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Chapter I

STRESSES AND STRAINS

I.

—

^Whenever a force or a number of forces act on a rigid body
the general effect is to put the body in what is called a state of stress.

By this is meant that there is a tendency for one part of the body
to move relatively to another as a result of the force or forces

acting on the body. For example, a colliery winding rope is said

to be in a state of stress because the force acting along the rope,

due to the weight of the cage, tends to separate the lower portion

of the rope from the upper.

x\s another example we may take the case of an engine

crank shaft. Here again, the shaft is in a state of stress because
the thrust along the connecting rod, acting at the crank pin, turns

the shaft and tends to separate one section of the shaft from
another by twisting the one relatively to the other.

Stresses are of different kinds. When the forces act m one
straight line in opposite directions, away from each other, as

represented by Fig. i, the stress is

known as a tensile stress. Thus the " '
*

colliery winding rope above referred Fig. i

to is subjected to a tensile stress due
to the forces acting on it, viz. the weight of the cage and the
force or reaction resisting this weight ; these forces act in the same
straight line but in opposite directions, away from each other. The
student is of course aware that wherever there is an action there

is an equal and opposite reaction.
** ** This is Newton's Third Law of

Fig. 2 Motion.

If the forces act in one straight

line but in opposite directions, towards each other, as represented
by Fig. 2, the stress produced is known as a compressive stress.

A I
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A vertical column supporting a roof, for example, is subjected

to a stress of this nature, the load resting on the column acting

downwards, and the reaction due to the load acting in the same
straight line but in the opposite direction, i.e. upwards.

The piston rod of a steam engine is in tension one stroke and
in compression the other.

Another kind of stress is that known as shear stress. This
kind of stress is produced when the forces apphed act parallel to

each other in opposite directions, as indicated in Fig. 3, The

J

general effect of forces acting on a body in this

i manner is to cause one portion of the body to slide

f— relatively to another. Metal plates cut in a shear-

Fig. 3
ii'ig machine are exposed to shear stress, one
portion of plate being separated from another in

consequence of two forces acting in opposite directions parallel

to each other, one on each blade of the machine.
An ordinary line shaft on which are secured driving pulleys

is exposed to shear stress, but as the force applied tends to twist

the shaft, the stress is more often spoken of as a twisting or torsional

stress.

One other kind of stress sometimes referred to is that termed
a bending stress. Thus a beam supporting a load in the manner
indicated by Fig. 4 is subjected to bending. As a matter of fact,

however, although the beam is subjected to
j

bending, the resulting stresses resolve them-
selves into tensile, compressive, and shear

stresses, all three actually existing, as will be
shown later, in the beam.

It must be understood that the stresses Fig. 4
we shall be called upon to consider are the
result of forces acting external to the body; such stresses are

usually known as external stresses. It sometimes happens that

stresses exist in a body although the body is not exposed to

any external forces. Such stresses are termed initial or internal

stresses, and are usually the result of defects in manufacture,

such as uneven cooling of metal castings. These initial stresses

cannot as a rule be estimated.
2.—Whenever a body is put in a state of stress it undergoes

a change of form or shape. This change of form is termed strain.

A body which was absolutely rigid would of course remain un-
strained, no matter how intense was the stress, but no such bodies

actually exist. If a body be of a soft and ^delding nature, such as

indiarubber, the amount of strain for a given stress may be con-

siderable, but if the body be very hard, such as tool steel, it will

be strained very little even when exposed to great stress.

2
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The nature of the strain in a body depends on the kind of

stress to which the body is exposed. Thus if the stress be a tensile

stress, i.e. the result of a simple longitudinal pull, the strain

consists of a lengthening of the body concerned, together with a

reduction of the lateral dimensions. A bar of indiarubber, for

example, when pulled in the direction of its length, and thus

exposed to tensile stress, stretches a certain amount, at the same
time undergoing contraction in both directions at right angles to

the length, and so undergoes a change of form, or is strained.

When a body is exposed to compressive stress, the result of

a push or thrust, the strain consists of a shortening of the body,
and at the same time the dimensions of the body at right angles

to the length, i.e. the breadth and width, increase.

Thus a tensile stress produces an extension or lengthening of

a bod}/, with a decrease of lateral dimensions, whilst a compressive
stress produces a contraction or shortening of the body, with an
increase of lateral dimensions.

In the case of a simple shear stress the strain consists of a

distortion or sliding of one portion of the body relatively to another.

When the stress is torsional, as in the case of a line shaft

having driving pulleys keyed upon it, the strain may be described

as being in the nature of a twist.

With regard to a body subjected to bending, as for example a
beam, the effect of the bending is to deflect the beam, so that the
strain is in the nature of a deflection.

3.

—

Measurement of Simple Tensile and Compressive
Stresses. So far we have dealt only with the meaning of the

term stress. We must now consider how the stress in a body
exposed to external forces is measured.

When a body is in a state of stress we understand that there is

a mutual action between two parts of the body, each part exerting

a fofee upon the other, and thus tending to cause the separation

of the one from the other.

Now it is of little use to the designer of a machine or structure

to know merely that any particular member of the machine or

structure is in a state of stress, as this affords him no indication

as to whether or not that member is strong enough to fulfil its

function. What he actually wishes to know is the intensit}^ of

the stress. The engineer usually measures stress in pounds or tons

per square inch or per square foot of sectional area. Consider the
case of two solid round cast-iron pillars of different diameters,
each supporting a certain load. We may assume one column to

be of large diameter and the other of small diameter, the former
being intended to carry a very heavy load and the latter a com-
paratively li^ht load. Suppose now we wished to determine which

3
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of the two columns was the better able to support the load upon
it. (We must assume the columns to be short so that the question
of buckling does not enter into the calculation. It may then be
taken that each column is subject to pure compressive stress.)

In order to do this it would be necessary to reduce the two cases

to a common basis of comparison. For instance, it is clearly im-
possible to say offhand if a column 8 inches diameter, supporting
a load of lo tons, is better able to support its load than a column

2J inches diameter bearing a load of 1*5 tons. If, however, we
reduce the total load in each case to load per square inch of sectional
area, a comparison can at once be made. For example, the

sectional area of a column 8 inches diameter is approximately

50 square inches, and as the total load is 10 tons the load on each
square inch of section will be \%='2 ton. The sectional area of

a column 2J inches diameter is 4*9 square inches, and as the load
supported by this column is 1*5 tons the load per square inch will

be ^=approximately '3 ton. Obviously, then, as the two columns
4'9

are supposed to be made of the same material, the larger column
is better able to support its load without failing than the smaller

one.

It is usual, therefore, when determining the strength of any
part of a machine or structure to calculate the load per unit area

of section, or, in other words, the stress acting over the section.

In the case of the columns above we should say then that the

stress in the larger column is '2 ton per square inch and the stress

in the smaller one 3 ton per square inch.

Sometimes the term total stress is used to denote the total load

acting on a body, and the term intensity of stress to denote the

load per unit area of the section, but throughout this work we shall

use the terms load, and force to indicate the total load or forces

acting on the body externally and the term stress to indicate the

load per unit area of the section.

Stress may be measured in any convenient units, such as

pounds or tons per square inch, kilogrammes per square centi-

metre, tons per square foot. In engineering work, and particularly

in machine design, the usual units are pounds or tons for the loads,

and square inches for the sectional areas.

4.

—

Ultimate or Breaking Stress. Having determined

the stress in any particular case, the student will naturally wish to

know of what use this is in determining whether or not the member
concerned is sufficiently strong to sustain safely the load imposed

upon it, and this we may now proceed to explain.

Every metal used in the construction of machinery has been

carefully tested with the object of determining the stress which

4
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would cause it to rupture. This stress is termed the ultimate

stress or the breaking stress. Mild steel, for example, has an

ultimate stress of about 30 tons per square inch in tension, which

means that a bar of mild steel one square inch in sectional area

would just fail under a tensile load of 30 tons. A mild steel bar of

2 square inches sectional area would break with a load of twice

30 tons, or 60 tons.

A cast-iron bar of i square inch section would break with

a tensile load of about 7-5 tons, so that the ultimate tensile stress

of cast iron is about 7*5 tons per square inch.

The same cast-iron bar, if exposed to a purely compressive

load, would require a load of about 45 tons to cause failure. Cast

iron is therefore said to have an ultimate compressive stress of

about 45 tons per square inch.

The figures quoted refer, of course, to average samples of mild

steel and cast iron. No two samples of either metal would be

found to possess exactly the same ultimate stress, as all samples

differ somewhat in structure and composition. In fact, the

ultimate stress of mild steel in tension . varies from 27 to 33 tons

per square inch, and in the case of cast iron in tension the ultimate

stress is from 5 to 15 tons. The figures above quoted represent

average values.

If, then, it is known what load per square inch of section is

required to break any particular metal and we calculate the

stress actually imposed on any member of a machine or structure

composed of this metal, we can at once say whether or not the

member is likely to fail.

Take again the case of the cast-iron columns above referred

to. It was found that the larger column was exposed to a stress

of '2 ton per square inch and the smaller one to a stress of '3 ton.

Now average cast iron has an ultimate compressive stress of

about 45 tons per square inch, so both columns are amply strong

so far as regards purely compressive stresses. We have assumed
the columns to be short, as otherwise they would be liable to

buckle and their true strength could not then be determined in

the simple manner explained.

5.—Factor of Safety. If some member of a structure be

exposed to a stress somewhat less than the ultimate stress of the

material of which the member is composed, it may be supposed

that the member is quite safe to carry the load imposed upon it.

It would of course appear that failure could not occur if the actual

stress never reached the ultimate stress. In actual practice,

however, great care is always taken to ensure that the working
stress shall never be nearly so great as the ultimate stress. Thus
it is customary for the designer of a machine to proportion the

5
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various parts in such a manner that the working stress will only
be a certain fraction of the ultimate stress. In this way a certain

margin of safety in working is ensured. The ratio of the ultimate
stress to the working stress is termed the factor of safety.

The reason for adopting a factor of safety will be evident from
the following considerations.

As already pointed out, different samples of the same material
may vary considerably in structure and composition, and conse-

quently in strength. For instance, we have seen that the tensile

strength of cast iron varies from as little as 5 tons to as much as

15 tons per square inch, whilst that of mild steel varies from
27 tons to 33 tons per square inch. There is thus an element
of uncertainty in the actual strength of the materials used,

although this need not be of great importance in the case of

mild steel or wrought iron if due care be exercised in the pro-

cess of manufacture.
Again, in the construction of the machine or structure, there

is always the possibility of bad workmanship entering into the

question, in consequence of which the actual strength of the parts

may be more or less seriously reduced.
Another factor to be considered is the deterioration or

weakening of the materials which may take place as time goes on
from various causes.

A further factor, and one of the greatest importance, is the

manner in which the loads to be sustained act on the machine.
If the loads be steady and uniform we can generally calculate

the stresses due to them, but otherwise it may be impossible to

determine them with any degree of certainty.

It is customary to class the loads acting upon a machine or

structure as dead loads or live loads. A dead load is one which
produces a constant stress or a stress which increases or decreases

very gradually.

A live load is one which is applied more or less suddenly, or

one which varies from instant to instant.

The load on a road bridge, due to tlie weight of the roadway,
is an example of a dead load, whilst the load due to the weight of

a train running rapidly over a railway bridge is a live load.

The value of the factor of safety to be adopted in any
given case naturally varies in accordance with the conditions.

Thus if the materials used in the construction are reliable

and the loads steady, a lower factor may be used than would
be required if the materials were not reliable and the loads

not steady.

In actual practice the factor of safety is seldom less than
three, i.e. the working stress is seldom more than one-third the

6
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ultimate stress ; in some cases it is as much as twelve or even
more. As an example of a structure where a comparatively low
factor of safet}^ may be adopted we may mention the steam
boiler. Here the material from which the structure is made, viz.

mild steel, is very reliable, its strength being known with cer-

tainty, the forces acting on the structure may also be calculated

accurately, and the forces are extremely steady. Further, if the
conditions of working be satisfactory, deterioration may be almost
entirely prevented. As an example of a structure where a high
factor of safety is necessary a crane may be cited. Here,
although the material may be of the best quality, the actual

loads may be applied in the nature of shocks, so that they are,

strictly speaking, indeterminate ; further, repeated application of

unsteady loads may impair the quality of the material as time
goes on, and it is most important therefore that a high factor of

safety should be adopted.
6.

—

Stress-Strain Relations: Elasticity. We have seen

that strain is a deformation of shape produced in a body by the

action of stress.

The deformation so produced may be one of two kinds, viz.

elastic or plastic. If, when the load which gives rise to the stress

is removed, the body regain its original shape, or, in other words,

if the strain entirely disappear on removing the load, the body is

said to be elastic. If, on the other hand, the body retain its de-

formed shape after removal of the load, it is said to be plastic. A
piece of indiarubber after being stretched regains its original

shape when the stretching force is removed and would therefore

be classed as an elastic body. A piece of putty or clay after being

deformed does not recover its original shape at all and would
therefore be classed as a plastic body. All the materials of

engineering possess the properties of elasticity and plasticity more
or less, but none is absolutely elastic or absolutely plastic. Both
properties may of course be useful. Thus in machine work the

property of elasticity is required in the material composing the

different members of the machine, as without it each member
exposed to stress would be permanently strained every time the

load came upon it. An example of the use of plasticity is seen in

the case of mild steel, which may be drawn into wire or forged

into various forms, and so on.

When a body after being strained does not recover its original

shape on removal of the load it is said to take on a permanent set,

the set being that part of the strain which does not disappear.

The materials mostly used in the construction of machines

—

iron and steel, for example, possess the property of elasticity in

a high degree, so far as small or moderate stresses are concerned,

7
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For instance, a bar of steel if strained by a tensile load which does

not stress it beyond a certain limit quickly regains its original form
when the load is removed. If, however, the bar be stressed

beyond the limit referred to some of the strain will not disappear

when the load is removed, and the stress in the material when the

bar thus begins to take a permanent set is termed the elastic limit

of the material.

If, then, a body be stressed beyond its elastic limit it will begin

to suffer permanent deformation, and it is obvious therefore that

the designer of a machine should take care that the stress in ever^^

member of the machine be kept well below this limit. As a

matter of fact the elastic limit is a most important factor in

determining the safety of a material, and for this reason it would
perhaps be better when fixing upon the stresses to be allowed

in any given case if regard were had to the elastic limit of the

material concerned rather than to the ultimate stress.

Suppose, for example, it were decided to adopt a factor of

safety of three when designing a certain piece of machinery. If

it so happened that the elastic limit oi the material were one-

third the breaking stress, the machme, although being worked at a

stress of only one-third the ultimate stress, would still be stressed

up to its elastic limit, and for this reason would not be safe.

The elastic limit in tension for the various qualities of iron

and steel is known, and in order to give some idea as to what
relation this bears to the ultimate stress, it may be mentioned that

for wrought iron and mild steel the elastic limit is rather raore

than one half the ultimate stress.

In the case of cast iron the elastic limit is not clearly defined ;

this metal is indeed very wanting in the property of elasticity,

and under the smallest loads, it appears that a slight amount of

permanent set is produced. The elastic limit of cast iron is

frequently assumed to be about one-third its ultimate strength.^

7.

—

Measurement of Simple Tensile and Compressive
Strains. When we speak of a body being strained we usually

understand that the body has undergone a deformation of shape

through being subjected to a stress. In the case of a rod of iron

or steel elongated a certain amount by a tensile load, we might

say that the rod had been strained to the extent of some fraction

of'an inch. In dealing with the measurement of stresses, we saw
that before we could compare the strengths of two columns of

different diameters supporting different loads we must reduce

the results to some standard or basis of comparison.

Similarly, we must have a common basis of comparison for

measuring strains. Thus if a certain bar be stretched J inch by
a certain load and another bar of the same diameter but of twice

8
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the length be stretched the same amount, then although the
extension is the same in the two cases we could not say the two
bars had been strained equally, because with the same force and
the same diameter of bar, the extension is greater the greater the

length of the bar. The element of length therefore enters the
question, and for this reason we must take it into account when
measuring strains. Hence, except when we are merely speaking
of a strain in general terms, we understand the term ** strain " to

mean elongation fer unit length. The actual strain in a stretched

bar is consequently equal to the extension divided by the original

length of the bar.

It is important to notice, then, that strain, strictly speaking,

is not extension ; the latter is an increase of length whilst the

formier is a fraction or ratio.

8.

—

Laws governing the Amount of Extension of a
Stretched Bar: Hooke's Law. An important relation between
stress and strain was discovered by Robert Hooke so far back as

1676. Hooke found that the strain produced by a stress is directly pro-

portional to the stress, providing the limit of elasticity be not exceeded.

This law is known as Hooke's law. Thus if the stress be doubled
the strain will also be doubled. If the stress be increased beyond
the elastic limit the strain increases more rapidly than it did

before the limit was reached, and Hooke's law no longer applies.

Hooke's law applies to any one kind of stress—tensile, com-
pressive, or shear stress.

In addition to the important law above defined there are

two other laws which govern the amount of extension of a bar
subjected to tensile loads within the limits of elasticity. The first

of these is that the extension is directly proportional to the length of
the bar. Thus if the length of the bar be doubled the extension
will also be doubled if the force applied and the diameter of the

bar be the same as before. According to the second law the

extension is inversely proportional to the sectional area of the bar.

That is to say, if we take two bars of the same length and material

and subject them to the same pulling force, then if one bar be
twice the sectional area of the other it will only be stretched one
half the amount which the other will be. This seems obvious from
the fact that the larger bar offers twice the amount of material

to resist the extension as does the smaller.

9.

—

Young's Modulus of Elasticity. According to Hooke's
law the strain produced in a bar subjected to tensile loads is

directly proportional to the stress which produces it if the limit

of elasticity be not exceeded.

It follows from this that the ratio of the stress to the strain

in any particular material will be a constant quantity within the

9
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iimits referred to. This ratio is known as Youngs Modulus oj

Elasticity.

Thus, Modulus of Elasticity=rr-^^.
" Stram

The modulus of elasticity of a material is a very important
constant and frequently enters into the calculations of the engineer
and machine designer ; for this reason the student should possess

clear ideas as to the exact and full meaning of the term.

A little consideration will serve to show that the modulus of

elasticity of a material is the stress which would produce unit

strain, assuming Hooke's law to hold throughout ; in other words,
it is that stress which would double the length of a bar on the
assumption that the elongation was proportional to the stress

throughout and that it was possible to stretch the bar by an
amount equal to the original length of the bar.

As a matter of fact it is quite impossible to stretch any bar
to double its length, because every material used in the construc-

tion of machinery would rupture long before it could be elongated
to such an extent ; the modulus of elasticity of a material is there-

fore an imaginary quantity, but it is nevertheless of great use, as

shall be subsequently seen.

We have seen that a stress is usually specified as so many
pounds or tons per square inch of sectional area and that a strain

is merely a fraction or an abstract number. As the modulus of

elasticity is equal to the stress divided by the strain it will be
clear that this constant is also specified in pounds or tons per

square inch of sectional area of the material.

10.

—

Weakening due to repeated Applications ofStress

:

Fatigue. Experience has shown that when a piece of metal is

subjected to a large number of repetitions of stress it tends to

become gradually weaker. Suppose, for example, a bar of mild steel

be placed in a tensile testing machine and pulled repeatedly with
a load less in amount than the load required to break it. Then it

will be found that in consequence of the repeated applications

and removals of the load the material has become weakened in

some manner, and it will be possible to break the bar eventually

with a load less than the original breaking load.

The weakening which bodies undergo as a result of repeated

applications of stress is commonly known as "fatiguCo"

The extent to which weakening occurs depends on the magni-
tude of the stresses, or on the range through which the stress

varies. If the stresses lie well within the elastic limit an indefinite

number of applications may fail to produce any appreciable weaken-
ing, but if they approach the ultimate stress of the material, com-
paratively few applications may produce rupture. If the stresses

10
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be alternately tensile and compressive the tendency to weaken
will be greater than if the stresses be all of one kind of the same
magnitude, because the range of stress in the former case is double
what it is in the latter case.

When a piece of iron or steel has become weakened by fatigue

the weakness may be corrected by annealing. This consists in

passing the weakened piece through an oven or furnace and then
allowing it to cool gradually. By so doing, the structure of the
material becomes rearranged and its strength more or less restored.

Chains, crane hooks, etc., are annealed periodically for this reason.

II.

—

Tensile Test of a Piece of Iron or Steel. With the

object of giving the student clear ideas in regard to stress, strain,

and elasticity we shall now describe somewhat briefly how a piece

of iron or steel behaves when subjected very gradually to increas-

ing tensile loads, the loads commencing from zero and being
increased until the piece breaks.

If the piece to be tested is merely a wire a tensile test can
be very simply carried out by fixing one end of the wire to some
convenient point overhead and then adding weights to the other
end. The extensions due to the loads may be measured by
means of a vernier attached to some convenient part of the wire.

When, however, the piece to be tested is a bar instead of a wire
a more elaborate testing arrangement is required. In such cases

a special machine, known as a testing macMne, is employed.
There are many varieties of tensile testing machines in use

at the present time, but the principle of action is much the same
in all of them. The specimen piece is held firmly at each end
in suitable shackles, one of which is con-

nected with a hydraulic plunger or ram,
whilst the other is connected with a lever

and weight arrangement.
In order to apph^ the tensile loads to

the specimen, hydraulic pressure is applied
to the plunger or ram, and as the pressure

can be applied and increased very steadily

the specimen is not subjected in any way
to live loads. By means of the lever and
weight arrangement the actual load put
on the specimen can be readily measured.

A general idea of the design of a
testing machine will be obtained from a
study of Fig. 5, which represents diagrammatically a simple
machine of the vertical type.

The essential parts of the machine are the main frame F.

a hydraulic cylinder C, attached to the frame, the plunger P with
II

Fig. •;
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its rod, a bracket B on the top of the frame, and a lever L with its

jockey weight W. The test piece, marked TP, is seen to be con-
nected at its lower end through the plunger rod with the plunger
P, and at its upper end with the lever L. When the hydraulic
pressure is applied, the lever, the fulcrum of which is in the jaws
of the bracket B, is maintained in balance by moving the jockey
weight W along the lever arm. The position of the weight at

any particular instant thus represents the total pull or tensile

force acting on the specimen, regard being had of course to the
amount by which W is multiplied as a result of the mechanical
advantage of the lever. Thus if W be lOO lbs. and the distance
from the fulcrum to V/ be five times the distance from the fulcrum
to the left end of the lever the total pull on the specimen will be
live times loo lbs. or 500 lbs.

The extensions due to the loads may be measured from time
to time as the test proceeds by means of a divider and a steel rule,

but if very accurate measurements be required, it is usual to

employ a special apparatus called an extensometer.

Let us consider now how the piece behaves as the load is

applied and gradually increased.

Starting with no load on the piece, the usual plan is to turn
on the water pressure until a certain small load has been applied.

The operation is then stopped whilst the load and the corresponding
extension are carefully measured and tabulated. The pressure is

then again turned on and the load increased by the same amount
as before, when the operation is again stopped, the load and the
extension measured, and the results tabulated. This procedure
is continued until the specimen breaks, the loads and the -corre-

sponding extensions being measured and tabulated at intervals

throughout the test.

In carrying out a tensile test of this nature, it would be
observed that during the early part of the test the extensions

were very small— so small, in fact, that they could not be
measured with any degree of accuracy by a divider and steel rule.

It would also be found that the extensions were approximately
proportional to the loads or the stresses, in accordance with
Hooke's law, during this portion of the test, and if the load were
removed the piece would return to its original length.

After a time, a point is reached when the above conditions no
longer obtain. The extensions will now begin to be greater for

the same increase in the load than formerly, and if the load be
removed the extension will not entirely disappear, i.e. the specimen
will have commenced to take a permanent set. The point referred

to represents, of course, the elastic limit of the material.

Shortly after the elastic limit is passed, another point, termed
12
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the yield foint, is reached. At this point the specimen draws out
considerably, the extensions now being many times the magnitude
they were previously. The extensions are indeed so great at this

stage that they may be easily measured by means of a divider and
a steel rule.

As the load is still further increased, the piece continues to

extend until rupture takes place. A peculiar action takes place

towards the end of the test. At a certain point it is found that

the bar continues to extend even if the load should be no longer

increased, and not only this, but the load may be actually reduced

and the extension will continue until the bar breaks. The ex-

planation of this peculiar action lies hi the fact that when the

maximum load is reached, the diameter of the bar at a certain

part of its length commences to be reduced in a very marked
manner. The cross sectional area of the bar at this particular

point therefore is also rapidly reduced, and consequently, although

the actual load may not be increased, the load per unit area or

the stress, on which the

strain really depends, is con-

siderably increased, with the

result stated.

The behaviour of the

bar during the test may be
shown diagrammatically by
plotting the results on
squared paper, the loads

being plotted as ordinates

and the extensions per unit

length as abscissae. Such a
diagram is known as a load-

strain diagram.
In Fig. 6 is shown one of

these load-strain diagrams.
Referring to the figure,

it will be observed that the

first portion of the diagram,
O to^ , is straight, thus show-
ing that up to the point A
the strain is directly propor-
tional to the load, or the bar
is elastic. It will also be observed that the strain is very slight

up to the latter point, although the load is comparatively great.

After point A there is a deviation from the straight line up to

point B, the extensions increasing more rapidly. At this latter point

the extensions are seen to increase rapidly, although the loads

13
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increase only slightly, and this continues until the point C is reached.

The point B represents the ^deld point. After point C the curve
rises more steeply, the extensions being less for the same increase

of load than just before ; the curve, however, gradually becomes
less steep until the point D is reached, thus showing that the

extensions are again becoming greater for the same increases in

the load.

At point D the maximum load is reached, and Irom this

point it will be noticed that the extensions increase although
the loads actually become less. The explanation of this has
already been given.

At the point E rupture of the specimen takes place.

When the tabulated results taken during the tensile testing

of a bar of iron and steel are plotted on squared paper, the loads

as ordinates and the extensions as abscissae, the resulting diagram
or curve is, as already pointed out, a load-strain diagram. It is

important to note that such a diagram is not a stress-strain diagram
(i.e. a diagram in which the stresses are plotted as ordinates and
the strains as abscissae), although it is frequently spoken of as such.

To plot a stress-strain diagram, each of the load observations

would require to be divided by the least sectional area of the

specimen at the time the observation was taken. If the sectional

area of the specimen did not alter during the loading the stress

would be proportional to the load, and a load-strain diagram
would also represent a stress-strain diagram, proper regard of

course being had to the change of scale in the two cases. We
know, however, especially in the case of ductile materials, such as

wrought iron and mild steel, that the sectional area alters very
materially during the later applications of the loads, so that for

these materials a stress-strain diagram would differ considerably

from a load-strain diagram.
During the early portion of a tensile test there is little alteration

in the sectional area of the test piece, and the load-strain and
stress-strain diagrams therefore coincide. In order to make
matters clear, the stress-strain diagram for the test represented

by Fig. 6 is shown dotted, the load-strain diagram being shown in

full. It will be observed that the two curves coincide until after

the point A, the elastic limit, is passed. After that point the

sectional area of the bar is appreciably reduced, so that the value

of the load divided by the new sectional area, i.e. the stress, is

increased. The sectional area now decreases more and more,

and the stress-strain curve consequently rises more and more
above the load-strain curve, the rise being very rapid after the

maximum load has been applied, when the latter curve commences
to fall.

14
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If a stress-strain curve were required, it would be necessary

to gauge the least lateral dimensions of the bar in addition to the

extensions each time records were taken, and to calculate the

sectional area and then divide the loads by the areas in order to

get the stresses.

12.

—

Apparent and Actual Stress. When determining the
magnitude of the stress in a loaded rod or bar, it is customar}^ to

ignore the alteration which takes place in the sectional area of the

bar, the stress being obtained by dividing the load by the original

cross sectional area.

From what has been said in the previous article, it will be
understood that this is not strictly correct. The stress obtained
by dividing the load by the original cross sectional area is some-
times termed the apparent stress to distinguish it from the actual

stress, which of course is equivalent to the load divided by the new
sectional area.

The apparent stress is, however, as already stated, always
taken in actual practice, and when it is considered that the different

members of a structure are never stressed so severely as to sufier

appreciable strain or deformation, it is obvious that there is little

necessity to take into account the very slight alteration of sectional

area which does actually take place.

So far as the ultimate or breaking stress is concerned, the
alteration in sectional area is considerable, but here again the
apparent stress is that which is referred to, this being equal to the
maximum or breaking load divided by the original sectional area.

It might be thought that, in specifying the ultimate stress, it

would be better to give the actual stress, but it must be
remembered that, although the section is very much reduced at

the point where breakage occurs, the actual load on the specimen
at the time of rupture is also much less than the maximum load
(as explained in connection with the tensile test of a piece of

iron or steel), and the actual stress does not therefore differ so
much from the apparent stress as would at first sight appear.
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Chapter II

PROPERTIES OF IMPORTANT ENGINEERING
MATERIALS

13.

—

Before going into the question of strengths, it will be
advisable to explain more or less briefly the characteristic pro-
perties of some of the principal materials used in the construction
of machinery and engineering structures generally.

An elementary knowledge of the properties of the various
materials enables the designer to decide which particular material
is the best to use for any particular purpose. An elementary
knowledge of the principal processes by which iron and steel

are produced is also essential to every engineer, as in specifications of

engineering designs and structures it is frequently stated by which
particular process the material to be employed is to be made.

Certain terms relating to tlie properties of materials are con-
stantly being used by engineers, and the exact meaning of these
terms must therefore be explained at this stage.

Tenacity.—This term is applied to denote the resistance to

fracture which a body offers when subjected to a pulling or stretch-

ing force. Generally speaking, all the metals possess this property
in a greater or less degree, and the property is a most important
one so far as regards the materials used in the construction of

machiner}^

Hardness.—A body is said to possess the property of

hardness, or to be hard, when it offers considerable resistance to

being indented by impact or pressure with another body, or to

being worn by friction with another body. Thus machine cutting

tools are made hard to prevent them from being blunted by
contact with the materials they are intended to cut.

Softness.—This is, of course, the converse of hardness.

Brittleness.—Wlien a body breaks readily on being sub-

jected to shocks, it is said to be brittle. Glass, for example, is a
brittle material, as it is easily broken by being struck, or by being

dropped on the floor.

Ductility.—This is the property possessed by certain bodies

of being so constructed that they may be drawn out in the direction

of their length, the elongation being permanent.

16
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Materials used in the manufacture of wire must possess the

property of ductihty in a high degree. The process of wire-making

consists essentially of drawing round rods through holes in a steel-

faced plate, the diameter of the first hole being slightly less than

the diameter of the rod, and repeating this operation with smaller

and smaller holes, until eventually the rod is drawn out into wire of

the particular diameter required. The material tends to become
hard and brittle as a result of being drawn out in this manner.

The most ductile metals are those which possess the properties

both of tenacity and softness.

Malleability.—A body is said to be malleable when it can

be beaten out and extended in all directions^

Welding Power.—Separate pieces of certain metals, when
heated to a high temperature, may be joined together by hammer-
ing so as to form one piecCo Such metals are said to be weldable.

14.—ENGINEERING MATERIALS. The materials princi-

pally used in engineering work are cast iron, wrought iron, steel,

copper, alloys such as brass and bronze, consisting of two or more
metals melted together, timber and masonry, the first three being

those which mostly concern us from the machine construction

point of view.

15.

—

Cast Iron. The various forms of iron and steel are all

derived from iron ores, which consist of iron in combination with

certain other elements, principally oxygen and carbon, in the form

of oxides and carbonates.

In order to extract the pure metal from the ore, it is necessary

to smelt the ore in a special furnace known as a ** blast furnace."

The operation of smelting consists of blowing a strong blast of

air on to the fuel in the furnace to generate an intense heat sufficient

to melt the iron, and then adding what is called a " flux," the object

of which is to combine with the impurities in the ore and to facilitate

their fusion. The flux unites with the impurities, forming slag, and
thus setting the greater part of the iron free. The latter, as it

melts out, falls to the bottom of the furnace, whilst the slag, being

lighter, rests on the top of the molten iron.

When a sufficient quantity of the molten metal has collected

in the bottom of the furnace, the latter is tapped, and the iron

allowed to flow out into a long channel formed in a bed of sand.

A number of smaller channels are connected at right angles with

the main channel. It is customary to speak of the main channel

as the ** sow," and the branch channels as the *' pigs."

The iron, after running down the main channel, and along the
" pigs," is allowed to cool, and as it cools it solidifies into castings,

the form of which corresponds with the shape of the "pigs."

B 17
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These castings are known commercially as pig iron, and it is

in this form that the metal is supplied to the ironfounder or the
iron manufacturer. By subjecting this pig iron to certain pro-

cesses, which will be described only very briefly, cast iron, wrought
iron, and steel are produced.

During the process of smelting, the molten iron takes up
from the fuel, etc., small percentages of a number of other
elements, such as carbon, silicon, sulphur, phosphorus, and man-
ganese. All these elements affect, in some way or another, the
properties of the metal, but the element which plays the most
important part is carbon. We shall see shortly that the principal

differences between cast iron, wrought iron, and steel depend
for the most part on the percentage of carbon contained.

Pig iron is frequently classed as cast iron, but the real cast

iron, as used for producing castings of any shape desired, is ob-
tained by melting down the pig iron again in special furnaces
known as ** cupolas." A cupola is similar to a blast furnace,

and the action is also similar. A little limestone is usually added
as a flux with the object of removing some of the impurities

which would still otherwise remain.

The pig iron obtained from the blast furnace varies consider-

ably in character, and for commercial purposes it is divided into

seven or eight varieties, classed as No. i. No. 2, etc., up to No. 8 :

but it is not necessary here to consider the characteristic properties

of these different varieties, as we are more concerned with the real

cast iron as used for making special castings.

Just as there are different varieties of pig iron, so there are

different varieties of cast iron.

Engineers and ironfounders usually divide the different

varieties of cast iron into three important classes, viz. grey, white,

and mottled cast iron, according to the appearance presented by
a fractured surface of the iron.

It has been already pointed out that the iron in the blast

furnace takes up other elements, of which the most important is

carbon. The total amount of carbon in cast iron varies from
about 2 to 5 per cent. A certain portion of this carbon is

chemicalh'' combined with the metal, whilst the remainder exists

in the free state as graphite, i.e, 's simply mechanically mixed
with the iron.

Whether any particular variety of cast iron is grey, white,

or mottled depends upon how the carbon exists in the iron. If

most of the carbon exists in the free state, the fracture of the iron

presents a dark gre}^ colour, and hence such iron is known as grey

cast iron.

If, on the other hand, all the carbon is chemically combinecj
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with the metal, the fractured surface presents a silvery white

appearance ; hence the reason for calling the iron white cast iron.

When the carbon is divided nearly equally into the combined
and the free state, the fractured surface presents a mottled appear-

ance, white with grey patches, or grey with white patches ; for

this reason such iron is called mottled iron.

The larger the proportion of the carbon chemically combined,

the harder and the more brittle is the iron. Hence the white

varieties of cast iron are more brittle and harder than the grey

varietieSe

Cast iron is of great value to the engineer, owing to the fact

that it can be melted down and run into moulds. It is thus

possible to make an object of almost any shape desired by preparing

a suitable mould. The moulds are prepared in sand, from wooden,
or in some cases metal, patterns of the particular object required.

Owing to the fact that cast iron contracts on cooling, it is necessary

to make the patterns slightly larger than the objects to be cast.

The usual allowance is about one-eighth of an inch per foot in

every direction.

When designing and making a casting the greatest care must
be taken to guard against internal stresses, which may seriously

weaken the object and thus make it a source of danger. Internal

stresses are mostly indeterminate, and for this reason alone they
should be eliminated as far as possible. To this end the designer

must exercise skill in arranging the design to the best advantage,

whilst the moulder must arrange the mould in the best possible

manner, taking particular care to avoid sudden cooling down of

any portion of the casting.

Internal stresses in castings are caused through some portions

of the casting cooling down and consequently contracting more
quickly than other portions.

The object of the designer should be to design the casting in

such a manner that all parts will cool down at as near the same
rate as possible. It is not difficult to understand that if a thin

portion adjoins a thick portion of metal, the thinner portion will

cool more rapidly than the thicker one. When the one has cooled

down, contracted, and become more or less solid, it tends to resist

the contraction of the other, whilst the latter, when it contracts,

tends to compress the portion which has already contracted. In
this way the casting becomes stressed and is consequently weakened
before being exposed to the action of the loads it is really intended
to sustain.

The designer should therefore, as far as practicable, endeavour
to avoid having a thin portion immediately adjoining a thick

portion. Where this cannot be avoided, much may be done to
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guard against internal stresses by making the change in section

as gradual as it is possible to make it, Abrupt changes of size,

sharp corners, etc, are particularly objectionable, and are a source
of serious weakness. When the molten cast iron is poured into

the mould and commences to cool, the crystals of iron arrange
themselves along lines of flow ol heat, and in the case of a sharp
corner, continuity of the arrangement of crystals is broken, with
the result that there is a line of weakness at the corner, the weakness
being more serious the sharper the corner.

All corners should consequently be rounded off with as large

a. radius as possible.

A cast-iron belt pulley is an example of a casting in which
internal stresses are very liable to be set up. The rim is thin

and possesses large cooling surface, so that it cools much quicker

than the arms which connect it with the boss of the pulley ; the

rim consequently becoines rigid sooner than the arms, and when
the latter cool they contract and so impose a stress on the rim.

If the latter be extremely thin and the arms very heavy, the
straining may be so severe as to cause fracture near the junction.

The tendency to fracture is of course increased if the cooling down
be hastened at all.

Indeed, it is no unusual occurrence for a casting which has
been cooled dowTi quickly to split up into two or more portions

shortly after it has been cast.

For general casting purposes the grey varieties of pig iron are

mostly used, because, although they require a higher temperature
to melt them than the white iron, they are more fluid in the molten
state, and they expand slightly on solidifying, thus filling up the

moulds properly and so producing well-defined castings.

For certain purposes it is of great advantage to have the

surface of a casting hardened. For instance, a surface constantly

exposed to wear would resist the wear for a much longer

period if it were made hard than it would if left soft. In such
cases the castings are cooled down comparatively rapidly at

the surfaces which require to be hardened. This is effected by
lining the mould at the part required with cast iron, the latter

being protected by a coating of loam. As. cast iron is a com-
paratively good conductor of heat, the lining thus conducts away
the heat from the molten metal in contact with it, the effect of

which is to convert the soft grey iron usually used for casting

purposes into a hard white cast iron. The finished casting con-

sists of a body of grey cast iron (which is soft and tough and the

best variety for resisting stresses) with a hardened outer surface of

white iron. Such castings are known as chilled castings.

Owing to its brittle nature cast iron is not a good material
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to resist shocks, and for this reason parts of machinery which
are exposed to shocks are generally made of a more malleable

material such as wrought iron or steeL It is, however, practicable

to impart the useful property of malleability to cast iron by a
certain process. This process consists in embedding the finished

casting in a box, surrounding it with an oxide of iron (generally

powdered red hematite), and heating it for a prolonged period out
of contact with the air. The effect of this is to remove a portion

of the carbon contained in the iron and so convert the metal into

more or less pure wrought iron, which is much more malleable,

tougher and stronger than cast iron. Castings made in this

manner are known as malleable castings.

The fact that ordinary castings can be rendered malleable is

of very great use in the engineering industry. When a piece of

machinery is required to be malleable and tough it is generally

made of wrought iron or mild steel, but intricate designs cannot
be made very well of these materials, and cast iron (or cast steel)

must be used in such cases. Ordinary cast iron, however, would
be unsuitable on account of its brittle nature, but the required

design may be made in cast iron and then rendered malleable in the
manner explained. Malleable castings thus combine to a large

extent the advantages possessed by cast iron, as regards the
ipssibility of their being made of any desired form, with those
possessed by wrought iron and mild steel, viz. toughness and
strength.

The extent to which a casting is rendered malleable naturally

depends upon the thickness of the casting and the time of exposure.

A thin casting may be malleable throughout, but a thick one will

only be malleable to a certain depth, the interior metal being
unaltered.

In addition to containing carbon, cast iron contains certain

small percentages of other elements, including silicon, manganese,
phosphorus, sulphur, etc. The various elements, as already stated,

each affect in some way or another the character of the iron„

Thus silicon renders the iron more fusible, but makes it more
brittle, and thus liable to fracture from shock. Manganese tends
to whiten the iron, and if present in too great a quantity makes
the metal hard and brittle.

Phosphorus makes cast iron more fusible and more fluid in

the molten state. Its presence is therefore desirable in those
varieties of cast iron used in the manufacture of light ornamental
castings. This element is, however, objectionable on the grounds
that it makes the metal brittle.

Sulphur is an objectionable ingredient, as it tends to reduce
the strength of the iron and to render the latter hard.
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i6.—Strength of Cast Iron. The strength of cast iron varies
within large Hmits. The average ultimate tensile stress of this

metal may be taken to be 7*5 tons per square inch. Inferior

qualities of cast iron may have an ultimate stress of only 5 tons
per square inch in tension, but in some qualities the strength is three
times this figure, whilst in a few instances the figure has reached
as much as 19 tons to the square inch.

Cast iron is exceptionally strong in compression, and is gener-
ally considered to be six times as strong in compression as in

tension, its average ultimate compressive stress being 45 tons per
square inch. The ultimate compressive stress, however, varies

from as little as 22 tons for the inferior qualities to as much as 60
tons per square inch for the best qualities.

The average shearing strength of cast iron is usually greater
than its average tensile strength ; it is often taken to be about
II tons per square inch. With some specimens, however, it has
been shown to be weaker in shear than in tension.

It has been previously pointed out that the elastic limit of

both wrought iron and mild steel is approximately one half the
ultimate stress. In the case of cast iron, however, the elastic

limit or the elastic strength is not clearly defined, but it is often

assumed to be only about one-third the ultimate strength.

17.—Commercial Tests for Cast Iron. With the object of

ascertaining whether or not a casting is sound and of good quality,

certain tests are sometimes carried out. Much of course can be
done by visual examination. Thus a good casting will present

a smooth exterior surface and will be free from blow-holes, honey-
comb, or other defects ; the various edges will be sharp and well

defined, whilst the texture will be close grained and of a uniform
character.

The test mostly applied to cast iron consists in loading trans-

versely rectangular test bars which are either cast along with the

main casting or cast separately from the same metal. The sizes

of the test bars are generally i inch wide by i inch deep by 12

inches long, and i inch wide by 2 inches deep by 36 inches long.

The bars are supported at their ends and then loaded with a certain

weight applied at mid-length. This weight should be sustained for

a certain length of time, one hour or two hours for example.
In addition to sustaining the weight without breaking,

the test bar should show a certain amount of deflection at its

centre, as this tends to show that the iron is not too hard and
brittle.

In the case of castings which are to be subjected to internal

fluid pressure, such as steam pipes, engine cylinders, etc., it is

usual to apply a hydraulic test, the castings being subjected to a
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water pressure of from two to five times the actual working
pressure.

i8.

—

"Wrought Iron. As previously pointed out, the principal
difference between cast iron, wrought iron, and steel depends mostly
on the amount of carbon contained in the metal. Cast iron, as
we have seen, contains from 2 to 5 per cent, of carbon

;

wrought iron contains very little carbon, usually not more than
about •15 per cent. Wrought iron is indeed almost pure iron.

It will be understood, then, that if the bulk of the carbon
contained in cast iron could be removed by some process, wrought
iron might be produced from cast iron.

As a matter of fact, it is possible to remove the carbon from
cast iron, and wrought iron is generally made from cast iron in

this way.
A number of processes are required in the manufacture of

wrought iron. The main process is that known as puddling. In

this process the cast iron is melted in a special furnace known as

a reverberatory furnace, and the metal is exposed to the action

of a strong current of air and is well mixed with oxidising

substances. The effect of this is to cause oxidation and con-

sequent removal of the carbon and other elements (silicon and
manganese, etc.).

As the carbon is removed, the metal becomes less fusible,

and it is eventually removed from the puddling furnace in soft

spongy masses which have been worked into large balls.

The next process is that of shingling, which consists of hammer-
ing and squeezing the balls with the object of removing the slag

mixed with the metal. The slag is largely removed during

the shingling process, the balls being gradually converted into

rectangular blocks termed blooms.

The blooms are now rolled into bars known as " puddled bars
"

by passing them between grooved rollers.

These puddled bars represent wrought iron of an inferior

quality only, as they are not homogeneous in character, whilst

they still contain a certain ainount of slag which has not been
removed during the shingling process. They have, consequently,

to be subjected to further processes, viz. piling, reheating, and
rolling. Thus the puddled bars are cut into suitable lengths and
arranged in piles, which are heated to a welding heat. When
thoroughly heated the piles are withdrawn, the bars are welded
together, and then passed through more rolls. After this treat-

ment the bars, which are now known as " merchant " bars, are

much stronger than previously, but the iron is still of inferior

quality.

The quality of the metal may be improved by repeating the
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processes of piling, reheating, and rolling once, twice, thrice, or

even four times. By repeating the processes once, ** best " bar
is produced, and by repeating twice, " best best " bar is obtained.
" Best best best," or " treble best " bars are obtained by repeating

the processes three times, i.e. by piling, reheating, and rolling four

times.

19.

—

The Characteristic Properties of Wrought Iron
are ductility and malleability, toughness and strength„ The
purer the metal, the more marked are these properties. Wrought
iron is particularly suited to the manufacture of such parts of

machines and structures as are required to sustain heavy shocks,

as, for example, connecting rod bolts, chains, etc.

Another useful property possessed by wrought iron is its

suitability for welding. When heated to a sufficiently high
temperature the metal becomes more or less viscous, and two or

more pieces in such condition may be united or welded together

by hammering. The numerous links which make up a wrought-
iron crane chain are formed from single pieces of round iron which
are bent to the required shape and then closed by welding the ends
together.

JUvSt as it is desirable to have a hardened outer surface in the

case of certain castings, so it is in the case of wrought-iron forgings.

The outer surface of a wrought-iron body may be hardened by
heating the body in contact with substances rich in carbon, such
as bone dust. By so doing the carbon in the bone dust is taken
up by the iron, and the latter is thus converted into steel at the

surface. The steel may then be hardened by immersing the body
in water. This process is known as case-hardening.

As in the case of cast iron the quahty of wrought iron may be
affected by the presence of small quantities of certain elements
in the iron. The presence of sulphur, for example, tends to

make the metal liable to crack if bent or worked at a red heat

;

this defect is termed red short. The presence of phosphorus in

wrought iron tends to make the metal brittle when cold ; this

defect is termed cold short.

20.

—

Strength of Wrought Iron. The tensile strength of

wrought iron varies within fairly large limits, and depends largely on
the extent to which the metal has been worked. Thus, repeated
forging increases the strength up to a certain point. Rolling and
hammering the metal when hot have the effect of elongating the

crystals into fibres and so increasing the tensile strength, but the

iron may be seriously weakened by overheating it. Wrought
iron having a fibrous structure has a greater strength measured
in the direction of the fibres than it has in a direction at right

angles to the fibres.
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The ultimate tensile stress of wrought iron may be taken to

be about 22 tons per square inch as an average, but it varies with
different qualities from about 18 to 26 tons. As a general rule,

wrought iron which possesses a very high tensile strength is

frequently inclined to be somewhat hard and brittle.

The ultimate strength of wrought iron in compression is

rather less than its ultimate tensile stress ; it varies from 16 to 20
tons per square inch.

In shear, wrought iron is not quite so strong as hi tension

;

the shearing strength is commonly taken to be seven-eighths of

the tensile strength.

21.

—

Commercial Tests for Wrought Iron. It has been
mentioned under the heading "Strength of Wrought Iron," that

those varieties of wrought iron which possess a very high tensile

strength are frequently inclined to be hard and brittle. An iron

which was intended to withstand shocks, even if it possessed a

high tensile strength, would clearly be quite unsuitable for its

purpose if it were at all inclined to be hard and brittle. Conse-
quently, when selecting wrought iron which is to withstand live

loads, it is not sufficient to know merely its tensile strength ; we
must know also to what extent it is ductile.

It is therefore customary, in addition to determining the

tensile strength of wrought iron, to determine at the same time
how much the metal elongates before breaking, and also in some
cases how much it contracts at the part where the breakage occurs.

Thus, in all big contracts for iron and steel v»'ork, it is specified

that the material must have a tensile strength of not less than a
certain figure, and that it shall elongate a certain percentage
measured on a certain length. In some instances the percentage
reduction of sectional area is also specified, but as the determination
of the elongation forms a simple and reliable indication as to the

ductility of the material, the contraction of area is commonly not
asked for.

The percentage elongation naturally depends on the length

of the test piece, and will be greater the shorter the length of the

piece. For this reason the length on which the extension is

measured must be specified. Usually this length is either 8 or

10 inches.

The best qualities of wrought iron elongate as much as 30
per cent, in a length of 10 inches, whilst inferior qualities may
elongate only 5 per cent, or even less. The contraction of

sectional area for the former is frequently as much as 50 per cent.,

whilst for the poor qualities it may only be 10 per cent, or even
less.

In addition to tensile and elongation tests, additional tests of
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wrought iron are sometimes made v/ith the object of ascertaining

how the iron will behave if it should require to be forged and
worked. Such tests, which are known diS forge tests, consist princi-

pally of bending specimens of the iron, hot or cold, through a
certain angle, and noting if the material exhibits any signs of

cracking. Thus, wrought-iron rivets, which are sometimes used
for boiler and bridge work, although the structures themselves are
mostly of mild steel, are required to double when cold without
exhibiting any signs of fracture.

Similarly, angle irons may be tested by being bent or flattened

out whilst hot.

The quality of wrought iron may also be judged to a large

extent by the appearance of the fracture of a broken specimen.
A good quality of iron will, generally speaking, show a fibrous

fracture, whilst an inferior quality will appear cr3'stalline or
laminated, the laminations being due to the presence of slag in

thin layers, the slag not having been removed properly during the
process of manufacture. It must, however, be pointed out that a
crystalline fracture may result through the specimen being sub-
jected to shock, so it does not follow that because a specimen shows
a crystalline fracture it must be of inferior qualit}^

22.

—

Steel. There are a great many varieties of steel used
by the engineer, the different varieties depending principally on
the percentage of carbon contained.

.The percentage of carbon varies from about "i to i*6, so that
as cast iron contains from 2 to 5 per cent, of carbon and wrought
iron usually not more than '15 per cent., steel lies intermediate

between cast iron and wrought iron.

As might be expected, steel may be made by adding carbon
to wrought iron, or by removing a portion of the carbon contained
in cast iron. As regards the latter method, the puddhng process

used for making wrought iron from cast iron by removing the
bulk of the carbon from the cast iron can be adopted for mak-
ing steel by arresting the process before the decarburisation is

complete. Steel made by this process is termed " puddled
'*

steel.

The steel used by engineers for machine and structural work
is mostly made by one or the other of two important processes,

or by a modification of these processes. These are the Bessemer
and the Siemens processes.

23.

—

In the Bessemer process, the whole of the carbon is

removed from cast iron so as to leave wrought iron, after which
sufficient carbon is added to convert the wrought iron into steel.

The process consists of first melting down in a special pear-shaped

iron vessel lined with ganister and known as a Bessemer "converter,"
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a quantity of cast iron, and then blowing air through the molten
metal. The effect of this is to remove all the carbon from the iron,

leaving molten wrought iron. In order to add to the wrought iron

the carbon necessary to convert the metal into steel a compound
of iron, rich in carbon and manganese, and known as " spiegel-

eisen," is now added to the molten mass. This completes the

process, and a few minutes after the spiegeleisen has been added
the converter is turned over and tlie steel run out into ladles, and
thence into iron moulds to form ingots.

Two kinds of steel are made by the Bessemer (and the Siemens)
process, viz. "acid" steel and "basic" steel. The acid steel is

produced when the converter is provided with an acid lining, e.g.

ganister, and the basic steel when the lining is basic in character.

In the former case, iron containing phosphorus cannot be treated,

but when the converter is provided with a basic lining, not only

phosphorus but other impurities may be removed from the iron.

In the Siemens process of steel making, pig iron is melted in

a regenerative furnace, after which pure oxidised ores are added
from time to time with the object of removing the carbon and
silicon in the pig iron. To convert the iron into steel, spiegeleisen

and ferro-manganese are then added to the molten metal.

24.—^The Siemens process of steel making occupies a much
longer time than the Bessemer, and on this account is under better

control. vSamples of the metal produced can be taken from the

furnace from time to time and the quality of the steel determined
whilst the process is being carried on. For this reason Siemens
steel is usually regarded as being more reliable than Bessemer steel.

An important modification of the Siemens process of steel

making is that known as the Siemens-Martin. In this process a
large quantity of scrap wrought iron or steel is melted with the

pig iron, so that the percentage of carbon to be removed from the
pig iron is less than in the Siemens process. No ore needs be
added to effect decarburisation. When the carbon has been
sufficiently removed, spiegeleisen or ferro-manganese is added in

sufficient quantity to produce steel of the composition required.

On the completion of the Bessemer and Siemens processes,

the molten steel is run out into ladles and cast into ingot moulds.
When the metal has solidified the ingots are placed in "soaking
'pits," where they are kept hot for some time. They are then
removed from the pits as required and passed to the rolling mills,

where they are rolled down, stage by stage, into rails, girders,

plates, etc.

The steel produced by the Bessemer and Siemens processes

possesses in a high degree the properties of ductility and strength,

whilst it is very uniform in character„ Such steel is known as mild
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steel, and it is used very largely in the construction of all classes of

machinery and in the building of ships, bridges, and so on. Mild
steel has indeed largely displaced wrought iron, as it possesses

almost all the useful properties of the latter metal, whilst it is of

even greater strength.

An advantage of the greatest importance possessed by steel

is that it can if required be cast into moulds and any desired

design of casting thus obtained. Steel castings are greatly superior

to those of iron both as regards ductility and strength, and they
are consequently of great value to the engineer in cases where
more or less complicated designs to resist heavy or variable loads

are required. For instance, toothed wheels intended to work under
severe conditions are liable to fracture at the teeth if made of cast

iron, and are therefore largely made of cast steel in modern practice.

Steam pipes intended to carry high-pressure or superheated steam
are almost invariably made of cast steel (or wrought steel) in

modern practice in preference to cast iron, and in many other

connections cast steel is superseding cast iron.

One disadvantage possessed by cast steel is that the metal
when cast is often not sound, as it contains numerous *' blow-
holes " or small cavities. With the object of remedying this the
ingots, after being run into moulds of special construction, may be
subjected to great pressure in a hydraulic press, the effect of

which is to compress the metal and so close up the cavities, at the

same time making the steel denser and of greater strength. Steel

subjected to this process is known as Whitworth's compressed steel,

after Sir Joseph Whitworth.
25.—Another important process of steel making is that known

as the cementation process, which is employed principally for

producing steels of hard temper, especially suited for cutting

instruments of all kinds.

In this process the steel is produced from wrought iron by
adding carbon to the iron. This is effected by placing bars of the

purest wrought iron in a converting funiace, covering them with
layers of charcoal, and then exposing them to a high tempera-
ture for a prolonged period, a week or more, the length of time
being governed by the particular quality of the steel required.

When the process is compL?ted and the bars taken out of the

furnace, the surface of the bars is found to be covered with blisters
;

'

for this reason the steel is termed blister steel.

Blister steel is inferior in quality, being brittle and irregular

in composition, and it must therefore be subjected to further

treatment. The bars are consequently cut up into short lengths,

piled into faggots, reheated and welded, and then hammered or

rolled. The resulting steel is termed shear steel. If the latter
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treatment be repeated, a better quality of steel known as double

shear steel is produced.
With the object of producing steel of uniform character

and composition, blister steel may be melted down in crucibles,

run into ingot moulds, and finally worked into plates, bars, etc.

The resulting metal is very homogeneous and exceptionally strong,

and is known as crucible cast steel.

The method usually employed nowadays for producing such
steel, however, consists in making the metal direct from the best

wrought-iron bars, the bars being cut up and placed in crucibles,

small quantities of charcoal, and subsequently spiegeleisen, or ferro-

manganese, being added to carburise the metal to the extent
required.

Crucible steel, in addition to being of great strength, may be
made extremely hard by being heated to redness and then plunged
in cold water, and it is therefore particularly suited to the manu-
facture of cutlery and cutting tools.

The steel made by the cementation process is commonly
termed hard steel, to distinguish it from mild steel as made by the
Bessemer and Siemens processes ; the former usually contains

over 75 per cent, of carbon, and the latter less than 5 per cent.

26.

—

Alloy Steels. Of recent years great developments have
taken place in the production of special steels known as alloy

steels. These consist of iron, and carbon with a quantity of some
other element added, such as nickel, chromium, etc. The addition

of these elements gives to the steel certain properties which render

it especially suitable for some particular purpose. Nickel steel,

for example, is much stronger and possesses a much higher elastic

limit than ordinary mild steel, whilst it is better able to resist

corrosion than mild steel. For these reasons it is now being

largely used in the manufacture of certain parts of engines and
motor cars (crank shafts and connecting rods, for instance), and also

in the manufacture of boiler tubes. Owing to its high elastic

limit, nickel steel is particularly suited to resist shocks, vibration,

etc. ; hence its adoption in the manufacture of crank shafts,

connecting rods, and suchlike. As regards the adoption of nickel

steel for boiler tubes, experiments appear to show that nickel steel

boiler tubes will last twice as long as mild steel tubes, and in view
of this and the fact that its elastic limit and ultimate strength

are so much higher, a lighter gauge of tube may be employed with
safety, an important advantage in connection with the boilers for

torpedo-boat destroyers and the like. Chromium steel possesses

great tensile strength and hardness, whilst it is more or less

malleable, providing the percentage of chromium present is not

too high ; it can be hardened like hard steel.
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27.

—

Special Steels for resisting Vibration and Shocks.
We have seen that when a piece of iron or steel is exposed to a

large number of repetitions of stress it tends to suffer deteriora-

tion in some wa}^, so that it may eventually fail with a stress

much less than the true breaking stress.

Where the conditions of working are such that the stresses

are sudden and variable, or alternating, it is important that the
material used in the manufacture of the different members of the

machine or structure should be of special quality and capable of

resisting satisfactorily for long periods the stresses imposed upon
it. The advent of the motor car, many of the working parts of

which are exposed to extremely severe conditions of working, is

no doubt largely responsible for the introduction of special steels

for resisting repeated and variable stresses. vSuch steels must
possess both a high elastic and a high tensile strength, whilst they
must be particularly tough and ductile.

A steel which has been found to possess these qualities in a

high degree is that known as vanadium steel, which consists of iron

and carbon together with a certain percentage of vanadium, and
generally a certain amount of chromium. This particular steel,

which is manufactured by Willans and Robinson, of Rugby,
possesses a high tensile strength, but imlike ordinary steel of high
tensile strength i t is not brittle, as it contains only a low percentage
of carbon.

Another type of steel particularly suited to motor-car con-

struction is Vickers nickel-chrome steel, manufactured by the

famous firm, Vickers, Sons, and Maxim. This, as its nanie will

imply, is steel containing both nickel and chromium.
From certain tests which have been carried out to show its

capability of resisting fatigue, it appears that this steel has ten

times the strength of ordinary mild steel, i.e. it will withstand ten

times as many applications of the load without failure as will mild
steel.

28.

—

Strength of Steel. As there are many distinct

varieties of steel, the strength of this metal naturally varies within

fairly wide limits.

Mild steel, which is the class of steel of most concern to the

machine designer, has a tensile strength of from 27 tons to 33 tons

per square inch.

The tensile strength of the steel used in the manufacture of

crank shafts, piston rods, etc., frequently has a tensile strength of

about 30 tons per square inch.

Mild steel is almost universally employed in the construction

of boilers and bridges. At one time wrought iron was mostly
used in boiler work, but this metal lias been superseded by mild
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steel, which is generally more ductile, and much stronger in

tension.

For bridge construction mild steel having a tensile strength

of 30 tons per square inch is commonly employed. Thus the

steel used in the construction of the tension members of the great

Forth Bridge in Scotland had a tensile strength of 30 to 33 tons

per square inch.

The strength of Whitworth's fluid compressed steel is con-

siderably greater than- that of ordinary mild steel. This steel

may indeed be manufactured to have an ultimate stress of any-
thing from 40 to 70 tons per square inch, depending on the

particular purpose for which it is required.

Some of the varieties of cast steel possess a very high tensile

strength, as much as from 50 to 60 or even 70 tons per square inch,

although some varieties have a strength very much below this

figure. Certain of the alloy and motor-car steels also possess a

high tensile strength. One of the strongest steels made is that

employed in the manufacture of wire, such as is used for wire ropes,

etc. Such steel has frequently a strength of 90 tons per square

inch, whilst in some cases the strength is considerably greater

even than this.

As regards the compressive strength of steel, this also varies

greatly with different varieties.

Thus the steel used for the compression members of the

Forth Bridge had an ultimate compressive stress of 34 to '^'j tons

per square inch, whilst some hardened steels which contain a large

amount of carbon have an ultimate stress of nearly five times
this.

The shearing strength of all classes of steel is generally lower
than the tensile strength, the ratio varying from about two-thirds

for Bessemer and crucible steel to nearly seven-eighths for Siemens-
Martin steel.

29.

—

Commercial Tests for Steel. The remarks made
under the heading " Commercial Tests for Wrought Iron " apply in

large measure to steel, particularly to mild steel. Thus, in addition

to having a certain tensile strength, mild steel must show a certain

elongation and contraction of area, and must be capable of being
bent through a certain angle or to a curve of a certain radius

without exhibiting signs of fracture.

Steel used by the Admiralty for shipbuilding is required to

have an ultimate tensile strength of not less than 26 tons per square
inch and not more than 30, with an elongation of 20 per cent, in a

length of 8 inches. Strips must be cut from the plates, heated
uniformly to a low cherry red, and cooled in water at a temperature
of 80 degrees F., and then must stand bending in a press to a curv^
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of which the inner radius is one and a half times the thickness of

the steel tested.

The Board of Trade require the steel used for the shell plates

of steam boilers to have an ultimate tensile strength of 27 to 32
tons per square inch, with an elongation of not less than 20 per
cent, on a length of 8 inches.

Furnace plates exposed to flame must have an ultimate tensile

strength of 26 to 30 tons per square inch with not less than 23 per
cent, elongation on 8 inches. A shearing from each plate exposed
to flame is taken and subjected to the same test as that required by
the Admiralty. The test for plates not exposed to flame consists

in bending the test piece cold to a curve, the inner radius of which
is equal to one and a half times the thickness of the plate.

The appearance of the fractured surface of steel gives some
indication as to the quality of the steel, but only the carrying out
of tensile and other tests such as above described furnish the

information necessar}^ to prove that the steel is of the desired

quality for the purpose for which it is intended.

30.

—

Copper. This metal, like iron, is extracted from ores,

the metal is not of sufficient importance to the machine designer but
to call for a description of the methods by which it is extracted.

The special properties possessed by copper are toughness,

malleability, and ductility. The pure metal may be worked up
by hammering, rolling, and wire-drawing into a state of great

strength, but these operations tend to make it more 01 less hard
and brittle.

Owing to its malleability and ductility copper may be readily

hammered into various shapes, rolled into plates, or drawn into

wires. It is mostly used by the mechanical engineer for the manu-
facture of steam pipes, locomotive fire boxes, and for bolts used
under such conditions as would cause them to corrode if made of

iron or steel, but as it is an exceptionally good conductor of

electricity it is largely used by the electrical engineer for many
purposes.

Copper pipes are mostly made from sheets which are bent
cold, the joints being brazed, but such pipes may be made by
electro-deposition. Small pipes are usually made by drawing,

these being known as solid drawn pipes.

The average tensile strength of copper, as cast from tlie ore

and refined, is about 10 tons per square inch, but it varies from

9 to 12 tons. By rolling, the strength may be increased to 15 or

16 tons per square inch, and by wire-drawing to as much as 30 tons.

Copper can thus be manufactured of the strength almost of wrought
iron or mild steel.

31.—Brass. Brass is an alloy of copper and zinc, or an alloy of
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copper and zinc with a little lead and tin. A common quality

consists of two parts of copper by weight to one of zinc. Lead is

sometimes added in small quantities with the object of making
the metal softer and more easy to machine. The addition of tin

tends to cause the metal to break up more readily under the

action of a cutting tool. The tensile strength of brass varies

according to the composition ; it may be as little as 7 tons per

square inch or as much as 13 tons, an average being about 9 tons.

The compressive strength of brass is about 5 tons per square inch.

Brass is much employed in the manufacture of smoke tubes

for locomotive type boilers, and for condenser tubes ; it does
not corrode when exposed to the action of water to the same
extent as does iron or steel.

32.

—

Muntz Metal is a form of brass, and differs from the

latter metal principally on account of the greater proportion of

zinc it contains ; it has a much higher tensile strength than brass,

viz. about 22 tons per square inch.

As it does not rust or become affected to any appreciable

extent when exposed to the action of sea water, it is suitable for

the manufacture of bolts exposed to conditions which would cause

them to rust if made of iron or steel.

33.

—

Bronze or Gun Metal is an alloy of copper and tin, the

former usually being present in much the larger proportion. The
greater the proportion of the tin present, the harder is the

metal. The hard varieties of bronze are much used for shaft

bearings.

Various varieties of bronze are obtained by introducing small

percentages of certain elements. Thus, the introduction of

phosphorus with the elements composing the alloy gives us
phosphor bronze, which is generally harder and stronger than
ordinary bronze.

The properties of phosphor bronze may be varied as desired,

and the alloy is employed in the manufacture of boiler fittings,

shaft bearings, tubes, pump rods, and for numerous other purposes.

34.

—

Manganese Bronze is obtained by adding ferro-man-

ganese to bronze. This alloy is largely employed for the propeller

blades of steamships, as it possesses the two qualities required of

such blades, viz. great strength, and power to resist the action of

sea water.

35.

—

Delta Metal is another variety of bronze which can be
made tough and hard. It is very suitable for making sound fine

castings, and is extensively used in hydraulic work on account of

its anti-corrosive properties.

36.—Babbit's White Metal is an alloy of tin, antimony, and
copper. It is a white metal especially suited for lining the
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bearings of shafts, as it wears smoothly and reduces friction

losses.

37. —Aluminium. Some reference should be made to this

metal, which possesses remarkable properties. Aluminium is a
white-coloured metal of exceptional lightness, being only about
one-third the weight, bulk for bulk, of iron. It is very raalleable

and ductile, and it does not rust if pure.

It has a tensile strength of from 6 to 8 tons per square inch
as cast, but as it may be drawn into wire and hammered, its

strength may be greatly increased.

Aluminium may be alloyed with other elements, such as
copper and silicon, to form what are known as aluminium bronzes,
some of which possess high tensile strength and great toughness.
Where both lightness and strength are desired, a mixture of

aluminium and a small proportion of copper forms a most suitable

alloy.

38.

—

Timber. At one time timber was employed to a fairly

large extent in constructional work, but it has since been almost
entirely superseded by iron and steel. For this reason it is

unnecessary to do more than merely refer to the strength of timber
and to the use of one or two woods still employed by the engineer
for special purposes.

Timber is frequently used in temporary structures, and may
be required to sustain fairly heavy loads. In view of this a
designer should have some knowledge of the strength of timber in

tension and compression.
English oak has a tensile strength varying from 3 to 9 tons

per square inch, teak 2 to 7, pitch pine 2 to 5, beech and -ash both
2 to 7, and elm 3 to 7. The average strength of timber is thus
seen to be very variable, but a mean figure of 4 tons per square
inch is often taken, when the particular kind of wood concerned
is not known with certainty.

The strength of timber to resist crushing varies from 2 to 5
tons per square inch, and a mean of 3J tons per square inch may
be adopted.

It is generally known that timber after being in use a certain

length of time tends to rot. The engineer, therefore, who is called

upon to determine whether or not an existing timber beam is

sufficiently strong to carry a certain load should adopt a large

factor of safety to make allowances for deterioration of the strength

of the wood and for the uncertaint}^ of the particular kind and
quality of the wood. The modulus of elasticity of timber varies

from about 1,000,000 to 3,000,000 lbs. per square inch.

The principal uses to which timber is put at the present time
by the machine designer are for the construction of pulleys, the
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sheaves of pulley blocks, and for shaft bearings. It may be
mentioned that wood pulleys are sometimes employed for belt

driving, as they possess certain advantages over iron pulleys.

Oak and boxwood are occasionally used for bearings of

machinery. For bearings which have to work in water, a special

wood known as lignum-vitae is very suitable and is much used in

such cases.

39.

—

Masonry. Other materials used by the engineer in

addition to those mentioned in the foregoing are brickwork, stone-

work, and concrete. These materials are used in the building of

machinery and engine foundations, piers, and so on, and are

generally employed for sustaining compressive loads only.

The crushing strength of brickwork as a whole is much less

than that of the individual bricks, which have an ultimate strength
^''arying from f ton to 3 or 4 tons per square inch. The mortar is

an important factor in determining the actual strength of the
brickwork.

The crushing strength of stone varies considerably, but an
ultimate stress of 3 tons per square inch may be taken as an
average figure.

The crushing strength of concrete averages about i ton per
square inch.

Of recent years great developments in the uses of concrete

for constructional purposes have taken place. As used by itself

concrete is of little use to the engineer for taking tensile loads,

because its tensile strength is very low. It is, however, practicable

to reinforce the strength of the concrete by embedding in it steel

bars, matters being so arranged that the steel work takes the tensile

stresses, and the concrete the compressive stresses. Concrete
reinforced in this way is known as reinforced concrete, and in the

construction of buildings, beams and columns of reinforced

concrete are being very largely used at the present time.
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Chapter III

CALCULATION OF SIMPLE STRESSES

40.

—

Having read the previous descriptive matter carefully, the

student should now have clear ideas regarding stresses and strains

and the characteristic properties of engineering materials, and we
shall next consider how such stresses and strains are calculated,

with the obj ect of determining whether or not any particular piece

of machinery is capable of withstanding safely the load which may
be imposed upon it under actual working conditions.

In the case of a simple tensile or compressive force acting on
a bar or column, we have the following relation :

—

Let F= total force or load in pounds,

,, A=area of section in square inches,

„ /= stress in pounds per square inch.

Then /= ^

.

A
If the total force F be given in tons instead of pounds, the same
relation still holds good, but the stress / will then be in tons per

square inch instead of pounds. Similarly, if the force F be in

tons, and the area of the section in square feet, the stress / will

be in tons per square foot.

This formula applies equally to bars or rods in pure tension,

or to columns or struts in pure compression.

There is no better way of obtaining a sound knowledge of the

strength of materials than working through many examples. A
student will indeed learn more from a careful study of one or two
examples than from a perusal of many chapters of subject-matter.

A number of examples, with complete solutions, will be given,

therefore, as a guide, and the student should, as far as possible,

follow the methods indicated in working through any examples
which may come before him. In giving the answers to the ques-

tions, it is to be noted that there is no necessity whatever to work
out the results correct to six or seven significant figures, three or four

being quite sufficient for general purposes. It is, for instance,

absurd to say that the stress in a body is 30'50845 tons per square
inch, when we consider how many factors may affect the correct-

ness of the calculated result. If we say the stress is 30*5 or 30*5

1

tons per square inch, this is quite near enough for all practical

purposes. The slide rule gives results which are correct to three
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significant figures, and ma}^ be used with great advantage and
saving of time in calculating the results.

Worked Examples
41.— (.1) A round steel bar, 2 inches diameter, is subjected

to a total pulling force of 7500 lbs. What is the resultant stress

in the material ?

Note.—It is always advisable when working out problems of

this nature, or in fact problems generally, by means of formulae,

to write down first the particular formula applicable to the problem,
and also to state exactly what each letter of the formula represents.

Many students, when solving problems, simply write down a mass
of figures, which may be intelligible to themselves, but which
cannot possibly be followed by any one else. This method of

working is not only slovenly, but it is very objectionable for two
important reasons. In the first place, the student is extremely
liable to make mistakes, as he loses sight of the problem after a
time if the latter be at all long ; and in the second place, it is quite

impossible for an examiner to correct the work and point out any
mistake if the various steps in the working be not clearly indicated.

Generally speaking, time will be gained rather than lost if each
step in the working be made as clear as it is possible to make it.

Solution.—The relation between the force or load and the stres.s

acting on a bar is given by the formula,

where /= stress in pounds per square inch,

F= total force or load in pounds,
A=^area of section of bar in square inches.

In the question, the data given are the force acting, F, and
the diameter of the bar. The area A can of course be found when

we know the diameter : it is equal to ~d^ or -rrr^, where ^=the
.
4

diameter and ;'=the radius of the bar in inches.

We have then

A u^2 785^"*

4
F=75oo lbs.

d=2 inches.

.*. /= Z 0"=——=2300 lbs. per square inch.
•785x22 3-14 ^y t^ ^

Resultant stress in material^2390 lbs, per square inch.
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(2) What is the stress on a boiler stay ij inches diameter at

the least section, if the steam pressure in the boiler is 25 lbs. per
square inch and the stays are spaced 18 inches apart ? (Mar.

Eng. Second-Class Exam.)

A little explanation may be necessary in connection with this

problem. The object of the stays in a boiler is to stiffen such
flat surfaces as there may be which are liable to bulging or

bursting as a result of the pressure acting upon them. In the
case of a marine boiler, the front and back end plates are

stayed by means of

a number of long

bolts or stays which
pass through the

two plates and
which are nutted
at each end. (See

Fig. 7.) The ques-

tion does not state

how many stays there are, or the area of the

plates stayed, but this is not necessary, because the distance apart

of the stays is given. Referring to Fig. 7 (a), which shows an
elevation of a portion of the stayed plates, it will be understood
that each stay will support the area represented by the shaded
square, which area is 18x18=324 square inches. As there is a

pressure of 25 lbs. on each square inch of the surface, the total

pressure acting on each stay will be 25x324=8100 lbs.

FUsmg the relation, /= -^, where /=stress in stay.

Fig. 7

l^ig. 7(a)

we have

/=
8100 8100

^x 1-252 785x1-562

4

F= total force on stay,

A=sectional area,

=6610 lbs. per square inch.

Stress in each stay=6610 lbs, per square inch.

Note.—It should be observed that, strictly speaking, the area
on which pressure acts per stay is slightly less than 18x18=324
square inches, because no pressure acts at that part of the plate

through which the stay passes. The area of this part is of course

the area of the section of the stay. As an exercise, the student
may calculate what the stress is when this is taken into account.
He will find the difference is very slight,
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(3) A round rod of wrought iron is required to sustain a tensile

load of 20 tons. If the ultimate tensile stress of wrought iron be
taken to be 22 tons per square inch, and a factor of safety of five

be required, what must be the diameter of the bar ?

In this question, the first thing to be determined is the safe

working stress, /.

Now the safe working stress is obtained by dividing the
ultimate stress by the factor of safety ; thus,

c r ^ ultimate stress 22 , . ,

bate stress=-

—

-^—r-.— =^—=4'4 tons per square men.
factor of salety 5

We have now to find what diameter of bar is required to sustain

a load of 20 tons if each square inch of section is to carry 4*4 tons.

It will be best to find the area of the section first, and this is

p
found from the relation /=-t-, where the letters represent the

factors already specified.

As we require to find A in this case, F and / being already
known, it is convenient to rearrange the formula, or to state what
the factor to be found. A, is. Thus

A=->=- =4*55 square inches.
J 4'4

Thus the rod must have a sectional area of 4*55 square inches.

To find the diameter from the sectional area, we use the relation

--^^=A, where ^=diameter. From this,

TT TT

4
We have just found A to be 4*55 square inches.

.'. ^^2^/^^^2n/i'45=2XI'203=^ 2'4o6 inches.

A bar 2 "406 inches diameter would therefore be required.

In actual practice, a bar 2|- inches diameter would most likely be
used, as it is not necessary to make the diameter of exactly the
size calculated, but to take the nearest one-sixteenth or one-eighth

of an inch, keeping of course on the safe side.

42.

—

Calculations of Simple Strains. In Chapter I. it was
explained that a tensile strain is, strictly speaking, a ratio, i.e. the
ratio of the increase of length of a body, due to the stress, to the
original length of the bod}/.

Taking the simple case of a bar subjected to a tensile load,
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let /=length of the bar before applying the load,

:\:= extension due to the load,

^= strain.

Then the general relation is,

X

It is to be noted that x and / may be measured in any units

of length, such as inches or feet, because the strain j is simply a

ratio, and therefore independent of the units employed. It is,

however, important to note that whatever unit of length be
employed, the same unit must be used for both x and /. For
instance, if / be measured in inches, the extension x must also

be measured in inches ; whilst if I be measured in feet, x must like-

wise be measured in feet. So long as the units are the same, the
ratio is not altered.

Worked Examples
43.— (i) A steel wire 8 feet long is fixed at its upper end and

is extended J inch by a load applied to its lower end.. What is the
strain produced ?

The general relation for tensile strain is,

X

where ^=the strain, ^=the extension, and /=the original length

of the wire. The extension x is given as J inch and the length

as 8 feet. The unit of length adopted must be the same for the

extension and the length, so taking the inch as the unit, x will be

•25 and I will be 8x12=96. Hence, ^=—̂ ='0026. The strain is

therefore '0026.

Note.—A common mistake on the part of students is to write

the strain as a fraction of an inch. It must not be forgotten that

the answer is merely a fraction, and nothing must be written after it.

(2) A cast-iron column supporting a heavy load is shortened
-j'g- inch by the load. If the original length of the column was
12 feet, what is the strain ?

This question is similar to the previous one, except that

the strain is compressive instead of tensile, the column being

compressed instead of extended.
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We have x

where ^=the stram, A:=the amount of shortening of the column,
and /=the origmal length of the column.

;^=j\5-inch='o625 inch, /=I2XI2=I44 inches.

.*. e=—^='000434. The strain then is '000434.
144 =—

^

44.

—

Calculations of Moduli of Elasticity. The modulus
of elasticity of a material, as pointed out previously, although an
imaginary constant, plays an important part in engineering cal-

culations, as shall now be seen. We may remind the student that

the constant is obtained by dividing the stress in a body by the

strain which results from the stress, and that it represents, for any
particular material, the load which would double the length of a bar

of that material, one square inch sectional area, providing the bar re-

mained perfectly elastic and did not fail whilst the load was being

applied.

Let F= total tensile force or load in pounds acting on a bar.

,, A=sectional area of bar in square inches.

„ /= stress in bar in pounds per square inch.

„ /== original length of bar in inches.

„ a;=extension of bar due to the load in inches.

„ ^=the strain.

,, E=modulus of elasticity.

stress
According to the definition, Modulus of elasticity^—

—

—.
strain

Using the above symbols, E=-^ from which /=E^. Now we

F X
have seen that f=^ , and e==^^.

- A I

Substituting these relations in the equation 1^— , we have

F

e X Aa;'

7
This may be written, EA;\;=F/.

Worked Examples
45.— (i) Li a tensile test of a steel wire, a load of 100 lbs. is

found to produce an extension of '039 inch. If the diameter of the
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wire is i inch and the length 12 feet, find the stress, the strain,
and the modulus of elasticity of the steel.

Let F= force applied to wire=ioo lbs.

„ A= sectional area of wire in square inches.

„ <^=diameter of wire in inches.

„ /= stress in lbs. per square inch.

Then /=-= -^|^=_g^^^=8i5o lbs. per square inch.

Stress

=

8150 lbs, per square inch.

Let ^= strain.

„ ;\;=increase of length of wire in inches.

,, /= original length of wire in inches,

Then e=f=_:239__.ooo27i.
/ 12x12

Modulus of elasticity
_ stress_ 8150

stram "000271

=30,100,000 lbs, per square inch.

(2) Taking the modulus of elasticity of wrought iron to be
29,000,000 lbs. per square inch, find how much a wrought iron rod
18 feet long and i square inch sectional area would be extended
by a steady load of 10 tons. What would be the extension if the
rod was 2 square inches sectional area instead of i ?

We are given that the modulus of elasticity of wrought iron

is 29,000,000 lbs. per square inch, which means to say that a rod
of wrought iron i square inch in sectional area and of any length,

would be doubled in length by a force of 29,000,000 lbs. The
question is therefore one of simple proportion thus :

—

If a force of 29,000,000 lbs. will produce an extension of 18 feet,

what extension will a force of 10 tons produce ?

18 feet =18x12=216 inches.

10 tons= 10x2240=22,400 lbs.

Then 2q,ooo,ooo : 216 :: 22,400 : x, from which a;=—-^^^^429
29,000,000

••--•167 inch.

The rod would be extended by '167 inch, or roughly J of an inch.

The answer to the second part of the question is easily ob-
tained if we remember one of the laws which govern the extension
of a bar subjected to tensile loads, viz. the amount of extension is

inversely proportional to the sectional area of the bar.

If the sectional area then be doubled, the amount of the
extension will be halved, and one half of '167= '0835 inch.
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Alternative Method.—In case the above method of working is

not quite clear, the following method may be adopted. First find

the stress in the rod ; then from the relation,

Modulus of elasticity= ^,
stram

find the strain, the modulus being known.
Having found the strain and knowing the length of the rod,

the extension may be found from the relation,

o, . _increase of length

original length

rj.. C4- total load lo . . t^Thus, Stress=

—

—.
:;

=—=io tons per square men.
sectional area i

The modulus is given in lbs. per square inch, so the stress

should also be given in lbs. per square inch.

Stress=10x2240= 22,400 lbs. per square inch.

Modulus of elasticity=——r-, from which strain=
strain'

^
modulus'

22 AOO
Substituting the known values, strain= -^ = •000773.

29,000,000

origmal length,

Increase of length=strainx original length.
= 000773x18 (feet)

= •000773x18x12 (inches) = '167 inch.

Further Alternative Method.—The problem may also be worked
by the use of the general relation already given, viz.

EA;t:=F/,

where F= total tensile force on bar.

/= original length of bar.

E=modulus of elasticity.

A=sectional area of bar.

a;= extension due to the load.

What we require to find is the extension, x.

Rearranging the equation, we have
VI

F= 10x2240=22,400 lbs

/= 18x12=216 inches.

£=29,000,000 lbs.

A=i square inch.

, ^ 22,400x216 .^/-^ . ,

/. x= '^ = '167 mch.
29,000,000x1 —
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(3) A steel piston rod is 8 inches diameter, and the diameter
of the engine cyhnder is 88 inches„ Considering only the stroke

when the piston rod is in compression, find how much the rod is

shortened and also the stress in the rod, the length of the latter

being 9 feet and the effective pressure 40 lbs. per square inch.

Assume the modulus of elasticity of the steel from which the rod
has been made to be 29,000,000 lbs. per square inch.

First find the total load compressing the rod, i.e. the total

load on the piston, which is equal to the area of the piston multi-

plied by the effective pressure.

Total load=area of piston x effective pressure.

TT
X 88^x40=243,300 lbs.

4
If the rod were i square inch in sectional area, we assume that

a load of 29,000,000 lbs. would shorten it to the extent of 9x12=
108 inches.

Still making this assumption, what amount of shortening
would be produced by a load of 243,300 lbs. ?

Stating this as a proportion sum, we have
29,000,000 : 108 :: 243,300 : x

108x243,300 ^ . 1x= -t^i^— = "Q05 mch.
29,000,000

The rod would thus be shortened '905 inch if it were of i square
inch sectional area. Actually the sectional area of the rod is

— x82=50'26 square inches. The extension or shortening is

inversely proportional to the sectional area, so if the- area is

50'26 square inches instead of i square inch, the actual shortening

will be '905 -r 50"26="oi8 inch.

During one stroke, then, the piston will be shortened by
•018 inch, or nearly one-fiftieth of an inch.

c- -I total load 243,300 on, • -uStress m rod =

—

-. =-——= ^->'-> =4840 lbs. per square mch.
sectional area 50*20 ^^—^ '

During the remaining stroke, it may be mentioned, the rod
will be in tension, when it will be extended, the amount of the
extension being the same as the amount of shortening during the

previous stroke, assuming the same conditions throughout. The
total alteration of length of the piston rod during each revolution

would consequently be twice 'oiS inch, i.e. "036 inch. We are
here neglecting the small piston rod area, which should, strictly

speaking, be deducted from the area of the piston on one side.
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Chapter IV

FURTHER CONSIDERATION OF STRESS AND
STRAIN—COMPOUND AND REPEATED

STRESSES

46.

—

In the previous chapters, only stresses of a very simple
character, mostly simple tensile and compressive, have been dealt

with, and a little attention must now be devoted to the con-

sideration of stresses which are not quite so simple.

47.

—

Normal and Tangential Stresses. When we say that

a bar or rod is exposed to a simple tensile or compressive stress of

so many pounds or tons per square inch of sectional area, we
generally assume the section to be in a plane at right angles to the

axis of the bar, the stress acting normally to the section. Now,
in general, .a stress may act in a direction at any angle with any
section in a loaded bar or other body ; thus it may act either

normally to the section, obliquely, or tangentially, i.e. in a direction

parallel to the section.

When the stress acts normally, the tendency is for the two
portions lying on the two sides of the section to be drawn directly

away from each other, or to be closed directly against each other,

depending, of course, on whether the stress

is tensile or compressive.

When the stress acts tangentially, the

tendency is for the portion on one side of

the section to slide over the other portion
;

in other words, the stress is a shear stress.

If the direction of the stress is oblique

to the section, then it can be shown that

the general effect is equivalent to a certain

stress acting normally to the section, to-

gether with another stress acting tangen-
tially. For instance, suppose XY in Fig. 8

to be an imaginary section of a loaded bar,

and suppose a stress/ acts obliquely to the

section as indicated. Then the stress / may be resolved into

normal and tangential components. If be the ar.gle between
the normal to the section and the line of direction of the stress,

then the normal component of the stress is fcosO, and the
tangential component /sin ^.
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The stress/ acting at an angle to the normal to the section

has therefore the same effect as a stress equivalent to/cos B acting
normally to the section, and a tangential or shearing stress of

/sin acting parallel to the section.

In Fig. 9 is shown a block of metal subjected to a direct com-
pressive load. Considering any horizontal section of the block,

if F represent the total load, and A the area

of the section, we know from our previous
work that the stress / acting over the section

is -^. If next we consider any inclined or

oblique section, the stress acting over that

section, due to the same load, will clearly

be different in amount from that acting over
any horizontal section. As regards the

oblique section, there will be both a normal
and a tangential stress acting over the

section, whereas the stress on the horizontal

section will be purely normal.
To find the magnitude of the normal

and tangential stresses over the oblique

section, we must resolve the load F into

normal and tangential loads. Referring to

Fig. 9, if we assume the oblique section to make an angle d with
the horizontal section, the normal load on the former will be
F cos B and the tangential load F sin B.

The area of the oblique section, which for convenience of

A

>> >> i> I n

Fig. 9

reference may be represented by A,,, is
cos^'

Let /=the normal stress acting over the horizontal section.

>} I n

„ F,=

Then/„

load on the oblique section.

,, ,, stress acting over the oblique section.

,, tangential load on the oblique section.

,, ,, stress acting over the oblique section,

normal load F„ FcosJ Fcos^^^/. 2^

/,=

area of section A.

tangential load_ F^

area of section A„

A

F sin B cos B
:^/sin B cos B.

Now sin B cos B=\ sin 2B, .'.ft
/sin 2B

The sine of an angle has its maximum value when the angle

is 90 degrees, the value then being i. For the maximum value of

46



Bennett College :
'* Strength of Materials

"

the shearing stress, therefore, 20 must equal 90 degrees, i.e. 6 must
be 45 degrees.

It follows, then, that when a block of material is subjected to

a compressive load, a shearing stress is produced on all oblique

sections, the greatest stress bemg produced on sections making an
angle of 45 degrees with the horizontal sections. For this angle,

._/sin90°_/22
or one half the compressive stress acting on the horizontal sections.

The value of /„ for this angle is also ^, i.e./cos2^=/cos^45

The above is, of course, a theoretical consideration, but that it

is generally correct is proved by the fact that blocks of brittle metal,

masonry, etc., when subjected to compressive loads, commonly
fail by shearing along oblique planes, approximately at 45 degrees

to the direction of action of the load.

48.

—

Shear Stresses. A shear stress is always accompanied
by a similar stress of equal intensity at right angles to it.

This is an important theorem, which may be proved in the

following way. Let the square, abed, in Fig. 10 represent a cube
of unit thickness subjected to shearing

stresses f, acting along the opposite /s ^ ^

sides ab and cd. The general tendency ^
of these stresses, which form a couple,

is to cause the cube to rotate, and, in

order to maintain equilibrium, another
couple of equal moment and opposite /, /,
sense would be required. This couple
would be given by stresses acting

along the other sides, ad and be, in the
directions indicated by the arrows.

If we let the stresses required to /^
maintain equilibrium be represented Pi jq
by /^, then by taking moments about
any one of the four corners, a, b, c, or d, we can find the relation

between /^ and /,.. Thus, taking moments about the corner c,

fxabx bc=/^xadx cd.

The products, abxbc and adxcd, are equal to each other, so can-

celling out we get /,=/,.
The shearing stress /^ must therefore be accompanied by a

shearing stress /^ of equal intensity acting at right angles to it,

as otherwise the cube would not remain in equilibrium.
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Note that (fsXab) and (f^xad) represent the total forces acting

along the sides ab and ad respectively, the lengths be and cd repre-

senting the leverages at which these forces act.

A pure shear stress is equivalent to two equal and opposite

stresses, one tensile and the other compressive, acting at right angles

to each other.

This is another important theorem which we proceed to

explain. Reverting to the cube of Fig. lo, we have seen that if a
stress /j act along the opposite sides ab and cd, there must be a
stress of equal intensity acting along the other sides ad and be in

the direction indicated by the arrows. Assume now the cube to

be divided along one of the diagonals into two halves (see Fig. ii),

and consider the equilibrium of one
of these halves, say acd. There are

equal stresses acting along the sides

ad and cd, and if the half of the

cube under consideration be in

equilibrium, there must be a third

stress acting normally to the dia-

gonal ac. That this is so will be
made clearer if we consider that

the two forces F^ which give rise

to the two stresses/^ have the same
effect as a single force or resultant

which may be determined both in

magnitude and direction by the
well-known theorem, the parallelo-

gram of forces. The construction

of the parallelogram of forces for the case in point is shown
by dotted lines, the diagonal of the parallelogram representing

the resultant effect of the two forces F^. Clearly, to balance
this resultant effect, there must be an equal force acting in

the opposite direction from the diagonal ac. The magnitude of

this force is x/2 F„ which, of course, is greater than F^, but as it

acts over a surface which is greater in the proportion of x/2 to i

than the surfaces over which F, acts, the stress or force per unit

area is precisely the same as that due to F,, viz. /^. The stress

acting over ac will be a tensile stress.

Exactly the same reasoning may be applied to one of the

halves made by cutting the cube along the diagonal bd, to show
that there is a stress of equal intensity along bd. The latter stress

will, however, be found to be of the opposite kind to that on the

diagonal ac, i.e. compressive instead of tensile.

As the diagonals of the square are at angles of 45 degrees with
the four sides, then from the foregoing consideration we see that

48
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a pure shear stress is equivalent to two normal stresses of equal
intensity acting in directions at 45 degrees to it, one of the normal
stresses being tensile and the other compressive, the two latter

acting in directions at right angles to each other.

The correctness of the above conclusions is again confirmed
by practical experience, for it is found that if a shaft composed of

some material which is stronger in shear than in tension (cast iron

for example) be twisted until it fails, failure occurs in tension, the

fracture being an oblique one in the form of a screw surface, the

angle of the helix being approximately 45 degrees.

49.

—

Complex Stress. The simplest kind of stress is that

which acts in one direction only, such stress being produced in

rods exposed to simple tensile forces or in short columns exposed
purely to compressive forces. In these cases, the stress acts in

a longitudinal direction only. A complex state of stress is pro-

duced in a body when a number of stresses act in different directions

simultaneously. A rectangular bar, for example, may have longi-

tudinal forces applied to its ends, and, in addition, transverse

forces applied either to one or two pairs of opposite sides.

When a body is in a complex state of stress, the actual stresses

at any point may be shown to be precisely the same as those

which would be produced by a combination of three simple stresses,

either tensile or compressive, acting in directions mutually at right

angles to one another. In other words, the complex state of stress

produced at a point in a body by the application of a number of

forces acting in different directions may
be produced by three simple tensile or

compressive stresses acting mutually at

right angles to one another.

These simple stresses are termed
principal stresses, and the directions in

which they act are termed the principal

axes of stress. p^

The tensile and compressive stresses

which we found a simple shear stress to

be equivalent to in connection with
Fig. II are principal stresses, the two
acting at right angles to each other.

The third principal stress in this case

is zero.

Suppose ahcd in Fig. 12 to represent

a block of material subjected to a longi-

tudinal pull Pl and a transverse pull Pt, ana suppose we require

to find the resultant stress acting on the plane xy inclined at some
angle 9 to the axis.
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Let the normal stress on any horizontal plane due to the
longitudinal pull Pl be represented by/t, and the normal stress on
any vertical plane due to the transverse pull P^ by /x. Proceed-
ing in the same way as we did when finding the normal and tan-
gential stresses acting over the oblique section of Fig. 9, it is easy
to show that the normal stress on the section xy of Fig. 12 due to
the load Pl Is/lsIu^^, whilst the tangential stress due to the same
load Is/l sin d cos d.

Similarly, the normal stress over the section due to the load
Pj is/pcos^^ and the tangential stress —/psin OcosO.

Thus,
Let P„L=the normal load due to Pl.

P.L=

JnT=
P/T—

Then

normal stress due to Pl.
tangential load due to Pl.
tangential stress due to Pl.
normal load due to Pj.

normal stress due to Pj.

tangential load due to Pp.

tangential stress due to Pj.

A^=area of horizontal section,

Ao= ,, of oblique section.

A„= ,, of corresponding vertical section

^^=sin(9, and Ao^ ^'
sin

PLsin2|9
/Lsin2(9

=/l sin cos 60

Again,
A^

/ _P«T

sin

=cos 0, and Ao=
A.

PtCos(9

cos^
PtCOs2(9

/.
/T.

cos

Pxsin^

A_,

Pt sin cos

^/pCOS^^

ij-

_x X

A„ A;,

COS^

=/x sin COS 0.

The tangential stress due to Px acts in the opposite direction

to the tangential stress due to Pl, and must consequently be
written —/x sin cos 0.

The total normal stress due to both loads is therefore /lsIu^^
+/pCos2^, and the total tangential stress /l sin ^ cos ^+ (—/x sin ^
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cos 0)= (/l—/t) sin 9 cos 0. To find the resultant stress over the
section, and the angle at which this stress acts to the section, it

is necessary to combine the total normal and tangential stresses.

This may be done either mathematically or by a geometrical
construction. We will consider first how the two may be combined
mathematically.

As the normal and tangential stresses act in directions at

right angles to each other, the triangle of forces in this case would
be a right-angled triangle, and the resultant stress would be repre-

sented by the hypotenuse of the triangle. Remembering that
the sum of the squares of the shorter sides of a right-angled triangle

are together equal to the square of the hypotenuse, the latter is

equal to the square root of the sum of the squares of the shorter

sides. One of the shorter sides will represent the total normal stress,

which we will again denote by/,, and the other side will represent

the total tangential stress, which we will represent by/. The
resultant stress, /, will then be represented by the hypotenuse.

We have now this relation : /= sff^-Vf?-
Substituting the above values of/„ and/

/= V(/l sin^^+A cos2^)2+j(/L-/r) sin cos Of ^____
= >v//?sm¥4^L sin^^A cos^^+Zi?^ cos^^'+Zl^siu^^' cos'd-2fj^ sirv^O

/p cos^^+/p2 sin^^ cos^^

= v//L^(sin4<9+sin26/ cosW)+f'^\cos^d+smW cos^i?)

= x//L2sin2(9(sin2(9+cos26>)+//cos26'(cos2(9+sin26>).

Now sin^^+cos^^^i.

Therefore, /= <Jf-i} siYi^d+f-/ cosW.

If we let ^ represent the angle which the direction of the

resultant stress/ makes with the section xy, then the angle may
be obtained from the relation

tan<^=4«=A£m^^i^^
ft (/L-/T)sini9cos6'

Dividing numerator and denominator by cos^^, we have

r sin^^ ^ cos^^

tan t5_
cos^ cos^ _ fiM^±fj_

^
( r rx sin 6 COS 6 (fir-fi) tan 6'

^^^ ^^^ cos^^

. , /Ltan2^+/T
tan <^=: J^—^^J-J

/l-/t tan e
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50.

—

Ellipse of Stress. The above method of combining the
total normal and tangential stresses acting on the section xy of

Fig. 12 is somewhat cumbersome, so the geometrical construction
may be described.

Take any point (see Fig. 13) as centre, and describe two
circles, one of radius Oy equal to /l, and the other of radius Ox
equal to/^, any convenient scale being chosen. From the centre

draw a radius Or to make an angle d with the vertical centre

Fig- 13

line OY . Now draw a line from the centre at right angles to

Or to cut the small circle in point 5 and the large one in point t.

Draw a perpendicular from t to meet the vertical centre line in the
point w, and from point s perpendiculars to meet Ui in the point v

and the vertical centre line in point w. Join Ov.
Now in the right-angled triangle Ovu,

Ov= s/Ou^-^uv^.
Ou

But -^= cos (90— ^), .*. 0^^=0^005(90— ^)=/l sin ^.

ws
Also ^-=sin (90—^), from which ws=Os sin (90—0=/^cos^.

.§2
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Now ws=uv, .'. uv=/t-cos6. Substituting these values of Ou
and uv in the equation,

Ov= \/Ou^+uv^, we obtain

Ov= >//J^n^e+//co^.
We have shown (page 51) that the resultant stress,

It follows therefore that Ov in Fig. 13 represents the stress /in
magnitude.

That Ov also represents the stress in direction as well as in

magnitude may be proved as follows :

—

Let the angle vOu be represented by a.

Then </>--a+^.

AT , vu sw sw Ow
Also, tana= =^ =^ . -^Ou Ou Ow Ou

Now if <f>=a-\-0, we know that

, J tan a+tan d
tan ^-—-

—

'--_
^.I—tan a tan ^

Substituting in this expression the value of tan a above
found, we get

^cot (9+tan -^^cot (9+tan 0.

tan^_ A ' _/L
-cot 6>-^ tan (9 i--^

A A
Multiplying numerator and denominator byA tan 0,

tan <i=
A+Atan^g ^ A+Al^il!^

Atan^-Zl-AtanS (A-7x)tane-

A
.*. tan (^=A ^

. /) , as found previously.
[A—It) tan c/

The above construction may be repeated to find the resultant

stress, due to a longitudinal pull P^ and a transverse pull Pt,

over a section inclined at any other angle to the axis. If the

construction be applied for a number of values of so as to find

a number of points corresponding to v, and a curve be drawn
through the various points, it will be found that this curve is an
ellipse, the semi-axes of which are Oy and Ox, equal respectively

to A 2Lnd A- This ellipse is known as the ellipse of stress, and
when once it has been constructed the resultant stress on any
section at any angle to the axis may be readily obtained by
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drawing a radius from the centre 0, at right angles to the direction

of the section, to cut the outer circle, then drawing from the point

of intersection a line perpendicular to OF to cut the ellipse in a
certain point, and from the latter point drawing a line to meet the

centre of the circle ; this line then represents, to the scale chosen in

setting out the construction, the resultant stress required, and the

angle it makes with the direction of the section is the angle at

which the resultant stress acts to the section. Thus, Ov in Fig. 13
represents in magnitude and direction the resultant stress on the

oblique section xy in Fig. 12 inclined at an angle 6 to the axis, due
to the longitudinal pull Pl, and the transverse pull P^ acting

simultaneously, and the angle rOv shows the angle which the line

of action of the stress makes with the section.

The semi-axes of the ellipse of stress

represent the principal stresses, and their

directions are the principal axes of stress.

Note that if the stresses /l and /p be
equal to each other, the ellipse becomes
a circle.

51.

—

Shear Stress in combina-
tion with Tensile or Compressive
Stress. In actual practice, cases are

sometimes met with where a shear

stress acts in combination with a tensile

or a compressive stress. A shaft, for

instance, may be exposed to shear in

consequence of the turning moment
acting upon it, whilst it may also be
exposed to tension or compression at

the same time due to the bending action

caused by the weight of pulleys, fly-wheels, etc. For this reason,

it is necessary to know how to determine the equivalent tensile

or compressive stress in the material.

Let the triangle xyz of Fig. 14 represent a small element sub-
jected to a shearing stress/^ and a tensile stress/? along the side xz.

We require to find an equivalent stress, /„ which, acting along
the face xy, would balance the stresses /, and/ acting along the

face xz.

It has been already shown that a shear stress is always accom-
panied by another shear stress of equal intensity acting at right

angles to it, so it follows that there will also be a stress f, acting

along yz.

The total stress acting along yz, viz. fyz, together with the

total stress due to /, acting over the face xz, viz. f^xz will be
balanced by the horizontal component of the total stress acting
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over the face %y. The latter is /^ cos Oxy, where d is the angle

between the sides xy and xz.

Expressing this as an equation, we have,

fsyz+ftXZ=feCO?>exy. . . . . (i)

Similarly, the total stress along xz due to /^, v\'L.f,xz, will be
balanced by the vertical component of the total stress acting on
xy. The latter is /^ sin dxy.

Hence fsXz=f, sin dxy. . . > . (2)

Now divide equation (i) by xy.

Then f/-—h6

—

=fe cos 6,
•' xy •' xy •"

'

i.e. f, sin ^+/^ cos Q^fe cos .

Transposing, f, cos 9—ft cos 0=fs sin d

(/-//) cos 6*=/, sin ^. , . (3j

Divide equation (2) by :vy.

Then /,—=/, sin ^,

i.e. /^ cos O^f, sin ^. . , . . (4)

Now divide equation (3) by equation (4) to eliminate the

trigonometrical ratios.

(/.-A)cos(9_/,sin^

/j cos 6 fe sin B

fj=fl=fi

fs /;
Cross-multiplymg, fe[fe-fh =f?

This is an ordinary quadratic equation, which may be solved

in the usual manner by completing the square.

4
Extracting the square root of both sides of the equation,

•••

/'-{'W^-^+f
•

Thus, according to the solution,/^ has two values, but the one
we are concerned with is the greater one, so we take the value

having the positive sign.

The final expression is therefore

/'=l+V/-^+?-
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52.

—

Different forms of Strain. In Chapter i. we considered
the meaning of strain in connection with the stretching or crushing
of bars and columns, where the strain was in the nature of an
extension or shortening.

A strain may, however, be very different from a simple ex-
tension or shortening, and the measurement of other forms of

strain has next to be considered.

Lateral Strain : Poisson's Ratio. When a rod or bar is

extended, or a short column compressed, an alteration takes place

in the lateral dimensions, and it is found that for any given material

the transverse strain bears a certain ratio, generally denoted by —

,

O"

to the longitudinal strain, providing the limits of elasticity be not
exceeded.

Thus,
Transverse strain _ i

Longitudinal strain cr.

This ratio is usually known as Poisson's Ratio, and its value
for metals is generally between |- and J.
When the force applied is so great that

the limits of elasticity are exceeded, the
ratio is different from that relating to

elastic strain.

Shearing Strain. In specifying

a tensile strain in a rod, we measure
the extension and divide this by the
original length of the rod.

A shear strain may be measured in

two ways.
^^ig- 15 Suppose abed in Fig. 15 to repre-

sent an element subjected to shear,

the base dc being supposed held rigid. The effect of the shear-
ing action will be to distort the element into a parallelogram,
as shown by the dotted lines. Then the distortion may be
measured by the amount of slide, x, and the shearing strain by the

fraction -j, where / represents the dimension indicated in the

figure.

When the element is distorted, the angles at the corners are

altered, two opposite angles being enlarged and the other two
reduced. This change of angle may be used to measure the
strain. Expressing the angles in radians, each angle measures

originally - radians. After the distortion, two of the angles are
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TT
increased by an amount which may be represented by ^, to —[-(j),

the other two being reduced to — <^. The angle <^ thus serves as

a measure of the strain, and is termed the angle of shear.

Volumetric Strain. If a body be subjected either to

pressure or tension over all its exterior surface, it will

undergo a change of volume, without necessarily suffering dis-

tortion.

The strain produced in this way is generally termed volumetric

strain, and if V represent the original volume of the body, and v

the alteration of volume, the strain is measured bv the ratio ^.V
53.

—

Modulus of Transverse Elasticity or Rigidity. It

was shown in the first chapter that when a rod is subjected to a
tensile load, the strain produced is directly proportional to the
stress, within the limits of elasticity, and the stress bears a
constant ratio to the strain, this ratio being termed the Modulus
of Elasticity.

Similarly, it is found that when a body is subjected to shear,

the shear strain is directly proportional to the stress. The ratio

of stress to strain in this case is termed the Modulus of Transverse
Elasticity or the Modulus of Rigidity. The letter G is commonly
used to denote this constant.

Referring to Fig. 15, it is seen that shear strain may be

measured by the fraction , and the modulus of rigidity is therefore

the shear stress required to produce an amount of slide x equal to I.

If the shear strain be measured by the angle of shear, </>, then
if f, represent the stress, the modulus of rigidity, being equal to

stress divided by strain, will be denoted by-'^^

9
The modulus of rigidity is found to have a value equal to

about two-fifths the value of the modulus of elasticity.

Modulus of Cubic Elasticity. The general law which
states that strain is proportional to stress also holds good when
the strain is one of volume. The ratio of stress to strain in this

case is termed the Modulus of Cubic Elasticity, and it is generally

denoted by the letter K.

54.

—

Stress in bars of varying Section. In all our calcula-

tions dealing with the tensile stress in a loaded bar, the stress has
been found by dividing the total load by the cross sectional area

of the bar, assuming the section to be uniform throughout and
the stress to be distributed uniformly over the bar.
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It is necessary now to inquire how the stress is affected if the

bar be not of uniform section.

Consider a bar of the form shown in Fig. i6, where the section

changes abruptly at X. If this bar were loaded with a tensile

load sufficient to break it, fracture would most likely occur at X,
unless the material were very ductile. If now we calculate the

stress at a section just above X, and also at another
section just below, by dividing the load by the respective

sectional areas, the stress at the larger section would
appear to be considerably less than that at the smaller one.

If we assume the two sections to be indefinitely close

together, a little consideration will serve to show that the

real stress at X will be intermediate between the stress

found by dividing the load by the area of the larger section

X \, I J
and that found by dividing the load by the area of the

* "^
'

''' smaller section. The distribution of stress where the

abrupt change of section occurs is very unequal, and it

is evident therefore that the usual method of calculating

the stress cannot be correctly applied for sections very
close to parts where there is an abrupt change of section,

the stress not being uniformly distributed.

It so happens, however, that in materials generally

the stress rapidly distributes itself, with the result that

Fig. 16 the distribution is practically uniform at a short distance

from the change of section.

In order to distribute the stress uniformly over a bar or rod
which must change in section, the obvious thing to do is to arrange

for the section to change very gradually, and this is done by
rounding off the corners with as large a radius as practicable, as

indicated by dotted curves in Fig. 16.

When the change of section is gradual, the stress at any section

may safely be calculated by dividing the area of the section into

the load, and the result will be sufficiently accurate for all practical

purposes.

Referring to the bar of Fig. 16, fracture due to a heavy load

would, as already stated, most likely occur at X, unless the material

were very ductile. If the material were sufficiently ductile, fracture

would most probably occur well away from X, the reason for this

being that with plastic material the tendency is for the fracture

to take place at a point where the section is most free to contract.

At the section X the overlapping or projecting metal tends to

prevent the reduction of area which precedes failure of the bar.

55.

—

Stress in Compound Bars. Cases are sometimes met
with in practice where a bar of a certain material is combined
with a bar of some other material, and it is then required to
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find the stress in each bar, due to a certain load on the com^
bined bar.

Let the two bars be denoted by i and 2 respectively.

Let Aj represent the cross sectional area of i,

A 9
)> -'^2 " " " »>"•
,, E^ represent the modulus of elasticity of the material of

which bar i is made.
Let Eg represent the modulus of elasticity of the material of

which bar 2 is made.
Let F be the load on the combined bar.

,, P be the load taken by bar i.

Then F—P=load taken by bar 2.

Let fi be the stress in bar i due to the load P.

>) 7 2 " " ^ s> »» \ /

Then.
/i=a~'

Now, Stram^
modulus of elasticity'

Strain in bar i={^
El

o_/2
e;

As the two bars are combined together, the amount of stretch,

and therefore the strain, must be the same for each bar. Hence

El Eg

Substituting the values of the stresses,

jP F-P
Ai_ Aa ^j.__P^ F-P
Ej Eg ' \^i \^9

From this, by cross-multiplying,

PA2E2=(F-P)AiEi
=FAiEi-PAiEi

PAaE^+PAiEi^FAiEi

... p- FAiEi

or



Reference Library of the

In a similar manner, it can be shown that the load taken by
bar 2, which load may be called Q, is,

0_ FA2E2
^ AiEi+AaEa

'''

^=~"AE*

Having found the load taken by each bar, the stress in either

bar is readily found by dividing the load by the cross sectional

area of the bar.

' /i-A^-A^E^+AiEi • "^i-A^E^+AiE/

and /,=F=P^:a. FA,E^_^, _.^ FE,
Ag AjEi+AgEa ' AiEi+AgEg'

It will be understood that these results are only correct so

long as the limits of elasticity are not exceeded.
56.

—

Work done in Stretching a Bar : Resilience.
Mechanical work is said to be performed whenever a resistance is

overcome through space, the amount of the work being measured by
the product of the mean resistance and the space passed through.
When a bar is subjected to tensile loads in a testing machine,
work is done on the bar in stretching it. In the ordinary load-

strain diagram, the ordinates represent the loads or the resistance

offered by the bar to being stretched, and the abscissae the extensions

or the space through which the resistance is overcome. It is clear

then that the area of the load-strain diagram will represent the

work done on the bar.

The capacity of a body for resisting live loads and shocks
may be judged by the amount of work done upon it in stretching

it up to the point of fracture ; the greater the work done, the

better able is the material to resist the loads and shocks.

It is a well-known fact that bolts used for fastening parts

together which are exposed to vibration and shock, as, for example,
gas engine and steam engine connecting rod bolts, are usually

turned down for the greater part of their length to a diameter
equal to that at the bottom of the screw thread, as by so doing
the tendency to fracture in the thread is greatly reduced. The
reason for this is that if the bolts be not turned down, the straining

is mainly confined to the reduced sections at the bottom of the screw
threads, so that the work done in stretching the bolts is compara-
tively small. If, however, the bolts be turned down to a diameter
equal to that at the bottom of the thread, the straining is distributed

over a comparatively great length, and the work done in stretching

will therefore be considerably greater than it would otherwise be.
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According to Hooke's Law, the amount of stretch of a bar
subjected to tensile force is directly proportional to the stress

producing it, within the limits of elasticity. That portion of the
load strain curve up to the elastic limit will therefore be a straight

line, and the work done in stretching the bar up to the elastic

limit will consequently be represented by a triangle.

Suppose the bar is extended by an amount x when the elastic

limit is reached, the load or tensile force on the bar then being F,

and the load having been gradually applied.

If we let W represent the work done in stretching the bar up
to the elastic limit, then

W=mean resistance x space overcome.
F^-xx.
2

If/be the stress in the bar when the elastic limit is reached, and A
the sectional area of the bar, then/=-^, from which F=/A.

C'fr'pcc
, ,

Again, r^=modulus of elasticity, E,
strain

/ X
i.e.-^=E, where Z= original length of the bar, -j being the strain.

X V

J

Hence, ^=4^-

F
Substituting for F and x in the equation, W=— xa;, we get

\M /A fl p Al

2 E E 2

It will be noticed that Al represents the volume of the bar, so that

E
W=<^x J volume of bar.

The work done in stretching a bar is therefore proportional
to the volume or the weight of the bar.

The term resilience is employed to denote the work done in

stretching a bar up to the elastic limit.

The above expression for the work done holds just the same
if the bar be stretched to some point below the elastic limit, but
/ will then represent not the stress at the elastic limit, but some
lower stress, i.e. that corresponding to the strain.

57-

—

Effect ofa Live Load in Stretching a Bar. The work
done by a load F gradually applied to extend a bar by an amount
X is equal to the mean load multiplied by the extension. As the

6i
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mean load is -
, it follows that a load of this amount applied

2

suddenly, but without initial velocity, would stretch the bar the

same amount as a load F applied gradually. If now the load F
were applied suddenly, the extension would be doubled, and the

work done (the mean resistance multiplied by the strain) would
beFx2A;o Hence,

Work done by live load _Fx2a:_4
Work done by dead load F i*

2

Thus,when the load is applied suddenly (without initial velocity,

it must be noted), the amount of work done in stretching a bar is

four times that done when the load is applied very gradually.

58.

—

Stresses caused by Live Loads. In actual practice, it

frequently happens that the load is applied suddenly, and it is

important to consider how the resulting stress com-
pares with that which would result if the load were
applied gradually.

The general effect is best seen by taking the case

of an elastic string loaded first by a weight applied

very gradually, and then by the same weight applied

suddenly.
With regard to the gradually applied load, which

may be called F, the actual load on the string to com-
mence with is nil, but it is increased by very small

increments until the full value of F is reached. If

the extensions and the actual values of the weights

producing them be plotted together, the resulting

curve will of course be a straight line. Thus, AC in

Fig. 17 is the curve showing the relation between the

load and the extension, BC representing the load F,

and AB the extension.

Now let the load F be applied suddenly. When,
in consequence, the string has been extended an

amount AB, the work given out by the load in falling from A to B
is represented by the rectangle ^4BCD. The work done in stretching

the string is, however, represented by the triangle ABC, and this is

seen to be only one-half the work given out by the falling load, the

area of the triangle being one-half that of the rectangle. It follows

then, that an amount of energy represented by the triangle ACD
is available for stretching the string still further. Produce the

vertical DC to the point F and the load extension curve ^C to

the point G, the points F and G being fixed so that the triangle

CFG is equal to the triangle ACD. The final extension is then
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represented by AE, and this is clearly equal to twice the extension

AB. Within the limits of elasticity, we know that if we wish to

double the strain or the extension, we must double the stress or

the load. Hence, as the load EG is twice BC, the stress in the

string when stretched the amount AE is twice what it is when
the string is stretched the amount AB. The extension AB is>

produced by the load F gradually applied, and the extension AE
by the same load suddenly applied. Therefore the stress due to a

live load is just twice the stress due to a dead load of the same amount.

This shows the importance of applying the load on a machine or

structure as gradually as possible.

59.

—

Stresses caused by Impulsive Loads. An impulsive

load must not be confused with a " live " load. The latter is a
load suddenly applied, but without any initial velocity,

whilst an impulsive load is one applied with an initial

velocity. Take the case of a load on a crane hook.

If the load be lifted on to the hook and suddenly
released it is a " live " load, but if it be dropped on
to the hook it will possess an initial velocity at the

moment it reaches the hook, and it will then be an
impulsive load. It is not difficult to understand that

an impulsive load will give rise to greater stresses

than a ** live " load of the same magnitude. g
Suppose AB in Fig. 18 to represent a bar of

metal secured at its upper end to some convenient

point overhead and provided at its lower end with ^^s- ^^

a collar, and suppose a sliding weight to be placed

between the upper end and the collar.

If now the weight be allowed to fall freely through a certain

height on to the collar, it will give up a certain amount of energy,

which will be used up in extending or doing work upon the bar.

Let F be the weight.

,, h ,, ,, height through which F falls before reaching

the collar.

Let X ,, ,, extension produced in the bar.

Then the work given up by the falling weight will be F [h+x).

It is known from our previous work that when a bar is extended

within the limits of elasticity, the work done on it is equal to =^ x J

volume of bar, / representing the stress corresponding to the

strain produced.

We have then the equation,
/2 y

Y{h-\-x)=<i^x~, where V=volume of bar.
L 2
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In most cases the extension x is small, in fact negligible, in com-
parison with the height h, and if it be neglected the equation

/2 V • /becomes FA=4^ .— , from which the stress f= ^E 2 -^ V
2FAE
V •

The volume V=A/, where A^ cross sectional area and /=the
original length of the bar.

/;

Substituting, /=- / -
'2FAE

If X be not neglected, the stress/may be found in the following

manner :

—

The general equation is,

/2 V

Now x=:^, SO substituting in the general equation, we have

Rearranging, '^ •—^= ¥h.

Divide throughout by --^.

Then
/2_2F//_2FAE

luen y ^ ^ .

Completing the square,

.2_2Fy /F/Y_2F/zE F2/3

•^ V "^\V/ V "*" V2*

Extracting the square root.

2FAE F2/2

V "'"V2

2F/iEV+F2/2

V2

._F^ x/2FAEV+F¥
•°> V V

Substituting Al for V, the final expression becomes

. F x/2FAEA7+F2/2
^ A"^ A/

We take, of course, the positive sign in the expression, as this gives

us the maximum stress. It is important to note that the above
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results are only correct if the strain which the bar suffers be within
the limits of elasticity of the material. If the strain be beyond
this, the work done in straining the bar may be obtained by
measuring up the area of the stress-strain curve, and this area
will be equal to F(h-\'X).

60.

—

Repeated Stresses : Wohler's Experiments. Abrief
reference was made to the effect of repeated stresses in Chapter I.

in connection with the explanation of the term " fatigue." It

was there pointed out that a bar of iron or steel may be broken
with a load less in amount than the true breaking load by
applying and removing the load repeatedly. If the load applied
be nearly equal to the breaking load, then a few applications

and removals will suffice to cause failure ; but if it be but a
small fraction of the breaking load, then an indefinite number of

applications and removals may not produce any appreciable
weakening.

A very exhaustive series of experiments, extending over a
period of twelve years, was carried out many years ago by the
engineer, Wohler, on behalf of the Prussian Ministry of Commerce,
to show the effect of repeated stresses on iron and steel. In
these experiments, Wohler employed some ingeniously contrived
machines which enabled him to submit test pieces to tensile,

compressive, and torsional stresses of varying amounts, some of the
variations being from zero to a maximum in tension or compression,
others from a maximum of one kind of stress to a maximum of
the opposite kind, and so on.

The general nature of the results of the experiments may be
gathered from the following tables :

—

Wohler's Experiments on Bars subjected to Repetitions
OF Tensile Stresses from a Maximum to a Minimum.

Material, Cast Iron from Locomotive Cylinder,

b

Stress in tons
Maximum.
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Material, Axle Steel.

stress in tons
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The figures in the following table were also given to show
the stresses and the range of stress which would only produce
fracture of the materials experimented upon after an indefinitely

large number of applications of the load. The figures apply to

bars subjected to simple tension, compression, or bending.
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the formula of Launhardt and Weyrauch is the most popular.

This is,

Actual working stress=-^{ i-\—~—^ ^—

.

),
i*5\ 2 X maximum load/

where /is the dead load working stress.

As an example of the application of this formula, suppose
some member of a machine to be exposed to a dead load of 6
tons, and suppose in addition the member is exposed alternatively

to a tensile load of 6 tons and a compressive load of 3 tons.

The minimum load is then 6—3=3 tons, the maximum
6+6=12 tons, whilst the dead load stress is of course / tons

per square inch.

Hence,

Actual working stress=-4-( iH

—

-— )=-=^x 1*125=75/
i-5\ 2x12/ 1-5

The actual working stress should therefore be three-quarters the

safe stress which would be adopted if the load were a dead 01

steady load.

In the experiments carried out by Wohler, the stresses were
imposed at the rate of approximately 60 per minute throughout,

no attempt being made to ascertain if the rate of repetition had
any effect on the general results of the tests. Later experimenters

have therefore made further tests to ascertain if the conclusibns

arrived at by Wohler were materially affected by the rate of re-

petition. Messrs. Smith and Reynolds applied tensile and com-
pressive stresses at rates varying from 1400 to 2500 per minute,

and from their results they concluded that the number of re-

petitions of stress which a material such as iron or steel is capable

of withstanding diminishes as the speed increases.

Messrs. Stanton and Bairstow, who also subjected specimens to

reversals of direct stress, came to the conclusion that an alteration

of the rate of repetition from 60 to 800 per minute had no marked
effect on the results obtained. Another important conclusion

they arrived at was that the limiting stress which can be borne

by iron and steel depends on the range of stress, and, within

fairly wide limits, is almost independent of the actual value of the

maximum stress.

61.

—

Stresses due to the Forces of Expansion and Con-
traction caused by Heating and Cooling. It is a well-known
fact that most metals expandwhen heated and contract when cooled.

The forces of expansion and contraction are practically irresistible,

and in the case of certain structures exposed to changes of

temperature these forces must be duly provided against.

In a range of steam pipes, for example, it is found that the
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amount of expansion which occurs when steam is turned into

the cold pipes is approximately 2j inches per loo feet of length,

the actual amount depending, of course, on the temperature of

the steam, the material of which the pipes are made, etc. Unless
suitable provision be made for taking up the expansive movements,
the forces of expansion are such that the pipes may be seriously

strained and even fractured, particularly if of cast iron, by the

stresses set up in the material.

As another example, a horizontal steam engine may be
cited. When steam is turned into the cylinders a certain amount
of expansion occurs, and if the cylinders be bolted rigidly to the

frame or bedplate, so that the movement cannot take place freely,

fracture of the feet or other parts may possibly result.

Provision against this danger is therefore made when really

necessary, by screwing up the nuts of the holding down bolts

against a ferrule in such a manner that whilst the feet cannot
be lifted from their seats by the movements of the engine, they
are yet free to move in a longitudinal direction.

Very dangerous stresses may be, and sometimes are, set up
in steam boilers by the forces of contraction which result from
sudden cooling of the hot plates. Thus a fireman will frequently
blow off the water and steam under pressure, and then, with the
object of cooling down the boiler quickly for cleaning or inspec-

tion purposes, will play over the plates with cold water from a
hose pipe. The sudden contraction which results from this

cannot take place freely, the boiler being more or less a rigid

structure, and, in consequence, the plates become very highly
stressed, so much so in fact that fracture may occur.

Fortunately, in most cases, the engineer is not only able to

make suitable provision against the forces of expansion and con-
traction, but he is frequently able to put them to practical advan-
tage. Thus, the walls of a building which have become bulged
have frequently been straightened by passing bolts, provided with
large nuts and washers, through them, heating the bolts through a
certain range of temperature, screwing up the nuts until the washers
bear against the walls, allowing the bolts to contract, and repeating
the operation one or more times as required. As contraction takes
place an enormous force is exerted upon the walls, which are in

consequence eventually straightened.

Similarly, contractile forces are employed in the manufac-
ture of built-up guns (which are constructed by shrinking a
number of concentric rings, one on another), and in securing
cranks to crank shafts, etc.

It is a simple matter to calculate how much a bar of any
particular metal expands or contracts on being heated or cooled
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through a given range of temperature. From experiment, we know
with considerable accuracy what fraction of its length at 32 degrees
Fahrenheit a bar of any metal will expand for every degree
through which it is heated. This fraction is termed the coefficient

of expansion of the metal. For steel, the coefficient is '00000672,

which means to say that a bar of steel of any uniform section

expands "00000672 of its length at 32 degrees F. for every degree
through which it is heated ; the bar would contract exactly the
same amount for every degree it was cooled down. It is to be
noted that the length of the bar referred to is the length at a
certain temperature, viz. 32 degrees F. The fractional expansion
of a bar at a temperature other than 32 degrees F. (per degree
of temperature), would be very slightly different from the
coefficient of expansion of the material, but the difference is so

slight that we may base our calculations on the assumption that
the fractional expansion per degree F. is the same, no matter
what the temperature of the bar is to commence with. Knowing
the range of temperature through which the bar is heated or cooled,

then the expansion or contraction is obtained by multiplying the

length by the coefficient and by the range of temperature.
Thus, let a = coefficient of expansion.

,, y=range of temperature.

,, A;=amount of expansion or contraction.

Then x=lxaxr.
The stress which may be set up in a metal bar when the bar

is so fixed that the expansion or contraction cannot take place

may be calculated in the following manner :

—

Let/= stress in the material.

,, E=modulus of elasticity.

Then E=s from which /=-,E.
X I

7
Now x=lxaxr.

• • • y
Substitutmg for x in the equation /=-^E,

It will be noticed that the length / cancels out, so that in find*

ing the stress in any particular case the length need not enter into

the question.
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=sm30, and -^=00530.

Worked Examples

62.—(i) Normal and Tangential Stresses. A stress of 10
tons per square inch acts at an angle of 30 degrees to a section in a
strained solid. Find the stresses

acting normally and tangentially

to the section.

Referring to Fig. 19, the

stress is shown resolved into its

normal and tangential com-
ponents.

If we call X the normal
component and y the tangential

component, we have

X

10

Hence, jy=^iosin30=iox|-=^ 5 tons per square inch.

y= 10 cos 30= 10 X "866

=

8 "66 tons per square inch.

Therefore, Normal stress = 5 tons per square inch.

Tangential stress= 8'66 tons per square inch.

In the early part of the chapter we showed that the normal
component was /cos ^, and the tangential component/sin 0, where
6 was the angle between the normal to the section and the line of

direction of the stress.

The angle 6 in the present case would be 90—30==6o°.

Hence, Normal component=/ cos 60= 10 cos 60°.

=iox'5 ^ 5 tons per square inch.

Tangential component=/sin 6o=iox •866

=8 "66 tons per square inch.

(2) A vertical metal bar measuring 2 inches by i inch in cross

section is pulled with a load of 12 tons. What are the normal and
shearing stresses on a section which makes an angle of 40 degrees

with the horizontal section ?

Let/ =the stress on sections at right angles to the axis of the bar.

y, /«=the normal stress on the oblique section.

,, /=the tangential stress on the oblique section.

,, 6 =the angle the oblique section makes with the horizontal

section.

Then /„=fcosW,
/=/sin OcosO.
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XT r load on bar 12 /- - • i.Now / = ;;
-.—=—=6 tons per square men.

area 01 section 2

/«^/cos^^^6xcos^40=6x766^= 3'52 tons per square inch.

fi =/sin 9 cos ^= 6 X sin 40 cos 40
=^6x •643X •766= 2'95 tons per square inch.

.'. Normal stress on section=3-52 tons per square inch.

Tangential or shear stress=2'95 tons per square inch.

63.

—

Shear Stress in combination with Tensile Stress.

(3) A rivet i inch diameter is exposed to a shearing force of 3-14

tons and a tensile force of 235 tons, the latter being caused by
the contraction of the rivet on the plates. Find the maximum
equivalent tensile stress in the rivet.

Let /,=the equivalent tensile stress.

„ /,=the shear stress.

„ /^=the tensile stress.

Then, /.={'+^//+^
r shearing^ force 3*14 3'i4 . . ,

fs= c .• =—?7

—

^—o=^^~K^=A tons per square mch,
^ area of section 785 xi^ 785 ^ ^ ^

/. tensile force 2*35 2*35 , ,

f/=^- r 7^

—

= n ="—^=sav, 3 tons per square inch,
•'^ area of section 785 xi^ 785 ^^ ^ ^

= 1*5+ x/i8-25^i'54-4'26=576 tons per square inch.

This represents the greater principal stress.

The minor principal stress would be

/, / 72
77— ^//^^+-^^i'5—4'26^—276 tons per square inch.

The minus sign indicates that the stress is compressive,

\7hereas the greater principal stress is tensile.

64.

—

Stress in a Compound Bar. (4) A steel bar and a
brass bar of the same length are securely attached together at each
end, and the combined bar supports a load of 10 tons. If the steel

bar has a section of 2 inches by i, and the brass bar 2x|- inches,

what is the load taken by each ? Also, what is the stress in each
bar ? Moduli of elasticity, 30,000,000 lbs. per square inch for steel

and 10,000,000 for brass.

Let P be the load taken by the steel bar.

Then 10—P is the load taken by the brass bar.

P P
Stress on steel bar= =— tons per square inch.

2x1 2
r- -1
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Stress on brass bar=——5-= tons per square inch.
2x| 1*5 ^ ^

ci • stress
Strain^

modulus of elasticity'

P
Strain in steel bar=- ^ Eg, where Es=modulus of elasticity for

=teel.

• • 10—

P

Stram m brass bar=-—;— -r Eg,where EB=modulus of elasticity

for brass.

The strains are equal, hence

P lo-P
215 . P 10—

P

=^= -=^ and ~j^= ^ .

Es Eb 2Es i-5Eb

Substituting the values of the moduli of elasticity,

P _ lO-P
2x30,000,000 I •5x10,000,000

P _ lO-P
60,000,000 15,000,000*

Cross multiplying, 15,000,000 P=6o,ooo,ooo (10— P).
Dividing through by 15,000,000,

P=4(io-P)-40-4P.
P+4P=40, or 5P=4o, from which P=8 tons.

Therefore load on steel bar, P=8 tons.

Load on brass bar--io—P^io—8=-2 tons.

The student may of course, if he prefer, use the formulae
deduced in connection with compound bars.

Thus, P= ^
J.

A«EB^B
AsEs

where F=load on the combined bar,

P=load taken by steel bar.

As =sectional area of steel bar,

Ab== ,, ,, brass ,,

Es =modulus of elasticity of steel,

Eb= „ ,, brass.

Substituting the known values, we get

p^ 10 10

2 x|-x 10,000,000 i+J
2x1x30,000,000

10
-8 tons.

1-25
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Let Q=the load taken by the brass bar.

Then Q=^^-=^ ^^
^ AgEs ^2x 1x30,000,000

AbEb 2 xfx 10,000,000

10 10=2 tons.

Q may of course be obtamed by subtraction when P has been
calculated, and vice versa. Thus, if P=8 tons, and the total load
F on the bar is 10 tons, it follows that Q will be 10—8=2 tons.

Having found the respective loads taken by the bars, it is a
•simple matter to find the stress.

Stress in steel bar==--= =4 tons per square inch.
As 2X I •

Stress in brass bar=-^=

—

^^-=i-qq tons per square inch.
Ab 2x| -=^ ^ ^

65.

—

Work done in Stretching : Resilience. (5) A load of

100 lbs. is gradually applied to a steel wire 50 feet long and '075

inch diameter. What is the work done in stretching the wire ?

£=30,000,000 lbs. per square inch. If the elastic limit of the steel

is 35,000 lbs. per square inch, what is the resilience of the wire ?

The work done must not be confused with the resilience.

The latter is the work done in stretching tip to the elastic limit of
the material. Hence the reason for giving the numerical value of

the limit in the second part of the question.

Work done in stretching wire=mean resistance x space over-

come.
The mean resistance is of course the load on the wire divided

by 2, or — =50 lbs., the load being nil to commence with.

The space overcome is the amount the wire is extended, and this

can be calculated from the particulars given. The first thing to

do is to find the stress in the wire, after which the extension can
be calculated.

Stress^—--. . = s ^s-=22,6oo lbs. per square inch.
sectional area '075^x785 ^ ^

The modulus of elasticity is given as 30,000,000 lbs. per

square inch, which means that a load of 30,000,000 lbs. would
double the length of a bar of steel i square inch sectional area,

assuming the bar would not break before this load was put upon
it. We have just seen that a wire '075 inch diameter loaded with
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100 lbs. has a load of 22,600 lbs. to the square inch. The question

then is this :—If 30,000,000 lbs. will produce an extension of

50 feet or 600 inches in a wire i square inch sectional area, what
extension will a load of 22,600 lbs. produce? Stating this as a

simple proportion, we have

30,000,000 : 600 : : 22,600 : x
600x22,600 . ,^^ • 1

x=- =452 inch.
30,000,000

(We may also find the extension by using the relation t=4^. 1

The wire would therefore be extended by "452 inch.

.-. Work done in stretching wire^50X'452= 22'6 inch lbs.

Resilience=work done in stretching up to elastic limit.

The elastic limit is 35,000 lbs. per square inch. The load

required on the wire to produce this stress would be 35,000 x '0752

X 785= i54'5 lbs. To find the extension due to this load (or to the

stress of 35,000 lbs. per square inch), we have the proportion

30,000,000 : 600 :: 35,000 : x
600x35,000 .^ • ^v.x= ^^^ =='7 inch.
30,000,000

Using the relation.

Work done=mean resistance x space overcome,

then,

Work done in stretching wire up to the elastic limit

^0+154-5 X •7= 54-1 mch lbs.

It has been shov/n that

Resilience=%xi- volume of bar,

so we may use this to check the result just obtained. In this

relation, / is the elastic limit of the material, i.e. 35,000 lbs. per

square inch.

Substituting the known values,

Resilience=-^^-^^^°— xi-x •0752X 785x50x12.
30,000,000

== 54'i inch lbs.

Work done^ 22-6 inch Ibs. l Answers.
Resilience= 54-i inch lbs. J

(6) Referring to the previous question, what would be the

work done in stretching the wire if the load werp- ^'h'^Ued suddenly

instead 0/ gradually ^
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We have shown that the work done by a suddenly applied
load in stretching a bar is four times that done by a gradu-
ally applied load of the same amount. The work done by the
gradually applied load was found to be 22*6 inch lbs. There-
fore, the work done if the load be applied suddenly will be
22'6x 4=^ 90-4 inch lbs.

66.

—

Stresses due to Dead and Live Loads together.
(7) A wrought-iron bar is required to carry a dead load of 15 tons
and a live load of 10 tons. Taking the ultimate stress of wrought
iron to be 22 tons per square inch, and assuming a factor of safety
of 5, what should be the diameter of the bar ?

ex, 1 • 4. ultimate stress 22 , . ,

Safe workmg stress-^-—- -.—p—=—=4-4 tons per square mch.

The total load is equal to 15+10=25 tons, of which 10 tons is

applied suddenly. Now we have shown that a load suddenly
applied produces a stress double that which would be caused
by the same load applied gradually. The live load of 10 is

consequently equivalent to a dead load of 20 tons.

The bar must therefore be capable of carrying a total dead
load of 15+20=35 tons.

If /=the safe working stress in tons per square inch^

F=the total dead load in tons,

A=area of section in square inches,

F F
then /=-r, from which A=-7.

•^ A /
In the present problem, F is 35 tons and/ 4*4 tons per square

inch.

Hence A=^=7 '95 square inches.

The diameter of the bar is found from the relation, -d^=\
4

where ^=diameter.

V=A, and ^2^^=4A.
4 TT IT

_ T
Then ^= /4_^2 /— . Substituting the known value of A,

r/= 2 ^2_95^ 2 V2 "53= 2 X I
'59=yiSjnches.

.•. Diameter of bar required=3-i8 inches.

A bar 3J inches diameter would probably be used.
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67 —stresses due to Impulsive Loads. (8) A steel rod 8
feet 4 inches long and 2 square inches sectional area is provided with
a collar at one end. The rod is suspended with the collar lower-
most, and a load of 1000 lbs. is then dropped upon the collar from
a point one inch above. Taking E for steel to be 30,000,000 lbs.

per square inch, find the stress produced in the rod.

The effect of the falling weight is to stretch the bar and so
do work upon it. The work given out by the falling weight must
obviously be equal to the work done in stretching.

The former is 1000 (i+x) inch lbs., where x is the extension pro-

duced m mch units, and the latter is-^xj volume of rod, where/

= stress produced in lbs. per square inch, which must be assumed
not greater than the elastic limit of the material.

We have then the equation,

1000 (i+jit:)=^xj- volume of rod.

Neglecting x, which will be, comparatively speaking, very
small, the equation becomes

/2
1000==^X J volume of rod, from which

/2_ 1000xE
d f— I

"

4 volume of rod V 4 vol

000xE
J volume of rod V J volume of rod*

Substituting the known values

r /lOOOX 30,000,000 /

^=V -5X2X100 =^300,000,000,

.'. /= 17,300 lbs, per square inch.

The same result is obtained by using the formula

/._ /2FAE

where F=load in lbs.,

A=height through which F falls in inch units,

A=sectional area of rod in square inches,

/=length of rod in inches,

/=stress produced in lbs. per square inch.

Substituting the known values

f-sj
2 X 1000 XIX 30,000,000

2X100

= >v/300,ooo,ooo= 17,300 lbs. per square inch.

Stress produced in rod= 17,300 lbs, per square inch.
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It will be interesting now to consider how the result is affected

if we do not neglect the factor x, the extension produced in the
rod.

The original equation is

1000 (i+a;)=-^xJ volume of rod.

Now x=^, where /=length of rod=ioo inches.

Substituting for x in the equation, we obtain

1000^+ ^°°/-V—Z' x5i^i2£
30,000,000/ 30,000,000

^^^^ I

100,000 r f^xioo1000+ /— -'

30,000,000 30,000,000

I f^
lOOO-l /•— -^

300 300,000

Multiplying throughout by 300,000 and rearranging the terms,

/•o 300,000 /•

f^—^—'- ^/= 1000x300,000
300 -^

/2—1000/=300,000,000.
Completing the square,/^— iooo/+5oo^=300,ooo,ooo+25o,ooo.

Extracting the square root, /—500= ±V'300,250,000

y:=5oo-f 1^^330=^ 1^,830 lbs, per square inch.

Or, using the formula which takes x into account,

^ A+ ^ -

_I000 >s/2X 1000X1X30,000,000X2X100+1000^X100^
2 2X100

/\/i2,ooo,ooo,ooo,ooo+ 10,000,000,000

200

-v/12,010,000,000,000

=500+

=500+^ 200

=500+^^4—i^2-=5oo+i7,33o=. 17,830 lbs, per square inch.

.*. Real stress= 17,830 lbs, per square inch.

It will be observed that if the extension x be not neglected in

the general equation, the stress appears to be g'-eater than is the

case if it be neglected. The difference, however, is comparatively
slight, viz. only 530 lbs. in over 17,000 lbs., so that it is sufficient

in most cases to neglect x, and thus avoid the necessity of solving

a quadratic equation or employing a clumsy formula.
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(9) It is found that a steel rod is extended J inch by a load

of 1200 lbs. applied gradually. From what height would a load

of 50 lbs. have to be dropped on to a collar formed on the lower

end of the rod to produce the same stress as that caused by the

load of 1200 lbs. gradually applied ?

This example may be very simply solved without having to

calculate the stress. Thus, we know that the work done by the

gradually apphed load in stretching the rod is equal to the work
given out by the falling weight, and both these quantities of work
may be calculated from the particulars given.

Let F^the gradually applied load.

,, x=i\\Q extension.

„ z£^-=the weight of the falling load.

,, A=height through which the load falls.

Then the work done by F in extending the rod an amount x will be

^¥x, and the work given out by the faUingload, w, will be w{h-\-x).

These two are equal, and consequently we have the equation

\'Fx^w(h+x)
from which, ^Yx^wh+wx.

wh=^Fx—wx.

... k-^ii^~^\
'

'

w '

Substituting the known values

^^i(ixi20o-5o)^K6oo-5o)^55o^3.
ygi„ehes.

50 50 200 —-^

,', Height through which the 50 lbs. would have to fall=275 inches.

(10) An iron rod is 20 feet long and ij- inches diameter. A
weight of 40 lbs. is allowed to fall from a height of 12 feet on to a
solid collar formed on the lower end of the rod. Find the stress,

the extension, and the strain produced. £=25,000,000 lbs. per
square inch.

The first part of this question is similar to the previous one,

but in addition to the stress we have also to find the strain.

To find the stress we may make use of the formula

"J
2FhE
AT'

where /= stress in lbs. per square inch,

A=height through which the weight F is dropped (inches),

A=sectional area of bar in square inches,

Z=length of bar in inches.
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Now, A=r^^x 785=177 square inches.

Substituting the data given,

/=72 X 40 X 12 X 12 X 25,000,000

748x25,000,000 /^-^=
jsj ^^^^T =^678,000,000

=26,050 lbs, per square inch.

Hence, Stress produced=26,o50 lbs. per square inch.

Having found the stress, it is a simple matter to find the
extension. Thus,

Extension. -,J/^20XiaX26,050^
j^^j^^

E 25,000,000

c^^ • extension '25
Stram=—,-.—,-., ^= ^L_= -00104.

origmallength 20x12 ^
The strain might be found direct from the relation.

Stress
pr:—^ = Modulus of elasticity.
Strain *^

Thus, ^' ^ =25,000,000
Strain ^

Strain= ^ '^^^' = -00104.
25,000,000 '

We have then,

Stress=26,050 lbs, per square inch.'

Extension

=

-25 inch.

Strain=-00104.

Answers.

68.—Stresses due to the forces of Expansion and Con-
traction. (11) It is required to straighten the walls of a building
which have become bulged. For this purpose an iron bolt, 2 inches
diameter and 20 feet long, is heated to a temperature of 500
degrees F., when the nuts are screwed up against large washers
made to bear against the walls. Find the pull exerted on the
walls when the bar has been allowed to cool down to a tempera-
ture of 300 degrees F.

Coefficient of expansion of iron, '0000066 ; E=25,000,000 lbs.

per square inch.

It is first necessary to find the amount of contraction which
takes place on cooling.

Range of temperature=(500—30o)=200 degrees F.

The coefficient of expansion of iron is given as "0000066, so that the
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bolt will contract '0000066 of its length for every degree through
which it is cooled.

Total contraction=20 X 12 X '0000066x200= "317 inch.

Now a load of 25,000,000 lbs. would extend or compress an iron

bar I square inch in sectional area and 20 feet long by 20 feet (on

the usual assumptions). What force then would be required to

compress a rod i square inch in sectional area and 20 feet long
•317 inch ?

25,000,000 : 20x12 :: a; : '317.

25,ooo,ooox-3i7 ,-, , . i_vx=^^ '- ^^?-^ =33,000 lbs. (per square mch).

The bolts are 2 inches diameter and have a sectional area of

2^X'785=3'i4 square inches. The force required per square inch
of section is 33,000 lbs., so that the total force required will be
33,000 X3'i4= 103,600 lbs. This will be the force on the walls.

.'. Force on walls= 103,600 lbs.

We showed at the end of the chapter that the stress produced in

a bar which is prevented from expanding or contracting freely is

/=ayE,
where a= coefficient of expansion,

y=range of temperature through which the bar is heated or
cooled.

Applying this to the problem under consideration, we get

/= '0000066(500—300)25,000,000=33,000 lbs. per square inch,

which agrees with the result already obtained. The pull on the
walls is obtained by multiplying this stress by the sectional area
of the bolts. Note that the length of the bolt need not be given
if we use the formula, since it cancels out, as will be seen on
referring to the text.

(12) A steel Lancashire boiler, 8 feet diameter by 30 feet long,

is uniformly heated from a temperature of 50 degrees F., the
temperature of the feed water, to 350 degrees F., the latter

temperature corresponding to the steam pressure. How much
does it expand for this rise of temperature ? If the boiler be
suddenly cooled down to 150 degrees F., find the stresses set up
in the plates.

Coefficient of expansion for steel, '00000672 ; £=30,000,000
lbs. per square inch.

Expansion=length x coefficient of expansion x rise of temperature.

=30 x 12 x 'OOOO0672 X (350—50)= '726 inch.

.*. Expansion

=

'726 inch.
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If the boiler be suddenly cooled, the effect is to a large extent

the same as though the whole structure were held rigidly at each

end so that contraction could not take place, with the result that

injurious stresses are set up in the plates. In cooling down to 150
degrees F., the boiler would contract 30X12X '00000672(350—150)
= '484 inch.

A force of 30,000,000 would stretch a bar of steel 30 feet long

and I square inch in sectional area 30 feet or 360 inches, so we
have to find what force would be required to produce an extension

(or a shortening) of '484 inch.

30,000,000 : 360 :: x : '484

jy=
30>QQ0>0QQX 4 4^^^Q^g2o lbs, per square inch .

=18 tons per square inch .

If we use the formula,

where a=coefficient of expansion,

f=range of temperature,

E=modulus of elasticity,

then /= -00000672 (350— 150)30,000,000
= •00000672x200x30,000,000
=40,320 lbs, per square inch, as found above.

Hence, Stress in plates== i8 tons per square inch.

If we assume the plates to be cooled down suddenly to 50 degrees

F. instead of 150, then by similar calculation we should find the

stress to be almost equal to the ultimate stress of the material. The
folly of rapidly cooling the hot plates of steam boilers will therefore

be apparent. Note that the diameter of the boiler does not enter

into the question.
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Chapter V
STRENGTH OF CYLINDRICAL VESSELS

EXPOSED TO FLUID PRESSURE

69.

—

Many vessels of cylindrical form are employed in actual

practice for storing fluids under pressure, as, for example, steam
boilers, air receivers, etc., the plates of which are put in a state of

stress as a result of the pressure acting on them. The shells of such
vessels are usually thin in comparison with their diameter, and it

is a simple matter to determine the stresses set up in the plates.

Before proceeding, it will be well to consider for a moment whether
or not the atmospheric pressure plays any part in setting up stresses

in the plates.

Every one is familiar with the fact that the pressure of the

atmosphere is due to the weight of a column of air of, say,

I square inch sectional area, and of a height equal to that of

the atmosphere, the weight of this column being 15 lbs. very
nearly. The pressure of the atmosphere is therefore 15 lbs. per
square inch.

Now the vessel when empty will be subjected to the atmo-
spheric pressure both internally and externally, so that the resul-

tant effect will be nil. When the pressure, say j) (measured above
the atmospheric pressure), due to the steam or air, acts inter-

nally, the total internal pressure will be
/)+i5, and the external pressure 15 lbs. per
square inch. The effective pressure is con-

sequently ^+15—15=^ lbs. per square inch,

so that the atmospheric pressure does not
enter into the question.

The pressure in a cylindrical vessel acts

radially and uniformly all round the inner

circumference, as indicated by the arrows ^^=^
of Fig. 20, and its tendency is to burst the p- ^o
vessel longitudinally. Before the strength
of the vessel to resist bursting can be calculated, it is necessary
to determine the total force which tends to cause bursting.

It will be convenient to consider the cylinder as being com-
posed of a number of rings of unit length, i.e. i inch, each of which
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Fig. 21

is independent of the others in sustaining pressure. Now consider

one of these rings, as represented by Fig. 21. Let xy represent

a very small surface of the circumference of the ring, and let

this surface make an angle d with the horizontal diameter of

the ring. The total pressure acting

on xy will be pxxy, where p is the
pressure of the fluid. This may be
resolved into vertical and horizontal

components. The vertical component
is ^x;\;yxcos^. It is the sum of all

such vertical components which con-
stitutes the total force tending to

burst the vessel along a plane repre-

sented by the horizontal centre line.

Now xy cos 9 is equal to the pro-

jection x-^i on the horizontal diameter,

so that the vertical component will

be equal to fxx-^y-^. Clearly, the sum of all the vertical com-
ponents of p is equal to pxd.

Consequently, the force tending to hurst the vessel longitudinally

is equal to the pressure per square inch multiplied hy the diameter

of the vessel in inches, assuming the length of the vessel to be unity.

Hence, if the vessel be / inches long, the total force tending to burst it

will be equal to the above force multi-

plied by /. We may thus suppose the
pressure to be acting in the manner
indicated by Fig. 22, the general effect

being to burst the vessel into two sym-
metrical halves along a plane passing

through the centre of the vessel. It

is clear that as a result of the forces

tending to produce failure, the plates of

which the vessel is constructed will be
subjected to tensile stress.

70.—Now consider any thin plain

cylindrical vessel which we may suppose
to be storing either steam, air, or water under pressure, and, for

convenience, assume there are no end plates.

Let />=the internal pressure of the fluid, in lbs. per square inch.

„ ^=diameter of vessel, in inches.

„ /=length

„ ^=thickness of plates „

„ /^= tensile stress in plates due to the pressure, in lbs. per

square inch.

We have not stated whether d is the internal, the external, or
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the mean diameter of the vessel, but this is immaterial, since the
following consideration is based on the assumption that the thick-

ness of the plates, t, is small in comparison with the diameter of the
vessel, d.

The total force tending to cause rupture will be fxdxl, and
this is resisted by a force equal to 2 x /x / x/^. (See Fig. 23.)

We have then the equation,

''

2t'
pdl=2tlft, from which /^:

Note that the length I cancels out, so that the stress set up
in the plates of a vessel exposed to internal pressure is indepen-
dent of the length of the vessel. With regard to the end plates, it

is quite obvious that these will assist the shell in resisting the
tendency to rupture, and consequently near the ends the stress in

the plates will be less than
that indicated by the above
relation. Any portion of

the shell, however, situated

some distancefrom the ends,
will not be strengthened _
appreciably by the end
plates, and as the strength

of a structure is that of its

weakest part, the relation

^ is correctlv used for
2t

u
Fig. 23

finding the stress.

A common problem in connection with cylindrical vessels

exposed to internal pressure is to find the pressure at which a
vessel can be safely worked, allowing a safe tensile stress, /,,

on the plates. For this purpose the foregoing relation may be
rearranged thus :

—

^d'
If we let // represent the

material, then the relation, p

ultimate

2tfl

d

tensile stress of the plate

enables us to determine the

pressure at which the vessel would burst.

This simple formula is the one generally used for calculating

the pressure which steam boilers, air receivers, and the like are

capable of carrying, but as it assumes the plates to be solid, i.e. to

have no joints, it requires modification so as to take into account
the effect of the joints. We shall deal with this presently.

71.—So far, we have considered the bursting of a cylindrical
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vessel in a longitudinal direction only, but it is evident that there is

also a tendency to burst the shell in a circumferential direction, i.e,

to separate the vessel into two cylindrical portions as a result of

the pressure acting on the end plates. The circumferential strength

may be easily determined in the following manner :

—

The total force acting on the end plates and tending to sever

the vessel into two cylindrical portions is equal to px—xd^. The
4

tendency to rupture is resisted by a circular strip of metal of

thickness t, and length equal to the circumference of the shell,

viz. ird. The total resisting force is then txirdx/t.

Equating the total bursting force to the resisting force, we
have

piLd^=tTrdf„ from which/,=^.

Rearranging to obtain the pressure, we get

If the student will now compare these relations with the

previous ones, he will see that the strength of a cylindrical vessel to

resist internal pressure, in a circumferential direction, is just twice

what it is in a longitudinal direction. It follows that when deter-

mining the strength of a cylindrical boiler or similar vessel, the

strength to resist rupture in a longitudinal direction is what
chiefly concerns us.

72.

—

Strength of Thin Spherical Shell. The ordinary thin

cylindrical shell has been shown to be twice as strong circum-

ferentially as longitudinally. Consider next a thin shell of spherical

form, of diameter d, subjected to an internal pressure p. The
effect of the pressure is to burst the shell into two equal halves,

and the vessel is just as liable to burst along any one section

through the middle as along any other section, providing the plates

be of uniform strength and thickness throughout. The total

force tending to cause rupture is px—xd"^, and this is resisted by
4

a circular strip of metal of thickness t and length ird.

We have then the same equation as we obtained for the

strength of a cylindrical shell in a circumferential direction, viz. :

—

pX — xd^^txiTxdxft, from which/^=^.
4 4?_

A spherical shell, therefore, being of uniform strength through-

out, is twice as strong to resist internal pressure as a cylindrical

shell of the same diameter and thickness of plate. For this reason,
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from the strength point of view, a spherical boiler is much superior
to a cylindrical boiler, but the spherical form is not convenient
for boiler purposes, and hence the plain cylindrical form is the
one mostly adopted in boiler construction.

73.—Strength of Thin Shell of Oval Form. Although the
oval form of shell is an unusual one, it is interesting to consider its

strength to resist internal pressure. It may be mentioned that a
tube of oval section is used in the well-known Bourdon pressure
gauge, the gauge pointer being moved
by the opening out of a spiral tube
of such section, caused by the admis-
sion into the tube of steam or other
fluid from the vessel to which the

gauge is attached.

Fig. 24 represents a thin oval

shell supposed to be under internal

pressure. Consider first the stress in

the shell at the parts cut by taking a
horizontal section through the middle.

If we let di equal the greater

diameter, and p the pressure, the
total force tending to burst the vessel into two equal halves along

the horizontal centre will be pxd-^xl. This tendency to burst is

resisted by two strips of metal of length I and thickness t, the total

resisting force being 2Xtxlxft\, where //i equals the tensile stress

in the material at the horizontal centre.

Therefore, pxd^xl=2Xtxlxft\, from which //i=^-^.

Similarly, if we consider the stress in the shell at the parts cut

through by taking a vertical section, the diameter there being repre-

Pd^
' 2t'

Fig. 24

sented by d^, we find this to be//2=

The stress in a thin oval shell due to internal pressure is thus
greatest at places of maximum curvature or smallest radius, and
least at places of minimum curvature or greatest radius.

It must be clearly borne in mind that the foregoing results are

only correct when the thickness of the vessel is small in comparison
with the diameter. They could not, for instance, be safely applied

to determine the true strength of a small cast-iron pipe or of a

hydraulic cylinder. The determination of the strength of such
vessels requires a more advanced knowledge than the student
yet possesses, and must consequently be left alone for the

present.
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74.—Cylindrical Vessels subjected to External Fluid
Pressure. In steam boiler work, although the outer shell is

usually a cylindrical vessel subjected to internal pressure, there

are frequently internal cylinders or tubes exposed to external

pressure. In the well-known Lancashire boiler, for instance, there

are two cylindrical tubes or flues, of rather more than one-third

the diameter of the outer shell, running from one to the other end
of the boiler. The water, under the same pressure as that of

the steam, surrounds each of these tubes, which, in consequence,
instead of being exposed to a bursting action, as in the case of the
shell, are exposed to a crushing or collapsing action.

Whilst, therefore, the shell must be sufficiently strong to

resist bursting, the internal tubes must be capable of resisting

collapse, and it is necessary for us to consider briefly how the

strength of such tubes is determined.
In dealing with shells exposed to internal pressure we had

no difficulty in deducing from first principles a formula connecting

together the pressure, the diameter of the shell, the thickness of,

and the stress in, the plates.

Unfortunately, we cannot from first principles deduce satis-

factorily a formula for cylindrical vessels exposed to external

pressure, and we are bound to fall back upon the results of experi-

ments for true information respecting the strength of these vessels.

From the results of such experiments, a number of rules or formulae

have been devised, and in actual practice one or other of these

rules is generally employed.
We have seen that in the case of a cylindrical vessel, sub-

jected to internal pressure, the length of the vessel did not enter

into the calculation of strength ; in other words, the strength of

the vessel to resist bursting is independent of the length. It

seems natural to suppose that if the pressure, instead of acting

internally, acted externally, the length of the vessel would again

have no influence on its strength. Experiments have, however,
shown that such is not by any means the case.

In 1858, Sir William Fairbairn conducted a series of experi-

ments with the object of determining the strength of C3dindrica]

tubes subjected to external pressure, and from the results of his

experiments he deduced the following rule :

—

/219
/>=8o6,300 ~jj,

where /)=the pressure required to cause collapse of the tube, in lbs.

per square inch,

/= thickness of plates, in inches,

/=length of tube, in feet,

^=diameter of tube, in inches.
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From this it is seen that the pressure required to cause failure

of a tube by collapse varies as the 2'i9th power of the plate

thickness, and inversely as the length and the diameter of

the tube.

Thus, the longer the tube the weaker it is to resist collapse

due to external pressure.

When a cylindrical vessel is under internal pressure the tendency
of the pressure is to maintain the vessel in a truly circular form.
Thus, if the vessel were not truly cylindrical to commence with,

the pressure, acting uniformly and radially all over the internal

surface, would tend to remedy the defect. On the other hand,
should a vessel, slightly out of the true cylindrical form, be exposed
to external pressure, the tendency of the pressure is to aggravate the
imperfection, and the experiments carried out by Fairbairn showed
that a slight deviation from the true circle very materially reduced
the strength of the vessel to resist collapse. In one experiment, two
tubes 37 inches long, 9 inches diameter, and about

-J-
of an inch

thick were tested, one of the tubes having a lap joint, which causes
it to depart slightly from the true circular form, and the other a
butt joint, which retains the true form. The former tube collapsed

with a pressure of 262 lbs. per square inch, whilst the latter with-
stood a pressure of 378 lbs. per square inch before collapsing.

Thus, a very slight departure from the true circular form of

the tube resulted in a reduction of strength of approximately
one-third.

This illustrates the importance of making cylindrical vessels or

tubes subject to external pressure truly circular, and in modern
boiler practice special attention is given to this point. The tubes
of Lancashire and other boilers nowadays are made with welded
joints which do not appreciably alter the circularity, as do the
lap joints which were at one time largely used. Long lengths of

plain tube are also avoided in modern boiler practice, the tubes
usually being constructed of a number of short lengths connected
together by flanged seams, which materially increase the strength
of the tubes, as a whole, to resist collapse. The tubes are also

frequently made of a corrugated form, which is both stronger than
the plain form and better able to accommodate the expansive
movements which are set up under working conditions.

The above rule, generally known as Fairbairn's rule, has
been much used in the past for calculating the strength of

long circular flue tubes, but experience seems to show that the
rule gives too high pressures for short tubes and too low for

long ones. It is quite inapplicable to the flue tubes of boilers

strengthened by flanged seams. For this reason, other rules have
been devised. One of these is Longridge's rule, which gives not
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the collapsing, but the safe working pressure of long, plain iron
tubes under external pressure :

—

Working pressure=-^^y^— y,

where ^= thickness of plates, in thirty-seconds of an inch,
</=diameter of tube, in inches,

/=length, in feet.

Another rule, viz. Seaton's, may be given. This is,

where ^=thickness of plates, in thirty-seconds of an inch,

required for a working pressure of p lbs. per
square inch,

/=length of tube, in inches,

<f=diameter ,, ,,

C=a constant=900 for iron tubes and looo for steel.

The rule makes due allowance for uniform wear of the surface of
the tube due to corrosion.

The Board of Trade, in their " Instructions as to the Survey
of Passenger Steamships," give the following rule in connection
with circular steel furnaces, the longitudinal seams of which are
welded, or made with single butt straps double riveted, or double
butt straps single riveted :

—

99^ooox^

wheie ^=working pressure, in lbs. per square inch,

/= thickness of plates, in inches,

/=length of furnace, in feet,

^= diameter of furnace, in inches.

This rule, it should be explained, does not apply if the working
pressure be found to exceed that given by the formula,

._ 9,9QQXJ^

^ d '

The latter formula limits the crushing stress on the material
to 4950 lbs. per square inch.

The furnace tubes of Lancashire and other boilers, as previ-

ously explained, are generally constructed of a number of short
rings welded longitudinally, the ends of each ring being flanged
and riveted to the next, with a caulking ring intervening, and for

such tubes the Board of Trade give the following formula for

determining the working pressure, providing the length of each
ring, measured over the flanges, does not exceed (120/— 12), and
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that certain conditions in regard to the workmanship are complied

with :^

^~ ^xd V 6oxt/'

where ^=- thickness of plates, in inches,

^=diameter of tube, in inches,

/=length of each ring, in inches.

75.

—

Strength ofFlat Plates. In most types of steam boiler,

in addition to the cylindrical plates, there are frequently plates of

fiat form exposed to the pressure. Now fiat plates are compara-
tively weak to sustain pressure, and in most cases it is necessary

to strengthen them by means of stays of one form or another.

Unfortunately, the theoretical investigation of the strength of

a flat plate under pressure is difficult and unsatisfactory, and in

actual boiler design all flat surfaces, unless of small area, are

efhciently stayed, and the pressure which may then be safely

carried, or the thickness of plate required for a certain pressure, is

determined by means of certain rules.

Thus the Board of Trade rule for the flat surfaces of marine
boilers is as follows :

—

^ S-6 '

where />=allowable working pressure, in lbs. per square inch,

/= thickness of plate, in sixteenths of an inch,

S=surface of plate supported by one stay, in square inches,

C=a constant, the value of which depends on whether or

not the plates are exposed to impact of heat, the

form of the stays, etc.

As regards the constant C, the value of this may be as little as

36, or as much as 240. The lower value applies Vv^hen the plates

are wrought iron and exposed to the impact of heat, with steam in

contact with them, and when the stays are screwed into the plates,

their ends being riveted over to form substantial heads. The higher

value applies when the plates are of steel not exposed to impact
of heat or flame, when the stays are fitted with nuts on both sides

of the plates, and when doubling strips, not less in width than two-
thirds the pitch of the stays and of the same thickness as the plates,

are securely riveted to the outside of the plates they cover.

If the pressure be known, and the required thickness of plate

is to be determined, the formula may be conveniently rearranged,

thus :

—

.=y^r§-..
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The usual kinds of stay adopted in boiler work at the present

time are those known as gusset stays, longitudinal bolt stays, and
screwed stays.

The flat end plates of Lancashire boilers, for example, are

strengthened by gusset stays, which consist of flat plates riveted

between angle irons, two of which are riveted to the end plate,

and two to the shell. The thrust on the end plate, or at least a

portion of it, is thus transmitted through the gusset plate to the

shell. Of course, in a Lancashire boiler, the end plates are

efficiently stayed by the flue tubes, which run from end to end of

the boiler, but even with such large stays a comparatively large

amount of unstayed flat surface is left above the tubes (and a

smaller amount below), and the gusset stays are consequently
required as well.

In addition to the gusset stays it has been customary in

the past to strengthen the end plates of Lancashire boilers

by means of longitudinal bolt stays passed from one end of

the boiler to the other, the bolts being fitted with double nuts
and washers at each end, but such stays are seldom used in

new boilers nowadays, because, owing to the manner in which
a long bolt sags, it is questionable if they really strengthen the

end plates.

In order to obviate the necessity of fitting gusset stays, the

end plates of Lancashire boilers are nowadays frequently made
of dished form instead of flat, a dished plate being considerably

stronger than a flat plate for resisting pressure. It wiU be under-
stood from what has been said in the early part of the present

chapter, that if the ends of a boiler were made of hemispherical

form they would be twice as strong as the boiler shell to resist

bursting ; if made flat they would be weaker than the shell, so

a compromise is made by making them dished. If the ends be
dished to a radius equal to the diameter of the shell, their strength,

neglecting the weakening which results from flanging for attach-

ment to the shell, may be supposed equal to that of the shell,

because they are then portions of a sphere whose diameter
is double that of the boiler shell. The end plates of water-

tube boilers of the Babcock and Wilcox and the Stirling types are

generally dished and unstayed.
Screwed stays are employed largely for staying the flat sides

of the combustion chamber of marine boilers and the flat sides of

the firebox and outer casing of locomotive type boilers. Such stays

consist simply of a round bar of steel, iron, or copper, screwed along

the length (or in some cases only at the ends), so that they can be
screwed through the two plates which are to be secured together,

after which the ends can be riveted over. They are usually spaced
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uniformly over the surface to be stayed, each stay supporting a
certain area of plate, and consequently a certain load.

If the stays be spaced a distance s apart, then, according to

Professor Unwin, the greatest stress / in the plates, due to a
pressure f, is given by the relation

where t is the thickness of the plates.

From this we get

ana ^=3V4

/
'7

2p

Worked Examples

76.-

—

Cylindrical Shells, (i) A cylindrical steel shell 6 feet

diameter and 15 feet long is required to sustain an internal pres-

sure of 80 lbs. per square inch. Assuming the plates to be solid

throughout, i.e. to have no joints, what should be the thickness of

the plates ?

The strength of a thin cylindrical shell to resist internal pres-

sure is given by the relation,

r _j>d

where /'^=allowable tensile stress in plate material, in lbs. per
square inch,

^=safe pressure, in lbs. per square inch,

^=diameter of shell, in inches,

i{= thickness of plates, in inches.

We require to find t, the thickness of the plates.

Rearranging the equation.

For safe working, /, for steel plates may be taken to be from
10,000 to 12,000 lbs. per square inch. Taking the former figure,

and substituting the given data.

2X10,000
The required thickness of plate is therefore '288 inch. In all

probability the plates would be made at least y^ inch thick, or

more, to allow for wasting, etc. Note that the length of the shell

does not enter into the calculation.
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(2) If, in the previous question, the shell were rriade ol

spherical form, what thickness of plate would be sufficient ?

We have shown in the early part of the chapter that a spherical

shell is just twice as strong to resist internal pressure as a plain

cylindrical shell. As the strength of the shell varies directly as

the thickness, it follows that if the vessel be made of spherical form,

the plates need only be one-half the thickness required for the

cylindrical form.

The required thickness is then J of "288^ '144 inch.

The strength of the spherical shell may of course also be deter-

mined from the relation, .7

/'=4J-

From this, ^=^>,

and substituting the values, t= —="^4A inch,^ 4x10,000 '-^

which agrees with the result already found.

(3) Find the maximum and minimum stresses in an oval

shell subjected to an internal pressure of 100 lbs. per square inch.

The greater and lesser diameters of the shell are 3 feet and 2 feet

respectively, and the thickness of the plates f inch.

It has been shown that the stresses in an oval shell due to

internal pressure are fa=^--~ and/^=^-?,

where //i=maximum stress, in lbs. per square inch,

/2=minimum_
^=pressure, in lbs. per square inch,

^j=greater diameter of shell, in inches,

^2^^^ ,, >> >>

^=thickness of plates, in inches.

Substituting the given values,

/,i==
^QQ^3Xi2^ 3^^ j^g^ square inch.
2X-375 '

This stress occurs at the parts cut by a plane passing through

the centre of the shell where the diameter is a maximum.

/2=i^22i^^il^=Q2oo lbs. per square inch.
' 2X'375

This stress occurs at the parts cut by a plane passing through

the centre of the shell where the diameter is a minimum.
Maximum stress=48oo lbs, per square inch.

Minimum stress=3200 lbs, per square inch.
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(4) A plain iron furnace tube 2 feet 8 inches diameter and
6 feet 10 inches long is found to collapse under a pressure of

430 lbs. per square inch. Determine the thickness of plate, using
Fairbairn's rule.

According to Fairbairn's rule, the collapsing pressure

/)=8o6,300^,

where ^= thickness of plates, in inches,

/^length of tube, in feet,

^= diameter of tube, in inches.

As we require to find t, it will be convenient to rearrange the
equation.

Thus, /2-19^ ^^^
,.

806,300

from which t=(, '^}^ ^\
\8o6,30o/

Substituting the given data.

Thickness of plate= '375 or f inch.

(5) Find the pressure at which a steel furnace tube 3 feet

2 inches diameter and 30 feet long may be worked, the tube being

made up of twelve separate rings, J-inch thick ; the ends of each
ring are flanged and riveted to the next, and each ring is welded
longitudinally.

We may conveniently apply the Board of Trade rule given

in the text to this example.

,_9900X^ / /+I2\
^~ 3X^ y 6oxtJ'

where />=working pressure, in lbs. per square inch,

^= thickness of plate, in inches,

<?=diameter of tube, in inches,

/^length of each ring, in inches.

As there are twelve rings to a length of 30 feet, each ring will

be 2 feet 6 inches or 30 inches long. We may neglect the space
taken up by the caulking rings.

Substituting the given values,

._990ox-5 / 30+12
^ 3x38 \^ box -5

==^^^(5—^)= i56'2 lbs, per square inch.

Working pressure= i56 lbs, per square inch.
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(6) Find by the Board of Trade rule the safe working pressure
for the flat steel plates of the combustion chamber of a marine boiler,

the plates being ^^inch thick and the pitch of the stays being

7f inches, both horizontally and vertically„ Assume the constant
C to be 100.

The rule referred to is,

^ S-6 '

where ^=working pressure, in lbs. per square inch,

i{= thickness of plates, in sixteenths of an inch,

S=surface of plate supported by one stay, in square inches.

The surface of plate, S, supported by each stay will evidently
be 7|x7j=6o'i square inches.

The thickness of plate, t, in sixteenths of an inch, is 9.

Hence, .,^100(9+1)^
^ 601—

6

100X10^ o- iu • -u185 lbs, per square mch.
54-1

The plate is thus capable of withstanding a safe working
pressure of 185 lbs. per square inch.
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Chapter VI

RIVETED JOINTS

77.

—

In determining the internal pressure which can be carried by
plain cylindrical vessels, such as steam boilers, we assumed the

plates to be solid throughout, i.e. to have
no joints.

As, however, cylindrical shells are

generally made from originally flat plates, it

is quite obvious that after rolling the plates

to the cylindrical form the adjoining edges

must be securely jointed together in some
manner. The most satisfactory method of

doing this is by riveting, which consists

of drilling holes near the edges of the

plates, lapping one edge over the other, or Fig. 25

else butting the two edges together and
placing cover strips over, and then passing rivets through. This
will be understood from Figs. 25 and 26. In the former figure,

one edge of the plate is shown lapped over
the other, and in the latter the edges are

butted together and are then covered by
strips known as " butt straps," the rivets

being passed through both the straps and
the plate.

These joints are known as riveted joints,

that of Fig. 25 being termed a lap joint, and
the other one a hutt joint.

Riveted joints may be either single,

Fig. 26 double, or treble riveted, depending on
whether one, two, or three rows of rivets

be used for making the joint. The different types will be illus-

trated as we go along.

We have previously found that the internal pressure which
may be safely sustained by a thin cylindrical shell is given by the
relation

G 97 .
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where /)=safe or working pressure, in lbs. per square inch,

^== thickness of plates, in inches,

^=diameter of shell, in inches,

/^=allowable tensile stress in plates, in lbs. per square inch.

This relation supposes that the plates are solid throughout ; in

other words, it assumes there are no riveted joints.

We must consider now what will be the effect of a riveted

joint on the strength of the vessel.

A joint of this type, as we have seen, involves the drilling of

holes through the solid plate, and it is quite obvious that after the

holes have been drilled the amount of metal to resist the bursting

pressure will be less than it was prior to the drilling. The
provision of a joint must therefore weaken the structure, with

the result that the latter cannot sustain the same pressure as it

could if it had no joints.

In order to determine the safe working pressure with the

joints taken into account, it is necessary to introduce into the fore-

going relation a factor k, which represents the ratio of the actual

strength of the joint to that of the solid plate. Thus,

a

and from this, /^=^«

As regards tearing of the plates, the factor k, which, for tearing,

may be substituted by kt, represents the ratio of the amount of

metal left after drilling the rivet holes to the amount of metal
originally in the solid plate.

If we let D represent the diameter of the rivets, P the pitch

of the rivets, i.e. the distance from the centre of one rivet to the

centre of the next, and t the thickness of the plates, then consider-

ing a strip of plate of length P, the amount of metal remaining to

resist tearing after drilling will be (P—D)^ ; the metal in the solid

plate originally was Px^.

Hence, k.J^^^^^.
This ratio represents the fractional strength of the joint to resist

tearing along the line of rivet holes. If it be multiplied by loo,

it represents the strength expressed as a percentage, and this per-

centage strength is commonly known as the efficiency of the joint.

P—

D

Thus, Tearing efficiency of joint=- p xioo.

The tearing efficiency of a riveted joint depends on the type
of the joint. It is, for instance, less for a single-riveted than for a
double-riveted lap joint, because in the former the proportion of
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metal removed along a single Ime of rivet holes in drilling the holes is

greater than in the latter joint. Approximate values are 60 per cent,

and 70 per cent, respectively for the single- and the double-riveted

lap joints met with in actual boiler work. To find then the pres-

sure when kt and the other factors are known we use the relation,

If the pressure be known and the tensile stress in the plates be
required, we use the general relation,

pd
fr

2tki

78.

—

strength of various forms of Riveted Joints. When
a cylindrical vessel constructed of a continuous ring of plate is

Fig. 27

exposed to internal fluid pressure, it can only fail by tearing through
the plate, and if we assume the plate to be of uniform thickness
and strength throughout, the vessel would tend to rupture all

roimd its circumference at the same instant.

If, however, the vessel has longitudinal riveted joints, failure

is certain to occur at the joint owing to the fact that the latter is

always weaker than the solid plate.

Now a riveted joint may fail in quite a number of ways.
Thus it may fail :

—

(i) By tearing the plate along the line of rivet holes.

(2) By shearing the rivets.

(3) By crushing the rivets, or the plate in front of them.
(If of course the rivets be strong enough to resist crushing,

then for the same bearing area, the plates, being generally made
of the same material, will also be strong enough, and it is suffi-

cient therefore to deal with the rivets only.)
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(4) By the plate breaking through between the rivet holes
and the edge of the plate in a line at right angles to the edge.

(5) By shearing out the plate in front of the rivets.

To make matters quite clear, consider the simplest type of

joint, viz. the single-riveted lap joint. Such a joint is illustrated

in Fig. 27.

We have seen that the tendency of the pressure acting inside

a cylindrical vessel is to burst the vessel longitudinally into two
equal halves. If then the single-riveted lap j oint of Fig. 27 be
the longitudinal joint of such a vessel, it will be understood
that there will be two equal and
opposite forces acting on the
joint in the manner illustrated

by Fig. 28, and these two forces

tend to cause failure in any one
of the five ways referred to.

The various methods by
which the joint may fail are
illustrated by Figs. 29, 30, 31,

32, and 33.

Fig. 29 shows how the
plate may tear along the line of least resistance, i.e. along

the line of rivet holes.

Fig. 30 shows failure taking place as a result of the

rivets shearing.

Failure by crushing of the rivets is illustrated in

Fig. 31.

Fig. 32 illustrates how the plate may break through

between the rivet holes and the edge of the plate in a

line at right angles to the

edge.

Finally, Fig. 33 shows
how the plate in front of

the rivets may be sheared
out, thus causing the joint

to fail.

79.—^The student will

understand that in order

to have the joint designed
to the best advantage it

should be so proportioned
that it will fail simultaneously in all the five ways just mentioned.

If, for instance, the number and diameter of the rivets be such

that the joint will fail by tearing of the plate far sooner than it

will fail by shearing through the rivets, it is quite obvious that
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Fig. 32

a certain amount of rivet section has been put into the design which
from the strength point of view is useless, and which consequently
might have been saved. The essence of Machine Design is so to

proportion the various parts of

a machine or structure that the

requisite strength is obtainedwith
the minimumamount of material.

It has already been ex-

plained how the weakening effect

caused by the introduction of a
riveted joint into a cylindrical

vessel subjected to internal pres-

sure is taken into account in

calculating the strength of the

vessel to resist tearing of the plates, viz. by introducing a factor

which represents the ratio of the area of plate left after drilling the
holes to the area of the solid plate.

In the same way, it is con-
venient to introduce another
factor when calculating the
strength of the vessel to resist

failure by shearing of the rivets.

Before failure can occur in this

way, a certain number of rivets

per pitch, depending on the type
of the joint, must be sheared
through. The area of metal pre-

sented by these rivets to resist

shearing may be compared with the area of metal in the solid

plate to resist tearing, but it must not be forgotten that the shear
strength of iron or steel is not the same as the tensile strength.

T + h _^rea of rivet section to resist shearing
* area of solid plate to resist tearing

Then if, in the general formula, ^^ +>
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diameter of the vessel, and P the pitch of the rivets. If there be
n rivets to a pitch, the area to resist shearing (assuming the rivets

to be in single shear, and remembering that there are two strips of

shell to resist bursting) will be ?^x-xD^X2, where D is the diameter
4

of the rivets. The shearing stress on the rivets will then be
/._^ total force_ pdP _ pdV

rivet area tt^^ ttt^o'

4 2

•

. 1
• wx^xD2

, rivet area to resist shearing 4
^

*~area of solid plate to resist tearing" Vt

Substituting this value of k^ in the equation, /^=-^^, we have

r^ pdVt _ pdV _pdF
Js

.TTTmo - TTt-vO! .TTi
2tn-V>'^ 2W-D2 n-Xy^ -

4 42
This is just the same result as we obtained by dividing the total

force per pitch tending to burst the shell by the total rivet area

resisting shearing.

In a similar manner, the crushing stress on the rivets may
be found from the general equation for the strength of a cylindrical

shell having no joints, by introducing a factor k^, this factor

representing the ratio of the area of rivet metal to resist crushing

to the area of solid plate to resist tearing.

«,i -r 7 area of rivet metal to resist crushing
Thus, if Rc= J—i^-T- 1—7—

I

• r-T— •

—

-t
area of solid plate to resist tearing

the crushing stress /,=-^.

To sum up, then, if we require to find the tensile stress in the

plates, the shearing stress on the rivets, or the crushing stress on

the rivets of a vessel of cylindrical form exposed to internal fluid

pressure, we use the general equation

r_ pd

If it he the tensile stress in the plates which is required, we use

kffor k, kt representing the ratio of plate left between the rivet holes

to the soli4 plate ; if the shearing stress on the rivets is to be found,
we substitute k.for k, where k^ represents the ratio of rivet section [to

resist shearing) to the solid plate.

Lastly, {f we wish to determine the crushing stress on the rivets,

we substitute h,.for k, ivhere k^ represents the ratio of rivet metal avail-

able to resist crushing to the amount of solid plate to resist tearing.
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80.—With regard to the failure of a riveted joint by the plate

breaking through between the rivet holes and the edge of the

plate, and by shearing out the plate in front of the rivets, it is

customary in modern practice to make the distance between the

centre of the rivets and the edge of the plates about one and
a half times the diameter of the rivets, as by so doing failure

in the tw^o ways referred to is not then likely to occur.

To calculate the strength of the plate to resist breaking through
between the rivet holes and the edge, we have to assume that the

piece of metal in front of each rivet is a form of short beam fixed

at both ends and loaded more or less uniformly along its length. By
means of certain relations which are known to hold good in connec-

tion with loaded beams, but which the student is not yet sufficiently

advanced to deal with, we can then determine what depth of metal
there should be between the hole and the plate edge in order that

the strength to resist breaking through will be equal, say, to the

strength of the plate to resist tearing along the line of rivet holes.

We should find this to be considerably less than the diameter of

the rivets, so that by making the distance between the centre of

the rivets and the edge of the plate one and a half times the

rivet diameter, which of course means making the distance between
the hole and the plate edge equal to one rivet diameter, we ensure

that the joint cannot fail by breaking through in the manner
referred to.

As regards failure by shearing out the plate in front of the

rivets, before this can occur, two strips of metal of length iJD and
thickness t (where D and t are the diameter of the rivet and the

thickness of the plate respectively) would have to be sheared

through, and the resistance offered by these strips is generally

much greater than that offered by the joint to resist failure in

other ways. As a matter of fact, a riveted joint is seldom, if ever,

found to fail by the plate in front of the rivets being sheared out.

Generally speaking, then, when designing a riveted joint, it is

not necessary to pay attention to the strength of the joint to resist

breaking through between the rivet holes and the edge of the plate,

or to resist shearing out the plate in front of the rivets, providing

the distance between the centre of the rivets and the edge of the

plate be made equal to one and a half times the diameter of

the rivets. The strengths to be considered are those to resist

tearing of the plate through the rivet holes, shearing of the rivets,

and crushing of the rivets.

The usual procedure when designing riveted joints for steam
boilers, etc., is as follows :—Having determined the thickness

of plate required, the diameter of the rivets is fixed. The
resistance to tearing through the plate is next calculated, and then
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the resistance to shearing. By equating these two resistances, the

necessary pitch of the rivets can be determined. Finally, the
crushing resistance of the rivets is calculated to ensure that with
the pitch now decided upon, the strength of the rivets to resist

crushing is equal to their strength to resist shearing, or to the
strength of the plate to resist tearing. If not, it would be
necessary to modify the design somewhat, unless, of course, there

is an ample margin of strength. It may be observed that as the
plates are gripped very tightly together by the rivets, an additional

resistance to failure of the j oint is thus presented, but it is not usual

to take any account of this in calculating the strength of the joint.

The diameter of the rivets is commonly fixed by means of

a simple formula due to Unwin, viz. :

—

where D= diameter of rivet and /= thickness of plates.

Instead of using a formula, however, many structural engineers

adopt a certain size of rivet for a certain thickness of plate, as, for

example, a f-inch rivet for a f-inch plate, a -J-inch rivet for a J-inch
plate, and so on.

Mr. Edward G. Hiller, Chief Engineer of the National Boiler and
General Insurance Company, Limited, Manchester, recommends
the following sizes of rivets for various thicknesses of boiler plates.

Thickness of Plate.
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Referring to the figure, there are forces acting on the two
plate edges, as indicated by the arrows in Fig. 28. These forces,

which are, of course, due to the internal pressure in the vessel to

which the joint belongs, are tending to tear the plate along the

line of rivet holes, and also to shear and crush the rivets in

the manner already explained.

The amount of plate metal per pitch resisting tearing is

(P—D)^, and the amount of rivet metal resisting shearing is -D^,
4

i.e. the area of two half rivets or one whole rivet.

Calling the ultimate tensile stress of the plate metal /^^, and
the ultimate shearing stress of the rivet metal f}, the tearing

TTi
resistance is (P— D)//"/, and the shearing resistance -Dy,*.

4
As it is desirable so to design the joint that it will be equally

strong to resist both tearing and shearing, we equate the tearing

and shearing resistances. Thus

(p-D)^//=^DyA
4

From this equation, we can find the required pitch, P, because
D, t,f}, and// are supposed to be known.

Dividing both sides of the equation by tf^, we have

Then p=!?:^+D.
4v/

The pitch is thus obtained by equating the tearing and
shearing resistances of the joint. It must be pointed out, how-
ever, that the pitch as determined in this way may in some in-

stances require adjustment to suit practical requirements. Thus,
if it be too small, so that the rivets come too close together, the
operation of riveting may be interfered with ; whilst if it be too
large the plates cannot be closed properly to obtain a thoroughly
tight joint.

The fractional strength of the joint for tearing, kt, is the
proportion of the metal left after drilling the rivet holes to the
metal in the solid plate, and taking one pitch, this is

(V-T>)t _P-D
vt p

•

Hence, kt=
~

.

The value of the shearing factor, k„ which, as already
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explained, represents the proportion of the metal to be sheared
through to the metal in the solid plate is

^D2
4 .

IT.D2
P^ 4Pr

[Note that there is one rivet (or two halves) resisting shearing per
pitch.] Therefore,

7rD2
k.^

4Pr
As regards crushing of the rivets, there is again one rivet to

each pitch, and the ratio of the amount of rivet metal to resist

crushing to the amount of metal in the solid plate is

V>xt D

Hence,

Vt P*

(Note that the area of rivet metal to resist crushing is not the half

circumference of the rivet multiplied by the thickness of plate, but
the diameter by the thickness.)

Fig- 34

82.—Double-Riveted Lap Joint. A double-riveted lap joint

is similar to a single-riveted joint, but two rows of rivets are

employed instead of a single row. Fig. 34 shows such a joint, the
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rivets in this case being arranged in the form known as " chain
riveting."

The tearing resistance of the plates in a longitudinal direction

for this class of joint is clearly (P—D)^/ per pitch, and the shearing

TTi
resistance of the rivets 2X -DY/, because there are now two rivets

4
.

to a pitch to be sheared before failure by shearing of the rivets

can take place.

It follows at once that if the tearing resistance of the plates

is to be equal to the shearing resistance of the rivets, a larger pitch

may be adopted for a double- than for a single-riveted lap joint,

as there are just twice as many rivets to shear through per pitch in

the double as in the single joint. Further, the adoption of a larger

pitch means that there will be a less number of rivet holes in each
line of rivets, and consequently a smaller amount of metal removed
by drilling than is the case when a smaller pitch is adopted. (It

is to be understood of course that failure takes place longitudinally

through a single line of rivet holes.) The joint is stronger in conse-

quence. This is the reason why a double-riveted joint is stronger

than a single-riveted joint ; it is not merely because there are more
rivets in it, as is commonly supposed.

Equating the tearing resistance of the plates to the shearing

resistance of the rivets, we have

4
Dividing through by t/i^,

Hence, P^'^-^+D.

The amount of plate per pitch left after drilling the rivet holes

is (P—D)^, and the amount of the solid plate is P^. Therefore,

,_(P-D)^_P-D
^t

p^
p—

.

The ratio of the amount of rivet section to resist shearing to

the solid plate is 2—D^ to P^. Therefore,
4

L 7rD2

2Ft

The ratio of rivet metal to resist crushing to the solid plate is

2xDx/ to P^. Consequently,

h _2D^_2D
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Fig- 35 shows a double-riveted lap joint with the rivets

arranged '* zig-zag." For boiler work, the rivets are usually
arranged in this way in preference to the chain form of riveting,

as the zig-zag riveting makes a tighter joint, and also does not
require so wide a lap as the chain form.

Referring to the figure, it will be observed that the amount
of metal per pitch resisting tearing between the rivet holes in a
longitudinal direction is the same as that for the joint of Fig. 34,
viz. (P—D)^. There are also, two rivets to be sheared through (or

two halves and a whole one per pitch), and the same number to

Fig. 3:

be crushed before failure by shearing or crushing can occur. The
pitch, the values of kf, k„ and kc will therefore all be precisely the

same as for the chain double-riveted lap joint, w'vl.

P-D
" P '

7rD2

D,

K-

2?V
2D

In addition to the longitudinal pitch of the joint under con-

sideration, we have also to determine the diagonal pitch of the
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rivets, i.e. the distance from the centre of any one rivet to the

centre of the next, measured diagonally. If this diagonal pitch

be made too small, the joint may fail by the plates tearing across

in zig-zag fashion. Assuming the strength of the plate to be
the same in all directions, the same for instance with the grain

as across the grain, then the amount of metal between the

holes, measured diagonally, might be made equal to one half

the amount between the holes, measured longitudinally. The
plate is stronger to resist tearing across the grain than with
the grain, and as the latter runs in a direction at right angles to

the longitudinal seams, that is to say, in the direction in which the

plates are rolled originally, the plate is stronger in a longitudinal

direction than in a diagonal direction. More metal should there-

fore be allowed for in a diagonal than in a longitudinal direction,

and, consequently, the shortest distance between two holes,

measured diagonally, must be more than one half the shortest

distance between two holes measured longitudinally. Equal
strength in the two directions is obtained by making the former
distance two-thirds the latter.

Various rules are used for fixing the diagonal pitch. Accord-
ing to Professor Kennedy, who made important experiments
with riveted joints, the net section of metal in the plate,

measured diagonally, should be from 30 to 35 per cent, in excess

of that measured longitudinally ; this gives a diagonal pitch of

fP+JD.
For boiler work, Mr. Edward G. Hiller states that the diagonal

pitch should not be less than "65?+ '350 . In actual boiler work,
the diagonal pitch is commonly found to be approximately 2'5D,

as marked on the sketch.

The Board of Trade fix the shortest distance, V, between the

two rows of rivets, by the rule,

y_ s/(iiF+4D)(P+4DJ
10

This of course fixes the diagonal pitch.

83.

—

Treble-Riveted Lap Joints. A lap joint is said to be
treble-riveted when it is composed of three rows of rivets. The
rivets may be arranged either as chain or zig-zag riveting, as in

the case of the double-riveted lap joint.

Treble-riveted lap joints are n^t much used in actual practice,

but, nevertheless, it may be advisable to consider briefly the

strength of these joints.

Whether the riveting be arranged in the chain or the zig-

zag form, the amount of metal per pitch (for any one row of rivets)

109



Reference Library of the

available to resist tearing between the rivet holes will be (P—D)/,
whilst the number of rivets per pitch to resist shearing and crushing
will be three. The tearing resistance is therefore (P—D)//"/ and the

shearing resistance 3- Dy/.
4

Equating the two resistances,

(P-D)///=|7rDy,i.

Dividing through by tft^,

P-D='S^D^i

4^// + •

The diagonal pitch for the zig-zag treble-riveted joint is deter-

mined in exactly the same way as it is for the double-riveted joint.

The values for the constant k are as follows :

—

84.—Single-Riveted Butt Joint. A single-riveted butt
joint is illustrated in Fig. 36. The left-hand section shows the
joint with a single cover strap only, and the right-hand section

with double cover straps. There is a single row of rivets on each
side of the plate joint.

As regards the single strap joint, this is really equivalent to

two distinct single-riveted lap joints, and the pitch, the values
of kt, k„ and kc are determined in the manner explained in con-

nection with single-riveted lap joints. When the joint belongs

to a cylindrical vessel under pressure, the pull on the plates tends
to bend the strap, and to make allowance for the stress set up by
the bending action the thickness of the strap should be made
greater than that of the plates, say one and an eighth to one and a

quarter times as great.

In the case of the double strap joint, it is to be noted that
each rivet, instead of being in single shear, as in all the joints so

far considered, is in double shear. That is to say, before the

joint can fail by shearing of the rivets, each rivet will have to be
sheared across two sections. The result is that so far as failure by
shearing is concerned, the joint is approximately twice as strong

as it would be if the rivets were in single shear only.
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Some authorities consider that a rivet in double shear does
not offer twice the resistance it would do if only in single shear

;

the Board of Trade, for example, assume the strength of a rivet

in double shear to be one and seven-eighths times as great as

when in single shear„ Experiments carried out by Professor

Kennedy, however, have shown that the relative strengths are

approximately two to one, and in what follows, therefore, except
where otherwise stated, we shall take it that a rivet in double

Fig- 36

shear is just twice as strong to resist failure by shearing as it is

when in single shear.

Referring now to the single-riveted butt joint with double
straps, we see that the tearing resistance of the plates is (P—D)^^^.

TT
The shearing resistance of the rivets is — xD2x//x2, i.e. one rivet

4
in double shear per pitch.

Equating the two resistances, we have

4
Dividing through by ^/, we get

P-D:
2 t/}

'

from which,
2 tf,-^

^^'

III
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The values of the constants are easily seen to be

P

2Pr
D
P*

As regards the thickness of the straps, it is customary to

make each strap rather thicker than one half the thickness of the

plates. If; of course, the combined thickness be less than that of

the plates, the value of k^ will be reduced.

Fig- 37

85.

—

Double-Riveted Butt Joints. A joint of this type is

shown in Fig. 37. Double-riveted butt joints are generally made
with double cover straps, and the riveting is mostly of the zig-zag
form. We shall only consider therefore this form of double-riveted
butt joint. The diagonal pitch of the riveting, it should be men-
tioned, is determined by the rules already given in connection with
double zig-zag riveted lap joints.
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Referring to Fig. 37, it is seen that the joint may fail by tearing

through the plate along either of the outer rows of rivet holes, or

by shearing through two rows of rivets on either side of the plate

joint. As the thickness of the plates and the diameter of the
rivets are the same on both sides of the plate joint, it is only
necessary to consider one side of the joint.

As regards failure by tearing, the amount of plate per pitch
is (P—D)^, so that the tearing resistance is (P—D)^/.

Before failure by shearing can occur, two rivets per pitch in

double shear will have to be sheared. The shearing resistance

is therefore,

4
For equal strength the tearing resistance must be equal to

the shearing resistance, and hence

(p-D)^/;^7rDy/
.ttD^i

D.

The ratio of the amount of plate between the rivets to the

P—

D

amount of the solid plate is —:p—

.

The ratio of rivet section to the solid plate is

4 ttD^

vt pr
The ratio for crushing is

2Dt_2D
Vt P*

Hence, kt=~-.

As regards the butt straps, the thickness ot each of these may
be made equal to from f^ to ^.

86.

—

Treble-Riveted Butt Joints. For modern high pres-

sure boiler work, treble-riveted butt joints, with double cover straps,

are nearly always used for the longitudinal seams. Two slightly

different forms of this type of joint are employed, the difference

being simply in the width of the outer cover strap. The two forms
are shown in Fig. 38. The section [a) shows the upper or outer cover
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strap to be narrower than the lower one, the former being only
wide enough to take two rows of rivets on each side of the joint,

whilst the latter takes three rows. The section (b) shows both
straps of the same width, and wide enough to take three rows of

rivets on each side of the joint. The plan has been drawn for the
section [a), but with very slight modification it will also represent

the plan of section (&).

In both forms of this joint it v/ill be observed that the pitch of

the outer rows of rivets is made twice the pitch of the inner rows.

By leaving out alternate rivets in the outer rows in this way, a
stronger joint is obtained, less metal being thus removed by
drilling from the part where failure would occur by tearing than
would otherwise be the case. The real pitch of the joint is the
large one.

We shall consider first the joint represented by the section (b).

This joint may fail by tearing through the plate along an
outer row of rivet holes, by tearing through the plate along a
middle row, and at the same time shearing the outer rivets, or

by shearing all the rivets, etc. For the proportions generally

adopted in practice, failure in the second way is not liable to

occur. We need only consider, therefore, failure by tearing along

one of the outer rows of rivet holes, and by shearing of all the

rivets.

The tearing resistance is (P—D)^^^. To resist failure by
shearing of the rivets, there are five rivets in double shear per

pitch available. The shearing resistance is then 5-Dy/2-
4

Equating the two resistances, we have

(P-D)

(P-D)^//=5^Dy/2=^7rDy.
4 2

from which, p=5![D^+D.

The values of the constants are

' 4P/ 2Vt

~ Pf-T""

The joint of Fig. 38 (a) may fail in the same three wa37S as those

mentioned in connection with the joint of Fig, 38 (&), viz. by tearing
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through the plate along an outer row of rivet holes, by tearing
along a middle row and shearing the outer rivets, or by shearing
all the rivets. It is to be noted in this case, however, that the outer
rivets are in single shear only, and it follows that the assistance

furnished by the outer rivets to prevent failure of the joint by
tearing along either of the second rows of rivet holes will be less

than in the previous case, where the outer rivets are in double
shear. Consequently, in a joint of this type, although we generally

determine the pitch by equating the tearing resistance along one
of the outer rows of rivet holes, to the shearing resistance of

the rivets, it is perhaps advisable to check the design to see that
the joint is not likely to fail by tearing along either of the inner
rows of rivet holes and shearing the outer rivets, rather than
by tearing along the outer rows of rivet holes or shearing all

the rivets.

The tearing resistance of the plate along the outer rows of

rivet holes is {P—D)tf}. To resist shearing, there are four rivets

in double shear and one in single shear. The shearing resistance

is then 4^^027/2+-Dy/=9'^Dy/.
4 4 4

Equating,

ir-i

4

''HI
from which, V=^Vtj^T>,

The values of the constants are as follow :—

' vt 4Pr'

In a treble-riveted butt joint of the form shown in Fig. 38,

w^here the pitch of the outer rows of rivets is twice the pitch of

the inner rows, it is advisable to consider the strength of the

cover straps. The forces tending to separate the two edges of the

shell plate at the joint also act, through the medium of the rivets,

on the straps, which are in consequence put in tension.

The tearing resistance of the two straps at either of the lines

of rivet holes nearest the plate joint is (P—2D)^^//x2, where t, is
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the thickness of each strap. The strength of the plates to resist

tearing is (P—D)^//. (We assume the straps and the plates to

be made of the same material.)

Equating these, we have

Cancelling out//,
2(P-2'D)t={F-'D)f.

° ' ' 2(P-2D)'

This expression gives us the thickness of each strap from
theoretical considerations^ It has already been explained, however,
that allowance should be made for the fact that the load may not
be thrown equally upon the two straps, and the actual thickness

should consequently be rather more than that given by the above
expression.

In the construction of large steam boilers, it is customary to

make the thickness of the straps of treble-riveted butt joints

almost equal to the thickness of the shell plates ; usually about
yi^ inch or |- inch less.

So far, no reference has been made to the circumferential

joints of cylindrical shells. Except in the case of short vessels, the

shell must be constructed of two or more rings, and these are

usually connected together by riveted joints.

For the longitudinal seams, the butt joint is preferable to the

lap joint, because it retains the true circular form of the shell, and
thus obviates certain defects which are liable to arise when lap

joints are employed, owing to the fact that the latter interfere

with the circularity somewhat.
As regards the circumferential seams, the lap joint is entirely

satisfactory and is invariably used in boiler work, the single-riveted

joint being employed for low pressures, and the double-riveted j oint

for high pressures. The calculations for these j oints are very simple,

and should present no difficulty whatever to the student who has
read through the previous work. It is to be remembered, of course,

that whereas the total force tending to burst the vessel in a longi-

tudinal direction is pdl, where p represents the pressure, d the

diameter of the vessel, and / the length, the total force tending to

burst the vessel circumferentially is p-d^.

If the vessel contains internal tubes, the area on which pres-

sure acts will be less than '^d'^ by the sectional area of the tubes.
4

In Lancashire and similar boilers, the internal iiue tubes tend
to prevent bursting of the boiler in a circumferential direction,
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but it is not customary to take this into account when designing

the joints.

The various types of riveted joint dealt with in the foregoing

represent those mostly used in connection with steam boiler work
and cylindrical vessels generally, but in addition to these, other

joints, although generally similar, but differing somewhat in the

arrangement of the rivets, are sometimes met with. The student,

however, after studying the joints given, should have no difficulty

in dealing with any other joint of a similar nature which may come
before him.

^y.—Riveted Joints for Girder Work. In the design of

built-up girders, bridges, etc., a knowledge of the strength of

riveted work is as essential as it is in the case of boiler work.

Generally speaking, the student who understands the first prin-

ciples of the design of riveted joints can apply his knowledge
equally to boiler work or bridge work. One or two examples of

riveted joints in bridge and girder work may, however, be studied

with advantage.
Fig. 39 shows what is known as a lap-riveted tie bar joint.

Here, two fiat bars are

y\ j\ tX i| connected together

by lapping the end of

one over the end of

the other and passing

nine rivets through
the two ends, which
are shaped as shown.

In designing a
joint of this form, the

main object is to de-

termine the number
of rivets which must

be used in order that the joint will be as strong to resist failure

by shearing of all the rivets as it is to resist failure by tearing
through either bar.

Let h represent the breadth of either bar,

t ,. .. thickness „ ,,

diameter of the rivets,

tensile strength of the plates,

shearing strength of the rivets,

number of rivets required.
Then the strength of the bars to resist tearing through either

of the sections xx is {h—T>)tf^, and the strength to resist shearing

of all the rivets is w-Dy/, the rivets being in single shear.
"^

Ii8

Fig. 39
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Equating these two strengths, we have

7^^

4
The number of rivets required is then,

7rD¥i
nJtlMl^ii^-^)&

The joint under consideration might fail by tearing at either

of the sections yy and shearing the rivet at one of the sections xx ;

by tearing across zz and shearing the rivets at one of the sections

yy and at one of the sections ^a;, and also by crushing of the rivets.

After having determined, therefore, the required number of rivets,

and spacing them conveniently, it is advisable to calculate the
strength of the joint to resist failure in the three ways referred to,

and, if necessary, modify the design.

The strength of the joint to resist failure by tearing at either

of the sections yy and shearing the rivet at one of the sections

TTi
XX is (&-2D)///+-Dy/.

4
^

The strength of the joint to resist failure by tearing across zz

and shearing the rivets at one of the sections yy, and also at one
of the sections xx, is

(&-3D)///-^-3^Dy/.
4

The strength to resist crushing of the rivets is gDt/c^, where /^^

represents the crushing strength of the rivets.

The above joint, instead of being made in the lap form, may
be made butt-jointed with double cover straps, the ends of the
bars being butted against each other, and the straps instead of the
bars being shaped at each end to suit the arrangement of rivets.

This form of tie bar joint is superior to the lap form, because
the pulling forces acting along the tie on opposite sides of the joint

act in one and the same plane, whereas in the lap joint, they act

in different planes, with the result that a bending action is set up.
The butt joint is also stronger than the lap (as regards its

resistance to shearing of the rivets), other things being the same,
owing to the fact that the rivets are in double shear, so that for

the same pull along the tie bar, a less number of rivets are required
than is the case when a lap joint is employed, where the rivets are

only in single shear.

The calculations for the strength of the butt joint are similai

to those already given for the lap joint, with the exception that
the area of rivet section to resist shearing is twice what it is for

the corresponding lap joint.
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The rivets used in bridge and girder work are usually of a
rather less size than those used for boiler work.

For such work, the rule

D-i'ix/J

is sometimes made use of, where ^=the thickness of the plates.

Worked Examples

88,—(i) Determine the thickness of the plates required for a
steel boiler shell, 5 feet 6 inches diameter, which is to work at a

' ^ssure of 50 lbs. per square inch (i) assuming there are no joints,

d (2) assuming there is a longitudinal seam or joint which is

-igle lap-riveted, and which has a tearing efficiency of 60 per cent.

The first part of this problem is" easily solved by using the
formula

where /^=safe tensile stress, in lbs. per square inch,

^=safe working pressure, in lbs. per square inch,
^=diameter of shell, in inches,

^= thickness of plates, in inches.

Rearranging,

'2'ft

Take/^ as 10,000 lbs. per square inch, and substitute the known
'•values.

Then
j^^5QX5-5xi2_.^^

.^^^j^^

2x10,000 —
Required thickness of plate if no joints '165 inch.

This thickness is sufficient for actual strength ; but, in practice,

plates under J inch thick are rarely used.

For the second part of the question, we use the above formula,
but we must modify it so as to allow for the weakening which
results from the introduction of a riveted joint.

The formula is now,

where h —^^^^^^ ^t^'a. of plate to resist tearing
^

area of solid plate

The efficiency of the joint is given as 60 per cent., so that kt=^'6.
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Hence, i='-^rr'

Substituting the values,

t^
50x5-5x12 j„^j^_

2 X 10,000 X"D —
Required thickness of plates with single-riveted lap joint= '275 incho

(2) A steel cylindrical air receiver, constructed oi f-inch

plates, is 60 inches diameter, and carries a pressure of 100 IbSo per

square inch. The longitudinal seam is double lap-riveted, the
pitch of the rivets being 2J inches and their diameter f inch.

Show whether or not the vessel is quite safe to work at the pressure

imposed upon it.

In order to show whether or not the vessel is safe for its work,

we must calculate (i) the tensile stress on the plates
; (2) the shearing

stress on the rivets ; and (3) the crushing stress on the rivets. We
assume, of course, that the distance from the centre of the rivets

to the edge of the plate is made equal to one and a half times

the diameter of the rivets, so that it is not necessary to go into

the question of strength as regards breaking through the plate

between the rivet holes and the plate edge, and shearing out the

plate in front of the rivets.

The tensile stress in the solid plate is given by the relation,

where /^= tensile stress due to the pressure, in lbs. per square inch,

/)=pressure, in lbs. per square inch,

^=diameter of receiver, in inches,

/=thickness of plates, in inches.

We require to find, however, the stress in the plates at those parts

weakened by the rivet holes, and for this we use the relation,

f
_pd

, y actual area of plate to resist tearing
where kt= ij—p-^

—

.r— ^ -

area of solid plate

P—

D

Now kt=- , where P=pitch of rivets in inches and D=s

diameter of rivets in inches. Then

Substituting this value of ht along with Ine known values of

j>, dy and t, we get

r 100x60 n_ • 1

f^= —-^ = 12,000 lbs, per square inch.
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The tensile stress in the plates is therefore 12,000 IbSo pei
square inch. An air receiver is not subjected to the same con-
ditions of working as a steam boiler; i.e. there are not the same
variations of temperature, or the same tendency to wasting of the
plates, etc., and a stress of as much as 14,000 lbs. per square inch

may be allowed in such vessels. The air receiver under con-
sideration is consequently quite safe as regards its strength to

resist tearing through the plates along a line of rivet holes.

To find the shearing stress on the rivets, we have to find

the total amount of metal which has to be sheared before the
joint can fail by shearing the rivets. Taking a length of shell

equal to one pitch, there will be one whole rivet and two halves,

i.e. two full rivets to be sheared.

Calling/^ the shearing stress on the rivets, and letting k^ be
the ratio of the amount of rivet section to the area of the solid

plate.

2tk,'

1-05.
Now, ^

__2X-xD^^
^^.^^2

Vt 2X2-25X-375
Substituting this and the other known values in the general

equation, we get

r 100X60 ^r 11 . 1

js= —=7630 lbs. per square mch.
2X-375XI-05 i-^ -^ ^ —

The shear stress on the rivets is then 7630 lbs, per square inch.

There is no reason why a shear stress of as much as 11,000 lbs.

per square inch should not be allowed in the rivets of an air receiver,

so that the joint is amply safe so far as regards its resistance to

failure by shearing of the rivets.

The crushing stress on the rivets is given by the relation,

r_ -pd

where _^=crushing stress due to the pressure, in lbs. per square inch,

7 _rivet area to resist crushing
*" area of the solid plate

The metal available to resist crushing is equal to the number
of rivets per pitch multiplied by the diameter of the rivets and by
the thickness of the plates.

For the case in point this is 2xfxf . The area of the solid

plate per pitch is equal to the pitch by the plate thickness, and
this is 2j-xf.

Hence, k,==^^^\^ =^^T,2jX 8̂
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Substituting this and the other knownvalues in the general equation,
r 100X60 11 . ,

tc~ 6 ^^^=12,000 lbs. per square inch.
2xfx'667

Hence, crushing stress in rivets= 12,000 lbs, per square inch.

The allowable crushing stress may be taken to be at least

20,000 lbs. per square inch, so the joint is also amply strong to
resist failure by crushing of the rivets.

Alternative Method.—In case there should be any obscurity
with regard to the above method of working the problem, we give
below an alternative method.

Considera length of shell equal to one pitch. The total force tend-
ing to burst the shell will then be ^DP=100x60x2 "25 =-13,500 lbs.

There are two strips of metal resisting this force, and if

there were no holes drilled through these strips, the area of metal
available would be

Px/X2=2*25x "375 X 2= I
"687 square incheSo

The actual metal available after drilling is

(P—D)^X2=(2'25— 75)-375X2=i'i25 square inches.

/. Tensile stress in plates=^^^— =^ 12,000 lbs, per square inch.

The amount of rivet section to resist shearing is

TT.2X—xD2x2=7rD2=7rxfx|=i768 square inches.
4

(Note that we must consider the number of rivets in two strips

of metal, as there are two strips resisting failure.)

.*. Shear stress on rivets=-^'^^^ =7630.
1768 ^-*^—

The amount of rivet metal to resist crushing is

2xDx/X2=2X75X"375X2-=i-i25 square inches.

/. Crushing stress on rivets ==^-4^^-^-"^ 12,000 lbs, per square inch.

89.—(3) Design a single-riveted lap joint for steel plates^ inch
thick.

To design the joint completely it is necessary to determine
(i) the diameter of the rivets

; (2) the pitch of the rivets
; (3) the

distance from the centre of the rivets to the edge of the plate.

To determine (i), we may use the relation,

D=i*2x//^ where D=diameter of rivet,

i{= thickness of plate.

D=i-2\/'4375=i-2X'66i= 792 inch=^f inch nearly.

Diameter of rivets

=

{-f inch.

To determine (2), the pitch of the rivets, we must have the
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strength of the joint to resist tearing of the plates through the
Hne of rivet holes, equal to its strength to resist shearing of the

rivets. . Considering a length equal to one pitch, and letting f}
and f}- represent the ultimate tensile strength of the plates and
the ultimate shearing strength of the rivets respectively,

Strength to resist tearing=(P-D)///=(P--if)--i;?s-x//.

Strength to resist shearings-Dy/="X-^|x-^fx//,
(one rivet only) 4 4

where P=pitch of rivets in inches,

Equating the tearing resistance to the shearing resistance,

4

p_ 1 3 _ 4

The ultimate shearing strength of the mild steel used in boiler

work is approximately '8 of its ultimate tensile strength, so

taking ^ as being equal to 'S, we get finally,

jt

P=i^ +fl

= •9475+ -8125^176 inches.

Required pitch of rivets=i76 inches, or, say, i| inches.

Having fixed the pitch so that the joint is equally strong to

resist failure by tearing of the plate between the rivet holes, or

shearing of the rivets, it is necessary to ascertain, if, with this

pitch, the joint is quite strong enough to resist failure by crush-

ing of the rivets. There is only one rivet to a pitch to resist

crushing^ The crushing resistance is therefore Dx^x//, where

f} represents the ultimate crushing strength of the rivets. If

this be more than either the tearing or the shearing resistance,

we know that the joint is also safe as regards its strength to

resist crushing.

Roughly, the crushing strength of steel rivets is twice the

shearing strength.

The ratio of the crushing resistance to the shearing resistance

in this case is Dxtx/J- to -B%K Then,
4

R2iiio-
^ ^^^ fc^ - HxTgX^ __ -4375x2 _i'37

^xD^x// 7S5xf|xi|xi 785 x -8125 I
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The crushing resistance is thus 1*37 times as great as the

shearing or the tearing resistance.

To determine (3), the distance of the centre of the rivets from
the edge of the plate, we follow actual practice by making this

distance one and a half times the diameter of the rivet, i.e.

i"5X'8i25= i'2i8 inches, or, say, i^ inches .

The design of the required joint is then as follows :—

(i) Diameter of rivets, ^f inch.

(2) Pitch of rivets, if inches.

(3) Distance from centre of rivets to edge of plate, i|- inches.

90.— (4) The cylindrical barrel of a locomotive boiler is to be

4 feet diameter, and the longitudinal seams are to be double-

riveted, butt-jointed, with inside and outside cover straps.

The steam pressure is 150 lbs. per square inch. Determine
the thickness of the plates and the longitudinal pitch of the
rivets.

The thickness of the plates is obtained by using the relation,

'2ftk;

where ^=pressure, in lbs. per square inch,

^=diameter of barrel, in inches,

ft =allowable tensile stress in plates,

^^=fractional tearing strength of joint.

In the question, we are not given the value of k^, so it will

be necessary to assume a value.

For a double-riveted butt joint, the tearing efficiency is

usually between 70 and 80 per cent., so we may take kf to be, say,

75. Assume also that/.= 10,000 lbs. per square inch.

Hence, substituting the known values,

^^^50x4x12 ^ 8 inch.
2X10,000X75 -^

Required thickness of plates='48 inch, or practically ^ inch.

We must next fix the diameter of the rivets.
""~~~"

Using the rule,

D=i'2x/^ where D=diameter of rivets,

_ i^= thickness of plates.

D= I -2^1^= I •2x707^ -85 inch.

A suitable diameter of rivet would thus be \^ inch. '
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To determine the longitudinal pitch, we equate the tearing
resistance of the plates to the shearing resistance of the rivets.

By doing this, we found in the text that for a joint of the type under
consideration, _ irDY^ -r^P= ~—l-D

where P=longitudinal pitch of rivets,

D= diameter of rivets,

^= thickness of plates,

//=ultimate shear stress of the rivet material,

// =ultimate tensile stress of the plate material.

Substituting the known values, and taking

2

=3
'32+ '81=£i3inches.

The required pitch is therefore 4 '13 inches, or, say, 4 inches.

With this pitch of rivets the joint would be equally strong to

resist tearing of the plates or shearing of the rivets, but in actual
practice a rather less pitch would probably be adopted in order
to make a thoroughly tight joint.

We assumed at the commencement an efficiency of 75 per
cent.

P—

D

The actual efficiency is —p— xioo.

.4- 4-^x 100=797 per cent.
4

The foregoing example is a typical everyday problem in

boiler design. It may be well to point out that, in cases where the
boiler is liable to suffer from corrosion, the plates are often made
a little thicker than that found to be necessary from the calculation

of strength. Thus, in the present example, we found the thickness
required to be

J-
inch, but some designers would add yV i^ch to this,

or, in other words, adopt ^^inch plates, for the reasons referred to.

Allowance may of course be made by adopting a low working stress

in the preliminary calculation.

(5) Design the riveted joint for the longitudinal seams of a
Lancashire boiler, the plates of which are ^| inch thick ; the joint

is to be treble-riveted, butt-jointed, with inside and outside cover
straps, the .nner strap taking three rows of rivets on each side of

the joint, and the outer one two. Assume the strength of the rivets

in double shear is only 175 times the strength in single shear.
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To design the joint, which will be of the form shown in

Fig. 38 {a), we have to determine (i) the diameter of the rivets

;

(2) the longitudinal pitch of the rivets
; (3) the diagonal pitch

;

(4) the distance from the centre of the inner rivets to the plate

-

edges
; (5) the thickness of the butt straps.

For finding the diameter of the rivets, we use the relation,

where D=diameter of rivets,

/=thickness of plates.

We are given that t is || inch="8125 inch.

. . D=i-2>v/'8i25= i'2X°9=^ i'o8 incheSo

For a ||-inch plate, i inch rivets are commonly used in boiler

work, so we shall adopt this size of rivet for the joint.

Diameter of rivets= i inch.

We have shown in the text dealing with treble-riveted butt
joints of the form under consideration that the pitch of the rivets,

p. is 9uDy/ p

This assumes that the rivets are twice as strong in double
as in single shear.

In this particular example, "however, we are told that the
rivets are to be assumed only 1 75 times as strong in double as in

single shear, and we must accordingly modify the above expression

for the pitch.

The tearing resistance of the plates is (P—D)^/.
There are four rivets in double shear and one in single shear,

and the shearing resistance is then

4^Dy/i 75+^Dy/==2^Dy/.
4 4

Equating the tearing and the shearing resistances.

Substituting the known values, and taking ^= '8,

ft

P_2XUXI2X^ ^^g.jg g .j^^j^gg^

•8125 '

We may adopt then a pitch of, say, 7 inches.

Required pitch of rivets

=

7 incheSr
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This pitch is, of course, the pitch of the rivets in the outer rows, these
rivets being spaced just twice as far apart as the rivets in the inner
rows. The pitch of the latter rivets will consequently be 3-|- inches.

The diagonal pitch should not be less than •65P-1-*35D. The
pitch of the inner rows of rivets, which is, of course, the one we
are concerned with for the moment, is 3J inches^

Hence, the diagonal pitch must not be less than
•65X3-5+°35xi=2'27+ •35=2-62 inches.

A diagonal pitch of 2f inches may thus be adopted.
Diagonal pitch

=

2f inches.

The distance from the centre of the inner rivets to the plate

edges, according to the usual practice, is made equal to iJD, so in

this case it will be i^ incheSo

The thickness of the butt straps, ts, may be obtained from
the relation,

JP-Dy_
• 2(P-2D)'

Substituting the known values, t,=-^/^ lM^= ^ =-487, or^ 2(7—2x1) 10x16 ^ '

nearly J inch. This is the theoretical thickness. Actually, the

straps would most likely be made ^^ inch thick. The general

design is, therefore, as follows :

—

Thickness of plates • • • H inch.
\

Diameter of rivets . . .1 ,,

Longitudinal pitch . . .7 inches.

Pitch of inner rows of rivets • 3i ,»

Diagonal pitch . . . . 2f ,,

Distance to edge of plates from
centres of inner rivets . • ij

Thickness of butt straps . . ^ inch.

Having designed the joint so that the tearing resistance of

the plates is equal to the shearing resistance of the rivets, the

design may be checked over to ensure that it is also strong enough
to resist failure by crushing of the rivets.

The total area of the rivets resisting crushing per pitch is

$Dt, and the crushing resistance is therefore 5D//'/=5xiX^|x//.
The tearing resistance=(P—D)^^^=(7—1)^|//.
Ratio of crushing resistance to tearing resistance

_5xixlfx/,i_5x/,i_5Xi-6_8_
(7-i)lfx// 6// 6x1 6 ^^^•

(We are assuming the crushing strength of the rivet material, per

square inch, to be equal to i°6 times the tensile strength of the

plate material)
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The crushing resistance is thus 1-33 times the tearing or the
shearing resistance of the joint, and failure by crashing is therefore
out of the question.

91.—(6) A simple lap-jointed tie bar is shown in Fig. 40. The
tie bar is 4f inches wide and ^ inch thick, and the rivets are -f inch
diameter. How would this joint fail ? Assume the tensile

strength of the bar to be 30 tons per square inch, the shearing
strength of the rivets 24 tons,

and the crushing strength 45
tons per square inch.

The joint in question

might fail by (i) tearing

through the full width of

plate at either of the sections

XX
; (2) shearing all the four

rivets
; (3) tearing through

the plate at the section

yy and shearing the rivet

at one of the sections xx ;

(4) by crushing of the rivets. (It should be mentioned that
failure is also possible by tearing through the shaped end of the
plate along one of the sections xx, and shearing the rivets at the
other sections, but there is usually an excess of strength to resist

failure in this manner, so we shall not consider such failure.)

In order to say in which way failure will take place we must
calculate the resistance to failure in each case.

(i) The available metal to resist tearing at the section xx is

{b—T>)t, and the tearing resistance is therefore (^— D)//"/, where
&=breadth of the bar, in inches,

D=diameter of the rivets, in inches,

i^'=thickness of the bar, in inches,

/i^=tensile strength of the bar material, in tons per square inch.

Substituting the given values,

Tearing resistance^ (475— •875)^x30=58-1 tons.

(2) There are four rivets in single shear to resist failure of the
joint by shearing, so that the total area of rivet section avail-

able is 4-D2.
4

Total shearing resistance=4-Dy/=7rDy/, where //=the
4

shearing strength of the rivets. Substituting the known values.

Shearing resistance=7rx|x|x 24=5775 tons.
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(3) The metal available to resist tearing at the section yy is

{h—'zD)t, so that the tearing resistance there is (})—2U)tf}. Before
the joint can fail by tearing at this section, a rivet at one of the
sections %x will have to be sheared through. The shearing resist-

ance of this rivet is -D¥/. The total resistance to failure is the
4

sum of the tearing and the shearing resistances,

.-. Total resistance=(6-2D)^//+-Dy/.
4

Substituting the values.

Tr.
Total resistance=(475—2X'875)Jx30H—xJx|-X24

4
=45+i4'44==59'44 tons.

(4) There are four rivets to resist crushing, the available

area of rivet metal thus being 40^. The crushing resistance is

consequently ^tf}, where// is the crushing strength of the metal.

Crushing resistance=4D^//=4x|-x |x45
=7875 tons.

Summing up,

(i) Tearing resistance =58*1 tons.

(2) Shearing resistance =5775 »

(3) Combined tearing and shearing resistance=59*44 ,,

(4) Crushing resistance =7875 „
Reviewing these results, we see that the resistances for (i),

(2) and (3) are almost the same, showing that the joint has been
well designed, as it would be almost as liable to fail in one way as

the other. The shearing resistance is slightly lower than the

others, and the joint would consequently fail by shearing of the

rivets. The calculation of the crushing resistance shows that the

joint is amply safe as regards crushing of the rivets.

(7) Two lengths of a fiat steel tie bar are to be connected
together by a butt joint with double straps. The tie is to carry

a load of 45 tons and is J inch thick. Determine the diameter
and the number of the rivets required.

The diameter of the rivets may be determined from the relation,

D-i-ix/^
where D=diameter of rivets and t the thickness of the tie bar. We
are given that ^ is } inch, therefore,

0=1-1^75= '95 inch.

In actual practice, f-inch rivets would probably be used.

Diameter of rivets= j- inch.
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We may assume the rivets to be so arranged that there will

be one rivet at each of the two end rivet sections of the joint, two
at each of the sections next to the end sections, then three, and
so on, (See Fig. 39.)

The strength of the bar to resist tearing through either of the
sections where there is only a single rivet is {b—T))tP; where

7>=breadth of bar, in inches,

D==diameter of rivets, in inches,

^=thickness of bar, in inches,

//=tensile strength of bar material, in lbs. per square
inch.

We are not told in the question what the breadth of the bar
is, and before we can proceed with the problem we shall have to

calculate this.

The cross sectional area of the tie at either of the end rivet

sections is (&—D)^=(6—|-)j- square inches. The load on the tie is

45 tons, so if we assume a safe working stress of 5 tons per
square inch, the sectional area required will be -^-^g square
inches. Hence,

from which b^i2'88, or, say, 13 inches.

Breadth of tie bar ^^ 13 inches.

Taking the ultimate tensile strength of the metal to be 30 tons
per square inch, the resistance of the bar to tearing through either

of the sections where there is only one rivet is {b—D)t/i^=

(13—1)1x30=272*8 tons.

As the joint is a double butt joint, all the rivets will be in

double shear, and the shearing strength of each rivet is -Dy/2=

~Dy/, where//=the shearing strength of the rivet metal. Taking

// to be 24 tons per square inch, the shearing resistance of each

rivet is -x J x|-x 24=28-9 tons.

The number of rivets should be such that the joint will be
equally liable to fail by tearing through the bar or shearing
of the rivets.

Tearing resistance of bar =272*8 tons.

Shearing resistance of each rivet= 28*9 „
Therefore,

Number of rivets required=^^—=0^45, or, say, 10.
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With 10 rivets, the crushing resistance of the joint, assum-

ing an ultimate crushing stress of, say, 48 tons per square inch, will

be ioxJx|-X48=-3i5 tons, which is greater than the tearing

resistance.

Breadth of tie bar required=i3 inches. \

Diameter of rivets = J inch. ] Answers.
Number of rivets =10. J

Fig. 41

The sketch. Fig,, 41, shows how the rivets may be conveniently

arranged.

BOARD OF TRADE REQUIREMENTS CONCERNING
MARINE BOILERS

92«—The Board of Trade, in their " Instructions as to the Survey
of Passenger Steamships," lay down certain rules and regulations

which must be adhered to before the ship is granted her passenger

certificate^ The Board have their engineer surveyors, wh,o watch the

progress of the work from the time the plates are made right up to

the time the ship is finished. The surveyors inspect the plates

both for the ship's structure and for the boilers ; they witness the

tests on specimens cut off the different plates, examine the work-

manship during construction, and, in the case of the boilers, witness

the hydraulic test on completion.

The following is an extract from the above-mentioned
Instructions, relating to the testing of boiler plates :—

•

93.

—

Number and Nature of Tests. A tensile and a

bending test should be taken from each plate, as rolled ; but when
the weight exceeds two and a half tons, a tensile and a bending

test should be taken from each end. If the plates are not to be

subjected to a greater stress than is allowed for iron, only bending

tests are necessary.

The plates for manhole doors, and for compensating rings

around the openings for doors, should be tested in the usual manner.

Plates.—The tensile strength of plates not intended to be

worked in the fire or exposed to flame should be between 27 and
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32 tons per square inch, and that of other plates 26 to 30 tons per
square inch. The elongation should not be less than 20 per cent,

in a length of 8 inches for material f inch in thickness and upwards,
which is required to have a tensile strength of 27 to 32 tons per
square inch, and not less than 23 per cent, if the tensile strength

is required to be between 26 and 30 tons per square inch. For
material under J inch in thickness, the elongation may be reduced

;

but, for each eighth of an inch of diminution in thickness, the

reduction should not be more than 3 per cent, below the elongations

mentioned.
Bend Tests for Plates.—Bending test pieces should with-

stand being bent, without fracture, until the sides are parallel at a

distance apart of not more than three times the thickness of the

specimen. The bending tests of the plates not intended to be
worked in the fire or exposed to flame may be made with strips

in the same condition as the plates ; those from other plates

should be made with strips which have been tempered.
Tensile Strength and Elongation of Stays, Angles, and

Tee Bars.—The tensile strength of longitudinal stays, angles,

and tee bars should be between 27 and 32 tons per square inch,

with an elongation of not less than 20 per cent, measured on the

appropriate test piece. (The gauge length of these test pieces for

a rectangular bar is 8 inches, and for a round bar it is not less than
eight times the diameter, or for test pieces over i inch in diameter
not less than four times the diameter.)

For bars for combustion chamber stays, the tensile strength

should be between 26 and 32 tons per square inch, with an elon-

gation of not less than 23 per cent, measured on the standard test

piece. When, however, stay bars are tested on a gauge length of

four times the diameter, the elongations should be 24 per cent,

and 28 per cent, respectively.

For tee or angle bars under J inch in thickness the elongation

may be 3 per cent, below that specified for plates.

Bend Tests for Stays, etc.—Bending test pieces should

withstand being bent, without fracture, until the sides are parallel

at a distance apart of not more than three times the thickness or

diameter of the specimen.

Rivet Bars.—The tensile strength of rivet bars should be
between 26 and 30 tons per square inch, with an elongation of not
less than 25 per cent, if measured on a gauge length of eight times

the diameter, or 30 per cent, if measured on a gauge length of four

times the diameter—the latter gauge length being only used when
the specimen is over i inch in diameter.

Rivets.—The rivets are subjected to the following test:

—

{a) The rivet shanks to be bent cold and hammered until the
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two parts of the shank touch, without fracture, on the outside of the
bend, (b) The rivet heads to be flattened, While hot, until their

diameter is two and a half times the diameter of the shank, without
cracking at the edges.

Tubes.— {a) Solid-drawn steel steam pipes, boiler tubes, etc.,

subject to internal pressure. The tensile strength should range
between 23 and 30 tons per square inch, and the elongation should
not be less than 20 per cent, in a length of 8 inches, or 18 per cent,

if the thickness of the tubes is less than
J- of an inch.

{b) Solid-drawn steel tubes subject to external pressure.

The tensile strength should range between 23 and 30 tons per

square inch, and the elongation should be at least that required

for similar solid-drawn steam pipes.

(c) Steel lap-welded tubes subject to external pressure.

Tensile and bending tests should be made from 25 per cent, of

the strips from which the tubes are made. The tensile strength

should range between 23 and 30 tons per square inch, and the

elongation should be at least 20 per cent, in a length of 8 inches

when the strips are tested in their normal condition.

94.

—

Steel Boilers. The thickness of plates other than tube

strips used in the construction of boilers should not be less than
^ inch.

It is expected that the rivet holes will be drilled, and not punched.

Plates that are drilled in place should be taken apart and the burr

taken off, and the holes slightly countersunk from the outside.

Butt straps should be cut from plates and not from bars.

Steel plates which have been welded should not be passed if

subject to a tensile stress, and those welded and subject to a

compressive stress should be efficiently annealed.

Local heating of the plates should be avoided, as many plates

have failed from having been so treated. All plates that have been
flanged or locallyheated, and all staysand staytubeswhichhave been
locally heated, should be carefully annealed after being so treated.

Cylindrical Boiler Shells.—The Board of Trade consider

that boilers well constructed, well designed, and made of good
material should be allowed an advantage, in the matter of working
pressure, over boilers inferior in any of the above respects, as, unless

this is done, the superior boiler is placed at a disadvantage, and
good workmanship and material will be discouraged. They have
therefore caused the following rules to be prepared :

—

When the cylindrical shells of boilers are made of material

which has been duly tested and approved, with all the rivet holes

drilled in place and all the seams fitted with double butt straps, each

of at least five-eighths the thickness of the plates they cover, and
all the seams a^ least double-riveted with rivets having an allow-
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ance of not more than 87*5 per cent, over the single shear, provided
that the boilers have been open to inspection during the whole
period of construction, then 4*5 may be used as the factor of safety,

the minimum actual tensile strength of the plates being used in

calculating the working pressure.

When the above conditions are not complied with, the

additions in the following scale should be made to the factor of

safety, according to the circumstances of each case :

—

c/5

<
w

<

Q

t:
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95.

—

Board of Trade Boiler Formulae. Boiler pressure

(neglecting seams) = 'L.
,

where t =thickness of plate,

//== tensile strength of plate, as obtained from test—this

is usually about 28 tons per square inch for steel,

^=diameter of boiler, in inches,

F=factor of safety.

The bursting pressure of a cylindrical vessel subject to internal

pressure has been proved (see page 85) to be -^. The safe work-

ing pressure is obtained by dividing this by the factor of safety, F.

The amount of metal left in the plate after drilling the rivet

holes is {p—d)t, where ^=the pitch of rivets, <i= diameter of

rivets, and ^=the thickness of plate. If// is the tensile strength

of the material, the strength of the material after drillings

(p—d)tx/p: The strength before drilling is evidently fxtxf^.
Therefore, the ratio of the strengths after and before drilling is

A^ /i • Cancelling, we get the ratio, ^^, as the propor-

tionate strength of the plate after drilling; this, expressed as a

percentage, is2— X 100, which is the percentage strength of Dlate
?

at the joint as compared with the solid plate.

Let w=number 6i rivets in a pitch.

A==area of rivet.

^= pitch of rivets.

/= thickness of plates.

//=shearing strength of rivets.

//= tensile strength of plates.

As before, the strength of the plate before drilling=^ xtxf}, and
the strength of riveting section=Axwx//, so that the ratio of the

A X wX /" ^

strength of the rivets to the strength of the solid plate is —^—7—
4i.>pxtXy t

the percentage strength being --—-—^^xioo. This formula is
pxt xji

used when the rivets are in single shear ; when they are in double
shear the Board of Trade allow seven-eighths more, that is to say,

they assume the rivets to be seven-eighths stronger when in double

shear.

The usual value for// is 23 tons per square inch and for// it

is 28 tons per square inch ; substituting these values we have the
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complete formula for the percentage strength of the rivets when in
A V '77 C? Q T ^

double shear as -—-x-^x -7^x100.
fxt 28 8

When designing a joint for a boiler it is necessary to make the
strength of the plate section left after drilling as near as possible

equal to the strength of the rivet section. It would be absurd,

O 4. o o

O * 0-tx-^9

Fig. 42 Fig" 43

for instance, to have a riveting section equal to 90 per cent, of the

soHd plate, and the strength of the plate after drilling only 50 per

cent, of the solid plate.

Working out both these percentages, we select the weaker for

use in the formula for the safe working pressure of the boiler.

Fig- 44 Fig- 45

It has been explained above that the working pressure, neglect-

ing seams, is equal to ~^-^.
ax¥

If we multiply this by the percentage strength of the riveting

section, or the percentage strength of the drilled plate, using which-
ever value is the lesser, we obtain the formula,
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Safe working pressure, in lbs. per square inch,

_2tf^x percentage strength of joint

JxF *

Note that if the tensile strength of the plate is given in tons

r

u

40
uJ

y

6

Fig. 46 Pig- 47

-J

per square inch this must be multiplied by 2240 to convert the
answer to lbs. per square inch.

96.

—

Riveting. According to the Board of Trade rules, the
distances between the rows of rivets (called V in Figs. 44 to 50),
and the distance between the rivet and the edge of the plate (E),

is in all these figures, -—
Chain-riveted j oints (Figs. 44

^nd 45) V=not less than 2X^.
Diagonal pitch (Figs. 46, 47,

48 and49)^.=^.
This, of course, also fixes the
value of V in these j oints, because
in Fig. 47, looking on ABC as

a right-angled triangle,

BC2=AC2-AB2.

But BC-V, AB=:=^, and AC=^^.

Fig. 48
Then, V^=(^)^(^^

\ 10 2/\ 10 2/

_/6/)+4^+5A /6/>+4^-5/>\

V____I02___
_^[iip-\-4d)(p+4d)

10
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Chain and zig-zag riveted joints in which every alternate rivet is

omitted from the outer row or from the outer and inner rows,

E=2— in all cases.
2

Chain-riveted joints,

V=

—

^—r+4^Ar"T~4 /
I

j]-^g greater of these two values

,,
^^

1 of V to be used,
or, Y=2xd. J

Diagonal pitch between outer and middle rows for zig-zag

riveted joints of type shown in Fig. 50, p^=T(jp+d.

LLl

o o © o
o 0; p

O (^ o

j

^ig- 49

V for these joints is found in the same way as it was for

the joints of Figs. 46, 47, 48, and 49. y=\/(^ip+d)(^jyp+d).
Diagonal pitch between inner and middle rows for joint shown

in Fig. 50,

. _3p+4d
10

from which, y _ ^(jiP-^Sd)(P+Sd)
^ 20
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Note.—The minimum value of V or Vj for chain-riveted

joints IS given as 2d, but 4__Z1_ is more desirable.

Maximum Pitches for Riveted JointSo
<(= thickness of plate, in inches,

^=maximum pitch of rivets, in inches—provided it does

not exceed \o\ inches ; and
C=constant applicable from following table.

Number of rivets in



where
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Note.—If the iron from which the stays are made has been tested

by a Board of Trade surveyor, and found to have a tensile strength

of 21 J tons per square inch, and an elongation, measured on a length

of 8 inches, of not less than 27 per cent., then a stress of 9000 lbs.

per square inch is allowed on the stays if solid and unwelded.

Stay Tubes.—A stress of 7500 lbs. per square inch of net

section is allowed on steel tubes, and a stress of 6000 lbs. per square

inch on iron, provided, in both cases, their net thickness is never
less than |- inch.

Ordinary Tubes.—The thickness of ordinary smoke tubes

should not be less than that found by the following formula :

—

T=^I^+-o85,
9000 ^

where T=thickness of tube, in inches,

D= outside diameter of tube, in inches,

B=working pressure.

98.

—

Flat Surfaces. The pressure on plates forming flat

surfaces is found by the following formula :

—

C(orc)x(T+i)2 ,.—

^

c W~^
—^=workmg pressure,

o O

T= thickness of plate, in sixteenths of an inch,

S= surface supported, in square inches,

C=constant for steel 1 according to the following cir-

c=constant for iron
j

cumstances.

r When the plates are not exposed to the impact of heat

or flame, and the stays are fitted with nuts on both

J sides of the plates, and doubling strips not less in

width than two-thirds the pitch of the stays, and of

the thickness of the plates, are securely riveted to

the outside of the plates they cover.

' When the plates are not exposed to the impact of heat

or flame, and the stays are fitted with nuts on both
sides of the plates, and with washers not less in

diameter than two-thirds the pitch of the stays, and
of the same thickness as the plates, securely riveted

to the outside of the plates they cover.
' When the plates are not exposed to the impact of heat

or flame, and the stays are fitted with nuts on both
sides of the plates, and with washers outside the

plates at least three times the diameter of the stay

and two-thirds the thickness of the plates they cover.

When the plates are not exposed to the impact of heat

or flame, and the stays are fitted with nuts on both
sides of the plates.

141

0=240
^=192

C=2I0
c=i68

C=i65
C=I32

C=i5o
C=I20
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C=I12*5 / When the tube plates are notexposed to the direct impact

[ of heat or flame, and the stays are fitted with nuts.

[
When the tube plates are not exposed to the direct

\ impact of heat or flame, and the stay tubes are

( screwed into the plates and expanded.
' When the plates are. not exposed to the impact of heat

or flame, and the stays are screwed into the plates and
riveted over.

When the plates are exposed to the impact of heat,

with steam in contact with the plates, and the stays

fitted with nuts and washers, the latter being at

least three times the diameter of the stay and two-
thirds the thickness of the plates they cover.

[
When the plates are exposed to the impact of heat,

i with steam in contact with the plates, and the stays

[ fitted with nuts only.

{WTien the plates are exposed to the impact of heat or

flame, with water in contact with the plates, and the

stays screwed into the plates and fitted with nuts.
' When the plates are exposed to the impact of heat or

flame, with water in contact with the plates, and the

stays screwed into the plates and having the ends
riveted over to form substantial heads.

When the plates are exposed to the impact of heat,

with steam in contact with the plates, with the stays

screwed into the plates and having the ends riveted

over to form substantial heads.

In calculating the working pressure of the portion of tube
plates between the boxes of tubes, the value of S in the formula

should be found as follows :

—

2

where D=horizontal pitch of the stay tubes, in inches,

^=:vertical ,, ,,

The pitches should be measured from centre to centre of the

stay tubes, and no deduction should be made for any tubes in the

contained surface.

In the body of tube plates, the value of S may be found in the

ordinary way, and the area of the tubes in the space bounded by
the stay tubes may be deducted.

99.

—

Compressive Stress on Tube Plates. The Board of

Trade formula is :

—

(D—^)Tx28ooo_ .

142
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c=yo

C=77
c=yo

C=75
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i

where D=least horizontal distance between centres of tubes, in

inches,

^= inside diameter of ordinary tubes, in inches,

T= thickness of tube plate, in inches,

W==width of combustion box, in inches.

If we consider the combustion chamber top, it is evident that
the weight thereon, due to the pressure of the steam, is taken by
the stays in the combustion
chamber girder stay. This
girder stay is then like a beam,
and the total weight is trans-

ferred to its supports—in this

case, the back tube plate and
the combustion chamber back,

each of which takes half the

weight.

Consider a portion of the

combustion chamber top, the

area of which is D xW. (See

Fig. 51.) li p is the boiler

pressure, the load on this area

is DxWx^. As explained

above, half of this load is taken
by the tube plate and half by the combustion chamber back. But
the tube plate has had holes drilled in it for the tubes, and the

metal left to resist this load is (D—^)T where d is the internal

diameter of the tubes. (See Fig. 51.) If f^ is the compressive
stress allowed in the material, the strength of the tube plate to

resist this load is (D—^)Tx/„ and this resistance must be equal
to the load put upon it. Therefore,

(D-^)Tx/.=^^-^^.

. ._2(D-^)Tx/,

dxD^d:® o
Fig. 51

" "^ WxD
If we compare this with the Board of Trade formula,

, _ (D—^)T X 28,000
^ ^WxD '

we see that the constant 28,000 takes the place of 2/^, from which,

2/.= 28,000.

.'. /,=—-^^^=14,000 lbs. per square inch,

which is the compressive stress allowed on the tube plates.

Notice that for an iron tube plate the Board of Trade say a
constant of 22,000 should be used, which shows that the com-
pressive stress for iron is fixed at 11,000 lbs. per square inch.
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100.— Combustion Chamber Girders. The Board of

Trade formula is

Cx^^xT ^ .

where W=width of combustion chamber, in inches,

P=pitch of supporting stays, in inches,

D= distance between the girders from centre to centre,

in inches,

L=length of girder, in feet,

(^=depth of girder, in inches,

T= thickness of girder, in inches,

N=number of supporting stays,

€=—;. ,
^

, when the number of stays is odd,
N+i -^

C=^~^^^~— , when the number of stays is even.
N+3

_

^
^

^

Note.—The constant 1320 apphes to steel ; when iron is used,

this constant is reduced to 1200.

The moment of resistance of a

rectangular beam is —^— , where

H^L

T= thickness of beam,

f:?= depth of beam,

S== stress allowed.

Take a strip of the beam dis-

tant X inches from the neutral axis

(Fig. 52) and of thickness dx. The
area of this strip is Tdx. The stress

varies directly as the distance from
the neutral axis, and therefore the

stress at x inches from the neutral

axis is -^ of the stress at the outside
d

Fig. 52

The load on the strip

edge.

Txxx2S>dx
~

~d
'
and the moment about

the neutral axis^'^^^^f
^^^

^^. Taking the sum of all such
d

moments as these between the limits, x=o and x=-, we obtain
2

the moment of resistance for one-half the beam.
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Now.
r?2TS£!^;.=?TSrl^,^^^2TSr^3-j|^,XS^ _^^ Ti^_
Jq a a J <^L3Jo d 8x3 12

Therefore, the moment of resistance for the whole beam is

X2=—^—^.

12 6

9>

Consider a combustion chamber girder with two stays. (See

Fig. 53-)
The actual surface to be supported by the stays is (W—P),

because only fiat surfaces require staying, and the radii of the
flanges for the front and back plates are approximately half the
pitch. If p is the pressure of the steam and D the distance in

inches to the next girder, the load to be supported by the stays is

(W-F)Bp.
The stays transfer the load from the combustion chamber

crown to the girder.
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Now the bending moment must equal the moment of resist-

ance of the beam. We have aheady seen that W, the load carried,

is (W—P)D/). Substituting this value for W in the bending
moment and equating it to the moment of resistance we have

(W-P)D/)xL inches_ST^2
6 6 •

In the Board of Trade formula, L is given in feet, which is

equivalent to 12L inches.

.
(W-P)D/)Xi2L _ST^2

6 6 •

. ._ ST^^2
•• y (W-P)Dxi2L*

Comparing this with the Board of Trade lormula we have

— for C, and C for two bolts =— ^—=Q90.
12 2+2

Therefore, —=990, and S=ii,88o.
12

.*. Stress allowed in steel girders==11,880 lbs.

The student should work out for himself the case of three

stays or four stays ; he will find in each case that the stress allowed

is 11,880 lbs .

lOi.

—

Plain Furnaces. As explained on p. 88, Sir William.

Fairbairn deduced the following empirical formula for the collapsing

pressure of a plain furnace :

—

806,300 xr^^

LxD '

where ^=thickness of the plate, in inches;

L=length of furnace, in feet

;

D=diameter of furnace, in inches.

Lloyd's take a factor of safety of 9, use t^ in place of f^^, and
use the following formula as the safe working pressure :

—

M7- 1 • 89,600^2Workmg pressure=„—-^-^.^^^L feetxD inches*

The Board of Trade convert this 89,600 into round numbers of

90,000, and to compensate for this they add one on to the length,

giving the formula,

90,ooox^^

.

"(L+i)xD~^*

The length is measured in feet, and diameter and thickness in

inches.
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This is the formula for iron furnaces, and the Board allow

an increase of lo per cent, on the constant for steel ; thus, the
formula for a plain steel furnace is

,_99,ooox^
^~(L-fiJxD'

provided it does not exceed that found by the following formula :

—

* 9900 X thickness in inches_ ,

diameter in inches

The Board also state that the second formula limits the crushing

stress on the material to 4950 lbs. per square inch. If we use the

ordinary expression for the internal pressure which may be carried

safely by a thin cylindrical vessel, viz. -=-, where S is the allow-

able stress, and equate it to this formula, thus :

—

2^S_9900^

we get 8=4950 lbs. per square inch.

102.

—

Corrugated Furnaces. The Board of Trade formula
for corrugated furnaces of the Morison, Fox, or Deighton types is

A' —=working pressure

.

In the Fox furnace, the pitch of the corrugations should not exceed
6 inches, and in the Morison and Deighton furnaces the pitch

should not exceed 8 inches ; also, the depth from the top of the

corrugations outside to the bottom of the corrugations inside

should not be less than 2 inches.

The diameter D is measured at the bottom of the corrugations

to the outside of the plates, that is, it is the least outside diameter.

In the Morison suspension bulb type of furnace the working
pressure is obtained from the following formula :

—

I'S.oooT 1 .

-^A=-— =working pressure,

where T=thickness of the plain parts between the bulbs, in inches

;

D==outside diameter at the middle of the plain parts

between the bulbs, in inches.

In each of these types of furnaces the plain parts at the back ends
should be so made that the length, measured from the water side of

the back tube plate to the centre line of the back end corrugation,

does not exceed 9 inches. Also, the distance at the front end,

measured from the centre of the rivets by which the furnace is

secured to the front end plate, to the centre of the first corrugation,

should not exceed 9 inches.

* For an iron furnace the constant is 9000.
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Worked Examples
103.—(i) Thickness of plates is ij inches. Pitch of rivets 6

inches. Joint is to be treble-riveted with double butt straps. Find
the diameter of the rivets to give equal strength to the plate.

Ultimate strength of rivets, 23 tons per square inch, and ultimate
strength of plates, 28 tons per square inch.

/)-^_Axn 23 T5

p pxt 2S 8*

where ^=pitch of rivets

;

^=diameter of rivets

;

A=area of rivets

;

7^=number of rivets

;

/=thickness of plate.

Multiplying both sides of the equation by p,

. 7 Axn 23^ 15

"Now ^=6; A=d^x-; n=;^;t=i^; i is unknown.

. ^ ^_^^x •7854x23x15x4x3
5X28X8

le. 6—d=2'gd^.
.*. 2'gd^+d=6.

Divide by 2*9, d^-^-^45d-=2-oy,

^24--345^+('^^y=2-07+(-i725)2,

(^-}--i725)2=+2'0997,_
^+•1725= ± V2-0997,

^-i-449--i725,
^=1-2765.

This would be given as i|- inches diameter . Answer.

(2) Design a treble-riveted double butt strap j oint with alternate

rivets omitted in the outer rows; the boiler plates are i|- inches

thick, and the pitch of rivets is not to exceed 10 inches. The effi-

cienc}^ of the joint to be as high as practicable.

As the pitch is not to exceed 10 inches, we shall start by assum-
ing the maximum pitch, 10 inches. Equating the strength of the

plate to the riveting strength,

p-d_Axn 23 IS

p pxt 28 S'
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The pitch we have taken as lo inches,

• 10-^-^^^7854x5x23x15x4
5x28x8

Note that in a joint of this description, there are five rivets in a pitch-

(See Fig. 50.) Then, io—d=/\.-S4d^.

Solving this quadratic,

rf^=i'33 inches, say, i-pf. inches, diameter of rivets.

Efficiency of r>\^te^tl^=^2i:I-&J'^^y^=-S6S.
p 10 10

Efficiency of rivets=-;

—

~x.^-~x^
•^ pxt 28 8

_2iX2ix7854X5X23Xi5 X4_.g
16x16x5x10x28x8 —=^

On looking at Fig. 55, we see that this joint may fail by tear-

ing across A, or by tearing across B and at 'the same time shearing
the two half rivets in row A ; or by tearing across C and at the
same time shearing the two rivets in row B and the two half rivets

in row A ; therefore,

Efficiency at ^=^=^=-868.

We have seen that the efficiency of five rivets is '833, so that the
efficiency of one rivet

5

Again, efficiency at /?=fc?- -f i rivet
P

= ^^~^'^^
3+-i666=7375+-i666=^ -9G4i.

Efficiency at C=^^^-+3X '1666=7375+ -4998 =112373.

The weakest part of the joint is therefore the riveting section,

the efficiency of which is '833 ; consequently, we must take this as

the efficiency of the joint. li^fficiency is then 83*3 per cent.

The Board of Trade rule for the thickness of the butt straps is

|^^)=5><5^8;6875 ,i^,h.
8 (p-2d) 8 4 7-373

The butt straps would in all probability be made i inch

thick.
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Distance between rows of rivets, etc.

—

._3 X ^_3 X ifV_ t3 1

2 2
i-|^ inches.

V^x/(-H>-/>+^)fe^+^).

-j{
IIXIO

16
,,_»Lxii>+x_^ x/3161

=3*5 inches.
20 ""/\ 20 ""/ 16

20 20 20 ^

The joint is shown in Fig. 55.

104.—(3) The main stays in a marine boiler are pitched 16 inches

apart. They are made of steel, and fitted with nuts and washers

of the approved size at each side of the plate. If the boiler pressure

Fig- 55

m'

WM
M

Wy^

is to be 180 lbs. per square inch, find the diameter of the stays and
the thickness of the end plates.

Area supported by one stay=16x16 square inches.

Pressure on this area to be sustained-- 16x16x180.

Sectional area of stay=^^x''^.
4

Stress allowed on a steel stay (unwelded)--9000 lbs.

/. <^x-X9000=i6x 16x180.

,2_16x16x180
9000x7854°

,*. ^= V6'5i8q^ 2'55 inches diameter.

.
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The Board of Trade rule for flat surfaces is

C(T+i)'^_p
S-6 '

where T=thickness of plate, in sixteenths of an inch

;

S=surface sustained by stay

;

C=constant, in this case=i65
;

P=boiler pressure.

'-^^^='''' (T^,j.^i8ox|5o. T+i^Vi^i:^

T+i=i6-5. .-. T=i6-5-i=i5-5.

.•. Thickness of end plate is -^ inch, or, say, i inch .

(4) The width of a combustion chamber is 36 inches, and this

may be taken as the length of the stiffening girder. The stays, of

which there are three, are pitched 9 inches apart, and the distance

between the girders is 8 inches. If the girder stay is 10 inches

deep, and f inch thick, find the safe working pressure. The
stress in the girder is not to exceed 11,880 lbs. per square inch.

It has been shown previously that in the Board of Trade
formula for the girder stays the stress is limited to 11,880 lbs.

per square inch. We can, therefore, find the boiler pressure
from this formula :

—

._ Cx^^xT
r (W''-P)DxL'

where W"=width of combustion chamber, in inches

;

P==pitch of supporting stays, in inches

;

D=distance between the girders from centre to centre, in

inches

;

L=length of girder, in feet

;

^=depth of girder, in inches;

T=Thickness of girder, in inches
;

N=number of supporting stays

;

C= ,^
^— in this case.

N+i

...
^^990X10^x1 ^990x100x3^

, lbs.
(36—9)x8x3 4x27x8x3 —^^-^
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In the above question, if the boiler pressure is no lbs. per
square inch, find the bending moment on each of the stays.

Reaction on each support is —

.

Weight taken by each stay is
W

Bending moment at centre of girder

^W L_W L

_WL_WL_WL
4 12 6 *

L "FJ

f
\4i

5 f
Fig. 5(^

W

¥

The load, W, is equal to the pressure multiplied by the area

upon which it acts=(W''—P)Dx/>.
Substituting this value for W, we have.

Bending moment at centre

6

— (36—

9

)8 xiiox3_27X 8x110x3
6 6

= 11880 pounds-feet at centre.

Bending moment on each side stay

W..L WLx-=
2 4 8

Proceeding as before, giving W its value, we have

^—^ ^=_Z -^=8910 pounds-feet at each side.
8 8

Example.—A combustion chamber is 36 inches wide, and the
horizontal pitch of the tubes is 4J inches. If the tubes are 3 inches
diameter, and the thickness of tube plate J inch, would this plate

pass the Board of Trade surveyor for 180 lbs. pressure ?

The Board of Trade formula is \~ ^-X28,ooq=^WxD ^
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We have already seen that this may be written

2(D-d)Tx/
WxD ^'

where D-=horizontal pitch of tubes

;

f?=inside diameter of tubes

;

T=thickness of tube plate

;

W=width of combustion chamber, in inches

:

/.=allowable compressive stress.

Then ^(4|-3)xi^^ 3
36X4J ^'

I-5A
=180.

162

/. i'5/'^= 180x162.
/. 180x162 ^^ ,,^m^/,=—--^—

=

19,440 lbs.

As the compressive stress allowed is only 14,000 lbs. per square
inch, the plate would not pass the Board of Trade for this

pressure.
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Chapter VII

.Jl.

SIMPLE MACHINE DESIGNS

SUSPENSION LINKS, COTTERED JOINTS, AND
FOUNDATION BOLTS

105.

—

^The riveted joint, considered fully in the previous chapter,

constitutes perhaps the simplest, but not the least important,

example of machine design, the plates being exposed to tensile

stress and the rivets

to shear stress only.

Afew other examples
occur in practice of

parts exposed merely
to simple tensile and
shear stresses, the

principal of which
are the suspension

link, the cottered

joint, and the cotter

foundation bolt.

The calculations

of the strength of

these parts are very
similar to those for

riveted joints, but
they are not quite

so simple as in the

latter case, where we
are able to simplify

matters by fixing the

diameterof the rivets
to commence with.

Fig. 57 In the examples now
to be considered, the

diameter ol the pin or bolt has to be determined by equating
one resistance to another, after which other resistances have to

be equated until the various dimensions of the design are satis-

factorily arrived at.
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—

Suspension Link. The first example we shall deal with
is much used in bridge work, viz. the suspension link, a sketch of

which is given in Fig. 57. This consists simply of a flattened bar
placed between two other flat bars of similar outline, and a round
pin which passes through all three bars and holds them tegether.

The pin itself is secured in position by collars, one fast and one
loose, the latter being secured by a split pin.

The link is subjected to a tensile load, in consequence of

which, it may fail in any of the following ways : (i) by tearing

through the solid bar, either through the single inner plate or

through the two outer plates
; (2) by tearing the enlarged part of

the inner bar, or of the two outer bars through the pin hole
; (3) by

shearing through the pin
; (4) by crushing the pin (or the metal

bearing against the pin)
; (5) by breaking through the part directly

above (or below), the pin (depending on whether the single inner

bar or the two outer bars fail), in the direction of the vertical centre

line
; (6) by shearing out the metal above (or below) the pin.

As regards the fifth and sixth methods of failure, the distance

between the hole and the edge of the rounded outline of the bar,

measured along the vertical centre line (^2 ^^ "^^^ drawing), is

usually made such that failure by these two methods is out of the

question, viz. equal to the diameter of the pin at least, so it is only
necessary to consider the first four methods of failure.

Let D=the diameter of the pin, in inches.

fc=breadth of solid part of bars, in inches.

^=thickness of inner bar, in inches.

&i=breadth of enlarged part of bars, in inches.

//=ultimate tensile stress of bar material.

//= „ shearing „ pin

/}= „ crushing „

We may assume the bars and the pin to be made of the same
material, so that it matters not whether we consider crushing of

the pin or of the bars. If the materials be not the same, we must
consider crushing of the part made of the weaker material. The

thickness of the outer bars will clearly be equal to -, as these are

of the same width as the inner bar, and together are subject to the

same load.

The tearing resistance of the inner bar at the solid part is

btfp-. The shearing resistance of the pin, which is in double shear.

^Tvor 1 _ "TTi

is -Dy/2=-Dy/, providing the pin be a perfect fit. The crushing
4 2

resistance of the pin is D//'/.
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As regards the shearing resistance of the pin, it is important
to notice that in actual practice we cannot assume the pin to be
a perfect lit, as there must be a certain amount of clearance. If

much wear take place, the amount of clearance will be considerable.

The result then is that the pin, in addition to being exposed to a
sheanng action, may also be exposed to a slight amount of bending,
which will give rise to additional stress. This bending action,

however, is not important so far as the stress to which it gives

rise is concerned, but it is im.portant on account of the fact that
when it occurs, its effect is to alter the distribution of the shear
stress over the sections of the pin we are concerned with, causing

the stress at the centre to be greater than the mean stress acting

over the sections. In the case of a round section, it can be shown

that the maximum stress is ^ times the mean stress. Unless,
3

therefore, the pin be a perfect fit, we cannot say that its shear-

ing resistance is -Dy/. If there be clearance, and consequently

TTi
bending, the true shearing resistance will be -Dy/ multiplied by

the reciprocal of the ratio of maximum to mean stress, i.e. the

reciprocal of 4, which is of course -. The actual shearing resistance

for the case in point will be then -Dy^x^='^^Dy/,

It may occur to the student that if it be necessary to make
this correction for a pin joint, why did we not make a similar

correction when dealing with riveted joints, because the rivets of,

say, a butt joint with double cover straps, are exposed to precisely

the same conditions as the pin of Fig. 57.
The answer is that in the case of the rivets, there is not, or

should not be at least, any clearance whatever ; each rivet is fitted

into the hole whilst hot, and the head is then formed either by
hammering the projecting end or squeezing it by hj^draulic pres-

sure, the result being that the metal is pressed out and against the

circumference of the hole, so that there cannot be any clearance.

Each rivet is thus subject to shear without bending.

107.—In order that the link joint under consideration shall be
designed to the best advantage, we must so proportion the parts

that the various resistances will, as far as practicable, be equal
to one another.

We may determine first the diameter D of the pin.
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Let F=the total tensile force acting on the link,

„ /^=the allowable shearing stress on the pin,

T»i_ r F K 8F
Then, /,=——— =^_=

448
8F

Having fixed the diameter of the pin, the breadth, h, of the
soUd part of the inner bar may next be determined.

We have already seen that.

Tearing resistance of inner bar at solid part=6^/.

Shearing resistance of pin=^Dy/.

Crushing resistance of pin=D^/'/.

On looking at these expressions, the student will observe that

the required breadth may be determined by equating the tearing

resistance of the solid part of the bar to the crushing resistance

of the pin. Note that we cannot obtain the value of h in terms
of D by equating the shearing resistance of the pin either to the

tearing resistance of the inner bar at the solid part or to the crush-

ing resistance of the pin. Hence the reason for equating the tear-

ing and the crushing resistances referred to.

Equating,

from which, b=-~^^=-^.
^Ji Jt

The ratio of the ultimate crushing stress of the material to

the ultimate tensile stress may be taken to be i'6 to i. Hence,

6=S^-=: i-6D.
Jt

The next thing is to fix the thickness, t, of the inner bar, in

terms of D. To do this, equate the crushing resistance of the pin
to the shearing resistance. Thus,

Dividing through by D//,

8D// 8/;i
•
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The shearing strength of the material may be taken to be
equal to one-half the crushing strength, so that,

8x2 ^ ^

The same result may be obtained by substituting the value
of b, viz. i"6D, in the expression for the tearing resistance, and
then equating the latter to the shearing resistance. Thus.

Tearing resistance =&^/=(i'6D)^/.

Shearing resistance==^^Dy^^o

Equating, T6Dtf,^='^p:)%\

8xi-6D/;i'

Taking the ratio of/^' to/^^ to be '8, we get, finally,

I2-8D -^^-^

—

We have only now to determine the breadth of the two strips

of metal, one on each side of the pin, measured along the hori-

zontal centre line. Clearly, if the strength of this part of the
link is to be equal to the strength of the solid part, the combined
breadth should be equal to h, so that each strip will be equal to J&.
It has been shown that 6=1 '60, and the breadth of each strip will

consequently be 'SD. The total breadth, h, of the enlarged part,

will thus be •8D+D+-8D=2'6D.
We obtain the same result by equating the tearing resistance

of the enlarged part to that of the solid part. Thus,

{h^-^)tf}=htf,\
from which, h^—T>=h, and b^=h-\-'D.

Substituting the value of h in terms of D,
&i=i-6D+D=£6D.

The proportions of the joint in terms of the diameter of the
pin may be summed up as follow :

—

^>=i-6D.

^5=^5890.

^2==^ (minimum).

The method of utilising these results in the actual design

of a suspension link is illustrated clearly by a worked example
at the end of the chapter. It is to be understood that the
proportions given only apply when the ratio of /} to ft^
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to f} is that which has been assumed, viz. '8
: i : 1*6. If this

ratio be modified, the proportions will also be modified slightly.

io8.

—

^Cottered Joint. A joint of this

type is illustrated in Fig. 58. It is employed
in cases where it is desired to connect two rods

securely together so that force may be trans-

mitted in the direction of their lengths. We
shall suppose the cotter to be made of the
same material as the rods, generally mild
steel.

The joint is exposed to the action of a
tensile load, and may fail in the following ways

:

(i) by tearing the solid rod; (2) by tearing

that part of the rod through which the cotter

passes; (3) by tearing through the socket at

the cotter hole; (4) by shearing through the

cotter ; (5) by crushing the cotter at the part

which bears against the rod
; (6) by crushing

the cotter at the parts which bear against the

socket
; (7) by shearing out the metal (in the

rod) which bears against the cotter; (8) by
shearing out the metal (in the socket) which
bears against the cotter.

The seventh and eighth methods of failure

need not be considered, because in actual

practice a margin of strength is provided at the

parts concerned to resist failure by these two
methods.

Let D =the diameter of the solid rod.

,, Di=the outside diameter of the small part of the socket.

„ D2=the outside diameter of the enlarged part of the

socket.

^^ ^j=the diameter of the rod in the socket.

„ ^=the thickness of the cotter.

&=the breadth of the cotter.

Fig. 58

TTi
The tearing resistance for (i) is -Dy^i.

4

» (2) „ V-^i-^4)f}, very nearly.

» (3) . {7D,2-^^2)_(d^_^J/|/^i.

shearing ,,

crushing ,,
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The first thing to do is to fix the diameter, D, of the solid rod.

If F be the tensile force acting along the rod, and/^ the allowable

tensile stress in the rod, then

4

Rearranging, -D2/;=F, and T>^^^.
4 '^Ji

V 77/, V irf,

Having fixed the diameter D, we can next determine the

value of di in terms of D. To do this, equate (5) and (i).

4

Then d,t=^=^=-49iD^.
4// 4X1-6

(We are assuming// to be equal to i*6//.)

Now equate (2) and (i), and in (2) substitute the value of d^i

in terms of D, as just found.

A / 4
Substituting •491D2 for dit,

Cancelling out//,

-ii2_''D2+-49iD2==i-276D2.

^^,^r276D2x4^,.5^^D2.
IT

.'. di= Vi-6240^= I -2730.

Next find the value of t in terms of D by equating (5) and (i;.

4
Substitute for d^ its value in terms of D, viz. i'273D.

r273D^/i=^Dy/.
4

Then /=-^^?'/'' = ^ ^=-385D.
4Xi'273D/;i 4XI-273XI-6
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The value of t may of course also be found from the equation,

the value of d^ in terms of D having been determined.

Now find the value of h in terms of D by equating (4) and (i).

4
Substitute for t its value in terms of D, viz. "3850.

2hx^Z^S^fs^=-^Jt\

_

4X2X-385D// 4X77X-8 —^^^'

(We are assuming// to be equal to '8//.)

.-. 6= i-275D.

The value of D^ can be found by equating (3) and (i).

{?(D,2-ii2)-(Dj-<i,)/}/,i=^Dy,i.

As the term // occurs on both sides of the equation, it may
be cancelled out.

Substitute for d^ and t in the left-hand side of the equation,

their values in terms of D as already found.

Then we have

|Di2_(i.273D)2|-(Di-r273D)-385D=p2

|Di2_i-624d4-(-385DDi-'49iD2)=!^D2.
I ) 4

77

4
TT

4
Removing the brackets,

-Di2_ I-27602--385001+-49102=502.
4 4

__ •

Dividing through by - (or 785),
4

Oi2_i-624D2--49iOOi+-62502=02.
Di2_-49iOOi=02.fi-62402--62502=say, 2D2

We have now to solve the quadratic equation,

Oi2--49iODi-202.
Completing the square,

Oi2_-49iOOi+('^9i5Y=202-|--o602,

Extracting the square root,

Oi--245O=x/206O2
Oj—-2450= + 1-4330
Di=±i-4330+-2450
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Clearly, the positive sign is the one which apphes ; hence,

Di-i-433D+-245D- i-678D-

Finally, we have to determine the value of Dg in terms of D.

This can be done by equating (6) and (i).

4

Substituting for d^ and t their values in terms of D,

TTn
(D2-r273D)-385D//=^DyA

D^-i'273B=-^V^= ^^
^==r273D.

.-. D2=i-273D4-i-273D= 2-546D.

The proportions of the joint, expressed in terms of D, the

diameter of the solid rod, are therefore as follow :

—

^i=i-273D. Di=i'678D.
/=-385D- D2=2-546D.
6=i-275D.

The above results are approximately correct to the third place

of decimals, but an actual designer would of course never work to

three places of decimals in fixing

the dimensions of a cotter joint;

this would mean working to a
thousandth of an inch, whereas
results correct to -^ or to yV of

an inch are near enough for all

practical purposes.

109.

—

Foundation Bolts. A
sketch of a foundation bolt, as

used for fastening down the bed-

plate of an engine to its founda-
tion, is given in Fig. 59. The
bottom portion of the bolt is en-

larged and is providedwitha cotter

hole, through which a cotter is

passed before the bolt is finally

tightened up. The enlarged por-

tion is sometimes made of round
and sometimes of square section.

The consideration of the strength

of the bolt when the section is round is practically the same as

that for the strength of the cottered joint just dealt with, and
need not therefore be gone into. We will, however, consider the

strength of the square section.
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When the nut is tightened up, the bolt is exposed to a tensile

load, which tends to cause failure in the following ways : (i) by-

tearing through the rounded portion of the bolt; (2) by tearing

through the square section at the cotter hole
; (3) by shearing the

cotter
; (4) by crushing the cotter.

Let D=diameter of rounded part,

„ s=the length of the side of the square section.

„ /= thickness of cotter.

6=breadth of cotter.

Then,

7^^
Tearing resistance for {i)=-^D%K

4

Shearing „ „ (3) =26^//.
Crushing „ „ {4)=st/,^.

It is of course understood that the length of the cotter is such
that the combined length of the parts projecting through the bolt

is at least equal to that in the bolt, as, otherwise, failure by crushing
of the cotter would take place at the parts projecting and not at

the part in the bolt.

We require to determine the values of s, t, and b in terms of the
diameter D of the rounded part of the bolt.

First determine st in terms of D by equating (4) and (i) ; in

order to find s in terms of D equate (2) and (i), and in (2) substitute

this value of st. Thus, equating (4) and (i),

4

4// 4X1-6 -^

Equating (2) and (i), and substituting '4gi'D^ for st in (2).

(s2-sO//=^Dy,i.
4

(s2--49iD2)/i=^Dy,i.
4

The term // cancels out. Then,

s2--4giD2=5D2.
4

s2=.^85D2+-49iD2=i-276D2.

s=» x/i'276D^= i-i29Dc '
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To find t, equate (4) and (i), and substitute I'lagD for s in (4).

TTi

4
TT-,

4Xi'i29D// 4XI-I29XI-6 -^^^^^

—

.-. /=_;435D.

Now find h by equating (3) and (i), and substituting '4350
for ^ in (3).

TT-i

4

26x-435D/;i=^DyA

4X2X-435D/;i 8X-435X-8 ^
.*. 6=]ri29D.

The proportions for the cotter bolt, when the enlarged part is

of square section, are consequently,

s=i'i29D,
^= -4350,
6=1*1290.

It will be noted that the length of the side of the square section

is equal to the breadth of the cotter.

It may be well to remind the student that the results deduced
in the foregoing are based on purely theoretical considerations,

and in many actual examples of suspension links, etc., the pro-

portions often differ considerably from those given, practical

experience perhaps having shown that a certain dimension might
with advantage be reduced somewhat, whilst another might be
increased, and so on.

Worked Examples
no.—(i) Determine the principal dimensions of a mild steel

suspension link which is required to support a load of 35 tons.

Ultimate tensile stress of steel, 30 tons per square inch,

shear „ „ 24
crushing „ „ 50

In this question, it must be noted that we cannot, strictly

speaking, adopt the proportions determined in the text, because

the relative values of the tensile, shear, and crushing strengths of
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the material are somewhat different from those assumed in the
text. The difference is, however, only slight, and we might adopt
the proportions referred to without appreciable error, but it will

be instructive to work the problem from first principles.

The diameter of the pin must first be determined.
Let D= the diameter of the pin, in inches.

„ /^=the allowable shearing stress of the steel.

„ F=the load on the link=35 tons.

It has been shown that,

D= /8E.

In the question, we are given not the allowable but the ulti-

mate shear stress of the steel. We must therefore divide the ulti-

mate stress by a suitable factor of safety to decide the safe stress

to be adopted. For a suspension link, a factor of safety of 6 may
be adopted. The allowable stress is then 24 -f 6=4 tons per square
inch.

Substituting the known quantities in the above expression,

^^J3^x4^ ^7'425-272 inches.

Required diameter of pin

=

272 inches.

Let 6=breadth of solid part of bars, in inches.

,, ^= thickness of inner bar, in inches.

,, &i=breadth of enlarged part of bars, in inches.

To determine b, equate the tearing resistance of the solid part
of the inner bar to the crushing resistance of the pin.

6x^x30=272x^x50.
7 272x^x50 , ^ • 1^=_/ _-'_=:=4-co inches.

/X30 -^-^^

Required breadth of solid part of bars=4*53 inches.

To determine t, equate the crushing resistance of the pin to the
shearing resistance.

272 Xi5x 50=- X2722X 24x^x2.
4 4

(Note that the factor, |, is introduced to make allowance for

bending, as explained in the text.)

^^,r><2:72^><2_4X3Xg^^
6 inches.

4X272X50X4 "^

Required thickness of inner bar= i'536 inches.

The combined thickness of the outer bars must be equal to

the thickness of the inner bar, the breadth being the same. Hence,
Thickness of outer bars=J of i'536=^768 inch .
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The amount of metal resisting tegring at the pin hole in the

enlarged part of the bars must be equal to the amount of metal
in the solid bars. Since the thickness is the same as that of the

corresponding solid bars, the combined breadth of the two strips,

one on each side of the pin, measured along the horizontal centre

line, will clearly be equal to h, or 4'53 inches. The breadth, b^,

of the enlarged part will consequently be equal to

6+D=4'53+272= 7'25 inches.

Breadth of enlarged part of bars measured along the hori-

zontal centre through the pin hole=^7'25 inches.

The distance from the circumference of the pin hole to the

edge of the link, measured along the vertical centre line, may be

made equal to the diameter of the pin.

Summing up, the required dimensions are as follow :

—

Diameter of pin =272 inches, or, say, 2f inches.

Breadth of solid bar =4"53 „ ,» 4t^ »
Thickness of inner bar =1*536 „ „ ix^ „
Thickness of outer bars = 768 inch, „ \^ inch.

Breadth of enlarged part=7-25 inches,
, „ y^ inches.

(2) Design a suspension link to carry a load of 25 tons, the

safe shear stress on the pin being taken at 45 tons per square inch.

Assume the ultimate shear stress to be '8 of the ultimate tensile

and "5 of the ultimate crushing stress of the material, the pin

being of the same material as the link.

The first part of this question, which is to determine the

diameter of the pin, is similar to the first part of the previous

question. For the second part, we may make use of the propor-

tions given in the text, because the ratio of the ultimate shear,

tensile, and crushing stresses ©f the material is the same as that

employed in the text to deduce the proportions.

To find the diameter of the pin, D, use the relation.

»=^8F

where F is the load on the link, and fs the allowable shear stress

on the pin.

Substituting the given values,

D= . / ^—_= V472==2'i7 inches.

Diameter of pin= 2'i7 inches.

We found in the text that with the ultimate stresses in the
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ratio given in the question, the following proportions should be
adopted :

—

b=r6I),

where 6=breadth of solid part of bars, in inches

;

^= thickness of inner bar, in inches

;

^1=breadth of enlarged part of bars, in inches

;

&2=distance from circumference of pin hole to edge of bar,

measured along the vertical centre line.

D we have just found to be 2*17 inches.

Hence, b=r6D =r6x2'iy inches=3*47 inches;

^=-589D--589X2-i7 „ =1-278

5i=2-6D =2-6x2'i7 „ =5-64
b^=D =2" 17 „ (minimum).

The required dimensions are then,

Diameter of the pin =2*17 inches, or, say, 2J mches.
Breadth of solid bars =3'47 „ „ 3i
Thickness of inner bar =i'278 .. .. i

Thickness of outer bars = '639

Breadth of enlarged part=5'64

1 11.^— (3) Two mild steel rods, i|- inches diameter, are to be
connected together by a cottered joint of the type shown in Fig. 58.

Assuming the crushing strength, the tensile strength, and the
shear strength of the materials to be in the ratio, 11:6:5, design the

joint. Assume the cotter to be of the same material as the rods.

Let D=the diameter of the solid rod=iJ inches.

Di= ,, outside diameter of the small part of the socket.

D2= „ ,, ,, enlarged part of the socket.

di== ,, diameter of the rod in the socket.

t== ,, thickness of the cotter.

b= „ breadth ,, „

First equate the crushing resistance of the cotter at the part
which bears against the rod to the tearing resistance of the solid

rod. Thus,

4
where/.* and/* represent respectively the ultimate crushing stress

of the cotter material and the ultimate tensile stress of the rod
material. These are in the ratio of 11 to 6.

4// 4x11
167
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_5
16" )>

li inch.
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Now equate the tearing resistance of that part of the rod
through which the cotter passes to the tearing resistance of the

solid rod.

Substitute for d^t the vakie '42802 j^^g^ found, and cancel

out/A

4 4

E^^2=.785D2+-428D2=i-2i3D'.

^^,^
r2i3D2x4

^,.3^3D.^

^1= x/r545D2=i-242D.

We are told in the question that D=iJ inches,

.*. ^i=i'242D=i'242Xi'5= i'863 inches.

The value of t can next be found from the equation,
^1^= -42802,

the value of d^ being now known. Thus, dy='L'2^2D.

^=:428D2^;428D2^
d^ I-242D

^^^

Now D=i'5 inches. Therefore, /='344xi'5='5i6 inch .

To find the value of h, equate the shearing resistance of the

cotter to the tearing resistance of the solid rod.

4
where//=the ultimate shear stress of the cotter material.

The ratio of f} to f} is given as 6 : 5, and t we have found to be
equal to •344D. Substituting,

6= "P\
r37D.

4X2X -3440x5
Now D=i-5 inches.

.'. 5=i-37xi-5^ 2-Q55 inches.

Dj may next be found by equating the tearing resistance of the
socket at the cotter hole to the tearing resistance of the solid rod.

Thus,

The factor /^^ cancels out, of course.
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We showed in the text, bv solving this equation, that
Di=i-678D„

Hence, Di=i'678xi'5= 2'5i7 inches.

Finally, to find D.g, equate the crushing resistance of the
cotter at the parts which bear against the socket to the tearing
resistance of the solid rod.

4

Substitute for d^ its value in terms of D, viz. T242D, and for t

the value '3440.

(D2-r242D)-344D/i=^Dy/.

4X-344D/,i II —^J—

D2=i'242D+i'242D=2'484D.
.*. D2=2'484Xi°5=3726inches.

The dimensions of the joint are, therefore, as follow :—
D=i'5 inches=say, ij inches.

7^1=1-863 „ = „ i^
t= -516

h=2'oss
Di=2-5i7
D2-3726

J inch.

2^ inches.

34" »>

(4) A foundation bolt is 2 inches diameter. If the enlarged
part at the bottom of the bolt is of round section, determine the
diameter of this part of the bolt. Also find the breadth and thick-

ness of the cotter. Assume the bolt to be made of wrought iron

having an ultimate tensile stress of 22 tons per square inch, and
the cotter of mild steel having an ultimate shear stress of 24 tons
per square inch and an ultimate crushing stress of 50 tons per

square inch.

In this question, the bolt is of wrought iron and the cotter of

steel. The crushing strength of the wrought iron is not given.

This would probably be less than that of the steel, in which case
crushing of the bolt would take place before crushing of the cottero

The strictly correct way of dealing with the question would then
be to consider the crushing resistance of the bolt instead of the
crushing resistance of the cotter. Since, however, the crushing
strength of the wrought iron is not stated, it is evidently intended
that we should assume the bolt to be as strong to resist crushing
as the cotter.
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Let D=diameter of the body of the bolt.

^1= „ „ „ enlarged part.

/= thickness of the cotter.

6=breadth ,, ,,

/^^=ultimate tensile stress of the bolt material.

//== ,, shear stress ,, cotter ,,

f}^ „ crushing stress „

First equate the crushing resistance of the cotter to the
tearing resistance of the bolt.

TTi

1 4// 4x50 ^^^

Equate next the tearing resistance of the enlarged part of

the bolt to that of the bolt.

Substitute for d-^ the value '345D2, and cancel out//.

V-^=785D2+-345D2=ri3D2.

^i=x/i'44D2=i'2D.

We are given that D=2 inches.

.'. ^i^i'2X2= 2'4 inches.

To find t, we may equate the crushing resistance of the cotter to

the tearing resistance of the bolt, or we may use the equation,

From this equation,

^^•345D^=:3_45D^=.287D.
^1 I-2D

.'. ^='287x2= '574 inch.

To find h, equate the shearing resistance of the cotter to the
tearing resistance of the bolt.

TTi

4
370
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Substituting "2870 for t,

99

TT-i

4

b=-
TtD^x/,!

4X2X'28yT>x/,^'

f}=22 and/,^==24.

n-1- I.
irDX22 ^.^^ ,T\Then, 0=^ ^

--1-2540.
8x'287X24

Substituting the known value of D,

^=i'254X2= 2'5o8 inches.

Hence,

Diameter of enlarged portion of bolt-=2'4inches, or, say, 2jinches.

Thickness of cotter =-574 inch, „ finch.

Breadth „ =2'5o8 inches, „ 2\ inches.
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Chapter VIII

STRENGTH OF SHAFTS

112.

—

The object of a shaft is to transmit energy by rotation, and
in order that it may do so, it is necessary to apply a turning force.

The point of apphcation of this force must clearly be at some
distance from the centre or axis of the shaft.

The force required to rotate the shaft may be appHed to the
rim of a pulley or to the end of a lever secured to the shaft. As
a result of the force applied in this manner, the shaft is said to
be subject to twisting or torsion, and the tendency is for the shaft
to fail by shearing on planes at right angles to the axis of the shaft.

113.

—

Twisting Moment. The product of the force applied
and the leverage of action of the force is termed the twisting

moment or the turning moment. (The term torque is also commonly
employed to mean the same thing.)

If the force be measured in pounds and the leverage in inches,

the twisting moment is said to be so many inch-pounds (or pound-
inches), whilst if the force be in tons and the leverage in feet,

the twisting moment is measured as so many foot-tons (or ton-
feet).

The student of Mechanics knows that the terms inch-pound,
foot-pound, etc., are used to represent units of work, the foot-

pound, for instance, representing the work done in overcoming a
resistance of one pound through a space of one foot. It is im-
portant, therefore, that the inch-pound or the foot-pound, as used
in connection with the twisting moment of a shaft, should not
be confused with the inch-pound or the foot-pound, as used to
denote work.

In order to avoid confusion, it is convenient, in expressing
twisting moments, to write found-inches instead of inch-pounds,
and pound-feet instead of foot-pounds, and in what follows, there-
fore, we shall express a twisting moment as so many pound-inches
or pound-feet, etc. Thus, if a force of 100 lbs. be applied to the
end of a lever to turn a shaft, the length of the lever being 12
inches (measured from the centre of the shaft), we say that the
twisting moment is 100x12=1200 pound-inches, and so on.
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In practical problems on the strength of shafts, where we
desire to know the twisting moment, the leverage at which the
driving force acts is usually known, but the actual force is often
not known and has to be calculated before the twisting moment
can be determined.

Take, for example, a line shaft driven by a belt lapped round
a pulley keyed to the shaft. The driving force acts at the rim
of the pulley, and its leverage is obviously equal to the radius
of the pulley, but as the force is not known we cannot say what
the twisting moment is. If, however, the speed of rotation of

the shaft and the horse power the shaft transmits are known, the
twisting moment may be calculated in the following manner :

—

Let F=the effective driving force, in pounds.

„ L=leverage at which F acts, in inches.

„ N^number of revolutions made by shaft per minute.

„ H.P.=horse power transmitted by shaft.

The force F passes through a distance equal to the circum-
ference of a circle whose radius is L, every revolution of the shaft,

so that the work done per revolution is equal to Fx27rxL inch-

pounds. The work done per minute by F will be Fx27rxLxN
inch-pounds. Now one horse power is equivalent to 33,000 foot-

pounds per minute, or to 12x33,000 inch-pounds, so that the
number of inch-pounds of work the shaft is transmitting per
minute is H.P.x 12x33,000. This is, of course, equivalent to

the work done by F in one minute.

We have then this equation,

Fx27rxLxN=H.P.x 12x33,000.

The twisting moment, which may be denoted by T.M., is FxL,
and from the above equation,

P J _H.P.xi2X33,ooo_63,ooo H.P.~
27rxN

"~

N

Hence, TM.=-^-—
;^^j

—

'—^ (pound-inches).

Thus, if the horse power a shaft is transmitting and the speed
of the shaft are known, the twisting moment is readily obtained
by multiplying the power by 63,000 and dividing by the speed of

the shaft in revolutions per minute,
114.

—

Strength of Shafts. It has been pointed out that as

a result of the driving force applied to rotate a shaft, there is a
tendency for the shaft to fail by shearing on planes at right

angles to its axis. This tendency to fail is resisted by the shearing
resistance of the shaft material.

We shall now derive an equation connecting the twisting
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moment, the shear stress in the material, and the diameter of the

shaft, which we assume to be of circular section. (It is, of course,

understood that shafts are almost alwayc made round, but in some
instances, in ordei' to meet special requirements, they are made ol

square section, except at the journals.)

The student who does not possess an elementary knowledge of

the integral calculus may omit the following consideration, because

this is only given to show how the required equation is arrived at.

The main thing is, of course, the application of the equation to the

solution of practical problems.

Fig. 60 is given to illustrate how a shaft is strained when sub-

jected to a twisting moment. Suppose the shaft to be fixed at

one end, A , and to be sub-
jectedto a twisting moment

B applied at the other end, B.
Then it is clear that if, prior

to the application of the
Fig. 60 twisting moment, a line had

been drawn along the outer

surface of the shaft, parallel to the axis, this line will be deflected

as indicated in the figure, to form an angle with its original position.

If now we imagine the shaft to be made up of a large number of

thin discs, it will be understood that each disc, neglecting the one
at the extreme left end, will be rotated slightly, the amount of the

rotation being greater the further the disc is from the left end.

An originally vertical diameter on any
disc except the one at the left end,
which is fixed, would therefore be
thrown out of the vertical, as indi-

cated in Fig. 61, after the twisting

moment had been applied.

The strain at the outer circum-
ference of the disc is represented by the
arc mn, and the length of the arc
between the original and the new
diameter at any particular radius will

represent the strain in the disc at that
radius. Clearly, the strain at any radius

is proportional to the radius, and as the strain is proportional to the

stress which produces it, it follows that the shear stress in the disc

or the shaft at any point is proportional to the distance of that

point from the centre of the shaft.

Hence the stress varies uniformly from nothing at the centre

of the shaft to a maximum at the outer circumference.

In considering the strength of any piece of machinery, it is

174
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the maximum stress which must be taken account of, and so in

the case of a shaft, it is the stress at the external surface of the
shaft which concerns us

115.—We shall deal first with a solid shaft.

Let D==the diameter of the shaft, in inches.

„ R=the radius „ ,, ,,

„ y^=the shear stress at the outer circumference of the
shaft, in lbs. per square inch.

„ T.M.=the twisting moment, in pound-inches.

Consider any ring of the shaft (see Fig. 62), of width ^x,

at a distance x from the centre of the shaft.

Any such ring as this is exposed to shear stress.

Now in the case of simple shear, the stress is

constant over the whole area of the section

concerned, but in the present case it varies,

as we have seen, from nothing at the centre

to a maximum at the outer circumference

of the shaft, being proportional to the distance

from the centre.

The stress on the small ring under con-

sideration will consequently be

Fig. 62

fsX
X X

be the area of the ring

R
The total stress over the ring will

multiplied by the stress, and this is

D"' D
The last expression represents the resistance offered by the ring to

shearing, and this resistance is in the nature of a moment. The
moment, taken about the centre of the shaft, is

^^^Zxxx-
D

^x.

Assuming now hx to become smaller and smaller, and sum-
ming up all such moments acting over the section of the shaft

between the limits x=o and x^^T),

Total moment of resistance=^^^ I xMx
D io

D L4J0

..}

4.

_47r .D*_ '"^3^

175
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TT
The expression -zP^fs represents the total amount of resistance

of the whole section of the shaft, and this is generally known
as the torsional resistance of the shaft. The torsional resistance

must obviously balance the twisting moment, and so we have,
finally,

T.M.^i^DV;.

This is the general formula for the strength of a solid round
shaft, and it is very frequently required by the machine designer

and the engineer, as the diameter of a shaft to resist a given twist-

ing moment can readily be obtained from it.

It will be observed, on referring to the formula, that the

strength of a solid round shaft to resist a twisting moment varies as

the cube of its diameter. That is to say, if we double the diameter
of a shaft, we make it eight times as strong as it was originally.

Thus, if the diameters of three solid shafts made of the same
material are in the ratio of i : 2 : 3, their relative strengths will

be as i^ : 2^ : 3^, or as i : 8 : 27, so that a 4-inch shaft is eight

times as strong as a 2-inch shaft, whilst a 6-inch shaft is twenty-
seven times as strong as the 2-inch and -%^- times as strong as the
4-inch shaft.

116.—It is sometimes useful to remember that a good mild
steel shaft, i inch diameter, is capable of sustaining a maximum
twisting moment of approximately 10,500 pound-inches. That
this is so may be easily proved by the formula,

T.M.=^D%

The shearing strength of mild steel may be taken to be 24 tons

f)er square inch. For a i-inch shaft, D=i, so that,

T.M.=-^x 1^x24x2240=10,550 pound-inches.

Bearing the figure 10,500 in mind, we can easily arrive at

the maximum twisting moment which may be applied to mild
steel shafts of any diameter, because we now know that the strength

of a shaft varies as the cube of its diameter. Take, for example,

a i|-inch mild steel shaft. The relative strengths of a i-inch and
a i|-inch shaft will be as i^ : 175^ or as i : 5'35. If then the maxi-
mum twisting moment which may be applied to a i-inch shaft is

10,500 pound-inches, the maximum for a if-inch shaft will be
10,500 X 5*35=56, 175 pound-incheSo This means to say that a

maximum force of 56175 pounds at a leverage of 100 inches, or

5617*5 pounds at a leverage of 10 inches, and so on, might be
applied to the shaft before causing failure.
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For a i-inch wrought-iron shaft, the maximum twisting

moment which can be apphed may be taken as 9600 pound-inches.
117.

—

Polar Moment of Inertia. The product of any mass
or area, and the square of its perpendicular distance from any
point, may be defined as the moment of inertia of that mass or

area about that point.

In the case of a shaft, we can deduce an expression for its

moment of inertia about the axis of rotation in much the same
way as we deduced the expression for its moment of resistance.

Referring to Fig. 62, consider again the ring of the shaft

of width 8x, its distance from the centre being x.

The area of the small ring is 27rx8x, and the polar moment of

inertia of this area about the centre is 277^:8:^ x x^. Assuming now
Sx to become smaller and smaller, the summing up of all such
expressions as this over the whole section of the shaft between

the limits x=o and x^— gives us the moment of inertia of the
2

section. Thus,
/•JD

Moment of mertia=27r/ x^dx
Jo

=27r\2

4

_ 27rD^

4x16*

.*. Moment of inertia=^^^— for a solid shaft.
32

For a hollow shaft proceed the same as before, but integrate

between' the limits a;=— and x^—. Then,
2 2

/•JD

Moment of inertia==277/ x^dx
id

Vx^liD

4 i^

4L16 ibj

Moment of inertia=— FD*— ti*l for a hollow shaft.
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ii8.

—

The Power which may be safely Transmitted and
the Speed of Shafts. Power is the rate of doing work. A
machine which does a certain amount of work in a given time when
running at a certain speed will do double the work in the same
time if its speed be doubled, so that by doubling the speed of a
machine; the power is also doubled.

Similarly, the power which may be transmitted by a shaft

is directly proportional to the speed at which the shaft runs. A
shaft transmitting loo H.P. at a speed of lOO revolutions per
minute will transmit 200 H.P. at a speed of 200 revolutions per
minute. Now the question we really desire to call attention to

is this :—If the power transmitted by a shaft is to be increased

by a corresponding increase in the speed, is it necessary to

increase also the diameter of the shaft ? It seems natural to

suppose that a shaft, designed originally to transmit a certain

power when running at a certain speed, would not be strong

enough to transmit say double the original power. As a
matter of fact, however, this is not the case if the speed of the

shaft be doubled. The real factor to be considered from the

strength point of view is the twisting moment. Providing this

remain unaltered, the shaft will be quite capable of transmitting

a greater amount of power than what it was originally intended

to. If the speed of rotation he increased, in proportion to the in-

creased power to he transmitted, the twisting moment is not affected

in any way, and consequently the shaft is ahle to transmit safely

the increased power.

If, however, a greater amount of power is to he transmitted at

the same speed, the twisting moment will he increased, and' as a result

the shaft will not now he sufficiently strongfor its heavier duty, unless,

of course, there be a large margin of strength.

That the twisting moment is not altered when the speed of

a shaft is increased proportionally to the horse power may be
readily seen by referring to the equation connecting the twisting

moment with the horse power and the speed. The equation

referred to is,

T.M.=-^^—^^:

—

'—^ (pound-inches).

Clearly, if both the H.P. and N be doubled, T.M. remains the

same. If, however, H.P. be increased whilst N remains unaltered,

T.M. is increased.

Another useful thing to remember in connection with the

power which may be transmitted by shafts is that, for any par-

ticular speed, the power which may he transmitted varies as the cube

of the diameter. Thus, a 2-inch shaft will transmit eight times as
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much power as a i-inch shaft ninning at the same speed. That
this is so may be seen by equating the twisting moment, expressed
in terms of the power and the speed, to the torsional resistance

of the shaft. Thus,

63,000 H.P._ 'n-_j)3/

N 16

TT.DV.N
Then, H.P.

—

^^ .

16x63,000

119.

—

Strength ofHollow Round Shaft. Large shafts, such
as engine crank shafts, are frequently made hollow, with the object

of obtaining greater strength for a given weight of metal. The
strength of a hollow shaft may be determined by a simple in-

tegration, as in the case of a solid shaft. In fact, the consideration

of the strength of a hollow shaft is practically the same as that

for a solid shaft, the only difference being that the integration

is performed between different limits.

Let D=external diameter of shaft, in inches.

„ ^=internal ,, „ ,,

„ /^=the shear stress at the outer circumference of the
shaft, in lbs. per square inch.

„ T.M.=the twisting moment, in pound-inches.

Then considering again any ring of the shaft of width hx
at a distance % from the centre of the shaft, we have seen that

• A-TTfX OX
the total stress over the rmg is ^ -^-^

'— , and the moment of this

^""f^^^ ^x

For a hollow shaft the value of x varies from ^d to JD,
instead of from o to JD as in the case of the solid shaft. We must,

therefore, integrate the expression y\
'— between the limits

^d and JD. Then,

TM.=^^rxHx

D I 4 4 J

_47^/ym-^*^
D \ 64

"i6\ D F''
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For a hollow shaft, therefore, the general equation is

i6v D y^

120.—Comparison of Solid and Hollow Shafts. It has
been stated that, weight for weight, a hollow shaft is stronger than
a solid shaft, and we shall now compare the torsional resistances

of two shafts of equal weight and length and made of the same
material, one solid and the other hollow.

In deriving the formula for the twisting moment for both
the solid and the hollow shaft, we have in each case let D represent

the external diameter of the shaft. To avoid confusion it will, in

the following comparison, be convenient to let Ds represent the

diameter of the solid shaft, D and d representing as before the

external and the internal diameter respectively of the hollow
shaft.

Let Ts=the torsional resistance of the solid shaft.

„ Th= „ „ „ hollow „

„ /^=the shear stress in the material at the outer
circumference.

Now, Ts=^^gDsy..

. Th_i6V D F'JD^-d^
T. T^T) 3/

The weights of the shafts are proportional to their sectional

areas, assuming their lengths to be the same, so that

Weight of hollow shaft
4^^^"^^) D2-^2

Weight of solid shaft ~
Tr-p. 2

"" Ds^

As we are supposing the shafts to be of equal weight,

Ds2=D2-^2

Now Th_D^-^^_ (D^-^^)(D^+^^)

Ts DDgS" DDs^
Substituting for (D^— ^2)^ ^j-^g value T)^,

Ts DDs^ DDs
•
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From the relation, Ds^=D^—^^

Therefore,
Th D2+^2
Ts Dx/D^-^2-

Dividing numerator and denominator by D^,

'+\D/

^^
'^-(S)

Suppose now the internal diameter of the hollow shaft to be
d

Done-half the external diameter ; i.e. t^=^

Tu Th I+ i^ I+ "25 1-25 ^._^Then, H__^A1/ =^1_J = ^^=1-445.
Ts Vi-(i)2 yi-'25 V75

Thus, a hollow shaft, the internal and external diameters of

which are in the proportion of i to 2, is nearly one and a half

times as strong as a solid shaft of the same length and weight.

121 .

—

Equivalent Solid Shaft. It is sometimes convenient to

determine the diameter of a solid shaft which would be of the same
strength as a hollow shaft of the same material. Such a shaft is

spoken of as an *' equivalent solid shaft." The required diameter
is easily determined as follows :

—

Let Ds= diameter of equivalent solid shaft.

„ D= external diameter of hollow shaft.

,, ^=internal ,, ,, ,,

As the shafts are to be of the same strength, their torsiona.*

resistances must be equal.

Torsional resistance of solid shaft= ^^Dc^/^.
16 -^

hollow „ =-J -
.^-

Equating, ^JD,V.=-g~^)/..

from which, D^JJ^JjD^^im^.
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122.—^Variable Twisting Moment. In many examples
which occur in actual practice, the twisting moment exerted on a
shaft is not uniform, but varies throughout each revolution. It is

quite obvious that the shaft must be sufficiently strong to resist

the greatest twisting moment to which it is subjected, and in

calculating its strength, therefore, the torsional resistance must
be equated to the maximum twisting moment.

An actual example of a shaft subjected to a variable twisting

moment is the crank shaft of a steam (or internal combustion)
engine. In such an engine, steam pressure acts on the piston,

and the force resulting (or, more correctly, the greater portion of

it) is transmitted through the piston rod and along the connecting

rod to the crank pin, and, through the medium of the crank, rotates

the crank shaft.

Now the turning moment in a case like this varies consider-

ably throughout each revolution of the engine for the following

reasons. In the first place, the effective pressure of the steam
acting on the piston is not constant throughout the stroke, par-

ticularly after the point at which the supply of steam to the

cylinder is cut off. In the second place, the effective leverage at

which the force at the crank pin acts is also varying throughout
each revolution. Again, the actual force due to the pressure is

not all transmitted to the crank pin, a considerable portion of it

being absorbed in accelerating the moving parts of the engine.

A correct determination of the real twisting moment necessi-

tates a large amount of labour, such as estimating the weights of

certain moving parts (so that the force required to ^.ccelerate

these parts may be calculated) obtaining indicator diagrams from
the engine and correcting these to allow for the accelerating forces,

constructing twisting moment diagrams which show the actual

twisting moment at every part of the revolution, and so on.

For all practical purposes, however, it is sufficient to cal-

culate the twisting moment in the following manner :

—

Let /)=the maximum effective steam pressure on the piston, in

lbs. per square inch.

,, ^=the diameter of the piston, in inches.

„ /=the length of the crank

Then,

Total maximum effective load on piston=/>x-x^.

Effective leverage at which this force is supposed to be
exerted=/.

.*. Maximum twisting moment=/>x-x^^x/.
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This maximum twisting moment is equated to the tor-

sional resistance of the shaft in order to get the diameter of shaft

required.

123.

—

Stiffness of Shafts. The effect of a twisting moment
apphed to a shaft is illustrated by Fig. 60 ; thus, assuming the

end, A , of the shaft to be fixed, a twisting moment applied to the

other end, B, will deflect any line drawn parallel to the axis along
the outer surface of the shaft, as indicated in the figure.

Now it is important in some cases that the amount of twist

should not exceed a certain amount ; in other words, the shaft

should possess a certain amount of stiffness. In the case of light

machinery, the required diameter of the shaft is often governed
by its stiffness rather than by its strength, and we shall now deduce
an expression for determining the diameter of a shaft when the
stiffness is the governing factor.

Assuming the shaft of Fig. 60 to be made up of a large number
of thin discs, then each disc, except the one at the extreme
left, will be rotated slightly, the amount of rotation of each being
slightly in excess of the disc on its immediate left. Consider now
any two consecutive discs which we may suppose to be an in-

definitely small dis-

tance apart. Prior

to the application

of the twisting mo-
ment, any straight

line drawn through
the centre of one of

the discswould coin-

cide with the corre-

sponding straight

line drawn through the centre of the other disc, but after the

twisting moment had been applied, the two lines would make a

small angle with each other.

Let D=the diameter of the shaft, in inches.

„ R=the radius ,, ,, ,,

„ /=the length

„ /,=the shear stress at the outer circumference of the

shaft, in lbs.- per square inch.

„ G=the modulus of rigidity of the shaft material, in lbs.

per square inch.

„ T.M.=twisting moment, in pound-inches.

Let the very small distance between the two consecutive

discs be represented by dl, and the angle between the two straight
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lines drawn through the centres of the discs by d(f), dl being in inch

units and dj) in circular measure, i.e. radians.

Now we know from previous work that

,^ J , r • •
-i-i. Shear stress

Modulus of rigidity =,^.j

—

—^—r-.^ Shear strain

The siiear stress is /,, and the shear strain is equal to surface

twist divided by length. Thus, referring to Fig. 63,

Shear stram= ,-=-^=-4-.
1 I 2I

Considering then a very short length of shaft, dl,

c^-i , • D dq)
bhear stram=— . ,v-

2 dl

Hence, ^=^"3?'

2 * dl

/2
from which, d<l)=^.dL

Integrating, <j)=pjrjdl.

The length of the shaft is I, so we integrate between the limits

and I. Thus,

Now, T.M.=4D¥„

T M
from which, /i=-

"^
.

10

Substitute this value of/ in the relation,

,. 2/T.M. 32/T.M.
then <^= =::2_

16

This expression gives the value of <j> in radians, and the value

in degrees is obtained by multiplying by 57 '3. Thus,

32/T.M. 584^T.M.

. ,
584^T.M. andTM-*^?"

• • ^ GD^~ '
^''"^

^•^^^'~jE£'
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We see from this that the stiffness of a solid round shaft varies

as the fourth power of its diameter, whereas the strength varies as
the cube of the diameter.

For a hollow shaft of external diameter D and internal

diameter d,

^ G(m--#) 584^ •

Summing up, the strength of round shafts is obtained from the
relations,

T.M.=-^Dy, (for solid shafts;

,

i:M..=^(~^-\f, (for hoUow shafts) ;

whilst the stiffness is obtained from the relations,

T.M.=^^ (for sohd shafts)

;

504^

TM.=-i^^^ (for hollow shafts).

124.—^The formula for the stiffness of a solid shaft, viz.

T.M.
</.GD4

584/

is the one generally used by land engineers. In marine work,
however, the Board of Trade use the formula,

ry._T^od^a

where T=twisting moment, in pound-feet

;

^=diameter of shaft, in inches;

<a;=angle of twist, in degrees

;

L=length of shaft, in feet.

In the formula deduced above, all the dimensions are in inch

units, the load or force units being in pounds ; hence the twisting

moment is expressed in pound-inches. Also, the angle of twist,

which we call <^, is measured in radians, whereas the Board of

Trade measure the angle in degrees and call it a.

To make the two expressions for the twisting moment corre-

spond, substitute aiov <j). Then,

Twisting moment, in pound-inches= -q-j-,

Twisting moment, in pound-feet
584/X12'

where / is the length in inches.

185



Reference Library of the

In the Board of Trade formula, the length is taken in feet,

whilst we have taken it in inches.

The expression for the twisting moment in pound-feet, if the

length be given in feet, will then be,

584X12X12XL*

The value of G is about 12,000,000 lbs. per square inch.

Substituting this value,

584X12X12XL L
As an approximation, the Board of Trade take the final

expression as

T.M.=H^ for soHd shaft,

and T.M.=H2^2^z:^ for hollow shaft.

An alternative formula connecting the twisting moment, the

moment of inertia, the stress in the material, and the angle of twist

of a shaft is the following :

—

J / R'

where T.M.=twisting moment, in pound-inches;

<^=angle of twist

;

G=modulus of rigidity of the shaft material;

J :^-moment of inertia of shaft

;

/=length of shaft

;

R= radius of shaft.

To deduce this equation, proceed exactly on the same lines

as before up to the point where we saw that,

Shear strain =-—^.

Now,

f^5Hitl5is=modulus of rigidity, G,
Shear stram

and, Shear strain=-^.
.

Substituting, •4
R<^=G.

f

Hence, /,=~f x G.
'

I
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Dividing throughout by R,

ffxG ... (X)

Again, Force^stressxarea.
Moment=force X leverage at which force acts.

.*. Moment= stress X areaxR.
But Stress=strainxG,

and Strain=-^.

.*. Stress=-^xG.

Moment==5^xGxareaxR,

and the total T.M.=|xGx:S(areaxR2).

Now the sum of all such quantities as (areaxR^) represents

the polar moment of inertia of the shaft.

J\^, J. .XTX,

of inertia

Hence, T,M.=^xGxJ, where J represents the polar moment

.'. T.M.=f xGxJ,

and I^=fxG . . , (2)

J ^

From (i), 2 X G also equals ^.

. T.M._(^G_/
••

J I R'

a formula connecting twisting moment, moment of inertia, stress

in the material, and angle of twist.

125.

—

Shafts subjected to both Bending and Twisting. It

has been assumed in the foregoing considerations of the strength

of shafts that the shafts have been subjected to torsion only. In
actual practice, however, it frequently happens that a shaft is

exposed also to a bending action due to the weight of pulleys,

couplings, etc. In many instances the bending is of little im-
portance, and need not be taken into account in calculating the

strength of the shaft, but in others it cannot be neglected. Thus,
an engine crank shaft, in addition to being exposed to a twisting

moment, has usually to support the weight of a heavy flywheel,

which gives rise to a more or less severe bending action. The shaft
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is in consequence subjected to stresses due both to twisting and
bending, and we must next consider how the strength is calculated

under such conditions.

In Chapter iv. we considered the action of a shear stress

in combination with a tensile or a compressive stress, and
showed how to find an equivalent stress which would balance the

combined stresses.

Letting /^ represent the equivalent tensile stress, f, the shear

stress, and/^ the tensile stress, we deduced the following relation.

f'-^+Jf'
/2

4
From the relation which gives us the strength of a shaft to

resist torsion, the value of /^ in terms of the twisting moment,
T.M., can be found, and from another expression which gives us the

strength of a beam (or shaft) of circular section to resist bending,

we can find the value of /^ in terms of the bending moment, which
may be denoted by B.M. By substituting these values of f^ and

ft in the above expression for/,, and rearranging, we can obtain an
expression which gives us an equivalent twisting moment in terms
of the twisting moment and the bending moment. By equating

this equivalent twisting moment to the torsional resistance of the

shaft, the diameter of shaft required to resist a combined twisting

£.nd bending moment may then be calculated.

Now for a solid shaft,

T.M.=5^-D%

where D is the diameter of the shaft.

As yet, the student is not supposed to have any knowledge of

bending moments and the strength of beams, so he will, for the

present, have to accept the statement that the strength of a beam
of circular section to resist bending is given by the relation,

32
^

where B.M. represents the bending moment acting on the beam,
and/, the maximum tensile stress due to the bending. Now from
the equations for T.M. and B.M.,

r T.M.

and /,=

5D3
lb

B.M.
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It will be convenient to write Z for—D^. Then.,

r T.M.
•^' 2Z '

, r B.M.
and

J'^~~Z~'

Now substitute these values of/^ and/^ in the expression ioxf^\

»

B.M. /T.M.^ B:m.2
^ 2Z "^V 4Z2

"*"

4Z2

^•^"
^x/T.M.2+B.M.^

2Z 2Z

=^(B.M.+VT.M.2+B.M.2).

Hence,
^^^B.M.+ VXJL^TgM;^

Now /^Z represents the equivalent bending moment, which
may be denoted by B.M.^, so

BM -B.M.+ n/T.M.^+B.M.2
' ' 2

Again, from the above,

/,2Z=B.M.+VOO+BlO.
But /^2Z represents the equivalent twisting moment, which may
be denoted by T.M,^, so we have, finally,

T.M.,=-B.M.+ x/T.M.^+B.MA

This relation is very useful in cases where a shaft is subject both to

twisting and bending. The twisting and the bending moments
are each calculated separately, the equivalent twisting moment
being next calculated from the relation referred to. The latter is

then equated to the torsional resistance of the shaft. It is to be
noted that the stress due to the equivalent twisting moment is a
tensile stress, and not a shear stress, as in the case where the shaft

is subjected to a twisting moment only.

In many examples to which this relation applies, it will be
found that the values of T.M. and B.M. are large, often millions
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of pound-inches, and the squaring of such large numbers is

cumbersome. To avoid this, the following simple construction

may be made use of.

Draw a triangle, ABC (Fig. 64), mak-
ing one side, AB, say, equal in length to

the T.M. to any convenient scale, and the

other side, BC, equal to the B.M. to the
same scale. Then the length of the hypo-
tenuse, to the same scale, gives the value of

s/TMJ+BMJ.
This, of course, follows from the forty-

seventh Proposition of Euclid, Book I.,

" which states that "in a right-angled

triangle, the square on the hypotenuse is

equal to the sum of the squares on the

Thus, in Fig. 64,

AB^+BC^=AC^
from which, AC== JAW+BC\

126.—Strength of Shaft Coupling Bolts. It is frequently

necessary to couple together two lengths of shafting, for which
purpose shaft couplings are employed. For small shafts, the

couplings are usually distinct pieces keyed to the ends of the shafts.

In the cas6 of large shafts, however, such as propeller shafts,

engine crank shafts, etc., solid couplings are generally employed.
Thus, the ends of the shafts are each provided with a solid flange

which forms part of the shaft, and the two flanges are then
fastened together by means of a number of bolts.

The bolts of a solid flange coupling have to transmit the whole
of the power passing through the shafts, and it is important to

consider how the required diameter of the bolts may be determined
in any particular case.

Let T.R.c=torsional resistance of shaft.

other two sides."

T.R.T,= bolts.

Ds=diameter of solid shaft.

^3=diameter of bolts in coupling.

w=number ,, „
y^=radius of bolt centre circle.

/,= shear stress in shaft and bolt material.

The bolts are required to resist the same twisting moment as

the shaft. Therefore,

T.R.B=T.R.s.

The torsional resistance of the bolts is clearly equal to

4
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assuming them to be a perfect fit. If, however, there be any
clearance, the bolts will not be subject to pure shear, and the tor-

sional resistance must be taken as only three-quarters of the above,

for the reasons explained in connection with suspension links in

the previous chapter.

(We may assume the bolts and the shafts both to be made of

the same material.)

Hence, T-R-b^w-^Y/cX •

4 4
Now for a solid shaft,

and T.R.B=T.R.3,

Then, nU,^f/,xl=^PsV\.

T\ 3

from which, d^

2 /D<;37D ^—^ (for solid shaft).

If the shaft be hollow instead of solid, the external and
internal diameters being D and d respectively, the torsional

resistance of the shaft is

i6v D y^'

and this is equated to the torsional resistance of the bolts, thus.

Then, i/=_^_3„.,=_^.

,', di= , / :p^ (for hollow shaft).

BOARD OF TRADE FORMULA FOR MARINE SHAFTING

127.—The Board of Trade formula for Coupling Bolts
in propeUer shafting is :

—

d- /^^
where i^=diameter of coupling bolts ; w=number of bolts

;

Ds= ,, ,, shaft; /=radius of bolt circle.

It differs from the above formula, owing to the fact that the coup-
ling bolts are assumed to be a perfect fit, so that the bolts are
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subject to pure shear. Hence we neglect the f mtroduced above.

Equating the moment of resistance of the bolts to the moment of

resistance of the shaft,

ID 4

d,
2.

I T) 3

d^= ^ /—^- (for solid shaft).
4.n.l

For hollow shafts, di= ^ n—-r^,V 4.n.l.D
where D=outer diameter of shaft

;

^= inner diameter.

128.—A number of general formulae in connection with marine
shafting are given by the Board of Trade to meet certain cases.

Thus, for compound condensing engines with two or more cylinders,

when the cranks are not overhung, the following formula is given :

—

^/CxPxD2S=

A-sy
wnere S=diameter of shaft, in inches

;

•^2—square of diameter of high pressure cylinder, in inches,

or sum of squares of diameters when there are

two or more high pressure cylinders

;

D2=square of diameter of low-pressure cylinder, in inches,

or sum of squares of diameters when there are two
or more low-pressure cylinders

;

P=absolut() pressure, in lbs. per square in h, that is,

boiler pressure plus 15 lbs

;

C=length of crank, in inches

;

/=constant from the table which follows-.

For ordinary condensing engines with one, two, or more
cylinders, when the cranks are not overhung :

—

g_ VCxPxD2
3X/ '

where S=diameter of shaft, in inches

;

D2=square of diameter of cylinder, in inches, or sum of squares

of diameters when there are two or more cylinders

;

P=absolute pressure, in lbs. per square inch, that is,

boiler pressure plus 15 lbs. ;

C=length of crank, in inches
;

/'=constant from following table.
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Assuming the cut-off takes place at
-^^J

of the stroke, then R=^^-, and

P _ P _ P _2P . .

(I+-3R) (i+i^x-V>-) i+i 3 ' ' ' ^
^

In the case of a single crank, the
position of maximum twisting moment

w may be assumed to occur when the crank
is at an angle of 90 degrees to the axis of

the cylinder.

The twisting moment will be the pro-

duct of W, the weight on the piston, and C,

the length of the crank.

Thus, T.M.=WxC. (See Fig. 65.)

W, the weight on the piston --area of

pistonXmean pressure.

T.M.=—xPxC.

Fig. 65

But from (i), the mean pressure is=
2P

T.M.=
CxPX7rD2x2

Equating this to the moment of resistance of the shaft,

TT c3/_CxPxD^X7rX2

and

from which,

g.3_C X P X D^ X '>i^ X 2 X 16

4X3X'^x/, "'

S=7
CxPxD^xS

3x/s

Comparing this with the Board of Trade formula,

e_ yCxPxD^
V 3X/ '

8 T
we have j in place of -j, and from the table, the constant / in

this case is 740.

Therefore, ^=
,

/. 740

and /x=740 X 8=5920.

It will be seen, therefore, that the Board of Trade allow a stress of

5920 lbs. per square inch on the shaft.
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129.—Next take the case of a compound engine, say with two
cranks at 90 degrees.

In this case, the weight W is split up between the two pistons
;

in other words, there is a load of — on each
2

crank, and the position of maximum twisting

moment will be as shown in Fig. 66. Hence,
the twisting moment will be,

T.M.=^xCsin45°+— xCsin45°
2 ^^2 ^^

=2(—xCsin45*

=WxCx707i.
Again, cutting off at y%- of the stroke in

the H.P. cylinder, and the ratio between

the L.P. cylinder and the H.P. cylinder being

Fig. 66

2! the ratio of

expansion,

R-^x5?

Using MTarlane Gray's approximation for mean referred

pressure, then :—

•

P - _ P _ P _ 2P

^+Vio 6"^^^; 1+2;^- 2+-^-^

and twisting moment, T.M.= 707iWC.

Also,
W=!I^'x ^P

4 2+
D2-

ry ^ _ 707IxCx7rX^^X2P

_CP(iVx707i

Equating this to the moment of resistance of the shaft,

CP^^X ttX 7071_ IT csy

195



Reference Library of the

CP^^x 7071x16

The Board of Trade formula is,

'J
. CP^2

''70''7ix8 • I
and comparing this with our result, we have ' ' instead of ~.^

Js J
and the constant in this case (see table) is 1047. Hence,

•7071 x8_ I

~fs 1047'

and /^=io47x8x 7071=5920 lbs, per square inch.

It will be seen, therefore, that in this formula the different

values for the factor/ limit the stress on the shaft to 5920 lbs. per

square inch.

According to the Board of Trade rules, the constant used for

screw propeller shafts may be multiplied by i'4 to apply to formulae

for paddle engines of the direct-acting type.

Consider the case of a compound engine with cranks at 90
degrees. On referring to Fig. 66, it will be seen that the maximum
twisting moment occurs when each crank is 45 degrees off the dead
centre. The twisting moment is then

— xCsin45°+^xCsin45°=WxCsin45°=WxCx707.
2 ^

Now consider the case of a compound engine with a paddle

wheel. In this case, we have two shafts and two paddles, and the

maximum twisting moment will occur when the cranks are at

right angles to the axis of the cylinder. Thus,

WxC+^xC=WxC.
2 2

It follows then that the ratio of the twisting moments for a
screw shaft and a paddle shaft is as 707 : 1. Therefore, the paddle
shaft must be stronger than the screw shaft in the ratio of i : 707,
or as 1-4: 1. For this reason, we multiply the constant for screw
shafts by 1-4 when applying the formula to find the diameter of a

paddle shaft.
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Worked Examples
130.—(i) A winding drum is 18 feet diameter and raises a

load of 3 tons. What is the twisting moment exerted on the shaft
in ton-feet and in pound-inches when the load is stationary ?

Twisting moment=force applied x leverage.

The force applied is clearly equal to the weight raised, neglect-

ing the v/eight of the rope, etc. The leverage is equal to the
radius of the drum. Hence,

Twisting moment=3 (tons) x 9 (feet)

=27 ton-feet.

The twisting moment measured in pound-inches will be

3x2240x9x12^ 725,760.

Twisting moment^27 ton-feet.

„ „ ^725,760 pound-inches.

(2) A rope driving pulley is 5 feet diameter and transmits

30 horse power at a speed of 120 revolutions per minute. What
is the effective force exerted on the pulley rim ? What is the
twisting moment exerted on the shaft to which the pulley is keyed ?

Let F=the effective force in lbs. acting at the pulley rim.

In one revolution of the pulley, the force may be supposed to

pass through a distance equal to the circumference of the pulley,

i.e. 7rx5 feet. Hence,

Work done per revolution, in foot-pounds--FxttX 5.

The pulley revolves 120 times per minute. Therefore,

Work done per minute==Fx7rX5xi20.

The horse power transmitted is 30, which means that the number
of foot-pounds of work transmitted by the pulley in one minute is

30 X 33,000. This work must be equal to the work done per minute
by the force F, so that we have the equation,

Fx 77x5x120-30x33,000.

. T7 30X33,000 ^^^ 11 „
.•. F=^^

—

^^^ = 525 lbs.
7rX5XI20 '^-^

Effective force at pulley rim=525 lbs.

The twisting moment exerted on the shaft is equal to this

force multiplied by its leverage, which is equal to the radius of

the pulley. Therefore,

Twisting moment=525X2'5x 12=15,750 pound-inches.
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We may, of course, obtain the twisting moment in pound-
inches directly by using the relation,

T M _63,QQQ H.P.
i.m. _

,

where H.P.=horse power transmitted

;

N=speed of pulley or shaft, in revolutions per minute.

Thus, T.M.=-^^ ^= 15,750 pound-inches.

131.—(3) Determine the diameter of a mild steel shaft which
is to transmit 80 horse power at a speed of 100 revolutions per
minute. Allowable shear stress, 7000 lbs. per square inch.

The diameter is obtained from the relation,

TTT.M.=^Dy.,

where T.M.=twisting moment, in pound-inches;
D==diameter of shaft, in inches

;

j^=allowable shearing stress, in lbs. per square inch.

It is first necessary to find the twisting moment, which is readily

obtained from the relation,

T M _63,QQQ H.P.

where H.P.=horse power to be transmitted

;

N=speed of shaft, in revolutions per minute.

Substituting the known values,

^ T,^ 63,000X80 ^ J • -u
'

T.M.=-^^^ =50,400 pound-mches.

Equating this to the torsional resistance of the shaft, and substi-

tuting 7000 for/^,

5o,400=-^D^X 7000.

j)3^5040oxi6^^^
77x7000 '

0=^367=3*32 inches, or, say, 3f inches

Required diameter of shaft=3f inches.

(4) A shaft 3J inches diameter is subjected to a twisting

moment of 3000 pound-feet. What is the maximum shear stress

in the shaft ?

The stress is obtained from the general relation,
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where T.M.=twisting moment, in pound-inches
;

D=diameter of shaft, in inches
;

/,=shear stress in shaft, in lbs. per square inch.

t,
. r T.M.X16

Rearrangmg, /,=-^^.—_

.

Note that the twisting moment must be reduced from pound-
feet to pound-inches to suit the formula. Substituting the known
values,

r 3000X12X16
, ^ 11. -1

f.=-^ =4200 lbs. per square mch.
3'5X3-5X3-5X7r -^^-^ ^ ^

Maximum shear stress=4290 lbs, per square inch.

(5) A wrought-iron shaft i inch diameter is broken by a load

of 800 lbs. applied to the end of a 12-inch lever keyed to the shaft.

Find what force must be applied to the end of a lever 15 inches

long to break a 3-inch shaft of the same material.

The strength of a solid round shaft varies as the cube of its

diameter. The relative strengths of a i-inch and a 3-inch shaft

are therefore as i^ : 3^, or as i : 27.

The 3-inch shaft is consequently able to resist a twisting

moment twenty-seven times as great as that which a i-inch shaft

could resist.

Let T.M.j be the twisting moment which breaks the i-inch shaft.

3-inch „ •„ T.M.3 „
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really governs the diameter of shaft required for the work, remain-
ing unaltered, however much the speed be altered. We have then
a simple proportion sum to solve, thus :—If a shaft transmits
800 horse power at a speed of 60 revolutions per minute, at what
speed must it be run to transmit 800+200=1000 horse power?
Stating the question as a proportion,

800 : 60 :: 1000 : x.

60x1000 ^^^=^35—z^
.*. Speed of shaft must be increased to 75 revolutions per minute.

(7) Assuming a 3-inch shaft is capable of transmitting safely

50 horse power when running at a speed of 100 revolutions per
minute, what power could be safely transmitted by a 5-inch shaft

of the same material running at a speed of 75 revolutions per
minute ?

We shall first find what horse power a 3-inch shaft would
transmit when running at the speed of the second shaft, viz. 75
revolutions per minute. Thus, if 50 horse power is transmitted at

a speed of 100 revolutions per minute, what will be the power
transmitted if the shaft only run at 75 revolutions ? Stating as

a simple proportion, we have,

50 : 100 :: x : 75.

100 ^^ ^

A 3-inch shaft will consequently transmit 37*5 horse power
at a speed of 75 revolutions per minute, and we have now to find

what power could be transmitted by a 5-inch shaft running at the

same speed.

Let T.M.3=the twisting moment exerted on the 3-inch shaft.

T.M.5= „ „ „ „ 5-inch „
H.P.3=power transmitted by 3-inch shaft.

H.P.5= „ „ 5-inch „
Ng^speed in revolutions per minute of 3-inch shaft.

Ng^ „ „ „ 5-inch „

The relative strengths of a 3-inch and a 5-inch shaft of the

same material are as 3^ : 5^, or as 27 : 125, i.e. i : 4*63. A 5-inch

shaft is, therefore, 4'63 times as strong as a 3-inch shaft, or will

withstand a twisting moment 4*63 times as great as will a 3-inch

shaft. Hence,

T.M.3=='^-:|^.
4-63
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Now, T.M.3^^3,oQQH.P.3^
-

and Tj^ 63,000 H.P.,
' N5

. 63,000 H.P.3_63,ooo H.P.g

N3 4-63 N5

We are now supposing both the shafts to be running at 75
revolutions per minute, so we can cancel out N3 and N5. The
63,000 may also be cancelled out, and we are left with

H.P.3=^i:^.
' 4-63

Substituting 37-5 for H.P.3, we have,

37 5 ^.^y

and H.P.5=37-5x 4-63=1737.

The 5-inch shaft running at 75 revolutions per minute is thus
capable of transmitting safely 1737 horse power.

The foregoing question might be worked out very readily by
remembering that the power a shaft is capable of transmitting, at

any particular speed, as well as the strength of the shaft, varies as

the cube of its diameter, but the detailed working has been given
with the object of showing exactly why this is so.

133.— (8) A hollow shaft is 13 inches diameter externally and
7 inches internally. It transmits 3000 horse power at a speed of

70 revolutions per minute. What is the maximum stress in the
shaft ?

The general relation for the strength of a hollow shaft is,

T.M.^^r-^''
16V D

where T.M.= twisting moment, in pound-inches;
D= external diameter of shaft, in inches;
^=internal ,, ,, ,,

/^=maximum shear stress, in lbs. per square inch.

First find the twisting moment on the shaft from the relation

TM _63,ooo H.P.

N
where H.P.=horse power transmitted

;

N-=speed of shaft, in revolutions per minute.
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Substituting the given data,

^^ _63,Qoox30oo

Now equate this to the torsional resistance of the shaft, substituting
for D and d their respective values.

63^000x3000_ TT /i3^—7*^. /.

" 70 i6\ 13' r''

Then y_63,ooox300ox 16x13
^'

70x77(13^-74)

_900 X 3000 X 16 X 13
ttX 26,160

=6830 lbs. per square inch.

.*. Maximum stress in shaft

=

6830 lbs, per square inch.

(9) A hollow shaft is required to transmit 6000 horse power
at a speed of 90 revolutions per minute. The twisting moment is

variable, the maximum being if times the mean. Determine the
external and the internal diameters of the shaft, assuming the
internal diameter is to be one-half the external. The shaft is of
mild steel having an ultimate shear stress of 24 tons per square
inch, and a factor of safety of eight is to be allowed.

To solve this problem, we again use the relation,

T.M.=-^f5!z^V
i6\ D r"

where T.M.=maximum twisting moment, in pound-inches;
D=external diameter of shaft, in inches

;

<i=internal „ „ „
/,=safe shear stress, in lbs. per square inch.

It is first necessary to find the mean twisting moment exerted
on the shaft, and afterwards multiply this by if in order to obtain
the maximum twisting moment, as the shaft must be sufficiently

strong to resist the latter.

The expression, -^^^^

—

'—^, where H.P.=horse power trans-

mitted and N=speed of shaft in revolutions per minute, gives
us the mean twisting moment. Substituting the values of H.P.
and N,

Mean T.M.=^3,oooo<6ooo^

90

Maximum T.M.=^3>ooQX 6000x175,

90
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This maximum twisting moment must now be equated to the

torsional resistance of the shaft. Thus,

63,000 X 6000 X 175 __ TT /T>^—d^\ r

95 16V D r''

Both D and d, are unknown, but as the question states that

the internal diameter is to be one-half the external, we can sub-

stitute — for d.
2

As for f„ this is obtained by dividing the ultimate shear
strength of the shaft material by the factor of safety. Thus,

c r , ultimate stress 24 . . •

Safe stress=7 -.—-,
—=-^='x tons per square men.

factor of safety 8 ^ ±^ ^

Note that the twisting moment is measured in pound and
inch units, and the stress must therefore be measured in pounds
per square inch. Hence,

63,ooox6oooxi75^^j W
,

3

^ ^^^o.
90 i6[ D J-^ ^

16 _63,ooox 6000x175x16
D 90x77x3x2240

i5-p.3_63,ooo X 6000 x 175 X 16

16 90x77x6720

-p.3_63,ooo X 6000 X 175 X 16 X 16~
90x77x6720x15

-5940>

.'. D= iv/5940= i8-2 inches.

External diameter of shaft=i8"2 inches.

Internal ,, ,, =9*i inches.

134.—(10) What percentage reduction of strength results

from boring a 5-inch hole through a 12-inch shaft ? What is the

reduction in weight ?

The strength of a shaft is measured by its torsional resistance,

which, for a solid shaft, is ^DsV^ and for a hollow shaft is

(r\\ 74\ ID
- —^— \f„ where Dg is the diameter of the solid shaft, D and d

the external and internal diameters respectively of the hollow
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shaft, and f, the shearing stress in the material. The relative

strengths are, therefore, as

since -^ and /, are common to both expressions.

For the case in point, Ds is the same as D, and the relative

strengths of the shaft as originally made, i.e. solid, and after boring

the hole, will thus be as 12^ : ^, or as 1728 : 1676, i.e. i : -97.

Thus, after boring a 5-inch hole through the shaft, the strength is

still '97 of what it was originally.

Percentage reduction of strength= -^^^-2Zx 100=— x 100=3 'O.

The weight of the shaft varies as its sectional area, the length
remaining the same.

Sectional area originally --^Dg^.
4

„ after boring='^(D2-^2)^
4

The areas or the weights are therefore as ''"Dc^ : ^(D^—i2\

4 " 4
or as -xi22:-(i22—5^), i.e. as 144:119, or i :

-827. Thus, after

boring, the weight of the shaft is only -827 of what it was originally.

Percentage reduction of weight=-~ —7><-j-qq^_^73>^-j-qq_j/^.2^

This example serves to show that whilst the weight of the
shaft is considerably reduced by boring a hole through it, the
strength is reduced only very slightly, and thus great saving of

metal is effected, with no material loss of strength.

(11) What are the relative strengths of a hollow and a solid

shaft of the same weight, the internal diameter of the hollow shaft

being -375 of the external diameter ?

We showed in the text that if Th and Tg represent respectively,

the torsional resistances of a hollow and a solid shaft, d and D
representing respectively the internal and external diameters oi

the hollow shaft, then,
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I-234-

In the present question, <i="375D. Hence,

Ts Vi-('375? VI--I4I '925

The torsional resistance of the hollow shaft is thus 1*234 times
that of the solid shaft, so that the hollow shaft is 1*234 (o^ prac-

tically IJ), times as strong as the solid shaft.

(12) A hollow shaft is 14 inches diameter externally and 8.

inches internally. What should be the diameter of a solid shaft

of the same material for equal strength ?

We have here to find the equivalent solid diameter, which, as

was shown in the text, is given by the relation,

where Ds=^diameter of solid shaft

;

D and ti= external and internal diameters respectively of the

hollow shaft.

Substituting 14 and 8 respectively for D and d,

Ds=D./i-
•'J-

Os=i47^-(^)'=i4Vi--i07

=I4n/'893=I4x •9629= i3'48 inches.

Diameter of solid shaft==13-48 inches, or, say, 13J inches.

(13) A mild steel shaft is required to transmit 200 horse power
at a speed of 140 revolutions per minute. The shaft is to be 25 feet

long, and must not spring more than 5 degrees under working
conditions. Taking the modulus of rigidity of mild steel to be
12,000,000 lbs. per square inch, determine the diameter of the
shaft.

We are concerned here with the stiffness of the shaft, and
consequently use the relation,

T.M.:
584^'

where T.M.=twisting moment applied, in pound-inches
;

^=maximum angle, in degrees, through which the shaft

may be twisted

;

G=modulus of rigidity, in lbs. per square inch
;

D=diameter of shaft, in inches
;

^length

Now, T.M.=^3,Qoo H.P
N
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where H.P.=horse power transmitted;

N=speed of shaft in revolutions per minute.

Substituting for H.P. and N their respective values, .

TM =63^000x200^

140

TT 63,Qoox2oo_<^GD^_5x 12,000,000xD^
* ' 140 584/ 584x25x12

j^4_63,ooox200x584X25xi2 _^^^.g
140x5x12,000,000

D=V262 •8=4^02inches.

Required diameter of shaft

=

4*02 inches, or, say, 4 inches.

135.—(14) Find the diameter of a shaft, which, when subject

to a torsional stress of 6000 lbs. per square inch, will not spring

more than 2 degrees in a length of 30 feet. The modulus of

rigidity may be taken as 12,000,000 lbs. per square inch.

In this example, we are given the stress in the shaft, but not the

twisting moment which produces that stress. We therefore use the

formula which connects the stress with the angle of twist, viz. :^

where /^-=shear stress, in lbs. per square inch

;

R=radius of shaft

;

^=angle of twist, in radians
;

/=length of shaft, in inches

;

G=modulus of rigidity.

Substituting the values given in the question,

2

6000 S7"3-^p— :^ ->/ -> X 12,000,000.R 30x12
Notice that the angle is given in degrees. This must be con-

verted into radians by dividing it by 57-3. Also, the length is given

in feet, so that we must bring this to inches by multiplying by 12

TT 6ooo_ '0349 X 12,000,000
' "RT 30x12

-p_ 30x12x6000
•0349x12,000,000

=5*157 inches.

'D=5'i57X2= io'3i4 inches.

The shaft would probably be made io|- inches diameter.
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(15) Referring to the previous question, find the twisting
moment that could be appUed to the shaft.

The formula to be used is now,

J ^'
where T.M.= twisting moment, in pound-inches; ^^4

J=moment of inertia of shaft about centre=— for

a shaft of circular section

;

^

C=modulus of rigidity ;

<^=angle of twist, in radians
;

/=length of shaft, in inches.

Substituting the values from the question, we have :

—

T.M.__ 12,000,000 X '0349
7rd^ 30x12

T.M.xio'2_ i2,OQO,ooox'0349

(10-314)4
~

30x12
*

and TM - i2>QQQ^QQQX'Q349x(iQ'3i4)^

30x12x10-2

=1,289,000 pound-inches
= 107,400 pound-feet. Answer.

(16) Apply the Board of Trade formula to find the twisting

moment that could be applied to the shaft of Example 14.

The formula referred to is,

where T=twisting moment, in pound-feet

;

^=diameter of shaft, in inches
;

a=angle of twist, in degrees
;

L=length of shaft, in feet.

Taking the data from the previous example, and giving each
letter its numerical value,

T=^4ox (io-3i4)^x2^
^^^^^p^ pound-feet.

(17) Assuming the twisting moment found in the previous
question, viz. 105,500 pound-feet, be applied to the shaft, find the
stress in the material.
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In order to solve this question, apply the formula,

J R'

where T.M.=twisting moment, in pound-inches

;

.^

T=moment of inertia of shaft about centre=—^>
;

/^= stress, in lbs. per square mch
;

-*

R=radius of shaft.

Putting in the value of J, and substituting — for R,

'77^ D*

32 2

From this, /j=T _Txi6

16

Substituting the known values,

/.=-5S^^^^^=59oo lbs. per square inch.

.'. /j=59oo lbs, per square inch.

This agrees with the value of the stress given in Question 14.

136.—(18) The piston of a steam engine is 40 inches diameter,

and the effective pressure acting on it is 50 lbs. per square inch.

Stroke 4 feet 6 inches. The engine crank shaft supports a flywheel

which gives rise to a bending moment equal to 785 of the twisting

moment. Find the diameter of the crank shaft, assuming it to be
solid.

The first thing to do is to find the maximum twisting moment,
.TT.

which may be taken to be equal to px- xd'^xl,

where />= effective pressure, in lbs. per square inch
;

^=diameter of piston, in inches
;

/=length of crank, in inches=one half the stroke.

T:M.=px-xd^xl

=50x785x40x40x^x12

= 1,696,000 pound-inches.

.*, Twisting moment

=

1,696,000 pound-inches.
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The bending moment is equal to 785 of the twisting moment.

B.M.=785x 1,696,000
=1,331,000 pound-inches.

.*. Bending moment= 1,331,000 pound-inches.

We have next to find the equivalent twisting moment. T.M.g,

Thus,

T.M.E=B.M.-f- >/T.M.2+B.M.2,

where B.M. is the bending moment in pound-inches.

Substituting the known values of B.M. and T.M.,

T.M.K=1,33 1,000+ -v/i,696,000^+1,33 1,000^.

To obtain the numerical value of the
quantity under the root sign, describe the
triangle ABC (Fig. 67), making the side ^5
1,696,000 units long, to some convenient
scale, and the side BC 1,331,000 units long.

Then the length of the side AC, to the
same scale, gives us the value required, which
is approximately 2,160,000. Hence,

T.M.E=i,331,000+2,160,000
=3,491,000 pound-inches.

This equivalent twisting moment will

produce the same effect as the ordinary twisting moment and the
bending moment together, and the next thing to do is to equate it

to the torsional resistance of the shaft. Thus,

T.M.
16
DV«

where

Rearranging,

D=diameter of crank shaft

;

/,=allowable stress in shaft.

D3=T.M.pXi6
irx/s

''^jT,M.kXi6
irxf.

Assume/, to be 6500 lbs. per square inch.

Then, p^ 73491,000x16^3^^^^
8 inches.V 77x6500 ^-^^ ^^

.*. Required diameter of shafts 13 "qS inches, or, say, 14 inches.
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(19) Two lengths of hollow shafting, 12 inches diameter
externally, and 6 inches internally, are to be secured together by
means of a solid flange coupling containing six bolts, the diameter

of the bolt circle being 17 inches. Assuming the bolts to be made
of the same material as the shaft, determine the necessary diameter
of the bolts.

The required diameter is given by the relation.

dr,

where ^^=diameter of bolts, in inches

;

D= external diameter of shaft, in inches

;

^=internal ,, ,,

w=number of bolts
;

fc=radius of bolt centre circle.

In this example, D=i2 inches, d=6 inches, n=6, r^^S'^ inches.

Substituting these values in the formula,

^3=./~^^V^^-./'^'^.^^~-^^=Vi3^=3-25 inches.
* V 3x6x8-5x12 V 18x102 ^^ ^-^

.•. Diameter of bolts= 3|- inches.
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Chapter IX

SHOCK OR IMPACT TESTS ON IRON AND
STEEL

In addition to tensile compression and bending tests on iron

and steel which have been described above, the student, on further

acquaintance with the subject, will find many other forms of test

in practical use. A description of these, some of which are only

of limited application, is beyond the scope of the present work.
Some reference, however, should be made to one of the most
important, namely, the shock or impact test.

The tensile test has been referred to above as a means of

determining whether steel or iron is brittle, and therefore unsuit-

able to withstand shocks. While this is true in general, it is not
infallible in this respect. Many failures of engineering structures

and engine parts have occurred clearly attributable to inherent

brittleness in the material used, even in cases where under the

tensile test the steel has shown a satisfactory ductility or percent-

age elongation. Recognition of this fact led a French engineer,

M. Charles Fremont, to devise a method of testing in which a

notched test piece of the steel is broken under a sudden blow.
Various types of machine have been constructed by different

makers to carry out such tests, of which the Fremont, Charpy and
Izod machines are the best known. They are, however, all alike

in principle, and the following short description of the Fremont
method as used for the past eighteen years by the well-known
firm of steel makers, Messrs. Hadfields, Limited, of Sheffield, will

illustrate the general principle.

The test piece A, in the form of a rectangular bar, notched
centrally on its underside, rests on two supports, as shown in

Fig. 68.

A falling weight, or tup B, fitted with a rounded knife edge
C to concentrate the blow, falls on the test piece centrally,

thus breaking it transversely through the notch. After breaking
the test piece, the tup falls on to a copper cylinder D, which it

compresses.

The amount of compression of the copper is a measure of the
energy remaining in the tup after the fracture of the specimen.

This amount of energy subtracted from the known energy of the
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tup before striking gives, therefore, the energy required to break
the specimen.

The energy figure^ thus obtained is a measure of the tough-

ness of the material, a quahty which is the converse of its brittleness.

It is also useful to record the angle through which the specimen
has been bent before fracture. This is done by fitting the two
fragments together and measuring with a protractor.

The tup weighs 5 kilograms, and falls from a height of 4
metres ; its striking energy is, therefore, 20 kilogram-metres

(written KgM.).

In a particular test on a sample of mild steel, the copper
cyhnder measured 0-570 inch in length.

After compression by the tup, subsequent to fracture of the

specimen, it measured 0*377 inch in length.

1 The student will note that while the strength of a material in the tensile

test is recorded in the form of a stress, that is, a force per unit area, in the case

of the impact test energy is used, since not only the force of rupture is concerned,

but also the extent of the deformation of the specimen, that is, the distance

through which the force of rupture acts.
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The amount of compression is, therefore (o'570—0*377) i^^^

=0*193 inch in length.

Looking up the cahbration curve for the copper cyhnder, this

corresponds to an energy of 16-7 KgM. expended on the copper.

The energy expended in breaking the testpiece is therefore
20*0—167=3-3 KgM.

As, also, the fragments fitted together showed an angle of

bend of only 4 degrees, the material is far from satisfactory in its

shock-resisting qualities. Good mild steel should give at least

10 KgM. in this test.

In a test of another specimen of mild steel the following

were the data :

—

Weight of tup, .... 5 Kg. (as before).

Height of drop, .... 4 metres „ „
Striking energy of tup, . . , 20 KgM. ,,

Length of copper cylinder before test, 0*572 inch.

Do. do. do, after test, 0*494 „

Compression of copper cylinder, . . . 0*078 inch.

Corresponding energy expended on
copper (from calibration curve), . . 4*5 KgM.

Energy expended in breaking the test

piece (=20-4-5=i5-5 KgM).
Angle of bend, ...... 60 degrees.

The shock-resisting qualities of this specimen of mild steel

are, therefore, represented by 15*5 KgM. x 60 degrees, which may
be considered as satisfactory.

Results have shown this method of shock testing to indicate

toughness or brittleness which is not rendered apparent by other

forms of test. Shock or impact testing therefore forms a valuable

adjunct to the tensile compression, bending, or other tests com-
monly used, and they are now in general use, being specified by
certain Government Departments and other large users of steel.

An interesting example of the use of shock tests is in the case

of mild steel commonly used for structural purposes such as ship

plates, boiler plates, girders, etc. In the working up of such steel

in large quantities it is occasionally subjected to very high tempera-
tures for a longer period than is advisable. Under the tensile or

other common forms of test no harmful results from this mal-
treatment are apparent, in fact, the steel shows quite a satisfactory

tenacity and an excellent elongation under the tensile test.
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On submitting the material to the Fremont shock test, it

breaks in an absolutely brittle manner with the expenditure of a
very slight amount of energy, and the fragments when fitted to-

gether show a bending angle of less than one degree. The fracture

is coarsely crystalline. It is obvious that such a material, although
satisfactory under the tensile test, is quite dangerous to use.

It is interesting to note that a similar notched specimen tested

slowly will bend double without fracture.

Other examples might be quoted, particularly in the case of

steels for aircraft, where the shock test has proved of undoubted
service
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Chapter X
CHAINS AND ROPES

Chains and ropes are in general subjected to tensile loads, and the
determination of the stresses is a comparatively simple matter.

In the case of chains, apart from the tensile load, there is

bending of the individual links, but it is not possible to calculate,

with any degree of certainty, the stresses due to the bending action,

and it is usual to determine the strength by considering merely the
tensile stresses.

Chains are mostly made of tough fibrous wrought iron, because
although this material is not so strong as mild steel, it is a more
suitable material for welding, on which so much depends.

In the case of what are known as weldless chains, made in

short lengths for slings, and cut out of a solid bar, mild steel may
be employed with advantage, a mild steel chain of this form being
probably twice as strong as one of wrought iron.

The ordinary chain is made in two principal forms, viz. the

Fig. 69 A Fig. Ggji

Open link and the stnd link. The former is shown in Fig. 69A, and
the latter in Fig. 69B.

In the latter type, a short stay or stud, generally of cast iron,

is placed across the shorter diameter of each link, its object being
to prevent the sides of the link closing in as a result of the tension in

the chain. The stud link chain is certainly stronger than the open
link, some authorities regarding it as one and a half times as strong.

215



Reference Library of the

To find the stress in an ordinary chain, we must note that the

two sides of each Hnk resist the load.

Let D=diameter of the round bar from which the chain is made.

„ W^load on chain.

^^ /^= tensile stress in chain.

Load
Then since Stress

=

Sectional area'

W
2X^D2'

4

I.e. /, ^j^2'

and W=^^5!A.
2

If we adopt a safe stress of 4 tons per square inch, then

2

Thus, Safe Load= 6-28D^ (for steady loads).

This simple formula may be used for ordinary open link chains

which are not exposed to shock. The safe stress of 4 tons per

square inch assumes a factor of safety of between four and five,

which is satisfactory for steady loads.

Frequentty, however, chains are very liable to rough usage,

and in such cases a safe stress of not more than 2-| tons per square

inch should be adopted.

Our formula W-= •'-

2

TcD^X 2,'^
then becomes W==^ —^,

2

i.e. W=4D^ (for unsteady loads).

Fatigue of Chains.—Perhaps no part of a structure or a

machine is more liable to suffer from fatigue than a chain, par-

ticularly one used on a crane.

If accidents are to be avoided, therefore, it is very necessary

that chains should be annealed from time to time ; that is to say,

they should be thoroughly and evenly heated, to a red heat, and
then allowed to cool very slowly.
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How often a chain should be annealed depends on circum-
stances. If the chain is not worked a great deal, and if it is not
subjected to rough usage, once in twelve months may be sufficient,

but in severe cases, as, for example, where chains are used in

foundries for lifting molten metal, annealing every three months is

advised.

Proof Stress.—This is a term the student should be familiar

with. It is a term much used in connection with chains, and
denotes the stress to which a chain is exposed when subjected to

a test load or proof load.

The proof stress is generally about one half the ultimate stress

of the material, and the working stress one half the proof stress for

steady loads, but less of course where the chain is subjected to

severe conditions of working.
The Admiralty specify a proof load of I2D^ for open link

chains (iSD^ for stud link chains), which we see is roughly
twice the working load as given by our formula.

Safe Load=6-28D2.

Wire Ropes.—The strength of a wire rope or cable depends
upon the number, size, and tensile strength of the wires of which
it is composed. Except in the case of ropes for suspension

bridges, where great flexibility is not required, hemp cores are

frequently used in the construction of wire ropes, so that the

strength of the rope cannot be determined simply from the

diameter. These ropes are made of steel, often of very high
tensile strength, over lOO tons per square inch in some cases, but
it is not usual to adopt a lower factor of safety than six, especially

for ropes which pass over pulleys, since the continual bending of

the rope in passing round the pulleys severely strains the wires,

and tends to cause fatigue and breakage of the strands, particularly

if the pulleys are not of large diameter. In many cases a factor

of safety of ten is adopted. The actual strengths of wire ropes

are best obtained from the makers' lists.

Horizontally Suspended Chains and Ropes. ^—Examples
of chains and ropes suspended horizontally, i.e. stretched across

from one pillar or column to another, are seen in the case of the

chains and ropes used for supporting suspension bridges, etc.

These are loaded at various points along their length with loads

which usually act vertically downwards, the sum total of the

loads being of course that of the bridge.

A telegraph wire is a somewhat similar example, but of course

has merely its own weight to support. Such wires have to be
exposed to very considerable tension in order that they will not

sag appreciably.
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We shall now deduce an expression which will enable us to find
the tension in a horizontally suspended chain or rope. Consider a
chain or rope of a suspension bridge carrying a number of vertical

loads. (See Fig. 70.)

The bending moment diagram for a beam carrying a uniformly
distributed load is a parabola, so that the general shape of the
chain or rope will be that of a parabola, since we may, without ap-
preciable error, assume the chain to have a continuous curve,
especially if the number of vertical suspension rods is great, as is

generally the case in practice.

If the tops of the columns over which the chain passes are on
the same level, then the lowest point of the chain will be im-
mediately over the centre of the bridge platform, and a tangent to

Fig. 70

the chain at this lowest point will be a horizontal line. A tangent
to the chain at the top of one of the columns will meet the hori-

zontal tangent at a point which is situated a horizontal distance
of one quarter the span from the column.

Now consider the equilibrium of one half of the chain.

Let W=the total load on the chain.

TH=the horizontal tension.

TT=the tension at the top of the column.
L=the span.

D=the dip of the chain, i.e. the vertical distance from
the top of the pillars to the level of the lowest point
of the chain.

Now the half-chain is in equilibrium under the action of the three

forces, viz. — , Th, and Tj, and the lines of action of these three

forces will of course meet in one and the same point.

218



Bennett College :
" Strength of Materials

"

Taking moments about the top of the column.

then,

from which,

ThxD=- x~,
2 4

Th=-
WL
8D*

Thus, Horizontal tension^ One-eighth load on chain x-^.— .

dip

To find the value of T^, construct the triangle of forces abO

(Fig. 70A), drawing ab vertical to represent the load —,&0 parallel

to the tangent to the chain at the lowest point, and Oa parallel to

the tangent to the chain at the top ^
of the column.

In the triangle abO, which is

right-angled,

aO'^^ab'^^bOr-'.

Now «0 represents the tension

Tj, ab the load on half the chain,

viz. — , and 60 the horizontal
2

tension Th.

We have seen that Th

_WL
8D

'

Fig. 70A

SO that on substituting this value ofTn in the equation

\ 2 /

we obtain, T2.
W2 , /WL\2

_W^ W^L2
4 "^6402

^WV JL2
4 \^i6DV'

T^ =?y- 1?

i6D2'
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It will be seen from the triangle of forces that Tj is the greatest
tension in the chain, and Th the least.

To find the tension at any point P in the chain, draw a tangent
to the chain at P, and from O in the triangle of forces draw the Una
Op parallel to this tangent.

Then in the right-angled triangle phO,

pO^=pb^+bO^.

Now ^ —

—

ah V

where / is the horizontal length from a point directly under P to
the centre of the chain.

Thus, ph=^^\ ' K

But ah represents one half the load, and 2 • ah will therefore
represent the full load.

Hence, ph=W • ~

Therefore, since pO represents the tension at any point P, say Tp,

and hO represents the horizontal tension, Th, we have finally,

Tp=7TH^+(w--^y.

If we apply this formula to find the greatest tension, i.e. the
tension at the top of the supports, Tx, we find it reduces to the
formula already given for Tj.

Thus, / is the horizontal length of chain from a point directly

under the point being considered, which is at the top of the tower,
to the centre of the chain ; obviously

2

Hence, Tp=VT

Now Th=
WL

.^+(w.y.

8D'
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so that substituting this for Th, we have

V 6402"^
4

V 4 \
^^160'

Tp==:\/i+w / u
2 V ^i6D2'

or, since the point chosen is that where the tension is greatest, i.e.

at the top of the tower,

W /j.. L'
' 2V 'i6D2-

If we apply the formula which gives the tension at any point

to find the tension at the centre of the chain, we note that the

length of chain / is nil, so that

V^H^+OTp=./T„2+fW-?^''

=VTh2+0,

i.e. Tp=Th.

Thus, the tension at the centre is equal to Th, the minimum tension.

Length of Suspended Chain or Rope.—If a chain or rope
be supposed to hang in the form of a parabolic curve, the length

may be determined approximately from the formula,

Lc=^L+-23D,

where Lc=length of chain or rope

;

L==span, or horizontal distance between supports;

D=dip, or vertical distance from highest to lowest level

of chain.

Note.—The actual curve which a chain or rope assumes,

when not loaded like a suspension bridge chain or rope, is known as

the catenary.
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Worked examples

(i) Find the loads which may be imposed on a f-inch, a
|-inch, and a i-inch chain, assuming {a) the chains are subjected
to steady loads, (b) to unsteady loads.

What loads might be carried if the chains were of the stud
link form instead of the open link ?

{a) For steady loads,

W=6-28D2,

where W=load, say in tons,

D= diameter of chain in inches.

For a f-inch chain,

W=6-28x •375^=^ -883 ton.

For a f-inch chain,

W=6-28x •6252=2-45 tons.

For a i-inch chain,

W=6-28x 1^=6-28 tons.

{b) For unsteady loads,

W=4D2.

For a f-inch chain,

W=4X -3752= -562 ton .

For a I-inch chain,

W=^4X -625^= 1-562 tons .

For a I-inch chain,

W=4x 1^=4 tons.

These results are for chains of the open link type.
If the chains were of the stud link type, tlie loads which might

be carried would be ij times those above determined.

{a) For steady loads (stud link chains),

W= -883x1-5== 1-325 tons (f-inch chain).

W=2-45x 1-5= 3-68 tons (f-inch chain).

W=6-28x 1-5= 9-42 tons (i-inch chain).
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(b) For unsteady loads,

W= -562 XI -5 =-843 ton«(|-inch chain).

W=i-562Xi-5=2-34 tons (|-inch chain).

W-=4X 1*5=6 tons (i-inch chain).

(2) A steel wire rope is stretched between two supports in the
same horizontal line 90 feet apart, and the dip of the rope is 9 feet.

This wire rope sustains a load which may be estimated as equal
to 4 cwts. per horizontal foot of span. Determine the greatest and
the least tensions produced in the wire rope by this load. (B. of

E. Mech. Exam.).
The greatest tension is given by the formula.

Tx=^./i+
2 V ^i6D2'

where Tt= tension at top of supports

,

W=total load on rope

;

L—span in feet

;

D=dip of rope in feet.

Now W=90X 4=360 cwts., L=90 feet, and D=9 feet.

Substituting these values,

T,=3^7^|^.=485 cwts.
2 \ 16x92 ^ ^

.\ Greatest tension

=

485 cwts.

The least tension is given by the formula,

rr. _WL

. er 360 XQO ^ .

.'. Least tension=45o cwts.

Greatest tension

=

485 cwts .]

r Answers.
Least tension=45o cwts. I

(3) A foot bridge 10 feet in width is carried over a river

100 feet in width by two cables of uniform section, with a dip of

10 feet at the centre. Find the greatest pull on the cables, their
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cross-sectional area, length, and weight from the following data :

Maximum load on platform, 120 lbs. per square foot ; working
stress in metal of cables, 4 tons per square inch ; weight of cable

material, 484 lbs. per cubic foot. (A.M.I.C.E. Exam.)

Superficial area of bridge= 100x10=1000 square feet.

Load per square foot=i20 lbs.

.*. Total load= 1000x120=120,000 lbs.

=53-6 tons.

Load from bridge to be carried by each cable is therefore

53-6^2=26'8 tons.

In addition to this, each cable has to carry its own weight.

We do not, however, know the weight of the cables, nor can we get

it at once since we do not know their size.

In many cases, in order to simplify the problem, the weight

of the cables would be neglected, since compared with the load

carried it is usually small.

If, however, it is not desired to ignore the weight of the cables,

they may be assumed a certain size, and the weight calculated

accordingly. Providing one shows good judgment in assuming
the sizes, the results will then be quite accurate enough for all

practical purposes.

The exact determination is a little more troublesome, but we
shall here adopt the scientific method.

Let <^=diameter of cables in inches,

Lc= length of cables in feet,

then, Volume of one cable=^^—xLc (cubic feet).
144

Weight of cable=4— xLcXze;,
144

where ?£;=weight of one cubic foot of the material.

Now Lc=L+-23D,

where L=span in feet,

D=dip in feet.

Since the span is stated to be 100 feet, and the dip 10 feet,

Lc== 100+ •23x10=102-3 feet.
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Now the weight of a cubic foot of material is given as 484 lbs.,

i.e. -216 ton.

.*. Weight of cable=^ x 102-3 x '216
144

=^•1205^2 tons.

Hence, Total load supported by one cable

=26-8+-i205<i2 (tons).

The formula which gives the maximum tension in each cable is

^.-17-+:
w /. . u

i6D2'

where W=the total load supported by one cable.

Substituting for W, the value 26*8+ -1205(^2, and for L and D,
100 and 10 respectively,

^;_/26-8+a205^^W^ 100^

16x10^

= (13-4+ -06025^2)^j_^5.25

= (13-4+ •o6o25^^)2'69.

Hence, Maximum tension= (13-4+ •06025^^)2-69 tons.

TV
Since d represents the cable diameter, the sectional area is —d^.

Therefore, Stress=7^

—

^.^^^.^

Sectional area

^ (13-4+ -06025^^)2-69

4

We are told that the stress is to be 4 tons per square inch,

• 4- (^3-4+ -06025^^)2-69

4

Thus, 7u^2=--36+-i62^^

3-i4i6<i2—162^2=36,

M 2-9796 -^i-^
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Hence, Diameter of cable=3'48 inches.

Sectional area=-X3-482=9-5 square inches.

4

Weight of cable=-^x 102-3 X -216
144

^ 1-46 tons.

We have seen that the maximum tension is equal to

(13-4+ •06025^^)2-69 tons.

Substituting for d the value 3-48 inches, we have

Maximum tension= (13-4+ -06025x3-48^)2-69

= 38 tons .

The answers to the problem are therefore as follow :

—

Greatest pull on cables

=

38 tons .

Sectional area of cables= 9-5 square inches (each).

Length of cables=i02^3feet.

Weight of cables^ 1-46 tons (each).

Answers.
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Chapter XI

REVOLVING RING

The determination of the stresses in a ring revolving about its

centre is simple, but nevertheless important, since it has an im-
portant application in practice in regard to revolving wheels and
pulleys.

Our problem is very similar, as we shall presently see, to
finding the stress in a thin cylindrical vessel exposed to internal

pressure.

Consider the ring shown in Fig. 71, and suppose this to be
rotating at a uniform speed about its

centre.

Now according to Newton's First Law
of Motion: "Every body continues in its

state of rest, or of uniform motion in a

straight line, unless compelled by impressed
forces to change that state."

Since all the particles which make up
the ring move in a circle, instead of a

straight line, it follows that every particle

must be continuously acted upon by
some force whose line of action is towards
the centre of the ring. This force is termed the centripetal force.

According to Newton's Third Law of Motion : "To every

action there is an equal and opposite reaction." Hence, there

must be a force equal to the centripetal force, but acting in the

opposite direction, and this equal and
opposite force is termed the centriftigal

force.

Now the summation of all these

small centrifugal forces acting in the

ring, i.e. the total centrifugal force,

is tending to burst the ring into two
equal halves. Fig. 72 shows one half

of the ring, the arrows representing

the centrifugal forces acting radially all round the ring. The
case is seen to be analogous with that of a thin cylindrical shell

under internal pressure. The total force acting on one half of
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the ring will be balanced by the total stress acting at the sections
at A and B.

In the case of the thin shell, if p is the internal pressure in
lbs. per square inch, d the diameter of the vessel in inches, t the
thickness of the plates in inches, and /, the tensile stress in the
metal, in lbs. per square inch, then we saw in Chapter V. that

pd=2fit.

In the case of the ring, instead of the pressure p, we have
centrifugal force per unit length of the ring.

Now it is a simple matter to prove that the centrifugal force
in a rotating body is

gr
>

where F=the centrifugal force, say in lbs.

;

W=the weight of the body in lbs.

;

?;=the linear velocity in feet per second

;

y=the radius of gyration in feet

;

^= acceleration due to gravity, viz. 32-2 feet per
second per second.

It will be convenient to consider a length of ring of one foot

(because the linear velocity of the ring is in feet per second), and a
sectional area of one square inch.

If Wj be the weight in lbs. of this portion of the rim,

then F=^^.
gr

This is the pressure on each unit of length of the ring, due to the
centrifugal forces, and it corresponds with p in the equation,

pd==2f]t.

Since d=2r, where r=the radius of the shell, then

pX2r=2f^t,

or pr==f,t.

If t is taken to be i inch, then

pr=J,.
TXT 2

If now we substitute for p the value —^— , we obtain
gr

fj^ity^r^'^l^
' g^ g
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If we imagine the ring to be made of cast iron, then the value
of Wj is •26x1x12=3-12 lbs., a cubic inch of cast iron weighing
•26 lb.

Hence /=
g

32-2 10
(approx.).

Since the weight of wrought iron or steel is about -28 lb. per cubic

inch, the same result applies approximately for wrought iron or

steel rings.

We see from this that the stress in the ring due to centrifugal

force depends only on the linear velocity, and is independent of

the radius or the diameter of the ring, or of the section.

Thus, the stress in a rotating pulley or flywheel (if we neglect

the effect of the arms) due to centrifugal action, is quite indepen-

dent of the sectional area of the rim.

In most cases in engineering practice, if we find a part is highly

stressed, we increase the section, but in the case of a pulley or fly-

wheel this is useless, as it would not reduce the stress, because the

latter is governed entirely by the velocity of the rim, or the " rim
speed," as it is called. It is necessary to observe another
important fact.

The stress varies as the square of the velocity. This means
that if the velocity is doubled the stress is increased fourfold,

whilst if the velocity is trebled the stress is increased ninefold.

We can readily understand from this why, if an engine com-
mences to race, due, say, to failure of the governor gear, considerable

risk of the flywheel bursting is involved, since at double the speed
the stresses m the rim are increased fourfold, and at this speed,

if the factor of safety is only four, the stress will have reached the
breaking stress.

Rotating pulleys and wheels must therefore not be allowed to

run beyond a certain speed, which will be governed by the material.

Most pulleys and wheels are made of cast iron, and the hmit-
ing speed for this is commonly taken to be a mile per minute, i.e.

8S feet per second.

Of late years there has been a tendency to introduce wrought
iron and steel into the construction of large engine flywheels.

One of the safest and best types of wheel is that in which the rim
is made channel-shaped, and is wound round with many turns of

steel wire of high tensile strength. Such a wheel may be safely

run at speeds three times as great as those which would be safe for

cast iron wheels.
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In connection with our reference to pulleys and wheels, it is

necessary to remark that the stresses in the rim are determined
correctly by the formula given, providing we neglect the effect of

the arms ; in other words, if we assume the pulley or wheel to be
a plain ring.

The effect of the arms is to cause bending stresses to be intro-

duced, because each arm constrains the rim at one point, the result

being that, as the forces acting on the wheel tend to make each
portion of the rim move outwards, each length
of rim between any two consecutive arms is in

reality a beam fixed at the ends, and loaded
uniformly along its length. (See Fig. 73.)

Where small wheels are concerned, these
bending stresses are not usually important,
because the distance between the arms, which

Fig- 73 corresponds to the span of the beam, is small

;

but in the case of large wheels, the stresses

due to bending may be quite as serious as those due to centrifugal
tension.

WORKED Examples

(i) A pulley rim is 4 feet diameter, and the speed of revolution
is 160 per minute. Find the stress in the rim. What would be the
stress if the speed were doubled ?

Let /,== stress in lbs. per square inch.

.

Then /==^,
10'

where ?;=linear velocity of rim in feet per second.

Now y=4x^><i6o_^^.^
^^^^ pg^ second.

00. t2
.'. ft= = 112-2 lbs, per square inch.

Stress in rim=112 '2 lbs. per square inch.

If the speed were doubled, the stress would be increased four-

fold, since it varies as the square of the rim speed.

Stress in rim= 112-2x4== 448-8 lbs, per square inch.

Stress in rim (at 160 revs.)= 112-2 lbs, per square inch. l

/ N TTTr '- T I
Answers.

„ „ \„ 320 „ )=44o-8 lbs, per square mch. J

230



Bennett College :
" Strength of Materials

''

(2) An engine flywheel is 20 feet diameter, and runs at a speed
of 60 revolutions per minute. Find the stress in the rim due to

centrifugal action, neglecting the effect of the arms. Find also

the greatest speed at which the wheel may be safely run if the
stress is not to exceed 1000 lbs. per square inch.

Stress=—

,

10

where i'-=rim speed in feet per second.

Now v=-^J^ ^=20Tz feet per second,
DO

.'. Stress=-^- ' =394'8 lbs, per square inch.

To find the greatest speed at which the wheel may be safely

run, first find the greatest permissible value of v. Call this Vi.

Thus, /,=^.
*" 10

Since /i is limited to 1000 lbs. per square inch,

1000=-^,
10

.*. t;i=Vio,ooo=^ioo feet per second.

Let Ni=the maximum speed in revolutions per

minute.

Now fi=^—

^

^ 60

Ni=
60X^1
TTXD

_6oxioo
• 71X20

=95-5 revolutions per minute

Stress in rim= 394-8 lbs, per square inch.

Maximum*speed of revolution
Answers.

=^95-5 revolutions per minute.
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Chapter XII

SQUARE SHAFTS

The great majority of shafts used in practice are of round section.

It is indeed the exception to find any other than the round section

employed. Occasionally, however, shafts of square section are

employed (in connection with travelling cranes, for example), and
on this account, and further, because springs of square section

are much used in practice, and the consideration of the strength of

springs is based on a knowledge of the strength of shafts, we shall

consider here very briefly the strength of shafts of square section.

In a round shaft, the shearing stress is uniform at all points

equidistant from the axis, and the stress at any point varies as

the distance of the point from the axis. This does not apply to

shafts of any other section than the round, and, in consequence, the

determination of the strength of non-circular shafts is a difficult

problem. The problem, however, was investigated as far back as

1856 by St. Venant, who found that in the case of a square shaft

the maximum intensity of stress occurs at the middle of each side

of the square, and the torsional resistance is equal to •2o8Sys,

where S is the length of a side of the square, and /, the shear stress.

Hence, if T.M.=the twisting moment,

., r TM.
^^'^

-^^^•208S3
>

and T.M.= -20883/.

This formula enables us to find the strength of a square shaft.

The corresponding formula for a solid round shaft of diameter
D is

16 -^

As regards the stiffness of a square shaft, St. Venant found
that the torsional rigidity of a square shaft was •84GJ, as against

GJ in the case of a round shaft. (See top of p. 233.) •

In dealing with the stiffness of round shafts. Chapter VI 1 1.,

we deduced the formula,

TM._(pG

J /

'
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where T.M. -= twisting moment

;

J=moment of inertia of shaft;

9= angle of twist in radians
;

/=lengthof shaft

;

G=modulus of rigidity of material

;

and from this we see that for a round shaft,

T.M.x/

Hence, for the square shaft,

T.M.x/

For a round shaft, J= ,

., , T.M.x/ 32T.M./
so that 9=-tS4— = —^tS4->

X ^jr

the formula which we obtained for the angle 9 (in radians) on
p. 184.

Multiplying by 57-3, to obtain the angle 9 in degrees, we
obtain

9 (degrees) ="-%jsr~ (round shaft),

which is the general formula we used in dealing with the stiffness

of a round shaft.

Our corresponding formula for the square shaft is obtained by
substituting for J in the formula,

T.M.x/

the value -
, (this being the moment of mertia of a square shaft),

where S is the length of the side of the square.

TT f A- \ T.M.x/ 6T.M./
Hence, 9 (radians)= =

•84|-G
'^^SG

Multiplying by 57*3, to obtain the angle 9 in degrees, we obtain

9 (degrees)=^—^
'

(square shaft),

and T.M.=-^^^*.
410/
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Worked Examples

(i) Find the size of a mild steel square shaft to transmit

80 horse power at a speed of 100 revolutions per minute. Allow-
able shear stress, 7000 lbs. per square inch.

This question is the same as Question (3) in the Worked Ex-
amples of Chapter VIII., p. 198, but we are dealing with a square
instead of a round shaft. We might anticipate that the size of the

shaft, as measured by the length of a side, will be a little less

than the size of the round shaft, as measured by its diameter.

We find the size of a square shaft from the relation,

T.M.= -20887;,

where T.M.-= twisting moment, say in pound-inches;
S= length of side of square of shaft

;

/s= allowable shear stress, in lbs. per square inch.

Now T.M.=^^3,ooo H.P.

N
where H.P.=the horse power to be transmitted,

and N=theshaft speed mrevolutions perminute.

. T TVT 63,000X80
'

J • 1,
.. i.M.=-^=^^ =50,400 pound-mches.

Equating this to the torsional resistance,

50,400= -20883/,.

Substituting for/,, the value 7000 lbs. per square inch, we have
finally,

S3^
5°,40o

^34.6^
-208X7000 ^

.*. S=iv/34-6=3j inches (approx.).

Thus, the shaft is seen to be slightly less than the round shaft,

which we found to be 3J inches diameter. The round shaft is

more economical in material, the relative sectional areas or weights
being as

^^2:S2=785X3-375':3-25''
4

=8-95- : 10-55

= i: 1-18.

Required size of shaft=3^ inches (square) . Answer.
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(2) Find the relative strengths and weights of a 3-inch round
shaft, a 3-inch square shaft, and a rectangular shaft, 3J inches by
2j inches.

The torsional strengths are ^Dy, for the round shaft, •2088^/',

for the square shaft, and -294
B2H2

/, for the rectangular shaft,
VB2+H2'

D representing the diameter of the round shaft, S the length of the
side of the square sh^it, B the breadth of one side, and H that of
the other for the rectangular shaft, /, representing the sheai stress
in each case.

Hence the relative strengths are as

^D3 : -20853 : -294 __.

16 ^ VB2
B2H2

H2
Now D=3 inches, 8=3 inches, B=3j inches, and H=2j inches

3.52x2-52

therefore the relative strengths are as

•20S X ^.3 •294
V3-5'+2-5^

5-3 : 5-62 : 5-23

i_: i-o6 : -987

{Round) (Square) (Rectangular)

The relative weights are as the relative sectional areas, viz,

ab

4
785x32

7-07

I

S2'

9

1-273

BH,

3-5 X 2-5

875
1-24

Answers.

(Round) (Square) (Rectangular)

Round. Square. Rectangular. \

Relative Strengths, i i-o6 -987 I.

„ Weights, i_ 1-273 1-24
J

(3) A square shaft is 3-7-inch side, and 25 feet long. It trans-
mits 200 horse power when running at a speed of 140 revolutions
per minute. Find the angle of twist in degrees.

The formula for a square shaft is

9GS4
T.M.=

410/'
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where T.M.= twisting moment in pound-inches;
cp=-angle of twist in degrees

;

S=-length of side of square of shaft in inches

;

/=length of shaft in inches
;

G=modulus of rigidity=12,000,000 lbs. per square inch.

We require the angle 9.

T? .' ^ T.M.X/X410
Re-arrangmg, 9= ^^^

^
.

Now T3^^63,000 H.P
N

where H.P.^horse power transmitted,

and N=speed in revolutions per minute.

The horse power is stated to be 200, and the speed 140 revo-

lutions per minute.

. y yr _63,OOOX200
140

Now /=-25xi2 inches, G=i2,ooo,ooo lbs. per square inch, and
5=3-7 inches.

Substituting in the expression for 9, we have

63,000 X 200 X 25 X 12 X 410

.

^ 140x12,000,000x37'^

=4-92 degrees.

/. Angle of twist=4-92 degrees. Answer.
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Chapter XIII

SPRINGS

Helical Springs.—A helical spring may be regarded as a thick

wire or a very small shaft coiled into a helix. In practice, the wire

or shaft is generally either of round or square section.

When a spring of this form is subjected to a compressive or a
tensile load, it tends to fail mainly by torsion. If the slope of the

helix is not small, in other words, if the obliquity of the coils is

considerable, there is also a certain

amount of bending, which, strictly

speaking, should be taken into account.

In most cases in practice, however,
the slope of the helix is so small that

the question of bending may be ignored,

and in what follows we shall assume
that the stresses imposed on the coils

are purely torsional.

We have stated that a helical

spring may be regarded as a very
small shaft coiled into a helix, and our
knowledge of the strength of shafts

will help us in dealing with the strength

of helical springs.

Referring to Fig. 74, we see that

the effect of a load acting in the direc-

tion of the axis of the spring will be
to exert a twisting moment, the value
of which will be WR, where W is the

load and R the radius of the spring
;

i.e. the distance from the axis to the centre of the coils.

Now in Chapter VI 1 1., dealing with the " Strength of Shafts,"

we deduced important relations connecting the twisting moment,
the moment of inertia, the stress in the material, and the angle of

twist of a shaft, etc.

The relations referred to are,

T.M.

-y^l^^ (see page 186),
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where T.M.= twisting moment in pound-inches

;

J=moment of inertia of shaft

;

9=angle of twist

;

G=modulus of rigidity of the shaft material;
/= length of shaft

;

/s=shear stress in shaft

;

R=radius of cross-section of shaft.

We shall make use of this relation in finding the strength of

a spring. As we are now going to let R represent the radius of
the spring, it will be convenient to substitute R in the formula
just stated by r, which will denote the radius of the section

of the spring.

Since TJl.^/
J r

then T.M.=£J.

Now in the case of the spring, we have seen that

T.M.=WR.

Substituting this for T.M., we have,

M

J-

WR=
r

For a round shaft or wire

where ^=diameter of shaft or wire.

Substituting this value for J, and - for y,

WR=

i6 '

If D=diameter of spring, then since R= , we have

2 10

Hence ._i6WD_2-55WD
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Hence, for a round coil helical spring,

f^

.2-55WD
d'-

and W=-i^
2.55D

(forround coil helical springs).

As regards springs of square section, we have seen that for a
square shaft (see previous Chapter)

T.M.=-2o8S3/:,,

where S= length of side of square.

Hence for the spring we have,

Wx?=-2o8Sy„

H f- ^^ _2-4WD
/^ .41553 S3

•

Therefore, for a heUcal spring with coils of square section,

Js C3

and W= .
IS'
2-4D

(for square coil helical springs)

.

The foregoing formulae show the relation between the load on
a spring and the stress.

We shall next find an expression for the amount of elongation

or shortening of a round helical spring for a given load.

Referring again to the original formula,

T.M._cpG

J
~ r

, .. . TM.xl
we note that <p=—^—p^

.

^ JxG
Now the amount of extension or compression of the spring will

be equal to the product of the angle of twist and the radius R of

the spring. Call the extension or the compression S.

Then S=(pxR=<px

Substituting for 9, the value

2

TM.xl
JxG '

T.M.x/x^

JxG
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Since the twisting moment T.M. is equal to Wx — , and the

total length of the spring is equal to tcxDxN (very neariy), where
N is the number of the coils, then

D DWx-xttDNx-
8=_ 2 2

Now J=
32

JxG
7t#

and .*. S=

Wx^xttDNx-
2 2

32"

_8WD3N
G# *

. ^ 8WD3N ,, A ^^^. r ^ \" """—r774— (^^^ round coil helical springs)

.

This expression enables us to find the amount of extension or

compression of a round helical spring caused by a load W.
Springs in general are made of steel, the value of G for which

is usually taken as 12,000,000 lbs. per square inch.

Hence, for steel springs,

8WD3N
S==

12,000,000^*'

i.e. S= —7T (for round coil helical springs).
i,5oo,ooo<^*

For springs with coils of square section a formula may be

derived in a similar manner.
Since the torsional rigidity for a square shaft is •84JG instead

of JG, we have

T.M.x/x^
^_ 2

•84JXG •

Substituting Wx? for T.M. and ttDN for /,

Wx— XTuDNxv
5^_ 2 2

•84JXG •
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Now J for a square shaft=-^,

where S=length of one side of the square.

Wx^xttDNx-
Hence, S= ^

•84x^^xG
6

—r^c4 (^^^ square coil helical springs).

Taking the value of G as 12,000,000, we have finally,

S=—

—

^ (for square coil helical springs)

.

WORKED Examples
(i) A closely coiled cylindrical spring, 6 inches in mean

diameter, is made out of |-inch steel wire. What direct axial pull

can this spring maintain if the maximum intensity of stress per
square inch is not to exceed 20,000 lbs. ? (B. of E. App. Mech.)

This problem is easily solved by applying the formula.

W^ fsd'

2-55D'

where W=the load or axial pull, say, in lbs.

;

^=diameter of the coil in inches

;

D=mean diameter of the spring in inches

;

/= shear stress in the material in lbs. per square inch.

Now <i=f inch=*375 inch; D=6 inches, and /s= 20,000 lbs.

per square inch.

Substituting these values,

^^2o,ooox>375L69
lbs.

2-55x6

.". Direct axial pull=69 lbs. Answer.

(2) Suppose that the spring in the previous question were
made of square section instead of round, the side of the square
being f inch. What would then be the axial pull ?

For a spring of square section we use the formula,

W— ^'^

2-4D'

where S= length of side of square;

the other letters representing the same quantities as before.
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Substituting the known values,

Txr 20,ooox-375^ ^ 1-,W=

—

7?^-^-=^ =73*3 Ids.
2-4x6 -^-"^-^

/. Direct axial pull=73-3 lbs. Answer.

The square spring is thus seen to be very little stronger than the
round spring, though its sectional area is greater in the proportion

of I to -785, or, roughly, 4 to 3.

(3) A steel heHcal spring with square coils has a mean radius of

ij inches, and contains 20 coils. The section of the coils is a

|-inch square. Find how much this spring would extend under
a load of 1000 lbs.

To solve this question, use the formula,

2,135,0008*'

where S=the extension in inches
;

W=the load in lbs.

;

D=mean diameter of spring in inches

;

N=number of coils
;

S= length of side of square of the section.

Now W=iooo lbs., D=2xi'25=2-5 inches, N=20, S=-5 inch.

Substituting these values in the formula,

5. 1000x2-5^x20 ^. ,

5=z. ^ ^ = 2*34 mches.
2,i35,ooox-54 -^

.'. Extension=2-34 inches. Answer.

(4) Design a closely-coiled helical spring to comply with the

following conditions :—Spring to be made out of round steel wire,

the mean diameter being twelve times the diameter of the wire.

Modulus of rigidity of material, 11,000,000 lbs. per square inch.

The spring is to stretch 4 inches under a load of 40 lbs., with a shear

stress of 20,000 lbs. per square inch.

We may apply the formulae given in the text to solve this

problem.
The formula connecting the stress with the load for a spring

of round section is,

2-55D'

where W=the load in lbs.

;

/,====shear stress in lbs. per square inch
;

6?=diameter of the coils in inches

;

D=mean diameter of spring in inches.
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Now W=40 lbs., and 7^=20,000 lbs. per square inch. Also,

since the mean diameter of the spring is to be twelve times the
diameter of the wire, then D= i2^.

Substituting these values in the formula,

20,000 X(i^40=—^ 3.
2-55x12^

,*. 20,000(^^=40 X 2*55 XI2i.

^,^4OX2:55XI2=.06i2,
20,000

.*. i=V'-o6i2=-25 inch (approx.).

Hence, the wire will be -25 inch diameter, and the spring

12 X -25=3 inches (mean diameter).

The formula connecting the extension of the spring with the

load is

c, 8WD3N

where S=the extension in inches

;

N===the number of coils
;

G=modulus of rigidity.

(Note.—Tiie student must in this example avoid using the
formula

WD^N
i,5oo,ooo#*

since this assumes a value for the modulus of rigidity of 12,000,000
lbs. per square inch, whereas the steel for the spring under con-
sideration has a modulus of 11,000,000 lbs. per square inch.)

Now S=4 inches, W=40 lbs., D=3 inches, and d=^'2$ inch.

By substituting these values, we can find the value of N.

Thus, 4= 8x40X3^xN
11,000,ooox -25^

N=4xii.ooo,ooox-25«^^p
(nearly).

40X3^X8 ^ •^'

:. Number of coils=20.

Having found the number of coils, we can easily find the length of
wire required to make the spring.
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Thus, Lengths- ttxDxN (approx.)

= 71x3x20=188-5 inches

= 15 feet 8J inches.

Mean diameter of spring= 3 inches .

Diameter of coils=Jinch.

Number of coils=20.

Length of wire= 15 feet 8| inches.

Answers
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Chapter XIV

STRENGTH OF THICK CYLINDERS

In Chapter V., dealing with the strength of cyhndrical vessels

exposed to fluid pressure, we investigated the case of a thin

vessel such as a boiler shell, and we deduced the important
relation,

pd
"2t'

where /=the tensile stress in the shell in lbs. per square inch ;

^=the internal pressure in lbs. per square inch;

^=diameter of vessel in inches
;

^= thickness of shell in inches.

Now, in obtaining this formula we assumed that the stress was
uniformly distributed over the longitudinal section of the vessel,

and this assumption is quite a reasonable one provided the shell

is thin.

When, however, we have to deal with vessels whose thickness

is not very small in comparison with their internal diameter

—

hydraulic cylinders, for example—we are not justified in assuming
that the stress is uniformly distri-

buted over the section where we
suppose rupture will occur, because
the inside portions of the metal
have to withstand much greater

forces than the outside portions.

As a matter of fact, if a cylinder

is made sufliciently thick, the outer

portions of the metal may play no
part whatever in resisting the ten-

dency to bursting.

Thick cylinders must therefore

be treated differently from thin

cylinders, and we now proceed to

obtain a formula which is applic-

able to such cylinders.

Fig. 75 represents a section through a thick cylinder.

Consider an elementary ring of the cyHnder of internal radius r

245
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and thickness Sf, the ring being of unit depth or thickness in the
direction of the length of the cyhnder.

To avoid trouble with positive and negative signs, it is usual
in this investigation to suppose that the pressure on the outer
surface of this elementary ring is slightly greater than that on the
inner surface.

Therefore, let p be the radial compressive stress on the inner
surface of the ring, and p+Sp the stress on the outer surface.

Further, let q be the tangential compressive stress in the material

;

i.e. the crushing stress acting in a direction perpendicular to the
radius.

Now consider the equilibrium of one half of the ring.

The force tending to burst the ring is equal to the pressure by
the diameter, i.e. to pd (if d is the diameter of the ring), which is

of course equal to px 2r.

Opposed to this there is a slightly greater force of amount

The difference between these two forces must be balanced by
the forces due to the stress q, viz. 2q . Sr.

Hence, (p+^p)x2(r+^r)—2pr=2q.^r,

i.e. 2pr+2r . Bp-i-2p . Sf+2 . Sp . 8r—2pr=2q . Sr.

The quantity 2Bp . Sr (a multiplication of infinitesimals) can

be ignored, and 2pr cancels out.

Hence, 2p . Sr+2r . ^p=2q . Sr,

i.e. p . Br+r . hp^q . Sr.

Dividing through by Sr, p+i'^'^q-

In the hmit, p+r . ^^q.
^ dr

Here we have two unknown quantities, and we cannot therefore

solve the equation until we obtain another one which we can
combine with the first.

Consider any small prism of metal, ABCD in the figure.

On the faces of this prism we have compressive forces acting

which tend to elongate the metal in a direction at right angles to

the plane of the paper.

These forces are p and q, and they act in two directions at

right angles to each other, so that the amount of elongation just

referred to is proportional to p-\-q.

We make an assumption here, viz. that a plane cross-section

(parallel to the plane of the paper) remains plane after the material
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has become stressed by the appHcation of the pressure, so that we
may take it that the elongation of the prism is independent of r.

If, then, the elongation in question is proportional to p-\-q, we
have the further relation,

p^q=di constant=2C,

where C represents a constant, the 2 being introduced for con-

venience of integration. Then

q=-2C—p.

Substitute this value of q in the equation.
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Substitute this value of K in the equation.

Then 0=C+-|-i^^^=C+4-'^~,,

Hence, ^""^+.2

.y..y2
I)'

2\ 4/2

and ^=C-i

-p. _Ii!_ IPllrlV

XPllfj\±llrl)

Y^—Yi 2^ y'^

The minus sign here indicates that the stress is tensile ; so that
if we call the tensile stress /, we have finally,

ro~rt\ r

This expression gives the stress at any radius y. The stress

will have its greatest value at the inner surface of the cylinder, i.e.

when Y^Yi.

Let /j be this stress.

Then /,=-M.A+^_.;^
/y £* y £i\ y
' o 'i\ '\

y 2 y 2\ y 2
' o ' i \ ' i
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The stress/, at the outer surface, where the radius is r^, will be

So-
p^i

^Pi^i

If /„„^ be the greatest safe tensile stress which may be im-
posed on the material, then the greatest pressure, p^^x* to which the

vessel may be subjected to with safety is

J^max J ->

' o ' i

Thus,
•^ * *• ' ^ £i 'y

' o ' i

Substitute /„^.,. and p^^x respectively for/ and pi

Then J max J/max

and

y ^ y ^
' o ' i

2 4'2

• • Fmax J max y2\y 2

If we take any thick cylinder, and calculate the stress in the
material at a number of different radii,

we can then plot a curve to show how
the stress varies as we go from the

smallest to the greatest radius. Such
a curve is shown in Fig. 76.

We see clearly from this that the /^|
greatest stress, /, occurs at the inner

surface, and rapidly becomes less as

we approach the external surface.

The stress, in fact, varies inversely as

the square of the radius, as is evidenced

by the formula,
Fig. 76

/
_ P^i

It will be instructive next to consider how the above formula

may be applied to the case of a thin cylinder.

Let the radius of the cylinder be R and the thickness of the

metal t.

Then f,- in the formula corresponds with R, and r^ with R+^.
^2\

Now f^PiL
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and if we consider the stress, /, at the inner surface of the cyHnder,

i.e. when r-^Vi, then

' o ' i

Hence, substituting for f^ the value R, and for r^ the value

R+^, we have
. R^+(R+0^
^' ^^(R+^)2-R2

. R2+R2+2Ri5+i52

=Pi

R2+2R^+i!2-R2

2R^+2Ri^+^^

Now observe that when t is very small in comparison with R,

all the quantities ^, -^ and ^^ may be neglected, and

Since R=— , where D is the diameter of the thin vessel, we
2

have finally, ^'
2t'

This corresponds with our old formula for the stress in a thin

vessel. (Seep. 85.)

WORKED Examples

(i) A hydraulic cylinder has an internal diameter of 8 inches,

and an external diameter of 12 inches. Find the stress in the

metal at distances of 4 inches, 5 inches, and 6 inches from the centre

of the cylinder, assuming the pressure of the water to be 3000 lbs.

per square inch.

The general formula is
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where r~inside radius of cylinder

;

fo== outside radius of cylinder

;

r=any intermediate radius;

^,=intemal pressure

;

/=- stress at radius r.

Now ?'i=4 inches, r„= 6 inches, and ^^=3000 lbs. per square inch.

Then, / (at 4 inches)=322^'(i+|)

=7800 lbs. per square inch.

/(at 5 .. )-^^{^.
= 5860 lbs, per square inch.

/(at 6 „ )^2^(.xg^,

=4800 lbs. per square inch.

This example serves to show how the stress diminishes as we
approach the outer surface of the cylinder.

Stress at 4 inches from centre=78oo lbs. per sq. in.'

5 „ „ =5860 lbs. per sq. in.

6 „ ,, =4800 lbs. per sq. in.

Answers.

(2) A line of hydraulic pipes, 6 inches diameter, is required

to sustain a pressure of one half-ton per square inch. Find the
required thickness of the pipes, allowing a safe tensile stress of

2J tons per square inch.

Here, since we are not concerned with anv intermediate
radms r, we use the simpler formula.

U ..2-7-

where /j= stress at the inside surface.

Now_^i='5 ton per square inch, ri=Z inches, and/i=2-25 tons
per square inch.

We have to find y„, after which we can state the thickness of

metal required.

Substituting the known values,
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Solving this equation,

2-25r„2_2-25 X 9= -5 X 9+ -Sf^^,

2-25r,2-.5^„2_4.^^20-25,

175^,2^2475,

.-. ^,2^14.15,

and ^0=376 inches, say, 3f inches.

Thus the thickness of the metal is r,—^i==3i—3=i inch.

Required thickness of metal=f inch. Answer.

(3) The internal diameter of a hydraulic cylinder is 8 inches,

and the ultimate strength of the material of which it is made is

16,000 lbs. per square inch. What thickness of metal would be
required in the sides of such a cylinder if the metal be not stressed

beyond one-sixth of its ultimate strength, the water being under
a pressure of 2000 lbs. per square inch ? Prove the formula which
you employ. (Hons. S. and A. Exam.)

The greatest stress occurs at the inside surface, where >',=4

inches, and this stress is not to exceed one-sixth the ultimate

strength of the material, viz. 160011=2667 lbs. per square inch.

Again use the formula,

J'' 4'2_y2 •

' o ' i

Substituting the known values,

^^^2000(4^+./)

2667(;'o2—42) -=2000(42+^,2)

2667;'„2_2667x 16=2000 X 16+2000^,2^

2667^,2—2000/',^= (2667+2000)16,

667^,2=74672,

.'. y,= V^|-^4^=\/ii2=io| inches (approx.).

.*. Thickness of metal=y,—r^^ 10-5—4-0= 6 j- inches. Answer.

The question also asks for the proof of the formula employed.
This is given in the text.

(4) The ratio of the external to the internal diameter of a
large gun is 2 to i. The stresses at radii of 7-5 and 9 inches are
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respectively 21 -2 and 16-5 tons per square inch, and the maximum
pressure is 17-85 tons per square inch. Find the internal and
external diameters, and the maximum stress.

The general formula is

where /= stress at radius r
;

_/);= pressure at inner surface, i.e. the maxi-
mum pressure

;

^0= outside radius

;

y^^inside radius.

In this formula there are two unknowns, viz. f„ and r,-.

YWe know, however, that -=2.
ri

Take first the stress at a radius of y\ inches. We are told that

this is equal to 21-2 tons per square inch.

Hence, 2i-2=-4^-^
7-5'

r.
Since —--2, then r^==2ri. Therefore substitute 2^- for r^ in

the formula.

Then, 21-2= ,^^;^'^^ ^A 1+ ^ .2

,. 2i.2=-fe^(i+4^),

I.e. 2i-2=-^-(i+-07i2r,^),

2i-2=-333^i+-0237fi2^,- . - (i).

This is an equation containing two unknowns, so we require

another one.

We are told that the stress at a radius of 9 inches is 16-5 tons

per square inch.

Hence, i6-5=^~4^2|i+^—

^

i.e. i6-5=^'(i+-0493r,:2),

^^'5=-333pi+'0^^4^i^Pi • • (2).

Subtracting this equation from (i),

47=-oo73f,2j?,..
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Now pi^iy-8^ tons,

55

r:= ' 47
0073x17-85

=6 inches.

Since ^o=2r,-,

then ^0=12 inches.

.'. Inside radius=6 inches,

and Outside radius=i2 inches.

The maximum stress may now be found from the formula,

fi=p
* r^—r^

Substituting the known values.

=29-7 tons per square inch.

Internal diameter=12 inches.

External diameter=24 inches. |- Answers.

Maximum stress=-29-7 tons per square inch.
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