments at the danger section for both loads may be
equated, hence

PoA = P(e+4) or, A =P01i‘-3 B’
and el—e+A—e+ P P(,PieP ]
ol cPe
and f= Z(I i m) F1c. 113.

This formula for eccentric loads on columns may be used for
long columns for which Euler’s formula could be applied for
axial loads.

ExaMPLES

1. If two 8-inch, 18-pound I-beams, latticed together so that
the distance between their centroids is 6% inches, are used as a
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column 20 feet long with both ends round, what is the unit-stress
developed by an axial load of 40 tons?
By Rankine’s formula

JZ 1\*
f'z(““"(;))’
P = 80,000 pounds, 4 = 10.66 square inches,

4
25,00

JER r13.8 _ "
r= \/ \/10.66 3.27 inches.

__ 80,000 4 (240 ‘) I«
g 10.66 (I i3 25,000 .27) T i ¥y

= 14,000 pounds per square inch. -

» I = 20 X 12 = 240 inches,

2. If the load in Example No. 1 isapplied 2 inches from the cen-
troid of the section what would be the maximum stress developed ?
For this case the formula is

il

¢ = (x + width of flange) + 2 = (6.32 + 4) + 2 = 5.18 inches.
_ 80,000 4 240\* | 2 X 5.18

f="5o86 (I < 25,000(3_-2—7_) G )

f = 7500 (1 + .86 + .96) = 7500 X 2.82 = 21,200 pounds per
square inch.

These results show that when a load is axial the stress may be
within the safe limit, while a slight shifting of the load may cause
dangerously high stresses.

3. Design a square timber column 10 feet long with one end
fixed and the other end round to carry a load of 5000 pounds safely.
Let d be one dimension of the section, then 4 = d*
4 d
r = \/ﬁé Bz inches, ! = 10 X 12 = 120 inches.
For Rankine’s formula

g 1.78
3000

and  f = 8oo pounds per square inch.

. 5000 _ 800 _ 8oo0d’
az —I+1.78><120X12o><12_d’+102.5 \
3000 X d?
8d* — 50d* — 5125 = 0.
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Solving this as a quadratic equation,

d* = 29.4,
d = 5.4inches.
For Euler’s formula, by using a factor of safety of 1o,
2
S S 2.25 X 9.87 X 1,500,000 X &* _ st
120 X 120 X I2
d2
d* = 260,
d = 4+ inches.

As the slenderness ratio of the column is in the neighborhood
of 100, the result obtained by Euler’s formula is not so reliable
as the other.

4. What will be the maximum stress developed in a cast iron
column 4 inches in diameter and 12 feet 6 inches long, with both
ends round, carrying a load of 7000 pounds placed 1% inches from
the center of the end?

By the use of Rankine’s modified formula for eccentric loading,
we find the stress,

! = 150inches, A = 12.57 square inches,
_ 7900 4 (150 1.5 X 2) _ 7000

I 12.57<I 4 sooo( 1 )+ 1 ) 12.57 (bt 8)
= 12,300 pounds per square inch.

138. BEHAVIOR OF COLUMNS UNDER LOAD. In
columns of ordinary length used in construction the
stresses set up by eccentricity of loading due to non-
straightness, unevenness of bearing at ends, and other
causes due to shop and erection processes, often are so
great that the effect of the length of the column is almost
negligible. This is especially true of columns built up
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of several parts (e.g., a column built up of two channels
connected by lattice work). Due to bends in the com-
ponent parts of such built-up columns, slip of rivets
and other causes, the extreme fiber stress, even in short
columns, may be as much as 50 per cent greater than the
average stress.* Furthermore, in designing columns
great care should be taken that they are not built up
of so thin metal that there is danger of failure by
“wrinkling’’ of plates under load. So much uncer-
tainty exists as to the action of built-up columns that
low stresses should be used in designing them, and care
should be taken to see that any new column is not
built up of parts relatively thinner and more liable
to ““wrinkling”’ failure than are the parts of existing
successful columns.

A formula depending upon experimental data for its
constants should be used only in designing columns
similar to those from which the data were derived. For
example, if a series of experiments is made upon columns
of one shape of cross section, the data should not be re-
lied upon in designing columns of a different shape of
cross section, although the material and slenderness ratio
may be the same. Whether the results of tests of small
columns can be used for determining the allowable stresses
in similar large columns is a disputed question among
engineers. Such a procedure is sometimes necessary, and
in such a case working stresses in the large columns should
be low.

* See Bulletin No. 44 of the Engineering i?lxperiment Station of the
University of Illinois.
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EXAMPLES

1. What should be the distance from center to center of two
8-inch, 18-pound I-beams latticed together for a column section
to make the radii of gyration equal for the
two principal axes? (Fig. 114.) £

The moments of inertia about the X and
YV axes must be made equal. From the Lot
table of properties of I-sections, the mo- |, X
ment of inertia of one of the sections
about the X-axis is 56.9 (in.)%, and the
moment of inertia about the ¥'-axisis 3.78 -¥-
(in.)%, and the area of one section is 3.33
square inches. The moment of inertia of

one section about the ¥-axis is +Aci2 and equals 3.78 + 5.33 (2)2

F16. 114.

2
For both sections it is 2 (3.78 +5.33 (g) ) For equal moments of
inertia of the built-up section about the X and ¥ axes,
2
2(56.9) = 2 (3-78 +5.33 (Z) )

~ & = 6.32 inches.

2. A column built up of two 10-in., 135-lb. channels laced
together with a distance of 6.33 inches between the backs, is
18 feet long. Determine the load the column will carry with eccen-
tricities of o inch, 1 inch, 2 inches, 4 inches, 6 inches, 8 inches,
10 inches, 12 inches, and 14 inches, respectively, the point of
application of the load being on the centroidal axis which is per-
pendicular to the web of the channel, and plot the curve showing
the relation between the load and the eccentricity.

The moments of inertia about both principal axes are equal
for the given spacing and r = 3.87 inches, 4 = 8.02 square inches,

Fe 125 18w 156 SHCHOR S i SR18) g OO T 2 22,0
NS 2

iz ; G IShee '

= L mches,;; = I—S =285

By the use of Ketchum’s formula,

g(: +;‘-:-)= 16,000 — 7o£ = 16,000 — 70 X 55.8 = 12,100 pounds

per square inch,
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P (1 +.385¢) = 8.92 X 12,100 = 107,800 pounds.
» Py = 107,800 pounds,

P, = 107,800 + 1.385 = 78,000 pounds,

P, = 107,800 + 1.77 = 60,9000 pounds,

P, = 107,800 + 2.54 = 42,500 pounds,

Pg = 107,800 + 3.31 = 32,600 pounds,
Py = 107,800 + 4.08 = 26,400 pounds,
Py = 107,800 + 4.85 = 22,200 pounds,
Py, = 107,800 + 5.62 = 19,200 pounds,

Py, = 107,800 + 6.39 = 10,900 pounds.

These results are plotted in Fig. 115.

C
100 000 Load - eccentricity Curve ||
\ for a column 18 ft. long
of 2 10 in. @ 15 lb. channels —
\ latticed together. o]
S 2\ P (1429)=16000-70%
)
E N
2 60 000 X
o
A
g
-] A
< 40 000 <
Q
= e 3
]
20 000 =
—

0 2 4 6 8 10 12 u
Eccentricity in Inches,

Fic. 115.

3. Design the upper chord of a roof truss in which the maxi-
mum stress is 65,100 pounds compression, and the length between
supported points is 5 feet. Use two angles connected by $-in.
gusset plates and $-in. rivets.
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Since the member is in compression the rivet holes need not
be deducted.

The least allowable 7 is S inch.
120 2

By use of a2 handbook we find the properties of the angles.

For direct compression alone the required area is 65,100 =+
16,000 = 4.07 square inches. For the column section the area
must be somewhat greater. Try two s-inch by 3-inch by fs-inch
angles placed with the short legs outstanding. The least 7 is
1.22 inches, 4 = 4.82 square inches. The allowable stress is

5— = 16,000 — 70 X 16—:2 = 12,560 pounds per square inch. The

S P 685100
actual stress is I
This is not safe.
Try two s-inch by 3i-inch by J-inch angles.
The least 7 is 1.47 inches, 4 = 5.12 square inches.
The allowable stress is

= 13,500 pounds per square inch.

g = 16,000 — 70 X 16—07 = 13,140 pounds per square inch.

The actual stress is
g = 6:’%0 = 12,750 pounds per square inch.

This is safe.

The actual average unit-stress is nearly equal to the allowable,
so use two 5-inch by 3i-inch by f-inch angles with short legs
outstanding.

4. Draw the diagrams representing the relation between the
load and the length of columns of hemlock for the common rec-
tangular sections.

By use of the formulag = f—.0036 f 1—{ the values are obtained.

From Table 8, f = 1000 pounds per square inch. For a 2-inch
by 2-inch column, 4 = 4 square inches, d = 3.46 r. The maxi-
mum length for which this section may be used is /= 1207 =

120 \/QI% + bd=34.7 d=34.7 X 2=69% inches=5 feet, 9} inches.

When;l =0, P = 4000 pounds. When!= 5 feet = 6o inches,
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Fig. 116.
’—{ = M = 103.8, then P = 4 (1000 — .0036 X 1000 X 103.8)

= 2500 pounds.
The other values given in the diagram, Fig. 116, were obtained
in the same manner as those for a 2-inch by 2-inch column.
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PROBLEMS

1. Determine the distance between the backs of two g-in.,

13.25-Ib. channels latticed back to back, for equal radii of gyration.
Ans. 5.62 in.

2. What will be the radii of gyration with respect to the two
principal axes of a column section built up of two 10-in., 2 5-1b.
I-beams and two 3-in. cover plates 12 inches wide?

3. In a compression test of specimens of different lengths of
the same piece of red oak of cross section 1} inches by 2 inches
the following values were obtained:

Length, Maximum load,
inches. pounds.
6 22,000
12 18,000
24 14,200
36 ! 8,000

Plot a curve showing the relation between the average unit-
stress and the slenderness ratio, and determine the value of f;
and C, at rupture, in the straight-line formula.

‘ Ans. fi= 8ooo lb. per sq. in.
C, = 631b. persq. in.

4. Design a square longleaf pine column 14 feet long to carry
a load of 6 tons.

5. Design a latticed column 18 feet long built up of two steel
channels to carry a load of 20 tons.

6. What safe load will a hollow cast iron column 10 feet long
carry if the outside dimensions are 6 inches by 7 inches and the
inside dimensions are 4 inches by 5 inches?

7. Design a steel column 14 feet long to carry an eccen-
tric load of 20 tons applied 2 inches from the outside of the
column.

8. What should be the spacing of 2-inch by s-inch timber
posts 6 feet long to carry a platform on which the maximum load
is to be 200 pounds per square foot?
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9. Find the load by Rankine’s formula that would probably
rupture a cast iron column with fixed ends, 18 feet long and 6 inches
in diameter.

10. By the use of Rankine’s modified formula for eccentric
loads on columns calculate the load that would develop a unit-
stress of 1000 pounds per square inch in a 6-inch by 6-inch column
1o feet long with round ends for the following eccentricities:
(a), o; (b), 1 inch; (c), 2z inches; (d), 4 inches; and (e), 6 inches.
Plot a curve showing the relation between the load and the
eccentricity.

11. By use of the straight-line formula solve Problem No. 1o
if the column is of Washington fir.

12. If a 12-in., 40-1b. I-beam 18 feet long is used as a column
with round ends, what is the slenderness ratio? According to
Euler’s formula, what load would cause rupture ?

13. What safe load will a column 27 feet long built up of two
0-in., 13.25-1b. channels latticed together and placed 6 inches
back to back, safely carry if used ina bridge? . Auns. 67,300 Ib.

14. What should be the greatest length for which timber
columns of the following sections may be used? 2 inches by
2 inches, 4 inches by 4 inches, 4 inches by 6 inches, 6 inches by
6 inches, 6 inches by 10 inches, 6 inches by 12 inches, 8 inches
by 8 inches, 10 inches by 12 inches, 12 inches by 12 inches.

Ans. I = 34.7 where d is the least lateral dimension. 4 in. X
4 in., 11 ft., 7 in.;4 in.X 6 in., 11 ft., 7 in.; 10 in. X 12 in., 28 ft.,
11 in.

15. Determine the safe load for 4-inch by g4-inch red oak
columns, which are 3 feet; 7 feet, and 11 feet, 7 inches long
respectively. Plot a curve showing the relation between the load
and the length of the column. Do the same for various other
sections of oak columns carrying the curves to the maximum
allowable length of column. (This set of curves may be made
to include all commercial sizes of sections and put on one diagram.
Then the red oak column necessary for any load and any length
can be selected directly from the diagram.)

16. Determine the safe load for various lengths and various
sections of columns of the different kinds of timber given in
Table 8, and plot the curves as in Problem No. 15.



Pros.] COLUMNS AND STRUTS 245

17. Design a strut 12 feet, g inches long in a roof truss to carry
a compression load of 12,000 pounds. Use two angles with a $-in.
gusset plate between them, and %-in. rivets.

Ans. 4in. X 31in. X 1% in. |s .

18. Design a strut s feet, g inches long in a roof truss to carry
a load of 20,800 pounds.

Ans. Two 2} in. X 2 in. X {5 in. [s, short legs outstanding,
$-in. gusset plate.

19. What four angles with the long legs outstanding would be
required to be riveted to a ¥s-in. plate for a column 18 feet long to
carry a load of 27,370 pounds?

Ans. 4in. X 3in. X 75 in. |s_, width of plate 8 in.

20. A wooden stick 3-inch by 4-inch in cross section and 1o
feet long is used as a column with fixed ends. Find by Rankine’s
formula the unit-stress developed under a load of } ton.

21. Find the safe load for a hollow cast iron column of outside
dimensions 8 inches by 6 inches, inside dimensions 6 inches by
4 inches and 12 feet long.

22. A hollow yellow pine column of square section, 5 inches
outside dimensions, and 4 inches inside dimensions, has a length
of 16 feet. What load could the column safely carry?

23. A cylindrical steel column with round ends is 36 feet long
and 6 inches in diameter. Calculate by Euler’s formula the axial
load that would probably produce rupture.

24. Determine the safe load for a hollow round cast iron
column of external diameter 12 inches, thickness 1 inch, and length
12 feet.

25. A square white oak column 12 feet long is to support a
load of 16 tons. What must be the size of the column?

26. Determine the size of a rectangular loblolly column 20 feet
long to carry safely a load of 24 tons. Ans. 8in. by 10 in.

27. A round solid cast iron strut 15 feet long carries a load of
10 tons. What should be its diameter?



CHAPTER XV
TORSION

'139. STRESS AND DEFORMATION. ROUND SHAFTS.
When a couple, as indicated by Pa in Fig. 117, in a

F16. 117.

plane perpendicular to the axis of ‘a shaft acts upon the
shaft, it is twisted, and one cross section tends to slip
by the section next to it. This tendency is resisted by
the torsional stresses set up in the shaft. The stresses
developed are shearing stresses. If AB in Fig. 115 is
the original position and AB’ the final position of an
element of the surface of the shaft, the end of the shaft
has twisted through the angle ¢ or BOB’, which is pro-
portional to the couple acting on the shaft and to the
length of the shaft, when the stresses developed are
within the elastic limit. The element will have twisted
through the .angle § or BAB’, which is proportional
to the couple but independent of the length of the

shaft.
246
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140. THE TORSION FORMULA. ROUND SHAFTS. In
Fig. 118 let the forces producing the couple be P and the
arm between them be p, then the couple C equals Pp.
Under the influence of this couple the radius 04 will
have swept through the angle 404’ to the position 04’
while it still remains a straight line. The deformation

q'._'l
, P
A
A
BT ,
' U
F1c. 118.

of a fiber of the section is proportional to the distance
from the center O of the shaft to the fiber. Therefore
the unit-stress developed on the fibers when the greatest
stress is below the elastic limit is proportional to the dis-
tance of the fiber from the center. If s is the maximum
unit-stress developed upon the outer fiber of the shaft,
and 7 is the radius of the shaft, the unit-stress on the

fiber a distance y from the axis is s, = s% The total

S
stress on the elementary area a is S v, and the moment

: 7 519 s
of this stress about the axis of the shaft is s Lo B ay?.

The moment of the stresses acting on the entire cross
section is the sum of all such expressions, and for equi-

librium,
EMO =Pp — Zl:ayz =0,

s C=—, or s=%f,
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where C = Pp and is the twisting moment, and = ay?*= J
and is the polar moment of inertia of the section about
the axis.

For solid circular shafts, Fig. 119,

xd*  wrt :
J = = e (Appendix A),
s swrt = smr® _ swd?
27 2 16
g il
wd?
F1G. 119. F16. 120.

For hollow circular shafts of outer radius 7 and inner
radius 7, Fig. 120,

it

c=°%" (r*—n?)  sw(d*—dH
) e i 16d b
o WAl s TG

SEr @ =4y

Three typical problems may be investigated by the
use of the torsion formula: (1) The investigation,
(2) determining the allowable couple, and (3) the design
of a shaft to transmit a given couple.

141. STIFFNESS OF SHAFTS. The relation between
the angle of twist and the shearing modulus of elasticity
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may now be deduced. Since BB’ in Fig. 121 is small,
BB =r¢ =18, ¢ and 0 being in radians. The detru-
sion of a fiber on the surface in the length / is BB’, the

g g

F16. 121.

’
unit detrusion is B—lﬁ = tlf The shearing modulus of
elasticity is

Cl Cl

E,=ﬁ,0r¢=m'

In the formulas, E, is in pounds per square inch, C is
in pound-inches, ! isin inches, J is in (inches)?, and ¢ is in
radians. In tests, if the angle of twist is measured
in degrees the value must be reduced to radians by the
relation

One radian = 57.3 degrees.

142. OTHER SHAPES OF CROSS SECTION OF SHAFTS.
For any other than circular sections the foregoing
formulas cannot be applied. Experiment has shown
that if the section has two axes of symmetry the fibers
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at the ends of the shorter axis have the greatest dis-
tortion, and consequently the greatest unit-stress will
occur at those points. Along the cor-
Ryt ners of rectangular shafts there is no
relative distortion of the fibers, and
those fibers have no stress developed in
them. Saint Venant has investigated
the subject and devised formulas which
reduce to the following forms for the
maximum stress, where C is the twisting
moment and s is the maximum stress:

' (a) Square shaft,* C = 0.208 d3%s. s isat
) the middle of the side.

ipti e LS ;
— b1 (b) Elliptical shaft,* C == ab%s. sis
it

(e Q>

(a)

at the end of the shorter axis.

) e a2h? )
(e) (c) Rectangular shaft,*C (————~30 185"

s is at the middle of the longer side.
Merrimant gives for rectangular cross sections the
formula C = % ab?.

F16. 122.

143. POWER TRANSMITTED BY SHAFTS. The pri-
mary purpose of shafting is the transmission of power.
The pulleys are frequently fastened to the shaft by keys
and keyways, in which case the formula for the relation
between the maximum stress and the twisting moment
is complex. However, the power a circular shaft with-
out a keyway will transmit can easily be obtained if
the allowable stress is known. If Cis the couple acting
on the shaft the work done by turning the shaft through
an angle 8is C6. Proof: Let P be the force of the couple

* See “History of Elasticity,” Vol. II, part 1, by Todhunter and
Pearson.
t See Merriman’s ““Mechanics of Materials.”
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and p the arm. The distance through which P will
move in turning through an angle 6 is 6, and the work
done is Ppb, or C6, as Pp = C. If the shaft makes NV
revolutions per minute the work done in one minute
will be CarNN.

P CorN sJazrN _ sJN

33,000 X I2 T 396,0007 63,0307 t

144. COMBINED TWISTING AND BENDING. If a bend-
ing moment is developed in the shaft as well as a twist-
ing moment, there is a combination of stresses. The
maximum fiber stress developed by the bending moment
may be obtained by the use of the moment formula

= %, and the maximum shearing stress may be ob-
o

; £ @7
tained from the torsion formula s= T These stresses

may be combined to obtain the maximum shearing
stress and the maximum tensile or compressive stress
by the formulas

V)

!

ExXAMPLES

1. A solid circular steel shaft 1o feet long and 2 inches in
diameter has a couple of 126,000 pound-inches acting upon it.
(a) What is the maximum unit-stress developed in the shaft?
(b) What is the unit-stress 2-inch from the axis of the shaft?
(c) At 300 R.P.M. what is the horse power developed? (d) What
is the angle through which one end would twist past the other?
(e) Through what angle would a line on the surface twist?



252 TORSION [CHAP. XV

() § =—2 = —2 22— = 8ooolb. per sq. in.

(D)= @ X % = 6000 lb. per sq.in.

AT p) o 12000 X e 00 o P,
33,000 X 12

12,600 X 10 X I2

d = 57.
@ g 573X12,000,000XI.57

=4°35/,
(e) 6 =1 X (4°35) + 120 = 2},
2. What should be the diameter of a solid shaft to transmit

500 horse power at 8o revolutions per minute if the maximum
torsional stress is not to exceed gooo pounds per square inch?

RSN
o ?
63,0307

_ 9000 xd® X 80
i 63,030 X 16 :

d = 6inches.

PROBLEMS

1. What maximum unit-stress will be developed in a hollow
shaft of 3 inches outside and 2 inches inside diameter when twisted
by a force of 3000 pounds at a distance of 1 foot from the axis?
What is the minimum stress developed?

Ans. 8460 1b. per sq. in.

2. What horse power will be transmitted by the shaft in
Problem No. 1 when making go revolutions per minute?

3. What must be the diameter of a solid steel shaft to transmit
120 horse power at 8o revolutions per minute if the allowable unit-
stress is 10,000 pounds per square inch. Ans. 3.6 in.
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4. If the shaft of Problem No. 2 is 20 feet long between the
pulleys, what will be the angle of twist when transmitting the re-
quired power?

5. A wrought iron shaft 7 feet, 6 inches long and 2 inches in
diameter twists through an angle of 10° 30’ under the influence
of a couple produced by a force of 2500 pounds at a distance
of 1 foot from the axis. Compute the shearing modulus of
elasticity.

6. What are the maximum shearing and tensile stresses de-
veloped in a shaft 2} inches in diameter under a twisting moment
of 12,000 pound-inches and at the same time under a bending
moment of 8oo pound-feet ?

7. What will be the maximum stress developed in a rectangular
shaft of dimensions 1 inch by 1% inches if the twisting moment is
400 pound-feet?

8. Determine the maximum stress developed in a shaft 1 inch
square if the twisting moment is produced by a force of 75 pounds
at a distance of 14 inches from the axis.

9. What stress will be developed in an elliptical shaft of dimen-
sions 1 inch by 1} inches if the twisting couple is 400 pound-feet?

10. What should be the diameter of a steel shaft to transmit
safely 500 horse power at 150 revolutions per minute?

11. Calculate the horse power that a round, wrought iron
shaft 8 inches in diameter and making 150 revolutions per minute
will safely transmit.

12. A hollow steel shaft of outside diameter 6 inches safely
transmits 450 horse power at 100 revolutions per minute. Find
the inside diameter. Ans. d; = 3.82 in.

13. Find the shearing modulus of elasticity of a cast iron bar
10 inches long and .82 inch in diameter if twisted through an
angle of 1.3° by a twisting moment of 50 pound-feet.

14. A structural steel shaft 120 feet long and 16 inches in diam-
eter transmits 8ooo horse power at 20 revolutions per minute.
Find the angle of twist and the stress developed.

15. A solid shaft 6 inches in diameter is coupled by bolts 1 inch
in diameter on a flange coupling. The centers of the bolts are
5 inches from the axis. Find the required number of bolts.

16. A wrought iron shaft is subjected simultaneously to a
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bending moment of 10,000 pound-inches and a twisting moment
of 12,000 pound-inches. Determine the least diameter of the
shaft if the maximum tensile stress is not to exceed 10,000 pounds
per square inch and the shearing stress is not to exceed 8oco
pounds per square inch.

17. Find the horse power that can be transmitted safely by a.
cast iron shaft 3 inches in diameter and making 6o revolutions per
minute. g

18. A steel wire 0.18 inch in diameter and 10 inches long is
twisted through an angle of 9.2° by a moment of 20 pound-inches.
Determine the shearing modulus of elasticity of the wire,



CHAPTER XVI
REPEATED STRESSES, RESILIENCE, HYSTERESIS, IMPACT

145. REPEATED STRESSES. The behavior of mate-
rials under repeated stresses and impact is somewhat
different from that for static or slowly applied stresses.
The experiments of Wohler, Bauschinger, and others
for repeated stresses show that a material will fail

TABLE 20
TESTS ON WROUGHT IRON
[Wohler.]
Number of Unit-stress producing
applications. rupture.
800 52,800
107,000 48,400
450,000 39,000 :
10,140,000 35,000

under stresses lower than the ultimate strength of the
‘material. For an enormous number of applications of
a stress about equal to the elastic limit, the material
ruptured. When the stress was reversed and carried to
about one-half to two-thirds the elastic limit for each
reversal, an enormous number of applications of the
stress caused rupture. These experiments were carried
on in such a manner that the time between each appli-
cation or reversal of stress was so short that the specimen
had no time to rest. It is interesting to note in Table 20
the variation in the maximum applied stress with the
255
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number of applications for wrought iron. Fig. 123
shows graphically the number of applications of a given
stress necessary to produce rupture in wrought iron.

8
g

:
/

’\\

B
g

Stress Producing Rupture,
Pounds per Square Inch

0
0 100000 200000 300000 400000 500000
Number of Applications of Stress.

F16. 123.

Instances in which repeated stress and reversed stresses
would influence the design of the members would be
shafting, car axles, piston rods, all rolling or vibrating
members, etc.

146. RESILIENCE. When a load is applied to a
member it will deform. On removing the load the mem-
ber will resume its former size and shape for stresses
below the elastic limit. And when the elastic limit has
been exceeded the material will partly recover its original
size and shape. The load applied to the material does
work on it, and in turn when the load is being released
the material gives out energy. Resilience is the amount
of potential energy stored in a material when it is under
stress. Elastic resilience is the amount of potential
energy stored in a member when the stress is within
the elastic limit. The modulus of resilience is the
amount of energy stored in a unit of volume of a member
when the stress is at the elastic limit. Resilience can be
recovered to do work.
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When the stress is carried beyond the elastic limit
permanent set is developed. In such cases a larger
amount of work has been done upon the specimen than
it will give out upon releasing the load. The work that
cannot be recovered is used in permanently distorting
the material, and is converted into heat. Fig. 124 shows

)

e e

| S

G H
Fi16. 124.

a typical soft steel stress-deformation diagram. In this
diagram the ordinates represent the unit-stress and the
abscissas represent the unit deformation. The work done
on the material is the average force times the distance
through which the force acts. Since the stress-deforma-
tion diagram shows the unit-stress developed in a speci-
men and the corresponding unit deformation under that
stress, the area between the curve and the horizontal
axis represents the work done on a unit of volume of
the material. When the stress is not carried beyond
the elastic limit all the work done can be recovered.
The triangular area ACB represents the modulus of
resilience. When the point D is reached the work done
on a unit of volume of the material is represented by the
area ACDH, and the work that can be recovered (the
resilience) for that point is represented by the area
GJDH. When the point of rupture E is reached, the
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total work done on a unit of volume of the material is
represented by the area ACDEF.

147. RESILIENCE OF A BAR UNDER DIRECT STRESS.
For tension or compression, let the load on the bar be P,
the sectional area A4, the length /, the deformation e.
For stresses below the elastic limit the work done is

Pe _fAfL_ P 4

2 23 1 [T O
This work done on the specimen equals the resilience
stored in the specimen. Therefore the resilience is

e
R=; 74l
Ein

The resilience per unit of volume is Eo If f is equal to

the elastic limit the resilience per unit of volume is the
modulus of resilience.

148. RESILIENCE OF A BEAM. An expression for the
resilience of a beam may be deduced similarly to the
following method. Take the case of a cantilever beam
of length ! with a concentrated load W at the end,

Fig. 125. The average force will be ~2W~/ and the deflec-

W

A

1

Fi16. 125.

tion will be A. The work done on the beam which is
equal to the resilience is

w w_ wB
= ?A T X g—E—I (Art. 97.)
w2p

IR =m'
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This can be expressed in terms of the maximum stress
on the outer fiber from the formula

_ Mc_ Wi B2
g R R
ARV RN iV L
" 6Pc2EI 2E " 3¢
i’ﬁE is the same expression as obtained in Art. 147.

In the case of a uniform load each elementary load
does an amount of work equal to one-half the load times

the distance it deflects, and islU;u y where w is the load

per unit of length, # is an element of length, and 7 is
the deflection at the point (see Fig. 126). As the loa

is uniform the work done \

by each element is pro- o/gm//" :
portional toits deflection

y. From Fig. 126 it is ]

seen that uy is a small Tk sl

area between the X-axis
and the elastic curve of the bent beam. The total work

done is the summation of all such expressions as%—y
and equals :
wu w w :
2 Uiy ;zuy ®i X (area between the X-axis
and the elastic curve)
since = uy is the area between the X-axis and the elastic

curve. Thisarea may be determined by the same method
as is used in finding the deflection curves.

149. MECHANICAL HYSTERESIS. In Fig. 127 is shown
the stress-deformation curve for the case where the
elastic limit has been exceeded. After the point 4 had
been reached the load was removed. The curve is convex
downward, as A DC indicates. On reapplying the load the
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curve will be convex upward, as CEA. The resilience

/
A
! E
D
& [ B
Fi6. 127.

or work obtained from the
material is A BCD, and that
put into it is ABCE. The
energy represented by the
loop ADCE is lost as heat
and is called mechanical
hysteresis.

150. LAG. For some
materials at stresses be-
yond the elastic limit when

the load is stopped the specimen will continue to deform

for some time. The metal
yields while the load is
not increased. This phe-
nomenon is known as lag,
and Fig. 128 is a stress-
deformation diagram in
which lag is shown.

151. THE EFFECT OF
REST. By allowing a

lag

F1a. 128.

specimen to rest after being stressed beyond the elastic

limit, it will partly re-
cover its elastic prop-
erties. Fig. 129
shows the stress-def-
ormation curves for
steel before and after
resting. In the one
marked “before rest-

Fi1c. 129.

ing” the stress had
been carried beyond

the elastic limit, and reversed several times, the speci-
men being heated by the work done on it.
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152. SUDDENLY APPLIED LOADS. In the foregoing
portion of the book the load was considered to be grad-
ually applied to the specimen or member. If the load
is suddenly applied the stresses are much higher than
when the load is gradually applied. In order to get the
relation between the stress produced by a gradually
applied and a suddenly applied load let the deforma-
tion under the load gradually applied be e, and when
suddenly applied be e;. Having the deformation, the
corresponding unit-stress developed can be determined,
since the stress below the elastic limit is proportional to
the deformation. The work done on the member when
the load is gradually applied is equal to the product of

the average force and the deformation and is % . The

force varies from o to W. The area OAB in Fig. 130

w

OF B
v

F16. 130.

represents the work done. When the load is suddenly
applied the total load acts through the entire deforma-
tion, as indicated by the line 4B in Fig. 131, but the
internal resisting stresses vary from zero to the value
of FB along the line OB. When the point B is reached
the external work done is We, while the work stored in

the member or the resilience is%. According to the

principle of the conservation of energy the load will not
stop until the resilience equals the work done, conse-
quently the deformation and the stress in the member
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will still increase. When the deformation is e the work
done in excess to the resilience stored in the material is

represented by the area OAB which equals-—vg—e . There-

fore the excess of resilience over the work done beyond

D
A B c
J4g
& F E
e e 1
o \
g i
F16G. 131.

the point B which is represented by the area BCD, must
be equal to—vgf . The external work done is represented

by the area A CEO and the resilience stored in the mate-
rial is represented by the area ODE. As the two triangles
B0OA and BDC are similar and equal, the similar sides
must be equal, therefore,
BC = AB = ¢,
epr=2e,

and consequently f; = 2 f where f; is the stress due to
the suddenly applied load and f is the stress developed
when the load is gradually applied. This shows that
the deformation and the stress developed by a load when
suddenly applied are twice what they would be if the
load is gradually applied.

153. IMPACT LOADS. A load W moving horizontally

X : S Ad D Wy ;
with a velocity v possesses the kinetic energy e which
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is equal to Wk, where g is the acceleration due to gravity
and % is the vertical distance the weight would fall to
acquire the velocity v. This energy must be overcome
by the resilience stored in the member. This energy may
be equated to the resilience of the member for any given
case to obtain the stress developed. For example, if the
member is in direct tension or compression

Wh=ﬁAz
2WhE

f=

5 _E

A method more generally applied is to obtain the
relation between the deformation the load would pro-
duce when gradually applied and the deformation pro-
duced under impact. The stress is proportional to the
deformation. Let Q be the maximum total resisting force
under the impact load and e; the deformation produced
by the impact load. The work done by the resisting
force is %6;1 since the resisting force varies directly from
zero to . This work is the resilience and equals the
external work, '

wh =241
2

If the deformation under the static load W is e the
following proportion results:

LA

e e
Solving these two equations for Q and e;,

e1= V2he,

0=yl
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From these equations it is seen that the deformation,
and the resisting force, and the unit-stress developed,
increase directly with the velocity of the load, or with
the square root of the height A,

154. DROP LOADS. If the impact load falls verti-
cally onto a member through the height % before im-
pinging upon it, the load also does work through the
deformation of the member. Then, using the same
nomenclature as given in the previous article we have,

& oW+ e,

and B
€1 (4

Solving these equations for e¢; and Q,
Gl = e+\/2he+62,
o e
and Q=W+—W 2f8+e»
It is seen from these two equations that a drop of a short

distance develops a high stress compared with that
developed under the static load W.

ExXAMPLE:

1. Find the amount of work necessary to stress a bar of
wrought iron 3 feet long and 1 inch in diameter, from zero to
the elastic limit 100 times.

P = 25,000 X .7854 = 19,635 pounds.

o 25,000-X § X 12

= .06 inch = .ocoj feet.
235,000,000

(4

Work = iPeN == 5&29‘—35 X .005 X 100 = 4909 ft.-lb.
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2. If a force of 50 pounds is suddenly applied at the center of
a 2-inch by 2-inch simple timber beam of 6-ft. span what will
be the deflection and what will be the maximum stress developed ?

The deflection and stress developed are the same as those
developed by twice the static load, or roo pounds.
o 100 X 72 X 72 X 72 X 3 = .38 inch.
48 X 1,500,000 X 4

T Mc 100 X72X1X3

= 1350 Ib. per sq. in.

3. If the weight in Example No. 2 falls 1 inch before impinging
on the beam what stress will be developed and what will be the
maximum deflection?

A; =.194 + V2 X.104 X 1 +.04 = .194 + .65 = .844 inch.
The stress developed is proportional to the deflection and is

fi=1350 X %; = 2920 pounds per square inch.

Or the stress is the same as that developed by a static load of
Q=50+50\/2X.194X1+.o4=

50 + 168 = 2181b.

104
fi= 318%(7—%2(—3- = 2920 pounds per square inch.
PROBLEMS

1. What is the resilience stored in a cubic inch of the follow-
ing materials when the stress is at the elastic limit (modulus of
resilience)? (a) Wrought iron. (b) Structural steel.

Ans. 12.5 in.-1b.; 20.4 in.-1b.
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2. What horse power is required to stress a structural steel
rod 2 inches in diameter and 6 feet long from zero to the elastic
limit 120 times per minute?

3. Solve Problem No. 2 if the stress is carried from one-half
the elastic limit to the elastic limit each time. .

4. If a load of 2000 pounds is suddenly applied to the end of a
steel rod 3 feet long and 1.5 inches in diameter, what will be the
deformation and the unit-stress developed?

5. If the load in Problem No. 4 is moving horizontally with
a velocity of 5 feet per second at the instant of impinging on the
rod, what deformation and unit-stress will be developed?

6. If the load in Problem No. 4 is falling with a velocity of
5 feet per second at the instant of impinging on the rod, what will
be the deformation and the unit-stress developed ?

7. What is the work required to deflect a 2-inch by 4-inch timber
beam of 8-ft. span by a central load that will produce a maximum
stress equal to 1200 pounds per square inch? Solve this problem
for both cases, when the beam is on the edge and when it is
lying flat.

8. If a load of 2 tons falls through a distance of } foot, and
strikes at the center of a 10-in., 25-1b. I-beam of 16-ft. span, what
deflection and stress will be developed?

9. A structural steel rod is required to support a suddenly
applied load of 10,000 pounds. What is the minimum diameter
of the rod if permanent set is avoided?



APPENDIX A
CENTROIDS AND MOMENTS OF INERTIA OF AREAS

A;. Such expressions as £ay and Zay? will occur in
finding the stresses developed in beams under load,
where ¢ is an element of area and y is the distance of
that element from a reference line or axis. It is neces-
sary to be able to evaluate these expressions for the
various shapes of cross sections found in beams.

A,. CENTROIDS OF AREAS. The centroid of an area
is the point at which a very thin homogeneous plate

b3

Fic. Al.

of the shape of the area would balance: it is the point

at which, if the area were concentrated, its moment

about any axis would be equal to the moment of the

area as originally distributed. Calling y the distance

from the X-axis to the centroid of the area 4, a an element
267
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of the area, and y the distance of that elernent from
the X-axis:
Ay = Zay,
- __Za

4

And calling ¥ the distance of the centroid of the area
from the Y-axis, and x the distance of an element of the
area from that axis,
x . 20%
A

The axes may be chosen arbitrarily (Fig. A;). For
solids the term ‘‘ centroid "’ is synonymous with ‘‘center
of gravity,” and the latter term is also frequently used
with areas.

Aj;. AXIS OF SYMMETRY. If a straight line can be
drawn through an area dividing it into two exactly
similar halves, that line is called an axis of symmetry,
and an area that can be divided in this manner is called
a symmetrical area. The areas shown in Fig. A, are

A
PP

Fic. A,.

symmetrical areas and the axes shown are axes of sym-
metry. If there is an axis of symmetry in an area, the
centroid is located on that axis. This fact simplifies the
solution for locating the centroids of a large number of
areas.

A,. CENTROID OF A TRIANGLE. Imagine the triangle
to be made up of a large number of strips of very small
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width parallel to the base. Each strip may be considered
an element of the area. The centroid of any strip CD,
Fig. A;, is at the middle point of its length. The cen-
troids of all the other strips parallel to the base come at
the middle of their lengths. The line joining the centers
of all these strips is a straight line and is called a median.

m

B
Fic. Aa.

The centroid of the entire triangle falls on the median
AB, since the centroids of all its elements fall on that
line. If the triangle is considered as being made up of
strips parallel to another side it is shown by the same
reasoning that the centroid of the triangle lies on another
median. Therefore, the centroid of a triangle is at the
intersection of the medians, which is at a distance of one-
third the altitude from the base.

A;. CENTROID OF A SECTOR OF A CIRCULAR AREA.
The centroid of a circular sector may be located in the
following manner: Let the angle at the center subtended
by the radii be 2 «, and 7 be the radius (Fig. A;). Take
the X-axis as the axis of symmetry. Theny = 0. Con-
sider the sector as being made up of a great number of
triangular elements, as OAB. The distance of the cen-
troid of the triangle from O is £ 7, and the distance from
the V-axis or x is 27cosf. Draw the arc CED with
radius equal to 2 7. The centroids of all elements of the
sector fall on this arc. The total area of the sector may
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be represented by the length of the arc CED, and the
area OAB may be represented in the same way by the
Y arc GF. The centroid
of the sector would be
the same as if the en-
tire area were concen-
trated on the arc CED.
Draw GH perpendicu-
lar to the X-axis and
HF parallel to that
axis. Since FG is very
small it may be taken
as a straight line.
The angle FGH equals
6. The-moment of the
area of the triangle
OAB about the Y-
axis is x (GF) =
2 7 cos 0 (GF), and the
moment of the total
sector equals the sum-
mation of all such expressions, and is Z %7 cos 8 (GF).
This sum divided by the total area gives x. The area
of the sector equals CED, which equals 7 2 ¢ = § rq,

= Z2%rcosf(GF) _Z(GF)cosf_ 2 (GH),

F1c. A..

5
$ra 2a 2a

(GF) cos 8 = (GH), and the summation of all such lengths

equals

(CD) =2-%2rsina = $rsina,
.=_Z2(GF)cosf _gsina _ 2, sina
o 2« 2 3 @
The angle « must be expressed in radians in applying this
formula.

s 4 4 4r
When « = 5 the sector is a semicircle and ¥ = 3;
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* As. CENTROIDS OF COMPOSITE AREAS. For such
sections as often occur in practice, where they are built up
of several different parts, or when the area may be divided
into simpler areas, the centroid of the area can be ob-
Zay
i
to the section. The method is most readily understood
from an example. Let it be required to locate the cen-
troid of the channel section shown in Fig. A;. Divide

tained by applying the fundamental formula ¥ =

—> 47—
i
A i 4 B
4, [¢]
T L, S
F16. As. i

the section into three rectangles A, B, and C. The
following tabulated values are then found:

Part. Area = a. y ay
A 4X.4=1.6 2.0 3.200
B 4X.4=1.6 2.0 3.200
@ 5.2 X.4 = 2.08 0.2 © 0.416

A = 5.28 square inches, Zay= 6.816,

5= 8818 _ | 29 inch
Y =528 s 7
Since the Y-axis is an axis of symmetry ¥ = o.
Another method easily applied for certain sections
results from subtracting moments. The solution of the

above example by this method is to consider the whole
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rectangle 4 inches by 6 inches with the rectangle 3.6
inches by 5.2 inches cut away from the top as indicated

Fic. Ae.

in Fig. As. The following table is then obtained:

Part. l Area = a. y ay
A 6 X4 =24.00 2 48.000
B 5.2 X 3.6 =18.72 2]32 41.184
— ) .
A =5.28, Tay= 6.816, ¥= o) = 1.29 inches.

A;. MOMENT OF INERTIA. The moment of inertia of
an area is the summation of the products obtained by

]

Y a
LESE |
¥

M

F1c. A

>
2

x

multiplying each elementary part of the area by the
square. of its distance from an axis. The axis taken is
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called the inertia axis. Thus the moment of inertia of
an area shown in Fig. A; with respect to the X-axis is:

I, = Zay?,
and the moment of inertia with respect to the Y-axis is
=2 laxt,

These expressions are for the moment of inertia of the
area about axes in the plane of the area.

Since the moment of inertia is the product of an area
and a length squared, the units in which it is expressed
are L2 X L? = L* a length to the fourth power.

Az. THE RADIUS OF GYRATION. The radius of gyra-
tion with respect to an axis is defined as the square root
of the quotient obtained by dividing the moment of
inertia of the area with respect to the same axis by the
area. Thus, if I is the moment of inertia and 4 is the
area, the radius of gyration is

e \/Z .
A4
It is seen that the radius of gyration gives the position
for which a concentration of the area would give the
same moment of inertia as is found for the distributed

area. The value of 7 should not be confused with the
distance to the centroid of the area.

Ay. POLAR MOMENT OF INERTIA. THE RELATION
BETWEEN THE POLAR MOMENT OF INERTIA AND /.
AND I,. The moment of inertia of an area about an axis
perpendicular to the plane of the area is the polar mo-
ment of inertia and is obtained by taking the sum of the
products formed by multiplying each element of the area
by the square of its perpendicular distance to the axis.
If the axis is perpendicular to the plane at O in Fig. As,
the distance to an element is

p=Vy+a
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The polar moment of inertia of the area equals T ap?. If J
is the polar moment of inertia of the area about that axis,

J=2ap®=Za(yt+ x?) = Zay*+ Zax?,

e J —= Iz + Iv’
since £ay? = I, and Zax? =
Also FaL + sl =1t 4l
The polar moment of inertia
4 of a plane area about an axis

perpendicular to the plane of
the area equals the sum of
the moments of inertia of the
area about two rectangular
axes in the plane of the area
intersecting the given axis.
This is the relation between
the moments of inertia about
three mutually perpendicular
Al axes, two of which lie in the
plane of the area.

Aj. RELATION BETWEEN MOMENTS OF INERTIA
ABOUT PARALLEL AXES IN THE PLANE OF THE AREA. In
Fig. A, let O be the centroid of the area, I the moment
of inertia of the area about the X-axis, and I’ the moment
of inertia of the area about the X’-axis at a distance d
from the centroidal axis. Then

I'=2a(y+d)?=2a(2+2yd +d),
I’=Zay2+2a32+232ay,
2ay2=f, Ea(fz=A¢?, and
2d Say = 2dAy = o, since y = o,

! 72 i e
gt S A And% I+Aj =T LR
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The moment of inertia of an area about an axis parallel to
a centroidal axis in the plane of the area is equal to the

XL G
F16. A,.

moment of inertia about the centroidal axis plus the area
times the square of the distance between the two axes.
If the moment of inertia of an area about any axis is
given, that for any other parallel axis can be obtained.
First, the moment of inertia about the centroidal axis
must be obtained by the formula I = I’ — Ad®. Second,
the moment of inertia about the parallel axis can be
obtained by the use of the formula I’ = I+ A4d”.

A;;. THE MOMENT OF INERTIA OF A PARALLELO-
GRAM ABOUT A CENTROIDAL AXIS IN THE PLANE OF
THE AREA. The inertia axis is taken parallel to opposite
sides. b is the breadth of the parallelogram and d is the
depth perpendicular to the chosen axis, Fig. Ay. Let the
area be divided into a large number #, of equal strips par-
allel to the axis, each strip being taken so small in width
that it is an element of the given area. The width of

each strip isg'z , and the area of each strip is
e = éb.
n
Let the strip shown be the pth one from the axis in which

p is any number up to o then the distance from the axis



276 APPENDIX [Arp, A
to the element of the area shown is
d
P

The moment of inertia of the parallelogram about the
centroidal axis is

Bor- Sl - S0 -5

/

<>
- oY

Fic. Ay_o.

To obtain the moment of inertia for the area of the paral-
lelogram above the axis, p must represent all numbers up

tog. The same is true for the area below the axis,

therefore,

L=2gS(etzt o tpt o +(2)).

nd 2
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From algebra,
’—Z<Z 4 1) (n+ 1)

2(12+22+ iy +<§>2)=2 6

_n+3ntt2n
24 :
ot 3 3 3
I,=b—@ ><(n +3n3+2n),
12 n
i b 3 2),
e I2 X(I+n+n2)

The greater n is made the more nearly is the true value
for I obtained, and when n becomes infinitely great the
exact value of the moment of inertia is obtained. For

2 = 2
this condltlon% and p become zero,

s 3
b,

12

The radius of gyration with respect to the centroidal
axis is
T bd? | a? d
r=ya=y = SR
The moment of inertia of a parallelogram about one
of its sides is often needed, and by the application of the
formula

I'=T1+Ad,
bd? 2 4hdd o bd® | bd?
A e
The corresponding radius of gyration is
RV e
V3

The rectangle is the usual form of parallelogram for
which the moment of inertia is needed.
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A;;. THE MOMENT OF INERTIA OF A TRIANGLE
ABOUT ITS CENTROIDAL AXIS. The moment of inertia
3
of the parallelogram about the X’-axis, Fig. Ay, is %—
The rectangle may be considered as being made up of
two triangles ABC and ABD, both equal and similar.
Consequently the moments of inertia of the two tri-
angles about the X’-axis are equal. Therefore, the
moment of inertia of one of the triangles about that
axis is bd3 bd3

L'=— +2=
12 24

This axis is at the distance g from the centroidal axis
of the triangle (Fig. A1),

I.=1I1'— Ad,

7 bd@ bd _ d* bd?

z =

- AT e
The corresponding value of the radius of gyration is
LA
, NG
b is the base of the triangle and d is the altitude.

A;;. THE MOMENT OF INERTIA OF A CIRCULAR AREA.
Let d be the diameter of the circle. Let the area be
divided into a great number, #, of elementary annular
strips concentric with the entire area, Fig. Aj;;. The

width of each strip will be j——n Let the strip shown in

Fig. A3 be the pth strip from the center, then the radius
of this strip is

Py . 8
2n
The area of the element is
mpd 4 wpd?

a=———><————=—i-
n 2n 2n
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The polar moment of inertia of the entire area about the
axis perpendicular to the area at O is

d2 [ pd
J=2azz=zzpn2<fn> 811“2;p3

in which p represents all numbers up to =.

SPE=Z@ B P4,

>

Fi6. Ays.
From algebra,
2(13+23+ +P3+ +n2)
_n(n+ I)2 n“-i—2n3+n2

4 4
_xd n4+2n3+n2) 7rd4( )
S ( 4nt + s 4 n?
Since # should be made inﬁnitely great to obtam the true
moment of inertia, ﬁ and — 4 6 reduce to zero, and
_wd!

. e A

32
;_\/Z_L.
Y A it g
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From Art. 49 J = I, + I, and from the symmetry of
the figure I = I,

-

wd

= —

6

I,=1,=

NN
=

r: =ty =

LM

I. is the moment of inertia of the circle about a diameter.

Ay. MOMENT OF INERTIA OF COMPOSITE AREAS.
In order to obtain the moment of inertia of a built-up
section (composite area) for a given axis the area should
be divided into its simpler parts, and the moment of
inertia of each part with respect to the given axis ob-
tained. The moment of inertia of
the entire area with respect to the 8" .
axis equals the sum of the moments s 4,/ —
of inertia of its component parts ===t 1=
with respect to the axis. The ap-
plication can be understood by an
example.

Let it be required to determine
the moment of inertia and the N -
radius of gyration of a T-section Fre Al
8 inches by 9.4 inches by 0.4 inch
with respect to a centroidal axis parallel to the flange of
the T, Fig A14.

By taking moments about the X-axis,

§=8><.4)(9.2+9><.4><4.5
8X .4+9X 4
For the part 4,
>
bd* =2 8 X .064
o +bd-d =1, T32X249

= .04 -+ 19.84 = 19.88 inches.

0471 94"

B—T"

e ———

= 6.71 inches.

T
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For the part B,
I= % + 3.6 X 2.21% = 24.3 } 17.58
= 41.88 inches®.
Therefore, the moment of inertia of the section about the
centroidal axis is
I = 19.88 + 41.88 = 61.76 inches*.

T = \f— - \/61 % 3.01 inches.

ExAMPLE

1. Determine the moment of inertia and the radius of gyration
with respect to the axis through the base and the centroidal axis,
of a channel section, 4 inches by 6
inches by o.4 inch, Fig. A;;.

04" The moment of inertia can be ob-

d

————— %' tained for either axis and then trans-

’—f " A B .
1.29 " ferred to the other, or it can be
¥ A obtained for each one independently.
< That for the axis through the base
F1G. Ags. will be obtained, then the transfer to
the centroidal axis made.
2 & bds
Part. Area. ¥ d Adz oo I
1.6 2.0 2.0 6.4 2.133 8.533
B 1.6 240 250 6.4 2.133 8.533
C 2.08 0.2 0.2 .083 .027 ST
5.28 12.883 4.293 17.176

I, = 17.176 inches*, say 17.18,and 7, = \/ 157—21; = 1.8 inches.

=y=1. 29 inches. (Ex. p. 271.)
=1 — Ad—1718—528><129~1718—877
=8.4

/8. 41

1 inchest and 7 = \ = 1.26 inches.
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PROBLEMS

1. Find the distance of the centroid of a trapezoid with one
base @, the other b, and the altitude %, from the base whose
length is a.
a+24
3a+3b

2. Determine the moment of inertia and radius of gyration
with respect to the X-axis arid with respect to the ¥-axis passing
through the centroid of the area shown in Fig. 4.

Ans. I, = 39.3ins4, I, = 29.8in.4, 7, = 1.68in.

Ans. y =

4"

"
0.4” 7
5"9.75" s 3
| 3 | > %’LI N
¢ =)
0.44 : ‘
] LIy
BIGs A16- Fic. Ay].

3. Locate the centroid and determine the moment of inertia
and the radius of gyration with respect to the X and ¥ axes
through the centroid for the T-section shown in Fig. 4.

Ans. y = gorin., I, = 17.4in}

4. Calculate the moment of inertia and radius of gyration of
a circular area of diameter 4 inches with respect to the diameter
and with respect to a tangent. Also find the polar moment of
inertia with respect to the center.

5. A section is built up of two 15-in. 33-1b. channels placed
back to back. What should be the distance between them ‘to
have the moments of inertia of the section equal with respect
to the two rectangular axes passing through the centroid of the
section? Ans. 9.5 in. from back to back.
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6. Find the moment of inertia and radius of gyration with

respect to the centroidal X and ¥ axes of the I-section shown
in_F ig. Als.

7. A girder is built up of four 6-inch by 6-inch by 1-inch

—= |||

l( 1" I3

— L

F——‘*’—"_’i k13—

Fic. Am. Fic. A19. FiG. Azo.

J

12

b3

angles and a 3o-inch by 1-inch plate; determine the moment of
inertia of the section with respect to the centroidal X and ¥
axes. See Fig. A,.

8. Locate the centroid of the shaded area shown in Fig. A,
and find the moment of inertia with respect to the axis parallel
to a side and passing through the centroid.

Ans. x=y=.767in., I, =I,=.13687*in.%, I,=I,=.0075r*in.}

Prove that the moment of inertia of each of the following areas
about the centroidal axis and the corresponding radius of gyration are
as given:

9. L d T bd® — bid;® AR bd® — bdd
-0 £ 12 * 12 (04 — 6.dy)

et
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10. ﬁ
a -I-_‘lr(dd—'d#)’ F=‘\/d2+d12.
Y/ Tl R

1L
——————— _(Q"".i,—_ﬁf}) R (\/97"2—64 d
PN SEsTai 127 >
figiani 7= (Lathtit),
a . d G ANyl ey
= V2 (& + 4bb, + b
v AT R Ty % 6(b+b1) 2( +4 1+ 1)

e A )
12
d b — (b — 1)

=V ad—h®-p

=iy 2sb’+ht”
12

NSV Y R
£ \/Iz[bd—h(b-—t)]
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TABLE 21
PROPERTIES OF STANDARD LIGHT STEEL I-BEAM SECTIONS
Axis perpendicular to web. Axitsop:'?g%el
Weight Secti
gigté:' pere ligoot,, are:l;n
. Pounds. | Sq.in. I I/c - I -
Inchest. | Inches?. | Inches. | Inchest. | Inches.
24 8o 23.32 | 2088.0 | 174.0 | 9.46 | 42.86 | 1.36
20 8o 23.73 | 1467.0 | 146.7 | 7.86 | 45.81 | 1.39
20 65 19.08 | 1170.0 | 117.0 | 7.83 | 27.86 | 1.21
18 55 15.03 705.6 | 88.4 | 7.07 | 21.19 | 1.15
15 8o 23.57 | 780.1 | 105.2 | 5.79 | 41.31 | 1.32
15 60 17.67 | 60g9.0 | 81.2 | 5.87 | 25.06 | 1.21
15 42 12.48 |' 441.8 | 58.9 | 5.95 | 14.62 | 1.08
12 40 11.84 | 268.9| 44.8 | 4.77 | 13.81 | 1 08
12 Aty 9.26 | 215.8 | 36.0| 4.83| 9.50| 1.01
10 25 7937 SUr2 255 S il o=l R 680 HIoRgT
9 21 6.31 84.9 18.9| 3.67| 5.16 | 0.90
8 18 51533 56.7 14.2 | 3.27 3.78 | 0.84
o 15 4.42 36.2 10.4 | 2.86 2.67 | 0.78
6 12} 3.61 2018 7.3 2.46| 1.85] 0.72
5 ol 203 27T 4.8 2.05 | 1.23 | 0.65
4 7% 202 T 6.0 3.0/ 1.64| 0.77 ! 0.50
3 5 1.63 2.5 1.7 | 1.23 | 0.46 | 0.53
TABLE 22

PROPERTIES OF STANDARD LIGHT STEEL

CHANNEL SECTIONS

Axis parallel

Axis perpendicular to web. P ToI
Weight | Section
P e%th’ per fgot. area,
poass: Pounds. Sq. in. i e % 5
Inchest. | Inches. |Inchest. | Inches. | Inches.
15 30 9.00 | 312.6 5562 118523 0.91 | 0.79
12 20% 6.03 | 128.1| 4.61| 3.01 | 0.81 | 0.70
10 15 4.46 66.9 | 3.87 | 2.30| ©0.72 | 0.64
9 132 | 3.80| 47.3| 3.49 | 1.77| 0.67 | 0.61
8 114 3.35 32.3| 3.10| 1.33| 0.63 | 0.58
7 03 2.83 21,1 | 2.72 {098 ! o0.59 | 0.55
6 8 2580 13.0| 2.34|0.70| ©0.54 | 0.52
5 63 1.95 7.4 1.95| 0.48 | o0.50 | 0.49
4 57 1.55 3.6 1.56 | ©0.32 | ©0.45 | 0.46
3 4 1.19 1.6 I.I7 | 0.20 | 0.41 | 0.44
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TABLE 1
WEIGHTS OF VARIOUS MATERIALS USED IN CONSTRUCTION
Material. 1b.v§?§l‘§.' ft. Material. ib. ‘X:tggc}::t.,ft.
Timber....... 25 0 45 SaNASEONE ¥y e L i 1 56
Castpsong iy, 450 Gran e, s - 170
Wrought iron . 480 N anhleSSHlmin o 170
SheellTIERIET N 490 Slatepsti st mten s 175
Brassy S i 515 Terra cotta, facing. ... 110
Copper,Bronze 550 Terra cotta, fireproof-
Aluminum. . .. 160 iy A SR AN 50
BricKe s 1d ik 100 to 150 || Book tile............. 60
Limestone. ... 165 Caneretess. b w 150
TABLE 2

ULTIMATE TENSILE STRENGTH AND ULTIMATE ELONGATION
OF MATERIALS

Material, Ultimlagfa It)eex;ssi;e' sit;‘ength, Ultim:;:regnoggation,
0 DT, b L S g =, 6,000 t0 10,000 1.5
LG 0] (T D AR e TR 20,000 A3
Wrought iron............ 50,000 30.0
Structural steel.......... 60,000 25.0 t0 30.0
SEeel i WIre Sy, e e e wie 60,000 tO 250,000 10.0 t0 25.0
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TABLE 3
ULTIMATE COMPRESSIVE STRENGTH OF MATERIALS

. Ultimate compressive

Material. strength, 1b. per sq. in.
BEHNDEr. . . e it vs & 7,000
@asttiron. |5 2. SRt e 90,000
BRI Tty e, ALABEY 6,000
Brick masonry.......... 1,500
Riehiconcrete:.  suatilv: 2,500
Stone: v T LR 10,000

TABLE 4
ULTIMATE SHEARING STRENGTH OF MATERIALS
. Ultimate sheari
Material. strength, 1b. peerastl:f.gin.
Timber:

Alongioraing SNSEE 400
Across grain.......... 3,000
(b0 o A SR, & 20,000
Wrought iron........... 40,000
Structural steel......... 50,000
Rivet steel..... o d3o A 45,000

TABLE ;3
ELASTIC LIMIT OF WROUGHT IRON AND STEEL
A Elastic limit,
Material. s 1b. per st:l. 1in.
Wrought iron.......... 25,000
Structural steel........ 35,000
Hard steel............. 50,000




TABLES

TABLE

6

MODULUS OF ELASTICITY

Modulus of elasticity,

Material. 1b. per sq. in.

AL 300X il o IR ot e 1,500,000

CasthinonWester’. N 15,000,000

Wrought iron........... 25,000,000

Sl FANE Aas San iR iey 30,000,000
TABLE 7

SHEARING MODULUS OF ELASTICITY

Material.

Shearing modulus of
elasticity, lb. per sq. in.

Timber, across grain. ...
ECast,inonzge = BT LA L
Wrought iron...........
S e S b hanter ol

400,000

6,000,000
10,000,000
12,000,000

289
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TABLE 8
SAFE WORKING STRESSES IN POUNDS PER SQUARE INCH FOR

STEADY LOADS

Compression,
Bending
Material. Tension. | Shear. g (fiber).
Perpendic- Poralel
ular to s
grain. to grain.
Timber:
Cedar, white........ 800 100 180 1,100 | 1,000
Oy PEESSEae .. . <. - 600 100 180 1,100 | 1,000
T PN b 0T, 1,000 240 300 1,200 | 1,200
Fir, Washington ....[ 1,200 100 300 1,600 | 1,200
I 5 oy B R e 1,000 200 340 1,300 | 1,100
Hemlock.:........: 800 8o 180 1,000 800
Teanchipaetanis S = 8oo 120 240 1,200 | 1,300
Maple, sugar (hard).| 1,000 200 8oo 1,800 | 1,800
Maple (average)..... 8oo 160 500 1,400 | 1,200
@k, redt e Ty S goo | « 160 500 1,200 | 1,200
whiter int ot 1,000 200 600 1,750 | 1,400
Pine, longleaf....... 1,000 125 240 1,400 | 1,200
1ohIGII e S 100 200 1,000 | 1,000
ShoftlCali et ok 100 200 1,200 | 1,100
yellow, (Ark.,
CHCS) R 800 100 200 1,200 | 1,000
Spruce’ Y.t it rE e 800 100 200 1,200 | 1,000
Castdron' ¥ e Lk e 3,000 | 2,500 12,000 6,000
Wrought iron......... 12,000 9,500 12,000 12,000
Steel, structural....... 15,000 | 10,000 12,000 16,000
RN A U Bty A s o Pt Sl 8,000 18,000 (Bearing)|.......
10,000

Brickwork (in lime). ..

Brickwork (in Portland
cement)rs Al sl s {

Concrete (Portland
cement)............

110
250

350




TABLES - 201

TABLE ¢
COEFFICIENTS OF EXPANSION PER DEGREE FAHR.
Material. Coefficient of expansion.
Vi SonEySEel ey N SRy 0000050
(Castrironiatiue vt BRSTE 0000062
Wroughtiirons .\ 2 SEIME 0000067
SRS B 6T IR B T B A 0000065
TABLE 10

VALUES OF K, K/ AND C FOR PIPES UNDER EXTERIOR PRESSURE

(For use in the Carman and Carr Formula.)

Material. - IS K. (C}
Cold-drawn seamless steel...... 50,200,000 95,520 2,090
BGEISEE e R St A 25,150,000 93,365 2,474
Zapsweldedisteel 7. s bk, Bhls o e 83,270 1,025
TABLE 11

EFFICIENCY OF JOINTS

Kind of joint. SR
Single-riveted lap joint....... 50-63
Double-riveted lap joint...... 6575
Single-riveted butt joint...... 65-75
Double-riveted butt joint..... 70-80
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TABLE 12

RELATIVE STRENGTHS IN SHEAR AND BENDING

4 Maximum | Maximum | Relative | Relative
Kind of beam. vertical bending | strength in strengt}:'in
shear, moment shear. bending.
W,
w —Wi T b
1
é wi
I W/l ’yin. w - T 1 2
£ U0y A w
w w| o
bl e “
w/1#in. i -is 2 8
2 8
TABLE 13
MODULUS OF RUPTURE
0 Modulus of rupture
Material. 1b. pex'osc:-.uipu.u 2
Ihol oo e e e 7000 to gooo
Gastifon s o ke 35,000
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TABLE 14
MAXIMUM MOMENTS AND MAXIMUM DEFLECTIONS
Maximum Mazimum
Kind of beam. moment deflection
M. A.
w
wis
i W/ % _w _we
8EI
w 7 2
o —dp ]
| T w L
4 48 EI
W1 #in. wi _ 5w
8 384 EI
w
} % wi _we
8 192 EI
Wi, wi . Wi __we
% /i Z 2 % 24 384 EI




204 STRENGTH OF MATERIALS

TABLE 13

LOAD TO CAUSE A GIVEN MAXIMUM STRESS AND A GIVEN
MAXIMUM DEFLECTION

Kt e e | gl
w
~ iy &1
l E e 3 7 R
T AL
\\ 2
]
R
R - o
i
W1 %in. 8 1 764 %—A
cl ;
\i4
% | ¢ EI
7 Z 8 = 192 = A
4 EI
% w/1%/in. E 12 {—l 384 FA
4 7
1 EI
General type. a '% B T A
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TABLE 16
COEFFICIENTS OF wl FOR THE VERTICAL SHEAR AT THE
SUPPORTS OF CONTINUOUS BEAMS
No.
55
= —3iy -2 Spans
__________________ 2
oA e by PR PING 14
10 10110 10110 1
e g 3
| T 1
11 1716 1318 — 1517 )
o 28128 28128 28128 23
— —shk—1 —] 3
15 28120 1819 o8 20193 S
38 38,38 38/38 38!38 38/38 ER
[ 1 X 1 T 1 P 1 o
¥ * T ¥ H d T By 1
s 88085 4inl  _ 3iss  __GLi40  __BBl6s 41
101 108(108 1041 10411 1041308 1041704 100
* s G
D 4 - 1 3 1 1 i
l X oL EY X LY L) 1
TABLE 17
COEFFICIENTS OF -wil? FOR THE BENDING MOMENT AT
THE SUPPORTS OF CONTINUOUS BEAMS -
0.
Spans
0 % 0 3
NN T T R e AR R
L LY RS 1
0 Yo 213 0
| e T S e S K, | 3
i T T iE 71< T >
[ 38 % 358 ) A
[ 1 % . e—
0 Yis Va8 Y4 Y48 0
SRRy T e o P
) kS ) T T B o L i) 1
) "/0104 8/304 Yo u o 94
ES T i ey e (R X 5 % MEER)
) X 3 ES T L ) T T £ T 4 (]
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TABLE 18

MAXIMUM ALLOWABLE COMPRESSIVE STRESS
IN POUNDS PER SQUARE INCH, CHICAGO
BUILDING ORDINANCE, 1g10.

. Compressive stress,
Material. pounds per square inch.
RUCE]™ o . o B TR 14,000
Wrought iron.......... 10,000
Castaron’, ., & S Waw S 10,000

TABLE 19

VALUES OF ¢ USED IN RANKINE’S FORMULA

Conditions of the ends. Timber. | Castiron. | WIOUEht | gpeq
Both ends round. ........ A, s 4 &
3000 5000 36,000 25,000
4 1.78 .78 .78 .
Fixed and round......... 2408 i =1l 875 %
3000 5000 36,000 | 25,000
1
Both ends fixed.......... = u £
3000 5000 36,000 25,000
TABLE 20
TESTS ON WROUGHT IRON UNDER REPEATED STRESSES
[Wohler.)
Number of Unit-stress producing
applications. rupture.
800 52,800
107,000 48,400
450,000 30,000
10,140,000 35,000
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TABLE 21
PROPERTIES OF STANDARD LIGHT STEEL I-BEAM SECTIONS

) Axis perpendicular to web. Axx;sop‘::vreag{el
1, on
Deptn, | 0ofiet, | S
- Pounds. | Sq. in. I I/¢ y i r
Inchest. | Inches?. | Inches. | Inchest. | Inches.
24 8o 23.32 | 2088.0 | 174.0 | 9.46 | 42.86 | 1.36
20 8o 23.73 | 1467.0 | 146.7 | 7.86 | 45.81 | 1.39
20 65 19.08 | 1170.0 | 117.0 | 7.83 | 27.86 | 1.21
18 55 15.93 | 795.6 | 88.4 | 7.07 | 21.19 | T.15
15 8o 23.57 789.1 | 105.2 | 5.79 | 41.31 | 1.32
15 60 17.67 609.0 | 8r.2 | 5.87 | 25.96 | 1.21
15 42 12.48 | 441.8 | 58.9 | 5.95 | 14.62 | 1.08
12 40 11.84 268.9 | 44.8 | 4.77 1 13.81 | 1 08
12 31} 9.26 | 215.8| 36.0|4.83 | 9.50| 1.01
10 23 TR T T2 1 24.4 | 4.07 6.89 | 0.97
9 2 6.31 8.9 | 18.9| 3.67( 5.16 | 0.0
8 18 5.33 56.7 14.2 | 3.27 | 3.78 | 0.84
7 15 4.42 36.2 10.4 | 2.86 2.67 | 0.78
6 12} 3.61 21.8 5| A 1.85 | 0.72
5 o3 2ar 12.1 4.8 2z.05 | 1.23 | 0.65
4 7% 2123 6.0 3.0| 1.64 | o.77 | 0.50
3 53 1.63 25 el 22N 07408 |1 0453
TABLE 22
PROPERTIES OF STANDARD LIGHT STEEL CHANNEL SECTIONS
2y 1l Axis perpendicular to web. A’;’g Evzrba‘llel
€1,
Eg%t;' er f(g)ot 0 ;!c‘;:n
- ounds. | Sq. in. I - Ji A y
Inchest. | Inches. |Inchess.| Inches. | Inches.
15 33 9.90 312.6 5.62 | 8.23 0.9I | 0.79
12 20% O osRiE R I2CL T N4 0183 JoT x|~ 0 8T [0 570
10 15 4.46 66.0 | 3.87 | 2.30| o.72 | 0.64
9 13 | 3.89| 473 | 3.49|1.77| 0.67 | 0.61
8 11} 3.35 BaraR I aliTor T 23 8101 63! [ ot58
7 o3 2.83 2HST 2708 Eolg8! [t 05501015
6 8 2.38 13.0| 2.34|o0.70| o0.54 [ 0.52
5 63 1.95 7.4 1.95| 0.48| o0.350| 0.49
4 s 1.55 3.6 1.56|0.32| o0.45 | 0.46
% 4 I.19 1.6 1.17 { 0.20 | 0.4I | 0.44
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